CINXE.COM
Search results for: tertiary folding
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: tertiary folding</title> <meta name="description" content="Search results for: tertiary folding"> <meta name="keywords" content="tertiary folding"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="tertiary folding" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="tertiary folding"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 796</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: tertiary folding</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">796</span> Basin Geometry and Salt Structures in the Knana/Ragoubet Mahjbia Ranges, North of Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Montassar%20Ben%20Slama">Mohamed Montassar Ben Slama</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Fadel%20Ladeb"> Mohamed Fadel Ladeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ghanmi"> Mohamed Ghanmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ben%20Youssef"> Mohamed Ben Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouad%20Zargouni"> Fouad Zargouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The salt province Basin in Northern Tunisia is a complex of late Triassic to Early Cretaceous rift and sag basins which was inverted during the Tertiary folding. The deposition of evaporitic sediments during the Late Triassic times played a major role in the subsequent tectonic evolution of the basin. Within southern tethyan passive marge, the ductile salt mass shown early mobilization, vertical transport and withdrawal of the evaporites. These movements influenced the sedimentation during the late Jurassic and Early Cretaceous. The evaporites also influenced deformation during the inversion of the basin and the development of the Tertiary and Quaternary folding. In the studied area, the biostratigraphic and tectonic map analysis of the region of Jebel el Asoued / Ragoubet el Mahjbia can resolve between the hypotheses of the diapiric intrusion of the Triassic salt and the lateral spreading of the Triassic salt as salt ‘glacier’. Also the variation in thickness and facies of the Aptian sediments demonstrates the existence of continental rise architecture at the Aptian time. The observation in a mappable outcrop of the extension segment of the graben fault of Bou Arada on the one hand confirms the existence of a Cretaceous extensive architecture and the tectonic inversion during the Tertiary time has not filled the main game distension. The extent of our observations of Triassic/Aptian and Triassic/Early Campanian contacts, we propose a composite salt ‘glacier’ model as the structures recorded in the Gulf of Mexico in the subsurface and in the Ouenza east Algeria and in Tunisia within Fedj el Adoum, Touiref-Nebeur and Jebel Ech Cheid in the outcrops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cretaceous%20rift" title="Cretaceous rift">Cretaceous rift</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20%E2%80%98glassier%E2%80%99" title=" salt ‘glassier’"> salt ‘glassier’</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary%20folding" title=" tertiary folding"> tertiary folding</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunisia" title=" Tunisia"> Tunisia</a> </p> <a href="https://publications.waset.org/abstracts/70434/basin-geometry-and-salt-structures-in-the-knanaragoubet-mahjbia-ranges-north-of-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">795</span> In vitro Protein Folding and Stability Using Thermostable Exoshells </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddharth%20Deshpande">Siddharth Deshpande</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihar%20Masurkar"> Nihar Masurkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vallerinteavide%20Mavelli%20Girish"> Vallerinteavide Mavelli Girish</a>, <a href="https://publications.waset.org/abstracts/search?q=Malan%20Desai"> Malan Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chester%20Drum"> Chester Drum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Folding and stabilization of recombinant proteins remain a consistent challenge for industrial and therapeutic applications. Proteins derived from thermophilic bacteria often have superior expression and stability qualities. To develop a generalizable approach to protein folding and stabilization, we tested the hypothesis that wrapping a thermostable exoshell around a protein substrate would aid folding and impart thermostable qualities to the internalized substrate. To test the effect of internalizing a protein within a thermostable exoshell (tES), we tested in vitro folding and stability using green fluorescent protein (GFPuv), horseradish peroxidase (HRP) and renilla luciferase (rLuc). The 8nm interior volume of a thermostable ferritin assembly was engineered to accommodate foreign proteins and either present a positive, neutral or negative interior charge environment. We further engineered the tES complex to reversibly assemble and disassemble with pH titration. Template proteins were expressed as inclusion bodies and an in vitro folding protocol was developed that forced proteins to fold inside a single tES. Functional yield was improved 100-fold, 100-fold and 150-fold with use of tES for GFPuv, HRP and rLuc respectively and was highly dependent on the internal charge environment of the tES. After folding, functional proteins could be released from the tES folding cavity using size exclusion chromatography at pH 5.8. Internalized proteins were tested for improved stability against thermal, organic, urea and guanidine denaturation. Our results demonstrated that thermostable exoshells can efficiently refold and stabilize inactive aggregates into functional proteins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermostable%20shell" title="thermostable shell">thermostable shell</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20folding" title=" in vitro folding"> in vitro folding</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20yield" title=" functional yield"> functional yield</a> </p> <a href="https://publications.waset.org/abstracts/72637/in-vitro-protein-folding-and-stability-using-thermostable-exoshells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">794</span> Strategies Considered Effective for Funding Public Tertiary Institutions in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacinta%20Ifeoma%20Obidile">Jacinta Ifeoma Obidile</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study sought to ascertain from the opinions of the business educators, effective strategies for funding public tertiary institutions in Anambra State Nigeria, for effective functioning and delivery. Funding of tertiary institutions has become so important following the dilapidated state of most of the public tertiary institutions in Nigeria. Tertiary institutions are known for the production of competitive and competent workforce in the nation. Considering the state of public tertiary institutions currently, one wonders if their objectives are achieved. Many scholars have identified funding as one of the major barriers to effective functioning of tertiary institutions. Although federal and state governments have been supporting the tertiary institutions, but their support seems not to be adequate. This study therefore ascertained from the perspective of business educators, other strategies for funding public tertiary institutions in Anambra State Nigeria, for effective functioning and delivery. Survey research design was adopted for the study. A total of 104 business educators from the public tertiary institutions in the State constituted the population. There was no sampling, hence the whole population was used. Structured questionnaire validated by three experts with a reliability coefficient of 0.82 was the instrument for data collection. Data collected were analyzed using mean and standard deviation. Findings from the study revealed that public-private partnership and external aids were among the strategies considered effective for funding public tertiary institutions. It was therefore recommended among others that associations like alumni should be strongly instituted in each of the public tertiary institutions so as to assist in the funding of tertiary institutions for effective functioning and delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strategies" title="strategies">strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=funding" title=" funding"> funding</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary%20institutions" title=" tertiary institutions"> tertiary institutions</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20educators" title=" business educators"> business educators</a> </p> <a href="https://publications.waset.org/abstracts/118692/strategies-considered-effective-for-funding-public-tertiary-institutions-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">793</span> Maintaining Discipline in Tertiary Institutions in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ipenyi%20Peter">Ipenyi Peter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Discipline is an issue that tends to undermine the provision of quality education in tertiary institutions in Nigeria. This is because the overall goals of tertiary institutions, as enunciated in the National Policy of Education, can hardly be achieved by all the stakeholders without strict conformity and adherence to the rules and regulations and the ideals of the entire society. The adherence is essential for the general welfare of the society. This paper critically X-rayed the causes of indiscipline in tertiary institutions in Nigeria. Such courses include laxity in home control and parental supervision, school, teacher and societal factors as well as government influence. The paper recommended among others such strategies as enculturation, acculturation as well as the acquisition of a certain number of generic skills for dealing with discipline and ethical issues in tertiary institutions in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discipline" title="discipline">discipline</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary%20institutions" title=" tertiary institutions"> tertiary institutions</a>, <a href="https://publications.waset.org/abstracts/search?q=society" title=" society"> society</a> </p> <a href="https://publications.waset.org/abstracts/34285/maintaining-discipline-in-tertiary-institutions-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">792</span> Optical and Double Folding Model Analysis for Alpha Particles Elastically Scattered from 9Be and 11B Nuclei at Different Energies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20H.