CINXE.COM

Search results for: frequency domain

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: frequency domain</title> <meta name="description" content="Search results for: frequency domain"> <meta name="keywords" content="frequency domain"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="frequency domain" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="frequency domain"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5629</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: frequency domain</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5629</span> Comparison of Frequency-Domain Contention Schemes in Wireless LANs </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Feng">Li Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In IEEE 802.11 networks, it is well known that the traditional time-domain contention often leads to low channel utilization. The first frequency-domain contention scheme, the time to frequency (T2F), has recently been proposed to improve the channel utilization and has attracted a great deal of attention. In this paper, we survey the latest research progress on the weighed frequency-domain contention. We present the basic ideas, work principles of these related schemes and point out their differences. This paper is very useful for further study on frequency-domain contention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=802.11" title="802.11">802.11</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20LANs" title=" wireless LANs"> wireless LANs</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency-domain%20contention" title=" frequency-domain contention"> frequency-domain contention</a>, <a href="https://publications.waset.org/abstracts/search?q=T2F" title=" T2F"> T2F</a> </p> <a href="https://publications.waset.org/abstracts/42959/comparison-of-frequency-domain-contention-schemes-in-wireless-lans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5628</span> Frequency Transformation with Pascal Matrix Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phuoc%20Si%20Nguyen">Phuoc Si Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequency transformation with Pascal matrix equations is a method for transforming an electronic filter (analogue or digital) into another filter. The technique is based on frequency transformation in the s-domain, bilinear z-transform with pre-warping frequency, inverse bilinear transformation and a very useful application of the Pascal&rsquo;s triangle that simplifies computing and enables calculation by hand when transforming from one filter to another. This paper will introduce two methods to transform a filter into a digital filter: frequency transformation from the s-domain into the z-domain; and frequency transformation in the z-domain. Further, two Pascal matrix equations are derived: an analogue to digital filter Pascal matrix equation and a digital to digital filter Pascal matrix equation. These are used to design a desired digital filter from a given filter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20transformation" title="frequency transformation">frequency transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=bilinear%20z-transformation" title=" bilinear z-transformation"> bilinear z-transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-warping%20frequency" title=" pre-warping frequency"> pre-warping frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20filters" title=" digital filters"> digital filters</a>, <a href="https://publications.waset.org/abstracts/search?q=analog%20filters" title=" analog filters"> analog filters</a>, <a href="https://publications.waset.org/abstracts/search?q=pascal%E2%80%99s%20triangle" title=" pascal’s triangle"> pascal’s triangle</a> </p> <a href="https://publications.waset.org/abstracts/34866/frequency-transformation-with-pascal-matrix-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5627</span> Power System Modeling for Calculations in Frequency and Steady State Domain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Levacic">G. Levacic</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zupan"> A. Zupan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of new technological solutions and installation of new elements into the network requires special attention when investigating its interaction with the existing power system. Special attention needs to be devoted to the occurrence of harmonic resonance. Sources of increasing harmonic penetration could be wind power plants, Flexible Alternating Current Transmission System (FACTS) devices, underground and submarine cable installations etc. Calculation in frequency domain with various software, for example, the software for power systems transients EMTP-RV presents one of the most common ways to obtain the harmonic impedance of the system. Along calculations in frequency domain, such software allows performing of different type of calculations as well as steady-state domain. This paper describes a power system modeling with software EMTP-RV based on data from SCADA/EMS system. The power flow results on 220 kV and 400 kV voltage levels retrieved from EMTP-RV are verified by comparing with power flow results from power transmissions system planning software PSS/E. The determination of the harmonic impedance for the case of remote power plant connection with cable up to 2500 Hz is presented as an example of calculations in frequency domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20system%20modeling" title="power system modeling">power system modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20domain" title=" frequency domain"> frequency domain</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20state" title=" steady state"> steady state</a>, <a href="https://publications.waset.org/abstracts/search?q=EMTP-RV" title=" EMTP-RV"> EMTP-RV</a>, <a href="https://publications.waset.org/abstracts/search?q=PSS%2FE" title=" PSS/E"> PSS/E</a> </p> <a href="https://publications.waset.org/abstracts/87152/power-system-modeling-for-calculations-in-frequency-and-steady-state-domain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5626</span> Robust Medical Image Watermarking Using Frequency Domain and Least Significant Bits Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Volkan%20Kaya">Volkan Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ersin%20Elbasi"> Ersin Elbasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Watermarking and stenography are getting importance recently because of copyright protection and authentication. In watermarking we embed stamp, logo, noise or image to multimedia elements such as image, video, audio, animation and text. There are several works have been done in watermarking for different purposes. In this research work, we used watermarking techniques to embed patient information into the medical magnetic resonance (MR) images. There are two methods have been used; frequency domain (Digital Wavelet Transform-DWT, Digital Cosine Transform-DCT, and Digital Fourier Transform-DFT) and spatial domain (Least Significant Bits-LSB) domain. Experimental results show that embedding in frequency domains resist against one type of attacks, and embedding in spatial domain is resist against another group of attacks. Peak Signal Noise Ratio (PSNR) and Similarity Ratio (SR) values are two measurement values for testing. These two values give very promising result for information hiding in medical MR images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=watermarking" title="watermarking">watermarking</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20image" title=" medical image"> medical image</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20domain" title=" frequency domain"> frequency domain</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20significant%20bits" title=" least significant bits"> least significant bits</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a> </p> <a href="https://publications.waset.org/abstracts/75214/robust-medical-image-watermarking-using-frequency-domain-and-least-significant-bits-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5625</span> Single Carrier Frequency Domain Equalization Design to Cope with Narrow Band Jammer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=So-Young%20Ju">So-Young Ju</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Mi%20Jo"> Sung-Mi Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Eui-Rim%20Jeong"> Eui-Rim Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, based