CINXE.COM
Electron diffraction - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Electron diffraction - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"61aec99d-e7ea-45d6-972a-865069708a58","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Electron_diffraction","wgTitle":"Electron diffraction","wgCurRevisionId":1248558676,"wgRevisionId":1248558676,"wgArticleId":277702,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 German-language sources (de)","CS1 maint: location missing publisher","CS1: long volume value","CS1 maint: multiple names: authors list","Articles with short description","Short description matches Wikidata","Good articles","Pages using multiple image with auto scaled images","Applied and interdisciplinary physics","Crystallography","Diffraction","Electron","Electron microscopy","Materials science","Quantum mechanics","Scattering"],"wgPageViewLanguage":"en", "wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Electron_diffraction","wgRelevantArticleId":277702,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q864822", "wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc", "skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/3/3d/Austenite_ZADP.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1202"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/3/3d/Austenite_ZADP.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="802"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="641"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Electron diffraction - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Electron_diffraction"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Electron_diffraction&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Electron_diffraction"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Electron_diffraction rootpage-Electron_diffraction skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Electron+diffraction" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Electron+diffraction" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Electron+diffraction" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Electron+diffraction" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-A_primer_on_electron_diffraction" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#A_primer_on_electron_diffraction"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>A primer on electron diffraction</span> </div> </a> <ul id="toc-A_primer_on_electron_diffraction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>History</span> </div> </a> <button aria-controls="toc-History-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle History subsection</span> </button> <ul id="toc-History-sublist" class="vector-toc-list"> <li id="toc-Electrons_in_vacuum" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Electrons_in_vacuum"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Electrons in vacuum</span> </div> </a> <ul id="toc-Electrons_in_vacuum-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Waves,_diffraction_and_quantum_mechanics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Waves,_diffraction_and_quantum_mechanics"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Waves, diffraction and quantum mechanics</span> </div> </a> <ul id="toc-Waves,_diffraction_and_quantum_mechanics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Electron_microscopes_and_early_electron_diffraction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Electron_microscopes_and_early_electron_diffraction"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Electron microscopes and early electron diffraction</span> </div> </a> <ul id="toc-Electron_microscopes_and_early_electron_diffraction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Subsequent_developments_in_methods_and_modelling" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Subsequent_developments_in_methods_and_modelling"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Subsequent developments in methods and modelling</span> </div> </a> <ul id="toc-Subsequent_developments_in_methods_and_modelling-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Core_elements_of_electron_diffraction" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Core_elements_of_electron_diffraction"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Core elements of electron diffraction</span> </div> </a> <button aria-controls="toc-Core_elements_of_electron_diffraction-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Core elements of electron diffraction subsection</span> </button> <ul id="toc-Core_elements_of_electron_diffraction-sublist" class="vector-toc-list"> <li id="toc-Plane_waves,_wavevectors_and_reciprocal_lattice" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Plane_waves,_wavevectors_and_reciprocal_lattice"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Plane waves, wavevectors and reciprocal lattice</span> </div> </a> <ul id="toc-Plane_waves,_wavevectors_and_reciprocal_lattice-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kinematical_diffraction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Kinematical_diffraction"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Kinematical diffraction</span> </div> </a> <ul id="toc-Kinematical_diffraction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dynamical_diffraction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dynamical_diffraction"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Dynamical diffraction</span> </div> </a> <ul id="toc-Dynamical_diffraction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kikuchi_lines" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Kikuchi_lines"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Kikuchi lines</span> </div> </a> <ul id="toc-Kikuchi_lines-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Types_and_techniques" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Types_and_techniques"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Types and techniques</span> </div> </a> <button aria-controls="toc-Types_and_techniques-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Types and techniques subsection</span> </button> <ul id="toc-Types_and_techniques-sublist" class="vector-toc-list"> <li id="toc-In_a_transmission_electron_microscope" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#In_a_transmission_electron_microscope"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>In a transmission electron microscope</span> </div> </a> <ul id="toc-In_a_transmission_electron_microscope-sublist" class="vector-toc-list"> <li id="toc-Formation_of_a_diffraction_pattern" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Formation_of_a_diffraction_pattern"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.1</span> <span>Formation of a diffraction pattern</span> </div> </a> <ul id="toc-Formation_of_a_diffraction_pattern-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Selected_area_electron_diffraction" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Selected_area_electron_diffraction"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.2</span> <span>Selected area electron diffraction</span> </div> </a> <ul id="toc-Selected_area_electron_diffraction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Polycrystalline_pattern" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Polycrystalline_pattern"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.3</span> <span>Polycrystalline pattern</span> </div> </a> <ul id="toc-Polycrystalline_pattern-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multiple_materials_and_double_diffraction" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Multiple_materials_and_double_diffraction"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.4</span> <span>Multiple materials and double diffraction</span> </div> </a> <ul id="toc-Multiple_materials_and_double_diffraction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bulk_and_surface_superstructures" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Bulk_and_surface_superstructures"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.5</span> <span>Bulk and surface superstructures</span> </div> </a> <ul id="toc-Bulk_and_surface_superstructures-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Aperiodic_materials" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Aperiodic_materials"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.6</span> <span>Aperiodic materials</span> </div> </a> <ul id="toc-Aperiodic_materials-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Diffuse_scattering" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Diffuse_scattering"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.7</span> <span>Diffuse scattering</span> </div> </a> <ul id="toc-Diffuse_scattering-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Convergent_beam_electron_diffraction" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Convergent_beam_electron_diffraction"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.8</span> <span>Convergent beam electron diffraction</span> </div> </a> <ul id="toc-Convergent_beam_electron_diffraction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Precession_electron_diffraction" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Precession_electron_diffraction"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.9</span> <span>Precession electron diffraction</span> </div> </a> <ul id="toc-Precession_electron_diffraction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-4D_STEM" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#4D_STEM"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.10</span> <span>4D STEM</span> </div> </a> <ul id="toc-4D_STEM-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Low-energy_electron_diffraction_(LEED)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Low-energy_electron_diffraction_(LEED)"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Low-energy electron diffraction (LEED)</span> </div> </a> <ul id="toc-Low-energy_electron_diffraction_(LEED)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Reflection_high-energy_electron_diffraction_(RHEED)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Reflection_high-energy_electron_diffraction_(RHEED)"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Reflection high-energy electron diffraction (RHEED)</span> </div> </a> <ul id="toc-Reflection_high-energy_electron_diffraction_(RHEED)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gas_electron_diffraction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gas_electron_diffraction"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Gas electron diffraction</span> </div> </a> <ul id="toc-Gas_electron_diffraction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_a_scanning_electron_microscope" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#In_a_scanning_electron_microscope"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>In a scanning electron microscope</span> </div> </a> <ul id="toc-In_a_scanning_electron_microscope-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Electron diffraction</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 27 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-27" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">27 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AD%D9%8A%D9%88%D8%AF_%D8%A7%D9%84%D8%A5%D9%84%D9%83%D8%AA%D8%B1%D9%88%D9%86%D8%A7%D8%AA" title="حيود الإلكترونات – Arabic" lang="ar" hreflang="ar" data-title="حيود الإلكترونات" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%94%D1%8B%D1%84%D1%80%D0%B0%D0%BA%D1%86%D1%8B%D1%8F_%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%B0%D1%9E" title="Дыфракцыя электронаў – Belarusian" lang="be" hreflang="be" data-title="Дыфракцыя электронаў" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Difracci%C3%B3_d%27electrons" title="Difracció d'electrons – Catalan" lang="ca" hreflang="ca" data-title="Difracció d'electrons" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Elektronenbeugung" title="Elektronenbeugung – German" lang="de" hreflang="de" data-title="Elektronenbeugung" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Difracci%C3%B3n_de_electrones" title="Difracción de electrones – Spanish" lang="es" hreflang="es" data-title="Difracción de electrones" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%BE%D8%B1%D8%A7%D8%B4_%D8%A7%D9%84%DA%A9%D8%AA%D8%B1%D9%88%D9%86" title="پراش الکترون – Persian" lang="fa" hreflang="fa" data-title="پراش الکترون" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Diffraction_des_%C3%A9lectrons" title="Diffraction des électrons – French" lang="fr" hreflang="fr" data-title="Diffraction des électrons" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/D%C3%ADraonadh_leictreon" title="Díraonadh leictreon – Irish" lang="ga" hreflang="ga" data-title="Díraonadh leictreon" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%A0%84%EC%9E%90_%ED%9A%8C%EC%A0%88" title="전자 회절 – Korean" lang="ko" hreflang="ko" data-title="전자 회절" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B7%D5%AC%D5%A5%D5%AF%D5%BF%D6%80%D5%B8%D5%B6%D5%B6%D5%A5%D6%80%D5%AB_%D5%A4%D5%AB%D6%86%D6%80%D5%A1%D5%AF%D6%81%D5%AB%D5%A1" title="Էլեկտրոնների դիֆրակցիա – Armenian" lang="hy" hreflang="hy" data-title="Էլեկտրոնների դիֆրակցիա" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%87%E0%A4%B2%E0%A5%87%E0%A4%95%E0%A5%8D%E0%A4%9F%E0%A5%8D%E0%A4%B0%E0%A4%BE%E0%A4%A8_%E0%A4%B5%E0%A4%BF%E0%A4%B5%E0%A4%B0%E0%A5%8D%E0%A4%A4%E0%A4%A8" title="इलेक्ट्रान विवर्तन – Hindi" lang="hi" hreflang="hi" data-title="इलेक्ट्रान विवर्तन" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Elektronendiffractie" title="Elektronendiffractie – Dutch" lang="nl" hreflang="nl" data-title="Elektronendiffractie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E9%9B%BB%E5%AD%90%E5%9B%9E%E6%8A%98" title="電子回折 – Japanese" lang="ja" hreflang="ja" data-title="電子回折" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Elektrondiffraksjon" title="Elektrondiffraksjon – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Elektrondiffraksjon" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Elektronlar_difraksiyasi" title="Elektronlar difraksiyasi – Uzbek" lang="uz" hreflang="uz" data-title="Elektronlar difraksiyasi" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Dyfrakcja_elektron%C3%B3w" title="Dyfrakcja elektronów – Polish" lang="pl" hreflang="pl" data-title="Dyfrakcja elektronów" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Difra%C3%A7%C3%A3o_de_el%C3%A9trons" title="Difração de elétrons – Portuguese" lang="pt" hreflang="pt" data-title="Difração de elétrons" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Difrac%C8%9Bia_electronilor" title="Difracția electronilor – Romanian" lang="ro" hreflang="ro" data-title="Difracția electronilor" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%80%D0%B0%D0%BA%D1%86%D0%B8%D1%8F_%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%BE%D0%B2" title="Дифракция электронов – Russian" lang="ru" hreflang="ru" data-title="Дифракция электронов" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Difrakcia_elektr%C3%B3nov" title="Difrakcia elektrónov – Slovak" lang="sk" hreflang="sk" data-title="Difrakcia elektrónov" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Uklon_elektronov" title="Uklon elektronov – Slovenian" lang="sl" hreflang="sl" data-title="Uklon elektronov" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Elektronidiffraktio" title="Elektronidiffraktio – Finnish" lang="fi" hreflang="fi" data-title="Elektronidiffraktio" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%8E%E0%B0%B2%E0%B0%95%E0%B1%8D%E0%B0%9F%E0%B1%8D%E0%B0%B0%E0%B0%BE%E0%B0%A8%E0%B1%8D_%E0%B0%B5%E0%B0%BF%E0%B0%B5%E0%B0%B0%E0%B1%8D%E0%B0%A4%E0%B0%A8%E0%B0%AE%E0%B1%81" title="ఎలక్ట్రాన్ వివర్తనము – Telugu" lang="te" hreflang="te" data-title="ఎలక్ట్రాన్ వివర్తనము" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Elektron_k%C4%B1r%C4%B1n%C4%B1m%C4%B1" title="Elektron kırınımı – Turkish" lang="tr" hreflang="tr" data-title="Elektron kırınımı" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%80%D0%B0%D0%BA%D1%86%D1%96%D1%8F_%D0%B5%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D1%96%D0%B2" title="Дифракція електронів – Ukrainian" lang="uk" hreflang="uk" data-title="Дифракція електронів" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Nhi%E1%BB%85u_x%E1%BA%A1_%C4%91i%E1%BB%87n_t%E1%BB%AD" title="Nhiễu xạ điện tử – Vietnamese" lang="vi" hreflang="vi" data-title="Nhiễu xạ điện tử" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%94%B5%E5%AD%90%E8%A1%8D%E5%B0%84" title="电子衍射 – Chinese" lang="zh" hreflang="zh" data-title="电子衍射" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q864822#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Electron_diffraction" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Electron_diffraction" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Electron_diffraction"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Electron_diffraction&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Electron_diffraction&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Electron_diffraction"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Electron_diffraction&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Electron_diffraction&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Electron_diffraction" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Electron_diffraction" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Electron_diffraction&oldid=1248558676" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Electron_diffraction&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Electron_diffraction&id=1248558676&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FElectron_diffraction"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FElectron_diffraction"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Electron_diffraction&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Electron_diffraction&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Electron_diffraction" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q864822" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-good-star" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:Good_articles*" title="This is a good article. Click here for more information."><img alt="This is a good article. Click here for more information." src="//upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/19px-Symbol_support_vote.svg.png" decoding="async" width="19" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/29px-Symbol_support_vote.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/39px-Symbol_support_vote.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span></div></div> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Bending of electron beams due to electrostatic interactions with matter</div> <p class="mw-empty-elt"> </p> <p><span class="anchor" id="Figure_1"></span></p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Austenite_ZADP.jpg" class="mw-file-description"><img alt="Electron diffraction pattern showing white spots on a dark background, as a general example." src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3d/Austenite_ZADP.jpg/220px-Austenite_ZADP.jpg" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3d/Austenite_ZADP.jpg/330px-Austenite_ZADP.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3d/Austenite_ZADP.jpg/440px-Austenite_ZADP.jpg 2x" data-file-width="500" data-file-height="501" /></a><figcaption>Figure 1: Selected area diffraction pattern of a twinned <a href="/wiki/Austenite" title="Austenite">austenite</a> crystal in a piece of <a href="/wiki/Steel" title="Steel">steel</a></figcaption></figure> <p><b>Electron diffraction</b> is a generic term for phenomena associated with changes in the direction of <a href="/wiki/Electron_beams" class="mw-redirect" title="Electron beams">electron beams</a> due to <a href="/wiki/Elastic_collision" title="Elastic collision">elastic</a> interactions with <a href="/wiki/Atoms" class="mw-redirect" title="Atoms">atoms</a>.<sup id="cite_ref-Diff_1-0" class="reference"><a href="#cite_note-Diff-1"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup> It occurs due to <a href="/wiki/Elastic_scattering" title="Elastic scattering">elastic scattering</a>, when there is no change in the energy of the electrons.<sup id="cite_ref-Cowley95_2-0" class="reference"><a href="#cite_note-Cowley95-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 4">: Chpt 4 </span></sup><sup id="cite_ref-Reimer_3-0" class="reference"><a href="#cite_note-Reimer-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 5">: Chpt 5 </span></sup><sup id="cite_ref-Form_4-0" class="reference"><a href="#cite_note-Form-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:11_5-0" class="reference"><a href="#cite_note-:11-5"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> The negatively charged electrons are scattered due to <a href="/wiki/Coulomb%27s_law" title="Coulomb's law">Coulomb forces</a> when they interact with both the positively charged atomic core and the negatively charged electrons around the atoms. The resulting map of the directions of the electrons far from the sample is called a diffraction pattern, see for instance <a href="#Figure_1">Figure 1</a>. Beyond patterns showing the directions of electrons, electron diffraction also plays a major role in the contrast of images in <a href="/wiki/Electron_microscope" title="Electron microscope">electron microscopes</a>. </p><p>This article provides an overview of electron diffraction and electron diffraction patterns, collective referred to by the generic name electron diffraction. This includes aspects of how in a <a href="#A_primer_on_electron_diffraction">general way</a> electrons can act as waves, and diffract and interact with matter. It also involves the extensive <a href="#History">history</a> behind modern electron diffraction, how the combination of developments in the 19th century in understanding and controlling <a href="#Electrons_in_vacuum">electrons in vacuum</a> and the early 20th century developments with <a href="#Waves,_diffraction_and_quantum_mechanics">electron waves</a> were combined with early <a href="#Electron_microscopes_and_early_electron_diffraction">instruments</a>, giving birth to electron microscopy and diffraction in 1920–1935. While this was the birth, there have been a large number of <a href="#Subsequent_developments_in_methods_and_modelling">further developments</a> since then. </p><p>There are many <a href="#Types_and_techniques">types and techniques</a> of electron diffraction. The most common approach is where the electrons <a href="#In_a_transmission_electron_microscope">transmit</a> through a thin sample, from 1 nm to 100 nm (10 to 1000 atoms thick), where the results depending upon how the atoms are arranged in the material, for instance a <a href="#Selected_area_electron_diffraction">single crystal</a>, <a href="#Polycrystalline_pattern">many crystals</a> or <a href="#Multiple_materials_and_double_diffraction">different types</a> of solids. Other cases such as <a href="#Bulk_and_surface_superstructures">larger repeats</a>, <a href="#Aperiodic_materials">no periodicity</a> or <a href="#Diffuse_scattering">disorder</a> have their own characteristic patterns. There are many different ways of collecting diffraction information, from parallel illumination to a <a href="#Convergent_beam_electron_diffraction">converging beam</a> of electrons or where the beam is <a href="#Precession_electron_diffraction">rotated</a> or <a href="#4D_STEM">scanned</a> across the sample which produce information that is often easier to interpret. There are also many other types of instruments. For instance, in <a href="#In_a_scanning_electron_microscope">a scanning electron microscope</a> (SEM), <a href="/wiki/Electron_backscatter_diffraction" title="Electron backscatter diffraction">electron backscatter diffraction</a> can be used to determine crystal orientation across the sample. Electron diffraction patterns can also be used to characterize molecules using <a href="#Gas_electron_diffraction">gas electron diffraction</a>, liquids, surfaces using lower energy electrons, a technique called <a href="#Low-energy_electron_diffraction_(LEED)">LEED</a>, and by reflecting electrons off surfaces, a technique called <a href="#Reflection_high-energy_electron_diffraction_(RHEED)">RHEED</a>. </p><p>There are also many levels of analysis of electron diffraction, including: </p> <ol><li>The simplest approximation using the de Broglie wavelength<sup id="cite_ref-Broglie_6-0" class="reference"><a href="#cite_note-Broglie-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 1-2">: Chpt 1-2 </span></sup> for electrons, where only the <a href="#Plane_waves,_wavevectors_and_reciprocal_lattice">geometry</a> is considered and often <a href="/wiki/Bragg%27s_law" title="Bragg's law">Bragg's law</a><sup id="cite_ref-:7_7-0" class="reference"><a href="#cite_note-:7-7"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Pages: 96–97">: 96–97 </span></sup> is invoked. This approach only considers the electrons far from the sample, a far-field or <a href="/wiki/Fraunhofer_diffraction" title="Fraunhofer diffraction">Fraunhofer</a><sup id="cite_ref-Cowley95_2-1" class="reference"><a href="#cite_note-Cowley95-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Pages: 21–24">: 21–24 </span></sup> approach.</li> <li>The first level of more accuracy where it is approximated that the electrons are only scattered once, which is called <a href="#Kinematical_diffraction">kinematical diffraction</a><sup id="cite_ref-Cowley95_2-2" class="reference"><a href="#cite_note-Cowley95-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Sec 2">: Sec 2 </span></sup><sup id="cite_ref-HirschEtAl_8-0" class="reference"><a href="#cite_note-HirschEtAl-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 4-7">: Chpt 4-7 </span></sup> and is also a far-field or Fraunhofer<sup id="cite_ref-Cowley95_2-3" class="reference"><a href="#cite_note-Cowley95-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Pages: 21–24">: 21–24 </span></sup> approach.</li> <li>More complete and accurate explanations where multiple scattering is included, what is called <a href="#Dynamical_diffraction">dynamical diffraction</a> (e.g. refs<sup id="cite_ref-Cowley95_2-4" class="reference"><a href="#cite_note-Cowley95-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Sec 3">: Sec 3 </span></sup><sup id="cite_ref-HirschEtAl_8-1" class="reference"><a href="#cite_note-HirschEtAl-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 8-12">: Chpt 8-12 </span></sup><sup id="cite_ref-Peng_9-0" class="reference"><a href="#cite_note-Peng-9"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 3-10">: Chpt 3-10 </span></sup><sup id="cite_ref-Pendry71_10-0" class="reference"><a href="#cite_note-Pendry71-10"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Maksym_11-0" class="reference"><a href="#cite_note-Maksym-11"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup>). These involve more general analyses using relativistically corrected <a href="/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation">Schrödinger equation</a><sup id="cite_ref-Schroedinger_12-0" class="reference"><a href="#cite_note-Schroedinger-12"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> methods, and track the electrons through the sample, being accurate both near and far from the sample (both <a href="/wiki/Fresnel_diffraction" title="Fresnel diffraction">Fresnel</a> and <a href="/wiki/Fraunhofer_diffraction" title="Fraunhofer diffraction">Fraunhofer</a> diffraction).</li></ol> <p>Electron diffraction is similar to <a href="/wiki/X-ray_crystallography" title="X-ray crystallography">x-ray</a> and <a href="/wiki/Neutron_diffraction" title="Neutron diffraction">neutron diffraction</a>. However, unlike x-ray and neutron diffraction where the simplest approximations are quite accurate, with electron diffraction this is not the case.<sup id="cite_ref-Cowley95_2-5" class="reference"><a href="#cite_note-Cowley95-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Sec 3">: Sec 3 </span></sup><sup id="cite_ref-Reimer_3-1" class="reference"><a href="#cite_note-Reimer-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 5">: Chpt 5 </span></sup> Simple models give the geometry of the intensities in a diffraction pattern, but dynamical diffraction approaches are needed for accurate intensities and the positions of diffraction spots. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="A_primer_on_electron_diffraction">A primer on electron diffraction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=1" title="Edit section: A primer on electron diffraction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>All matter can be thought of as <a href="/wiki/Matter_wave" title="Matter wave">matter waves</a>,<sup id="cite_ref-Broglie_6-1" class="reference"><a href="#cite_note-Broglie-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 1-3">: Chpt 1-3 </span></sup> from small particles such as electrons up to macroscopic objects – although it is impossible to measure any of the "wave-like" behavior of macroscopic objects. Waves can move around objects and create interference patterns,<sup id="cite_ref-Born_&_Wolf_13-0" class="reference"><a href="#cite_note-Born_&_Wolf-13"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 7-8">: Chpt 7-8 </span></sup> and a classic example is the <a href="/wiki/Young%27s_two-slit_experiment" class="mw-redirect" title="Young's two-slit experiment">Young's two-slit experiment</a> shown in <a href="#Figure_2">Figure 2</a>, where a wave impinges upon two slits in the first of the two images (blue waves). After going through the slits there are directions where the wave is stronger, ones where it is weaker – the wave has been <a href="/wiki/Diffraction" title="Diffraction">diffracted</a>.<sup id="cite_ref-Born_&_Wolf_13-1" class="reference"><a href="#cite_note-Born_&_Wolf-13"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 1,7,8">: Chpt 1,7,8 </span></sup> If instead of two slits there are a number of small points then similar phenomena can occur as shown in the second image where the wave (red and blue) is coming in from the bottom right corner. This is comparable to diffraction of an <a href="#Waves,_diffraction_and_quantum_mechanics">electron wave</a> where the small dots would be atoms in a small crystal, see also note.<sup id="cite_ref-Diff_1-1" class="reference"><a href="#cite_note-Diff-1"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup> Note the strong dependence on the relative orientation of the crystal and the incoming wave.<span class="anchor" id="Figure_2"></span> </p> <style data-mw-deduplicate="TemplateStyles:r1237032888/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner img{background-color:white}}</style><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:408px;max-width:408px"><div class="trow"><div class="tsingle" style="width:202px;max-width:202px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Doubleslit.gif" class="mw-file-description"><img alt="An image showing the result of a double-slit diffraction and interference experiment" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Doubleslit.gif/200px-Doubleslit.gif" decoding="async" width="200" height="198" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Doubleslit.gif/300px-Doubleslit.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/a/a9/Doubleslit.gif 2x" data-file-width="304" data-file-height="301" /></a></span></div></div><div class="tsingle" style="width:202px;max-width:202px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Bragg_Diffraction.gif" class="mw-file-description"><img alt="An image that illustrates electron diffraction from a very small, ordered array of atoms." src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d8/Bragg_Diffraction.gif/200px-Bragg_Diffraction.gif" decoding="async" width="200" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d8/Bragg_Diffraction.gif/300px-Bragg_Diffraction.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d8/Bragg_Diffraction.gif/400px-Bragg_Diffraction.gif 2x" data-file-width="480" data-file-height="480" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption">Figure 2: Young's double slit experiment, showing the wave in blue and the two slits in yellow; the other Figure with red and blue waves is similar from a small array of white atoms.</div></div></div></div> <p>Close to an aperture or atoms, often called the "sample", the electron wave would be described in terms of near field or <a href="/wiki/Fresnel_diffraction" title="Fresnel diffraction">Fresnel diffraction</a>.<sup id="cite_ref-Born_&_Wolf_13-2" class="reference"><a href="#cite_note-Born_&_Wolf-13"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 7-8">: Chpt 7-8 </span></sup> This has relevance for imaging within <a href="/wiki/Electron_microscope" title="Electron microscope">electron microscopes</a>,<sup id="cite_ref-Cowley95_2-6" class="reference"><a href="#cite_note-Cowley95-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 3">: Chpt 3 </span></sup><sup id="cite_ref-Reimer_3-2" class="reference"><a href="#cite_note-Reimer-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 3-4">: Chpt 3-4 </span></sup> whereas electron diffraction patterns are measured far from the sample, which is described as far-field or Fraunhofer diffraction.<sup id="cite_ref-Born_&_Wolf_13-3" class="reference"><a href="#cite_note-Born_&_Wolf-13"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 7-8">: Chpt 7-8 </span></sup> A map of the directions of the <a href="#Plane_waves,_wavevectors_and_reciprocal_lattice">electron waves</a> leaving the sample will show high intensity (white) for favored directions, such as the three prominent ones in the Young's two-slit experiment of <a href="#Figure_2">Figure 2</a>, while the other directions will be low intensity (dark). Often there will be an array of spots (preferred directions) as in <a href="#Figure_1">Figure 1</a> and the other figures shown later. </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=2" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The historical background is divided into several subsections. The first is the general background to electrons in vacuum and the technological developments that led to <a href="/wiki/Cathode-ray_tube" title="Cathode-ray tube">cathode-ray tubes</a> as well as <a href="/wiki/Vacuum_tube" title="Vacuum tube">vacuum tubes</a> that dominated early television and electronics; the second is how these led to the development of electron microscopes; the last is work on the nature of electron beams and the fundamentals of how electrons behave, a key component of <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a> and the explanation of electron diffraction. </p> <div class="mw-heading mw-heading3"><h3 id="Electrons_in_vacuum">Electrons in vacuum</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=3" title="Edit section: Electrons in vacuum"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Cathode_ray" title="Cathode ray">Cathode ray</a> and <a href="/wiki/Electron#History" title="Electron">History of the electron</a></div> <p><span class="anchor" id="Figure_3"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237032888/mw-parser-output/.tmulti"></p><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:204px;max-width:204px"><div class="trow"><div class="tsingle" style="width:202px;max-width:202px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Kat%C3%B3dsugarak_m%C3%A1gneses_mez%C5%91ben(1).jpg" class="mw-file-description"><img alt="Image of a Crookes tube when it is not actively being used." src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Kat%C3%B3dsugarak_m%C3%A1gneses_mez%C5%91ben%281%29.jpg/200px-Kat%C3%B3dsugarak_m%C3%A1gneses_mez%C5%91ben%281%29.jpg" decoding="async" width="200" height="160" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Kat%C3%B3dsugarak_m%C3%A1gneses_mez%C5%91ben%281%29.jpg/300px-Kat%C3%B3dsugarak_m%C3%A1gneses_mez%C5%91ben%281%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Kat%C3%B3dsugarak_m%C3%A1gneses_mez%C5%91ben%281%29.jpg/400px-Kat%C3%B3dsugarak_m%C3%A1gneses_mez%C5%91ben%281%29.jpg 2x" data-file-width="1712" data-file-height="1368" /></a></span></div></div></div><div class="trow"><div class="tsingle" style="width:202px;max-width:202px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Kat%C3%B3dsugarak_m%C3%A1gneses_mez%C5%91ben(2).jpg" class="mw-file-description"><img alt="Image of a Crookes tube when it is operating, showing luminescence when the electrons hit the glass walls." src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Kat%C3%B3dsugarak_m%C3%A1gneses_mez%C5%91ben%282%29.jpg/200px-Kat%C3%B3dsugarak_m%C3%A1gneses_mez%C5%91ben%282%29.jpg" decoding="async" width="200" height="160" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Kat%C3%B3dsugarak_m%C3%A1gneses_mez%C5%91ben%282%29.jpg/300px-Kat%C3%B3dsugarak_m%C3%A1gneses_mez%C5%91ben%282%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Kat%C3%B3dsugarak_m%C3%A1gneses_mez%C5%91ben%282%29.jpg/400px-Kat%C3%B3dsugarak_m%C3%A1gneses_mez%C5%91ben%282%29.jpg 2x" data-file-width="1712" data-file-height="1368" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption">Figure 3: A Crookes tube – without emission (top, grey background) and with emission and a shadow due to the <a href="/wiki/Maltese_cross" title="Maltese cross">maltese cross</a> blocking part of the electron beam (bottom, black background); see also <a href="/wiki/Cathode_ray" title="Cathode ray"> cathode ray tube</a></div></div></div></div> <p>Experiments involving electron beams occurred long before the discovery of the electron; <a href="https://en.wiktionary.org/wiki/%E1%BC%A4%CE%BB%CE%B5%CE%BA%CF%84%CF%81%CE%BF%CE%BD" class="extiw" title="wiktionary:ἤλεκτρον">ēlektron</a> (ἤλεκτρον) is the Greek word for <a href="/wiki/Amber" title="Amber">amber</a>,<sup id="cite_ref-DictOrigins_14-0" class="reference"><a href="#cite_note-DictOrigins-14"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> which is connected to the recording of electrostatic charging<sup id="cite_ref-Lacks_15-0" class="reference"><a href="#cite_note-Lacks-15"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> by <a href="/wiki/Thales_of_Miletus" title="Thales of Miletus">Thales of Miletus</a> around 585 BCE, and possibly others even earlier.<sup id="cite_ref-Lacks_15-1" class="reference"><a href="#cite_note-Lacks-15"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p><p>In 1650, <a href="/wiki/Otto_von_Guericke" title="Otto von Guericke">Otto von Guericke</a> invented the <a href="/wiki/Vacuum_pump" title="Vacuum pump">vacuum pump</a><sup id="cite_ref-Harsch_2007_16-0" class="reference"><a href="#cite_note-Harsch_2007-16"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> allowing for the study of the effects of high voltage electricity passing through <a href="/wiki/Rarefied_air" class="mw-redirect" title="Rarefied air">rarefied air</a>. In 1838, <a href="/wiki/Michael_Faraday" title="Michael Faraday">Michael Faraday</a> applied a high voltage between two metal <a href="/wiki/Electrode" title="Electrode">electrodes</a> at either end of a glass tube that had been partially evacuated of air, and noticed a strange light arc with its beginning at the <a href="/wiki/Cathode" title="Cathode">cathode</a> (negative electrode) and its end at the <a href="/wiki/Anode" title="Anode">anode</a> (positive electrode).<sup id="cite_ref-:1_17-0" class="reference"><a href="#cite_note-:1-17"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> Building on this, in the 1850s, <a href="/wiki/Heinrich_Geissler" class="mw-redirect" title="Heinrich Geissler">Heinrich Geissler</a> was able to achieve a pressure of around 10<sup>−3</sup> <a href="/wiki/Atmosphere_(unit)" class="mw-redirect" title="Atmosphere (unit)">atmospheres</a>, inventing what became known as <a href="/wiki/Geissler_tube" title="Geissler tube">Geissler tubes</a>. Using these tubes, while studying electrical conductivity in <a href="/wiki/Rarefied" class="mw-redirect" title="Rarefied">rarefied</a> gases in 1859, <a href="/wiki/Julius_Pl%C3%BCcker" title="Julius Plücker">Julius Plücker</a> observed that the radiation emitted from the negatively charged cathode caused phosphorescent light to appear on the tube wall near it, and the region of the phosphorescent light could be moved by application of a magnetic field.<sup id="cite_ref-:3_18-0" class="reference"><a href="#cite_note-:3-18"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p>In 1869, Plücker's student <a href="/wiki/Johann_Wilhelm_Hittorf" title="Johann Wilhelm Hittorf">Johann Wilhelm Hittorf</a> found that a solid body placed between the cathode and the phosphorescence would cast a shadow on the tube wall, e.g. <a href="#Figure_3">Figure 3</a>.<sup id="cite_ref-Martin_1986_19-0" class="reference"><a href="#cite_note-Martin_1986-19"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> Hittorf inferred that there are straight rays emitted from the cathode and that the phosphorescence was caused by the rays striking the tube walls. In 1876 <a href="/wiki/Eugen_Goldstein" title="Eugen Goldstein">Eugen Goldstein</a> showed that the rays were emitted perpendicular to the cathode surface, which differentiated them from the incandescent light. <a href="/wiki/Eugen_Goldstein" title="Eugen Goldstein">Eugen Goldstein</a> dubbed them <a href="/wiki/Cathode_ray" title="Cathode ray">cathode rays</a>.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Whittaker_21-0" class="reference"><a href="#cite_note-Whittaker-21"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> By the 1870s <a href="/wiki/William_Crookes" title="William Crookes">William Crookes</a><sup id="cite_ref-:2_22-0" class="reference"><a href="#cite_note-:2-22"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> and others were able to evacuate glass tubes below 10<sup>−6</sup> atmospheres, and observed that the glow in the tube disappeared when the pressure was reduced but the glass behind the anode began to glow. Crookes was also able to show that the particles in the cathode rays were negatively charged and could be deflected by an electromagnetic field.<sup id="cite_ref-:2_22-1" class="reference"><a href="#cite_note-:2-22"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Martin_1986_19-1" class="reference"><a href="#cite_note-Martin_1986-19"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> </p><p>In 1897, <a href="/wiki/J._J._Thomson" title="J. J. Thomson">Joseph Thomson</a> measured the mass of these cathode rays,<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> proving they were made of particles. These particles, however, were 1800 times lighter than the lightest particle known at that time – a <a href="/wiki/Hydrogen" title="Hydrogen">hydrogen</a> atom. These were originally called <i>corpuscles</i> and later named electrons by <a href="/wiki/George_Johnstone_Stoney" title="George Johnstone Stoney">George Johnstone Stoney</a>.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> </p><p>The control of electron beams that this work led to resulted in significant technology advances in electronic amplifiers and television displays.<sup id="cite_ref-Martin_1986_19-2" class="reference"><a href="#cite_note-Martin_1986-19"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Waves,_diffraction_and_quantum_mechanics"><span id="Waves.2C_diffraction_and_quantum_mechanics"></span>Waves, diffraction and quantum mechanics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=4" title="Edit section: Waves, diffraction and quantum mechanics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Introduction_to_quantum_mechanics" title="Introduction to quantum mechanics">Introduction to quantum mechanics</a> and <a href="/wiki/Matter_wave" title="Matter wave">matter wave</a></div> <p><span class="anchor" id="Figure_4"></span></p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Wave_packet_propagation_(phase_faster_than_group,_nondispersive).gif" class="mw-file-description"><img alt="A video illustrating a wavepacket of electrons, a small bundle." src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d8/Wave_packet_propagation_%28phase_faster_than_group%2C_nondispersive%29.gif/220px-Wave_packet_propagation_%28phase_faster_than_group%2C_nondispersive%29.gif" decoding="async" width="220" height="110" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d8/Wave_packet_propagation_%28phase_faster_than_group%2C_nondispersive%29.gif/330px-Wave_packet_propagation_%28phase_faster_than_group%2C_nondispersive%29.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d8/Wave_packet_propagation_%28phase_faster_than_group%2C_nondispersive%29.gif/440px-Wave_packet_propagation_%28phase_faster_than_group%2C_nondispersive%29.gif 2x" data-file-width="816" data-file-height="408" /></a><figcaption>Figure 4: Propagation of a wave packet demonstrating the movement of a bundle of waves; see <a href="/wiki/Group_velocity" title="Group velocity">group velocity</a> for more details.</figcaption></figure> <p>Independent of the developments for electrons in vacuum, at about the same time the components of quantum mechanics were being assembled. In 1924 <a href="/wiki/Louis_de_Broglie" title="Louis de Broglie">Louis de Broglie</a> in his PhD thesis <i>Recherches sur la théorie des quanta</i><sup id="cite_ref-Broglie_6-2" class="reference"><a href="#cite_note-Broglie-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> introduced his theory of <a href="/wiki/Electron" title="Electron">electron</a> waves. He suggested that an electron around a nucleus could be thought of as <a href="/wiki/Standing_wave" title="Standing wave">standing waves</a>,<sup id="cite_ref-Broglie_6-3" class="reference"><a href="#cite_note-Broglie-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Pages: Chpt 3">: Chpt 3 </span></sup> and that electrons and all matter could be considered as waves. He merged the idea of thinking about them as particles (or corpuscles), and of thinking of them as waves. He proposed that particles are bundles of waves (<a href="/wiki/Wave_packet" title="Wave packet">wave packets</a>) that move with a <a href="/wiki/Group_velocity" title="Group velocity">group velocity</a><sup id="cite_ref-Broglie_6-4" class="reference"><a href="#cite_note-Broglie-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 1-2">: Chpt 1-2 </span></sup> and have an <a href="/wiki/Effective_mass_(solid-state_physics)" title="Effective mass (solid-state physics)">effective mass</a>, see for instance <a href="#Figure_4">Figure 4</a>. Both of these depend upon the energy, which in turn connects to the <a href="/wiki/Wave_vector" title="Wave vector">wavevector</a> and the relativistic formulation of <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> a few years before.