%20Amer">Ahmed H. Amer</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Amar"> A. Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Hamada"> Sh. Hamada</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20I.%20Bondouk"> I. I. Bondouk</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20El-Hussiny"> F. A. El-Hussiny</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elastic scattering of α-particles from 9Be and 11B nuclei at different alpha energies have been analyzed. Optical model parameters (OMPs) of α-particles elastic scattering by these nuclei at different energies have been obtained. In the present calculations, the real part of the optical potential are derived by folding of nucleon-nucleon (NN) interaction into nuclear matter density distribution of the projectile and target nuclei using computer code FRESCO. A density-dependent version of the M3Y interaction (CDM3Y6), which is based on the G-matrix elements of the Paris NN potential, has been used. Volumetric integrals of the real and imaginary potential depth (JR, JW) have been calculated and found to be energy dependent. Good agreement between the experimental data and the theoretical predictions in the whole angular range. In double folding (DF) calculations, the obtained normalization coefficient Nr is in the range 0.70–1.32. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20scattering" title="elastic scattering">elastic scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20model" title=" optical model"> optical model</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20folding%20model" title=" double folding model"> double folding model</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20distribution" title=" density distribution"> density distribution</a> </p> <a href="https://publications.waset.org/abstracts/45164/optical-and-double-folding-model-analysis-for-alpha-particles-elastically-scattered-from-9be-and-11b-nuclei-at-different-energies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">791</span> Optical and Double Folding Analysis for 6Li+16O Elastic Scattering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abd%20Elrahman%20Elgamala">Abd Elrahman Elgamala</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Darwish"> N. Darwish</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Bondouk"> I. Bondouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Hamada"> Sh. Hamada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Available experimental angular distributions for <sup>6</sup>Li elastically scattered from <sup>16</sup>O nucleus in the energy range 13.0–50.0 MeV are investigated and reanalyzed using optical model of the conventional phenomenological potential and also using double folding optical model of different interaction models: DDM3Y1, CDM3Y1, CDM3Y2, and CDM3Y3. All the involved models of interaction are of M3Y Paris except DDM3Y1 which is of M3Y Reid and the main difference between them lies in the different values for the parameters of the incorporated density distribution function <em>F</em>(ρ). We have extracted the renormalization factor <strong><em>N<sub>R</sub></em> </strong>for <sup>6</sup>Li+<sup>16</sup>O nuclear system in the energy range 13.0–50.0 MeV using the aforementioned interaction models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20scattering" title="elastic scattering">elastic scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20model" title=" optical model"> optical model</a>, <a href="https://publications.waset.org/abstracts/search?q=folding%20potential" title=" folding potential"> folding potential</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20distribution" title=" density distribution"> density distribution</a> </p> <a href="https://publications.waset.org/abstracts/132435/optical-and-double-folding-analysis-for-6li16o-elastic-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">790</span> Kinetic Façade Design Using 3D Scanning to Convert Physical Models into Digital Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Do-Jin%20Jang">Do-Jin Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Ah%20Kim"> Sung-Ah Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In designing a kinetic façade, it is hard for the designer to make digital models due to its complex geometry with motion. This paper aims to present a methodology of converting a point cloud of a physical model into a single digital model with a certain topology and motion. The method uses a Microsoft Kinect sensor, and color markers were defined and applied to three paper folding-inspired designs. Although the resulted digital model cannot represent the whole folding range of the physical model, the method supports the designer to conduct a performance-oriented design process with the rough physical model in the reduced folding range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20media" title="design media">design media</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20facades" title=" kinetic facades"> kinetic facades</a>, <a href="https://publications.waset.org/abstracts/search?q=tangible%20user%20interface" title=" tangible user interface"> tangible user interface</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20scanning" title=" 3D scanning"> 3D scanning</a> </p> <a href="https://publications.waset.org/abstracts/70846/kinetic-facade-design-using-3d-scanning-to-convert-physical-models-into-digital-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">789</span> Further Investigation of α+12C and α+16O Elastic Scattering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Hamada">Sh. Hamada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current work aims to study the rainbow like-structure observed in the elastic scattering of alpha particles on both <sup>12</sup>C and <sup>16</sup>O nuclei. We reanalyzed the experimental elastic scattering angular distributions data for α+<sup>12</sup>C and α+<sup>16</sup>O nuclear systems at different energies using both optical model and double folding potential of different interaction models such as: CDM3Y1, DDM3Y1, CDM3Y6 and BDM3Y1. Potential created by BDM3Y1 interaction model has the shallowest depth which reflects the necessity to use higher renormalization factor (<strong><em>N<sub>r</sub></em></strong>). Both optical model and double folding potential of different interaction models fairly reproduce the experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20distribution" title="density distribution">density distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20folding" title=" double folding"> double folding</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20scattering" title=" elastic scattering"> elastic scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20rainbow" title=" nuclear rainbow"> nuclear rainbow</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20model" title=" optical model"> optical model</a> </p> <a href="https://publications.waset.org/abstracts/61332/further-investigation-of-a12c-and-a16o-elastic-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">788</span> The Impact of Corporate Social Responsibility on Tertiary Institutions in Bauchi State Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliyu%20Aminu%20Baba">Aliyu Aminu Baba</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Makama"> Mustapha Makama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tertiary institutions are citadel of learning and societal orientation. Due to the huge investment of various government to tertiary institutions, these institutions are solely financed by the government alone. As stakeholders of society, corporations have to have to intervene and provide corporate social responsibility. The study intends to investigate the role of Entrepreneurs in incorporating social Responsibility. Tertiary institutions are citadel of learning and societal orientation. Due to the huge investment of various government to tertiary institutions, the study intends to investigate the role of businesses and Entrepreneurs, which could be among the important contributions of businesses and Entrepreneurs on corporate social Responsibility to Tertiary Institutions in Bauchi State. Corporate social responsibility is vital in enhancing the infrastructural development of the tertiary institution as almost all individuals and corporate bodies benefit from this tertiary institutions. The study intends to examine the impact of corporate social responsibility to tertiary institutions and entrepreneurs in Bauchi state Nigeria. Questionnaires would be distributed to tertiary institutions and entrepreneurs in the Bauchi metropolis. The data collected will be analyzed with the help of SPSS version 23. The main objective is to investigate the role of businesses and Entrepreneurs, which could be among the important contributions of businesses and entrepreneurs on corporate social Responsibility to Tertiary Institutions in Bauchi State. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corporate%20social%20responsibility" title="corporate social responsibility">corporate social responsibility</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary" title=" tertiary"> tertiary</a>, <a href="https://publications.waset.org/abstracts/search?q=institutions" title=" institutions"> institutions</a>, <a href="https://publications.waset.org/abstracts/search?q=profitability" title=" profitability"> profitability</a> </p> <a href="https://publications.waset.org/abstracts/140356/the-impact-of-corporate-social-responsibility-on-tertiary-institutions-in-bauchi-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">787</span> Biophysical Characterization of Archaeal Cyclophilin Like Chaperone Protein</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vineeta%20Kaushik">Vineeta Kaushik</a>, <a href="https://publications.waset.org/abstracts/search?q=Manisha%20Goel"> Manisha Goel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chaperones are proteins that help other proteins fold correctly, and are found in all domains of life i.e., prokaryotes, eukaryotes and archaea. Various comparative genomic studies have suggested that the archaeal protein folding machinery appears to be highly similar to that found in eukaryotes. In case of protein folding; slow rotation of peptide prolyl-imide bond is often the rate limiting step. Formation of the prolyl-imide bond during the folding of a protein requires the assistance of other proteins, termed as peptide prolyl cis-trans isomerases (PPIases). Cyclophilins constitute the class of peptide prolyl isomerases with a wide range of biological function like protein folding, signaling and chaperoning. Most of the cyclophilins exhibit PPIase enzymatic activity and play active role in substrate protein folding which classifies them as a category of molecular chaperones. Till date, there is not very much data available in the literature on archaeal cyclophilins. We aim to compare the structural and biochemical features of the cyclophilin protein from within the three domains to elucidate the features affecting their stability and enzyme activity. In the present study, we carry out in-silico analysis of the cyclophilin proteins to predict their conserved residues, sites under positive selection and compare these proteins to their bacterial and eukaryotic counterparts to predict functional divergence. We also aim to clone and express these proteins in heterologous system and study their biophysical characteristics in detail using techniques like CD and fluorescence spectroscopy. Overall we aim to understand the features contributing to the folding, stability and dynamics of the archaeal cyclophilin proteins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biophysical%20characterization" title="biophysical characterization">biophysical characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20crystallography" title=" x-ray crystallography"> x-ray crystallography</a>, <a href="https://publications.waset.org/abstracts/search?q=chaperone-like%20activity" title=" chaperone-like activity"> chaperone-like activity</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclophilin" title=" cyclophilin"> cyclophilin</a>, <a href="https://publications.waset.org/abstracts/search?q=PPIase%20activity" title=" PPIase activity"> PPIase activity</a> </p> <a href="https://publications.waset.org/abstracts/67459/biophysical-characterization-of-archaeal-cyclophilin-like-chaperone-protein" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">786</span> Alternative Funding Strategies for Tertiary Education in Nigeria: Quest for Improved Quality of Teaching and Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temitayo%20Olaitan">Temitayo Olaitan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a growing concern about the quality of Nigerian tertiary education. This paper maintains that quality in tertiary education relates to the development of intellectual independence, which sharpens the minds of the individual and helps transform the society economically, socially and politically. However, the paper underscores underfunding as a critical challenge to the quality of teaching and learning in tertiary education. To this end, this paper emphasizes the role of internally generated revenue (IGR) and other alternative funding strategies (public-private partnership) as inevitable for quality tertiary education. This paper hinges on stakeholders approach as a means of ensuring quality teaching and learning in tertiary education. This paper recommends that school managers should seek professional and more efficient ways of developing their revenue generating systems. It also recommends that institutions should restructure to accommodate an alternative funding strategy such as private/corporate sponsorship to ensure that sustainable initiatives are created. The paper concludes that Nigerian government should come up with a policy on how private sectors should support in improving the quality of tertiary education through active participation in funding and physical facilities development in Nigerian higher institutions of learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20funding" title="alternative funding">alternative funding</a>, <a href="https://publications.waset.org/abstracts/search?q=budgetary%20allocation" title=" budgetary allocation"> budgetary allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20education" title=" quality education"> quality education</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary%20education" title=" tertiary education"> tertiary education</a> </p> <a href="https://publications.waset.org/abstracts/54532/alternative-funding-strategies-for-tertiary-education-in-nigeria-quest-for-improved-quality-of-teaching-and-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">785</span> Exploring the State of Leadership Effectiveness of Tertiary Institutions in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ojeka%20Alexandra">Ojeka Alexandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigated the leadership effectiveness of leaders of tertiary institutions in Nigeria. The study sought to examine the leadership styles adopted, the leadership energy and effectiveness of the leaders of two tertiary institutions. The research was undertaken at two institutions, one Polytechnic and one University. The population of the study was the lecturers and the heads of departments of the two institutions. The leadership matrix and leadership effectiveness index questionnaires were employed to collect quantitative and qualitative data. The preferred and practiced styles were compared and contrasted to determine whether or not they were used to achieve goals and objectives of the lecturers and the organizations. The recommendations contribute towards the academic and professional development of the lecturers and their institutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leadership" title="leadership">leadership</a>, <a href="https://publications.waset.org/abstracts/search?q=leadership%20effectiveness" title="leadership effectiveness">leadership effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=leadership%20energy" title=" leadership energy"> leadership energy</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary%20institutions" title=" tertiary institutions"> tertiary institutions</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20leadership%20styles" title=" and leadership styles"> and leadership styles</a> </p> <a href="https://publications.waset.org/abstracts/34338/exploring-the-state-of-leadership-effectiveness-of-tertiary-institutions-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">784</span> Folding of β-Structures via the Polarized Structure-Specific Backbone Charge (PSBC) Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yew%20Mun%20Yip">Yew Mun Yip</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawei%20Zhang"> Dawei Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proteins are the biological machinery that executes specific vital functions in every cell of the human body by folding into their 3D structures. When a protein misfolds from its native structure, the machinery will malfunction and lead to misfolding