on the conventional single carrier frequency domain equalization (SC-FDE) structure, we propose a new SC-FDE structure to cope with narrowband jammer. In the conventional SC-FDE structure, channel estimation is performed in the time domain. When a narrowband jammer exists, time-domain channel estimation is very difficult due to high power jamming interference, which degrades receiver performance. To relieve from this problem, a new SC-FDE frame is proposed to enable channel estimation under narrow band jamming environments. In this paper, we proposed a modified SC-FDE structure that can perform channel estimation in the frequency domain and verified the performance via computer simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=channel%20estimation" title="channel estimation">channel estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=jammer" title=" jammer"> jammer</a>, <a href="https://publications.waset.org/abstracts/search?q=pilot" title=" pilot"> pilot</a>, <a href="https://publications.waset.org/abstracts/search?q=SC-FDE" title=" SC-FDE"> SC-FDE</a> </p> <a href="https://publications.waset.org/abstracts/80488/single-carrier-frequency-domain-equalization-design-to-cope-with-narrow-band-jammer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5624</span> Dielectric Properties in Frequency Domain of Main Insulation System of Printed Circuit Board</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xize%20Dai">Xize Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Hao"> Jian Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Claus%20Leth%20Bak"> Claus Leth Bak</a>, <a href="https://publications.waset.org/abstracts/search?q=Gian%20Carlo%20Montanari"> Gian Carlo Montanari</a>, <a href="https://publications.waset.org/abstracts/search?q=Huai%20Wang"> Huai Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Printed Circuit Board (PCB) is a critical component applicable to power electronics systems, especially for high-voltage applications involving several high-voltage and high-frequency SiC/GaN devices. The insulation system of PCB is facing more challenges from high-voltage and high-frequency stress that can alter the dielectric properties. Dielectric properties of the PCB insulation system also determine the electrical field distribution that correlates with intrinsic and extrinsic aging mechanisms. Hence, investigating the dielectric properties in the frequency domain of the PCB insulation system is a must. The paper presents the frequency-dependent, temperature-dependent, and voltage-dependent dielectric properties, permittivity, conductivity, and dielectric loss tangents of PCB insulation systems. The dielectric properties mechanisms associated with frequency, temperature, and voltage are revealed from the design perspective. It can be concluded that the dielectric properties of PCB in the frequency domain show a strong dependence on voltage, frequency, and temperature. The voltage-, frequency-, and temperature-dependent dielectric properties are associated with intrinsic conduction behavior and polarization patterns from the perspective of dielectric theory. The results may provide some reference for the PCB insulation system design in high voltage, high frequency, and high-temperature power electronics applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20insulation%20system" title="electrical insulation system">electrical insulation system</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title=" dielectric properties"> dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20voltage%20and%20frequency" title=" high voltage and frequency"> high voltage and frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=printed%20circuit%20board" title=" printed circuit board"> printed circuit board</a> </p> <a href="https://publications.waset.org/abstracts/168071/dielectric-properties-in-frequency-domain-of-main-insulation-system-of-printed-circuit-board" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5623</span> Detection of Parkinsonian Freezing of Gait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang-Hoon%20Park">Sang-Hoon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeji%20Ho"> Yeji Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Gwang-Moon%20Eom"> Gwang-Moon Eom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fast and accurate detection of Freezing of Gait (FOG) is desirable for appropriate application of cueing which has been shown to ameliorate FOG. Utilization of frequency spectrum of leg acceleration to derive the freeze index requires much calculation and it would lead to delayed cueing. We hypothesized that FOG can be reasonably detected from the time domain amplitude of foot acceleration. A time instant was recognized as FOG if the mean amplitude of the acceleration in the time window surrounding the time instant was in the specific FOG range. Parameters required in the FOG detection was optimized by simulated annealing. The suggested time domain methods showed performances comparable to those of frequency domain methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freezing%20of%20gait" title="freezing of gait">freezing of gait</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Parkinson%27s%20disease" title=" Parkinson&#039;s disease"> Parkinson&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=time-domain%20method" title=" time-domain method"> time-domain method</a> </p> <a href="https://publications.waset.org/abstracts/4337/detection-of-parkinsonian-freezing-of-gait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5622</span> Design of an Arbitrary Signal Generator Based on Time-Domain Superposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20JunLiang">Yu JunLiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces the design principles and methods of a time-domain signal generator. It explores the spectral characteristics of pulse signals and proposes a signal synthesis method based on the superposition of Gaussian signals. By adjusting the amplitude parameters of the Gaussian functions, the synthesis of arbitrary spectral signals can be achieved. The synthesis method considers the calculation of synthesis coefficients for signals with known frequency domain functions. Finally, simulation experiments verify the time-domain and frequency-domain characteristics of the synthesized signals and discuss the degree of fit between the synthesized and original signals in both domains. This paper provides valuable insights for understanding the design principles and implementation methods of time-domain signal generators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time-domain%20signal%20generator" title="time-domain signal generator">time-domain signal generator</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20signal" title=" pulse signal"> pulse signal</a>, <a href="https://publications.waset.org/abstracts/search?q=arbitrary%20signal%20generator" title=" arbitrary signal generator"> arbitrary signal generator</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20synthesis" title=" signal synthesis"> signal synthesis</a> </p> <a href="https://publications.waset.org/abstracts/197346/design-of-an-arbitrary-signal-generator-based-on-time-domain-superposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/197346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5621</span> A Design of an Arbitrary Signal Generator Based on Time-Domain Superposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Junliang">Yu Junliang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces the design principles and methods of a time-domain signal generator. It explores the spectral characteristics of pulse signals and proposes a signal synthesis method based on the superposition of Gaussian signals. By adjusting the amplitude parameters of the Gaussian functions, the synthesis of arbitrary spectral signals can be achieved. The synthesis method considers the calculation of synthesis coefficients for signals with known frequency domain functions. Finally, simulation experiments verify the time-domain and frequency-domain characteristics of the synthesized signals and discuss the degree of fit between the synthesized and original signals in both domains. This paper provides valuable insights for understanding the design principles and implementation methods of time-domain signal