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> </p><p> This rapidly became part of what was called by <a href="/wiki/Erwin_Schr%C3%B6dinger" title="Erwin Schrödinger">Erwin Schrödinger</a> <i>undulatory mechanics</i>,<sup id="cite_ref-Schroedinger_12-1" class="reference"><a href="#cite_note-Schroedinger-12"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> now called the <a href="/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation">Schrödinger equation</a> or wave mechanics. As stated by <a href="/wiki/Louis_de_Broglie" title="Louis de Broglie">Louis de Broglie</a> on September 8, 1927, in the preface to the German translation of his theses (in turn translated into English):<sup id="cite_ref-Broglie_6-5" class="reference"><a href="#cite_note-Broglie-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: v">: v </span></sup></p><blockquote><p><i>M. Einstein from the beginning has supported my thesis, but it was M. E. <a href="/wiki/Erwin_Schr%C3%B6dinger" title="Erwin Schrödinger">Schrödinger</a> who developed the propagation equations of a new theory and who in searching for its solutions has established what has become known as “Wave Mechanics”.</i></p></blockquote> <p>The Schrödinger equation combines the kinetic energy of waves and the potential energy due to, for electrons, the <a href="/wiki/Coulomb_potential" class="mw-redirect" title="Coulomb potential">Coulomb potential</a>. He was able to explain earlier work such as the quantization of the energy of electrons around atoms in the <a href="/wiki/Bohr_model" title="Bohr model">Bohr model</a>,<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> as well as many other phenomena.<sup id="cite_ref-Schroedinger_12-2" class="reference"><a href="#cite_note-Schroedinger-12"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> Electron waves as hypothesized<sup id="cite_ref-Broglie_6-6" class="reference"><a href="#cite_note-Broglie-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 1-2">: Chpt 1-2 </span></sup> by de Broglie were automatically part of the solutions to his equation,<sup id="cite_ref-Schroedinger_12-3" class="reference"><a href="#cite_note-Schroedinger-12"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> see also <a href="/wiki/Introduction_to_quantum_mechanics" title="Introduction to quantum mechanics">introduction to quantum mechanics</a> and <a href="/wiki/Matter_waves" class="mw-redirect" title="Matter waves">matter waves</a>. </p><p>Both the wave nature and the undulatory mechanics approach were experimentally confirmed for electron beams by experiments from two groups performed independently, the first the <a href="/wiki/Davisson%E2%80%93Germer_experiment" title="Davisson–Germer experiment">Davisson–Germer experiment</a>,<sup id="cite_ref-DG0_27-0" class="reference"><a href="#cite_note-DG0-27"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-DG1_28-0" class="reference"><a href="#cite_note-DG1-28"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-DG2_29-0" class="reference"><a href="#cite_note-DG2-29"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:0_30-0" class="reference"><a href="#cite_note-:0-30"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> the other by <a href="/wiki/George_Paget_Thomson" title="George Paget Thomson">George Paget Thomson</a> and Alexander Reid;<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> see note<sup id="cite_ref-Wlength_32-0" class="reference"><a href="#cite_note-Wlength-32"><span class="cite-bracket">[</span>b<span class="cite-bracket">]</span></a></sup> for more discussion. Alexander Reid, who was Thomson's graduate student, performed the first experiments,<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> but he died soon after in a motorcycle accident<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> and is rarely mentioned. These experiments were rapidly followed by the first non-relativistic diffraction model for electrons by <a href="/wiki/Hans_Bethe" title="Hans Bethe">Hans Bethe</a><sup id="cite_ref-Bethe_35-0" class="reference"><a href="#cite_note-Bethe-35"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> based upon the Schrödinger equation,<sup id="cite_ref-Schroedinger_12-4" class="reference"><a href="#cite_note-Schroedinger-12"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> which is very close to how electron diffraction is now described. Significantly, <a href="/wiki/Clinton_Davisson" title="Clinton Davisson">Clinton Davisson</a> and <a href="/wiki/Lester_Germer" title="Lester Germer">Lester Germer</a> noticed<sup id="cite_ref-DG2_29-1" class="reference"><a href="#cite_note-DG2-29"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:0_30-1" class="reference"><a href="#cite_note-:0-30"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> that their results could not be interpreted using a <a href="/wiki/Bragg%27s_law" title="Bragg's law">Bragg's law</a> approach as the positions were systematically different; the approach of <a href="/wiki/Hans_Bethe" title="Hans Bethe">Hans Bethe</a><sup id="cite_ref-Bethe_35-1" class="reference"><a href="#cite_note-Bethe-35"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> which includes the refraction due to the average potential yielded more accurate results. These advances in understanding of electron wave mechanics were important for many developments of electron-based analytical techniques such as <a href="/wiki/Seishi_Kikuchi" title="Seishi Kikuchi">Seishi Kikuchi</a>'s observations of lines due to combined elastic and inelastic scattering,<sup id="cite_ref-:17_36-0" class="reference"><a href="#cite_note-:17-36"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:18_37-0" class="reference"><a href="#cite_note-:18-37"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Gas_electron_diffraction" title="Gas electron diffraction">gas electron diffraction</a> developed by <a href="/wiki/Herman_Francis_Mark" title="Herman Francis Mark">Herman Mark</a> and Raymond Weil,<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> diffraction in liquids by Louis Maxwell,<sup id="cite_ref-:20_40-0" class="reference"><a href="#cite_note-:20-40"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> and the first electron microscopes developed by <a href="/wiki/Max_Knoll" title="Max Knoll">Max Knoll</a> and <a href="/wiki/Ernst_Ruska" title="Ernst Ruska">Ernst Ruska</a>.<sup id="cite_ref-Knoll1_41-0" class="reference"><a href="#cite_note-Knoll1-41"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Knoll2_42-0" class="reference"><a href="#cite_note-Knoll2-42"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Electron_microscopes_and_early_electron_diffraction">Electron microscopes and early electron diffraction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=5" title="Edit section: Electron microscopes and early electron diffraction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Transmission_Electron_Microscopy#History" class="mw-redirect" title="Transmission Electron Microscopy">History of transmission electron microscopy</a></div> <p>In order to have a practical microscope or diffractometer, just having an electron beam was not enough, it needed to be controlled. Many developments laid the groundwork of <a href="/wiki/Electron_optics" title="Electron optics">electron optics</a>; see the paper by Chester J. Calbick for an overview of the early work.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> One significant step was the work of <a href="/wiki/Heinrich_Hertz" title="Heinrich Hertz">Heinrich Hertz</a> in 1883<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> who made a cathode-ray tube with electrostatic and magnetic deflection, demonstrating manipulation of the direction of an electron beam. Others were focusing of electrons by an axial magnetic field by <a href="/wiki/Emil_Wiechert" title="Emil Wiechert">Emil Wiechert</a> in 1899,<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> improved oxide-coated cathodes which produced more electrons by <a href="/wiki/Arthur_Wehnelt" title="Arthur Wehnelt">Arthur Wehnelt</a> in 1905<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> and the development of the electromagnetic lens in 1926 by <a href="/wiki/Hans_Busch" title="Hans Busch">Hans Busch</a>.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> </p> <p><span class="anchor" id="Figure_5"></span></p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Ernst_Ruska_Electron_Microscope_-_Deutsches_Museum_-_Munich-edit.jpg" class="mw-file-description"><img alt="An images of a replica of one of the original electron microscopes which is now in a museum in Germany" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Ernst_Ruska_Electron_Microscope_-_Deutsches_Museum_-_Munich-edit.jpg/220px-Ernst_Ruska_Electron_Microscope_-_Deutsches_Museum_-_Munich-edit.jpg" decoding="async" width="220" height="378" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Ernst_Ruska_Electron_Microscope_-_Deutsches_Museum_-_Munich-edit.jpg/330px-Ernst_Ruska_Electron_Microscope_-_Deutsches_Museum_-_Munich-edit.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Ernst_Ruska_Electron_Microscope_-_Deutsches_Museum_-_Munich-edit.jpg/440px-Ernst_Ruska_Electron_Microscope_-_Deutsches_Museum_-_Munich-edit.jpg 2x" data-file-width="1507" data-file-height="2592" /></a><figcaption>Figure 5: Replica built in 1980 by Ernst Ruska of the original electron microscope, in the Deutsches Museum in Munich</figcaption></figure> <p>Building an electron microscope involves combining these elements, similar to an <a href="/wiki/Optical_microscope" title="Optical microscope">optical microscope</a> but with magnetic or electrostatic lenses instead of glass ones. To this day the issue of who invented the transmission electron microscope is controversial, as discussed by Thomas Mulvey<sup id="cite_ref-Mulvey_48-0" class="reference"><a href="#cite_note-Mulvey-48"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> and more recently by Yaping Tao.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> Extensive additional information can be found in the articles by Martin Freundlich,<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Reinhold_Rudenberg" title="Reinhold Rudenberg">Reinhold Rüdenberg</a><sup id="cite_ref-Rüdenberg_51-0" class="reference"><a href="#cite_note-Rüdenberg-51"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> and Mulvey.<sup id="cite_ref-Mulvey_48-1" class="reference"><a href="#cite_note-Mulvey-48"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> </p><p>One effort was university based. In 1928, at the <a href="/wiki/Technische_Hochschule" title="Technische Hochschule">Technische Hochschule</a> in Charlottenburg (now <a href="/wiki/Technische_Universit%C3%A4t_Berlin" title="Technische Universität Berlin">Technische Universität Berlin</a>), <a href="/w/index.php?title=Adolf_Matthias&action=edit&redlink=1" class="new" title="Adolf Matthias (page does not exist)">Adolf Matthias</a><span class="noprint" style="font-size:85%; font-style: normal;"> [<a href="https://de.wikipedia.org/wiki/Adolf_Matthias_(Elektrotechniker)" class="extiw" title="de:Adolf Matthias (Elektrotechniker)">de</a>]</span> (Professor of High Voltage Technology and Electrical Installations) appointed <a href="/wiki/Max_Knoll" title="Max Knoll">Max Knoll</a> to lead a team of researchers to advance research on electron beams and cathode-ray oscilloscopes. The team consisted of several PhD students including <a href="/wiki/Ernst_Ruska" title="Ernst Ruska">Ernst Ruska</a>. In 1931, Max Knoll and Ernst Ruska<sup id="cite_ref-Knoll1_41-1" class="reference"><a href="#cite_note-Knoll1-41"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Knoll2_42-1" class="reference"><a href="#cite_note-Knoll2-42"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> successfully generated magnified images of mesh grids placed over an anode aperture. The device, a replicate of which is shown in <a href="#Figure_5">Figure 5</a>, used two <a href="/wiki/Magnetic_lens" title="Magnetic lens">magnetic lenses</a> to achieve higher magnifications, the first electron microscope. (Max Knoll died in 1969,<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> so did not receive a share of the <a href="/wiki/Nobel_Prize_in_Physics" title="Nobel Prize in Physics">Nobel Prize in Physics</a> in 1986.) </p><p>Apparently independent of this effort was work at <a href="/wiki/Siemens-Schuckertwerke" class="mw-redirect" title="Siemens-Schuckertwerke">Siemens-Schuckert</a> by <a href="/wiki/Reinhold_Rudenberg" title="Reinhold Rudenberg">Reinhold Rudenberg</a>. According to patent law (U.S. Patent No. 2058914<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> and 2070318,<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> both filed in 1932), he is the inventor of the electron microscope, but it is not clear when he had a working instrument. He stated in a very brief article in 1932<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> that Siemens had been working on this for some years before the patents were filed in 1932, so his effort was parallel to the university effort. He died in 1961,<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> so similar to Max Knoll, was not eligible for a share of the Nobel Prize. </p><p>These instruments could produce magnified images, but were not particularly useful for electron diffraction; indeed, the wave nature of electrons was not exploited during the development. Key for electron diffraction in microscopes was the advance in 1936 where <a href="/w/index.php?title=Hans_Boersch&action=edit&redlink=1" class="new" title="Hans Boersch (page does not exist)">Hans Boersch</a><span class="noprint" style="font-size:85%; font-style: normal;"> [<a href="https://de.wikipedia.org/wiki/Hans_Boersch" class="extiw" title="de:Hans Boersch">de</a>]</span> showed that they could be used as micro-diffraction cameras with an aperture<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup>—the birth of <a href="#Selected_area_electron_diffraction">selected area electron diffraction</a>.<sup id="cite_ref-HirschEtAl_8-2" class="reference"><a href="#cite_note-HirschEtAl-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 5-6">: Chpt 5-6 </span></sup> </p><p>Less controversial was the development of <a href="#Low-energy_electron_diffraction">LEED</a>—the early experiments of Davisson and Germer used this approach.<sup id="cite_ref-DG1_28-1" class="reference"><a href="#cite_note-DG1-28"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-DG2_29-2" class="reference"><a href="#cite_note-DG2-29"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> As early as 1929 Germer investigated gas adsorption,<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> and in 1932 Harrison E. Farnsworth probed single crystals of copper and silver.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> However, the vacuum systems available at that time were not good enough to properly control the surfaces, and it took almost forty years before these became available.<sup id="cite_ref-VanHove_60-0" class="reference"><a href="#cite_note-VanHove-60"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> Similarly, it was not until about 1965 that Peter B. Sewell and M. Cohen demonstrated the power of <a class="mw-selflink-fragment" href="#Reflection_high-energy_electron_diffraction_(RHEED)">RHEED</a> in a system with a very well controlled vacuum.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Subsequent_developments_in_methods_and_modelling">Subsequent developments in methods and modelling</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=6" title="Edit section: Subsequent developments in methods and modelling"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div><p> Despite early successes such as the determination of the positions of hydrogen atoms in NH<sub>4</sub>Cl crystals by W. E. Laschkarew and I. D. Usykin in 1933,<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> boric acid by <a href="/wiki/John_M._Cowley" title="John M. Cowley">John M. Cowley</a> in 1953<sup id="cite_ref-CowleyII_64-0" class="reference"><a href="#cite_note-CowleyII-64"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> and orthoboric acid by <a href="/wiki/William_Houlder_Zachariasen" title="William Houlder Zachariasen">William Houlder Zachariasen</a> in 1954,<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> electron diffraction for many years was a qualitative technique used to check samples within electron microscopes. <a href="/wiki/John_M._Cowley" title="John M. Cowley">John M Cowley</a> explains in a 1968 paper:<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p><blockquote><p><i>Thus was founded the belief, amounting in some cases almost to an article of faith, and persisting even to the present day, that it is impossible to interpret the intensities of electron diffraction patterns to gain structural information.</i></p></blockquote><p>This has changed, in transmission, reflection and for low energies. Some of the key developments (some of which are also described later) from the early days to 2023 have been: </p><ul><li>Fast numerical methods based upon the Cowley–Moodie <a href="/wiki/Multislice" title="Multislice">multislice</a> algorithm,<sup id="cite_ref-MS1_67-0" class="reference"><a href="#cite_note-MS1-67"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> which only became possible<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup> once the fast Fourier transform (<a href="/wiki/FFT" class="mw-redirect" title="FFT">FFT</a>) method was developed.<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> With these and other numerical methods Fourier transforms are fast,<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> and it became possible to calculate accurate, <a href="#Dynamical_diffraction">dynamical</a> diffraction in seconds to minutes with laptops using widely available <a href="/wiki/Multislice#Available_software" title="Multislice">multislice programs</a>.</li> <li>Developments in the <a href="/wiki/Convergent-beam_electron_diffraction" class="mw-redirect" title="Convergent-beam electron diffraction">convergent-beam electron diffraction</a> approach. Building on the original work of <a href="/wiki/Walther_Kossel" title="Walther Kossel">Walther Kossel</a> and <a href="/wiki/Gottfried_M%C3%B6llenstedt" title="Gottfried Möllenstedt">Gottfried Möllenstedt</a> in 1939,<sup id="cite_ref-KM_72-0" class="reference"><a href="#cite_note-KM-72"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> it was extended by Peter Goodman and Gunter Lehmpfuhl,<sup id="cite_ref-:4_73-0" class="reference"><a href="#cite_note-:4-73"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup> then mainly by the groups of <a href="/wiki/John_Steeds_(scientist)" title="John Steeds (scientist)">John Steeds</a><sup id="cite_ref-Buxton1_74-0" class="reference"><a href="#cite_note-Buxton1-74"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:5_75-0" class="reference"><a href="#cite_note-:5-75"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup> and Michiyoshi Tanaka<sup id="cite_ref-:6_77-0" class="reference"><a href="#cite_note-:6-77"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup> who showed how to determine <a href="/wiki/Point_group" title="Point group">point groups</a> and <a href="/wiki/Space_group" title="Space group">space groups</a>. It can also be used for higher-level refinements of the electron density;<sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">[</span>77<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 4">: Chpt 4 </span></sup> for a brief history see <a href="/wiki/Convergent-beam_electron_diffraction#History" class="mw-redirect" title="Convergent-beam electron diffraction">CBED history</a>. In many cases this is the best method to determine symmetry.<sup id="cite_ref-Buxton1_74-1" class="reference"><a href="#cite_note-Buxton1-74"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Atlas_80-0" class="reference"><a href="#cite_note-Atlas-80"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup></li> <li>The development of new approaches to reduce dynamical effects such as <a href="/wiki/Precession_electron_diffraction" title="Precession electron diffraction">precession electron diffraction</a> and three-dimensional diffraction methods. Averaging over different directions has, empirically, been found to significantly reduce dynamical diffraction effects, e.g.,<sup id="cite_ref-LDMPD_81-0" class="reference"><a href="#cite_note-LDMPD-81"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup> see <a href="/wiki/Precession_electron_diffraction#Historical_development" title="Precession electron diffraction">PED history</a> for further details. Not only is it easier to identify known structures with this approach, it can also be used to solve unknown structures in some cases<sup id="cite_ref-White_82-0" class="reference"><a href="#cite_note-White-82"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-LDMPD_81-1" class="reference"><a href="#cite_note-LDMPD-81"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Lukas1_83-0" class="reference"><a href="#cite_note-Lukas1-83"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup> – see <a href="/wiki/Precession_electron_diffraction" title="Precession electron diffraction">precession electron diffraction</a> for further information.</li> <li>The development of experimental methods exploiting <a href="/wiki/Ultra-high_vacuum" title="Ultra-high vacuum">ultra-high vacuum</a> technologies (e.g. the approach described by <a href="/w/index.php?title=Daniel_J._Alpert&action=edit&redlink=1" class="new" title="Daniel J. Alpert (page does not exist)">Daniel J. Alpert</a><span class="noprint" style="font-size:85%; font-style: normal;"> [<a href="https://de.wikipedia.org/wiki/Daniel_Alpert" class="extiw" title="de:Daniel Alpert">de</a>]</span> in 1953<sup id="cite_ref-Alpert_84-0" class="reference"><a href="#cite_note-Alpert-84"><span class="cite-bracket">[</span>82<span class="cite-bracket">]</span></a></sup>) to better control surfaces, making <a class="mw-selflink-fragment" href="#Low-energy_electron_diffraction_(LEED)">LEED</a> and <a class="mw-selflink-fragment" href="#Reflection_high-energy_electron_diffraction_(RHEED)">RHEED</a> more reliable and reproducible techniques. In the early days the surfaces were not well controlled; with these technologies they can both be cleaned and remain clean for hours to days, a key component of <a href="/wiki/Surface_science" title="Surface science">surface science</a>.<sup id="cite_ref-Alpert_84-1" class="reference"><a href="#cite_note-Alpert-84"><span class="cite-bracket">[</span>82<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Oura_85-0" class="reference"><a href="#cite_note-Oura-85"><span class="cite-bracket">[</span>83<span class="cite-bracket">]</span></a></sup></li> <li>Fast and accurate methods to calculate intensities for <a class="mw-selflink-fragment" href="#Low-energy_electron_diffraction_(LEED)">LEED</a> so it could be used to determine atomic positions, for instance references.<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">[</span>84<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Pendry71_10-1" class="reference"><a href="#cite_note-Pendry71-10"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> These have been extensively exploited to determine the structure of many surfaces, and the arrangement of foreign atoms on surfaces.<sup id="cite_ref-LEEDB_88-0" class="reference"><a href="#cite_note-LEEDB-88"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup></li> <li>Methods to simulate the intensities in <a class="mw-selflink-fragment" href="#Reflection_high-energy_electron_diffraction_(RHEED)">RHEED</a>, so it can be used semi-quantitatively to understand surfaces during growth and thereby to control the resulting materials.<sup id="cite_ref-Ichimiya_89-0" class="reference"><a href="#cite_note-Ichimiya-89"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup></li> <li>The development of advanced <a href="/wiki/Detectors_for_transmission_electron_microscopy" title="Detectors for transmission electron microscopy">detectors for transmission electron microscopy</a> such as <a href="/wiki/Charge-coupled_device" title="Charge-coupled device">charge-coupled device</a><sup id="cite_ref-SpenceZuo_90-0" class="reference"><a href="#cite_note-SpenceZuo-90"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup> and direct electron detectors,<sup id="cite_ref-PDetect_91-0" class="reference"><a href="#cite_note-PDetect-91"><span class="cite-bracket">[</span>89<span class="cite-bracket">]</span></a></sup> which improve the accuracy and reliability of intensity measurements. These have efficiencies and accuracies that can be a thousand or more times that of the photographic film used in the earliest experiments,<sup id="cite_ref-SpenceZuo_90-1" class="reference"><a href="#cite_note-SpenceZuo-90"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-PDetect_91-1" class="reference"><a href="#cite_note-PDetect-91"><span class="cite-bracket">[</span>89<span class="cite-bracket">]</span></a></sup> with the information available in real time rather than requiring <a href="/wiki/Photographic_processing" title="Photographic processing">photographic processing</a> after the experiment.<sup id="cite_ref-SpenceZuo_90-2" class="reference"><a href="#cite_note-SpenceZuo-90"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-PDetect_91-2" class="reference"><a href="#cite_note-PDetect-91"><span class="cite-bracket">[</span>89<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="Core_elements_of_electron_diffraction">Core elements of electron diffraction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=7" title="Edit section: Core elements of electron diffraction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Plane_waves,_wavevectors_and_reciprocal_lattice"><span id="Plane_waves.2C_wavevectors_and_reciprocal_lattice"></span>Plane waves, wavevectors and reciprocal lattice</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=8" title="Edit section: Plane waves, wavevectors and reciprocal lattice"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>What is seen in an electron diffraction pattern depends upon the sample and also the energy of the electrons. The electrons need to be considered as waves, which involves describing the electron via a wavefunction, written in crystallographic notation (see notes<sup id="cite_ref-Pi_92-0" class="reference"><a href="#cite_note-Pi-92"><span class="cite-bracket">[</span>c<span class="cite-bracket">]</span></a></sup> and<sup id="cite_ref-RecP_93-0" class="reference"><a href="#cite_note-RecP-93"><span class="cite-bracket">[</span>d<span class="cite-bracket">]</span></a></sup>) as:<sup id="cite_ref-Form_4-1" class="reference"><a href="#cite_note-Form-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (\mathbf {r} )=\exp(2\pi i\mathbf {k} \cdot \mathbf {r} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (\mathbf {r} )=\exp(2\pi i\mathbf {k} \cdot \mathbf {r} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fc40f526db610101b4c4d7f2b0a2a1e03133912" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.374ex; height:2.843ex;" alt="{\displaystyle \psi (\mathbf {r} )=\exp(2\pi i\mathbf {k} \cdot \mathbf {r} )}"></span>for a position <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eca0f46511c4c986c48b254073732c0bd98ae0c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.102ex; height:1.676ex;" alt="{\displaystyle \mathbf {r} }"></span>. This is a <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a> description; one cannot use a classical approach. The vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {k} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {k} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ea699cbc1f843f2e855577d57529430ec33a1ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:2.176ex;" alt="{\displaystyle \mathbf {k} }"></span> is called the wavevector, has units of inverse nanometers, and the form above is called a <a href="/wiki/Plane_wave" title="Plane wave">plane wave</a> as the term inside the exponential is constant on the surface of a plane. The vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {k} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {k} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ea699cbc1f843f2e855577d57529430ec33a1ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:2.176ex;" alt="{\displaystyle \mathbf {k} }"></span> is what is used when drawing ray diagrams,<sup id="cite_ref-Cowley95_2-7" class="reference"><a href="#cite_note-Cowley95-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 3">: Chpt 3 </span></sup> and in vacuum is parallel to the direction or, better, group velocity<sup id="cite_ref-Broglie_6-7" class="reference"><a href="#cite_note-Broglie-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 1-2">: Chpt 1-2 </span></sup><sup id="cite_ref-:21_94-0" class="reference"><a href="#cite_note-:21-94"><span class="cite-bracket">[</span>90<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 16">: 16 </span></sup> or <a href="/wiki/Probability_current" title="Probability current">probability current</a><sup id="cite_ref-:21_94-1" class="reference"><a href="#cite_note-:21-94"><span class="cite-bracket">[</span>90<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Pages: 27, 130">: 27, 130 </span></sup> of the plane wave. For most cases the electrons are travelling at a respectable fraction of the speed of light, so rigorously need to be considered using relativistic quantum mechanics via the <a href="/wiki/Dirac_equation" title="Dirac equation">Dirac equation</a>,<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">[</span>91<span class="cite-bracket">]</span></a></sup> which as spin does not normally matter can be reduced to the <a href="/wiki/Klein%E2%80%93Gordon_equation" title="Klein–Gordon equation">Klein–Gordon equation</a>. Fortunately one can side-step many complications and use a non-relativistic approach based around the Schrödinger equation.<sup id="cite_ref-Schroedinger_12-5" class="reference"><a href="#cite_note-Schroedinger-12"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> Following Kunio Fujiwara<sup id="cite_ref-Fujiwara_96-0" class="reference"><a href="#cite_note-Fujiwara-96"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Archibald_Howie" title="Archibald Howie">Archibald Howie</a>,<sup id="cite_ref-AHDiss_97-0" class="reference"><a href="#cite_note-AHDiss-97"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup> the relationship between the total energy of the electrons and the wavevector is written as:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E={\frac {h^{2}k^{2}}{2m^{*}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E={\frac {h^{2}k^{2}}{2m^{*}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/434edf5d73020906899f708c344979ef99290822" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.369ex; height:5.676ex;" alt="{\displaystyle E={\frac {h^{2}k^{2}}{2m^{*}}}}"></span>with<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m^{*}=m_{0}+{\frac {E}{2c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>E</mi> <mrow> <mn>2</mn> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m^{*}=m_{0}+{\frac {E}{2c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbe5583b0731376118cc346d1faaa793a19dc68c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:16.188ex; height:5.509ex;" alt="{\displaystyle m^{*}=m_{0}+{\frac {E}{2c^{2}}}}"></span>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> is the <a href="/wiki/Planck_constant" title="Planck constant">Planck constant</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f2650f1055b63acf24bf275e50b4f59c3e53685" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.095ex; height:2.343ex;" alt="{\displaystyle m^{*}}"></span> is a relativistic <a href="/wiki/Effective_mass_(solid-state_physics)" title="Effective mass (solid-state physics)">effective mass</a> used to cancel out the relativistic terms for electrons of energy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> the speed of light and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a6ff51ee949104fe6fae553cfbdfba29d5fac1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.095ex; height:2.009ex;" alt="{\displaystyle m_{0}}"></span> the rest mass of the electron. The concept of effective mass occurs throughout physics (see for instance <a href="/wiki/Ashcroft_and_Mermin" title="Ashcroft and Mermin">Ashcroft and Mermin</a>),<sup id="cite_ref-:7_7-1" class="reference"><a href="#cite_note-:7-7"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 12">: Chpt 12 </span></sup> and comes up in the behavior of <a href="/wiki/Quasiparticles" class="mw-redirect" title="Quasiparticles">quasiparticles</a>. A common one is the <a href="/wiki/Electron_hole" title="Electron hole">electron hole</a>, which acts as if it is a particle with a positive charge and a mass similar to that of an electron, although it can be several times lighter or heavier. For electron diffraction the electrons behave as if they are non-relativistic particles of mass <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f2650f1055b63acf24bf275e50b4f59c3e53685" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.095ex; height:2.343ex;" alt="{\displaystyle m^{*}}"></span> in terms of how they interact with the atoms.<sup id="cite_ref-Fujiwara_96-1" class="reference"><a href="#cite_note-Fujiwara-96"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup> </p><p>The wavelength of the electrons <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> in vacuum is from the above equations<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda ={\frac {1}{k}}={\frac {h}{\sqrt {2m^{*}E}}}={\frac {hc}{\sqrt {E(2m_{0}c^{2}+E)}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>h</mi> <msqrt> <mn>2</mn> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mi>E</mi> </msqrt> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>h</mi> <mi>c</mi> </mrow> <msqrt> <mi>E</mi> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>E</mi> <mo stretchy="false">)</mo> </msqrt> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda ={\frac {1}{k}}={\frac {h}{\sqrt {2m^{*}E}}}={\frac {hc}{\sqrt {E(2m_{0}c^{2}+E)}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c4eb853e244b6002e10810605b4374dacd4b716" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:39.829ex; height:6.676ex;" alt="{\displaystyle \lambda ={\frac {1}{k}}={\frac {h}{\sqrt {2m^{*}E}}}={\frac {hc}{\sqrt {E(2m_{0}c^{2}+E)}}},}"></span>and can range from about <span class="nowrap"><span data-sort-value="6990100000000000000♠"></span>0.1 <a href="/wiki/Nanometre" title="Nanometre">nm</a></span>, roughly the size of an atom, down to a thousandth of that. Typically the energy of the electrons is written in <a href="/wiki/Electronvolt" title="Electronvolt">electronvolts</a> (eV), the voltage used to accelerate the electrons; the actual energy of each electron is this voltage times the <a href="/wiki/Electron_charge" class="mw-redirect" title="Electron charge">electron charge</a>. For context, the typical energy of a <a href="/wiki/Chemical_bond" title="Chemical bond">chemical bond</a> is a few eV;<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup> electron diffraction involves electrons up to <span class="nowrap"><span data-sort-value="6987801088243500000♠"></span>5<span style="margin-left:.25em;">000</span><span style="margin-left:.25em;">000</span> eV</span>. </p><p>The magnitude of the interaction of the electrons with a material scales as<sup id="cite_ref-Cowley95_2-8" class="reference"><a href="#cite_note-Cowley95-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 4">: Chpt 4 </span></sup><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi {\frac {m^{*}}{h^{2}k}}=2\pi {\frac {m^{*}\lambda }{h^{2}}}={\frac {\pi }{hc}}{\sqrt {{\frac {2m_{0}c^{2}}{E}}+1}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>k</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mi>λ<!-- λ --></mi> </mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mrow> <mi>h</mi> <mi>c</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>E</mi> </mfrac> </mrow> <mo>+</mo> <mn>1</mn> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi {\frac {m^{*}}{h^{2}k}}=2\pi {\frac {m^{*}\lambda }{h^{2}}}={\frac {\pi }{hc}}{\sqrt {{\frac {2m_{0}c^{2}}{E}}+1}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ba3bd67b8c2edf2208e11f213fa324c338180d8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:38.222ex; height:6.176ex;" alt="{\displaystyle 2\pi {\frac {m^{*}}{h^{2}k}}=2\pi {\frac {m^{*}\lambda }{h^{2}}}={\frac {\pi }{hc}}{\sqrt {{\frac {2m_{0}c^{2}}{E}}+1}}.}"></span>While the wavevector increases as the energy increases, the change in the effective mass compensates this so even at the very high energies used in electron diffraction there are still significant interactions.<sup id="cite_ref-Fujiwara_96-2" class="reference"><a href="#cite_note-Fujiwara-96"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup> </p><p>The high-energy electrons interact with the Coulomb potential,<sup id="cite_ref-Bethe_35-2" class="reference"><a href="#cite_note-Bethe-35"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> which for a crystal can be considered in terms of a <a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a> (see for instance <a href="/wiki/Ashcroft_and_Mermin" title="Ashcroft and Mermin">Ashcroft and Mermin</a>),<sup id="cite_ref-:7_7-2" class="reference"><a href="#cite_note-:7-7"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 8">: Chpt 8 </span></sup> that is<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V(\mathbf {r} )=\sum V_{g}\exp(2\pi i\mathbf {g} \cdot \mathbf {r} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo>∑<!-- ∑ --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V(\mathbf {r} )=\sum V_{g}\exp(2\pi i\mathbf {g} \cdot \mathbf {r} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3c656042b7b749d4cf8b529a4983a9c447a36b7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:27.079ex; height:3.843ex;" alt="{\displaystyle V(\mathbf {r} )=\sum V_{g}\exp(2\pi i\mathbf {g} \cdot \mathbf {r} )}"></span>with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {g} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {g} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cdf843789e9564a867aee3ff184453b72ecbafe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.337ex; height:2.009ex;" alt="{\displaystyle \mathbf {g} }"></span> a <a href="/wiki/Reciprocal_lattice" title="Reciprocal lattice">reciprocal lattice</a> vector and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{g}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{g}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77a0524780b4abb2046b3107a25b05089a443b55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.377ex; height:2.843ex;" alt="{\displaystyle V_{g}}"></span> the corresponding Fourier coefficient of the potential. The reciprocal lattice vector is often referred to in terms of <a href="/wiki/Miller_indices" class="mw-redirect" title="Miller indices">Miller indices</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (hkl)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>h</mi> <mi>k</mi> <mi>l</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (hkl)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/926597b1a24ff22533b8eebfd578abdddf0b8a2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.053ex; height:2.843ex;" alt="{\displaystyle (hkl)}"></span>, a sum of the individual reciprocal lattice vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ,\mathbf {B} ,\mathbf {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ,\mathbf {B} ,\mathbf {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9478e59b25b50d1eda7374d54780c6f1eb041196" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.92ex; height:2.509ex;" alt="{\displaystyle \mathbf {A} ,\mathbf {B} ,\mathbf {C} }"></span> with integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h,k,l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>,</mo> <mi>k</mi> <mo>,</mo> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h,k,l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8086e83881c01e5b8e5a17bbb508e606ea9de8f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.311ex; height:2.509ex;" alt="{\displaystyle h,k,l}"></span> in the form:<sup id="cite_ref-Form_4-2" class="reference"><a href="#cite_note-Form-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {g} =h\mathbf {A} +k\mathbf {B} +l\mathbf {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mo>=</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>+</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>+</mo> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {g} =h\mathbf {A} +k\mathbf {B} +l\mathbf {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65743b24460d0c6c8b6a0927bf78da9509e5641d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.211ex; height:2.509ex;" alt="{\displaystyle \mathbf {g} =h\mathbf {A} +k\mathbf {B} +l\mathbf {C} }"></span>(Sometimes reciprocal lattice vectors are written as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} ^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} ^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc85afc521feaf5333dd8b6d69e93914004a6d94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.354ex; height:2.343ex;" alt="{\displaystyle \mathbf {a} ^{*}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {b} ^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {b} ^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a165c9fdea6ce23d28da742994c44e39162f8866" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.54ex; height:2.343ex;" alt="{\displaystyle \mathbf {b} ^{*}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {c} ^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {c} ^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/839e3f7abbf9b2298aed93959052c6ff196ee475" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.242ex; height:2.343ex;" alt="{\displaystyle \mathbf {c} ^{*}}"></span> and see note.<sup id="cite_ref-RecP_93-1" class="reference"><a href="#cite_note-RecP-93"><span class="cite-bracket">[</span>d<span class="cite-bracket">]</span></a></sup>) The contribution from the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{g}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{g}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77a0524780b4abb2046b3107a25b05089a443b55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.377ex; height:2.843ex;" alt="{\displaystyle V_{g}}"></span> needs to be combined with what is called the shape function (e.g.<sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">[</span>95<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">[</span>96<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Cowley95_2-9" class="reference"><a href="#cite_note-Cowley95-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 2">: Chpt 2 </span></sup>), which is the <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transform</a> of the shape of the object. If, for instance, the object is small in one dimension then the shape function extends far in that direction in the Fourier transform—a reciprocal relationship.<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">[</span>97<span class="cite-bracket">]</span></a></sup> </p> <p><span class="anchor" id="Figure_6"></span></p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:EwaldS2.png" class="mw-file-description"><img alt="Illustration of how the wavevectors and diffraction from reciprocal lattice vectors is connected, called an Ewald sphere construction. This example is for transmission electron diffraction." src="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/EwaldS2.png/220px-EwaldS2.png" decoding="async" width="220" height="222" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/EwaldS2.png/330px-EwaldS2.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/69/EwaldS2.png/440px-EwaldS2.png 2x" data-file-width="1182" data-file-height="1192" /></a><figcaption>Figure 6: Ewald sphere construction for transmission electron diffraction, showing two of the Laue zones and the excitation error</figcaption></figure> <p>Around each reciprocal lattice point one has this shape function.<sup id="cite_ref-Cowley95_2-10" class="reference"><a href="#cite_note-Cowley95-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 5-7">: Chpt 5-7 </span></sup><sup id="cite_ref-HirschEtAl_8-3" class="reference"><a href="#cite_note-HirschEtAl-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 2">: Chpt 2 </span></sup> How much intensity there will be in the diffraction pattern depends upon the intersection of the <a href="/wiki/Ewald_sphere" class="mw-redirect" title="Ewald sphere">Ewald sphere</a>, that is energy conservation, and the shape function around each reciprocal lattice point—see <a href="#Figure_6">Figure 6</a>, <a href="#Figure_20">20</a> and <a href="#Figure_22">22</a>. The vector from a reciprocal lattice point to the Ewald sphere is called the excitation error <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {s} _{g}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">s</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {s} _{g}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3976eb140d10174f6a40b3aca828684f009f22f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.077ex; height:2.343ex;" alt="{\displaystyle \mathbf {s} _{g}}"></span>. </p><p>For transmission electron diffraction the samples used are thin, so most of the shape function is along the direction of the electron beam. For both <a class="mw-selflink-fragment" href="#Low-energy_electron_diffraction_(LEED)">LEED</a><sup id="cite_ref-LEEDB_88-1" class="reference"><a href="#cite_note-LEEDB-88"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup> and <a class="mw-selflink-fragment" href="#Reflection_high-energy_electron_diffraction_(RHEED)">RHEED</a><sup id="cite_ref-Ichimiya_89-1" class="reference"><a href="#cite_note-Ichimiya-89"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup> the shape function is mainly normal to the surface of the sample. In <a href="#Low-energy_electron_diffraction">LEED</a> this results in (a simplification) back-reflection of the electrons leading to spots, see <a href="#Figure_20">Figure 20</a> and <a href="#Figure_21">21</a> later, whereas in <a href="#Reflection_high-energy_electron_diffraction">RHEED</a> the electrons reflect off the surface at a small angle and typically yield diffraction patterns with streaks, see <a href="#Figure_22">Figure 22</a> and <a href="#Figure_23">23</a> later. By comparison, with both x-ray and neutron diffraction the scattering is significantly weaker,<sup id="cite_ref-Cowley95_2-11" class="reference"><a href="#cite_note-Cowley95-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 4">: Chpt 4 </span></sup> so typically requires much larger crystals, in which case the shape function shrinks to just around the reciprocal lattice points, leading to simpler Bragg's law diffraction.<sup id="cite_ref-Bragg_102-0" class="reference"><a href="#cite_note-Bragg-102"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup> </p><p>For all cases, when the reciprocal lattice points are close to the Ewald sphere (the excitation error is small) the intensity tends to be higher; when they are far away it tends to be smaller. The set of diffraction spots at right angles to the direction of the incident beam are called the zero-order Laue zone (ZOLZ) spots, as shown in <a href="#Figure_6">Figure 6</a>. One can also have intensities further out from reciprocal lattice points which are in a higher layer. The first of these is called the first order Laue zone (FOLZ); the series is called by the generic name higher order Laue zone (HOLZ).