diseases. Although in vitro experiments are able to conclude that the mutations of the amino acid sequence lead to incorrectly folded protein structures, these experiments are unable to decipher the folding process. Therefore, molecular dynamic (MD) simulations are employed to simulate the folding process so that our improved understanding of the folding process will enable us to contemplate better treatments for misfolding diseases. MD simulations make use of force fields to simulate the folding process of peptides. Secondary structures are formed via the hydrogen bonds formed between the backbone atoms (C, O, N, H). It is important that the hydrogen bond energy computed during the MD simulation is accurate in order to direct the folding process to the native structure. Since the atoms involved in a hydrogen bond possess very dissimilar electronegativities, the more electronegative atom will attract greater electron density from the less electronegative atom towards itself. This is known as the polarization effect. Since the polarization effect changes the electron density of the two atoms in close proximity, the atomic charges of the two atoms should also vary based on the strength of the polarization effect. However, the fixed atomic charge scheme in force fields does not account for the polarization effect. In this study, we introduce the polarized structure-specific backbone charge (PSBC) model. The PSBC model accounts for the polarization effect in MD simulation by updating the atomic charges of the backbone hydrogen bond atoms according to equations derived between the amount of charge transferred to the atom and the length of the hydrogen bond, which are calculated from quantum-mechanical calculations. Compared to other polarizable models, the PSBC model does not require quantum-mechanical calculations of the peptide simulated at every time-step of the simulation and maintains the dynamic update of atomic charges, thereby reducing the computational cost and time while accounting for the polarization effect dynamically at the same time. The PSBC model is applied to two different β-peptides, namely the Beta3s/GS peptide, a de novo designed three-stranded β-sheet whose structure is folded in vitro and studied by NMR, and the trpzip peptides, a double-stranded β-sheet where a correlation is found between the type of amino acids that constitute the β-turn and the β-propensity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20bond" title="hydrogen bond">hydrogen bond</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization%20effect" title=" polarization effect"> polarization effect</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20folding" title=" protein folding"> protein folding</a>, <a href="https://publications.waset.org/abstracts/search?q=PSBC" title=" PSBC"> PSBC</a> </p> <a href="https://publications.waset.org/abstracts/45837/folding-of-v-structures-via-the-polarized-structure-specific-backbone-charge-psbc-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">783</span> Evaluating Key Attributes of Effective Digital Games in Tertiary Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roopali%20Kulkarni">Roopali Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuliya%20Khrypko"> Yuliya Khrypko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A major problem in educational digital game design is that game developers are often focused on maintaining the fun and playability of an educational game, whereas educators are more concerned with the learning aspect of the game rather than its entertaining characteristics. There is a clear need to understand what key aspects of digital learning games make them an effective learning medium in tertiary education. Through a systematic literature review and content analysis, this paper identifies, evaluates, and summarizes twenty-three key attributes of digital games used in tertiary education and presents a summary digital game-based learning (DGBL) model for designing and evaluating an educational digital game of any genre that promotes effective learning in tertiary education. The proposed solution overcomes limitations of previously designed models for digital game evaluation, such as a small number of game attributes considered or applicability to a specific genre of digital games. The proposed DGBL model can be used to assist game designers and educators with creating effective and engaging educational digital games for the tertiary education curriculum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DGBL%20model" title="DGBL model">DGBL model</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20games" title=" digital games"> digital games</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20games" title=" educational games"> educational games</a>, <a href="https://publications.waset.org/abstracts/search?q=game-based%20learning" title=" game-based learning"> game-based learning</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary%20education" title=" tertiary education"> tertiary education</a> </p> <a href="https://publications.waset.org/abstracts/147502/evaluating-key-attributes-of-effective-digital-games-in-tertiary-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">782</span> Clusterization Probability in 14N Nuclei</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Burtebayev">N. Burtebayev</a>, <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Hamada"> Sh. Hamada</a>, <a href="https://publications.waset.org/abstracts/search?q=Zh.%20Kerimkulov"> Zh. Kerimkulov</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Alimov"> D. K. Alimov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Yushkov"> A. V. Yushkov</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Amangeldi"> N. Amangeldi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Bakhtibaev"> A. N. Bakhtibaev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main aim of the current work is to examine if 14N is candidate to be clusterized nuclei or not. In order to check this attendance, we have measured the angular distributions for 14N ion beam elastically scattered on 12C target nuclei at different low energies; 17.5, 21, and 24.5MeV which are close to the Coulomb barrier energy for 14N+12C nuclear system. Study of various transfer reactions could provide us with useful information about the attendance of nuclei to be in a composite form (core + valence). The experimental data were analyzed using two approaches; Phenomenological (Optical Potential) and semi-microscopic (Double Folding Potential). The agreement between the experimental data and the theoretical predictions is fairly good in the whole angular range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deuteron%20transfer" title="deuteron transfer">deuteron transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20scattering" title=" elastic scattering"> elastic scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20model" title=" optical model"> optical model</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20folding" title=" double folding"> double folding</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20distribution" title=" density distribution"> density distribution</a> </p> <a href="https://publications.waset.org/abstracts/2435/clusterization-probability-in-14n-nuclei" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">781</span> Insights of Interaction Studies between HSP-60, HSP-70 Proteins and HSF-1 in Bubalus bubalis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravinder%20Singh">Ravinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=C%20Rajesh"> C Rajesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Saroj%20Badhan"> Saroj Badhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shailendra%20Mishra"> Shailendra Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjit%20Singh%20Kataria"> Ranjit Singh Kataria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat shock protein 60 and 70 are crucial chaperones that guide appropriate folding of denatured proteins under heat stress conditions. HSP60 and HSP70 provide assistance in correct folding of a multitude of denatured proteins. The heat shock factors are the family of some transcription factors which controls the regulation of gene expression of proteins involved in folding of damaged or improper folded proteins during stress conditions. Under normal condition heat shock proteins bind with HSF-1 and act as its repressor as well as aids in maintaining the HSF-1’s nonactive and monomeric confirmation. The experimental protein structure for all these proteins in Bubalus bubalis is not known till date. Therefore computational approach was explored to identify three-dimensional structure analysis of all these proteins. In this study, an extensive in silico analysis has been performed including sequence comparison among species to comparative modeling of Bubalus bubalis HSP60, HSP70 and HSF-1 protein. The stereochemical properties of proteins were assessed by utilizing several scrutiny bioinformatics tools to ensure model accuracy. Further docking approach was used to study interactions between Heat shock proteins and HSF-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bubalus%20bubalis" title="Bubalus bubalis">Bubalus bubalis</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20modelling" title=" comparative