generators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time-domain%20signal%20generator" title="time-domain signal generator">time-domain signal generator</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20signal" title=" pulse signal"> pulse signal</a>, <a href="https://publications.waset.org/abstracts/search?q=arbitrary%20signal%20generator" title=" arbitrary signal generator"> arbitrary signal generator</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20synthesis" title=" signal synthesis"> signal synthesis</a> </p> <a href="https://publications.waset.org/abstracts/198586/a-design-of-an-arbitrary-signal-generator-based-on-time-domain-superposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/198586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5620</span> Revised Tower Earthing Design in High-Voltage Transmission Network for High-Frequency Lightning Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azwadi%20Mohamad">Azwadi Mohamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Pauzi%20Yahaya"> Pauzi Yahaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadiah%20Hudi"> Nadiah Hudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthing system for high-voltage transmission tower is designed to protect the working personnel and equipments, and to maintain the quality of supply during fault. The existing earthing system for transmission towers in TNB’s system is purposely designed for normal power frequency (low-frequency) fault conditions that take into account the step and touch voltages. This earthing design is found to be inapt for lightning (transient) condition to a certain extent, which involves a high-frequency domain. The current earthing practice of laying the electrodes radially in straight 60 m horizontal lines under the ground, in order to achieve the specified impedance value of less than 10 Ω, was deemed ineffective in reducing the high-frequency impedance. This paper introduces a new earthing design that produces low impedance value at the high-frequency domain, without compromising the performance of low-frequency impedance. The performances of this new earthing design, as well as the existing design, are simulated for various soil resistivity values at varying frequency. The proposed concentrated earthing design is found to possess low TFR value at both low and high-frequency. A good earthing design should have a fine balance between compact and radial electrodes under the ground. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthing%20design" title="earthing design">earthing design</a>, <a href="https://publications.waset.org/abstracts/search?q=high-frequency" title=" high-frequency"> high-frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning" title=" lightning"> lightning</a>, <a href="https://publications.waset.org/abstracts/search?q=tower%20footing%20impedance" title=" tower footing impedance"> tower footing impedance</a> </p> <a href="https://publications.waset.org/abstracts/129491/revised-tower-earthing-design-in-high-voltage-transmission-network-for-high-frequency-lightning-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5619</span> Study on the Inhibition Effect of Rail Dampers on Rail Wave Abrasion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhenyu%20Lei">Zhenyu Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Chengshun%20Li"> Chengshun Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To prevent the occurrence of rail corrugation and mitigate the influence of existing corrugation, this paper first conducts actual measurements of rail corrugation before and after the installation of the frequency-modulated rail dampers, determines the characteristic frequencies of corrugation and makes comparisons of the time-domain and frequency-domain of the vertical and lateral vibration accelerations of the rails. It indicates that the rail dampers significantly reduce the rail vibration acceleration levels at the characteristic frequencies, and the vibrations are significantly reduced after the installation of the dampers. Additionally, a simulation study is carried out on the wheel-rail system with and without the frequency-modulated rail dampers. The theory that resonance of the wheel-rail system leads to corrugation shows that rail vibration is inseparably associated with the generation of corrugation, and the potential causes of corrugation in each frequency band are explored through the natural frequencies of the system. Finally, the rail vibration attenuation rate index is calculated, describing the absorption effect of the frequency-modulated rail dampers on rail vibration. It indicates that the dampers absorb part of the lateral vibration energy of the rails and have the effect of altering the rail vibration characteristics in the frequency domain. It is considered that they have a positive influence on the suppression of rail corrugation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rail%20corrugation" title="rail corrugation">rail corrugation</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency-modulated%20rail%20damper" title=" frequency-modulated rail damper"> frequency-modulated rail damper</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel-rail%20system%20resonance" title=" wheel-rail system resonance"> wheel-rail system resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20vibration%20attenuation%20rate" title=" rail vibration attenuation rate"> rail vibration attenuation rate</a> </p> <a href="https://publications.waset.org/abstracts/195634/study-on-the-inhibition-effect-of-rail-dampers-on-rail-wave-abrasion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/195634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5618</span> Infinite Impulse Response Digital Filters Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phuoc%20Si%20Nguyen">Phuoc Si Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infinite impulse response (IIR) filters can be designed from an analogue low pass prototype by using frequency transformation in the s-domain and bilinear z-transformation with pre-warping frequency; this method is known as frequency transformation from the s-domain to the z-domain. This paper will introduce a new method to transform an IIR digital filter to another type of IIR digital filter (low pass, high pass, band pass, band stop or narrow band) using a technique based on inverse bilinear z-transformation and inverse matrices. First, a matrix equation is derived from inverse bilinear z-transformation and Pascal’s triangle. This Low Pass Digital to Digital Filter Pascal Matrix Equation is used to transform a low pass digital filter to other digital filter types. From this equation and the inverse matrix, a Digital to Digital Filter Pascal Matrix Equation can be derived that is able to transform any IIR digital filter. This paper will also introduce some specific matrices to replace the inverse matrix, which is difficult to determine due to the larger size of the matrix in the current method. This will make computing and hand calculation easier when transforming from one IIR digital filter to another in the digital domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilinear%20z-transformation" title="bilinear z-transformation">bilinear z-transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20transformation" title=" frequency transformation"> frequency transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20bilinear%20z-transformation" title=" inverse bilinear z-transformation"> inverse bilinear z-transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=IIR%20digital%20filters" title=" IIR digital filters"> IIR digital filters</a> </p> <a href="https://publications.waset.org/abstracts/48777/infinite-impulse-response-digital-filters-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5617</span> Comparative Dielectric Properties of 1,2-Dichloroethane with n-Methylformamide and n,n-Dimethylformamide Using Time Domain Reflectometry Technique in Microwave Frequency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Tabassum">Shagufta Tabassum</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20Pawar"> V. P. Pawar</a>, <a href="https://publications.waset.org/abstracts/search?q=jr."> jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Shinde"> G. N. Shinde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of dielectric relaxation properties of polar liquids in the binary mixture has been carried out at 10, 15, 20 and 25 &ordm;C temperatures for 11 different concentrations using time domain reflectometry technique. The dielectric properties of a solute-solvent mixture of polar liquids in the frequency range of 10 MHz to 30 GHz gives the information regarding formation of monomers and multimers and also an interaction between the molecules of the liquid mixture under study. The dielectric parameters have been obtained by the least squares fit method using the Debye equation characterized by a single relaxation time without relaxation time distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=excess%20properties" title="excess properties">excess properties</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation%20time" title=" relaxation time"> relaxation time</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20dielectric%20constant" title=" static dielectric constant"> static dielectric constant</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20time%20domain%20reflectometry%20technique" title=" and time domain reflectometry technique"> and time domain reflectometry technique</a> </p> <a href="https://publications.waset.org/abstracts/110068/comparative-dielectric-properties-of-12-dichloroethane-with-n-methylformamide-and-nn-dimethylformamide-using-time-domain-reflectometry-technique-in-microwave-frequency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5616</span> Tracking the Effect of Ibutilide on Amplitude and Frequency of Fibrillatory Intracardiac Electrograms Using the Regression Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Hajimolahoseini">H. Hajimolahoseini</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hashemi"> J. Hashemi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Redfearn"> D. Redfearn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Catheter ablation is an effective therapy for symptomatic atrial fibrillation (AF). The intracardiac electrocardiogram (IEGM) collected during this procedure contains precious information that has not been explored to its full capacity. Novel processing techniques allow looking at these recordings from different perspectives which can lead to improved therapeutic approaches. In our previous study, we showed that variation in amplitude measured through Shannon Entropy could be used as an AF recurrence risk stratification factor in patients who received Ibutilide before the electrograms were recorded. The aim of this study is to further investigate the effect of Ibutilide on characteristics of the recorded signals from the left atrium (LA) of a patient with persistent AF before and after administration of the drug. Methods: The IEGMs collected from different intra-atrial sites of 12 patients were studied and compared before and after Ibutilide administration. First, the before and after Ibutilide IEGMs that were recorded within a Euclidian distance of 3 mm in LA were selected as pairs for comparison. For every selected pair of IEGMs, the Probability Distribution Function (PDF) of the amplitude in time domain and magnitude in frequency domain was estimated using the regression analysis. The PDF represents the relative likelihood of a variable falling within a specific range of values. Results: Our observations showed that in time domain, the PDF of amplitudes was fitted to a Gaussian distribution while in frequency domain, it was fitted to a Rayleigh distribution. Our observations also revealed that after Ibutilide administration, the IEGMs would have significantly narrower short-tailed PDFs both in time and frequency domains. Conclusion: This study shows that the PDFs of the IEGMs before and after administration of Ibutilide represents significantly different properties, both in time and frequency domains. Hence, by fitting the PDF of IEGMs in time domain to a Gaussian distribution or in frequency domain to a Rayleigh distribution, the effect of Ibutilide can easily be tracked using the statistics of their PDF (e.g., standard deviation) while this is difficult through the waveform of IEGMs itself. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atrial%20fibrillation" title="atrial fibrillation">atrial fibrillation</a>, <a href="https://publications.waset.org/abstracts/search?q=catheter%20ablation" title=" catheter ablation"> catheter ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20distribution%20function" title=" probability distribution function"> probability distribution function</a>, <a href="https://publications.waset.org/abstracts/search?q=time-frequency%20characteristics" title=" time-frequency characteristics"> time-frequency characteristics</a> </p> <a href="https://publications.waset.org/abstracts/80384/tracking-the-effect-of-ibutilide-on-amplitude-and-frequency-of-fibrillatory-intracardiac-electrograms-using-the-regression-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5615</span> Estimation of the Pore Electrical Conductivity Using Dielectric Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fethi%20Bouksila">Fethi Bouksila</a>, <a href="https://publications.waset.org/abstracts/search?q=Magnus%20Persson"> Magnus Persson</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronny%20%20Berndtsson"> Ronny Berndtsson</a>, <a href="https://publications.waset.org/abstracts/search?q=Akissa%20Bahri"> Akissa Bahri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under salinity conditions, we evaluate the performance of Hilhost (2000) model to predict pore electrical conductivity ECp from dielectric permittivity and bulk electrical conductivity (ECa) using Time and Frequency Domain Reflectometry sensors (TDR, FDR). Using FDR_WET sensor, RMSE of ECp was 4.15 dS m-1. By replacing the standard soil parameter (K0) in Hilhost model by K0-ECa relationship, the RMSE of ECp decreased to 0.68 dS m-1. WET sensor could give similar accuracy to estimate ECp than TDR if calibrated values of K0 were used instead of standard values in Hilhost model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hilhost%20model" title="hilhost model">hilhost model</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20salinity" title=" soil salinity"> soil salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20reflectometry" title=" time domain reflectometry"> time domain reflectometry</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20domain%20reflectometry" title=" frequency domain reflectometry"> frequency domain reflectometry</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20methods" title=" dielectric methods"> dielectric methods</a> </p> <a href="https://publications.waset.org/abstracts/146047/estimation-of-the-pore-electrical-conductivity-using-dielectric-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5614</span> 3D Modeling for Frequency and Time-Domain Airborne EM Systems with Topography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Yin">C. Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Zhang"> B. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Liu"> Y. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Cai"> J. Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Airborne EM (AEM) is an effective geophysical exploration tool, especially suitable for ridged mountain areas. In these areas, topography will have serious effects on AEM system responses. However, until now little study has been reported on topographic effect on airborne EM systems. In this paper, an edge-based unstructured finite-element (FE) method is developed for 3D topographic modeling for both frequency and time-domain airborne EM systems. Starting from the frequency-domain Maxwell equations, a vector Helmholtz equation is derived to obtain a stable and accurate solution. Considering that the AEM transmitter and receiver are both located in the air, the scattered field method is used in our modeling. The Galerkin method is applied to discretize the Helmholtz equation for the final FE equations. Solving the FE equations, the frequency-domain AEM responses are obtained. To accelerate the calculation speed, the response of source in free-space is used as the primary field and the PARDISO direct solver is used to deal with the problem with multiple transmitting sources. After calculating the frequency-domain AEM responses, a Hankel’s transform is applied to obtain the time-domain AEM responses. To check the accuracy of present algorithm and to analyze the characteristic of topographic effect on airborne EM systems, both the frequency- and time-domain AEM responses for 3 model groups are simulated: 1) a flat