<sup id="cite_ref-Reimer_3-3" class="reference"><a href="#cite_note-Reimer-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 7">: Chpt 7 </span></sup><sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">[</span>99<span class="cite-bracket">]</span></a></sup> </p><p>The result is that the electron wave after it has been diffracted can be written as an integral over different plane waves:<sup id="cite_ref-Peng_9-1" class="reference"><a href="#cite_note-Peng-9"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 1">: Chpt 1 </span></sup><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (\mathbf {r} )=\int \phi (\mathbf {k} )\exp(2\pi i\mathbf {k} \cdot \mathbf {r} )d^{3}\mathbf {k} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo>∫<!-- ∫ --></mo> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo stretchy="false">)</mo> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (\mathbf {r} )=\int \phi (\mathbf {k} )\exp(2\pi i\mathbf {k} \cdot \mathbf {r} )d^{3}\mathbf {k} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/913b5380f8cef74a264e2601e90004d64da90156" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:32.277ex; height:5.676ex;" alt="{\displaystyle \psi (\mathbf {r} )=\int \phi (\mathbf {k} )\exp(2\pi i\mathbf {k} \cdot \mathbf {r} )d^{3}\mathbf {k} ,}"></span>that is a sum of plane waves going in different directions, each with a complex amplitude <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (\mathbf {k} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (\mathbf {k} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc0f7b18110aa4ca9dc42e12d63dd1fb8e49a0fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.606ex; height:2.843ex;" alt="{\displaystyle \phi (\mathbf {k} )}"></span>. (This is a three dimensional integral, which is often written as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\mathbf {k} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\mathbf {k} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02a68c09439848a56a6c8dfa5a134cbace30edf1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.627ex; height:2.176ex;" alt="{\displaystyle d\mathbf {k} }"></span> rather than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d^{3}\mathbf {k} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d^{3}\mathbf {k} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdc5f5f74ad0192760234bb6213368bf5495c07f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.683ex; height:2.676ex;" alt="{\displaystyle d^{3}\mathbf {k} }"></span>.) For a crystalline sample these wavevectors have to be of the same magnitude for elastic scattering (no change in energy), and are related to the incident direction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {k} _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {k} _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4182a5bd909c84fe90efbb4fa341516a584899eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.465ex; height:2.509ex;" alt="{\displaystyle \mathbf {k} _{0}}"></span> by (see <a href="#Figure_6">Figure 6</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {k} =\mathbf {k} _{0}+\mathbf {g} +\mathbf {s} _{g}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">s</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {k} =\mathbf {k} _{0}+\mathbf {g} +\mathbf {s} _{g}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4c7f6fa6fdc3a19e003bbaf30bdc2b80ada4c57" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.716ex; height:2.843ex;" alt="{\displaystyle \mathbf {k} =\mathbf {k} _{0}+\mathbf {g} +\mathbf {s} _{g}.}"></span> A diffraction pattern detects the intensities<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(\mathbf {k} )=\left|\phi (\mathbf {k} )\right|^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow> <mo>|</mo> <mrow> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(\mathbf {k} )=\left|\phi (\mathbf {k} )\right|^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b17c320171f0b1bc376eac46cf1affe280db5309" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.091ex; height:3.343ex;" alt="{\displaystyle I(\mathbf {k} )=\left|\phi (\mathbf {k} )\right|^{2}.}"></span>For a crystal these will be near the reciprocal lattice points typically forming a two dimensional grid. Different samples and modes of diffraction give different results, as do different approximations for the amplitudes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (\mathbf {k} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (\mathbf {k} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc0f7b18110aa4ca9dc42e12d63dd1fb8e49a0fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.606ex; height:2.843ex;" alt="{\displaystyle \phi (\mathbf {k} )}"></span>.<sup id="cite_ref-Cowley95_2-12" class="reference"><a href="#cite_note-Cowley95-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Reimer_3-4" class="reference"><a href="#cite_note-Reimer-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:11_5-1" class="reference"><a href="#cite_note-:11-5"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p><p>A typical electron diffraction pattern in TEM and <a class="mw-selflink-fragment" href="#Low-energy_electron_diffraction_(LEED)">LEED</a> is a grid of high intensity spots (white) on a dark background, approximating a projection of the reciprocal lattice vectors, see <a href="#Figure_1">Figure 1</a>, <a href="#Figure_9">9</a>, <a href="#Figure_10">10</a>, <a href="#Figure_11">11</a>, <a href="#Figure_14">14</a> and <a href="#Figure_21">21</a> later. There are also cases which will be mentioned later where diffraction patterns are <a href="#Aperiodic_materials">not periodic</a>, see <a href="#Figure_15">Figure 15</a>, have additional <a href="#Diffuse_scattering">diffuse</a> structure as in <a href="#Figure_16">Figure 16</a>, or have rings as in <a href="#Figure_12">Figure 12</a>, <a href="#Figure_13">13</a> and <a href="#Figure_24">24</a>. With conical illumination as in <a href="#Convergent_beam_electron_diffraction">CBED</a> they can also be a grid of discs, see <a href="#Figure_7">Figure 7</a>, <a href="#Figure_9">9</a> and <a href="#Figure_18">18</a>. <a href="/wiki/RHEED" class="mw-redirect" title="RHEED">RHEED</a> is slightly different,<sup id="cite_ref-Ichimiya_89-2" class="reference"><a href="#cite_note-Ichimiya-89"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup> see <a href="#Figure_22">Figure 22</a>, <a href="#Figure_23">23</a>. If the excitation errors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{g}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{g}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27343f630c6c4c80749f5640dc98186869cfc050" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.112ex; height:2.343ex;" alt="{\displaystyle s_{g}}"></span> were zero for every reciprocal lattice vector, this grid would be at exactly the spacings of the reciprocal lattice vectors. This would be equivalent to a Bragg's law condition for all of them. In TEM the wavelength is small and this is close to correct, but not exact. In practice the deviation of the positions from a simple Bragg's law<sup id="cite_ref-Bragg_102-1" class="reference"><a href="#cite_note-Bragg-102"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup> interpretation is often neglected, particularly if a column approximation is made (see below).<sup id="cite_ref-Peng_9-2" class="reference"><a href="#cite_note-Peng-9"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 64">: 64 </span></sup><sup id="cite_ref-HirschEtAl_8-4" class="reference"><a href="#cite_note-HirschEtAl-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 11">: Chpt 11 </span></sup><sup id="cite_ref-Tanaka_104-0" class="reference"><a href="#cite_note-Tanaka-104"><span class="cite-bracket">[</span>100<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Kinematical_diffraction">Kinematical diffraction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=9" title="Edit section: Kinematical diffraction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In Kinematical theory an approximation is made that the electrons are only scattered once.<sup id="cite_ref-Cowley95_2-13" class="reference"><a href="#cite_note-Cowley95-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Sec 2">: Sec 2 </span></sup> For transmission electron diffraction it is common to assume a constant thickness <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>, and also what is called the Column Approximation (e.g. references<sup id="cite_ref-HirschEtAl_8-5" class="reference"><a href="#cite_note-HirschEtAl-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 11">: Chpt 11 </span></sup><sup id="cite_ref-Tanaka_104-1" class="reference"><a href="#cite_note-Tanaka-104"><span class="cite-bracket">[</span>100<span class="cite-bracket">]</span></a></sup> and further reading). For a perfect crystal the intensity for each diffraction spot <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {g} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {g} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cdf843789e9564a867aee3ff184453b72ecbafe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.337ex; height:2.009ex;" alt="{\displaystyle \mathbf {g} }"></span> is then:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{g}=\left|\phi (\mathbf {k} )\right|^{2}\propto \left|F_{g}{\frac {\sin(\pi ts_{z})}{\pi s_{z}}}\right|^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>|</mo> <mrow> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>∝<!-- ∝ --></mo> <msup> <mrow> <mo>|</mo> <mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>π<!-- π --></mi> <mi>t</mi> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>π<!-- π --></mi> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{g}=\left|\phi (\mathbf {k} )\right|^{2}\propto \left|F_{g}{\frac {\sin(\pi ts_{z})}{\pi s_{z}}}\right|^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c95ef36b12d4700e521e55ba0508834b18bfbc6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:29.824ex; height:6.843ex;" alt="{\displaystyle I_{g}=\left|\phi (\mathbf {k} )\right|^{2}\propto \left|F_{g}{\frac {\sin(\pi ts_{z})}{\pi s_{z}}}\right|^{2}}"></span>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{z}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{z}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fe17b6a1d1ce8d16e8753353f2b8b575ae4381d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.092ex; height:2.009ex;" alt="{\displaystyle s_{z}}"></span> is the magnitude of the excitation error <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\mathbf {s} _{z}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">s</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\mathbf {s} _{z}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a28e75c4c3fd7f90409c5afef0cb6129a5e968bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.351ex; height:2.843ex;" alt="{\displaystyle |\mathbf {s} _{z}|}"></span> along z, the distance along the beam direction (z-axis by convention) from the diffraction spot to the <a href="/wiki/Ewald%27s_sphere" title="Ewald's sphere">Ewald sphere</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{g}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{g}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03cf1bda064b272b4a9aff2baab298c67c3d7a38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.516ex; height:2.843ex;" alt="{\displaystyle F_{g}}"></span> is the <a href="/wiki/Structure_factor" title="Structure factor">structure factor</a>:<sup id="cite_ref-Form_4-3" class="reference"><a href="#cite_note-Form-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{g}=\sum _{j=1}^{N}f_{j}\exp {(2\pi i\mathbf {g} \cdot \mathbf {r} _{j}-T_{j}g^{2})}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mi>exp</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{g}=\sum _{j=1}^{N}f_{j}\exp {(2\pi i\mathbf {g} \cdot \mathbf {r} _{j}-T_{j}g^{2})}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4dc151c7479ab182ef330f1c23aa3d17f6599071" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:33.146ex; height:7.676ex;" alt="{\displaystyle F_{g}=\sum _{j=1}^{N}f_{j}\exp {(2\pi i\mathbf {g} \cdot \mathbf {r} _{j}-T_{j}g^{2})}}"></span>the sum being over all the atoms in the unit cell with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acc195ab3f9d65994b47774eb013601d09217aee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.049ex; height:2.843ex;" alt="{\displaystyle f_{j}}"></span> the form factors,<sup id="cite_ref-Form_4-4" class="reference"><a href="#cite_note-Form-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {g} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {g} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cdf843789e9564a867aee3ff184453b72ecbafe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.337ex; height:2.009ex;" alt="{\displaystyle \mathbf {g} }"></span> the <a href="/wiki/Reciprocal_lattice" title="Reciprocal lattice">reciprocal lattice</a> vector, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27cdb9041c8aa769beb9153a48f41002297faacc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.267ex; height:2.843ex;" alt="{\displaystyle T_{j}}"></span> is a simplified form of the <a href="/wiki/Debye%E2%80%93Waller_factor" title="Debye–Waller factor">Debye–Waller factor</a>,<sup id="cite_ref-Form_4-5" class="reference"><a href="#cite_note-Form-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {k} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {k} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ea699cbc1f843f2e855577d57529430ec33a1ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:2.176ex;" alt="{\displaystyle \mathbf {k} }"></span> is the wavevector for the diffraction beam which is:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {k} =\mathbf {k} _{0}+\mathbf {g} +\mathbf {s} _{z}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">s</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {k} =\mathbf {k} _{0}+\mathbf {g} +\mathbf {s} _{z}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbf9c46b836d9d91cfb6b5b89a797039cff84270" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.049ex; height:2.509ex;" alt="{\displaystyle \mathbf {k} =\mathbf {k} _{0}+\mathbf {g} +\mathbf {s} _{z}}"></span>for an incident wavevector of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {k} _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {k} _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4182a5bd909c84fe90efbb4fa341516a584899eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.465ex; height:2.509ex;" alt="{\displaystyle \mathbf {k} _{0}}"></span>, as in <a href="#Figure_6">Figure 6</a> and <a class="mw-selflink-fragment" href="#Plane_waves,_wavevectors_and_reciprocal_lattice">above</a>. The excitation error comes in as the outgoing wavevector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {k} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {k} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ea699cbc1f843f2e855577d57529430ec33a1ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:2.176ex;" alt="{\displaystyle \mathbf {k} }"></span> has to have the same modulus (i.e. energy) as the incoming wavevector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {k} _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {k} _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4182a5bd909c84fe90efbb4fa341516a584899eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.465ex; height:2.509ex;" alt="{\displaystyle \mathbf {k} _{0}}"></span>. The intensity in transmission electron diffraction oscillates as a function of thickness, which can be confusing; there can similarly be intensity changes due to variations in orientation and also structural defects such as <a href="/wiki/Dislocations" class="mw-redirect" title="Dislocations">dislocations</a>.<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">[</span>101<span class="cite-bracket">]</span></a></sup> If a diffraction spot is strong it could be because it has a larger structure factor, or it could be because the combination of thickness and excitation error is "right". Similarly the observed intensity can be small, even though the structure factor is large. This can complicate interpretation of the intensities. By comparison, these effects are much smaller in <a href="/wiki/X-ray_diffraction" title="X-ray diffraction">x-ray diffraction</a> or <a href="/wiki/Neutron_diffraction" title="Neutron diffraction">neutron diffraction</a> because they interact with matter far less and often Bragg's law<sup id="cite_ref-Bragg_102-2" class="reference"><a href="#cite_note-Bragg-102"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup> is adequate. </p><p>This form is a reasonable first approximation which is qualitatively correct in many cases, but more accurate forms including multiple scattering (dynamical diffraction) of the electrons are needed to properly understand the intensities.<sup id="cite_ref-Cowley95_2-14" class="reference"><a href="#cite_note-Cowley95-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Sec 3">: Sec 3 </span></sup><sup id="cite_ref-Peng_9-3" class="reference"><a href="#cite_note-Peng-9"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 3-5">: Chpt 3-5 </span></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Dynamical_diffraction">Dynamical diffraction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=10" title="Edit section: Dynamical diffraction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div><p> While kinematical diffraction is adequate to understand the geometry of the diffraction spots, it does not correctly give the intensities and has a number of other limitations. For a more complete approach one has to include multiple scattering of the electrons using methods that date back to the early work of Hans Bethe in 1928.<sup id="cite_ref-Bethe_35-3" class="reference"><a href="#cite_note-Bethe-35"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> These are based around solutions of the Schrödinger equation<sup id="cite_ref-Schroedinger_12-6" class="reference"><a href="#cite_note-Schroedinger-12"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> using the relativistic effective mass <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f2650f1055b63acf24bf275e50b4f59c3e53685" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.095ex; height:2.343ex;" alt="{\displaystyle m^{*}}"></span> described earlier.<sup id="cite_ref-Fujiwara_96-3" class="reference"><a href="#cite_note-Fujiwara-96"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup> Even at very high energies dynamical diffraction is needed as the relativistic mass and wavelength partially cancel, so the role of the potential is larger than might be thought.<sup id="cite_ref-Fujiwara_96-4" class="reference"><a href="#cite_note-Fujiwara-96"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-AHDiss_97-1" class="reference"><a href="#cite_note-AHDiss-97"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup><span class="anchor" id="Figure_7"></span></p><figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:CBED-EFiltered.png" class="mw-file-description"><img alt="Diagram of convergent-beam diffraction patterns with different energy filters. The ones where energy losses have been removed are clearer." src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5b/CBED-EFiltered.png/220px-CBED-EFiltered.png" decoding="async" width="220" height="171" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5b/CBED-EFiltered.png/330px-CBED-EFiltered.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5b/CBED-EFiltered.png/440px-CBED-EFiltered.png 2x" data-file-width="1182" data-file-height="919" /></a><figcaption>Figure 7: CBED patterns using all the electrons, with just those which have not lost any energy and those which have excited one or two <a href="/wiki/Plasmons" class="mw-redirect" title="Plasmons">plasmons</a></figcaption></figure> <p>The main components of current dynamical diffraction of electrons include: </p> <ul><li>Taking into account the scattering back into the incident beam both from diffracted beams and between all others, not just single scattering from the incident beam to diffracted beams.<sup id="cite_ref-Bethe_35-4" class="reference"><a href="#cite_note-Bethe-35"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> This is important even for samples which are only a few atoms thick.<sup id="cite_ref-Bethe_35-5" class="reference"><a href="#cite_note-Bethe-35"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-CowleyII_64-1" class="reference"><a href="#cite_note-CowleyII-64"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup></li> <li>Modelling at least semi-empirically the role of inelastic scattering by an imaginary component of the potential,<sup id="cite_ref-Yoshioka_106-0" class="reference"><a href="#cite_note-Yoshioka-106"><span class="cite-bracket">[</span>102<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-HowieII_107-0" class="reference"><a href="#cite_note-HowieII-107"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-PHInel_108-0" class="reference"><a href="#cite_note-PHInel-108"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup> also called an "optical potential".<sup id="cite_ref-Peng_9-4" class="reference"><a href="#cite_note-Peng-9"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 13">: Chpt 13 </span></sup> There is always inelastic scattering, and often it can have a major effect on both the background and sometimes the details, see <a href="#Figure_7">Figure 7</a> and <a href="#Figure_18">18</a>.<sup id="cite_ref-Yoshioka_106-1" class="reference"><a href="#cite_note-Yoshioka-106"><span class="cite-bracket">[</span>102<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-HowieII_107-1" class="reference"><a href="#cite_note-HowieII-107"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-PHInel_108-1" class="reference"><a href="#cite_note-PHInel-108"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup></li> <li>Higher-order numerical approaches to calculate the intensities such as <a href="/wiki/Multislice" title="Multislice">multislice</a>,<sup id="cite_ref-MS1_67-1" class="reference"><a href="#cite_note-MS1-67"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">[</span>105<span class="cite-bracket">]</span></a></sup> matrix methods<sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">[</span>106<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Peng_9-5" class="reference"><a href="#cite_note-Peng-9"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Sec 4.3">: Sec 4.3 </span></sup> which are called Bloch-wave approaches or <a href="/wiki/Muffin-tin_approximation" title="Muffin-tin approximation">muffin-tin</a> approaches.<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup> With these diffraction spots which are not present in kinematical theory can be present, e.g.<sup id="cite_ref-Gjønnes_65–67_112-0" class="reference"><a href="#cite_note-Gjønnes_65–67-112"><span class="cite-bracket">[</span>108<span class="cite-bracket">]</span></a></sup></li> <li>Contributions to the diffraction from <a href="/wiki/Elasticity_(physics)" title="Elasticity (physics)">elastic strain</a> and <a href="/wiki/Crystallographic_defect" title="Crystallographic defect">crystallographic defects</a>, and also what <a href="/wiki/Jens_Lindhard" title="Jens Lindhard">Jens Lindhard</a> called the string potential.<sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">[</span>109<span class="cite-bracket">]</span></a></sup></li> <li>For <a href="/wiki/Transmission_electron_microscopy" title="Transmission electron microscopy">transmission electron microscopes</a> effects due to variations in the thickness of the sample and the normal to the surface.<sup id="cite_ref-Cowley95_2-15" class="reference"><a href="#cite_note-Cowley95-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 6">: Chpt 6 </span></sup></li> <li>Both in the geometry of scattering and calculations, for both <a class="mw-selflink-fragment" href="#Low-energy_electron_diffraction_(LEED)">LEED</a><sup id="cite_ref-McRae_114-0" class="reference"><a href="#cite_note-McRae-114"><span class="cite-bracket">[</span>110<span class="cite-bracket">]</span></a></sup> and <a class="mw-selflink-fragment" href="#Reflection_high-energy_electron_diffraction_(RHEED)">RHEED</a>,<sup id="cite_ref-Collela_115-0" class="reference"><a href="#cite_note-Collela-115"><span class="cite-bracket">[</span>111<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Maksym_11-1" class="reference"><a href="#cite_note-Maksym-11"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> effects due to the presence of surface steps, <a href="/wiki/Surface_reconstruction" title="Surface reconstruction">surface reconstructions</a> and other atoms at the surface. Often these change the diffraction details significantly.<sup id="cite_ref-McRae_114-1" class="reference"><a href="#cite_note-McRae-114"><span class="cite-bracket">[</span>110<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Collela_115-1" class="reference"><a href="#cite_note-Collela-115"><span class="cite-bracket">[</span>111<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Maksym_11-2" class="reference"><a href="#cite_note-Maksym-11"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup></li> <li>For <a class="mw-selflink-fragment" href="#Low-energy_electron_diffraction_(LEED)">LEED</a>, use more careful analyses of the potential because contributions from <a href="/wiki/Exchange_interaction" title="Exchange interaction">exchange</a> terms can be important.<sup id="cite_ref-Pendry71_10-2" class="reference"><a href="#cite_note-Pendry71-10"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> Without these the calculations may not be accurate enough.<sup id="cite_ref-Pendry71_10-3" class="reference"><a href="#cite_note-Pendry71-10"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Kikuchi_lines">Kikuchi lines</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=11" title="Edit section: Kikuchi lines"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Kikuchi_lines" class="mw-redirect" title="Kikuchi lines">Kikuchi lines</a></div><p> Kikuchi lines,<sup id="cite_ref-116" class="reference"><a href="#cite_note-116"><span class="cite-bracket">[</span>112<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Reimer_3-5" class="reference"><a href="#cite_note-Reimer-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Pages: 311–313">: 311–313 </span></sup> first observed by <a href="/wiki/Seishi_Kikuchi" title="Seishi Kikuchi">Seishi Kikuchi</a> in 1928,<sup id="cite_ref-:17_36-1" class="reference"><a href="#cite_note-:17-36"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:18_37-1" class="reference"><a href="#cite_note-:18-37"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> are linear features created by electrons scattered both inelastically and elastically. As the electron beam interacts with matter, the electrons are diffracted via <a href="/wiki/Elastic_scattering" title="Elastic scattering">elastic scattering</a>, and also scattered <a href="/wiki/Inelastic_scattering" title="Inelastic scattering">inelastically</a> losing part of their energy. These occur simultaneously, and cannot be separated – according to the <a href="/wiki/Copenhagen_interpretation" title="Copenhagen interpretation">Copenhagen interpretation</a> of quantum mechanics, only the probabilities of electrons at detectors can be measured.<sup id="cite_ref-:12_117-0" class="reference"><a href="#cite_note-:12-117"><span class="cite-bracket">[</span>113<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:13_118-0" class="reference"><a href="#cite_note-:13-118"><span class="cite-bracket">[</span>114<span class="cite-bracket">]</span></a></sup> These electrons form Kikuchi lines which provide information on the orientation.<sup id="cite_ref-Morniroli_2004_119-0" class="reference"><a href="#cite_note-Morniroli_2004-119"><span class="cite-bracket">[</span>115<span class="cite-bracket">]</span></a></sup><span class="anchor" id="Figure_8"></span></p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:KMapFCC.png" class="mw-file-description"><img alt="A Kukuchi map, which is a collage of diffraction patterns used to both determine crystal orientation and also to tilt to different orientations." src="//upload.wikimedia.org/wikipedia/commons/thumb/2/28/KMapFCC.png/220px-KMapFCC.png" decoding="async" width="220" height="177" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/28/KMapFCC.png/330px-KMapFCC.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/28/KMapFCC.png/440px-KMapFCC.png 2x" data-file-width="1252" data-file-height="1010" /></a><figcaption>Figure 8: Kikuchi map for a <a href="/wiki/Face_centered_cubic" class="mw-redirect" title="Face centered cubic">face centered cubic</a> material, within the stereographic triangle</figcaption></figure> <p>Kikuchi lines come in pairs forming Kikuchi bands, and are indexed in terms of the crystallographic planes they are connected to, with the angular width of the band equal to the magnitude of the corresponding diffraction vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\mathbf {g} |}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\mathbf {g} |}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71f9a9135f3f8174d8b3f014cb0908d419ce64ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.63ex; height:2.843ex;" alt="{\displaystyle |\mathbf {g} |}"></span>. The position of Kikuchi bands is fixed with respect to each other and the orientation of the sample, but not against the diffraction spots or the direction of the incident electron beam. As the crystal is tilted, the bands move on the diffraction pattern.<sup id="cite_ref-Morniroli_2004_119-1" class="reference"><a href="#cite_note-Morniroli_2004-119"><span class="cite-bracket">[</span>115<span class="cite-bracket">]</span></a></sup> Since the position of Kikuchi bands is quite sensitive to crystal <a href="/wiki/Orientation_(geometry)" title="Orientation (geometry)">orientation</a>, they can be used to fine-tune a zone-axis orientation or determine crystal orientation. They can also be used for navigation when changing the orientation between zone axes connected by some band, an example of such a map produced by combining many local sets of experimental Kikuchi patterns is in <a href="#Figure_8">Figure 8</a>; Kikuchi maps are available for many materials. </p> <div class="mw-heading mw-heading2"><h2 id="Types_and_techniques">Types and techniques</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=12" title="Edit section: Types and techniques"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="In_a_transmission_electron_microscope">In a transmission electron microscope</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=13" title="Edit section: In a transmission electron microscope"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="Figure_9"></span></p><figure typeof="mw:File/Thumb"><a href="/wiki/File:Difrakce.png" class="mw-file-description"><img alt="Electron diffraction patterns from different types of crystals and different incident beam convergence." src="//upload.wikimedia.org/wikipedia/commons/thumb/7/70/Difrakce.png/300px-Difrakce.png" decoding="async" width="300" height="132" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/70/Difrakce.png/450px-Difrakce.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/70/Difrakce.png/600px-Difrakce.png 2x" data-file-width="1653" data-file-height="725" /></a><figcaption>Figure 9: Diffraction patterns (below, black background) with different crystallinity (above, diagrams) and beam convergence. From left: spot diffraction (parallel illumination), <a href="/wiki/CBED" class="mw-redirect" title="CBED">CBED</a> (converging), and ring diffraction (parallel with many grains).</figcaption></figure> <p>Electron diffraction in a <a href="/wiki/Transmission_electron_microscopy" title="Transmission electron microscopy">TEM</a> exploits controlled electron beams using electron optics.<sup id="cite_ref-:8_120-0" class="reference"><a href="#cite_note-:8-120"><span class="cite-bracket">[</span>116<span class="cite-bracket">]</span></a></sup> Different types of diffraction experiments, for instance <a href="#Figure_9">Figure 9</a>, provide information such as <a href="/wiki/Lattice_constants" class="mw-redirect" title="Lattice constants">lattice constants</a>, symmetries, and sometimes to solve an unknown <a href="/wiki/Crystal_structure" title="Crystal structure">crystal structure</a>. </p><p>It is common to combine it with other methods, for instance images using selected diffraction beams, <a href="/wiki/High-resolution_transmission_electron_microscopy" title="High-resolution transmission electron microscopy">high-resolution images</a><sup id="cite_ref-121" class="reference"><a href="#cite_note-121"><span class="cite-bracket">[</span>117<span class="cite-bracket">]</span></a></sup> showing the atomic structure, chemical analysis through <a href="/wiki/Energy-dispersive_X-ray_spectroscopy" title="Energy-dispersive X-ray spectroscopy">energy-dispersive x-ray spectroscopy</a>,<sup id="cite_ref-122" class="reference"><a href="#cite_note-122"><span class="cite-bracket">[</span>118<span class="cite-bracket">]</span></a></sup> investigations of electronic structure and bonding through <a href="/wiki/Electron_energy_loss_spectroscopy" title="Electron energy loss spectroscopy">electron energy loss spectroscopy</a>,<sup id="cite_ref-123" class="reference"><a href="#cite_note-123"><span class="cite-bracket">[</span>119<span class="cite-bracket">]</span></a></sup> and studies of the electrostatic potential through <a href="/wiki/Electron_holography" title="Electron holography">electron holography</a>;<sup id="cite_ref-124" class="reference"><a href="#cite_note-124"><span class="cite-bracket">[</span>120<span class="cite-bracket">]</span></a></sup> this list is not exhaustive. Compared to <a href="/wiki/X-ray_crystallography" title="X-ray crystallography">x-ray crystallography</a>, TEM analysis is significantly more localized and can be used to obtain information from tens of thousands of atoms to just a few or even single atoms. </p> <div class="mw-heading mw-heading4"><h4 id="Formation_of_a_diffraction_pattern">Formation of a diffraction pattern</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=14" title="Edit section: Formation of a diffraction pattern"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="Figure_10"></span></p><figure class="mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:ElmagLensScheme.png" class="mw-file-description"><img alt="Simple comparison of imaging, ray diagram and diffraction in an electron microscope." src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/ElmagLensScheme.png/300px-ElmagLensScheme.png" decoding="async" width="300" height="92" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/ElmagLensScheme.png/450px-ElmagLensScheme.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/ElmagLensScheme.png/600px-ElmagLensScheme.png 2x" data-file-width="1600" data-file-height="490" /></a><figcaption>Figure 10: Imaging scheme of magnetic lens (center, colored ray diagram) with image (left) and diffraction pattern (right, black background)</figcaption></figure> <p>In TEM, the electron beam passes through a thin film of the material as illustrated in <a href="#Figure_10">Figure 10</a>. Before and after the sample the beam is manipulated by the <a href="/wiki/Electron_optics" title="Electron optics">electron optics</a><sup id="cite_ref-:8_120-1" class="reference"><a href="#cite_note-:8-120"><span class="cite-bracket">[</span>116<span class="cite-bracket">]</span></a></sup> including <a href="/wiki/Magnetic_lens" title="Magnetic lens">magnetic lenses</a>, deflectors and <a href="/wiki/Apertures" class="mw-redirect" title="Apertures">apertures</a>;<sup id="cite_ref-Pella_125-0" class="reference"><a href="#cite_note-Pella-125"><span class="cite-bracket">[</span>121<span class="cite-bracket">]</span></a></sup> these act on the electrons similar to how glass lenses focus and control light. Optical elements above the sample are used to control the incident beam which can range from a wide and parallel beam to one which is a converging cone and can be smaller than an atom, 0.1 nm. As it interacts with the sample, part of the beam is diffracted and part is transmitted without changing its direction. This occurs simultaneously as electrons are everywhere until they are detected (<a href="/wiki/Wave_function_collapse" title="Wave function collapse">wavefunction collapse</a>) according to the <a href="/wiki/Copenhagen_interpretation" title="Copenhagen interpretation">Copenhagen interpretation</a>.<sup id="cite_ref-:12_117-1" class="reference"><a href="#cite_note-:12-117"><span class="cite-bracket">[</span>113<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:13_118-1" class="reference"><a href="#cite_note-:13-118"><span class="cite-bracket">[</span>114<span class="cite-bracket">]</span></a></sup> </p><p>Below the sample, the beam is controlled by another set of magnetic lneses and apertures.<sup id="cite_ref-:8_120-2" class="reference"><a href="#cite_note-:8-120"><span class="cite-bracket">[</span>116<span class="cite-bracket">]</span></a></sup> Each set of initially parallel rays (a <a href="#Geometrical_considerations">plane wave</a>) is focused by the first lens (<a href="/wiki/Objective_(optics)" title="Objective (optics)">objective</a>) to a point in the <a href="/wiki/Back_focal_plane" class="mw-redirect" title="Back focal plane">back focal plane</a> of this lens, forming a spot on a <a href="/wiki/Detectors_for_transmission_electron_microscopy" title="Detectors for transmission electron microscopy">detector</a>; a map of these directions, often an array of spots, is the diffraction pattern. Alternatively the lenses can form a magnified image of the sample.<sup id="cite_ref-:8_120-3" class="reference"><a href="#cite_note-:8-120"><span class="cite-bracket">[</span>116<span class="cite-bracket">]</span></a></sup> Herein the focus is on collecting a diffraction pattern; for other information see the pages on <a href="/wiki/Transmission_electron_microscopy" title="Transmission electron microscopy">TEM</a> and <a href="/wiki/Scanning_transmission_electron_microscopy" title="Scanning transmission electron microscopy">scanning transmission electron microscopy</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Selected_area_electron_diffraction">Selected area electron diffraction</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=15" title="Edit section: Selected area electron diffraction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The simplest diffraction technique in TEM is selected area electron diffraction (SAED) where the incident beam is wide and close to parallel.<sup id="cite_ref-HirschEtAl_8-6" class="reference"><a href="#cite_note-HirschEtAl-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 5-6">: Chpt 5-6 </span></sup> An aperture is used to select a particular region of interest from which the diffraction is collected. These apertures are part of a thin foil of a heavy metal such as <a href="/wiki/Tungsten" title="Tungsten">tungsten</a><sup id="cite_ref-Pella_125-1" class="reference"><a href="#cite_note-Pella-125"><span class="cite-bracket">[</span>121<span class="cite-bracket">]</span></a></sup> which has a number of small holes in it. This way diffraction information can be limited to, for instance, individual crystallites. Unfortunately the method is limited by the spherical aberration of the objective lens,<sup id="cite_ref-HirschEtAl_8-7" class="reference"><a href="#cite_note-HirschEtAl-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 5-6">: Chpt 5-6 </span></sup> so is only accurate for large grains with tens of thousands of atoms or more; for smaller regions a focused probe is needed.<sup id="cite_ref-HirschEtAl_8-8" class="reference"><a href="#cite_note-HirschEtAl-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 5-6">: Chpt 5-6 </span></sup> </p><p> If a parallel beam is used to acquire a diffraction pattern from a <a href="/wiki/Single-crystal" class="mw-redirect" title="Single-crystal">single-crystal</a>, the result is similar to a two-dimensional projection of the crystal reciprocal lattice. From this one can determine interplanar distances and angles and in some cases crystal symmetry, particularly when the electron beam is down a major zone axis, see for instance the database by Jean-Paul Morniroli.<sup id="cite_ref-Atlas_80-1" class="reference"><a href="#cite_note-Atlas-80"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup> However, projector lens aberrations such as <a href="/wiki/Barrel_Distortion" class="mw-redirect" title="Barrel Distortion">barrel distortion</a> as well as dynamical diffraction effects (e.g.<sup id="cite_ref-126" class="reference"><a href="#cite_note-126"><span class="cite-bracket">[</span>122<span class="cite-bracket">]</span></a></sup>) cannot be ignored. For instance, certain diffraction spots which are not present in x-ray diffraction can appear,<sup id="cite_ref-Atlas_80-2" class="reference"><a href="#cite_note-Atlas-80"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup> for instance those due to <a href="/wiki/Jon_Gj%C3%B8nnes" title="Jon Gjønnes">Gjønnes</a>-Moodie extinction conditions.<sup id="cite_ref-Gjønnes_65–67_112-1" class="reference"><a href="#cite_note-Gjønnes_65–67-112"><span class="cite-bracket">[</span>108<span class="cite-bracket">]</span></a></sup> <span class="anchor" id="Figure_11"></span></p><figure typeof="mw:File/Thumb"><a href="/wiki/File:Crystal_orientation_and_diffraction.gif" class="mw-file-description"><img alt="A pair of image showing how diffraction patterns change with the orientation of the crystal." src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Crystal_orientation_and_diffraction.gif/300px-Crystal_orientation_and_diffraction.gif" decoding="async" width="300" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Crystal_orientation_and_diffraction.gif/450px-Crystal_orientation_and_diffraction.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Crystal_orientation_and_diffraction.gif/600px-Crystal_orientation_and_diffraction.gif 2x" data-file-width="800" data-file-height="400" /></a><figcaption>Figure 11: Diffraction pattern of <a href="/wiki/Magnesium" title="Magnesium">magnesium</a> simulated using CrysTBox for various crystal orientations. Note how the diffraction pattern (white/black) changes with the crystal orientation (yellow).</figcaption></figure> <p>If the sample is tilted relative to the electron beam, different sets of crystallographic planes contribute to the pattern yielding different types of diffraction patterns, approximately different projections of the reciprocal lattice, see <a href="#Figure_11">Figure 11</a>.<sup id="cite_ref-Atlas_80-3" class="reference"><a href="#cite_note-Atlas-80"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup> This can be used to determine the crystal orientation, which in turn can be used to set the orientation needed for a particular experiment. Furthermore, a series of diffraction patterns varying in tilt can be acquired and processed using a <a href="/wiki/Diffraction_tomography" title="Diffraction tomography">diffraction tomography</a> approach. There are ways to combine this with <a href="/wiki/Direct_methods_(crystallography)" title="Direct methods (crystallography)">direct methods</a> algorithms using electrons<sup id="cite_ref-Sufficient_127-0" class="reference"><a href="#cite_note-Sufficient-127"><span class="cite-bracket">[</span>123<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-White_82-1" class="reference"><a href="#cite_note-White-82"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup> and other methods such as charge flipping,<sup id="cite_ref-Lukas1_83-1" class="reference"><a href="#cite_note-Lukas1-83"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup> or automated diffraction tomography<sup id="cite_ref-128" class="reference"><a href="#cite_note-128"><span class="cite-bracket">[</span>124<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-129" class="reference"><a href="#cite_note-129"><span class="cite-bracket">[</span>125<span class="cite-bracket">]</span></a></sup> to solve crystal structures. </p> <div class="mw-heading mw-heading4"><h4 id="Polycrystalline_pattern">Polycrystalline pattern</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=16" title="Edit section: Polycrystalline pattern"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="Figure_12"></span></p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:SpotToRingDiffraction.gif" class="mw-file-description"><img alt="A pattern showing how diffraction patterns from different grain build up to yield a ring pattern." src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/SpotToRingDiffraction.gif/220px-SpotToRingDiffraction.gif" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/SpotToRingDiffraction.gif/330px-SpotToRingDiffraction.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/a/ae/SpotToRingDiffraction.gif 2x" data-file-width="336" data-file-height="336" /></a><figcaption>Figure 12: Relation between spot and ring diffraction illustrated on 1 to 1000 grains of <a href="/wiki/MgO" class="mw-redirect" title="MgO">MgO</a> using simulation engine of <a href="/wiki/CrysTBox" title="CrysTBox">CrysTBox</a>. Corresponding experimental patterns can be seen in <b>Figure 13.</b> </figcaption></figure> <p>Diffraction patterns depend on whether the beam is diffracted by one <a href="/wiki/Single_crystal" title="Single crystal">single crystal</a> or by a number of differently oriented crystallites, for instance in a polycrystalline material. If there are many contributing crystallites, the diffraction image is a superposition of individual crystal patterns, see <a href="#Figure_12">Figure 12</a>. With a large number of grains this superposition yields diffraction spots of all possible reciprocal lattice vectors. This results in a pattern of <a href="/wiki/Concentric" class="mw-redirect" title="Concentric">concentric</a> rings as shown in <a href="#Figure_12">Figure 12</a> and <a href="#Figure_13">13</a>.<sup id="cite_ref-HirschEtAl_8-9" class="reference"><a href="#cite_note-HirschEtAl-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 5-6">: Chpt 5-6 </span></sup> </p> <p><span class="anchor" id="Figure_13"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237032888/mw-parser-output/.tmulti"></p><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:308px;max-width:308px"><div class="trow"><div class="tsingle" style="width:152px;max-width:152px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:RingGUI_input.png" class="mw-file-description"><img alt="Experimental ring pattern from magnesium oxide." src="//upload.wikimedia.org/wikipedia/commons/thumb/0/07/RingGUI_input.png/150px-RingGUI_input.png" decoding="async" width="150" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/07/RingGUI_input.png/225px-RingGUI_input.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/07/RingGUI_input.png/300px-RingGUI_input.png 2x" data-file-width="800" data-file-height="800" /></a></span></div></div><div class="tsingle" style="width:152px;max-width:152px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:RingGUI_quadrant.png" class="mw-file-description"><img alt="A computer model of a ring diffraction pattern to go with the other image." src="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/RingGUI_quadrant.png/150px-RingGUI_quadrant.png" decoding="async" width="150" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/RingGUI_quadrant.png/225px-RingGUI_quadrant.