modelling"> comparative modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20shock%20protein" title=" heat shock protein"> heat shock protein</a> </p> <a href="https://publications.waset.org/abstracts/64431/insights-of-interaction-studies-between-hsp-60-hsp-70-proteins-and-hsf-1-in-bubalus-bubalis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">780</span> Promoting Creative and Critical Thinking in Mathematics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Maria%20Reis%20D%27Azevedo%20Breda">Ana Maria Reis D'Azevedo Breda</a>, <a href="https://publications.waset.org/abstracts/search?q=Catarina%20Maria%20Neto%20da%20Cruz"> Catarina Maria Neto da Cruz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Japanese art of origami provides a rich context for designing exploratory mathematical activities for children and young people. By folding a simple sheet of paper, fascinating and surprising planar and spatial configurations emerge. Equally surprising is the unfolding process, which also produces striking patterns. The procedure of folding, unfolding, and folding again allows the exploration of interesting geometric patterns. When adequately and systematically done, we may deduce some of the mathematical rules ruling origami. As the child/youth folds the sheet of paper repeatedly, he can physically observe how the forms he obtains are transformed and how they relate to the pattern of the corresponding unfolding, creating space for the understanding/discovery of mathematical principles regulating the folding-unfolding process. As part of a 2023 Summer Academy organized by a Portuguese university, a session entitled “Folding, Thinking and Generalizing” took place. Twenty-three students attended the session, all enrolled in the 2nd cycle of Portuguese Basic Education and aged between 10 and 12 years old. The main focus of this session was to foster the development of critical cognitive and socio-emotional skills among these young learners using origami. These skills included creativity, critical analysis, mathematical reasoning, collaboration, and communication. Employing a qualitative, descriptive, and interpretative analysis of data collected during the session through field notes and students’ written productions, our findings reveal that structured origami-based activities not only promote student engagement with mathematical concepts in a playful and interactive but also facilitate the development of socio-emotional skills, which include collaboration and effective communication between participants. This research highlights the value of integrating origami into educational practices, highlighting its role in supporting comprehensive cognitive and emotional learning experiences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skills" title="skills">skills</a>, <a href="https://publications.waset.org/abstracts/search?q=origami%20rules" title=" origami rules"> origami rules</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20learning" title=" active learning"> active learning</a>, <a href="https://publications.waset.org/abstracts/search?q=hands-on%20activities" title=" hands-on activities"> hands-on activities</a> </p> <a href="https://publications.waset.org/abstracts/172299/promoting-creative-and-critical-thinking-in-mathematics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">779</span> The Concept of Community Participation and Identified Tertiary Education Problems, Strategies and Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ada%20Adoga%20James">Ada Adoga James</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discussed the concept of community participation and identified tertiary education problems; strategies and methods communities could be involved to reduce conflict witnessed in our tertiary institutions of learning due to government inability to fund education. The paper pointed out that community participation through the use of Parent Teachers Association (PTA), age grade, traditional leaders, village based associations, religious and political organs could be sensitized to raise financial resources. The paper identified different sources of conflicts, the outcome of which causes prolonged academic activities, destruction of lives and properties and in some cased render school environment completely insecure for serious academic activities. It recommends involvement of community participation in assisting government, proper handling of tertiary institutions in management, and more democratic procedure in conflict resolution like cordial relationship between staff, students and trade unions in decision making process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community" title="community">community</a>, <a href="https://publications.waset.org/abstracts/search?q=conflict%20resolution" title=" conflict resolution"> conflict resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary%20education" title=" tertiary education"> tertiary education</a>, <a href="https://publications.waset.org/abstracts/search?q=psychology" title=" psychology"> psychology</a>, <a href="https://publications.waset.org/abstracts/search?q=psychiatry" title=" psychiatry"> psychiatry</a> </p> <a href="https://publications.waset.org/abstracts/5898/the-concept-of-community-participation-and-identified-tertiary-education-problems-strategies-and-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">778</span> Protein Tertiary Structure Prediction by a Multiobjective Optimization and Neural Network Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20Barbosa%20de%20Almeida">Alexandre Barbosa de Almeida</a>, <a href="https://publications.waset.org/abstracts/search?q=Telma%20Woerle%20de%20Lima%20Soares"> Telma Woerle de Lima Soares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protein structure prediction is a challenging task in the bioinformatics field. The biological function of all proteins majorly relies on the shape of their three-dimensional conformational structure, but less than 1% of all known proteins in the world have their structure solved. This work proposes a deep learning model to address this problem, attempting to predict some aspects of the protein conformations. Throughout a process of multiobjective dominance, a recurrent neural network was trained to abstract the particular bias of each individual multiobjective algorithm, generating a heuristic that could be useful to predict some of the relevant aspects of the three-dimensional conformation process formation, known as protein folding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ab%20initio%20heuristic%20modeling" title="Ab initio heuristic modeling">Ab initio heuristic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=multiobjective%20optimization" title=" multiobjective optimization"> multiobjective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20structure%20prediction" title=" protein structure prediction"> protein structure prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20neural%20network" title=" recurrent neural network"> recurrent neural network</a> </p> <a href="https://publications.waset.org/abstracts/141565/protein-tertiary-structure-prediction-by-a-multiobjective-optimization-and-neural-network-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">777</span> An Overview of Bioinformatics Methods to Detect Novel Riboswitches Highlighting the Importance of Structure Consideration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danny%20Barash">Danny Barash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Riboswitches are RNA genetic control elements that were originally discovered in bacteria and provide a unique mechanism of gene regulation. They work without the participation of proteins and are believed to represent ancient regulatory systems in the evolutionary timescale. One of the biggest challenges in riboswitch research is that many are found in prokaryotes but only a small percentage of known riboswitches have been found in certain eukaryotic organisms. The few examples of eukaryotic riboswitches were identified using sequence-based bioinformatics search methods that include some slight structural considerations. These pattern-matching methods were the first ones to be applied for the purpose of riboswitch detection and they can also be programmed very efficiently using a data structure called affix arrays, making them suitable for genome-wide searches of riboswitch patterns. However, they are limited by their ability to detect harder to find riboswitches that deviate from the known patterns. Several methods have been developed since then to tackle this problem. The most commonly used by practitioners is Infernal that relies on Hidden Markov Models (HMMs) and Covariance Models (CMs). Profile Hidden Markov Models were also carried out in the pHMM Riboswitch Scanner web application, independently from Infernal. Other computational approaches that have been developed include RMDetect by the use of 3D structural modules and RNAbor that utilizes Boltzmann probability of structural neighbors. We have tried to incorporate more sophisticated secondary structure considerations based on RNA folding prediction using several strategies. The first idea was to utilize window-based methods in conjunction with folding predictions