half-space model that has a semi-analytical solution of EM response; 2) a valley or hill earth model; 3) a valley or hill earth with an abnormal body embedded. Numerical experiments show that close to the node points of the topography, AEM responses demonstrate sharp changes. Special attentions need to be paid to the topographic effects when interpreting AEM survey data over rugged topographic areas. Besides, the profile of the AEM responses presents a mirror relation with the topographic earth surface. In comparison to the topographic effect that mainly occurs at the high-frequency end and early time channels, the EM responses of underground conductors mainly occur at low frequencies and later time channels. For the signal of the same time channel, the dB/dt field reflects the change of conductivity better than the B-field. The research of this paper will serve airborne EM in the identification and correction of the topographic effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D" title="3D">3D</a>, <a href="https://publications.waset.org/abstracts/search?q=Airborne%20EM" title=" Airborne EM"> Airborne EM</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20modeling" title=" forward modeling"> forward modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=topographic%20effect" title=" topographic effect"> topographic effect</a> </p> <a href="https://publications.waset.org/abstracts/46216/3d-modeling-for-frequency-and-time-domain-airborne-em-systems-with-topography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5613</span> Percentile Norms of Heart Rate Variability (HRV) of Indian Sportspersons Withdrawn from Competitive Games and Sports</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawan%20Kumar">Pawan Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhananjoy%20Shaw"> Dhananjoy Shaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heart rate variability (HRV) is the physiological phenomenon of variation in the time interval between heartbeats and is alterable with fitness, age and different medical conditions including withdrawal/retirement from games/sports. Objectives of the study were to develop (a) percentile norms of heart rate variability (HRV) variables derived from time domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity (b) percentile norms of heart rate variability (HRV) variables derived from frequency domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity. The study was conducted on 430 males. Ages of the sample ranged from 30 to 35 years of same socio-economic status. Date was collected using ECG polygraphs. Data were processed and extracted using frequency domain analysis and time domain analysis. Collected data were computed with percentile from one to hundred. The finding showed that the percentile norms of heart rate variability (HRV) variables derived from time domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity namely, NN50 count (ranged from 1 to 189 score as percentile range). pNN50 count (ranged from .24 to 60.80 score as percentile range). SDNN (ranged from 17.34 to 167.29 score as percentile range). SDSD (ranged from 11.14 to 120.46 score as percentile range). RMMSD (ranged from 11.19 to 120.24 score as percentile range) and SDANN (ranged from 4.02 to 88.75 score as percentile range). The percentile norms of heart rate variability (HRV) variables derived from frequency domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity namely Low Frequency (Normalized Power) ranged from 20.68 to 90.49 score as percentile range. High Frequency (Normalized Power) ranged from 14.37 to 81.60 score as percentile range. LF/ HF ratio(ranged from 0.26 to 9.52 score as percentile range). LF (Absolute Power) ranged from 146.79 to 5669.33 score as percentile range. HF (Absolute Power) ranged from 102.85 to 10735.71 score as percentile range and Total Power (Absolute Power) ranged from 471.45 to 25879.23 score as percentile range. Conclusion: The analysis documented percentile norms for time domain analysis and frequency domain analysis for versatile use and evaluation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RMSSD" title="RMSSD">RMSSD</a>, <a href="https://publications.waset.org/abstracts/search?q=Percentile" title=" Percentile"> Percentile</a>, <a href="https://publications.waset.org/abstracts/search?q=SDANN" title=" SDANN"> SDANN</a>, <a href="https://publications.waset.org/abstracts/search?q=HF" title=" HF"> HF</a>, <a href="https://publications.waset.org/abstracts/search?q=LF" title=" LF"> LF</a> </p> <a href="https://publications.waset.org/abstracts/4231/percentile-norms-of-heart-rate-variability-hrv-of-indian-sportspersons-withdrawn-from-competitive-games-and-sports" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5612</span> The Lubrication Regimes Recognition of a Pressure-Fed Journal Bearing by Time and Frequency Domain Analysis of Acoustic Emission Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Hosseini">S. Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ahmadi%20Najafabadi"> M. Ahmadi Najafabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Akhlaghi"> M. Akhlaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The health of the journal bearings is very important in preventing unforeseen breakdowns in rotary machines, and poor lubrication is one of the most important factors for producing the bearing failures. Hydrodynamic lubrication (HL), mixed lubrication (ML), and boundary lubrication (BL) are three regimes of a journal bearing lubrication. This paper uses acoustic emission (AE) measurement technique to correlate features of the AE signals to the three lubrication regimes. The transitions from HL to ML based on operating factors such as rotating speed, load, inlet oil pressure by time domain and time-frequency domain signal analysis techniques are detected, and then metal-to-metal contacts between sliding surfaces of the journal and bearing are identified. It is found that there is a significant difference between theoretical and experimental operating values that are obtained for defining the lubrication regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission%20technique" title="acoustic emission technique">acoustic emission technique</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20fed%20journal%20bearing" title=" pressure fed journal bearing"> pressure fed journal bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20and%20frequency%20signal%20analysis" title=" time and frequency signal analysis"> time and frequency signal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-to-metal%20contact" title=" metal-to-metal contact"> metal-to-metal contact</a> </p> <a href="https://publications.waset.org/abstracts/101940/the-lubrication-regimes-recognition-of-a-pressure-fed-journal-bearing-by-time-and-frequency-domain-analysis-of-acoustic-emission-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5611</span> Frequency Domain Decomposition, Stochastic Subspace Identification and Continuous Wavelet Transform for Operational Modal Analysis of Three Story Steel Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ardalan%20Sabamehr">Ardalan Sabamehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Bagchi"> Ashutosh Bagchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, Structural Health Monitoring (SHM) based on the vibration of structures has attracted the attention of researchers in different fields such as: civil, aeronautical and mechanical engineering. Operational Modal Analysis (OMA) have been developed to identify modal properties of infrastructure such as bridge, building and so on. Frequency Domain Decomposition (FDD), Stochastic Subspace Identification (SSI) and Continuous Wavelet Transform (CWT) are the three most common methods in output only modal identification. FDD, SSI, and CWT operate based on the frequency domain, time domain, and time-frequency plane respectively. So, FDD and SSI are not able to display time and frequency at the same time. By the way, FDD and SSI have some difficulties in a noisy environment and finding the closed modes. CWT technique which is currently developed works on time-frequency plane and a reasonable performance in such condition. The other advantage of wavelet transform rather than other current techniques is that it can be applied for the non-stationary signal as well. The aim of this paper is to compare three most common modal identification techniques to find modal properties (such as natural