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/67/RingGUI_quadrant.png/300px-RingGUI_quadrant.png 2x" data-file-width="800" data-file-height="800" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption">Figure 13: Ring diffraction image of <a href="/wiki/MgO" class="mw-redirect" title="MgO">MgO</a> as recorded (left) and processed with CrysTBox ringGUI (right, with indexing). Corresponding simulated pattern can be seen in <b>Figure 12</b>.</div></div></div></div> <p>Textured materials yield a non-uniform distribution of intensity around the ring, which can be used to discriminate between nanocrystalline and amorphous phases. However, diffraction often cannot differentiate between very small grain polycrystalline materials and truly random order amorphous.<sup id="cite_ref-130" class="reference"><a href="#cite_note-130"><span class="cite-bracket">[</span>126<span class="cite-bracket">]</span></a></sup> Here <a href="/wiki/High-resolution_transmission_electron_microscopy" title="High-resolution transmission electron microscopy">high-resolution transmission electron microscopy</a><sup id="cite_ref-131" class="reference"><a href="#cite_note-131"><span class="cite-bracket">[</span>127<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Fluctuation_electron_microscopy" title="Fluctuation electron microscopy">fluctuation electron microscopy</a><sup id="cite_ref-132" class="reference"><a href="#cite_note-132"><span class="cite-bracket">[</span>128<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-133" class="reference"><a href="#cite_note-133"><span class="cite-bracket">[</span>129<span class="cite-bracket">]</span></a></sup> can be more powerful, although this is still a topic of continuing development. </p> <div class="mw-heading mw-heading4"><h4 id="Multiple_materials_and_double_diffraction">Multiple materials and double diffraction</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=17" title="Edit section: Multiple materials and double diffraction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In simple cases there is only one grain or one type of material in the area used for collecting a diffraction pattern. However, often there is more than one. If they are in different areas then the diffraction pattern will be a combination.<sup id="cite_ref-HirschEtAl_8-10" class="reference"><a href="#cite_note-HirschEtAl-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 5-6">: Chpt 5-6 </span></sup> In addition there can be one grain on top of another, in which case the electrons that go through the first are diffracted by the second.<sup id="cite_ref-HirschEtAl_8-11" class="reference"><a href="#cite_note-HirschEtAl-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 5-6">: Chpt 5-6 </span></sup> Electrons have no memory (like many of us), so after they have gone through the first grain and been diffracted, they traverse the second as if their current direction was that of the incident beam. This leads to diffraction spots which are the vector sum of those of the two (or even more) reciprocal lattices of the crystals, and can lead to complicated results. It can be difficult to know if this is real and due to some novel material, or just a case where multiple crystals and diffraction is leading to odd results.<sup id="cite_ref-HirschEtAl_8-12" class="reference"><a href="#cite_note-HirschEtAl-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 5-6">: Chpt 5-6 </span></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Bulk_and_surface_superstructures">Bulk and surface superstructures</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=18" title="Edit section: Bulk and surface superstructures"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Many materials have relatively simple structures based upon small unit cell vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} ,\mathbf {b} ,\mathbf {c} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} ,\mathbf {b} ,\mathbf {c} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98735198279ea2237902abe353cfc8156f2eea0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.041ex; height:2.509ex;" alt="{\displaystyle \mathbf {a} ,\mathbf {b} ,\mathbf {c} }"></span> (see also note<sup id="cite_ref-RecP_93-2" class="reference"><a href="#cite_note-RecP-93"><span class="cite-bracket">[</span>d<span class="cite-bracket">]</span></a></sup>). There are many others where the repeat is some larger multiple of the smaller unit cell (subcell) along one or more direction, for instance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N\mathbf {a} ,M\mathbf {b} ,\mathbf {c} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>,</mo> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N\mathbf {a} ,M\mathbf {b} ,\mathbf {c} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c19b5c9bf9f8ae06801e5339f265ec7956a6b61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.546ex; height:2.509ex;" alt="{\displaystyle N\mathbf {a} ,M\mathbf {b} ,\mathbf {c} }"></span>. which has larger dimensions in two directions. These <a href="/wiki/Superstructure_(condensed_matter)" title="Superstructure (condensed matter)">superstructures</a><sup id="cite_ref-Janner77_134-0" class="reference"><a href="#cite_note-Janner77-134"><span class="cite-bracket">[</span>130<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Bak_135-0" class="reference"><a href="#cite_note-Bak-135"><span class="cite-bracket">[</span>131<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Jannsen2006_136-0" class="reference"><a href="#cite_note-Jannsen2006-136"><span class="cite-bracket">[</span>132<span class="cite-bracket">]</span></a></sup> can arise from many reasons: </p> <ol><li>Larger unit cells due to electronic ordering which leads to small displacements of the atoms in the subcell. One example is <a href="/wiki/Antiferroelectricity" title="Antiferroelectricity">antiferroelectricity</a> ordering.<sup id="cite_ref-137" class="reference"><a href="#cite_note-137"><span class="cite-bracket">[</span>133<span class="cite-bracket">]</span></a></sup></li> <li>Chemical ordering, that is different atom types at different locations of the subcell.<sup id="cite_ref-138" class="reference"><a href="#cite_note-138"><span class="cite-bracket">[</span>134<span class="cite-bracket">]</span></a></sup></li> <li>Magnetic order of the spins. These may be in opposite directions on some atoms, leading to what is called <a href="/wiki/Antiferromagnetism" title="Antiferromagnetism">antiferromagnetism</a>.<sup id="cite_ref-139" class="reference"><a href="#cite_note-139"><span class="cite-bracket">[</span>135<span class="cite-bracket">]</span></a></sup></li></ol> <p><span class="anchor" id="Figure_14"></span></p><figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Transmission_electron_diffraction_pattern_of_Si_(111)_7x7.png" class="mw-file-description"><img alt="An electron diffraction pattern from a silicon surface with a reconstructed surface" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Transmission_electron_diffraction_pattern_of_Si_%28111%29_7x7.png/220px-Transmission_electron_diffraction_pattern_of_Si_%28111%29_7x7.png" decoding="async" width="220" height="221" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Transmission_electron_diffraction_pattern_of_Si_%28111%29_7x7.png/330px-Transmission_electron_diffraction_pattern_of_Si_%28111%29_7x7.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Transmission_electron_diffraction_pattern_of_Si_%28111%29_7x7.png/440px-Transmission_electron_diffraction_pattern_of_Si_%28111%29_7x7.png 2x" data-file-width="481" data-file-height="483" /></a><figcaption>Figure 14: Electron diffraction from a thin silicon (111) sample with a 7x7 reconstructed surface</figcaption></figure> <p>In addition to those which occur in the bulk, superstructures can also occur at surfaces. When half the material is (nominally) removed to create a surface, some of the atoms will be under coordinated. To reduce their energy they can rearrange. Sometimes these rearrangements are relatively small; sometimes they are quite large.<sup id="cite_ref-140" class="reference"><a href="#cite_note-140"><span class="cite-bracket">[</span>136<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-141" class="reference"><a href="#cite_note-141"><span class="cite-bracket">[</span>137<span class="cite-bracket">]</span></a></sup> Similar to a bulk superstructure there will be additional, weaker diffraction spots. One example is for the silicon (111) surface, where there is a supercell which is seven times larger than the simple bulk cell in two directions.<sup id="cite_ref-:15_142-0" class="reference"><a href="#cite_note-:15-142"><span class="cite-bracket">[</span>138<span class="cite-bracket">]</span></a></sup> This leads to diffraction patterns with additional spots some of which are marked in <a href="#Figure_14">Figure 14</a>.<sup id="cite_ref-143" class="reference"><a href="#cite_note-143"><span class="cite-bracket">[</span>139<span class="cite-bracket">]</span></a></sup> Here the (220) are stronger bulk diffraction spots, and the weaker ones due to the surface reconstruction are marked 7 × 7—see note<sup id="cite_ref-RecP_93-3" class="reference"><a href="#cite_note-RecP-93"><span class="cite-bracket">[</span>d<span class="cite-bracket">]</span></a></sup> for convention comments. </p> <div class="mw-heading mw-heading4"><h4 id="Aperiodic_materials">Aperiodic materials</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=19" title="Edit section: Aperiodic materials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="Figure_15"></span></p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Al-Cu-Fe-Cr_decagonal_quasicrystal_diffraction_pattern.tif" class="mw-file-description"><img alt="An electron diffraction pattern from a quasicrystal showing features not seen in patterns from regular crystals." src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Al-Cu-Fe-Cr_decagonal_quasicrystal_diffraction_pattern.tif/lossless-page1-220px-Al-Cu-Fe-Cr_decagonal_quasicrystal_diffraction_pattern.tif.png" decoding="async" width="220" height="221" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Al-Cu-Fe-Cr_decagonal_quasicrystal_diffraction_pattern.tif/lossless-page1-330px-Al-Cu-Fe-Cr_decagonal_quasicrystal_diffraction_pattern.tif.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Al-Cu-Fe-Cr_decagonal_quasicrystal_diffraction_pattern.tif/lossless-page1-440px-Al-Cu-Fe-Cr_decagonal_quasicrystal_diffraction_pattern.tif.png 2x" data-file-width="1273" data-file-height="1281" /></a><figcaption>Figure 15: Electron diffraction pattern of a decagonal quasicrystal</figcaption></figure> <p>In an <a href="/wiki/Aperiodic_crystal" title="Aperiodic crystal">aperiodic crystal</a> the structure can no longer be simply described by three different vectors in real or reciprocal space. In general there is a substructure describable by three (e.g. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} ,\mathbf {b} ,\mathbf {c} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} ,\mathbf {b} ,\mathbf {c} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98735198279ea2237902abe353cfc8156f2eea0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.041ex; height:2.509ex;" alt="{\displaystyle \mathbf {a} ,\mathbf {b} ,\mathbf {c} }"></span>), similar to supercells above, but in addition there is some additional periodicity (one to three) which cannot be described as a multiple of the three; it is a genuine additional periodicity which is an <a href="/wiki/Irrational_number" title="Irrational number">irrational number</a> relative to the subcell lattice.<sup id="cite_ref-Janner77_134-1" class="reference"><a href="#cite_note-Janner77-134"><span class="cite-bracket">[</span>130<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Bak_135-1" class="reference"><a href="#cite_note-Bak-135"><span class="cite-bracket">[</span>131<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Jannsen2006_136-1" class="reference"><a href="#cite_note-Jannsen2006-136"><span class="cite-bracket">[</span>132<span class="cite-bracket">]</span></a></sup> The diffraction pattern can then only be described by more than three indices. </p><p>An extreme example of this is for <a href="/wiki/Quasicrystals" class="mw-redirect" title="Quasicrystals">quasicrystals</a>,<sup id="cite_ref-144" class="reference"><a href="#cite_note-144"><span class="cite-bracket">[</span>140<span class="cite-bracket">]</span></a></sup> which can be described similarly by a higher number of Miller indices in reciprocal space—but not by any translational symmetry in real space. An example of this is shown in <a href="#Figure_15">Figure 15</a> for an Al–Cu–Fe–Cr decagonal quasicrystal grown by magnetron sputtering on a sodium chloride substrate and then lifted off by dissolving the substrate with water.<sup id="cite_ref-145" class="reference"><a href="#cite_note-145"><span class="cite-bracket">[</span>141<span class="cite-bracket">]</span></a></sup> In the pattern there are pentagons which are a characteristic of the aperiodic nature of these materials. </p> <div class="mw-heading mw-heading4"><h4 id="Diffuse_scattering">Diffuse scattering</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=20" title="Edit section: Diffuse scattering"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="Figure_16"></span></p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:NbCoSb_showing_diffuse_scattering.png" class="mw-file-description"><img alt="Diffraction pattern showing extra features (wavy lines here) due to disorder." src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b9/NbCoSb_showing_diffuse_scattering.png/220px-NbCoSb_showing_diffuse_scattering.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b9/NbCoSb_showing_diffuse_scattering.png/330px-NbCoSb_showing_diffuse_scattering.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b9/NbCoSb_showing_diffuse_scattering.png/440px-NbCoSb_showing_diffuse_scattering.png 2x" data-file-width="1072" data-file-height="1072" /></a><figcaption>Figure 16: Single frame extracted from a video of a Nb<sub>0.83</sub>CoSb sample showing diffuse intensity (snake-like) due to vacancies at the Nb sites</figcaption></figure> <p>A further step beyond superstructures and aperiodic materials is what is called <i>diffuse scattering</i> in electron diffraction patterns due to disorder,<sup id="cite_ref-Cowley95_2-16" class="reference"><a href="#cite_note-Cowley95-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 17">: Chpt 17 </span></sup> which is also known for x-ray<sup id="cite_ref-146" class="reference"><a href="#cite_note-146"><span class="cite-bracket">[</span>142<span class="cite-bracket">]</span></a></sup> or neutron<sup id="cite_ref-147" class="reference"><a href="#cite_note-147"><span class="cite-bracket">[</span>143<span class="cite-bracket">]</span></a></sup> scattering. This can occur from inelastic processes, for instance, in bulk silicon the atomic vibrations (<a href="/wiki/Phonon" title="Phonon">phonons</a>) are more prevalent along specific directions, which leads to streaks in diffraction patterns.<sup id="cite_ref-Cowley95_2-17" class="reference"><a href="#cite_note-Cowley95-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 12">: Chpt 12 </span></sup> Sometimes it is due to arrangements of <a href="/wiki/Point_defect" class="mw-redirect" title="Point defect">point defects</a>. Completely disordered substitutional point defects lead to a general background which is called <i>Laue monotonic scattering.</i><sup id="cite_ref-Cowley95_2-18" class="reference"><a href="#cite_note-Cowley95-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 12">: Chpt 12 </span></sup> Often there is a <a href="/wiki/Probability_distribution" title="Probability distribution">probability distribution</a> for the distances between point defects or what type of substitutional atom there is, which leads to distinct three-dimensional intensity features in diffraction patterns. An example of this is for a Nb<sub>0.83</sub>CoSb sample, with the diffraction pattern shown in <a href="#Figure_16">Figure 16</a>. Because of the vacancies at the niobium sites, there is diffuse intensity with snake-like structure due to correlations of the distances between vacancies and also the relaxation of Co and Sb atoms around these vacancies.<sup id="cite_ref-148" class="reference"><a href="#cite_note-148"><span class="cite-bracket">[</span>144<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Convergent_beam_electron_diffraction">Convergent beam electron diffraction</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=21" title="Edit section: Convergent beam electron diffraction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Convergent-beam_electron_diffraction" class="mw-redirect" title="Convergent-beam electron diffraction">Convergent-beam electron diffraction</a></div> <p><span class="anchor" id="Figure_17"></span></p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:CBED_sketch.png" class="mw-file-description"><img alt="Experimental setup for convergent beam electron diffraction." src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7b/CBED_sketch.png/220px-CBED_sketch.png" decoding="async" width="220" height="164" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7b/CBED_sketch.png/330px-CBED_sketch.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7b/CBED_sketch.png/440px-CBED_sketch.png 2x" data-file-width="1641" data-file-height="1222" /></a><figcaption>Figure 17: Schematic of CBED technique. Adapted from W. Kossel and G. Möllenstedt.<sup id="cite_ref-KM_72-1" class="reference"><a href="#cite_note-KM-72"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>In convergent beam electron diffraction (CBED),<sup id="cite_ref-:4_73-1" class="reference"><a href="#cite_note-:4-73"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:5_75-1" class="reference"><a href="#cite_note-:5-75"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:6_77-1" class="reference"><a href="#cite_note-:6-77"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup> the incident electrons are normally focused in a converging cone-shaped beam with a crossover located at the sample, e.g. <a href="#Figure_17">Figure 17</a>, although other methods exist. Unlike the parallel beam, the convergent beam is able to carry information from the sample volume, not just a two-dimensional projection available in SAED. With convergent beam there is also no need for the selected area aperture, as it is inherently site-selective since the beam crossover is positioned at the object plane where the sample is located.<sup id="cite_ref-Morniroli_2004_119-2" class="reference"><a href="#cite_note-Morniroli_2004-119"><span class="cite-bracket">[</span>115<span class="cite-bracket">]</span></a></sup> </p> <p><span class="anchor" id="Figure_18"></span></p><figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:CBEDThickness.png" class="mw-file-description"><img alt="Changes in CBED patterns for different thicknesses of the sample, showing that they get more complicated with thicker samples." src="//upload.wikimedia.org/wikipedia/commons/thumb/7/70/CBEDThickness.png/220px-CBEDThickness.png" decoding="async" width="220" height="223" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/70/CBEDThickness.png/330px-CBEDThickness.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/70/CBEDThickness.png/440px-CBEDThickness.png 2x" data-file-width="902" data-file-height="915" /></a><figcaption>Figure 18: Variations in CBED due to dynamical diffraction, with thickness increasing from a)-d) for Si [110]</figcaption></figure> <p>A CBED pattern consists of disks arranged similar to the spots in SAED. Intensity within the disks represents dynamical diffraction effects and symmetries of the sample structure, see <a href="#Figure_7">Figure 7</a> and <a href="#Figure_18">18</a>. Even though the zone axis and lattice parameter analysis based on disk positions does not significantly differ from SAED, the analysis of disks content is more complex and simulations based on dynamical diffraction theory is often required.<sup id="cite_ref-149" class="reference"><a href="#cite_note-149"><span class="cite-bracket">[</span>145<span class="cite-bracket">]</span></a></sup> As illustrated in <a href="#Figure_18">Figure 18</a>, the details within the disk change with sample thickness, as does the inelastic background. With appropriate analysis CBED patterns can be used for indexation of the crystal point group, space group identification, measurement of lattice parameters, thickness or strain.<sup id="cite_ref-Morniroli_2004_119-3" class="reference"><a href="#cite_note-Morniroli_2004-119"><span class="cite-bracket">[</span>115<span class="cite-bracket">]</span></a></sup> </p><p>The disk diameter can be controlled using the microscope optics and apertures.<sup id="cite_ref-:8_120-4" class="reference"><a href="#cite_note-:8-120"><span class="cite-bracket">[</span>116<span class="cite-bracket">]</span></a></sup> The larger is the angle, the broader the disks are with more features. If the angle is increased to significantly, the disks begin to overlap.<sup id="cite_ref-KM_72-2" class="reference"><a href="#cite_note-KM-72"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> This is avoided in large angle convergent electron beam diffraction (LACBED) where the sample is moved upwards or downwards. There are applications, however, where the overlapping disks are beneficial, for instance with a <a href="/wiki/Ronchigram" title="Ronchigram">ronchigram</a>. It is a CBED pattern, often but not always of an amorphous material, with many intentionally overlapping disks providing information about the <a href="/wiki/Optical_aberrations" class="mw-redirect" title="Optical aberrations">optical aberrations</a> of the electron optical system.<sup id="cite_ref-150" class="reference"><a href="#cite_note-150"><span class="cite-bracket">[</span>146<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Precession_electron_diffraction">Precession electron diffraction</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=22" title="Edit section: Precession electron diffraction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Precession_electron_diffraction" title="Precession electron diffraction">Precession electron diffraction</a></div> <p><span class="anchor" id="Figure_19"></span></p><figure typeof="mw:File/Thumb"><a href="/wiki/File:Precession_Electron_Diffraction_(White).gif" class="mw-file-description"><img alt="An animation showing how rotating the incident beam direction can build up in a precession experiment." src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Precession_Electron_Diffraction_%28White%29.gif/300px-Precession_Electron_Diffraction_%28White%29.gif" decoding="async" width="300" height="283" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Precession_Electron_Diffraction_%28White%29.gif/450px-Precession_Electron_Diffraction_%28White%29.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/6/65/Precession_Electron_Diffraction_%28White%29.gif 2x" data-file-width="552" data-file-height="520" /></a><figcaption>Figure 19: Geometry of electron beam in precession electron diffraction. Original diffraction patterns collected by C.S. Own at Northwestern University<sup id="cite_ref-thesis_151-0" class="reference"><a href="#cite_note-thesis-151"><span class="cite-bracket">[</span>147<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>Precession electron diffraction (PED), invented by Roger Vincent and <a href="/wiki/Paul_Midgley" title="Paul Midgley">Paul Midgley</a> in 1994,<sup id="cite_ref-152" class="reference"><a href="#cite_note-152"><span class="cite-bracket">[</span>148<span class="cite-bracket">]</span></a></sup> is a method to collect electron diffraction patterns in a <a href="/wiki/Transmission_electron_microscope" class="mw-redirect" title="Transmission electron microscope">transmission electron microscope</a> (TEM). The technique involves rotating (precessing) a tilted incident electron beam around the central axis of the microscope, compensating for the tilt after the sample so a spot diffraction pattern is formed, similar to a SAED pattern. However, a PED pattern is an integration over a collection of diffraction conditions, see <a href="#Figure_19">Figure 19</a>. This integration produces a quasi-kinematical <a href="/wiki/Diffraction_pattern" class="mw-redirect" title="Diffraction pattern">diffraction pattern</a> that is more suitable<sup id="cite_ref-153" class="reference"><a href="#cite_note-153"><span class="cite-bracket">[</span>149<span class="cite-bracket">]</span></a></sup> as input into <a href="/wiki/Direct_methods_(crystallography)" title="Direct methods (crystallography)">direct methods</a> algorithms using electrons<sup id="cite_ref-Sufficient_127-1" class="reference"><a href="#cite_note-Sufficient-127"><span class="cite-bracket">[</span>123<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-White_82-2" class="reference"><a href="#cite_note-White-82"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup> to determine the <a href="/wiki/Crystal_structure" title="Crystal structure">crystal structure</a> of the sample. Because it avoids many dynamical effects it can also be used to better identify crystallographic phases.<sup id="cite_ref-154" class="reference"><a href="#cite_note-154"><span class="cite-bracket">[</span>150<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="4D_STEM">4D STEM</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=23" title="Edit section: 4D STEM"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/4D_scanning_transmission_electron_microscopy" title="4D scanning transmission electron microscopy">4D scanning transmission electron microscopy</a></div> <p>4D scanning transmission electron microscopy (4D STEM)<sup id="cite_ref-:9_155-0" class="reference"><a href="#cite_note-:9-155"><span class="cite-bracket">[</span>151<span class="cite-bracket">]</span></a></sup> is a subset of <a href="/wiki/Scanning_transmission_electron_microscopy" title="Scanning transmission electron microscopy">scanning transmission electron microscopy</a> (STEM) methods which uses a pixelated electron detector to capture a <a href="/wiki/Convergent_beam_electron_diffraction" title="Convergent beam electron diffraction">convergent beam electron diffraction</a> (CBED) pattern at each scan location; see the main page for further information. This technique captures a 2 dimensional reciprocal space image associated with each scan point as the beam rasters across a 2 dimensional region in real space, hence the name 4D STEM. Its development was enabled by better STEM detectors and improvements in computational power. The technique has applications in diffraction contrast imaging, phase orientation and identification, strain mapping, and atomic resolution imaging among others; it has become very popular and rapidly evolving from about 2020 onwards.<sup id="cite_ref-:9_155-1" class="reference"><a href="#cite_note-:9-155"><span class="cite-bracket">[</span>151<span class="cite-bracket">]</span></a></sup> </p><p>The name 4D STEM is common in literature, however it is known by other names: 4D STEM <a href="/wiki/EELS" class="mw-redirect" title="EELS">EELS</a>, ND STEM (N- since the number of dimensions could be higher than 4), position resolved diffraction (PRD), spatial resolved diffractometry, momentum-resolved STEM, "nanobeam precision electron diffraction", scanning electron nano diffraction, nanobeam electron diffraction, or pixelated STEM.<sup id="cite_ref-156" class="reference"><a href="#cite_note-156"><span class="cite-bracket">[</span>152<span class="cite-bracket">]</span></a></sup> Most of these are the same, although there are instances such as momentum-resolved STEM<sup id="cite_ref-157" class="reference"><a href="#cite_note-157"><span class="cite-bracket">[</span>153<span class="cite-bracket">]</span></a></sup> where the emphasis can be very different. </p> <div class="mw-heading mw-heading3"><h3 id="Low-energy_electron_diffraction_(LEED)"><span id="Low-energy_electron_diffraction_.28LEED.29"></span>Low-energy electron diffraction (LEED)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=24" title="Edit section: Low-energy electron diffraction (LEED)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Low-energy_electron_diffraction" title="Low-energy electron diffraction">Low-energy electron diffraction</a></div><p><span class="anchor" id="Low-energy_electron_diffraction"></span> <span class="anchor" id="Figure_20"></span><span class="anchor" id="Figure_21"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237032888/mw-parser-output/.tmulti"></p><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:242px;max-width:242px"><div class="trow"><div class="tsingle" style="width:240px;max-width:240px"><div class="thumbimage" style="height:157px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Ewald_construction_for_electron_diffraction_on_a_two-dimensional_lattice,_side_view.svg" class="mw-file-description"><img alt="Connection between the wavevectors for low energy electrons and reciprocal space." src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Ewald_construction_for_electron_diffraction_on_a_two-dimensional_lattice%2C_side_view.svg/238px-Ewald_construction_for_electron_diffraction_on_a_two-dimensional_lattice%2C_side_view.svg.png" decoding="async" width="238" height="158" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Ewald_construction_for_electron_diffraction_on_a_two-dimensional_lattice%2C_side_view.svg/357px-Ewald_construction_for_electron_diffraction_on_a_two-dimensional_lattice%2C_side_view.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Ewald_construction_for_electron_diffraction_on_a_two-dimensional_lattice%2C_side_view.svg/476px-Ewald_construction_for_electron_diffraction_on_a_two-dimensional_lattice%2C_side_view.svg.png 2x" data-file-width="1126" data-file-height="747" /></a></span></div><div class="thumbcaption">Figure 20: Ewald sphere construction for LEED, with the shape function streaks indicated, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f29138ed3ad54ffce527daccadc49c520459b0b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.011ex; height:2.509ex;" alt="{\displaystyle k_{i}}"></span> the incident beam and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c605164ffa6fcbf87a13de7b7370b96614354f05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.348ex; height:2.843ex;" alt="{\displaystyle k_{f}}"></span> one of the diffracted beams.</div></div></div><div class="trow"><div class="tsingle" style="width:240px;max-width:240px"><div class="thumbimage" style="height:223px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Si100Reconstructed.png" class="mw-file-description"><img alt="Experimental LEED pattern from a reconstructed silicon surface." src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c4/Si100Reconstructed.png/238px-Si100Reconstructed.png" decoding="async" width="238" height="223" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c4/Si100Reconstructed.png/357px-Si100Reconstructed.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c4/Si100Reconstructed.png/476px-Si100Reconstructed.png 2x" data-file-width="2072" data-file-height="1944" /></a></span></div><div class="thumbcaption">Figure 21: LEED pattern of a Si(100) reconstructed surface. The underlying lattice is a square lattice, while the surface reconstruction has a 2x1 periodicity. Also seen is the electron gun that generates the primary electron beam; it covers up parts of the screen.</div></div></div></div></div> <p>Low-energy electron diffraction (LEED) is a technique for the determination of the surface structure of <a href="/wiki/Single_crystal" title="Single crystal">single-crystalline</a> materials by bombardment with a <a href="/wiki/Collimated_beam" title="Collimated beam">collimated beam</a> of low-energy electrons (30–200 eV).<sup id="cite_ref-Oura_85-1" class="reference"><a href="#cite_note-Oura-85"><span class="cite-bracket">[</span>83<span class="cite-bracket">]</span></a></sup> In this case the Ewald sphere leads to approximately back-reflection, as illustrated in <a href="#Figure_20">Figure 20</a>, and diffracted electrons as spots on a fluorescent screen as shown in <a href="#Figure_21">Figure 21</a>; see the main page for more information and references.<sup id="cite_ref-VanHove_60-1" class="reference"><a href="#cite_note-VanHove-60"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-LEEDB_88-2" class="reference"><a href="#cite_note-LEEDB-88"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup> It has been used to solve a very large number of relatively simple surface structures of metals and semiconductors, plus cases with simple chemisorbants. For more complex cases transmission electron diffraction<sup id="cite_ref-:15_142-1" class="reference"><a href="#cite_note-:15-142"><span class="cite-bracket">[</span>138<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-158" class="reference"><a href="#cite_note-158"><span class="cite-bracket">[</span>154<span class="cite-bracket">]</span></a></sup> or surface x-ray diffraction<sup id="cite_ref-159" class="reference"><a href="#cite_note-159"><span class="cite-bracket">[</span>155<span class="cite-bracket">]</span></a></sup> have been used, often combined with <a href="/wiki/Scanning_tunnelling_microscopy" class="mw-redirect" title="Scanning tunnelling microscopy">scanning tunneling microscopy</a> and <a href="/wiki/Density_functional_theory" title="Density functional theory">density functional theory</a> calculations.<sup id="cite_ref-160" class="reference"><a href="#cite_note-160"><span class="cite-bracket">[</span>156<span class="cite-bracket">]</span></a></sup> </p><p>LEED may be used in one of two ways:<sup id="cite_ref-VanHove_60-2" class="reference"><a href="#cite_note-VanHove-60"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-LEEDB_88-3" class="reference"><a href="#cite_note-LEEDB-88"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup> </p> <ol><li>Qualitatively, where the diffraction pattern is recorded and analysis of the spot positions gives information on the symmetry of the surface structure. In the presence of an <a href="/wiki/Adsorbate" class="mw-redirect" title="Adsorbate">adsorbate</a> the qualitative analysis may reveal information about the size and rotational alignment of the adsorbate unit cell with respect to the substrate unit cell.<sup id="cite_ref-VanHove_60-3" class="reference"><a href="#cite_note-VanHove-60"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup></li> <li>Quantitatively, where the intensities of diffracted beams are recorded as a function of incident electron beam energy to generate the so-called I–V curves. By comparison with theoretical curves, these may provide accurate information on atomic positions on the surface.<sup id="cite_ref-LEEDB_88-4" class="reference"><a href="#cite_note-LEEDB-88"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup></li></ol> <div class="mw-heading mw-heading3"><h3 id="Reflection_high-energy_electron_diffraction_(RHEED)"><span id="Reflection_high-energy_electron_diffraction_.28RHEED.29"></span>Reflection high-energy electron diffraction (RHEED)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=25" title="Edit section: Reflection high-energy electron diffraction (RHEED)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/RHEED" class="mw-redirect" title="RHEED">RHEED</a></div><p><span class="anchor" id="Reflection_high-energy_electron_diffraction"></span> <span class="anchor" id="Figure_22"></span><span class="anchor" id="Figure_23"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237032888/mw-parser-output/.tmulti"></p><div class="thumb tmulti tleft"><div class="thumbinner multiimageinner" style="width:242px;max-width:242px"><div class="trow"><div class="tsingle" style="width:240px;max-width:240px"><div class="thumbimage" style="height:188px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Ewald_sphere_construction_in_Reflection_high-energy_electron_diffraction_(RHEED).svg" class="mw-file-description"><img alt="Connection between the electron wavevectors and reciprocal lattice vectors for reflection." src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Ewald_sphere_construction_in_Reflection_high-energy_electron_diffraction_%28RHEED%29.svg/238px-Ewald_sphere_construction_in_Reflection_high-energy_electron_diffraction_%28RHEED%29.svg.png" decoding="async" width="238" height="189" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Ewald_sphere_construction_in_Reflection_high-energy_electron_diffraction_%28RHEED%29.svg/357px-Ewald_sphere_construction_in_Reflection_high-energy_electron_diffraction_%28RHEED%29.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Ewald_sphere_construction_in_Reflection_high-energy_electron_diffraction_%28RHEED%29.svg/476px-Ewald_sphere_construction_in_Reflection_high-energy_electron_diffraction_%28RHEED%29.svg.png 2x" data-file-width="473" data-file-height="375" /></a></span></div><div class="thumbcaption">Figure 22: Ewald sphere in_RHEED, where higher-order Laue zones matter.</div></div></div><div class="trow"><div class="tsingle" style="width:240px;max-width:240px"><div class="thumbimage" style="height:132px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Si111_7x7_ReconstructionB.png" class="mw-file-description"><img alt="Experimental reflection electron diffraction pattern from a silicon surface" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/84/Si111_7x7_ReconstructionB.png/238px-Si111_7x7_ReconstructionB.png" decoding="async" width="238" height="133" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/84/Si111_7x7_ReconstructionB.png/357px-Si111_7x7_ReconstructionB.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/84/Si111_7x7_ReconstructionB.png/476px-Si111_7x7_ReconstructionB.png 2x" data-file-width="512" data-file-height="286" /></a></span></div><div class="thumbcaption">Figure 23: RHEED pattern of a silicon (111) surface with a 7x7 reconstruction.</div></div></div></div></div> <p>Reflection high energy electron diffraction (RHEED),<sup id="cite_ref-Ichimiya_89-3" class="reference"><a href="#cite_note-Ichimiya-89"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup> is a <a href="/wiki/Analytical_technique" title="Analytical technique">technique</a> used to characterize the surface of <a href="/wiki/Crystalline" class="mw-redirect" title="Crystalline">crystalline</a> materials by reflecting electrons off a surface. As illustrated for the Ewald sphere construction in <a href="#Figure_22">Figure 22</a>, it uses mainly the higher-order Laue zones which have a reflection component. An experimental diffraction pattern is shown in <a href="#Figure_23">Figure 23</a> and shows both rings from the higher-order Laue zones and streaky spots.<sup id="cite_ref-Peng_9-6" class="reference"><a href="#cite_note-Peng-9"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 5">: Chpt 5 </span></sup> RHEED systems gather information only from the surface layers of the sample, which distinguishes RHEED from other <a href="/wiki/Material_characterization" class="mw-redirect" title="Material characterization">materials characterization</a> methods that also rely on diffraction of <a href="/wiki/Electrons" class="mw-redirect" title="Electrons">electrons</a>. Transmission electron microscopy samples mainly the bulk of the sample, although in special cases it can provide surface information.<sup id="cite_ref-161" class="reference"><a href="#cite_note-161"><span class="cite-bracket">[</span>157<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Low-energy_electron_diffraction" title="Low-energy electron diffraction">Low-energy electron diffraction</a> (LEED) is also surface sensitive, and achieves surface sensitivity through the use of low energy electrons. The main uses of RHEED to date have been during thin film growth,<sup id="cite_ref-:16_162-0" class="reference"><a href="#cite_note-:16-162"><span class="cite-bracket">[</span>158<span class="cite-bracket">]</span></a></sup> as the geometry is amenable to simultaneous collection of the diffraction data and deposition. It can, for instance, be used to monitor surface roughness during growth by looking at both the shapes of the streaks in the diffraction pattern as well as variations in the intensities.<sup id="cite_ref-Ichimiya_89-4" class="reference"><a href="#cite_note-Ichimiya-89"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:16_162-1" class="reference"><a href="#cite_note-:16-162"><span class="cite-bracket">[</span>158<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Gas_electron_diffraction">Gas electron diffraction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=26" title="Edit section: Gas electron diffraction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Gas_electron_diffraction" title="Gas electron diffraction">Gas electron diffraction</a></div> <p><span class="anchor" id="Figure_24"></span></p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:GED_C6H6_diff_pattern.jpg" class="mw-file-description"><img alt="Experimental gas electron diffraction pattern, showing diffuse rings." src="//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/GED_C6H6_diff_pattern.jpg/220px-GED_C6H6_diff_pattern.jpg" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/GED_C6H6_diff_pattern.jpg/330px-GED_C6H6_diff_pattern.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/aa/GED_C6H6_diff_pattern.jpg/440px-GED_C6H6_diff_pattern.jpg 2x" data-file-width="756" data-file-height="756" /></a><figcaption>Figure 24: Gas electron diffraction pattern of <a href="/wiki/Benzene" title="Benzene">benzene</a>.</figcaption></figure> <p><a href="/wiki/Gas_electron_diffraction" title="Gas electron diffraction">Gas electron diffraction</a> (GED) can be used to determine the <a href="/wiki/Molecular_geometry" title="Molecular geometry">geometry</a> of <a href="/wiki/Molecule" title="Molecule">molecules</a> in gases.<sup id="cite_ref-:14_163-0" class="reference"><a href="#cite_note-:14-163"><span class="cite-bracket">[</span>159<span class="cite-bracket">]</span></a></sup> A gas carrying the molecules is exposed to the electron beam, which is diffracted by the molecules. Since the molecules are randomly oriented, the resulting diffraction pattern consists of broad concentric rings, see <a href="#Figure_24">Figure 24</a>. The diffraction intensity is a sum of several components such as background, atomic intensity or molecular intensity.<sup id="cite_ref-:14_163-1" class="reference"><a href="#cite_note-:14-163"><span class="cite-bracket">[</span>159<span class="cite-bracket">]</span></a></sup> </p><p>In GED the diffraction intensities at a particular diffraction angle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>θ<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> is described via a scattering variable defined as<sup id="cite_ref-:10_164-0" class="reference"><a href="#cite_note-:10-164"><span class="cite-bracket">[</span>160<span class="cite-bracket">]</span></a></sup><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |s|={\frac {4\pi }{\lambda }}\sin \left({\frac {\theta }{2}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <mi>π<!-- π --></mi> </mrow> <mi>λ<!-- λ --></mi> </mfrac> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>θ<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |s|={\frac {4\pi }{\lambda }}\sin \left({\frac {\theta }{2}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4eb56846458bea8aea96b4d94bed874fb2628f59" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:18.123ex; height:6.176ex;" alt="{\displaystyle |s|={\frac {4\pi }{\lambda }}\sin \left({\frac {\theta }{2}}\right).}"></span>The total intensity is then given as a sum of partial contributions:<sup id="cite_ref-Seip_165-0" class="reference"><a href="#cite_note-Seip-165"><span class="cite-bracket">[</span>161<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Andersen_166-0" class="reference"><a href="#cite_note-Andersen-166"><span class="cite-bracket">[</span>162<span class="cite-bracket">]</span></a></sup><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{\text{tot}}(s)=I_{a}(s)+I_{m}(s)+I_{t}(s)+I_{b}(s),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>tot</mtext> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{\text{tot}}(s)=I_{a}(s)+I_{m}(s)+I_{t}(s)+I_{b}(s),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d27b896e5629addd904c26b6d68f6c167eacce" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.755ex; height:2.843ex;" alt="{\displaystyle I_{\text{tot}}(s)=I_{a}(s)+I_{m}(s)+I_{t}(s)+I_{b}(s),}"></span>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{a}(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{a}(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfcc95a141786b3bd11d8e5cf3dc35d8753c01be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.025ex; height:2.843ex;" alt="{\displaystyle I_{a}(s)}"></span> results from scattering by individual atoms, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{m}(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{m}(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abc605f8b92299b4c639b31ff38152691af9e70d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.598ex; height:2.843ex;" alt="{\displaystyle I_{m}(s)}"></span> by pairs of atoms and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{t}(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{t}(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2445a2f01f20fb82995761611c99d67955d5a04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.749ex; height:2.843ex;" alt="{\displaystyle I_{t}(s)}"></span> by atom triplets. Intensity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{b}(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{b}(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a962588a92d0c3f076dab7262615d0bf828a1e1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.86ex; height:2.843ex;" alt="{\displaystyle I_{b}(s)}"></span> corresponds to the background which, unlike the previous contributions, must be determined experimentally. The intensity of atomic scattering <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{a}(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{a}(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfcc95a141786b3bd11d8e5cf3dc35d8753c01be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.025ex; height:2.843ex;" alt="{\displaystyle I_{a}(s)}"></span> is defined as<sup id="cite_ref-:14_163-2" class="reference"><a href="#cite_note-:14-163"><span class="cite-bracket">[</span>159<span class="cite-bracket">]</span></a></sup><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{a}(s)={\frac {K^{2}}{R^{2}}}I_{0}\sum _{i=1}^{N}|f_{i}(s)|^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{a}(s)={\frac {K^{2}}{R^{2}}}I_{0}\sum _{i=1}^{N}|f_{i}(s)|^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a97dc63789ac163fd69a147f167ac3da99ac8e0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:26.147ex; height:7.343ex;" alt="{\displaystyle I_{a}(s)={\frac {K^{2}}{R^{2}}}I_{0}\sum _{i=1}^{N}|f_{i}(s)|^{2},}"></span>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=(8\pi ^{2}me^{2})/h^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>8</mn> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>m</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=(8\pi ^{2}me^{2})/h^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/428760f2cb07040725f6fe60e98a8a82c7dc00d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.258ex; height:3.176ex;" alt="{\displaystyle K=(8\pi ^{2}me^{2})/h^{2}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is the distance between the scattering object detector, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/893d08e90ea73781dc133414d661529d0651ca80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.077ex; height:2.509ex;" alt="{\displaystyle I_{0}}"></span> is the intensity of the primary electron beam and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{i}(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{i}(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cebf5891818328fcc1319489076825a4246a706" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.839ex; height:2.843ex;" alt="{\displaystyle f_{i}(s)}"></span> is the scattering amplitude of the atom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> of the molecular structure in the experiment. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{a}(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{a}(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfcc95a141786b3bd11d8e5cf3dc35d8753c01be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.025ex; height:2.843ex;" alt="{\displaystyle I_{a}(s)}"></span> is the main contribution and easily obtained for known gas composition. Note that the vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> used here is not the same as the excitation error used in other areas of diffraction, see <a href="#Geometrical_considerations">earlier</a>. </p><p>The most valuable information is carried by the intensity of molecular scattering <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{a}(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{a}(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfcc95a141786b3bd11d8e5cf3dc35d8753c01be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.025ex; height:2.843ex;" alt="{\displaystyle I_{a}(s)}"></span>, as it contains information about the distance between all pairs of atoms in the molecule. It is given by<sup id="cite_ref-:10_164-1" class="reference"><a href="#cite_note-:10-164"><span class="cite-bracket">[</span>160<span class="cite-bracket">]</span></a></sup><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{m}(s)={\frac {K^{2}}{R^{2}}}I_{0}\sum _{i=1}^{N}\sum _{\stackrel {j=1}{i\neq j}}^{N}\left|f_{i}(s)\right|\left|f_{j}(s)\right|{\frac {\sin[s(r_{ij}-\kappa s^{2})]}{sr_{ij}}}e^{-(1/2l_{ij}s^{2})}\cos[\eta _{i}(s)-\eta _{i}(s)],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>i</mi> <mo>≠<!-- ≠ --></mo> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow> <mo>|</mo> <mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>s</mi> <mo stretchy="false">(</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>κ<!-- κ --></mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mrow> <mrow> <mi>s</mi> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <msub> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </msup> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{m}(s)={\frac {K^{2}}{R^{2}}}I_{0}\sum _{i=1}^{N}\sum _{\stackrel {j=1}{i\neq j}}^{N}\left|f_{i}(s)\right|\left|f_{j}(s)\right|{\frac {\sin[s(r_{ij}-\kappa s^{2})]}{sr_{ij}}}e^{-(1/2l_{ij}s^{2})}\cos[\eta _{i}(s)-\eta _{i}(s)],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1502d3b423fa3b7b59a79e49b0f2f9e3cd432a4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:80.11ex; height:9.343ex;" alt="{\displaystyle I_{m}(s)={\frac {K^{2}}{R^{2}}}I_{0}\sum _{i=1}^{N}\sum _{\stackrel {j=1}{i\neq j}}^{N}\left|f_{i}(s)\right|\left|f_{j}(s)\right|{\frac {\sin[s(r_{ij}-\kappa s^{2})]}{sr_{ij}}}e^{-(1/2l_{ij}s^{2})}\cos[\eta _{i}(s)-\eta _{i}(s)],}"></span>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/857845aef8b93395ad10279211c6c49180bb8791" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.526ex; height:2.343ex;" alt="{\displaystyle r_{ij}}"></span> is the distance between two atoms, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45d431596818cc830a50eb78ee48d7013f87713a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.17ex; height:2.843ex;" alt="{\displaystyle l_{ij}}"></span> is the mean square amplitude of vibration between the two atoms, similar to a <a href="/wiki/Debye%E2%80%93Waller_factor" title="Debye–Waller factor">Debye–Waller factor</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>κ<!-- κ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54ddec2e922c5caea4e47d04feef86e782dc8e6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:1.676ex;" alt="{\displaystyle \kappa }"></span> is the anharmonicity constant and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>η<!-- η --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4d701857cf5fbec133eebaf94deadf722537f64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.169ex; height:2.176ex;" alt="{\displaystyle \eta }"></span> a phase factor which is important for atomic pairs with very different nuclear charges. The summation is performed over all atom pairs. Atomic triplet intensity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{t}(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{t}(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2445a2f01f20fb82995761611c99d67955d5a04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.749ex; height:2.843ex;" alt="{\displaystyle I_{t}(s)}"></span> is negligible in most cases. If the molecular intensity is extracted from an experimental pattern by subtracting other contributions, it can be used to match and refine a structural model against the experimental data.<sup id="cite_ref-:10_164-2" class="reference"><a href="#cite_note-:10-164"><span class="cite-bracket">[</span>160<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Seip_165-1" class="reference"><a href="#cite_note-Seip-165"><span class="cite-bracket">[</span>161<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Andersen_166-1" class="reference"><a href="#cite_note-Andersen-166"><span class="cite-bracket">[</span>162<span class="cite-bracket">]</span></a></sup> </p><p>Similar methods of analysis have also been applied to analyze electron diffraction data from liquids.<sup id="cite_ref-167" class="reference"><a href="#cite_note-167"><span class="cite-bracket">[</span>163<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-168" class="reference"><a href="#cite_note-168"><span class="cite-bracket">[</span>164<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-169" class="reference"><a href="#cite_note-169"><span class="cite-bracket">[</span>165<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="In_a_scanning_electron_microscope">In a scanning electron microscope</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=27" title="Edit section: In a scanning electron microscope"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Electron_backscatter_diffraction" title="Electron backscatter diffraction">Electron backscatter diffraction</a></div> <p><span class="anchor" id="Figure_25"></span></p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:EBSD_Si.png" class="mw-file-description"><img alt="Kikuchi pattern, a set of line-like features from a scanning electron microscope." src="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/EBSD_Si.png/220px-EBSD_Si.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/EBSD_Si.png/330px-EBSD_Si.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/44/EBSD_Si.png/440px-EBSD_Si.png 2x" data-file-width="2555" data-file-height="2555" /></a><figcaption>Figure 25: Kikuchi lines in an EBSD pattern of <a href="/wiki/Silicon" title="Silicon">silicon</a>.</figcaption></figure> <p>In a <a href="/wiki/Scanning_electron_microscope" title="Scanning electron microscope">scanning electron microscope</a> the region near the surface can be mapped using an electron beam that is scanned in a grid across the sample. A diffraction pattern can be recorded using <a href="/wiki/Electron_backscatter_diffraction" title="Electron backscatter diffraction">electron backscatter diffraction</a> (EBSD), as illustrated in <a href="#Figure_25">Figure 25</a>, captured with a camera inside the microscope.<sup id="cite_ref-170" class="reference"><a href="#cite_note-170"><span class="cite-bracket">[</span>166<span class="cite-bracket">]</span></a></sup> A depth from a few nanometers to a few microns, depending upon the electron energy used, is penetrated by the electrons, some of which are diffracted backwards and out of the sample. As result of combined inelastic and elastic scattering, typical features in an EBSD image are <a href="/wiki/Kikuchi_lines" class="mw-redirect" title="Kikuchi lines">Kikuchi lines</a>. Since the position of Kikuchi bands is highly sensitive to the crystal orientation, EBSD data can be used to determine the crystal orientation at particular locations of the sample. The data are processed by software yielding two-dimensional orientation maps.<sup id="cite_ref-171" class="reference"><a href="#cite_note-171"><span class="cite-bracket">[</span>167<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-172" class="reference"><a href="#cite_note-172"><span class="cite-bracket">[</span>168<span class="cite-bracket">]</span></a></sup> As the Kikuchi lines carry information about the interplanar angles and distances and, therefore, about the crystal structure, they can also be used for <a href="/wiki/Phase_(matter)" title="Phase (matter)">phase</a> identification<sup id="cite_ref-:19_173-0" class="reference"><a href="#cite_note-:19-173"><span class="cite-bracket">[</span>169<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpts 6–7">: Chpts 6–7 </span></sup> or <a href="/wiki/Electron_backscatter_diffraction#Strain_measurement" title="Electron backscatter diffraction">strain analysis</a>.<sup id="cite_ref-:19_173-1" class="reference"><a href="#cite_note-:19-173"><span class="cite-bracket">[</span>169<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Chpt 17">: Chpt 17 </span></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=28" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-Diff-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Diff_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Diff_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Sometimes electron diffraction is defined similar to light or water wave diffraction, that is interference or bending of (electron) waves around the corners of an obstacle or through an aperture. With this definition the electrons are behaving as waves in a general sense, corresponding to a type of Fresnel diffraction. However, in every case where electron diffraction is used in practice the obstacles of relevance are atoms, so the general definition is not used herein.</span> </li> <li id="cite_note-Wlength-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-Wlength_32-0">^</a></b></span> <span class="reference-text">In their first, shorter paper in Nature Davisson and Germer stated that their results were consistent with the de Broglie wavelength. Similarly Thomson and Reid used the de Broglie wavelength to explain their results. However, in their subsequently, more detailed papers Davisson and Germer specifically stated that their work was consistent with <i>undulatory mechanics</i>, and not consistent with the de Broglie wavelength. More importantly, the (non-relativistic) wavelength comes automatically from the Schrödinger equation, as do the equations for the amplitudes of electron diffraction; these cannot be derived from the de Broglie wavelength. As cited in the main text, Davisson and Germer were able to demonstrate that the diffraction angles were different from those of <a href="/wiki/Bragg%27s_Law" class="mw-redirect" title="Bragg's Law">Bragg's Law</a>, needing a proper treatment which includes the average potential inside the material. Since all theoretical models start from the Schrödinger equation (with relativistic terms included) this is really the key to electron diffraction, not the <i>de Broglie wavelength</i>. See <a href="/wiki/Matter_waves" class="mw-redirect" title="Matter waves">matter waves</a> for more discussion.</span> </li> <li id="cite_note-Pi-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-Pi_92-0">^</a></b></span> <span class="reference-text">Herein crystallographic conventions are used. Often in physics a plane wave is defined as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exp(i\mathbf {k} \cdot \mathbf {r} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exp(i\mathbf {k} \cdot \mathbf {r} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cfb48be5990901b23cbd05058acbb2e45917806" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.356ex; height:2.843ex;" alt="{\displaystyle \exp(i\mathbf {k} \cdot \mathbf {r} )}"></span>. This changes some of the equations by a factor of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>π<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span>, for instance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \hbar }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \hbar }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de68de3a92517953436c93b5a76461d49160cc41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.306ex; height:2.176ex;" alt="{\displaystyle \hbar }"></span> appears instead of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span>, but nothing significant.</span> </li> <li id="cite_note-RecP-93"><span class="mw-cite-backlink">^ <a href="#cite_ref-RecP_93-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-RecP_93-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-RecP_93-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-RecP_93-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text">Notations differ depending upon whether the source is crystallography, physics or other. In addition to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ,\mathbf {B} ,\mathbf {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ,\mathbf {B} ,\mathbf {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9478e59b25b50d1eda7374d54780c6f1eb041196" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.92ex; height:2.509ex;" alt="{\displaystyle \mathbf {A} ,\mathbf {B} ,\mathbf {C} }"></span> for the reciprocal lattice vectors as used herein, sometimes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} ^{*},\mathbf {b} ^{*},\mathbf {c} ^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} ^{*},\mathbf {b} ^{*},\mathbf {c} ^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44ba1b31e0b0c65e70e860a11ca0c1c1fa959ce4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.203ex; height:2.676ex;" alt="{\displaystyle \mathbf {a} ^{*},\mathbf {b} ^{*},\mathbf {c} ^{*}}"></span> are used. Less common, but still sometimes used, are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} _{1},\mathbf {a} _{2},\mathbf {a} _{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} _{1},\mathbf {a} _{2},\mathbf {a} _{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e38ce073719d912ca1715674c897ba6ad928fbd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.129ex; height:2.009ex;" alt="{\displaystyle \mathbf {a} _{1},\mathbf {a} _{2},\mathbf {a} _{3}}"></span> for real space, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {b} _{1},\mathbf {b} _{2},\mathbf {b} _{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {b} _{1},\mathbf {b} _{2},\mathbf {b} _{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0acfc4c50ce02ed71cffa31df28007ac56bd2bb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.686ex; height:2.509ex;" alt="{\displaystyle \mathbf {b} _{1},\mathbf {b} _{2},\mathbf {b} _{3}}"></span> for reciprocal space. Also, sometimes reciprocal lattice vectors are written with capitals as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> not <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>, and the length can differ by a factor of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>π<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span> as mentioned above if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exp(i\mathbf {k} \cdot \mathbf {r} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exp(i\mathbf {k} \cdot \mathbf {r} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cfb48be5990901b23cbd05058acbb2e45917806" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.356ex; height:2.843ex;" alt="{\displaystyle \exp(i\mathbf {k} \cdot \mathbf {r} )}"></span> is used for plane waves. (Different notations also exist for the wavevectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {k} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {k} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ea699cbc1f843f2e855577d57529430ec33a1ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:2.176ex;" alt="{\displaystyle \mathbf {k} }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\chi } }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>χ<!-- χ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\chi } }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0707ee581bfd805c6cdc700d2ac48a4b45f75610" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.455ex; height:2.009ex;" alt="{\displaystyle \mathbf {\chi } }"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7be005a326b7ac3fe4c24bca391369f44c4c2876" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.416ex; height:2.009ex;" alt="{\displaystyle \mathbf {q} }"></span>.) Similar notation differences can occur with aperiodic materials and superstructures. Furthermore, when dealing with surfaces as in <a href="#Low-energy_electron_diffraction">LEED</a>, normally two-dimensional real and reciprocal lattice vectors in the surface are used, defined in terms of a matrix multiplier of the simple surface unit cell when there are reconstructions. To make things slightly more complicated, frequently four <a href="/wiki/Miller_indices" class="mw-redirect" title="Miller indices">Miller indices</a> are used for hexagonal systems even though only three are needed.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=29" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Cowley95-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Cowley95_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Cowley95_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Cowley95_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Cowley95_2-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Cowley95_2-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Cowley95_2-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Cowley95_2-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Cowley95_2-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Cowley95_2-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Cowley95_2-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-Cowley95_2-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-Cowley95_2-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-Cowley95_2-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-Cowley95_2-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-Cowley95_2-14"><sup><i><b>o</b></i></sup></a> <a href="#cite_ref-Cowley95_2-15"><sup><i><b>p</b></i></sup></a> <a href="#cite_ref-Cowley95_2-16"><sup><i><b>q</b></i></sup></a> <a href="#cite_ref-Cowley95_2-17"><sup><i><b>r</b></i></sup></a> <a href="#cite_ref-Cowley95_2-18"><sup><i><b>s</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFJohn_M.1995" class="citation book cs1">John M., Cowley (1995). <a rel="nofollow" class="external text" href="http://worldcat.org/oclc/247191522"><i>Diffraction physics</i></a>. Elsevier. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-444-82218-6" title="Special:BookSources/0-444-82218-6"><bdi>0-444-82218-6</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/247191522">247191522</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Diffraction+physics&rft.pub=Elsevier&rft.date=1995&rft_id=info%3Aoclcnum%2F247191522&rft.isbn=0-444-82218-6&rft.aulast=John+M.&rft.aufirst=Cowley&rft_id=http%3A%2F%2Fworldcat.org%2Foclc%2F247191522&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Reimer-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-Reimer_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Reimer_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Reimer_3-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Reimer_3-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Reimer_3-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Reimer_3-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReimer2013" class="citation book cs1">Reimer, Ludwig (2013). <a rel="nofollow" class="external text" href="http://worldcat.org/oclc/1066178493"><i>Transmission Electron Microscopy : Physics of Image Formation and Microanalysis</i></a>. Springer Berlin / Heidelberg. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-662-13553-2" title="Special:BookSources/978-3-662-13553-2"><bdi>978-3-662-13553-2</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1066178493">1066178493</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Transmission+Electron+Microscopy+%3A+Physics+of+Image+Formation+and+Microanalysis.&rft.pub=Springer+Berlin+%2F+Heidelberg&rft.date=2013&rft_id=info%3Aoclcnum%2F1066178493&rft.isbn=978-3-662-13553-2&rft.aulast=Reimer&rft.aufirst=Ludwig&rft_id=http%3A%2F%2Fworldcat.org%2Foclc%2F1066178493&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Form-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-Form_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Form_4-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Form_4-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Form_4-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Form_4-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Form_4-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFColliexCowleyDudarevFink2006" class="citation cs2">Colliex, C.; Cowley, J. M.; Dudarev, S. L.; Fink, M.; Gjønnes, J.; Hilderbrandt, R.; Howie, A.; Lynch, D. F.; Peng, L. M. (2006), Prince, E. (ed.), <a rel="nofollow" class="external text" href="https://xrpp.iucr.org/cgi-bin/itr?url_ver=Z39.88-2003&rft_dat=what%3Dchapter%26volid%3DCb%26chnumo%3D4o3%26chvers%3Dv0001">"Electron diffraction"</a>, <i>International Tables for Crystallography</i>, vol. C (1 ed.), Chester, England: International Union of Crystallography, pp. 259–429, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1107%2F97809553602060000593">10.1107/97809553602060000593</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4020-1900-5" title="Special:BookSources/978-1-4020-1900-5"><bdi>978-1-4020-1900-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Tables+for+Crystallography&rft.atitle=Electron+diffraction&rft.volume=C&rft.pages=259-429&rft.date=2006&rft_id=info%3Adoi%2F10.1107%2F97809553602060000593&rft.isbn=978-1-4020-1900-5&rft.aulast=Colliex&rft.aufirst=C.&rft.au=Cowley%2C+J.+M.&rft.au=Dudarev%2C+S.+L.&rft.au=Fink%2C+M.&rft.au=Gj%C3%B8nnes%2C+J.&rft.au=Hilderbrandt%2C+R.&rft.au=Howie%2C+A.&rft.au=Lynch%2C+D.+F.&rft.au=Peng%2C+L.+M.&rft_id=https%3A%2F%2Fxrpp.iucr.org%2Fcgi-bin%2Fitr%3Furl_ver%3DZ39.88-2003%26rft_dat%3Dwhat%253Dchapter%2526volid%253DCb%2526chnumo%253D4o3%2526chvers%253Dv0001&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:11-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-:11_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:11_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHumphreys1979" class="citation journal cs1">Humphreys, C J (1979). <a rel="nofollow" class="external text" href="https://iopscience.iop.org/article/10.1088/0034-4885/42/11/002">"The scattering of fast electrons by crystals"</a>. <i>Reports on Progress in Physics</i>. <b>42</b> (11): 1825–1887. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0034-4885%2F42%2F11%2F002">10.1088/0034-4885/42/11/002</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0034-4885">0034-4885</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250876999">250876999</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Reports+on+Progress+in+Physics&rft.atitle=The+scattering+of+fast+electrons+by+crystals&rft.volume=42&rft.issue=11&rft.pages=1825-1887&rft.date=1979&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250876999%23id-name%3DS2CID&rft.issn=0034-4885&rft_id=info%3Adoi%2F10.1088%2F0034-4885%2F42%2F11%2F002&rft.aulast=Humphreys&rft.aufirst=C+J&rft_id=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1088%2F0034-4885%2F42%2F11%2F002&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Broglie-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-Broglie_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Broglie_6-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Broglie_6-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Broglie_6-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Broglie_6-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Broglie_6-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Broglie_6-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Broglie_6-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFde_Broglie" class="citation web cs1">de Broglie, Louis Victor. <a rel="nofollow" class="external text" href="https://fondationlouisdebroglie.org/LDB-oeuvres/De_Broglie_Kracklauer.pdf">"On the Theory of Quanta"</a> <span class="cs1-format">(PDF)</span>. <i>Foundation of Louis de Broglie</i> (English translation by A.F. Kracklauer, 2004. ed.)<span class="reference-accessdate">. Retrieved <span class="nowrap">25 February</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Foundation+of+Louis+de+Broglie&rft.atitle=On+the+Theory+of+Quanta&rft.aulast=de+Broglie&rft.aufirst=Louis+Victor&rft_id=https%3A%2F%2Ffondationlouisdebroglie.org%2FLDB-oeuvres%2FDe_Broglie_Kracklauer.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:7-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-:7_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:7_7-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:7_7-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAshcroftMermin2012" class="citation book cs1">Ashcroft, Neil W.; Mermin, N. David (2012). <a class="external text" href="https://en.wikipedia.org/wiki/Special:BookSources/9780030839931"><i>Solid state physics</i></a> (Repr ed.). South Melbourne: Brooks/Cole Thomson Learning. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-03-083993-1" title="Special:BookSources/978-0-03-083993-1"><bdi>978-0-03-083993-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Solid+state+physics&rft.place=South+Melbourne&rft.edition=Repr&rft.pub=Brooks%2FCole+Thomson+Learning&rft.date=2012&rft.isbn=978-0-03-083993-1&rft.aulast=Ashcroft&rft.aufirst=Neil+W.&rft.au=Mermin%2C+N.+David&rft_id=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSpecial%3ABookSources%2F9780030839931&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-HirschEtAl-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-HirschEtAl_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-HirschEtAl_8-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-HirschEtAl_8-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-HirschEtAl_8-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-HirschEtAl_8-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-HirschEtAl_8-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-HirschEtAl_8-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-HirschEtAl_8-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-HirschEtAl_8-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-HirschEtAl_8-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-HirschEtAl_8-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-HirschEtAl_8-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-HirschEtAl_8-12"><sup><i><b>m</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHirschHowieNicholsonPashley1965" class="citation book cs1">Hirsch, P. B.; Howie, A.; Nicholson, R. B.; Pashley, D. W.; Whelan, M. J. (1965). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/2365578"><i>Electron microscopy of thin crystals</i></a>. London: Butterworths. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-408-18550-3" title="Special:BookSources/0-408-18550-3"><bdi>0-408-18550-3</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/2365578">2365578</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Electron+microscopy+of+thin+crystals&rft.place=London&rft.pub=Butterworths&rft.date=1965&rft_id=info%3Aoclcnum%2F2365578&rft.isbn=0-408-18550-3&rft.aulast=Hirsch&rft.aufirst=P.+B.&rft.au=Howie%2C+A.&rft.au=Nicholson%2C+R.+B.&rft.au=Pashley%2C+D.+W.&rft.au=Whelan%2C+M.+J.&rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F2365578&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Peng-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-Peng_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Peng_9-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Peng_9-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Peng_9-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Peng_9-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Peng_9-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Peng_9-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPengDudarevWhelan2011" class="citation book cs1">Peng, L.-M.; Dudarev, S. L.; Whelan, M. J. (2011). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/656767858"><i>High energy electron diffraction and microscopy</i></a>. Oxford: Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-960224-7" title="Special:BookSources/978-0-19-960224-7"><bdi>978-0-19-960224-7</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/656767858">656767858</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=High+energy+electron+diffraction+and+microscopy&rft.place=Oxford&rft.pub=Oxford+University+Press&rft.date=2011&rft_id=info%3Aoclcnum%2F656767858&rft.isbn=978-0-19-960224-7&rft.aulast=Peng&rft.aufirst=L.-M.&rft.au=Dudarev%2C+S.+L.&rft.au=Whelan%2C+M.+J.&rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F656767858&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Pendry71-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-Pendry71_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Pendry71_10-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Pendry71_10-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Pendry71_10-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPendry1971" class="citation journal cs1">Pendry, J B (1971). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1088/0022-3719/4/16/015">"Ion core scattering and low energy electron diffraction. I"</a>. <i>Journal of Physics C: Solid State Physics</i>. <b>4</b> (16): 2501–2513. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1971JPhC....4.2501P">1971JPhC....4.2501P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0022-3719%2F4%2F16%2F015">10.1088/0022-3719/4/16/015</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0022-3719">0022-3719</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics+C%3A+Solid+State+Physics&rft.atitle=Ion+core+scattering+and+low+energy+electron+diffraction.+I&rft.volume=4&rft.issue=16&rft.pages=2501-2513&rft.date=1971&rft.issn=0022-3719&rft_id=info%3Adoi%2F10.1088%2F0022-3719%2F4%2F16%2F015&rft_id=info%3Abibcode%2F1971JPhC....4.2501P&rft.aulast=Pendry&rft.aufirst=J+B&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1088%2F0022-3719%2F4%2F16%2F015&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Maksym-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-Maksym_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Maksym_11-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Maksym_11-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaksymBeeby1981" class="citation journal cs1">Maksym, P.A.; Beeby, J.L. (1981). <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/003960288190649X">"A theory of RHEED"</a>. <i>Surface Science</i>. <b>110</b> (2): 423–438. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1981SurSc.110..423M">1981SurSc.110..423M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0039-6028%2881%2990649-X">10.1016/0039-6028(81)90649-X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Surface+Science&rft.atitle=A+theory+of+RHEED&rft.volume=110&rft.issue=2&rft.pages=423-438&rft.date=1981&rft_id=info%3Adoi%2F10.1016%2F0039-6028%2881%2990649-X&rft_id=info%3Abibcode%2F1981SurSc.110..423M&rft.aulast=Maksym&rft.aufirst=P.A.&rft.au=Beeby%2C+J.L.&rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2F003960288190649X&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Schroedinger-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-Schroedinger_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Schroedinger_12-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Schroedinger_12-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Schroedinger_12-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Schroedinger_12-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Schroedinger_12-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Schroedinger_12-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchrödinger1926" class="citation journal cs1">Schrödinger, E. (1926). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRev.28.1049">"An Undulatory Theory of the Mechanics of Atoms and Molecules"</a>. <i>Physical Review</i>. <b>28</b> (6): 1049–1070. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1926PhRv...28.1049S">1926PhRv...28.1049S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.28.1049">10.1103/PhysRev.28.1049</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-899X">0031-899X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=An+Undulatory+Theory+of+the+Mechanics+of+Atoms+and+Molecules&rft.volume=28&rft.issue=6&rft.pages=1049-1070&rft.date=1926&rft.issn=0031-899X&rft_id=info%3Adoi%2F10.1103%2FPhysRev.28.1049&rft_id=info%3Abibcode%2F1926PhRv...28.1049S&rft.aulast=Schr%C3%B6dinger&rft.aufirst=E.&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRev.28.1049&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Born_&_Wolf-13"><span class="mw-cite-backlink">^ <a href="#cite_ref-Born_&_Wolf_13-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Born_&_Wolf_13-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Born_&_Wolf_13-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Born_&_Wolf_13-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBornWolf1999" class="citation book cs1"><a href="/wiki/Max_Born" title="Max Born">Born, M.</a>; <a href="/wiki/Emil_Wolf" title="Emil Wolf">Wolf, E.</a> (1999). <i><a href="/wiki/Principles_of_Optics" title="Principles of Optics">Principles of Optics</a></i>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-64222-4" title="Special:BookSources/978-0-521-64222-4"><bdi>978-0-521-64222-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Principles+of+Optics&rft.pub=Cambridge+University+Press&rft.date=1999&rft.isbn=978-0-521-64222-4&rft.aulast=Born&rft.aufirst=M.&rft.au=Wolf%2C+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-DictOrigins-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-DictOrigins_14-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShipley1945" class="citation book cs1">Shipley, J.T. (1945). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/dictionaryofword00ship/page/133"><i>Dictionary of Word Origins</i></a></span>. <a href="/wiki/The_Philosophical_Library" title="The Philosophical Library">The Philosophical Library</a>. p. 133. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-88029-751-6" title="Special:BookSources/978-0-88029-751-6"><bdi>978-0-88029-751-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Dictionary+of+Word+Origins&rft.pages=133&rft.pub=The+Philosophical+Library&rft.date=1945&rft.isbn=978-0-88029-751-6&rft.aulast=Shipley&rft.aufirst=J.T.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fdictionaryofword00ship%2Fpage%2F133&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Lacks-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lacks_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lacks_15-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIversenLacks2012" class="citation journal cs1">Iversen, Paul; Lacks, Daniel J. (2012). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0304388612000216">"A life of its own: The tenuous connection between Thales of Miletus and the study of electrostatic charging"</a>. <i>Journal of Electrostatics</i>. <b>70</b> (3): 309–311. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.elstat.2012.03.002">10.1016/j.elstat.2012.03.002</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0304-3886">0304-3886</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Electrostatics&rft.atitle=A+life+of+its+own%3A+The+tenuous+connection+between+Thales+of+Miletus+and+the+study+of+electrostatic+charging&rft.volume=70&rft.issue=3&rft.pages=309-311&rft.date=2012&rft_id=info%3Adoi%2F10.1016%2Fj.elstat.2012.03.002&rft.issn=0304-3886&rft.aulast=Iversen&rft.aufirst=Paul&rft.au=Lacks%2C+Daniel+J.&rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0304388612000216&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Harsch_2007-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-Harsch_2007_16-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarsch2007" class="citation journal cs1">Harsch, Viktor (2007). <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18018443/">"Otto von Gericke (1602–1686) and his pioneering vacuum experiments"</a>. <i>Aviation, Space, and Environmental Medicine</i>. <b>78</b> (11): 1075–1077. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.3357%2Fasem.2159.2007">10.3357/asem.2159.2007</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0095-6562">0095-6562</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18018443">18018443</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Aviation%2C+Space%2C+and+Environmental+Medicine&rft.atitle=Otto+von+Gericke+%281602%E2%80%931686%29+and+his+pioneering+vacuum+experiments&rft.volume=78&rft.issue=11&rft.pages=1075-1077&rft.date=2007&rft.issn=0095-6562&rft_id=info%3Apmid%2F18018443&rft_id=info%3Adoi%2F10.3357%2Fasem.2159.2007&rft.aulast=Harsch&rft.aufirst=Viktor&rft_id=https%3A%2F%2Fpubmed.ncbi.nlm.nih.gov%2F18018443%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:1-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-:1_17-0">^</a></b></span> <span class="reference-text">Michael Faraday (1838) <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ypNDAAAAcAAJ&pg=PA125">"VIII. Experimental researches in electricity. — Thirteenth series.,"</a> <i>Philosophical Transactions of the Royal Society of London</i>, <b>128</b> : 125–168.</span> </li> <li id="cite_note-:3-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-:3_18-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPlücker1858" class="citation journal cs1">Plücker, M. (1858). <a rel="nofollow" class="external text" href="https://doi.org/10.1080/14786445808642591">"XLVI. Observations on the electrical discharge through rarefied gases"</a>. <i>The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science</i>. <b>16</b> (109): 408–418. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F14786445808642591">10.1080/14786445808642591</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1941-5982">1941-5982</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+London%2C+Edinburgh%2C+and+Dublin+Philosophical+Magazine+and+Journal+of+Science&rft.atitle=XLVI.+Observations+on+the+electrical+discharge+through+rarefied+gases&rft.volume=16&rft.issue=109&rft.pages=408-418&rft.date=1858&rft_id=info%3Adoi%2F10.1080%2F14786445808642591&rft.issn=1941-5982&rft.aulast=Pl%C3%BCcker&rft.aufirst=M.&rft_id=https%3A%2F%2Fdoi.org%2F10.1080%2F14786445808642591&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Martin_1986-19"><span class="mw-cite-backlink">^ <a href="#cite_ref-Martin_1986_19-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Martin_1986_19-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Martin_1986_19-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMartin1986" class="citation cs2">Martin, Andre (1986), "Cathode Ray Tubes for Industrial and Military Applications", in Hawkes, Peter (ed.), <i>Advances in Electronics and Electron Physics, Volume 67</i>, Academic Press, pp. 183–186, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780080577333" title="Special:BookSources/9780080577333"><bdi>9780080577333</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Cathode+Ray+Tubes+for+Industrial+and+Military+Applications&rft.btitle=Advances+in+Electronics+and+Electron+Physics%2C+Volume+67&rft.pages=183-186&rft.pub=Academic+Press&rft.date=1986&rft.isbn=9780080577333&rft.aulast=Martin&rft.aufirst=Andre&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldstein1876" class="citation book cs1 cs1-prop-foreign-lang-source">Goldstein, Eugen (1876). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=7-caAAAAYAAJ&pg=PA279"><i>Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin</i></a> (in German). The Academy. pp. 279–295, pp 286.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Monatsberichte+der+K%C3%B6niglich+Preussischen+Akademie+der+Wissenschaften+zu+Berlin&rft.pages=279-295%2C+pp+286&rft.pub=The+Academy&rft.date=1876&rft.aulast=Goldstein&rft.aufirst=Eugen&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D7-caAAAAYAAJ%26pg%3DPA279&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Whittaker-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-Whittaker_21-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWhittaker1951" class="citation book cs1"><a href="/wiki/E._T._Whittaker" title="E. T. Whittaker">Whittaker, E.T.</a> (1951). <i><a href="/wiki/A_History_of_the_Theories_of_Aether_and_Electricity" title="A History of the Theories of Aether and Electricity">A History of the Theories of Aether and Electricity</a></i>. Vol. 1. London: Nelson.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+History+of+the+Theories+of+Aether+and+Electricity&rft.place=London&rft.pub=Nelson&rft.date=1951&rft.aulast=Whittaker&rft.aufirst=E.T.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:2-22"><span class="mw-cite-backlink">^ <a href="#cite_ref-:2_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:2_22-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCrookes1878" class="citation journal cs1">Crookes, William (1878). <a rel="nofollow" class="external text" href="https://royalsocietypublishing.org/doi/10.1098/rspl.1878.0098">"I. On the illumination of lines of molecular pressure, and the trajectory of molecules"</a>. <i>Proceedings of the Royal Society of London</i>. <b>28</b> (190–195): 103–111. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspl.1878.0098">10.1098/rspl.1878.0098</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0370-1662">0370-1662</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122006529">122006529</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society+of+London&rft.atitle=I.+On+the+illumination+of+lines+of+molecular+pressure%2C+and+the+trajectory+of+molecules&rft.volume=28&rft.issue=190%E2%80%93195&rft.pages=103-111&rft.date=1878&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122006529%23id-name%3DS2CID&rft.issn=0370-1662&rft_id=info%3Adoi%2F10.1098%2Frspl.1878.0098&rft.aulast=Crookes&rft.aufirst=William&rft_id=https%3A%2F%2Froyalsocietypublishing.org%2Fdoi%2F10.1098%2Frspl.1878.0098&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomson1897" class="citation journal cs1">Thomson, J. J. (1897). <a rel="nofollow" class="external text" href="https://doi.org/10.1080/14786449708621070">"XL. Cathode Rays"</a>. <i>The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science</i>. <b>44</b> (269): 293–316. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F14786449708621070">10.1080/14786449708621070</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1941-5982">1941-5982</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+London%2C+Edinburgh%2C+and+Dublin+Philosophical+Magazine+and+Journal+of+Science&rft.atitle=XL.+Cathode+Rays&rft.volume=44&rft.issue=269&rft.pages=293-316&rft.date=1897&rft_id=info%3Adoi%2F10.1080%2F14786449708621070&rft.issn=1941-5982&rft.aulast=Thomson&rft.aufirst=J.+J.&rft_id=https%3A%2F%2Fdoi.org%2F10.1080%2F14786449708621070&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStoney1891" class="citation journal cs1">Stoney, George Johnstone (1891). <a rel="nofollow" class="external text" href="https://www.biodiversitylibrary.org/item/51466">"Cause of Double Lines in Spectra"</a>. <i>The Scientific Transactions of the Royal Dublin Society</i>. <b>4</b>. Dublin: 563, pp 583.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Scientific+Transactions+of+the+Royal+Dublin+Society&rft.atitle=Cause+of+Double+Lines+in+Spectra&rft.volume=4&rft.pages=563%2C+pp+583&rft.date=1891&rft.aulast=Stoney&rft.aufirst=George+Johnstone&rft_id=https%3A%2F%2Fwww.biodiversitylibrary.org%2Fitem%2F51466&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEinstein" class="citation book cs1">Einstein, Albert. <a class="external text" href="https://en.wikisource.org/wiki/Relativity:_The_Special_and_General_Theory"><i>Relativity: The Special and General Theory</i></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Relativity%3A+The+Special+and+General+Theory&rft.aulast=Einstein&rft.aufirst=Albert&rft_id=https%3A%2F%2Fen.wikisource.org%2Fwiki%2FRelativity%3A_The_Special_and_General_Theory&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBohr1913" class="citation journal cs1">Bohr, N. (1913). <a rel="nofollow" class="external text" href="https://www.tandfonline.com/doi/full/10.1080/14786441308634955">"On the constitution of atoms and molecules"</a>. <i>The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science</i>. <b>26</b> (151): 1–25. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1913PMag...26....1B">1913PMag...26....1B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F14786441308634955">10.1080/14786441308634955</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1941-5982">1941-5982</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+London%2C+Edinburgh%2C+and+Dublin+Philosophical+Magazine+and+Journal+of+Science&rft.atitle=On+the+constitution+of+atoms+and+molecules&rft.volume=26&rft.issue=151&rft.pages=1-25&rft.date=1913&rft.issn=1941-5982&rft_id=info%3Adoi%2F10.1080%2F14786441308634955&rft_id=info%3Abibcode%2F1913PMag...26....1B&rft.aulast=Bohr&rft.aufirst=N.&rft_id=https%3A%2F%2Fwww.tandfonline.com%2Fdoi%2Ffull%2F10.1080%2F14786441308634955&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-DG0-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-DG0_27-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavissonGermer1927" class="citation journal cs1">Davisson, C.; Germer, L. H. (1927). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1038/119558a0">"The Scattering of Electrons by a Single Crystal of Nickel"</a>. <i>Nature</i>. <b>119</b> (2998): 558–560. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1927Natur.119..558D">1927Natur.119..558D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F119558a0">10.1038/119558a0</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0028-0836">0028-0836</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4104602">4104602</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=The+Scattering+of+Electrons+by+a+Single+Crystal+of+Nickel&rft.volume=119&rft.issue=2998&rft.pages=558-560&rft.date=1927&rft_id=info%3Adoi%2F10.1038%2F119558a0&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4104602%23id-name%3DS2CID&rft.issn=0028-0836&rft_id=info%3Abibcode%2F1927Natur.119..558D&rft.aulast=Davisson&rft.aufirst=C.