by energy minimization. The moving window approach is heavily geared towards secondary structure consideration relative to sequence that is treated as a constraint. However, the method cannot be used genome-wide due to its high cost because each folding prediction by energy minimization in the moving window is computationally expensive, enabling to scan only at the vicinity of genes of interest. The second idea was to remedy the inefficiency of the previous approach by constructing a pipeline that consists of inverse RNA folding considering RNA secondary structure, followed by a BLAST search that is sequence-based and highly efficient. This approach, which relies on inverse RNA folding in general and our own in-house fragment-based inverse RNA folding program called RNAfbinv in particular, shows capability to find attractive candidates that are missed by Infernal and other standard methods being used for riboswitch detection. We demonstrate attractive candidates found by both the moving-window approach and the inverse RNA folding approach performed together with BLAST. We conclude that structure-based methods like the two strategies outlined above hold considerable promise in detecting riboswitches and other conserved RNAs of functional importance in a variety of organisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=riboswitches" title="riboswitches">riboswitches</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA%20folding%20prediction" title=" RNA folding prediction"> RNA folding prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA%20structure" title=" RNA structure"> RNA structure</a>, <a href="https://publications.waset.org/abstracts/search?q=structure-based%20methods" title=" structure-based methods"> structure-based methods</a> </p> <a href="https://publications.waset.org/abstracts/41500/an-overview-of-bioinformatics-methods-to-detect-novel-riboswitches-highlighting-the-importance-of-structure-consideration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">776</span> Towards Women Empowerment: An Examination of Gender Equity and Access to Tertiary Education in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Funmilayo%20Florence%20Adegoke">Funmilayo Florence Adegoke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study looks into the issue of gender equity among the staff and students of tertiary institutions in Osun State, Nigeria, specifically the study examined the opinion of the staff and students concerning equity of gender and also examined access to tertiary Education and related courses vis-à-vis gender. A total of 800 subjects consisting of six hundred and forty students, eighty lecturers and eighty non-teaching staff were drawn from four tertiary institutions namely a University, a Polytechnic and two Colleges of Education in the State. The main research instruments used for the study are two sets of questionnaires (one for the students and one for the staff) and records of students’ analyzed for the purpose of testing the research questions that were raised. The result showed among others that the staff and the students opined that there are generally inequalities in the attributes of the two genders. It was also found that significantly more boys enrolled in science and related courses than girls. Based on the findings, useful recommendations that would enhance the contribution of both male and female to science education and the nation as a whole were made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gender" title="gender">gender</a>, <a href="https://publications.waset.org/abstracts/search?q=access" title=" access"> access</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary" title=" tertiary"> tertiary</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/22869/towards-women-empowerment-an-examination-of-gender-equity-and-access-to-tertiary-education-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">775</span> Probing Mechanical Mechanism of Three-Hinge Formation on a Growing Brain: A Numerical and Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mir%20Jalil%20Razavi">Mir Jalil Razavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianming%20Liu"> Tianming Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xianqiao%20Wang"> Xianqiao Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cortical folding, characterized by convex gyri and concave sulci, has an intrinsic relationship to the brain’s functional organization. Understanding the mechanism of the brain’s convoluted patterns can provide useful clues into normal and pathological brain function. During the development, the cerebral cortex experiences a noticeable expansion in volume and surface area accompanied by tremendous tissue folding which may be attributed to many possible factors. Despite decades of endeavors, the fundamental mechanism and key regulators of this crucial process remain incompletely understood. Therefore, to taking even a small role in unraveling of brain folding mystery, we present a mechanical model to find mechanism of 3-hinges formation in a growing brain that it has not been addressed before. A 3-hinge is defined as a gyral region where three gyral crests (hinge-lines) join. The reasons that how and why brain prefers to develop 3-hinges have not been answered very well. Therefore, we offer a theoretical and computational explanation to mechanism of 3-hinges formation in a growing brain and validate it by experimental observations. In theoretical approach, the dynamic behavior of brain tissue is examined and described with the aid of a large strain and nonlinear constitutive model. Derived constitute model is used in the computational model to define material behavior. Since the theoretical approach cannot predict the evolution of cortical complex convolution after instability, non-linear finite element models are employed to study the 3-hinges formation and secondary morphological folds of the developing brain. Three-dimensional (3D) finite element analyses on a multi-layer soft tissue model which mimics a small piece of the brain are performed to investigate the fundamental mechanism of consistent hinge formation in the cortical folding. Results show that after certain amount growth of cortex, mechanical model starts to be unstable and then by formation of creases enters to a new configuration with lower strain energy. By further growth of the model, formed shallow creases start to form convoluted patterns and then develop 3-hinge patterns. Simulation results related to 3-hinges in models show good agreement with experimental observations from macaque, chimpanzee and human brain images. These results have great potential to reveal fundamental principles of brain architecture and to produce a unified theoretical framework that convincingly explains the intrinsic relationship between cortical folding and 3-hinges formation. This achieved fundamental understanding of the intrinsic relationship between cortical folding and 3-hinges formation would potentially shed new insights into the diagnosis of many brain disorders such as schizophrenia, autism, lissencephaly and polymicrogyria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain" title="brain">brain</a>, <a href="https://publications.waset.org/abstracts/search?q=cortical%20folding" title=" cortical folding"> cortical folding</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20hinge" title=" three hinge"> three hinge</a> </p> <a href="https://publications.waset.org/abstracts/71644/probing-mechanical-mechanism-of-three-hinge-formation-on-a-growing-brain-a-numerical-and-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">774</span> Future Applications of 4D Printing in Dentistry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hosamuddin%20Hamza">Hosamuddin Hamza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major concept of 4D printing is self-folding under thermal and humidity changes. This concept relies on understanding how the microstructures of 3D-printed models can undergo spontaneous shape transformation under thermal and moisture changes. The transformation mechanism could be achieved by mixing, in a controllable pattern, a number of materials within the printed model, each with known strain/shrinkage properties. 4D printing has a strong potential to be applied in dentistry as the technology could produce dynamic and adaptable materials to be used as functional objects in the oral environment under the continuously changing thermal and humidity conditions. The motion criteria could override the undesired dimensional changes, thermal instability, polymerization shrinkage and microleakage. 