frequency, mode shape, and damping ratio) of three story steel frame which was built in Concordia University Lab by use of ambient vibration. The frame has made of Galvanized steel with 60 cm length, 27 cm width and 133 cm height with no brace along the long span and short space. Three uniaxial wired accelerations (MicroStarin with 100mv/g accuracy) have been attached to the middle of each floor and gateway receives the data and send to the PC by use of Node Commander Software. The real-time monitoring has been performed for 20 seconds with 512 Hz sampling rate. The test is repeated for 5 times in each direction by hand shaking and impact hammer. CWT is able to detect instantaneous frequency by used of ridge detection method. In this paper, partial derivative ridge detection technique has been applied to the local maxima of time-frequency plane to detect the instantaneous frequency. The extracted result from all three methods have been compared, and it demonstrated that CWT has the better performance in term of its accuracy in noisy environment. The modal parameters such as natural frequency, damping ratio and mode shapes are identified from all three methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20vibration" title="ambient vibration">ambient vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20domain%20decomposition" title=" frequency domain decomposition"> frequency domain decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20subspace%20identification" title=" stochastic subspace identification"> stochastic subspace identification</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20wavelet%20transform" title=" continuous wavelet transform"> continuous wavelet transform</a> </p> <a href="https://publications.waset.org/abstracts/56951/frequency-domain-decomposition-stochastic-subspace-identification-and-continuous-wavelet-transform-for-operational-modal-analysis-of-three-story-steel-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5610</span> Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arpita%20Mondal">Arpita Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurobinda%20Routray"> Aurobinda Routray</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreeraj%20Puravankara"> Sreeraj Puravankara</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajashree%20Biswas"> Rajashree Biswas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equivalent%20circuit%20model" title="equivalent circuit model">equivalent circuit model</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20estimation" title=" frequency estimation"> frequency estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20estimation" title=" parameter estimation"> parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=subspace%20decomposition" title=" subspace decomposition"> subspace decomposition</a> </p> <a href="https://publications.waset.org/abstracts/108720/frequency-selective-filters-for-estimating-the-equivalent-circuit-parameters-of-li-ion-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5609</span> Quality Evaluation of Backfill Grout in Tunnel Boring Machine Tail Void Using Impact-Echo (IE): Short-Time Fourier Transform (STFT) Numerical Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju-Young%20Choi">Ju-Young Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-Il%20Song"> Ki-Il Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoung-Yul%20Kim"> Kyoung-Yul Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During Tunnel Boring Machine (TBM) tunnel excavation, backfill grout should be injected after the installation of segment lining to ensure the stability of the tunnel and to minimize ground deformation. If grouting is not sufficient to fill the gap between the segments and rock mass, hydraulic pressures occur in the void, which can negatively influence the stability of the tunnel. Recently the tendency to use TBM tunnelling method to replace the drill and blast(NATM) method is increasing. However, there are only a few studies of evaluation of backfill grout. This study evaluates the TBM tunnel backfill state using Impact-Echo(IE). 3-layers, segment-grout-rock mass, are simulated by FLAC 2D, FDM-based software. The signals obtained from numerical analysis and IE test are analyzed by Short-Time Fourier Transform(STFT) in time domain, frequency domain, and time-frequency domain. The result of this study can be used to evaluate the quality of backfill grouting in tail void. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tunnel%20boring%20machine" title="tunnel boring machine">tunnel boring machine</a>, <a href="https://publications.waset.org/abstracts/search?q=backfill%20grout" title=" backfill grout"> backfill grout</a>, <a href="https://publications.waset.org/abstracts/search?q=impact-echo%20method" title=" impact-echo method"> impact-echo method</a>, <a href="https://publications.waset.org/abstracts/search?q=time-frequency%20domain%20analysis" title=" time-frequency domain analysis"> time-frequency domain analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title=" finite difference method"> finite difference method</a> </p> <a href="https://publications.waset.org/abstracts/53362/quality-evaluation-of-backfill-grout-in-tunnel-boring-machine-tail-void-using-impact-echo-ie-short-time-fourier-transform-stft-numerical-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5608</span> Digital Cinema Watermarking State of Art and Comparison</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Kelkoul">H. Kelkoul</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zaz"> Y. Zaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the vigorous popularity of video processing techniques has resulted in an explosive growth of multimedia data illegal use. So, watermarking security has received much more attention. The purpose of this paper is to explore some watermarking techniques in order to observe their specificities and select the finest methods to apply in digital cinema domain against movie piracy by creating an invisible watermark that includes the date, time and the place where the hacking was done. We have studied three principal watermarking techniques in the frequency domain: Spread spectrum, Wavelet transform domain and finally the digital cinema watermarking transform domain. In this paper, a detailed technique is presented where embedding is performed using direct sequence spread spectrum technique in DWT transform domain. Experiment results shows that the algorithm provides high robustness and good imperceptibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20cinema" title="digital cinema">digital cinema</a>, <a href="https://publications.waset.org/abstracts/search?q=watermarking" title=" watermarking"> watermarking</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20DWT" title=" wavelet DWT"> wavelet DWT</a>, <a href="https://publications.waset.org/abstracts/search?q=spread%20spectrum" title=" spread spectrum"> spread spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=JPEG2000%20MPEG4" title=" JPEG2000 MPEG4"> JPEG2000 MPEG4</a> </p> <a href="https://publications.waset.org/abstracts/61470/digital-cinema-watermarking-state-of-art-and-comparison" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5607</span> Local Spectrum Feature Extraction for Face Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Imran%20Ahmad">Muhammad Imran Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruzelita%20Ngadiran"> Ruzelita Ngadiran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Nazrin%20Md%20Isa"> Mohd Nazrin Md Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Ashidi%20Mat%20Isa"> Nor Ashidi Mat Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20ZaizuIlyas"> Mohd ZaizuIlyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Raja%20Abdullah%20Raja%20Ahmad"> Raja Abdullah Raja Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Amirul%20Anwar%20Ab%20Hamid"> Said Amirul Anwar Ab Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muzammil%20Jusoh"> Muzammil Jusoh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=local%20features%20modelling" title="local features modelling">local features modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20recognition%20system" title=" face recognition system"> face recognition system</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20mixture%20models" title=" Gaussian mixture models"> Gaussian mixture models</a>, <a