4D printing could produce restorative materials being self-adjusted spontaneously without further intervention from the dentist or patient; that is, the materials could be capable of fixing its failed portions, compensating for some lost tooth structure, while avoiding microleakage or overhangs at the margins. In prosthetic dentistry, 4D printing could provide an option to manage the influence of bone and soft tissue imbalance during mastication (and at rest) with high predictability of the type/direction of forces. It can also produce materials with better fitting and retention characteristics than conventional or 3D-printed materials. Nevertheless, it is important to highlight that 4D-printed objects, having dynamic properties, could provide some cushion as they undergo self-folding compensating for any thermal changes or mechanical forces such as traumatic forces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functional%20material" title="functional material">functional material</a>, <a href="https://publications.waset.org/abstracts/search?q=self-folding%20material" title=" self-folding material"> self-folding material</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=4D%20printing" title=" 4D printing"> 4D printing</a> </p> <a href="https://publications.waset.org/abstracts/61642/future-applications-of-4d-printing-in-dentistry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">773</span> Psychological Factors as Predictor of Sports Violence among Tertiary Institutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwasgun%20Moses%20Jolayemi">Oluwasgun Moses Jolayemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Violence has become a fairly often occurrence in sports (within our tertiary institutions), a development that is giving every society in the world sleepless night. School violence is part of youth violence, a broader salient public health problem. This study employing a questionnaire-based survey strategy aimed at investigates psychological factors as predictors of sports violence among Oyo state tertiary institution. A sample of Two hundred athletes and three tertiary institutions were selected through purposive sampling from the Oyo State tertiary institution. The estimated reliability co-efficient of the instrument was found to be 0.89 using cronbach Alpha technique. Data were analyzed at 0.05 level of significance using Statistical Package for the Social Sciences (SPSS) software, version 20.0. Five hypotheses were tested using Pearson Correlation. Result revealed that personality, anxiety, mental health has no significant influence on sports violence; mental stress has a significant influence on sports violence. Based on the findings, it was recommended that sport management should reduce work overload and that they should organized seminars and social activities to help athletes lose up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibadan" title="Ibadan">Ibadan</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20health" title=" mental health"> mental health</a>, <a href="https://publications.waset.org/abstracts/search?q=personality" title=" personality"> personality</a>, <a href="https://publications.waset.org/abstracts/search?q=psychology" title=" psychology"> psychology</a>, <a href="https://publications.waset.org/abstracts/search?q=violence" title=" violence"> violence</a> </p> <a href="https://publications.waset.org/abstracts/87846/psychological-factors-as-predictor-of-sports-violence-among-tertiary-institutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">772</span> The Value of Study Abroad for Māori and Pasifika Learners: In Relation to the Tertiary Education Strategy in New Zealand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Easter%20Faasoo-Tuilagi">Easter Faasoo-Tuilagi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study abroad has become a significant aspect of the tertiary system for New Zealand tertiary institutions and has been having a valuable contribution to student achievement and completion rate. The purpose of this doctoral study was to explore the significance and value of study abroad at an individual (learner), institutional (university), and national (government) level, with a focus on Māori and Pasifika learners. Previous research had conducted on the values and benefits of study abroad; however, there is a gap in knowledge on how study abroad can contribute to the educational experience of Māori and Pasifika students in tertiary studies in New Zealand. This study’s main focus aimed to explore the current participation and history of involvement of Māori and Pasifika students with study abroad using the University of Auckland and the University of Otago as case studies. It analysed the experiences of Māori and Pasifika students who were interested in study abroad or have returned from a study abroad. This research also explored how study abroad had become a significant aspect of the tertiary system in New Zealand, focusing on Tertiary Education Strategies. These questions were analysed using a range of methodologies, including a literature review to review how various institutions and nations, in particular New Zealand, were approaching study abroad, semi-structured interviews with Māori and Pasifika students on their experiences expressing interest in study abroad, and case studies of current/ returning Māori and Pasifika students who have had a study abroad experience. The anticipated results from this research will address several gaps in the existing literature and provide ways to better support Māori and Pasifika students who want to have a study abroad experience. This study will also inform education policy at an institutional and national level to boost the achievement of Māori and Pasifika students aligning with the Tertiary Education Strategy priorities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=study%20abroad" title="study abroad">study abroad</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C4%81ori%20and%20Pasifika%20learners" title=" Māori and Pasifika learners"> Māori and Pasifika learners</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20education" title=" international education"> international education</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary%20education%20strategy" title=" tertiary education strategy"> tertiary education strategy</a> </p> <a href="https://publications.waset.org/abstracts/161641/the-value-of-study-abroad-for-maori-and-pasifika-learners-in-relation-to-the-tertiary-education-strategy-in-new-zealand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">771</span> Predicting Aggregation Propensity from Low-Temperature Conformational Fluctuations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Javar%20Magnier">Hamza Javar Magnier</a>, <a href="https://publications.waset.org/abstracts/search?q=Robin%20Curtis"> Robin Curtis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There have been rapid advances in the upstream processing of protein therapeutics, which has shifted the bottleneck to downstream purification and formulation. Finding liquid formulations with shelf lives of up to two years is increasingly difficult for some of the newer therapeutics, which have been engineered for activity, but their formulations are often viscous, can phase separate, and have a high propensity for irreversible aggregation1. We explore means to develop improved predictive ability from a better understanding of how protein-protein interactions on formulation conditions (pH, ionic strength, buffer type, presence of excipients) and how these impact upon the initial steps in protein self-association and aggregation. In this work, we study the initial steps in the aggregation pathways using a minimal protein model based on square-well potentials and discontinuous molecular dynamics. The effect of model parameters, including range of interaction, stiffness, chain length, and chain sequence, implies that protein models fold according to various pathways. By reducing the range of interactions, the folding- and collapse- transition come together, and follow a single-step folding pathway from the denatured to the native state2. After parameterizing the model interaction-parameters, we developed an understanding of low-temperature conformational properties and fluctuations, and the correlation to the folding transition of proteins in isolation. The model fluctuations increase with temperature. We observe a low-temperature point, below which large fluctuations are frozen out. This implies that fluctuations at low-temperature can be correlated to the folding transition at the melting temperature. Because proteins “breath” at low temperatures, defining a native-state as a single structure with conserved contacts and a fixed three-dimensional structure is misleading. Rather, we introduce a new definition of a native-state ensemble based on our understanding of the core conservation, which takes into account the native fluctuations at low temperatures. This approach permits the study of a large range of length and time scales needed to link the molecular interactions to the macroscopically observed behaviour. In addition, these models studied are parameterized by fitting to experimentally observed protein-protein interactions characterized in terms of osmotic second virial coefficients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=protein%20folding" title="protein folding">protein folding</a>, <a href="https://publications.waset.org/abstracts/search?q=native-ensemble" title=" native-ensemble"> native-ensemble</a>, <a href="https://publications.waset.org/abstracts/search?q=conformational%20fluctuation" title=" conformational fluctuation"> conformational fluctuation</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregation" title=" aggregation"> aggregation</a> </p> <a href="https://publications.waset.org/abstracts/18844/predicting-aggregation-propensity-from-low-temperature-conformational-fluctuations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">770</span> Comparison of Tensile Strength and Folding Endurance of (FDM Process) 3D Printed ABS and PLA Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Devicharan">R. Devicharan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a short span 3D Printing is expected to play a vital role in our life. The possibility of creativity and speed in manufacturing through various 3D printing processes is infinite. This study is performed on the FDM (Fused Deposition Modelling) method of 3D printing, which is one of the pre-dominant methods of 3D printing technologies. This study focuses on physical properties of the objects produced by 3D printing which determine the applications of the 3D printed objects. This paper specifically aims at the study of the tensile strength and the folding endurance of the 3D printed objects through the FDM (Fused Deposition Modelling) method using the ABS (Acronitirile Butadiene Styrene) and PLA (Poly Lactic Acid) plastic materials. The study is performed on a controlled environment and the specific machine settings. Appropriate tables, graphs are plotted and research analysis techniques will be utilized to analyse, verify and validate the experiment results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FDM%20process" title="FDM process">FDM process</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=ABS%20for%203D%20printing" title=" ABS for 3D printing"> ABS for 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=PLA%20for%203D%20printing" title=" PLA for 3D printing"> PLA for 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20prototyping" title=" rapid prototyping"> rapid prototyping</a> </p> <a href="https://publications.waset.org/abstracts/29802/comparison-of-tensile-strength-and-folding-endurance-of-fdm-process-3d-printed-abs-and-pla-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">599</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">769</span> Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Wang">Kevin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Ge"> Jian Ge</a>, <a href="https://publications.waset.org/abstracts/search?q=Yinan%20Zhao"> Yinan Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Willis"> Kevin Willis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithms" title="algorithms">algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=astronomy%20data%20analysis" title=" astronomy data analysis"> astronomy data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=exoplanet%20detection%20methods" title=" exoplanet detection methods"> exoplanet detection methods</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20planets" title=" small planets"> small planets</a>, <a href="https://publications.waset.org/abstracts/search?q=habitable%20planets" title=" habitable planets"> habitable planets</a>, <a href="https://publications.waset.org/abstracts/search?q=transit%20%20photometry" title=" transit photometry"> transit photometry</a> </p> <a href="https://publications.waset.org/abstracts/140507/discovery-of-exoplanets-in-kepler-data-using-a-graphics-processing-unit-fast-folding-method-and-a-deep-learning-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">768</span> Folding Pathway and Thermodynamic Stability of Monomeric GroEL</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarita%20Puri">Sarita Puri</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapan%20K.%20Chaudhuri"> Tapan K. Chaudhuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chaperonin GroEL is a tetradecameric Escherichia coli protein having identical subunits of 57 kDa. The elucidation of thermodynamic parameters related to stability for the native GroEL is not feasible as it undergoes irreversible unfolding because of its large size (800kDa) and multimeric nature. Nevertheless, it is important to determine the thermodynamic stability parameters for the highly stable GroEL protein as it helps in folding and holding of many substrate proteins during many cellular stresses. Properly folded monomers work as building-block for the formation of native tetradecameric GroEL. Spontaneous refolding behavior of monomeric GroEL makes it suitable for protein-denaturant interactions and thermodynamic stability based studies. The urea mediated unfolding is a three state process which means there is the formation of one intermediate state along with native and unfolded states. The heat mediated denaturation is a two-state process. The unfolding process is reversible as observed by the spontaneous refolding of denatured protein in both urea and head mediated refolding processes. Analysis of folding/unfolding data provides a measure of various thermodynamic stability parameters for the monomeric GroEL. The proposed mechanism of unfolding of monomeric GroEL is a three state process which involves formation of one stable intermediate having folded apical domain and unfolded equatorial, intermediate domains. Research in progress is to demonstrate the importance of specific residues in stability and oligomerization of GroEL protein. Several mutant versions of GroEL are under investigation to resolve the above mentioned issue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20unfolding" title="equilibrium unfolding">equilibrium unfolding</a>, <a href="https://publications.waset.org/abstracts/search?q=monomeric%20GroEl" title=" monomeric GroEl"> monomeric GroEl</a>, <a href="https://publications.waset.org/abstracts/search?q=spontaneous%20refolding" title=" spontaneous refolding"> spontaneous refolding</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20stability" title=" thermodynamic stability"> thermodynamic stability</a> </p> <a href="https://publications.waset.org/abstracts/67151/folding-pathway-and-thermodynamic-stability-of-monomeric-groel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">767</span> Effects of Internet Addiction on Students’ Academic Performance among Some Tertiary Institutions in Oyo State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mujidat%20Lola%20Olugbode">Mujidat Lola Olugbode</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the effects of internet addiction on academic performance among students in some tertiary institutions in Oyo State, Nigeria. A descriptive survey research design was adopted for the study. Two research questions and two hypotheses were answered and tested. The population of the study comprised of all students in five tertiary institutions in Oyo State, Nigeria. Simple random sampling technique was used to select 2550 participants (respondents) from the institutions used for the study, this constituted the sample for the study. The instruments used for data collection was a self-constructed questionnaire on Internet Addiction and Students Academic Performance (IAASAP). The reliability coefficient of the instrument was 0.77. Data collected were analyzed using frequency and percentages, Pearson Product Moment Correlation coefficient (PPMCC) and t-test analysis. The results showed that the students in tertiary institutions in Oyo State were occasionally addicted to internet use. The study also revealed a positive correlation between internet addiction and academic performance. The findings also showed that there was significant difference in the internet addiction between male and female Students. Based on the above findings, the researchers recommended among others that government, educators, parents, counselors, teachers should help redirect the internet use toward academics to ensure greater academic performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internet" title="internet">internet</a>, <a href="https://publications.waset.org/abstracts/search?q=addiction" title=" addiction"> addiction</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20addiction" title=" internet addiction"> internet addiction</a>, <a href="https://publications.waset.org/abstracts/search?q=academic%20performance" title=" academic performance"> academic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary%20institution" title=" tertiary institution"> tertiary institution</a>, <a href="https://publications.waset.org/abstracts/search?q=students" title=" students"> students</a> </p> <a href="https://publications.waset.org/abstracts/177099/effects-of-internet-addiction-on-students-academic-performance-among-some-tertiary-institutions-in-oyo-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tertiary%20folding&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tertiary%20folding&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tertiary%20folding&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tertiary%20folding&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tertiary%20folding&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tertiary%20folding&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tertiary%20folding&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tertiary%20folding&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tertiary%20folding&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tertiary%20folding&page=26">26</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tertiary%20folding&page=27">27</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tertiary%20folding&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>