href="https://publications.waset.org/abstracts/search?q=Feret" title=" Feret"> Feret</a> </p> <a href="https://publications.waset.org/abstracts/17388/local-spectrum-feature-extraction-for-face-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">676</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5606</span> A Micro-Scale of Electromechanical System Micro-Sensor Resonator Based on UNO-Microcontroller for Low Magnetic Field Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waddah%20Abdelbagi%20Talha">Waddah Abdelbagi Talha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abdullah%20Elmaleeh"> Mohammed Abdullah Elmaleeh</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Ojur%20Dennis"> John Ojur Dennis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the simulation and implementation of a resonator micro-sensor for low magnetic field sensing based on a U-shaped cantilever and piezoresistive configuration, which works based on Lorentz force physical phenomena. The resonance frequency is an important parameter that depends upon the highest response and sensitivity through the frequency domain (frequency response) of any vibrated micro-scale of an electromechanical system (MEMS) device. And it is important to determine the direction of the detected magnetic field. The deflection of the cantilever is considered for vibrated mode with different frequencies in the range of (0 Hz to 7000 Hz); for the purpose of observing the frequency response. A simple electronic circuit-based polysilicon piezoresistors in Wheatstone's bridge configuration are used to transduce the response of the cantilever to electrical measurements at various voltages. Microcontroller-based Arduino program and PROTEUS electronic software are used to analyze the output signals from the sensor. The highest output voltage amplitude of about 4.7 mV is spotted at about 3 kHz of the frequency domain, indicating the highest sensitivity, which can be called resonant sensitivity. Based on the resonant frequency value, the mode of vibration is determined (up-down vibration), and based on that, the vector of the magnetic field is also determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resonant%20frequency" title="resonant frequency">resonant frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Wheatstone%20bridge" title=" Wheatstone bridge"> Wheatstone bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=UNO-microcontroller" title=" UNO-microcontroller"> UNO-microcontroller</a> </p> <a href="https://publications.waset.org/abstracts/152891/a-micro-scale-of-electromechanical-system-micro-sensor-resonator-based-on-uno-microcontroller-for-low-magnetic-field-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5605</span> Time-Domain Analysis Approaches of Soil-Structure Interaction: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20Taha">Abdelrahman Taha</a>, <a href="https://publications.waset.org/abstracts/search?q=Niloofar%20Malekghaini"> Niloofar Malekghaini</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Ebrahimian"> Hamed Ebrahimian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Motamed"> Ramin Motamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper compares the substructure and direct methods for soil-structure interaction (SSI) analysis in the time domain. In the substructure SSI method, the soil domain is replaced by a set of springs and dashpots, also referred to as the impedance function, derived through the study of the behavior of a massless rigid foundation. The impedance function is inherently frequency dependent, i.e., it varies as a function of the frequency content of the structural response. To use the frequency-dependent impedance function for time-domain SSI analysis, the impedance function is approximated at the fundamental frequency of the structure-soil system. To explore the potential limitations of the substructure modeling process, a two-dimensional reinforced concrete frame structure is modeled using substructure and direct methods in this study. The results show discrepancies between the simulated responses of the substructure and the direct approaches. To isolate the effects of higher modal responses, the same study is repeated using a harmonic input motion, in which a similar discrepancy is still observed between the substructure and direct approaches. It is concluded that the main source of discrepancy between the substructure and direct SSI approaches is likely attributed to the way the impedance functions are calculated, i.e., assuming a massless rigid foundation without considering the presence of the superstructure. Hence, a refined impedance function, considering the presence of the superstructure, shall be developed. This refined impedance function is expected to significantly improve the simulation accuracy of the substructure approach for structural systems whose behavior is dominated by the fundamental mode response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20approach" title="direct approach">direct approach</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20function" title=" impedance function"> impedance function</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=substructure%20approach" title=" substructure approach"> substructure approach</a> </p> <a href="https://publications.waset.org/abstracts/153295/time-domain-analysis-approaches-of-soil-structure-interaction-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5604</span> Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reeta%20Devi">Reeta Devi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitender%20Kumar%20Tyagi"> Hitender Kumar Tyagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Kumar"> Dinesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k &ndash;nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient&rsquo;s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=early%20stage%20prediction" title="early stage prediction">early stage prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20variability" title=" heart rate variability"> heart rate variability</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20and%20non-linear%20analysis" title=" linear and non-linear analysis"> linear and non-linear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sudden%20cardiac%20death" title=" sudden cardiac death"> sudden cardiac death</a> </p> <a href="https://publications.waset.org/abstracts/45307/heart-rate-variability-analysis-for-early-stage-prediction-of-sudden-cardiac-death" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5603</span> Vibrations of Springboards: Mode Shape and Time Domain Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Frassinelli">Stefano Frassinelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Niccolai"> Alessandro Niccolai</a>, <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20E.%20Zich"> Riccardo E. Zich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diving is an important Olympic sport. In this sport, the effective performance of the athlete is related to his capability to interact correctly with the springboard. In fact, the elevation of the jump and the correctness of the dive are influenced by the vibrations of the board. In this paper, the vibrations of the springboard will be analyzed by means of typical tools for vibration analysis: Firstly, a modal analysis will be done on two different models of the springboard, then, these two model and another one will be analyzed with a time analysis, done integrating the equations of motion od deformable bodies. All these analyses will be compared with experimental data measured on a real springboard by means of a 6-axis accelerometer; these measurements are aimed to assess the models proposed. The acquired data will be analyzed both in frequency domain and in time domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=springboard%20analysis" title="springboard analysis">springboard analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20analysis" title=" time domain analysis"> time domain analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a> </p> <a href="https://publications.waset.org/abstracts/61559/vibrations-of-springboards-mode-shape-and-time-domain-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5602</span> Fast Fourier Transform-Based Steganalysis of Covert Communications over Streaming Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinghui%20Peng">Jinghui Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanyu%20Tang"> Shanyu Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Li"> Jia Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steganalysis seeks to detect the presence of secret data embedded in cover objects, and there is an imminent demand to detect hidden messages in streaming media. This paper shows how a steganalysis algorithm based on Fast Fourier Transform (FFT) can be used to detect the existence of secret data embedded in streaming media. The proposed algorithm uses machine parameter characteristics and a network sniffer to determine whether the Internet traffic contains streaming channels. The detected streaming data is then transferred from the time domain to the frequency domain through FFT. The distributions of power spectra in the frequency domain between original VoIP streams and stego VoIP streams are compared in turn using t-test, achieving the p-value of 7.5686E-176 which is below the threshold. The results indicate that the proposed FFT-based steganalysis algorithm is effective in detecting the secret data embedded in VoIP streaming media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steganalysis" title="steganalysis">steganalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=Fast%20Fourier%20Transform" title=" Fast Fourier Transform"> Fast Fourier Transform</a>, <a href="https://publications.waset.org/abstracts/search?q=streaming%20media" title=" streaming media"> streaming media</a> </p> <a href="https://publications.waset.org/abstracts/108985/fast-fourier-transform-based-steganalysis-of-covert-communications-over-streaming-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5601</span> Conductivity-Depth Inversion of Large Loop Transient Electromagnetic Sounding Data over Layered Earth Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Ande">Ravi Ande</a>, <a href="https://publications.waset.org/abstracts/search?q=Mousumi%20Hazari"> Mousumi Hazari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the common geophysical techniques for mapping subsurface geo-electrical structures, extensive hydro-geological research, and engineering and environmental geophysics applications is the use of time domain electromagnetic (TDEM)/transient electromagnetic (TEM) soundings. A large transmitter loop for energising the ground and a small receiver loop or magnetometer for recording the transient voltage or magnetic field in the air or on the surface of the earth, with the receiver at the center of the loop or at any random point inside or outside the source loop, make up a large loop TEM system. In general, one can acquire data using one of the configurations with a large loop source, namely, with the receiver at the center point of the loop (central loop method), at an arbitrary in-loop point (in-loop method), coincident with the transmitter loop (coincidence-loop method), and at an arbitrary offset loop point (offset-loop method), respectively. Because of the mathematical simplicity associated with the expressions of EM fields, as compared to the in-loop and offset-loop systems, the central loop system (for ground surveys) and coincident loop system (for ground as well as airborne surveys) have been developed and used extensively for the exploration of mineral and geothermal resources, for mapping contaminated groundwater caused by hazardous waste and thickness of permafrost layer. Because a proper analytical expression for the TEM response over the layered earth model for the large loop TEM system does not exist, the forward problem used in this inversion scheme is first formulated in the frequency domain and then it is transformed in the time domain using Fourier cosine or sine transforms. Using the EMLCLLER algorithm, the forward computation is initially carried out in the frequency domain. As a result, the EMLCLLER modified the forward calculation scheme in NLSTCI to compute frequency domain answers before converting them to the time domain using Fourier Cosine and/or Sine transforms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20electromagnetic%20%28TDEM%29" title="time domain electromagnetic (TDEM)">time domain electromagnetic (TDEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM%20system" title=" TEM system"> TEM system</a>, <a href="https://publications.waset.org/abstracts/search?q=geoelectrical%20sounding%20structure" title=" geoelectrical sounding structure"> geoelectrical sounding structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20cosine" title=" Fourier cosine"> Fourier cosine</a> </p> <a href="https://publications.waset.org/abstracts/161195/conductivity-depth-inversion-of-large-loop-transient-electromagnetic-sounding-data-over-layered-earth-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5600</span> Visualization Tool for EEG Signal Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sweeti">Sweeti</a>, <a href="https://publications.waset.org/abstracts/search?q=Anoop%20Kant%20Godiyal"> Anoop Kant Godiyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Singh"> Neha Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sneh%20Anand"> Sneh Anand</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20K.%20Panigrahi"> B. K. Panigrahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayasree%20Santhosh"> Jayasree Santhosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is about developing a tool for visualization and segmentation of Electroencephalograph (EEG) signals based on frequency domain features. Change in the frequency domain characteristics are correlated with change in mental state of the subject under study. Proposed algorithm provides a way to represent the change in the mental states using the different frequency band powers in form of segmented EEG signal. Many segmentation algorithms have been suggested in literature having application in brain computer interface, epilepsy and cognition studies that have been used for data classification. But the proposed method focusses mainly on the better presentation of signal and that’s why it could be a good utilization tool for clinician. Algorithm performs the basic filtering using band pass and notch filters in the range of 0.1-45 Hz. Advanced filtering is then performed by principal component analysis and wavelet transform based de-noising method. Frequency domain features are used for segmentation; considering the fact that the spectrum power of different frequency bands describes the mental state of the subject. Two sliding windows are further used for segmentation; one provides the time scale and other assigns the segmentation rule. The segmented data is displayed second by second successively with different color codes. Segment’s length can be selected as per need of the objective. Proposed algorithm has been tested on the EEG data set obtained from University of California in San Diego’s online data repository. Proposed tool gives a better visualization of the signal in form of segmented epochs of desired length representing the power spectrum variation in data. The algorithm is designed in such a way that it takes the data points with respect to the sampling frequency for each time frame and so it can be improved to use in real time visualization with desired epoch length. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=de-noising" title="de-noising">de-noising</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-channel%20data" title=" multi-channel data"> multi-channel data</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20spectra" title=" power spectra"> power spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a> </p> <a href="https://publications.waset.org/abstracts/37186/visualization-tool-for-eeg-signal-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20domain&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20domain&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20domain&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20domain&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20domain&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20domain&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20domain&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20domain&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20domain&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20domain&amp;page=187">187</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20domain&amp;page=188">188</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20domain&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10