&rft.au=Germer%2C+L.+H.&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1038%2F119558a0&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-DG1-28"><span class="mw-cite-backlink">^ <a href="#cite_ref-DG1_28-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-DG1_28-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavissonGermer1927" class="citation journal cs1">Davisson, C.; Germer, L. H. (1927). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2Fphysrev.30.705">"Diffraction of Electrons by a Crystal of Nickel"</a>. <i>Physical Review</i>. <b>30</b> (6): 705–740. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1927PhRv...30..705D">1927PhRv...30..705D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2Fphysrev.30.705">10.1103/physrev.30.705</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-899X">0031-899X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=Diffraction+of+Electrons+by+a+Crystal+of+Nickel&rft.volume=30&rft.issue=6&rft.pages=705-740&rft.date=1927&rft.issn=0031-899X&rft_id=info%3Adoi%2F10.1103%2Fphysrev.30.705&rft_id=info%3Abibcode%2F1927PhRv...30..705D&rft.aulast=Davisson&rft.aufirst=C.&rft.au=Germer%2C+L.+H.&rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252Fphysrev.30.705&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-DG2-29"><span class="mw-cite-backlink">^ <a href="#cite_ref-DG2_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-DG2_29-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-DG2_29-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavissonGermer1928" class="citation journal cs1">Davisson, C. J.; Germer, L. H. (1928). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1085484">"Reflection of Electrons by a Crystal of Nickel"</a>. <i>Proceedings of the National Academy of Sciences</i>. <b>14</b> (4): 317–322. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1928PNAS...14..317D">1928PNAS...14..317D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.14.4.317">10.1073/pnas.14.4.317</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0027-8424">0027-8424</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1085484">1085484</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16587341">16587341</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences&rft.atitle=Reflection+of+Electrons+by+a+Crystal+of+Nickel&rft.volume=14&rft.issue=4&rft.pages=317-322&rft.date=1928&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1085484%23id-name%3DPMC&rft_id=info%3Abibcode%2F1928PNAS...14..317D&rft_id=info%3Apmid%2F16587341&rft_id=info%3Adoi%2F10.1073%2Fpnas.14.4.317&rft.issn=0027-8424&rft.aulast=Davisson&rft.aufirst=C.+J.&rft.au=Germer%2C+L.+H.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1085484&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:0-30"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_30-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_30-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavissonGermer1928" class="citation journal cs1">Davisson, C. J.; Germer, L. H. (1928). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1085652">"Reflection and Refraction of Electrons by a Crystal of Nickel"</a>. <i>Proceedings of the National Academy of Sciences</i>. <b>14</b> (8): 619–627. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1928PNAS...14..619D">1928PNAS...14..619D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.14.8.619">10.1073/pnas.14.8.619</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0027-8424">0027-8424</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1085652">1085652</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16587378">16587378</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences&rft.atitle=Reflection+and+Refraction+of+Electrons+by+a+Crystal+of+Nickel&rft.volume=14&rft.issue=8&rft.pages=619-627&rft.date=1928&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1085652%23id-name%3DPMC&rft_id=info%3Abibcode%2F1928PNAS...14..619D&rft_id=info%3Apmid%2F16587378&rft_id=info%3Adoi%2F10.1073%2Fpnas.14.8.619&rft.issn=0027-8424&rft.aulast=Davisson&rft.aufirst=C.+J.&rft.au=Germer%2C+L.+H.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1085652&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomsonReid1927" class="citation journal cs1">Thomson, G. P.; Reid, A. (1927). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F119890a0">"Diffraction of Cathode Rays by a Thin Film"</a>. <i>Nature</i>. <b>119</b> (3007): 890. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1927Natur.119Q.890T">1927Natur.119Q.890T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F119890a0">10.1038/119890a0</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0028-0836">0028-0836</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4122313">4122313</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Diffraction+of+Cathode+Rays+by+a+Thin+Film&rft.volume=119&rft.issue=3007&rft.pages=890&rft.date=1927&rft_id=info%3Adoi%2F10.1038%2F119890a0&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4122313%23id-name%3DS2CID&rft.issn=0028-0836&rft_id=info%3Abibcode%2F1927Natur.119Q.890T&rft.aulast=Thomson&rft.aufirst=G.+P.&rft.au=Reid%2C+A.&rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252F119890a0&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReid1928" class="citation journal cs1">Reid, Alexander (1928). <a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1928.0121">"The diffraction of cathode rays by thin celluloid films"</a>. <i>Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character</i>. <b>119</b> (783): 663–667. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1928RSPSA.119..663R">1928RSPSA.119..663R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1928.0121">10.1098/rspa.1928.0121</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0950-1207">0950-1207</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:98311959">98311959</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society+of+London.+Series+A%2C+Containing+Papers+of+a+Mathematical+and+Physical+Character&rft.atitle=The+diffraction+of+cathode+rays+by+thin+celluloid+films&rft.volume=119&rft.issue=783&rft.pages=663-667&rft.date=1928&rft_id=info%3Adoi%2F10.1098%2Frspa.1928.0121&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A98311959%23id-name%3DS2CID&rft.issn=0950-1207&rft_id=info%3Abibcode%2F1928RSPSA.119..663R&rft.aulast=Reid&rft.aufirst=Alexander&rft_id=https%3A%2F%2Fdoi.org%2F10.1098%252Frspa.1928.0121&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNavarro2010" class="citation journal cs1">Navarro, Jaume (2010). <a rel="nofollow" class="external text" href="https://www.cambridge.org/core/product/identifier/S0007087410000026/type/journal_article">"Electron diffraction chez Thomson: early responses to quantum physics in Britain"</a>. <i>The British Journal for the History of Science</i>. <b>43</b> (2): 245–275. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0007087410000026">10.1017/S0007087410000026</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0007-0874">0007-0874</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:171025814">171025814</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+British+Journal+for+the+History+of+Science&rft.atitle=Electron+diffraction+chez+Thomson%3A+early+responses+to+quantum+physics+in+Britain&rft.volume=43&rft.issue=2&rft.pages=245-275&rft.date=2010&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A171025814%23id-name%3DS2CID&rft.issn=0007-0874&rft_id=info%3Adoi%2F10.1017%2FS0007087410000026&rft.aulast=Navarro&rft.aufirst=Jaume&rft_id=https%3A%2F%2Fwww.cambridge.org%2Fcore%2Fproduct%2Fidentifier%2FS0007087410000026%2Ftype%2Fjournal_article&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Bethe-35"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bethe_35-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bethe_35-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Bethe_35-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Bethe_35-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Bethe_35-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Bethe_35-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBethe1928" class="citation journal cs1 cs1-prop-foreign-lang-source">Bethe, H. (1928). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/10.1002/andp.19283921704">"Theorie der Beugung von Elektronen an Kristallen"</a>. <i>Annalen der Physik</i> (in German). <b>392</b> (17): 55–129. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1928AnP...392...55B">1928AnP...392...55B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.19283921704">10.1002/andp.19283921704</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annalen+der+Physik&rft.atitle=Theorie+der+Beugung+von+Elektronen+an+Kristallen&rft.volume=392&rft.issue=17&rft.pages=55-129&rft.date=1928&rft_id=info%3Adoi%2F10.1002%2Fandp.19283921704&rft_id=info%3Abibcode%2F1928AnP...392...55B&rft.aulast=Bethe&rft.aufirst=H.&rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Fandp.19283921704&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:17-36"><span class="mw-cite-backlink">^ <a href="#cite_ref-:17_36-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:17_36-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKikuchi1928" class="citation journal cs1">Kikuchi, Seishi (1928). <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?output=instlink&q=info:sxVYQV4VcTcJ:scholar.google.com/&hl=en&as_sdt=0,14&as_ylo=1927&as_yhi=1929&scillfp=7509118820046091375&oi=lle">"Diffraction of cathode rays by mica"</a>. <i>Proceedings of the Imperial Academy</i>. <b>4</b> (6): 271–274. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2183%2Fpjab1912.4.271">10.2183/pjab1912.4.271</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4121059">4121059</a> – via Google Scholar.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Imperial+Academy&rft.atitle=Diffraction+of+cathode+rays+by+mica&rft.volume=4&rft.issue=6&rft.pages=271-274&rft.date=1928&rft_id=info%3Adoi%2F10.2183%2Fpjab1912.4.271&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4121059%23id-name%3DS2CID&rft.aulast=Kikuchi&rft.aufirst=Seishi&rft_id=https%3A%2F%2Fscholar.google.com%2Fscholar%3Foutput%3Dinstlink%26q%3Dinfo%3AsxVYQV4VcTcJ%3Ascholar.google.com%2F%26hl%3Den%26as_sdt%3D0%2C14%26as_ylo%3D1927%26as_yhi%3D1929%26scillfp%3D7509118820046091375%26oi%3Dlle&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:18-37"><span class="mw-cite-backlink">^ <a href="#cite_ref-:18_37-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:18_37-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKikuchi1928" class="citation journal cs1">Kikuchi, Seishi (1928). "Electron diffraction in single crystals". <i>Japanese Journal of Physics</i>. <b>5</b> (3061): 83–96.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Japanese+Journal+of+Physics&rft.atitle=Electron+diffraction+in+single+crystals&rft.volume=5&rft.issue=3061&rft.pages=83-96&rft.date=1928&rft.aulast=Kikuchi&rft.aufirst=Seishi&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarkWierl1930" class="citation journal cs1">Mark, Herman; Wierl, Raymond (1930). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007/bf01497860">"Neuere Ergebnisse der Elektronenbeugung"</a>. <i>Die Naturwissenschaften</i>. <b>18</b> (36): 778–786. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1930NW.....18..778M">1930NW.....18..778M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf01497860">10.1007/bf01497860</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0028-1042">0028-1042</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9815364">9815364</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Die+Naturwissenschaften&rft.atitle=Neuere+Ergebnisse+der+Elektronenbeugung&rft.volume=18&rft.issue=36&rft.pages=778-786&rft.date=1930&rft_id=info%3Adoi%2F10.1007%2Fbf01497860&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9815364%23id-name%3DS2CID&rft.issn=0028-1042&rft_id=info%3Abibcode%2F1930NW.....18..778M&rft.aulast=Mark&rft.aufirst=Herman&rft.au=Wierl%2C+Raymond&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1007%2Fbf01497860&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarkWiel1930" class="citation journal cs1">Mark, Herman; Wiel, Raymond (1930). "Die ermittlung von molekülstrukturen durch beugung von elektronen an einem dampfstrahl". <i>Zeitschrift für Elektrochemie und angewandte physikalische Chemie</i>. <b>36</b> (9): 675–676. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fbbpc.19300360921">10.1002/bbpc.19300360921</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:178706417">178706417</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Zeitschrift+f%C3%BCr+Elektrochemie+und+angewandte+physikalische+Chemie&rft.atitle=Die+ermittlung+von+molek%C3%BClstrukturen+durch+beugung+von+elektronen+an+einem+dampfstrahl&rft.volume=36&rft.issue=9&rft.pages=675-676&rft.date=1930&rft_id=info%3Adoi%2F10.1002%2Fbbpc.19300360921&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A178706417%23id-name%3DS2CID&rft.aulast=Mark&rft.aufirst=Herman&rft.au=Wiel%2C+Raymond&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:20-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-:20_40-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaxwell1933" class="citation journal cs1">Maxwell, Louis R. (1933). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRev.44.73">"Electron Diffraction by Liquids"</a>. <i>Physical Review</i>. <b>44</b> (2): 73–76. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1933PhRv...44...73M">1933PhRv...44...73M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.44.73">10.1103/PhysRev.44.73</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-899X">0031-899X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=Electron+Diffraction+by+Liquids&rft.volume=44&rft.issue=2&rft.pages=73-76&rft.date=1933&rft.issn=0031-899X&rft_id=info%3Adoi%2F10.1103%2FPhysRev.44.73&rft_id=info%3Abibcode%2F1933PhRv...44...73M&rft.aulast=Maxwell&rft.aufirst=Louis+R.&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRev.44.73&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Knoll1-41"><span class="mw-cite-backlink">^ <a href="#cite_ref-Knoll1_41-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Knoll1_41-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnollRuska1932" class="citation journal cs1">Knoll, M.; Ruska, E. (1932). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1002/andp.19324040506">"Beitrag zur geometrischen Elektronenoptik. I"</a>. <i>Annalen der Physik</i>. <b>404</b> (5): 607–640. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1932AnP...404..607K">1932AnP...404..607K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.19324040506">10.1002/andp.19324040506</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-3804">0003-3804</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annalen+der+Physik&rft.atitle=Beitrag+zur+geometrischen+Elektronenoptik.+I&rft.volume=404&rft.issue=5&rft.pages=607-640&rft.date=1932&rft.issn=0003-3804&rft_id=info%3Adoi%2F10.1002%2Fandp.19324040506&rft_id=info%3Abibcode%2F1932AnP...404..607K&rft.aulast=Knoll&rft.aufirst=M.&rft.au=Ruska%2C+E.&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1002%2Fandp.19324040506&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Knoll2-42"><span class="mw-cite-backlink">^ <a href="#cite_ref-Knoll2_42-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Knoll2_42-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnollRuska1932" class="citation journal cs1 cs1-prop-foreign-lang-source">Knoll, M.; Ruska, E. (1932). <a rel="nofollow" class="external text" href="http://link.springer.com/10.1007/BF01342199">"Das Elektronenmikroskop"</a>. <i>Zeitschrift für Physik</i> (in German). <b>78</b> (5–6): 318–339. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1932ZPhy...78..318K">1932ZPhy...78..318K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01342199">10.1007/BF01342199</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1434-6001">1434-6001</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:186239132">186239132</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Zeitschrift+f%C3%BCr+Physik&rft.atitle=Das+Elektronenmikroskop&rft.volume=78&rft.issue=5%E2%80%936&rft.pages=318-339&rft.date=1932&rft_id=info%3Adoi%2F10.1007%2FBF01342199&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A186239132%23id-name%3DS2CID&rft.issn=1434-6001&rft_id=info%3Abibcode%2F1932ZPhy...78..318K&rft.aulast=Knoll&rft.aufirst=M.&rft.au=Ruska%2C+E.&rft_id=http%3A%2F%2Flink.springer.com%2F10.1007%2FBF01342199&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCalbick1944" class="citation journal cs1">Calbick, C. J. (1944). <a rel="nofollow" class="external text" href="http://aip.scitation.org/doi/10.1063/1.1707371">"Historical Background of Electron Optics"</a>. <i>Journal of Applied Physics</i>. <b>15</b> (10): 685–690. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1944JAP....15..685C">1944JAP....15..685C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1707371">10.1063/1.1707371</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0021-8979">0021-8979</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Applied+Physics&rft.atitle=Historical+Background+of+Electron+Optics&rft.volume=15&rft.issue=10&rft.pages=685-690&rft.date=1944&rft.issn=0021-8979&rft_id=info%3Adoi%2F10.1063%2F1.1707371&rft_id=info%3Abibcode%2F1944JAP....15..685C&rft.aulast=Calbick&rft.aufirst=C.+J.&rft_id=http%3A%2F%2Faip.scitation.org%2Fdoi%2F10.1063%2F1.1707371&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHertz2019" class="citation cs2">Hertz, Heinrich (2019), <a rel="nofollow" class="external text" href="https://dx.doi.org/10.4324/9780429198960-4">"Introduction to Heinrich Hertz's Miscellaneous Papers (1895) by Philipp Lenard"</a>, <i>Heinrich Rudolf Hertz (1857–1894)</i>, Routledge, pp. 87–88, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4324%2F9780429198960-4">10.4324/9780429198960-4</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-429-19896-0" title="Special:BookSources/978-0-429-19896-0"><bdi>978-0-429-19896-0</bdi></a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:195494352">195494352</a><span class="reference-accessdate">, retrieved <span class="nowrap">2023-02-24</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Heinrich+Rudolf+Hertz+%281857%E2%80%931894%29&rft.atitle=Introduction+to+Heinrich+Hertz%27s+Miscellaneous+Papers+%281895%29+by+Philipp+Lenard&rft.pages=87-88&rft.date=2019&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A195494352%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4324%2F9780429198960-4&rft.isbn=978-0-429-19896-0&rft.aulast=Hertz&rft.aufirst=Heinrich&rft_id=http%3A%2F%2Fdx.doi.org%2F10.4324%2F9780429198960-4&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWiechert1899" class="citation journal cs1 cs1-prop-foreign-lang-source">Wiechert, E. (1899). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/10.1002/andp.18993051203">"Experimentelle Untersuchungen über die Geschwindigkeit und die magnetische Ablenkbarkeit der Kathodenstrahlen"</a>. <i>Annalen der Physik und Chemie</i> (in German). <b>305</b> (12): 739–766. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1899AnP...305..739W">1899AnP...305..739W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.18993051203">10.1002/andp.18993051203</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annalen+der+Physik+und+Chemie&rft.atitle=Experimentelle+Untersuchungen+%C3%BCber+die+Geschwindigkeit+und+die+magnetische+Ablenkbarkeit+der+Kathodenstrahlen&rft.volume=305&rft.issue=12&rft.pages=739-766&rft.date=1899&rft_id=info%3Adoi%2F10.1002%2Fandp.18993051203&rft_id=info%3Abibcode%2F1899AnP...305..739W&rft.aulast=Wiechert&rft.aufirst=E.&rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Fandp.18993051203&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWehnelt1905" class="citation journal cs1">Wehnelt, A. (1905). <a rel="nofollow" class="external text" href="https://www.tandfonline.com/doi/full/10.1080/14786440509463347">"X. On the discharge of negative ions by glowing metallic oxides, and allied phenomena"</a>. <i>The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science</i>. <b>10</b> (55): 80–90. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F14786440509463347">10.1080/14786440509463347</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1941-5982">1941-5982</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+London%2C+Edinburgh%2C+and+Dublin+Philosophical+Magazine+and+Journal+of+Science&rft.atitle=X.+On+the+discharge+of+negative+ions+by+glowing+metallic+oxides%2C+and+allied+phenomena&rft.volume=10&rft.issue=55&rft.pages=80-90&rft.date=1905&rft_id=info%3Adoi%2F10.1080%2F14786440509463347&rft.issn=1941-5982&rft.aulast=Wehnelt&rft.aufirst=A.&rft_id=https%3A%2F%2Fwww.tandfonline.com%2Fdoi%2Ffull%2F10.1080%2F14786440509463347&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBusch1926" class="citation journal cs1 cs1-prop-foreign-lang-source">Busch, H. (1926). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/10.1002/andp.19263862507">"Berechnung der Bahn von Kathodenstrahlen im axialsymmetrischen elektromagnetischen Felde"</a>. <i>Annalen der Physik</i> (in German). <b>386</b> (25): 974–993. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1926AnP...386..974B">1926AnP...386..974B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.19263862507">10.1002/andp.19263862507</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annalen+der+Physik&rft.atitle=Berechnung+der+Bahn+von+Kathodenstrahlen+im+axialsymmetrischen+elektromagnetischen+Felde&rft.volume=386&rft.issue=25&rft.pages=974-993&rft.date=1926&rft_id=info%3Adoi%2F10.1002%2Fandp.19263862507&rft_id=info%3Abibcode%2F1926AnP...386..974B&rft.aulast=Busch&rft.aufirst=H.&rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Fandp.19263862507&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Mulvey-48"><span class="mw-cite-backlink">^ <a href="#cite_ref-Mulvey_48-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Mulvey_48-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMulvey1962" class="citation journal cs1">Mulvey, T (1962). <a rel="nofollow" class="external text" href="https://iopscience.iop.org/article/10.1088/0508-3443/13/5/303">"Origins and historical development of the electron microscope"</a>. <i>British Journal of Applied Physics</i>. <b>13</b> (5): 197–207. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0508-3443%2F13%2F5%2F303">10.1088/0508-3443/13/5/303</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0508-3443">0508-3443</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=British+Journal+of+Applied+Physics&rft.atitle=Origins+and+historical+development+of+the+electron+microscope&rft.volume=13&rft.issue=5&rft.pages=197-207&rft.date=1962&rft_id=info%3Adoi%2F10.1088%2F0508-3443%2F13%2F5%2F303&rft.issn=0508-3443&rft.aulast=Mulvey&rft.aufirst=T&rft_id=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1088%2F0508-3443%2F13%2F5%2F303&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTao2018" class="citation book cs1">Tao, Yaping (2018). <a rel="nofollow" class="external text" href="https://www.atlantis-press.com/proceedings/iccessh-18/25898208">"A Historical Investigation of the Debates on the Invention and Invention Rights of Electron Microscope"</a>. <i>Proceedings of the 3rd International Conference on Contemporary Education, Social Sciences and Humanities (ICCESSH 2018)</i>. Advances in Social Science, Education and Humanities Research. Atlantis Press. pp. 1438–1441. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2991%2Ficcessh-18.2018.313">10.2991/iccessh-18.2018.313</a></span>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-94-6252-528-3" title="Special:BookSources/978-94-6252-528-3"><bdi>978-94-6252-528-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=A+Historical+Investigation+of+the+Debates+on+the+Invention+and+Invention+Rights+of+Electron+Microscope&rft.btitle=Proceedings+of+the+3rd+International+Conference+on+Contemporary+Education%2C+Social+Sciences+and+Humanities+%28ICCESSH+2018%29&rft.series=Advances+in+Social+Science%2C+Education+and+Humanities+Research&rft.pages=1438-1441&rft.pub=Atlantis+Press&rft.date=2018&rft_id=info%3Adoi%2F10.2991%2Ficcessh-18.2018.313&rft.isbn=978-94-6252-528-3&rft.aulast=Tao&rft.aufirst=Yaping&rft_id=https%3A%2F%2Fwww.atlantis-press.com%2Fproceedings%2Ficcessh-18%2F25898208&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFreundlich1963" class="citation journal cs1">Freundlich, Martin M. (1963). <a rel="nofollow" class="external text" href="https://www.science.org/doi/10.1126/science.142.3589.185">"Origin of the Electron Microscope: The history of a great invention, and of a misconception concerning the inventors, is reviewed"</a>. <i>Science</i>. <b>142</b> (3589): 185–188. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.142.3589.185">10.1126/science.142.3589.185</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-8075">0036-8075</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/14057363">14057363</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Origin+of+the+Electron+Microscope%3A+The+history+of+a+great+invention%2C+and+of+a+misconception+concerning+the+inventors%2C+is+reviewed.&rft.volume=142&rft.issue=3589&rft.pages=185-188&rft.date=1963&rft.issn=0036-8075&rft_id=info%3Apmid%2F14057363&rft_id=info%3Adoi%2F10.1126%2Fscience.142.3589.185&rft.aulast=Freundlich&rft.aufirst=Martin+M.&rft_id=https%3A%2F%2Fwww.science.org%2Fdoi%2F10.1126%2Fscience.142.3589.185&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Rüdenberg-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rüdenberg_51-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRüdenberg2010" class="citation cs2">Rüdenberg, Reinhold (2010), <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016/s1076-5670(10)60005-5"><i>Origin and Background of the Invention of the Electron Microscope</i></a>, Advances in Imaging and Electron Physics, vol. 160, Elsevier, pp. 171–205, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs1076-5670%2810%2960005-5">10.1016/s1076-5670(10)60005-5</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780123810175" title="Special:BookSources/9780123810175"><bdi>9780123810175</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">2023-02-11</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Origin+and+Background+of+the+Invention+of+the+Electron+Microscope&rft.series=Advances+in+Imaging+and+Electron+Physics&rft.pages=171-205&rft.pub=Elsevier&rft.date=2010&rft_id=info%3Adoi%2F10.1016%2Fs1076-5670%2810%2960005-5&rft.isbn=9780123810175&rft.aulast=R%C3%BCdenberg&rft.aufirst=Reinhold&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fs1076-5670%2810%2960005-5&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span>.</span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.ancientfaces.com/person/max-knoll-birth-1897-death-1969-europe/18955684">"Max Knoll"</a>. <i>AncientFaces</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2023-09-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=AncientFaces&rft.atitle=Max+Knoll&rft_id=https%3A%2F%2Fwww.ancientfaces.com%2Fperson%2Fmax-knoll-birth-1897-death-1969-europe%2F18955684&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRüdenberg" class="citation web cs1">Rüdenberg, Reinhold. <a rel="nofollow" class="external text" href="https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/2058914">"Apparatus for producing images of objects"</a>. <i>Patent Public Search Basic</i><span class="reference-accessdate">. Retrieved <span class="nowrap">24 February</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Patent+Public+Search+Basic&rft.atitle=Apparatus+for+producing+images+of+objects&rft.aulast=R%C3%BCdenberg&rft.aufirst=Reinhold&rft_id=https%3A%2F%2Fimage-ppubs.uspto.gov%2Fdirsearch-public%2Fprint%2FdownloadPdf%2F2058914&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRüdenberg" class="citation web cs1">Rüdenberg, Reinhold. <a rel="nofollow" class="external text" href="https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/2070318">"Apparatus for producing images of objects"</a>. <i>Patent Public Search Basic</i><span class="reference-accessdate">. Retrieved <span class="nowrap">24 February</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Patent+Public+Search+Basic&rft.atitle=Apparatus+for+producing+images+of+objects&rft.aulast=R%C3%BCdenberg&rft.aufirst=Reinhold&rft_id=https%3A%2F%2Fimage-ppubs.uspto.gov%2Fdirsearch-public%2Fprint%2FdownloadPdf%2F2070318&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRodenberg1932" class="citation journal cs1 cs1-prop-foreign-lang-source">Rodenberg, R. (1932). <a rel="nofollow" class="external text" href="http://link.springer.com/10.1007/BF01505383">"Elektronenmikroskop"</a>. <i>Die Naturwissenschaften</i> (in German). <b>20</b> (28): 522. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1932NW.....20..522R">1932NW.....20..522R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01505383">10.1007/BF01505383</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0028-1042">0028-1042</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:263996652">263996652</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Die+Naturwissenschaften&rft.atitle=Elektronenmikroskop&rft.volume=20&rft.issue=28&rft.pages=522&rft.date=1932&rft_id=info%3Adoi%2F10.1007%2FBF01505383&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A263996652%23id-name%3DS2CID&rft.issn=0028-1042&rft_id=info%3Abibcode%2F1932NW.....20..522R&rft.aulast=Rodenberg&rft.aufirst=R.&rft_id=http%3A%2F%2Flink.springer.com%2F10.1007%2FBF01505383&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1"><a rel="nofollow" class="external text" href="https://pubs.aip.org/physicstoday/article/15/4/106/422766/Reinhold-Rudenberg">"Orbituary of Reinhold Rudenberg"</a>. <i>pubs.aip.org</i>. April 1962. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.3058109">10.1063/1.3058109</a></span><span class="reference-accessdate">. Retrieved <span class="nowrap">2023-09-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=pubs.aip.org&rft.atitle=Orbituary+of+Reinhold+Rudenberg&rft.date=1962-04&rft_id=info%3Adoi%2F10.1063%2F1.3058109&rft_id=https%3A%2F%2Fpubs.aip.org%2Fphysicstoday%2Farticle%2F15%2F4%2F106%2F422766%2FReinhold-Rudenberg&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoersch1936" class="citation journal cs1 cs1-prop-foreign-lang-source">Boersch, H. (1936). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/10.1002/andp.19364190107">"Über das primäre und sekundäre Bild im Elektronenmikroskop. II. Strukturuntersuchung mittels Elektronenbeugung"</a>. <i>Annalen der Physik</i> (in German). <b>419</b> (1): 75–80. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1936AnP...419...75B">1936AnP...419...75B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.19364190107">10.1002/andp.19364190107</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annalen+der+Physik&rft.atitle=%C3%9Cber+das+prim%C3%A4re+und+sekund%C3%A4re+Bild+im+Elektronenmikroskop.+II.+Strukturuntersuchung+mittels+Elektronenbeugung&rft.volume=419&rft.issue=1&rft.pages=75-80&rft.date=1936&rft_id=info%3Adoi%2F10.1002%2Fandp.19364190107&rft_id=info%3Abibcode%2F1936AnP...419...75B&rft.aulast=Boersch&rft.aufirst=H.&rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Fandp.19364190107&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGermer1929" class="citation journal cs1 cs1-prop-foreign-lang-source">Germer, L. H. (1929). <a rel="nofollow" class="external text" href="http://link.springer.com/10.1007/BF01375462">"Eine Anwendung der Elektronenbeugung auf die Untersuchung der Gasadsorption"</a>. <i>Zeitschrift für Physik</i> (in German). <b>54</b> (5–6): 408–421. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1929ZPhy...54..408G">1929ZPhy...54..408G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01375462">10.1007/BF01375462</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1434-6001">1434-6001</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121097655">121097655</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Zeitschrift+f%C3%BCr+Physik&rft.atitle=Eine+Anwendung+der+Elektronenbeugung+auf+die+Untersuchung+der+Gasadsorption&rft.volume=54&rft.issue=5%E2%80%936&rft.pages=408-421&rft.date=1929&rft_id=info%3Adoi%2F10.1007%2FBF01375462&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121097655%23id-name%3DS2CID&rft.issn=1434-6001&rft_id=info%3Abibcode%2F1929ZPhy...54..408G&rft.aulast=Germer&rft.aufirst=L.+H.&rft_id=http%3A%2F%2Flink.springer.com%2F10.1007%2FBF01375462&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFarnsworth1932" class="citation journal cs1">Farnsworth, H. E. (1932). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRev.40.684">"Diffraction of Low-Speed Electrons by Single Crystals of Copper and Silver"</a>. <i>Physical Review</i>. <b>40</b> (5): 684–712. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1932PhRv...40..684F">1932PhRv...40..684F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.40.684">10.1103/PhysRev.40.684</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-899X">0031-899X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=Diffraction+of+Low-Speed+Electrons+by+Single+Crystals+of+Copper+and+Silver&rft.volume=40&rft.issue=5&rft.pages=684-712&rft.date=1932&rft.issn=0031-899X&rft_id=info%3Adoi%2F10.1103%2FPhysRev.40.684&rft_id=info%3Abibcode%2F1932PhRv...40..684F&rft.aulast=Farnsworth&rft.aufirst=H.+E.&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRev.40.684&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-VanHove-60"><span class="mw-cite-backlink">^ <a href="#cite_ref-VanHove_60-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-VanHove_60-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-VanHove_60-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-VanHove_60-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVan_HoveWeinbergChan1986" class="citation book cs1">Van Hove, Michel A.; Weinberg, William H.; Chan, Chi-Ming (1986). <a rel="nofollow" class="external text" href="https://www.springer.com/gp/book/9783642827235"><i>Low-Energy Electron Diffraction</i></a>. Springer-Verlag, Berlin Heidelberg New York. pp. 13–426. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-16262-9" title="Special:BookSources/978-3-540-16262-9"><bdi>978-3-540-16262-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Low-Energy+Electron+Diffraction&rft.pages=13-426&rft.pub=Springer-Verlag%2C+Berlin+Heidelberg+New+York&rft.date=1986&rft.isbn=978-3-540-16262-9&rft.aulast=Van+Hove&rft.aufirst=Michel+A.&rft.au=Weinberg%2C+William+H.&rft.au=Chan%2C+Chi-Ming&rft_id=https%3A%2F%2Fwww.springer.com%2Fgp%2Fbook%2F9783642827235&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoodman,_P._(Peter)1981" class="citation book cs1">Goodman, P. (Peter), ed. (1981). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/7276396"><i>Fifty years of electron diffraction : in recognition of fifty years of achievement by the crystallographers and gas diffractionists in the field of electron diffraction</i></a>. Dordrecht, Holland: Published for the International Union of Crystallography by D. Reidel. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/90-277-1246-8" title="Special:BookSources/90-277-1246-8"><bdi>90-277-1246-8</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/7276396">7276396</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fifty+years+of+electron+diffraction+%3A+in+recognition+of+fifty+years+of+achievement+by+the+crystallographers+and+gas+diffractionists+in+the+field+of+electron+diffraction&rft.place=Dordrecht%2C+Holland&rft.pub=Published+for+the+International+Union+of+Crystallography+by+D.+Reidel&rft.date=1981&rft_id=info%3Aoclcnum%2F7276396&rft.isbn=90-277-1246-8&rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F7276396&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSewellCohen1965" class="citation journal cs1">Sewell, P. B.; Cohen, M. (1965). <a rel="nofollow" class="external text" href="http://aip.scitation.org/doi/10.1063/1.1754284">"The Observation Of Gas Adsorption Phenomena By Reflection High-Energy Electron Diffraction"</a>. <i>Applied Physics Letters</i>. <b>7</b> (2): 32–34. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1965ApPhL...7...32S">1965ApPhL...7...32S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1754284">10.1063/1.1754284</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-6951">0003-6951</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Applied+Physics+Letters&rft.atitle=The+Observation+Of+Gas+Adsorption+Phenomena+By+Reflection+High-Energy+Electron+Diffraction&rft.volume=7&rft.issue=2&rft.pages=32-34&rft.date=1965&rft.issn=0003-6951&rft_id=info%3Adoi%2F10.1063%2F1.1754284&rft_id=info%3Abibcode%2F1965ApPhL...7...32S&rft.aulast=Sewell&rft.aufirst=P.+B.&rft.au=Cohen%2C+M.&rft_id=http%3A%2F%2Faip.scitation.org%2Fdoi%2F10.1063%2F1.1754284&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLaschkarewUsyskin1933" class="citation journal cs1 cs1-prop-foreign-lang-source">Laschkarew, W. E.; Usyskin, I. D. (1933). <a rel="nofollow" class="external text" href="http://link.springer.com/10.1007/BF01331003">"Die Bestimmung der Lage der Wasserstoffionen im NH4Cl-Kristallgitter durch Elektronenbeugung"</a>. <i>Zeitschrift für Physik</i> (in German). <b>85</b> (9–10): 618–630. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1933ZPhy...85..618L">1933ZPhy...85..618L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01331003">10.1007/BF01331003</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1434-6001">1434-6001</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123199621">123199621</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Zeitschrift+f%C3%BCr+Physik&rft.atitle=Die+Bestimmung+der+Lage+der+Wasserstoffionen+im+NH4Cl-Kristallgitter+durch+Elektronenbeugung&rft.volume=85&rft.issue=9%E2%80%9310&rft.pages=618-630&rft.date=1933&rft_id=info%3Adoi%2F10.1007%2FBF01331003&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123199621%23id-name%3DS2CID&rft.issn=1434-6001&rft_id=info%3Abibcode%2F1933ZPhy...85..618L&rft.aulast=Laschkarew&rft.aufirst=W.+E.&rft.au=Usyskin%2C+I.+D.&rft_id=http%3A%2F%2Flink.springer.com%2F10.1007%2FBF01331003&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-CowleyII-64"><span class="mw-cite-backlink">^ <a href="#cite_ref-CowleyII_64-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-CowleyII_64-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCowley1953" class="citation journal cs1">Cowley, J. M. (1953). <a rel="nofollow" class="external text" href="https://scripts.iucr.org/cgi-bin/paper?S0365110X53001423">"Structure analysis of single crystals by electron diffraction. II. Disordered boric acid structure"</a>. <i>Acta Crystallographica</i>. <b>6</b> (6): 522–529. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1953AcCry...6..522C">1953AcCry...6..522C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1107%2FS0365110X53001423">10.1107/S0365110X53001423</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0365-110X">0365-110X</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:94391285">94391285</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Crystallographica&rft.atitle=Structure+analysis+of+single+crystals+by+electron+diffraction.+II.+Disordered+boric+acid+structure&rft.volume=6&rft.issue=6&rft.pages=522-529&rft.date=1953&rft_id=info%3Adoi%2F10.1107%2FS0365110X53001423&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A94391285%23id-name%3DS2CID&rft.issn=0365-110X&rft_id=info%3Abibcode%2F1953AcCry...6..522C&rft.aulast=Cowley&rft.aufirst=J.+M.&rft_id=https%3A%2F%2Fscripts.iucr.org%2Fcgi-bin%2Fpaper%3FS0365110X53001423&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZachariasen1954" class="citation journal cs1">Zachariasen, W. H. (1954). <a rel="nofollow" class="external text" href="https://scripts.iucr.org/cgi-bin/paper?S0365110X54000886">"The precise structure of orthoboric acid"</a>. <i>Acta Crystallographica</i>. <b>7</b> (4): 305–310. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1954AcCry...7..305Z">1954AcCry...7..305Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1107%2FS0365110X54000886">10.1107/S0365110X54000886</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0365-110X">0365-110X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Crystallographica&rft.atitle=The+precise+structure+of+orthoboric+acid&rft.volume=7&rft.issue=4&rft.pages=305-310&rft.date=1954&rft.issn=0365-110X&rft_id=info%3Adoi%2F10.1107%2FS0365110X54000886&rft_id=info%3Abibcode%2F1954AcCry...7..305Z&rft.aulast=Zachariasen&rft.aufirst=W.+H.&rft_id=https%3A%2F%2Fscripts.iucr.org%2Fcgi-bin%2Fpaper%3FS0365110X54000886&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCowley1968" class="citation journal cs1">Cowley, J.M. (1968). <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/0079642568900236">"Crystal structure determination by electron diffraction"</a>. <i>Progress in Materials Science</i>. <b>13</b>: 267–321. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0079-6425%2868%2990023-6">10.1016/0079-6425(68)90023-6</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Progress+in+Materials+Science&rft.atitle=Crystal+structure+determination+by+electron+diffraction&rft.volume=13&rft.pages=267-321&rft.date=1968&rft_id=info%3Adoi%2F10.1016%2F0079-6425%2868%2990023-6&rft.aulast=Cowley&rft.aufirst=J.M.&rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2F0079642568900236&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-MS1-67"><span class="mw-cite-backlink">^ <a href="#cite_ref-MS1_67-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-MS1_67-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCowleyMoodie1957" class="citation journal cs1">Cowley, J. M.; Moodie, A. F. (1957). <a rel="nofollow" class="external text" href="https://scripts.iucr.org/cgi-bin/paper?S0365110X57002194">"The scattering of electrons by atoms and crystals. I. A new theoretical approach"</a>. <i>Acta Crystallographica</i>. <b>10</b> (10): 609–619. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1957AcCry..10..609C">1957AcCry..10..609C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1107%2FS0365110X57002194">10.1107/S0365110X57002194</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0365-110X">0365-110X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Crystallographica&rft.atitle=The+scattering+of+electrons+by+atoms+and+crystals.+I.+A+new+theoretical+approach&rft.volume=10&rft.issue=10&rft.pages=609-619&rft.date=1957&rft.issn=0365-110X&rft_id=info%3Adoi%2F10.1107%2FS0365110X57002194&rft_id=info%3Abibcode%2F1957AcCry..10..609C&rft.aulast=Cowley&rft.aufirst=J.+M.&rft.au=Moodie%2C+A.+F.&rft_id=https%3A%2F%2Fscripts.iucr.org%2Fcgi-bin%2Fpaper%3FS0365110X57002194&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIshizuka2004" class="citation journal cs1">Ishizuka, Kazuo (2004). <a rel="nofollow" class="external text" href="https://academic.oup.com/mam/article/10/1/34/6912350">"FFT Multislice Method—The Silver Anniversary"</a>. <i>Microscopy and Microanalysis</i>. <b>10</b> (1): 34–40. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004MiMic..10...34I">2004MiMic..10...34I</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS1431927604040292">10.1017/S1431927604040292</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1431-9276">1431-9276</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15306065">15306065</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8016041">8016041</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Microscopy+and+Microanalysis&rft.atitle=FFT+Multislice+Method%E2%80%94The+Silver+Anniversary&rft.volume=10&rft.issue=1&rft.pages=34-40&rft.date=2004&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8016041%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2004MiMic..10...34I&rft.issn=1431-9276&rft_id=info%3Adoi%2F10.1017%2FS1431927604040292&rft_id=info%3Apmid%2F15306065&rft.aulast=Ishizuka&rft.aufirst=Kazuo&rft_id=https%3A%2F%2Facademic.oup.com%2Fmam%2Farticle%2F10%2F1%2F34%2F6912350&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoodmanMoodie1974" class="citation journal cs1">Goodman, P.; Moodie, A. F. (1974). <a rel="nofollow" class="external text" href="https://scripts.iucr.org/cgi-bin/paper?S056773947400057X">"Numerical evaluations of N -beam wave functions in electron scattering by the multi-slice method"</a>. <i>Acta Crystallographica Section A</i>. <b>30</b> (2): 280–290. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1974AcCrA..30..280G">1974AcCrA..30..280G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1107%2FS056773947400057X">10.1107/S056773947400057X</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0567-7394">0567-7394</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Crystallographica+Section+A&rft.atitle=Numerical+evaluations+of+N+-beam+wave+functions+in+electron+scattering+by+the+multi-slice+method&rft.volume=30&rft.issue=2&rft.pages=280-290&rft.date=1974&rft.issn=0567-7394&rft_id=info%3Adoi%2F10.1107%2FS056773947400057X&rft_id=info%3Abibcode%2F1974AcCrA..30..280G&rft.aulast=Goodman&rft.aufirst=P.&rft.au=Moodie%2C+A.+F.&rft_id=https%3A%2F%2Fscripts.iucr.org%2Fcgi-bin%2Fpaper%3FS056773947400057X&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCooleyTukey1965" class="citation journal cs1">Cooley, James W.; Tukey, John W. (1965). <a rel="nofollow" class="external text" href="https://www.ams.org/mcom/1965-19-090/S0025-5718-1965-0178586-1/">"An algorithm for the machine calculation of complex Fourier series"</a>. <i>Mathematics of Computation</i>. <b>19</b> (90): 297–301. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0025-5718-1965-0178586-1">10.1090/S0025-5718-1965-0178586-1</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0025-5718">0025-5718</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+of+Computation&rft.atitle=An+algorithm+for+the+machine+calculation+of+complex+Fourier+series&rft.volume=19&rft.issue=90&rft.pages=297-301&rft.date=1965&rft_id=info%3Adoi%2F10.1090%2FS0025-5718-1965-0178586-1&rft.issn=0025-5718&rft.aulast=Cooley&rft.aufirst=James+W.&rft.au=Tukey%2C+John+W.&rft_id=https%3A%2F%2Fwww.ams.org%2Fmcom%2F1965-19-090%2FS0025-5718-1965-0178586-1%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrighamMorrow1967" class="citation journal cs1">Brigham, E. O.; Morrow, R. E. (1967). <a rel="nofollow" class="external text" href="https://ieeexplore.ieee.org/document/5217220">"The fast Fourier transform"</a>. <i>IEEE Spectrum</i>. <b>4</b> (12): 63–70. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Fmspec.1967.5217220">10.1109/mspec.1967.5217220</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:20294294">20294294</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2023-09-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Spectrum&rft.atitle=The+fast+Fourier+transform&rft.volume=4&rft.issue=12&rft.pages=63-70&rft.date=1967&rft_id=info%3Adoi%2F10.1109%2Fmspec.1967.5217220&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A20294294%23id-name%3DS2CID&rft.aulast=Brigham&rft.aufirst=E.+O.&rft.au=Morrow%2C+R.+E.&rft_id=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F5217220&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-KM-72"><span class="mw-cite-backlink">^ <a href="#cite_ref-KM_72-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-KM_72-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-KM_72-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKosselMöllenstedt1939" class="citation journal cs1 cs1-prop-foreign-lang-source">Kossel, W.; Möllenstedt, G. (1939). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/10.1002/andp.19394280204">"Elektroneninterferenzen im konvergenten Bündel"</a>. <i>Annalen der Physik</i> (in German). <b>428</b> (2): 113–140. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1939AnP...428..113K">1939AnP...428..113K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.19394280204">10.1002/andp.19394280204</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annalen+der+Physik&rft.atitle=Elektroneninterferenzen+im+konvergenten+B%C3%BCndel&rft.volume=428&rft.issue=2&rft.pages=113-140&rft.date=1939&rft_id=info%3Adoi%2F10.1002%2Fandp.19394280204&rft_id=info%3Abibcode%2F1939AnP...428..113K&rft.aulast=Kossel&rft.aufirst=W.&rft.au=M%C3%B6llenstedt%2C+G.&rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Fandp.19394280204&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:4-73"><span class="mw-cite-backlink">^ <a href="#cite_ref-:4_73-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:4_73-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoodmanLehmpfuhl1968" class="citation journal cs1">Goodman, P.; Lehmpfuhl, G. (1968). "Observation of the breakdown of Friedel's law in electron diffraction and symmetry determination from zero-layer interactions". <i>Acta Crystallographica Section A</i>. <b>24</b> (3): 339–347. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1968AcCrA..24..339G">1968AcCrA..24..339G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1107%2FS0567739468000677">10.1107/S0567739468000677</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Crystallographica+Section+A&rft.atitle=Observation+of+the+breakdown+of+Friedel%27s+law+in+electron+diffraction+and+symmetry+determination+from+zero-layer+interactions&rft.volume=24&rft.issue=3&rft.pages=339-347&rft.date=1968&rft_id=info%3Adoi%2F10.1107%2FS0567739468000677&rft_id=info%3Abibcode%2F1968AcCrA..24..339G&rft.aulast=Goodman&rft.aufirst=P.&rft.au=Lehmpfuhl%2C+G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Buxton1-74"><span class="mw-cite-backlink">^ <a href="#cite_ref-Buxton1_74-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Buxton1_74-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBuxtonEadesSteedsRackham1976" class="citation journal cs1">Buxton, B. F.; Eades, J. A.; Steeds, John Wickham; Rackham, G. M.; Frank, Frederick Charles (1976). <a rel="nofollow" class="external text" href="https://doi.org/10.1098/rsta.1976.0024">"The symmetry of electron diffraction zone axis patterns"</a>. <i>Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences</i>. <b>281</b> (1301): 171–194. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1976RSPTA.281..171B">1976RSPTA.281..171B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frsta.1976.0024">10.1098/rsta.1976.0024</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122890943">122890943</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Philosophical+Transactions+of+the+Royal+Society+of+London.+Series+A%2C+Mathematical+and+Physical+Sciences&rft.atitle=The+symmetry+of+electron+diffraction+zone+axis+patterns&rft.volume=281&rft.issue=1301&rft.pages=171-194&rft.date=1976&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122890943%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1098%2Frsta.1976.0024&rft_id=info%3Abibcode%2F1976RSPTA.281..171B&rft.aulast=Buxton&rft.aufirst=B.+F.&rft.au=Eades%2C+J.+A.&rft.au=Steeds%2C+John+Wickham&rft.au=Rackham%2C+G.+M.&rft.au=Frank%2C+Frederick+Charles&rft_id=https%3A%2F%2Fdoi.org%2F10.1098%2Frsta.1976.0024&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:5-75"><span class="mw-cite-backlink">^ <a href="#cite_ref-:5_75-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:5_75-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteedsVincent1983" class="citation journal cs1">Steeds, J. W.; Vincent, R. (1983). <a rel="nofollow" class="external text" href="https://scripts.iucr.org/cgi-bin/paper?S002188988301050X">"Use of high-symmetry zone axes in electron diffraction in determining crystal point and space groups"</a>. <i>Journal of Applied Crystallography</i>. <b>16</b> (3): 317–324. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1983JApCr..16..317S">1983JApCr..16..317S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1107%2FS002188988301050X">10.1107/S002188988301050X</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0021-8898">0021-8898</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Applied+Crystallography&rft.atitle=Use+of+high-symmetry+zone+axes+in+electron+diffraction+in+determining+crystal+point+and+space+groups&rft.volume=16&rft.issue=3&rft.pages=317-324&rft.date=1983&rft.issn=0021-8898&rft_id=info%3Adoi%2F10.1107%2FS002188988301050X&rft_id=info%3Abibcode%2F1983JApCr..16..317S&rft.aulast=Steeds&rft.aufirst=J.+W.&rft.au=Vincent%2C+R.&rft_id=https%3A%2F%2Fscripts.iucr.org%2Fcgi-bin%2Fpaper%3FS002188988301050X&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBird1989" class="citation journal cs1">Bird, D. M. (1989). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/10.1002/jemt.1060130202">"Theory of zone axis electron diffraction"</a>. <i>Journal of Electron Microscopy Technique</i>. <b>13</b> (2): 77–97. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fjemt.1060130202">10.1002/jemt.1060130202</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0741-0581">0741-0581</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/2681572">2681572</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Electron+Microscopy+Technique&rft.atitle=Theory+of+zone+axis+electron+diffraction&rft.volume=13&rft.issue=2&rft.pages=77-97&rft.date=1989&rft.issn=0741-0581&rft_id=info%3Apmid%2F2681572&rft_id=info%3Adoi%2F10.1002%2Fjemt.1060130202&rft.aulast=Bird&rft.aufirst=D.+M.&rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Fjemt.1060130202&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:6-77"><span class="mw-cite-backlink">^ <a href="#cite_ref-:6_77-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:6_77-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTanakaSaitoSekii1983" class="citation journal cs1">Tanaka, M.; Saito, R.; Sekii, H. (1983). <a rel="nofollow" class="external text" href="https://scripts.iucr.org/cgi-bin/paper?S010876738300080X">"Point-group determination by convergent-beam electron diffraction"</a>. <i>Acta Crystallographica Section A</i>. <b>39</b> (3): 357–368. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1983AcCrA..39..357T">1983AcCrA..39..357T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1107%2FS010876738300080X">10.1107/S010876738300080X</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0108-7673">0108-7673</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Crystallographica+Section+A&rft.atitle=Point-group+determination+by+convergent-beam+electron+diffraction&rft.volume=39&rft.issue=3&rft.pages=357-368&rft.date=1983&rft.issn=0108-7673&rft_id=info%3Adoi%2F10.1107%2FS010876738300080X&rft_id=info%3Abibcode%2F1983AcCrA..39..357T&rft.aulast=Tanaka&rft.aufirst=M.&rft.au=Saito%2C+R.&rft.au=Sekii%2C+H.&rft_id=https%3A%2F%2Fscripts.iucr.org%2Fcgi-bin%2Fpaper%3FS010876738300080X&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTanakaSaitoWatanabe1980" class="citation journal cs1">Tanaka, M.; Saito, R.; Watanabe, D. (1980). <a rel="nofollow" class="external text" href="https://scripts.iucr.org/cgi-bin/paper?S0567739480000800">"Symmetry determination of the room-temperature form of LnNbO 4 (Ln = La,Nd) by convergent-beam electron diffraction"</a>. <i>Acta Crystallographica Section A</i>. <b>36</b> (3): 350–352. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1980AcCrA..36..350T">1980AcCrA..36..350T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1107%2FS0567739480000800">10.1107/S0567739480000800</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0567-7394">0567-7394</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:98184340">98184340</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Crystallographica+Section+A&rft.atitle=Symmetry+determination+of+the+room-temperature+form+of+LnNbO+4+%28Ln+%3D+La%2CNd%29+by+convergent-beam+electron+diffraction&rft.volume=36&rft.issue=3&rft.pages=350-352&rft.date=1980&rft_id=info%3Adoi%2F10.1107%2FS0567739480000800&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A98184340%23id-name%3DS2CID&rft.issn=0567-7394&rft_id=info%3Abibcode%2F1980AcCrA..36..350T&rft.aulast=Tanaka&rft.aufirst=M.&rft.au=Saito%2C+R.&rft.au=Watanabe%2C+D.&rft_id=https%3A%2F%2Fscripts.iucr.org%2Fcgi-bin%2Fpaper%3FS0567739480000800&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpenceZuo1992" class="citation book cs1">Spence, J. C. H.; Zuo, J. M. (1992). <a rel="nofollow" class="external text" href="http://link.springer.com/10.1007/978-1-4899-2353-0"><i>Electron Microdiffraction</i></a>. Boston, MA: Springer US. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4899-2353-0">10.1007/978-1-4899-2353-0</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4899-2355-4" title="Special:BookSources/978-1-4899-2355-4"><bdi>978-1-4899-2355-4</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:45473741">45473741</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Electron+Microdiffraction&rft.place=Boston%2C+MA&rft.pub=Springer+US&rft.date=1992&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A45473741%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2F978-1-4899-2353-0&rft.isbn=978-1-4899-2355-4&rft.aulast=Spence&rft.aufirst=J.+C.+H.&rft.au=Zuo%2C+J.+M.&rft_id=http%3A%2F%2Flink.springer.com%2F10.1007%2F978-1-4899-2353-0&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Atlas-80"><span class="mw-cite-backlink">^ <a href="#cite_ref-Atlas_80-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Atlas_80-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Atlas_80-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Atlas_80-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorniroli2015" class="citation book cs1">Morniroli, Jean-Paul (2015). <a rel="nofollow" class="external text" href="https://www.electron-diffraction.fr/software_059.htm"><i>The atlas of electron diffraction zone axis patterns</i></a>. Webpage and hardcopy.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+atlas+of+electron+diffraction+zone+axis+patterns&rft.place=Webpage+and+hardcopy&rft.date=2015&rft.aulast=Morniroli&rft.aufirst=Jean-Paul&rft_id=https%3A%2F%2Fwww.electron-diffraction.fr%2Fsoftware_059.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></span> </li> <li id="cite_note-LDMPD-81"><span class="mw-cite-backlink">^ <a href="#cite_ref-LDMPD_81-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-LDMPD_81-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarks2012" class="citation book cs1">Marks, Laurence (2012). Kolb, Ute; Shankland, Kenneth; Meshi, Louisa; Avilov, Anatoly; David, William I.F (eds.). <a rel="nofollow" class="external text" href="https://link.springer.com/10.1007/978-94-007-5580-2"><i>Uniting Electron Crystallography and Powder Diffraction</i></a>. NATO Science for Peace and Security Series B: Physics and Biophysics. Dordrecht: Springer Netherlands. pp. 281–291. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012uecp.book.....K">2012uecp.book.....K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-94-007-5580-2">10.1007/978-94-007-5580-2</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-94-007-5579-6" title="Special:BookSources/978-94-007-5579-6"><bdi>978-94-007-5579-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Uniting+Electron+Crystallography+and+Powder+Diffraction&rft.place=Dordrecht&rft.series=NATO+Science+for+Peace+and+Security+Series+B%3A+Physics+and+Biophysics&rft.pages=281-291&rft.pub=Springer+Netherlands&rft.date=2012&rft_id=info%3Adoi%2F10.1007%2F978-94-007-5580-2&rft_id=info%3Abibcode%2F2012uecp.book.....K&rft.isbn=978-94-007-5579-6&rft.aulast=Marks&rft.aufirst=Laurence&rft_id=https%3A%2F%2Flink.springer.com%2F10.1007%2F978-94-007-5580-2&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-White-82"><span class="mw-cite-backlink">^ <a href="#cite_ref-White_82-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-White_82-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-White_82-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWhiteEggemanMidgley2010" class="citation journal cs1">White, T.A.; Eggeman, A.S.; Midgley, P.A. (2010). <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/S030439910900240X">"Is precession electron diffraction kinematical? Part I"</a>. <i>Ultramicroscopy</i>. <b>110</b> (7): 763–770. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ultramic.2009.10.013">10.1016/j.ultramic.2009.10.013</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19910121">19910121</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Ultramicroscopy&rft.atitle=Is+precession+electron+diffraction+kinematical%3F+Part+I&rft.volume=110&rft.issue=7&rft.pages=763-770&rft.date=2010&rft_id=info%3Adoi%2F10.1016%2Fj.ultramic.2009.10.013&rft_id=info%3Apmid%2F19910121&rft.aulast=White&rft.aufirst=T.A.&rft.au=Eggeman%2C+A.S.&rft.au=Midgley%2C+P.A.&rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS030439910900240X&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Lukas1-83"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lukas1_83-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lukas1_83-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPalatinus2013" class="citation journal cs1">Palatinus, Lukáš (2013). <a rel="nofollow" class="external text" href="https://scripts.iucr.org/cgi-bin/paper?S2052519212051366">"The charge-flipping algorithm in crystallography"</a>. <i>Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials</i>. <b>69</b> (1): 1–16. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013AcCrB..69....1P">2013AcCrB..69....1P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1107%2FS2052519212051366">10.1107/S2052519212051366</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2052-5192">2052-5192</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23364455">23364455</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Crystallographica+Section+B%3A+Structural+Science%2C+Crystal+Engineering+and+Materials&rft.atitle=The+charge-flipping+algorithm+in+crystallography&rft.volume=69&rft.issue=1&rft.pages=1-16&rft.date=2013&rft_id=info%3Adoi%2F10.1107%2FS2052519212051366&rft.issn=2052-5192&rft_id=info%3Apmid%2F23364455&rft_id=info%3Abibcode%2F2013AcCrB..69....1P&rft.aulast=Palatinus&rft.aufirst=Luk%C3%A1%C5%A1&rft_id=https%3A%2F%2Fscripts.iucr.org%2Fcgi-bin%2Fpaper%3FS2052519212051366&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Alpert-84"><span class="mw-cite-backlink">^ <a href="#cite_ref-Alpert_84-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Alpert_84-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlpert1953" class="citation journal cs1">Alpert, D. (1953). <a rel="nofollow" class="external text" href="http://aip.scitation.org/doi/10.1063/1.1721395">"New Developments in the Production and Measurement of Ultra High Vacuum"</a>. <i>Journal of Applied Physics</i>. <b>24</b> (7): 860–876. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1953JAP....24..860A">1953JAP....24..860A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1721395">10.1063/1.1721395</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0021-8979">0021-8979</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Applied+Physics&rft.atitle=New+Developments+in+the+Production+and+Measurement+of+Ultra+High+Vacuum&rft.volume=24&rft.issue=7&rft.pages=860-876&rft.date=1953&rft.issn=0021-8979&rft_id=info%3Adoi%2F10.1063%2F1.1721395&rft_id=info%3Abibcode%2F1953JAP....24..860A&rft.aulast=Alpert&rft.aufirst=D.&rft_id=http%3A%2F%2Faip.scitation.org%2Fdoi%2F10.1063%2F1.1721395&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Oura-85"><span class="mw-cite-backlink">^ <a href="#cite_ref-Oura_85-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Oura_85-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFK._OuraV._G._LifshiftsA._A._SaraninA._V._Zotov2003" class="citation book cs1">K. Oura; V. G. Lifshifts; A. A. Saranin; A. V. Zotov; M. Katayama (2003). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/surfacesciencein00oura_931"><i>Surface Science</i></a></span>. Springer-Verlag, Berlin Heidelberg New York. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/surfacesciencein00oura_931/page/n10">1</a>–45. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9783540005452" title="Special:BookSources/9783540005452"><bdi>9783540005452</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Surface+Science&rft.pages=1-45&rft.pub=Springer-Verlag%2C+Berlin+Heidelberg+New+York&rft.date=2003&rft.isbn=9783540005452&rft.au=K.+Oura&rft.au=V.+G.+Lifshifts&rft.au=A.+A.+Saranin&rft.au=A.+V.+Zotov&rft.au=M.+Katayama&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fsurfacesciencein00oura_931&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKambe1967" class="citation journal cs1">Kambe, Kyozaburo (1967). <a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Fzna-1967-0305">"Theory of Low-Energy Electron Diffraction"</a>. <i>Zeitschrift für Naturforschung A</i>. <b>22</b> (3): 322–330. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Fzna-1967-0305">10.1515/zna-1967-0305</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1865-7109">1865-7109</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:96851585">96851585</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Zeitschrift+f%C3%BCr+Naturforschung+A&rft.atitle=Theory+of+Low-Energy+Electron+Diffraction&rft.volume=22&rft.issue=3&rft.pages=322-330&rft.date=1967&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A96851585%23id-name%3DS2CID&rft.issn=1865-7109&rft_id=info%3Adoi%2F10.1515%2Fzna-1967-0305&rft.aulast=Kambe&rft.aufirst=Kyozaburo&rft_id=https%3A%2F%2Fdoi.org%2F10.1515%252Fzna-1967-0305&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcRae1968" class="citation journal cs1">McRae, E.G. (1968). <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/0039602868900587">"Electron diffraction at crystal surfaces"</a>. <i>Surface Science</i>. <b>11</b> (3): 479–491. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0039-6028%2868%2990058-7">10.1016/0039-6028(68)90058-7</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Surface+Science&rft.atitle=Electron+diffraction+at+crystal+surfaces&rft.volume=11&rft.issue=3&rft.pages=479-491&rft.date=1968&rft_id=info%3Adoi%2F10.1016%2F0039-6028%2868%2990058-7&rft.aulast=McRae&rft.aufirst=E.G.&rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2F0039602868900587&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-LEEDB-88"><span class="mw-cite-backlink">^ <a href="#cite_ref-LEEDB_88-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-LEEDB_88-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-LEEDB_88-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-LEEDB_88-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-LEEDB_88-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoritzVan_Hove2022" class="citation book cs1">Moritz, Wolfgang; Van Hove, Michel (2022). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/1293917727"><i>Surface structure determination by LEED and X-rays</i></a>. Cambridge, United Kingdom. pp. Chpt 3–5. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-108-28457-8" title="Special:BookSources/978-1-108-28457-8"><bdi>978-1-108-28457-8</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1293917727">1293917727</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Surface+structure+determination+by+LEED+and+X-rays&rft.place=Cambridge%2C+United+Kingdom&rft.pages=Chpt+3-5&rft.date=2022&rft_id=info%3Aoclcnum%2F1293917727&rft.isbn=978-1-108-28457-8&rft.aulast=Moritz&rft.aufirst=Wolfgang&rft.au=Van+Hove%2C+Michel&rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F1293917727&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></span> </li> <li id="cite_note-Ichimiya-89"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ichimiya_89-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ichimiya_89-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Ichimiya_89-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Ichimiya_89-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Ichimiya_89-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIchimiyaCohen2004" class="citation book cs1">Ichimiya, Ayahiko; Cohen, Philip (2004). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/54529276"><i>Reflection high-energy electron diffraction</i></a>. Cambridge, U.K.: Cambridge University Press. pp. Chpt 4–19. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-45373-9" title="Special:BookSources/0-521-45373-9"><bdi>0-521-45373-9</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/54529276">54529276</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Reflection+high-energy+electron+diffraction&rft.place=Cambridge%2C+U.K.&rft.pages=Chpt+4-19&rft.pub=Cambridge+University+Press&rft.date=2004&rft_id=info%3Aoclcnum%2F54529276&rft.isbn=0-521-45373-9&rft.aulast=Ichimiya&rft.aufirst=Ayahiko&rft.au=Cohen%2C+Philip&rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F54529276&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-SpenceZuo-90"><span class="mw-cite-backlink">^ <a href="#cite_ref-SpenceZuo_90-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-SpenceZuo_90-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-SpenceZuo_90-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpenceZuo1988" class="citation journal cs1">Spence, J. C. H.; Zuo, J. M. (1988). <a rel="nofollow" class="external text" href="http://aip.scitation.org/doi/10.1063/1.1140039">"Large dynamic range, parallel detection system for electron diffraction and imaging"</a>. <i>Review of Scientific Instruments</i>. <b>59</b> (9): 2102–2105. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1988RScI...59.2102S">1988RScI...59.2102S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1140039">10.1063/1.1140039</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0034-6748">0034-6748</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Review+of+Scientific+Instruments&rft.atitle=Large+dynamic+range%2C+parallel+detection+system+for+electron+diffraction+and+imaging&rft.volume=59&rft.issue=9&rft.pages=2102-2105&rft.date=1988&rft.issn=0034-6748&rft_id=info%3Adoi%2F10.1063%2F1.1140039&rft_id=info%3Abibcode%2F1988RScI...59.2102S&rft.aulast=Spence&rft.aufirst=J.+C.+H.&rft.au=Zuo%2C+J.+M.&rft_id=http%3A%2F%2Faip.scitation.org%2Fdoi%2F10.1063%2F1.1140039&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-PDetect-91"><span class="mw-cite-backlink">^ <a href="#cite_ref-PDetect_91-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-PDetect_91-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-PDetect_91-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFaruqiCattermoleHendersonMikulec2003" class="citation journal cs1">Faruqi, A. R.; Cattermole, D. M.; Henderson, R.; Mikulec, B.; Raeburn, C. (2003). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0304399102003364">"Evaluation of a hybrid pixel detector for electron microscopy"</a>. <i>Ultramicroscopy</i>. <b>94</b> (3): 263–276. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0304-3991%2802%2900336-4">10.1016/S0304-3991(02)00336-4</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0304-3991">0304-3991</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12524196">12524196</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Ultramicroscopy&rft.atitle=Evaluation+of+a+hybrid+pixel+detector+for+electron+microscopy&rft.volume=94&rft.issue=3&rft.pages=263-276&rft.date=2003&rft.issn=0304-3991&rft_id=info%3Apmid%2F12524196&rft_id=info%3Adoi%2F10.1016%2FS0304-3991%2802%2900336-4&rft.aulast=Faruqi&rft.aufirst=A.+R.&rft.au=Cattermole%2C+D.+M.&rft.au=Henderson%2C+R.&rft.au=Mikulec%2C+B.&rft.au=Raeburn%2C+C.&rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0304399102003364&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:21-94"><span class="mw-cite-backlink">^ <a href="#cite_ref-:21_94-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:21_94-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchiff1987" class="citation book cs1">Schiff, Leonard I. (1987). <i>Quantum mechanics</i>. International series in pure and applied physics (3. ed., 24. print ed.). New York: McGraw-Hill. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-085643-1" title="Special:BookSources/978-0-07-085643-1"><bdi>978-0-07-085643-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Quantum+mechanics&rft.place=New+York&rft.series=International+series+in+pure+and+applied+physics&rft.edition=3.+ed.%2C+24.+print&rft.pub=McGraw-Hill&rft.date=1987&rft.isbn=978-0-07-085643-1&rft.aulast=Schiff&rft.aufirst=Leonard+I.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWatanabeHaraHashimoto1996" class="citation journal cs1">Watanabe, K.; Hara, S.; Hashimoto, I. (1996). <a rel="nofollow" class="external text" href="https://scripts.iucr.org/cgi-bin/paper?S0108767395015893">"A Relativistic n -Beam Dynamical Theory for Fast Electron Diffraction"</a>. <i>Acta Crystallographica Section A</i>. <b>52</b> (3): 379–384. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996AcCrA..52..379W">1996AcCrA..52..379W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1107%2FS0108767395015893">10.1107/S0108767395015893</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0108-7673">0108-7673</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Crystallographica+Section+A&rft.atitle=A+Relativistic+n+-Beam+Dynamical+Theory+for+Fast+Electron+Diffraction&rft.volume=52&rft.issue=3&rft.pages=379-384&rft.date=1996&rft.issn=0108-7673&rft_id=info%3Adoi%2F10.1107%2FS0108767395015893&rft_id=info%3Abibcode%2F1996AcCrA..52..379W&rft.aulast=Watanabe&rft.aufirst=K.&rft.au=Hara%2C+S.&rft.au=Hashimoto%2C+I.&rft_id=https%3A%2F%2Fscripts.iucr.org%2Fcgi-bin%2Fpaper%3FS0108767395015893&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Fujiwara-96"><span class="mw-cite-backlink">^ <a href="#cite_ref-Fujiwara_96-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Fujiwara_96-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Fujiwara_96-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Fujiwara_96-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Fujiwara_96-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFujiwara1961" class="citation journal cs1">Fujiwara, Kunio (1961). <a rel="nofollow" class="external text" href="https://journals.jps.jp/doi/10.1143/JPSJ.16.2226">"Relativistic Dynamical Theory of Electron Diffraction"</a>. <i>Journal of the Physical Society of Japan</i>. <b>16</b> (11): 2226–2238. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1961JPSJ...16.2226F">1961JPSJ...16.2226F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1143%2FJPSJ.16.2226">10.1143/JPSJ.16.2226</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-9015">0031-9015</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Physical+Society+of+Japan&rft.atitle=Relativistic+Dynamical+Theory+of+Electron+Diffraction&rft.volume=16&rft.issue=11&rft.pages=2226-2238&rft.date=1961&rft.issn=0031-9015&rft_id=info%3Adoi%2F10.1143%2FJPSJ.16.2226&rft_id=info%3Abibcode%2F1961JPSJ...16.2226F&rft.aulast=Fujiwara&rft.aufirst=Kunio&rft_id=https%3A%2F%2Fjournals.jps.jp%2Fdoi%2F10.1143%2FJPSJ.16.2226&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-AHDiss-97"><span class="mw-cite-backlink">^ <a href="#cite_ref-AHDiss_97-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-AHDiss_97-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHowie1962" class="citation journal cs1 cs1-prop-long-vol">Howie, A (1962). "Discussion of K. Fujiwara's paper by M. J. Whelan". <i>Journal of the Physical Society of Japan</i>. 17(Supplement BII): 118.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Physical+Society+of+Japan&rft.atitle=Discussion+of+K.+Fujiwara%27s+paper+by+M.+J.+Whelan&rft.volume=17%28Supplement+BII%29&rft.pages=118&rft.date=1962&rft.aulast=Howie&rft.aufirst=A&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Chemical_Bonding/Fundamentals_of_Chemical_Bonding/Bond_Energies">"Bond Energies"</a>. <i>Chemistry LibreTexts</i>. 2013-10-02<span class="reference-accessdate">. Retrieved <span class="nowrap">2023-09-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Chemistry+LibreTexts&rft.atitle=Bond+Energies&rft.date=2013-10-02&rft_id=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FPhysical_and_Theoretical_Chemistry_Textbook_Maps%2FSupplemental_Modules_%28Physical_and_Theoretical_Chemistry%29%2FChemical_Bonding%2FFundamentals_of_Chemical_Bonding%2FBond_Energies&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVainstein1964" class="citation cs2">Vainstein, B.K. (1964), <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016/b978-0-08-010241-2.50010-9">"Experimental Electron Diffraction Structure Investigations"</a>, <i>Structure Analysis by Electron Diffraction</i>, Elsevier, pp. 295–390, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fb978-0-08-010241-2.50010-9">10.1016/b978-0-08-010241-2.50010-9</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780080102412" title="Special:BookSources/9780080102412"><bdi>9780080102412</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">2023-02-11</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Structure+Analysis+by+Electron+Diffraction&rft.atitle=Experimental+Electron+Diffraction+Structure+Investigations&rft.pages=295-390&rft.date=1964&rft_id=info%3Adoi%2F10.1016%2Fb978-0-08-010241-2.50010-9&rft.isbn=9780080102412&rft.aulast=Vainstein&rft.aufirst=B.K.&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fb978-0-08-010241-2.50010-9&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReesSpink1950" class="citation journal cs1">Rees, A. L. G.; Spink, J. A. (1950). <a rel="nofollow" class="external text" href="https://doi.org/10.1107%2Fs0365110x50000823">"The shape transform in electron diffraction by small crystals"</a>. <i>Acta Crystallographica</i>. <b>3</b> (4): 316–317. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1950AcCry...3..316R">1950AcCry...3..316R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1107%2Fs0365110x50000823">10.1107/s0365110x50000823</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0365-110X">0365-110X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Crystallographica&rft.atitle=The+shape+transform+in+electron+diffraction+by+small+crystals&rft.volume=3&rft.issue=4&rft.pages=316-317&rft.date=1950&rft.issn=0365-110X&rft_id=info%3Adoi%2F10.1107%2Fs0365110x50000823&rft_id=info%3Abibcode%2F1950AcCry...3..316R&rft.aulast=Rees&rft.aufirst=A.+L.+G.&rft.au=Spink%2C+J.+A.&rft_id=https%3A%2F%2Fdoi.org%2F10.1107%252Fs0365110x50000823&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.ysbl.york.ac.uk/~cowtan/fourier/crys1.html">"Kevin Cowtan's Book of Fourier, University of York, UK"</a>. <i>www.ysbl.york.ac.uk</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2023-09-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.ysbl.york.ac.uk&rft.atitle=Kevin+Cowtan%27s+Book+of+Fourier%2C+University+of+York%2C+UK&rft_id=http%3A%2F%2Fwww.ysbl.york.ac.uk%2F~cowtan%2Ffourier%2Fcrys1.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Bragg-102"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bragg_102-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bragg_102-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Bragg_102-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBraggBragg1913" class="citation journal cs1">Bragg, W.H.; Bragg, W.L. (1913). <a rel="nofollow" class="external text" href="https://royalsocietypublishing.org/doi/10.1098/rspa.1913.0040">"The reflection of X-rays by crystals"</a>. <i>Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character</i>. <b>88</b> (605): 428–438. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1913RSPSA..88..428B">1913RSPSA..88..428B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1913.0040">10.1098/rspa.1913.0040</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0950-1207">0950-1207</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:13112732">13112732</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society+of+London.+Series+A%2C+Containing+Papers+of+a+Mathematical+and+Physical+Character&rft.atitle=The+reflection+of+X-rays+by+crystals&rft.volume=88&rft.issue=605&rft.pages=428-438&rft.date=1913&rft_id=info%3Adoi%2F10.1098%2Frspa.1913.0040&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A13112732%23id-name%3DS2CID&rft.issn=0950-1207&rft_id=info%3Abibcode%2F1913RSPSA..88..428B&rft.aulast=Bragg&rft.aufirst=W.H.&rft.au=Bragg%2C+W.L.&rft_id=https%3A%2F%2Froyalsocietypublishing.org%2Fdoi%2F10.1098%2Frspa.1913.0040&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.jeol.com/">"higher-order Laue zone (HOLZ) reflection | Glossary | JEOL Ltd"</a>. <i>higher-order Laue zone (HOLZ) reflection | Glossary | JEOL Ltd</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2023-10-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=higher-order+Laue+zone+%28HOLZ%29+reflection+%7C+Glossary+%7C+JEOL+Ltd.&rft.atitle=higher-order+Laue+zone+%28HOLZ%29+reflection+%7C+Glossary+%7C+JEOL+Ltd.&rft_id=https%3A%2F%2Fwww.jeol.com%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Tanaka-104"><span class="mw-cite-backlink">^ <a href="#cite_ref-Tanaka_104-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Tanaka_104-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTanaka2017" class="citation cs2">Tanaka, Nobuo (2017), <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007/978-4-431-56502-4_27">"Column Approximation and Howie-Whelan's Method for Dynamical Electron Diffraction"</a>, <i>Electron Nano-Imaging</i>, Tokyo: Springer Japan, pp. 293–296, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-4-431-56502-4_27">10.1007/978-4-431-56502-4_27</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-4-431-56500-0" title="Special:BookSources/978-4-431-56500-0"><bdi>978-4-431-56500-0</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">2023-02-11</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Electron+Nano-Imaging&rft.atitle=Column+Approximation+and+Howie-Whelan%27s+Method+for+Dynamical+Electron+Diffraction&rft.pages=293-296&rft.date=2017&rft_id=info%3Adoi%2F10.1007%2F978-4-431-56502-4_27&rft.isbn=978-4-431-56500-0&rft.aulast=Tanaka&rft.aufirst=Nobuo&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-4-431-56502-4_27&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHirschWhelan1960" class="citation journal cs1">Hirsch, Peter; Whelan, Michael (1960). <a rel="nofollow" class="external text" href="https://royalsocietypublishing.org/doi/10.1098/rsta.1960.0013">"A kinematical theory of diffraction contrast of electron transmission microscope images of dislocations and other defects"</a>. <i>Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences</i>. <b>252</b> (1017): 499–529. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1960RSPTA.252..499H">1960RSPTA.252..499H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frsta.1960.0013">10.1098/rsta.1960.0013</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0080-4614">0080-4614</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123349515">123349515</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Philosophical+Transactions+of+the+Royal+Society+of+London.+Series+A%2C+Mathematical+and+Physical+Sciences&rft.atitle=A+kinematical+theory+of+diffraction+contrast+of+electron+transmission+microscope+images+of+dislocations+and+other+defects&rft.volume=252&rft.issue=1017&rft.pages=499-529&rft.date=1960&rft_id=info%3Adoi%2F10.1098%2Frsta.1960.0013&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123349515%23id-name%3DS2CID&rft.issn=0080-4614&rft_id=info%3Abibcode%2F1960RSPTA.252..499H&rft.aulast=Hirsch&rft.aufirst=Peter&rft.au=Whelan%2C+Michael&rft_id=https%3A%2F%2Froyalsocietypublishing.org%2Fdoi%2F10.1098%2Frsta.1960.0013&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Yoshioka-106"><span class="mw-cite-backlink">^ <a href="#cite_ref-Yoshioka_106-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Yoshioka_106-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYoshioka1957" class="citation journal cs1">Yoshioka, Hide (1957). <a rel="nofollow" class="external text" href="https://journals.jps.jp/doi/10.1143/JPSJ.12.618">"Effect of Inelastic Waves on Electron Diffraction"</a>. <i>Journal of the Physical Society of Japan</i>. <b>12</b> (6): 618–628. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1957JPSJ...12..618Y">1957JPSJ...12..618Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1143%2FJPSJ.12.618">10.1143/JPSJ.12.618</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-9015">0031-9015</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Physical+Society+of+Japan&rft.atitle=Effect+of+Inelastic+Waves+on+Electron+Diffraction&rft.volume=12&rft.issue=6&rft.pages=618-628&rft.date=1957&rft.issn=0031-9015&rft_id=info%3Adoi%2F10.1143%2FJPSJ.12.618&rft_id=info%3Abibcode%2F1957JPSJ...12..618Y&rft.aulast=Yoshioka&rft.aufirst=Hide&rft_id=https%3A%2F%2Fjournals.jps.jp%2Fdoi%2F10.1143%2FJPSJ.12.618&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-HowieII-107"><span class="mw-cite-backlink">^ <a href="#cite_ref-HowieII_107-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-HowieII_107-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHowieWhelan1961" class="citation journal cs1">Howie, Archibald; Whelan, Michael (1961). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1098/rspa.1961.0157">"Diffraction contrast of electron microscope images of crystal lattice defects – II. The development of a dynamical theory"</a>. <i>Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences</i>. <b>263</b> (1313): 217–237. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1961RSPSA.263..217H">1961RSPSA.263..217H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1961.0157">10.1098/rspa.1961.0157</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0080-4630">0080-4630</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121465295">121465295</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society+of+London.+Series+A.+Mathematical+and+Physical+Sciences&rft.atitle=Diffraction+contrast+of+electron+microscope+images+of+crystal+lattice+defects+%E2%80%93+II.+The+development+of+a+dynamical+theory&rft.volume=263&rft.issue=1313&rft.pages=217-237&rft.date=1961&rft_id=info%3Adoi%2F10.1098%2Frspa.1961.0157&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121465295%23id-name%3DS2CID&rft.issn=0080-4630&rft_id=info%3Abibcode%2F1961RSPSA.263..217H&rft.aulast=Howie&rft.aufirst=Archibald&rft.au=Whelan%2C+Michael&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1098%2Frspa.1961.0157&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-PHInel-108"><span class="mw-cite-backlink">^ <a href="#cite_ref-PHInel_108-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-PHInel_108-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHirschWhelan1963" class="citation journal cs1">Hirsch, Peter; Whelan, Michael (1963). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1098/rspa.1963.0017">"Inelastic scattering of electrons by crystals. I. The theory of small-angle in elastic scattering"</a>. <i>Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences</i>. <b>271</b> (1345): 268–287. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1963RSPSA.271..268H">1963RSPSA.271..268H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1963.0017">10.1098/rspa.1963.0017</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0080-4630">0080-4630</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123122726">123122726</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society+of+London.+Series+A.+Mathematical+and+Physical+Sciences&rft.atitle=Inelastic+scattering+of+electrons+by+crystals.+I.+The+theory+of+small-angle+in+elastic+scattering&rft.volume=271&rft.issue=1345&rft.pages=268-287&rft.date=1963&rft_id=info%3Adoi%2F10.1098%2Frspa.1963.0017&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123122726%23id-name%3DS2CID&rft.issn=0080-4630&rft_id=info%3Abibcode%2F1963RSPSA.271..268H&rft.aulast=Hirsch&rft.aufirst=Peter&rft.au=Whelan%2C+Michael&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1098%2Frspa.1963.0017&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIshizuka2004" class="citation journal cs1">Ishizuka, Kazuo (2004). <a rel="nofollow" class="external text" href="https://www.cambridge.org/core/product/identifier/S1431927604040292/type/journal_article">"FFT Multislice Method—The Silver Anniversary"</a>. <i>Microscopy and Microanalysis</i>. <b>10</b> (1): 34–40. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004MiMic..10...34I">2004MiMic..10...34I</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS1431927604040292">10.1017/S1431927604040292</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1431-9276">1431-9276</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15306065">15306065</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8016041">8016041</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Microscopy+and+Microanalysis&rft.atitle=FFT+Multislice+Method%E2%80%94The+Silver+Anniversary&rft.volume=10&rft.issue=1&rft.pages=34-40&rft.date=2004&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8016041%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2004MiMic..10...34I&rft.issn=1431-9276&rft_id=info%3Adoi%2F10.1017%2FS1431927604040292&rft_id=info%3Apmid%2F15306065&rft.aulast=Ishizuka&rft.aufirst=Kazuo&rft_id=https%3A%2F%2Fwww.cambridge.org%2Fcore%2Fproduct%2Fidentifier%2FS1431927604040292%2Ftype%2Fjournal_article&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-110">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMetherell1975" class="citation book cs1">Metherell, A. J. (1975). <a rel="nofollow" class="external text" href="https://op.europa.eu/en/publication-detail/-/publication/9da8f73f-c340-40ee-b3cf-d4bacfcc4fd7"><i>Electron Microscopy in Materials Science: Part II</i></a>. Commission of the European Communities. pp. 397–552.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Electron+Microscopy+in+Materials+Science%3A+Part+II&rft.pages=397-552&rft.pub=Commission+of+the+European+Communities&rft.date=1975&rft.aulast=Metherell&rft.aufirst=A.+J.&rft_id=https%3A%2F%2Fop.europa.eu%2Fen%2Fpublication-detail%2F-%2Fpublication%2F9da8f73f-c340-40ee-b3cf-d4bacfcc4fd7&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerry1971" class="citation journal cs1">Berry, M V (1971). <a rel="nofollow" class="external text" href="https://iopscience.iop.org/article/10.1088/0022-3719/4/6/006">"Diffraction in crystals at high energies"</a>. <i>Journal of Physics C: Solid State Physics</i>. <b>4</b> (6): 697–722. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1971JPhC....4..697B">1971JPhC....4..697B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0022-3719%2F4%2F6%2F006">10.1088/0022-3719/4/6/006</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0022-3719">0022-3719</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics+C%3A+Solid+State+Physics&rft.atitle=Diffraction+in+crystals+at+high+energies&rft.volume=4&rft.issue=6&rft.pages=697-722&rft.date=1971&rft.issn=0022-3719&rft_id=info%3Adoi%2F10.1088%2F0022-3719%2F4%2F6%2F006&rft_id=info%3Abibcode%2F1971JPhC....4..697B&rft.aulast=Berry&rft.aufirst=M+V&rft_id=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1088%2F0022-3719%2F4%2F6%2F006&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Gjønnes_65–67-112"><span class="mw-cite-backlink">^ <a href="#cite_ref-Gjønnes_65–67_112-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Gjønnes_65–67_112-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGjønnesMoodie1965" class="citation journal cs1">Gjønnes, J.; Moodie, A. F. (1965). <a rel="nofollow" class="external text" href="https://scripts.iucr.org/cgi-bin/paper?S0365110X65002773">"Extinction conditions in the dynamic theory of electron diffraction"</a>. <i>Acta Crystallographica</i>. <b>19</b> (1): 65–67. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1965AcCry..19...65G">1965AcCry..19...65G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1107%2FS0365110X65002773">10.1107/S0365110X65002773</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0365-110X">0365-110X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Crystallographica&rft.atitle=Extinction+conditions+in+the+dynamic+theory+of+electron+diffraction&rft.volume=19&rft.issue=1&rft.pages=65-67&rft.date=1965&rft.issn=0365-110X&rft_id=info%3Adoi%2F10.1107%2FS0365110X65002773&rft_id=info%3Abibcode%2F1965AcCry..19...65G&rft.aulast=Gj%C3%B8nnes&rft.aufirst=J.&rft.au=Moodie%2C+A.+F.&rft_id=https%3A%2F%2Fscripts.iucr.org%2Fcgi-bin%2Fpaper%3FS0365110X65002773&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLindhard1964" class="citation journal cs1">Lindhard, J. (1964). <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/0031916364911333">"Motion of swift charged particles, as influenced by strings of atoms in crystals"</a>. <i>Physics Letters</i>. <b>12</b> (2): 126–128. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1964PhL....12..126L">1964PhL....12..126L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0031-9163%2864%2991133-3">10.1016/0031-9163(64)91133-3</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters&rft.atitle=Motion+of+swift+charged+particles%2C+as+influenced+by+strings+of+atoms+in+crystals&rft.volume=12&rft.issue=2&rft.pages=126-128&rft.date=1964&rft_id=info%3Adoi%2F10.1016%2F0031-9163%2864%2991133-3&rft_id=info%3Abibcode%2F1964PhL....12..126L&rft.aulast=Lindhard&rft.aufirst=J.&rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2F0031916364911333&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-McRae-114"><span class="mw-cite-backlink">^ <a href="#cite_ref-McRae_114-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-McRae_114-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcRae1966" class="citation journal cs1">McRae, E. G. (1966). <a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1728101">"Multiple-Scattering Treatment of Low-Energy Electron-Diffraction Intensities"</a>. <i>The Journal of Chemical Physics</i>. <b>45</b> (9): 3258–3276. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1966JChPh..45.3258M">1966JChPh..45.3258M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1728101">10.1063/1.1728101</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0021-9606">0021-9606</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Journal+of+Chemical+Physics&rft.atitle=Multiple-Scattering+Treatment+of+Low-Energy+Electron-Diffraction+Intensities&rft.volume=45&rft.issue=9&rft.pages=3258-3276&rft.date=1966&rft.issn=0021-9606&rft_id=info%3Adoi%2F10.1063%2F1.1728101&rft_id=info%3Abibcode%2F1966JChPh..45.3258M&rft.aulast=McRae&rft.aufirst=E.+G.&rft_id=https%3A%2F%2Fdoi.org%2F10.1063%252F1.1728101&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Collela-115"><span class="mw-cite-backlink">^ <a href="#cite_ref-Collela_115-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Collela_115-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFColella1972" class="citation journal cs1">Colella, R. (1972). <a rel="nofollow" class="external text" href="https://scripts.iucr.org/cgi-bin/paper?S0567739472000026">"n-Beam dynamical diffraction of high-energy electrons at glancing incidence. General theory and computational methods"</a>. <i>Acta Crystallographica Section A</i>. <b>28</b> (1): 11–15. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1972AcCrA..28...11C">1972AcCrA..28...11C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1107%2FS0567739472000026">10.1107/S0567739472000026</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0567-7394">0567-7394</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Crystallographica+Section+A&rft.atitle=n-Beam+dynamical+diffraction+of+high-energy+electrons+at+glancing+incidence.+General+theory+and+computational+methods&rft.volume=28&rft.issue=1&rft.pages=11-15&rft.date=1972&rft.issn=0567-7394&rft_id=info%3Adoi%2F10.1107%2FS0567739472000026&rft_id=info%3Abibcode%2F1972AcCrA..28...11C&rft.aulast=Colella&rft.aufirst=R.&rft_id=https%3A%2F%2Fscripts.iucr.org%2Fcgi-bin%2Fpaper%3FS0567739472000026&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-116">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKainuma1955" class="citation journal cs1">Kainuma, Y. (1955). <a rel="nofollow" class="external text" href="https://scripts.iucr.org/cgi-bin/paper?S0365110X55000832">"The Theory of Kikuchi patterns"</a>. <i>Acta Crystallographica</i>. <b>8</b> (5): 247–257. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1955AcCry...8..247K">1955AcCry...8..247K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1107%2FS0365110X55000832">10.1107/S0365110X55000832</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Crystallographica&rft.atitle=The+Theory+of+Kikuchi+patterns&rft.volume=8&rft.issue=5&rft.pages=247-257&rft.date=1955&rft_id=info%3Adoi%2F10.1107%2FS0365110X55000832&rft_id=info%3Abibcode%2F1955AcCry...8..247K&rft.aulast=Kainuma&rft.aufirst=Y.&rft_id=https%3A%2F%2Fscripts.iucr.org%2Fcgi-bin%2Fpaper%3FS0365110X55000832&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:12-117"><span class="mw-cite-backlink">^ <a href="#cite_ref-:12_117-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:12_117-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFaye2019" class="citation cs2">Faye, Jan (2019), <a rel="nofollow" class="external text" href="https://plato.stanford.edu/archives/win2019/entries/qm-copenhagen/">"Copenhagen Interpretation of Quantum Mechanics"</a>, in Zalta, Edward N. (ed.), <i>The Stanford Encyclopedia of Philosophy</i> (Winter 2019 ed.), Metaphysics Research Lab, Stanford University<span class="reference-accessdate">, retrieved <span class="nowrap">2023-09-26</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Copenhagen+Interpretation+of+Quantum+Mechanics&rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&rft.edition=Winter+2019&rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&rft.date=2019&rft.aulast=Faye&rft.aufirst=Jan&rft_id=https%3A%2F%2Fplato.stanford.edu%2Farchives%2Fwin2019%2Fentries%2Fqm-copenhagen%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:13-118"><span class="mw-cite-backlink">^ <a href="#cite_ref-:13_118-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:13_118-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGbur2019" class="citation book cs1">Gbur, Gregory J. (2019). <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/j.ctvqc6g7s"><i>Falling Felines and Fundamental Physics</i></a>. Yale University Press. pp. 243–263. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2Fj.ctvqc6g7s.17">10.2307/j.ctvqc6g7s.17</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-300-23129-8" title="Special:BookSources/978-0-300-23129-8"><bdi>978-0-300-23129-8</bdi></a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/j.ctvqc6g7s">j.ctvqc6g7s</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:243353224">243353224</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Falling+Felines+and+Fundamental+Physics&rft.pages=243-263&rft.pub=Yale+University+Press&rft.date=2019&rft_id=info%3Adoi%2F10.2307%2Fj.ctvqc6g7s.17&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A243353224%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2Fj.ctvqc6g7s%23id-name%3DJSTOR&rft.isbn=978-0-300-23129-8&rft.aulast=Gbur&rft.aufirst=Gregory+J.&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2Fj.ctvqc6g7s&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Morniroli_2004-119"><span class="mw-cite-backlink">^ <a href="#cite_ref-Morniroli_2004_119-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Morniroli_2004_119-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Morniroli_2004_119-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Morniroli_2004_119-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorniroli2004" class="citation book cs1">Morniroli, Jean Paul (2004). <i>Large-Angle Convergent-Beam Electron Diffraction Applications to Crystal Defects</i>. Taylor & Francis. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1201%2F9781420034073">10.1201/9781420034073</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9782901483052" title="Special:BookSources/9782901483052"><bdi>9782901483052</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Large-Angle+Convergent-Beam+Electron+Diffraction+Applications+to+Crystal+Defects&rft.pub=Taylor+%26+Francis&rft.date=2004&rft_id=info%3Adoi%2F10.1201%2F9781420034073&rft.isbn=9782901483052&rft.aulast=Morniroli&rft.aufirst=Jean+Paul&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:8-120"><span class="mw-cite-backlink">^ <a href="#cite_ref-:8_120-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:8_120-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:8_120-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:8_120-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:8_120-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHawkesKasper2018" class="citation book cs1">Hawkes, Peter; Kasper, Erwin (2018). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/book/9780081022566/principles-of-electron-optics"><i>Principles of Electron Optics Volume Two: Applied Geometric Optics</i></a> (2nd ed.). Elsevier. pp. Chpts 36, 40, 41, 43, 49, 50. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-12-813369-9" title="Special:BookSources/978-0-12-813369-9"><bdi>978-0-12-813369-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Principles+of+Electron+Optics+Volume+Two%3A+Applied+Geometric+Optics&rft.pages=Chpts+36%2C+40%2C+41%2C+43%2C+49%2C+50&rft.edition=2nd&rft.pub=Elsevier&rft.date=2018&rft.isbn=978-0-12-813369-9&rft.aulast=Hawkes&rft.aufirst=Peter&rft.au=Kasper%2C+Erwin&rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fbook%2F9780081022566%2Fprinciples-of-electron-optics&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-121">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpence2017" class="citation book cs1">Spence, John C. H. (2017). <a rel="nofollow" class="external text" href="http://worldcat.org/oclc/1001251352"><i>High-resolution electron microscopy</i></a>. Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-879583-4" title="Special:BookSources/978-0-19-879583-4"><bdi>978-0-19-879583-4</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1001251352">1001251352</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=High-resolution+electron+microscopy&rft.pub=Oxford+University+Press&rft.date=2017&rft_id=info%3Aoclcnum%2F1001251352&rft.isbn=978-0-19-879583-4&rft.aulast=Spence&rft.aufirst=John+C.+H.&rft_id=http%3A%2F%2Fworldcat.org%2Foclc%2F1001251352&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-122">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ.1981" class="citation book cs1">J., Heinrich, K. F. (1981). <a rel="nofollow" class="external text" href="http://worldcat.org/oclc/801808484"><i>Energy dispersive x-ray spectrometry</i></a>. National Technical Information Service. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/801808484">801808484</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Energy+dispersive+x-ray+spectrometry.&rft.pub=National+Technical+Information+Service&rft.date=1981&rft_id=info%3Aoclcnum%2F801808484&rft.aulast=J.&rft.aufirst=Heinrich%2C+K.+F.&rft_id=http%3A%2F%2Fworldcat.org%2Foclc%2F801808484&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-123">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFF.2011" class="citation book cs1">F., Egerton, R. (2011). <a rel="nofollow" class="external text" href="http://worldcat.org/oclc/706920411"><i>Electron energy-loss spectroscopy in the electron microscope</i></a>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4419-9582-7" title="Special:BookSources/978-1-4419-9582-7"><bdi>978-1-4419-9582-7</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/706920411">706920411</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Electron+energy-loss+spectroscopy+in+the+electron+microscope&rft.pub=Springer&rft.date=2011&rft_id=info%3Aoclcnum%2F706920411&rft.isbn=978-1-4419-9582-7&rft.aulast=F.&rft.aufirst=Egerton%2C+R.&rft_id=http%3A%2F%2Fworldcat.org%2Foclc%2F706920411&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-124">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCowley1992" class="citation journal cs1">Cowley, J. M. (1992). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016/0304-3991%2892%2990213-4">"Twenty forms of electron holography"</a>. <i>Ultramicroscopy</i>. <b>41</b> (4): 335–348. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0304-3991%2892%2990213-4">10.1016/0304-3991(92)90213-4</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0304-3991">0304-3991</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Ultramicroscopy&rft.atitle=Twenty+forms+of+electron+holography&rft.volume=41&rft.issue=4&rft.pages=335-348&rft.date=1992&rft_id=info%3Adoi%2F10.1016%2F0304-3991%2892%2990213-4&rft.issn=0304-3991&rft.aulast=Cowley&rft.aufirst=J.+M.&rft_id=https%3A%2F%2Fdx.doi.org%2F10.1016%2F0304-3991%252892%252990213-4&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Pella-125"><span class="mw-cite-backlink">^ <a href="#cite_ref-Pella_125-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Pella_125-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.tedpella.com/apertures-and-filaments_html/apertures-overview.aspx">"Apertures, Electron Microscope Apertures"</a>. <i>www.tedpella.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2023-02-11</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.tedpella.com&rft.atitle=Apertures%2C+Electron+Microscope+Apertures&rft_id=https%3A%2F%2Fwww.tedpella.com%2Fapertures-and-filaments_html%2Fapertures-overview.aspx&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-126"><span class="mw-cite-backlink"><b><a href="#cite_ref-126">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHonjoMihama1954" class="citation journal cs1">Honjo, Goro; Mihama, Kazuhiro (1954). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1143/jpsj.9.184">"Fine Structure due to Refraction Effect in Electron Diffraction Pattern of Powder Sample Part II. Multiple Structures due to Double Refraction given by Randomly Oriented Smoke Particles of Magnesium and Cadmium Oxide"</a>. <i>Journal of the Physical Society of Japan</i>. <b>9</b> (2): 184–198. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1143%2Fjpsj.9.184">10.1143/jpsj.9.184</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-9015">0031-9015</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Physical+Society+of+Japan&rft.atitle=Fine+Structure+due+to+Refraction+Effect+in+Electron+Diffraction+Pattern+of+Powder+Sample+Part+II.+Multiple+Structures+due+to+Double+Refraction+given+by+Randomly+Oriented+Smoke+Particles+of+Magnesium+and+Cadmium+Oxide&rft.volume=9&rft.issue=2&rft.pages=184-198&rft.date=1954&rft_id=info%3Adoi%2F10.1143%2Fjpsj.9.184&rft.issn=0031-9015&rft.aulast=Honjo&rft.aufirst=Goro&rft.au=Mihama%2C+Kazuhiro&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1143%2Fjpsj.9.184&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Sufficient-127"><span class="mw-cite-backlink">^ <a href="#cite_ref-Sufficient_127-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Sufficient_127-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarksSinkler2003" class="citation journal cs1">Marks, L.D.; Sinkler, W. (2003). <a rel="nofollow" class="external text" href="https://www.cambridge.org/core/product/identifier/S1431927603030332/type/journal_article">"Sufficient Conditions for Direct Methods with Swift Electrons"</a>. <i>Microscopy and Microanalysis</i>. <b>9</b> (5): 399–410. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003MiMic...9..399M">2003MiMic...9..399M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS1431927603030332">10.1017/S1431927603030332</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1431-9276">1431-9276</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19771696">19771696</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:20112743">20112743</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Microscopy+and+Microanalysis&rft.atitle=Sufficient+Conditions+for+Direct+Methods+with+Swift+Electrons&rft.volume=9&rft.issue=5&rft.pages=399-410&rft.date=2003&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A20112743%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2003MiMic...9..399M&rft.issn=1431-9276&rft_id=info%3Adoi%2F10.1017%2FS1431927603030332&rft_id=info%3Apmid%2F19771696&rft.aulast=Marks&rft.aufirst=L.D.&rft.au=Sinkler%2C+W.&rft_id=https%3A%2F%2Fwww.cambridge.org%2Fcore%2Fproduct%2Fidentifier%2FS1431927603030332%2Ftype%2Fjournal_article&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-128">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKolbGorelikKübelOtten2007" class="citation journal cs1">Kolb, U.; Gorelik, T.; Kübel, C.; Otten, M.T.; Hubert, D. (2007). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016/j.ultramic.2006.10.007">"Towards automated diffraction tomography: Part I—Data acquisition"</a>. <i>Ultramicroscopy</i>. <b>107</b> (6–7): 507–513. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ultramic.2006.10.007">10.1016/j.ultramic.2006.10.007</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0304-3991">0304-3991</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17234347">17234347</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Ultramicroscopy&rft.atitle=Towards+automated+diffraction+tomography%3A+Part+I%E2%80%94Data+acquisition&rft.volume=107&rft.issue=6%E2%80%937&rft.pages=507-513&rft.date=2007&rft.issn=0304-3991&rft_id=info%3Apmid%2F17234347&rft_id=info%3Adoi%2F10.1016%2Fj.ultramic.2006.10.007&rft.aulast=Kolb&rft.aufirst=U.&rft.au=Gorelik%2C+T.&rft.au=K%C3%BCbel%2C+C.&rft.au=Otten%2C+M.T.&rft.au=Hubert%2C+D.&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.ultramic.2006.10.007&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-129"><span class="mw-cite-backlink"><b><a href="#cite_ref-129">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMugnaioliGorelikKolb2009" class="citation journal cs1">Mugnaioli, E.; Gorelik, T.; Kolb, U. (2009). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016/j.ultramic.2009.01.011">"<span class="cs1-kern-left"></span>"Ab initio" structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique"</a>. <i>Ultramicroscopy</i>. <b>109</b> (6): 758–765. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ultramic.2009.01.011">10.1016/j.ultramic.2009.01.011</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0304-3991">0304-3991</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19269095">19269095</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Ultramicroscopy&rft.atitle=%22Ab+initio%22+structure+solution+from+electron+diffraction+data+obtained+by+a+combination+of+automated+diffraction+tomography+and+precession+technique&rft.volume=109&rft.issue=6&rft.pages=758-765&rft.date=2009&rft.issn=0304-3991&rft_id=info%3Apmid%2F19269095&rft_id=info%3Adoi%2F10.1016%2Fj.ultramic.2009.01.011&rft.aulast=Mugnaioli&rft.aufirst=E.&rft.au=Gorelik%2C+T.&rft.au=Kolb%2C+U.&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.ultramic.2009.01.011&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-130"><span class="mw-cite-backlink"><b><a href="#cite_ref-130">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHowieKrivanekRudee1973" class="citation journal cs1">Howie, A.; Krivanek, O. L.; Rudee, M. L. (1973). <a rel="nofollow" class="external text" href="http://www.tandfonline.com/doi/abs/10.1080/14786437308228927">"Interpretation of electron micrographs and diffraction patterns of amorphous materials"</a>. <i>Philosophical Magazine</i>. <b>27</b> (1): 235–255. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1973PMag...27..235H">1973PMag...27..235H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F14786437308228927">10.1080/14786437308228927</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-8086">0031-8086</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Philosophical+Magazine&rft.atitle=Interpretation+of+electron+micrographs+and+diffraction+patterns+of+amorphous+materials&rft.volume=27&rft.issue=1&rft.pages=235-255&rft.date=1973&rft.issn=0031-8086&rft_id=info%3Adoi%2F10.1080%2F14786437308228927&rft_id=info%3Abibcode%2F1973PMag...27..235H&rft.aulast=Howie&rft.aufirst=A.&rft.au=Krivanek%2C+O.+L.&rft.au=Rudee%2C+M.+L.&rft_id=http%3A%2F%2Fwww.tandfonline.com%2Fdoi%2Fabs%2F10.1080%2F14786437308228927&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-131"><span class="mw-cite-backlink"><b><a href="#cite_ref-131">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHowie1978" class="citation journal cs1">Howie, A. (1978). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016/0022-3093%2878%2990098-4">"High resolution electron microscopy of amorphous thin films"</a>. <i>Journal of Non-Crystalline Solids</i>. Proceedings of the Topical Conference on Atomic Scale Structure of Amorphous Solids. <b>31</b> (1): 41–55. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1978JNCS...31...41H">1978JNCS...31...41H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0022-3093%2878%2990098-4">10.1016/0022-3093(78)90098-4</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0022-3093">0022-3093</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Non-Crystalline+Solids&rft.atitle=High+resolution+electron+microscopy+of+amorphous+thin+films&rft.volume=31&rft.issue=1&rft.pages=41-55&rft.date=1978&rft.issn=0022-3093&rft_id=info%3Adoi%2F10.1016%2F0022-3093%2878%2990098-4&rft_id=info%3Abibcode%2F1978JNCS...31...41H&rft.aulast=Howie&rft.aufirst=A.&rft_id=https%3A%2F%2Fdx.doi.org%2F10.1016%2F0022-3093%252878%252990098-4&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-132"><span class="mw-cite-backlink"><b><a href="#cite_ref-132">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGibsonTreacy1997" class="citation journal cs1">Gibson, J. M.; Treacy, M. M. J. (1997). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRevLett.78.1074">"Diminished Medium-Range Order Observed in Annealed Amorphous Germanium"</a>. <i>Physical Review Letters</i>. <b>78</b> (6): 1074–1077. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1997PhRvL..78.1074G">1997PhRvL..78.1074G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.78.1074">10.1103/PhysRevLett.78.1074</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-9007">0031-9007</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Diminished+Medium-Range+Order+Observed+in+Annealed+Amorphous+Germanium&rft.volume=78&rft.issue=6&rft.pages=1074-1077&rft.date=1997&rft.issn=0031-9007&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.78.1074&rft_id=info%3Abibcode%2F1997PhRvL..78.1074G&rft.aulast=Gibson&rft.aufirst=J.+M.&rft.au=Treacy%2C+M.+M.+J.&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevLett.78.1074&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-133"><span class="mw-cite-backlink"><b><a href="#cite_ref-133">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTreacyGibsonFanPaterson2005" class="citation journal cs1">Treacy, M M J; Gibson, J M; Fan, L; Paterson, D J; McNulty, I (2005). <a rel="nofollow" class="external text" href="https://iopscience.iop.org/article/10.1088/0034-4885/68/12/R06">"Fluctuation microscopy: a probe of medium range order"</a>. <i>Reports on Progress in Physics</i>. <b>68</b> (12): 2899–2944. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005RPPh...68.2899T">2005RPPh...68.2899T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0034-4885%2F68%2F12%2FR06">10.1088/0034-4885/68/12/R06</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0034-4885">0034-4885</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16316238">16316238</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Reports+on+Progress+in+Physics&rft.atitle=Fluctuation+microscopy%3A+a+probe+of+medium+range+order&rft.volume=68&rft.issue=12&rft.pages=2899-2944&rft.date=2005&rft_id=info%3Adoi%2F10.1088%2F0034-4885%2F68%2F12%2FR06&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16316238%23id-name%3DS2CID&rft.issn=0034-4885&rft_id=info%3Abibcode%2F2005RPPh...68.2899T&rft.aulast=Treacy&rft.aufirst=M+M+J&rft.au=Gibson%2C+J+M&rft.au=Fan%2C+L&rft.au=Paterson%2C+D+J&rft.au=McNulty%2C+I&rft_id=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1088%2F0034-4885%2F68%2F12%2FR06&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Janner77-134"><span class="mw-cite-backlink">^ <a href="#cite_ref-Janner77_134-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Janner77_134-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJannerJanssen1977" class="citation journal cs1">Janner, A.; Janssen, T. (1977). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1103/physrevb.15.643">"Symmetry of periodically distorted crystals"</a>. <i>Physical Review B</i>. <b>15</b> (2): 643–658. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1977PhRvB..15..643J">1977PhRvB..15..643J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2Fphysrevb.15.643">10.1103/physrevb.15.643</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0556-2805">0556-2805</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+B&rft.atitle=Symmetry+of+periodically+distorted+crystals&rft.volume=15&rft.issue=2&rft.pages=643-658&rft.date=1977&rft.issn=0556-2805&rft_id=info%3Adoi%2F10.1103%2Fphysrevb.15.643&rft_id=info%3Abibcode%2F1977PhRvB..15..643J&rft.aulast=Janner&rft.aufirst=A.&rft.au=Janssen%2C+T.&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1103%2Fphysrevb.15.643&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Bak-135"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bak_135-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bak_135-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBak1982" class="citation journal cs1">Bak, P (1982). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1088/0034-4885/45/6/001">"Commensurate phases, incommensurate phases and the devil's staircase"</a>. <i>Reports on Progress in Physics</i>. <b>45</b> (6): 587–629. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0034-4885%2F45%2F6%2F001">10.1088/0034-4885/45/6/001</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0034-4885">0034-4885</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Reports+on+Progress+in+Physics&rft.atitle=Commensurate+phases%2C+incommensurate+phases+and+the+devil%27s+staircase&rft.volume=45&rft.issue=6&rft.pages=587-629&rft.date=1982&rft_id=info%3Adoi%2F10.1088%2F0034-4885%2F45%2F6%2F001&rft.issn=0034-4885&rft.aulast=Bak&rft.aufirst=P&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1088%2F0034-4885%2F45%2F6%2F001&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Jannsen2006-136"><span class="mw-cite-backlink">^ <a href="#cite_ref-Jannsen2006_136-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Jannsen2006_136-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJanssenJannerLooijenga-Vosde_Wolff2006" class="citation cs2">Janssen, T.; Janner, A.; Looijenga-Vos, A.; de Wolff, P. M. (2006), Prince, E. (ed.), <a rel="nofollow" class="external text" href="https://xrpp.iucr.org/cgi-bin/itr?url_ver=Z39.88-2003&rft_dat=what%3Dchapter%26volid%3DCb%26chnumo%3D9o8%26chvers%3Dv0001">"Incommensurate and commensurate modulated structures"</a>, <i>International Tables for Crystallography</i>, vol. C (1 ed.), Chester, England: International Union of Crystallography, pp. 907–955, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1107%2F97809553602060000624">10.1107/97809553602060000624</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4020-1900-5" title="Special:BookSources/978-1-4020-1900-5"><bdi>978-1-4020-1900-5</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">2023-03-24</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Tables+for+Crystallography&rft.atitle=Incommensurate+and+commensurate+modulated+structures&rft.volume=C&rft.pages=907-955&rft.date=2006&rft_id=info%3Adoi%2F10.1107%2F97809553602060000624&rft.isbn=978-1-4020-1900-5&rft.aulast=Janssen&rft.aufirst=T.&rft.au=Janner%2C+A.&rft.au=Looijenga-Vos%2C+A.&rft.au=de+Wolff%2C+P.+M.&rft_id=https%3A%2F%2Fxrpp.iucr.org%2Fcgi-bin%2Fitr%3Furl_ver%3DZ39.88-2003%26rft_dat%3Dwhat%253Dchapter%2526volid%253DCb%2526chnumo%253D9o8%2526chvers%253Dv0001&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-137"><span class="mw-cite-backlink"><b><a href="#cite_ref-137">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRandallFanReaneyChen2021" class="citation journal cs1">Randall, Clive A.; Fan, Zhongming; Reaney, Ian; Chen, Long-Qing; Trolier-McKinstry, Susan (2021). <a rel="nofollow" class="external text" href="https://ceramics.onlinelibrary.wiley.com/doi/10.1111/jace.17834">"Antiferroelectrics: History, fundamentals, crystal chemistry, crystal structures, size effects, and applications"</a>. <i>Journal of the American Ceramic Society</i>. <b>104</b> (8): 3775–3810. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fjace.17834">10.1111/jace.17834</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0002-7820">0002-7820</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:233534909">233534909</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.atitle=Antiferroelectrics%3A+History%2C+fundamentals%2C+crystal+chemistry%2C+crystal+structures%2C+size+effects%2C+and+applications&rft.volume=104&rft.issue=8&rft.pages=3775-3810&rft.date=2021&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A233534909%23id-name%3DS2CID&rft.issn=0002-7820&rft_id=info%3Adoi%2F10.1111%2Fjace.17834&rft.aulast=Randall&rft.aufirst=Clive+A.&rft.au=Fan%2C+Zhongming&rft.au=Reaney%2C+Ian&rft.au=Chen%2C+Long-Qing&rft.au=Trolier-McKinstry%2C+Susan&rft_id=https%3A%2F%2Fceramics.onlinelibrary.wiley.com%2Fdoi%2F10.1111%2Fjace.17834&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-138"><span class="mw-cite-backlink"><b><a href="#cite_ref-138">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeineSamson1983" class="citation journal cs1">Heine, V; Samson, J H (1983). <a rel="nofollow" class="external text" href="https://iopscience.iop.org/article/10.1088/0305-4608/13/10/025">"Magnetic, chemical and structural ordering in transition metals"</a>. <i>Journal of Physics F: Metal Physics</i>. <b>13</b> (10): 2155–2168. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1983JPhF...13.2155H">1983JPhF...13.2155H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0305-4608%2F13%2F10%2F025">10.1088/0305-4608/13/10/025</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0305-4608">0305-4608</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics+F%3A+Metal+Physics&rft.atitle=Magnetic%2C+chemical+and+structural+ordering+in+transition+metals&rft.volume=13&rft.issue=10&rft.pages=2155-2168&rft.date=1983&rft.issn=0305-4608&rft_id=info%3Adoi%2F10.1088%2F0305-4608%2F13%2F10%2F025&rft_id=info%3Abibcode%2F1983JPhF...13.2155H&rft.aulast=Heine&rft.aufirst=V&rft.au=Samson%2C+J+H&rft_id=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1088%2F0305-4608%2F13%2F10%2F025&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-139"><span class="mw-cite-backlink"><b><a href="#cite_ref-139">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Book%3A_Introduction_to_Inorganic_Chemistry_(Wikibook)/06%3A_Metals_and_Alloys-_Structure_Bonding_Electronic_and_Magnetic_Properties/6.08%3A_Ferro-_Ferri-_and_Antiferromagnetism">"6.8: Ferro-, Ferri- and Antiferromagnetism"</a>. <i>Chemistry LibreTexts</i>. 2019-09-13<span class="reference-accessdate">. Retrieved <span class="nowrap">2023-09-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Chemistry+LibreTexts&rft.atitle=6.8%3A+Ferro-%2C+Ferri-+and+Antiferromagnetism&rft.date=2019-09-13&rft_id=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FInorganic_Chemistry%2FBook%253A_Introduction_to_Inorganic_Chemistry_%28Wikibook%29%2F06%253A_Metals_and_Alloys-_Structure_Bonding_Electronic_and_Magnetic_Properties%2F6.08%253A_Ferro-_Ferri-_and_Antiferromagnetism&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-140"><span class="mw-cite-backlink"><b><a href="#cite_ref-140">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAndersenFongMarks2018" class="citation journal cs1">Andersen, Tassie K.; Fong, Dillon D.; Marks, Laurence D. (2018). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.surfrep.2018.08.001">"Pauling's rules for oxide surfaces"</a>. <i>Surface Science Reports</i>. <b>73</b> (5): 213–232. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018SurSR..73..213A">2018SurSR..73..213A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.surfrep.2018.08.001">10.1016/j.surfrep.2018.08.001</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53137808">53137808</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Surface+Science+Reports&rft.atitle=Pauling%27s+rules+for+oxide+surfaces&rft.volume=73&rft.issue=5&rft.pages=213-232&rft.date=2018&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53137808%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.surfrep.2018.08.001&rft_id=info%3Abibcode%2F2018SurSR..73..213A&rft.aulast=Andersen&rft.aufirst=Tassie+K.&rft.au=Fong%2C+Dillon+D.&rft.au=Marks%2C+Laurence+D.&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.surfrep.2018.08.001&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-141"><span class="mw-cite-backlink"><b><a href="#cite_ref-141">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOuraLifšicSaraninZotov2003" class="citation book cs1">Oura, Kenjiro; Lifšic, Viktor G.; Saranin, A. A.; Zotov, A. V.; Katayama, Masao, eds. (2003). <i>Surface science: an introduction; with 16 tables</i>. Advanced texts in physics. Berlin Heidelberg: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-00545-2" title="Special:BookSources/978-3-540-00545-2"><bdi>978-3-540-00545-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Surface+science%3A+an+introduction%3B+with+16+tables&rft.place=Berlin+Heidelberg&rft.series=Advanced+texts+in+physics&rft.pub=Springer&rft.date=2003&rft.isbn=978-3-540-00545-2&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:15-142"><span class="mw-cite-backlink">^ <a href="#cite_ref-:15_142-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:15_142-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTakayanagiTanishiroTakahashiTakahashi1985" class="citation journal cs1">Takayanagi, K.; Tanishiro, Y.; Takahashi, M.; Takahashi, S. (1985). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1116/1.573160">"Structural analysis of Si(111)-7×7 by UHV-transmission electron diffraction and microscopy"</a>. <i>Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films</i>. <b>3</b> (3): 1502–1506. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1985JVSTA...3.1502T">1985JVSTA...3.1502T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1116%2F1.573160">10.1116/1.573160</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0734-2101">0734-2101</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Vacuum+Science+%26+Technology+A%3A+Vacuum%2C+Surfaces%2C+and+Films&rft.atitle=Structural+analysis+of+Si%28111%29-7%C3%977+by+UHV-transmission+electron+diffraction+and+microscopy&rft.volume=3&rft.issue=3&rft.pages=1502-1506&rft.date=1985&rft.issn=0734-2101&rft_id=info%3Adoi%2F10.1116%2F1.573160&rft_id=info%3Abibcode%2F1985JVSTA...3.1502T&rft.aulast=Takayanagi&rft.aufirst=K.&rft.au=Tanishiro%2C+Y.&rft.au=Takahashi%2C+M.&rft.au=Takahashi%2C+S.&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1116%2F1.573160&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-143"><span class="mw-cite-backlink"><b><a href="#cite_ref-143">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCistonSubramanianRobinsonMarks2009" class="citation journal cs1">Ciston, J.; Subramanian, A.; Robinson, I. K.; Marks, L. D. (2009). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRevB.79.193302">"Diffraction refinement of localized antibonding at the Si(111) 7 × 7 surface"</a>. <i>Physical Review B</i>. <b>79</b> (19): 193302. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0901.3135">0901.3135</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009PhRvB..79s3302C">2009PhRvB..79s3302C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevB.79.193302">10.1103/PhysRevB.79.193302</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1098-0121">1098-0121</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+B&rft.atitle=Diffraction+refinement+of+localized+antibonding+at+the+Si%28111%29+7+%C3%97+7+surface&rft.volume=79&rft.issue=19&rft.pages=193302&rft.date=2009&rft_id=info%3Aarxiv%2F0901.3135&rft.issn=1098-0121&rft_id=info%3Adoi%2F10.1103%2FPhysRevB.79.193302&rft_id=info%3Abibcode%2F2009PhRvB..79s3302C&rft.aulast=Ciston&rft.aufirst=J.&rft.au=Subramanian%2C+A.&rft.au=Robinson%2C+I.+K.&rft.au=Marks%2C+L.+D.&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevB.79.193302&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-144"><span class="mw-cite-backlink"><b><a href="#cite_ref-144">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShechtmanBlechGratiasCahn1984" class="citation journal cs1">Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. W. (1984). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.53.1951">"Metallic Phase with Long-Range Orientational Order and No Translational Symmetry"</a>. <i>Physical Review Letters</i>. <b>53</b> (20): 1951–1953. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1984PhRvL..53.1951S">1984PhRvL..53.1951S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.53.1951">10.1103/PhysRevLett.53.1951</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-9007">0031-9007</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Metallic+Phase+with+Long-Range+Orientational+Order+and+No+Translational+Symmetry&rft.volume=53&rft.issue=20&rft.pages=1951-1953&rft.date=1984&rft.issn=0031-9007&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.53.1951&rft_id=info%3Abibcode%2F1984PhRvL..53.1951S&rft.aulast=Shechtman&rft.aufirst=D.&rft.au=Blech%2C+I.&rft.au=Gratias%2C+D.&rft.au=Cahn%2C+J.+W.&rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRevLett.53.1951&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-145"><span class="mw-cite-backlink"><b><a href="#cite_ref-145">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWidjajaMarks2003" class="citation journal cs1">Widjaja, E.J.; Marks, L.D. (2003). <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/S0040609003009039">"Microstructural evolution in Al–Cu–Fe quasicrystalline thin films"</a>. <i>Thin Solid Films</i>. <b>441</b> (1–2): 63–71. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003TSF...441...63W">2003TSF...441...63W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0040-6090%2803%2900903-9">10.1016/S0040-6090(03)00903-9</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Thin+Solid+Films&rft.atitle=Microstructural+evolution+in+Al%E2%80%93Cu%E2%80%93Fe+quasicrystalline+thin+films&rft.volume=441&rft.issue=1%E2%80%932&rft.pages=63-71&rft.date=2003&rft_id=info%3Adoi%2F10.1016%2FS0040-6090%2803%2900903-9&rft_id=info%3Abibcode%2F2003TSF...441...63W&rft.aulast=Widjaja&rft.aufirst=E.J.&rft.au=Marks%2C+L.D.&rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0040609003009039&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-146"><span class="mw-cite-backlink"><b><a href="#cite_ref-146">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWelberry2014" class="citation journal cs1">Welberry, T. R. (2014). <a rel="nofollow" class="external text" href="http://link.springer.com/10.1007/s11661-013-1889-2">"One Hundred Years of Diffuse X-ray Scattering"</a>. <i>Metallurgical and Materials Transactions A</i>. <b>45</b> (1): 75–84. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014MMTA...45...75W">2014MMTA...45...75W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11661-013-1889-2">10.1007/s11661-013-1889-2</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1073-5623">1073-5623</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:137476417">137476417</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Metallurgical+and+Materials+Transactions+A&rft.atitle=One+Hundred+Years+of+Diffuse+X-ray+Scattering&rft.volume=45&rft.issue=1&rft.pages=75-84&rft.date=2014&rft_id=info%3Adoi%2F10.1007%2Fs11661-013-1889-2&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A137476417%23id-name%3DS2CID&rft.issn=1073-5623&rft_id=info%3Abibcode%2F2014MMTA...45...75W&rft.aulast=Welberry&rft.aufirst=T.+R.&rft_id=http%3A%2F%2Flink.springer.com%2F10.1007%2Fs11661-013-1889-2&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-147"><span class="mw-cite-backlink"><b><a href="#cite_ref-147">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNield2001" class="citation book cs1">Nield, Victoria M. (2001). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/45485010"><i>Diffuse neutron scattering from crystalline materials</i></a>. David A. Keen. Oxford: Clarendon Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-19-851790-4" title="Special:BookSources/0-19-851790-4"><bdi>0-19-851790-4</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/45485010">45485010</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Diffuse+neutron+scattering+from+crystalline+materials&rft.place=Oxford&rft.pub=Clarendon+Press&rft.date=2001&rft_id=info%3Aoclcnum%2F45485010&rft.isbn=0-19-851790-4&rft.aulast=Nield&rft.aufirst=Victoria+M.&rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F45485010&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-148"><span class="mw-cite-backlink"><b><a href="#cite_ref-148">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRothBeyerFischerXia2021" class="citation journal cs1">Roth, N.; Beyer, J.; Fischer, K. F. F.; Xia, K.; Zhu, T.; Iversen, B. B. (2021). <a rel="nofollow" class="external text" href="https://journals.iucr.org/m/issues/2021/04/00/fc5055/">"Tuneable local order in thermoelectric crystals"</a>. <i>IUCrJ</i>. <b>8</b> (4): 695–702. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2103.08543">2103.08543</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021IUCrJ...8..695R">2021IUCrJ...8..695R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1107%2FS2052252521005479">10.1107/S2052252521005479</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2052-2525">2052-2525</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256708">8256708</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34258017">34258017</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IUCrJ&rft.atitle=Tuneable+local+order+in+thermoelectric+crystals&rft.volume=8&rft.issue=4&rft.pages=695-702&rft.date=2021&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8256708%23id-name%3DPMC&rft_id=info%3Abibcode%2F2021IUCrJ...8..695R&rft_id=info%3Aarxiv%2F2103.08543&rft.issn=2052-2525&rft_id=info%3Adoi%2F10.1107%2FS2052252521005479&rft_id=info%3Apmid%2F34258017&rft.aulast=Roth&rft.aufirst=N.&rft.au=Beyer%2C+J.&rft.au=Fischer%2C+K.+F.+F.&rft.au=Xia%2C+K.&rft.au=Zhu%2C+T.&rft.au=Iversen%2C+B.+B.&rft_id=https%3A%2F%2Fjournals.iucr.org%2Fm%2Fissues%2F2021%2F04%2F00%2Ffc5055%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-149"><span class="mw-cite-backlink"><b><a href="#cite_ref-149">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChuvilinKaiser2005" class="citation journal cs1">Chuvilin, A.; Kaiser, U. (2005). <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/S0304399105000483">"On the peculiarities of CBED pattern formation revealed by multislice simulation"</a>. <i>Ultramicroscopy</i>. <b>104</b> (1): 73–82. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ultramic.2005.03.003">10.1016/j.ultramic.2005.03.003</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15935917">15935917</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Ultramicroscopy&rft.atitle=On+the+peculiarities+of+CBED+pattern+formation+revealed+by+multislice+simulation&rft.volume=104&rft.issue=1&rft.pages=73-82&rft.date=2005&rft_id=info%3Adoi%2F10.1016%2Fj.ultramic.2005.03.003&rft_id=info%3Apmid%2F15935917&rft.aulast=Chuvilin&rft.aufirst=A.&rft.au=Kaiser%2C+U.&rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0304399105000483&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-150"><span class="mw-cite-backlink"><b><a href="#cite_ref-150">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchnitzerSungHovden2019" class="citation journal cs1">Schnitzer, Noah; Sung, Suk Hyun; Hovden, Robert (2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1017%2Fs1551929519000427">"Introduction to the Ronchigram and its Calculation with Ronchigram.com"</a>. <i>Microscopy Today</i>. <b>27</b> (3): 12–15. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1017%2Fs1551929519000427">10.1017/s1551929519000427</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1551-9295">1551-9295</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:155224415">155224415</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Microscopy+Today&rft.atitle=Introduction+to+the+Ronchigram+and+its+Calculation+with+Ronchigram.com&rft.volume=27&rft.issue=3&rft.pages=12-15&rft.date=2019&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A155224415%23id-name%3DS2CID&rft.issn=1551-9295&rft_id=info%3Adoi%2F10.1017%2Fs1551929519000427&rft.aulast=Schnitzer&rft.aufirst=Noah&rft.au=Sung%2C+Suk+Hyun&rft.au=Hovden%2C+Robert&rft_id=https%3A%2F%2Fdoi.org%2F10.1017%252Fs1551929519000427&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-thesis-151"><span class="mw-cite-backlink"><b><a href="#cite_ref-thesis_151-0">^</a></b></span> <span class="reference-text">Own, C. S.: PhD thesis, System Design and Verification of the Precession Electron Diffraction Technique, Northwestern University, 2005, <a rel="nofollow" class="external free" href="http://www.numis.northwestern.edu/Research/Current/precession.shtml">http://www.numis.northwestern.edu/Research/Current/precession.shtml</a></span> </li> <li id="cite_note-152"><span class="mw-cite-backlink"><b><a href="#cite_ref-152">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVincentMidgley1994" class="citation journal cs1">Vincent, R.; Midgley, P.A. (1994). <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/0304399194900396">"Double conical beam-rocking system for measurement of integrated electron diffraction intensities"</a>. <i>Ultramicroscopy</i>. <b>53</b> (3): 271–282. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0304-3991%2894%2990039-6">10.1016/0304-3991(94)90039-6</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Ultramicroscopy&rft.atitle=Double+conical+beam-rocking+system+for+measurement+of+integrated+electron+diffraction+intensities&rft.volume=53&rft.issue=3&rft.pages=271-282&rft.date=1994&rft_id=info%3Adoi%2F10.1016%2F0304-3991%2894%2990039-6&rft.aulast=Vincent&rft.aufirst=R.&rft.au=Midgley%2C+P.A.&rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2F0304399194900396&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-153"><span class="mw-cite-backlink"><b><a href="#cite_ref-153">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGjønnesHansenBergRunde1998" class="citation journal cs1">Gjønnes, J.; Hansen, V.; Berg, B. S.; Runde, P.; Cheng, Y. F.; Gjønnes, K.; Dorset, D. L.; Gilmore, C. J. (1998). <a rel="nofollow" class="external text" href="https://scripts.iucr.org/cgi-bin/paper?S0108767397017030">"Structure Model for the Phase AlmFe Derived from Three-Dimensional Electron Diffraction Intensity Data Collected by a Precession Technique. Comparison with Convergent-Beam Diffraction"</a>. <i>Acta Crystallographica Section A</i>. <b>54</b> (3): 306–319. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998AcCrA..54..306G">1998AcCrA..54..306G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1107%2FS0108767397017030">10.1107/S0108767397017030</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Crystallographica+Section+A&rft.atitle=Structure+Model+for+the+Phase+AlmFe+Derived+from+Three-Dimensional+Electron+Diffraction+Intensity+Data+Collected+by+a+Precession+Technique.+Comparison+with+Convergent-Beam+Diffraction&rft.volume=54&rft.issue=3&rft.pages=306-319&rft.date=1998&rft_id=info%3Adoi%2F10.1107%2FS0108767397017030&rft_id=info%3Abibcode%2F1998AcCrA..54..306G&rft.aulast=Gj%C3%B8nnes&rft.aufirst=J.&rft.au=Hansen%2C+V.&rft.au=Berg%2C+B.+S.&rft.au=Runde%2C+P.&rft.au=Cheng%2C+Y.+F.&rft.au=Gj%C3%B8nnes%2C+K.&rft.au=Dorset%2C+D.+L.&rft.au=Gilmore%2C+C.+J.&rft_id=https%3A%2F%2Fscripts.iucr.org%2Fcgi-bin%2Fpaper%3FS0108767397017030&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-154"><span class="mw-cite-backlink"><b><a href="#cite_ref-154">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoeckRouvimov2010" class="citation journal cs1">Moeck, Peter; Rouvimov, Sergei (2010). <a rel="nofollow" class="external text" href="https://doi.org/10.1524%2Fzkri.2010.1162">"Precession electron diffraction and its advantages for structural fingerprinting in the transmission electron microscope"</a>. <i>Zeitschrift für Kristallographie</i>. <b>225</b> (2–3): 110–124. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010ZK....225..110M">2010ZK....225..110M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1524%2Fzkri.2010.1162">10.1524/zkri.2010.1162</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0044-2968">0044-2968</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:52059939">52059939</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Zeitschrift+f%C3%BCr+Kristallographie&rft.atitle=Precession+electron+diffraction+and+its+advantages+for+structural+fingerprinting+in+the+transmission+electron+microscope&rft.volume=225&rft.issue=2%E2%80%933&rft.pages=110-124&rft.date=2010&rft_id=info%3Adoi%2F10.1524%2Fzkri.2010.1162&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A52059939%23id-name%3DS2CID&rft.issn=0044-2968&rft_id=info%3Abibcode%2F2010ZK....225..110M&rft.aulast=Moeck&rft.aufirst=Peter&rft.au=Rouvimov%2C+Sergei&rft_id=https%3A%2F%2Fdoi.org%2F10.1524%252Fzkri.2010.1162&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:9-155"><span class="mw-cite-backlink">^ <a href="#cite_ref-:9_155-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:9_155-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOphus2019" class="citation journal cs1">Ophus, Colin (2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS1431927619000497">"Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond"</a>. <i>Microscopy and Microanalysis</i>. <b>25</b> (3): 563–582. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019MiMic..25..563O">2019MiMic..25..563O</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS1431927619000497">10.1017/S1431927619000497</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1431-9276">1431-9276</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31084643">31084643</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:263414171">263414171</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Microscopy+and+Microanalysis&rft.atitle=Four-Dimensional+Scanning+Transmission+Electron+Microscopy+%284D-STEM%29%3A+From+Scanning+Nanodiffraction+to+Ptychography+and+Beyond&rft.volume=25&rft.issue=3&rft.pages=563-582&rft.date=2019&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A263414171%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2019MiMic..25..563O&rft.issn=1431-9276&rft_id=info%3Adoi%2F10.1017%2FS1431927619000497&rft_id=info%3Apmid%2F31084643&rft.aulast=Ophus&rft.aufirst=Colin&rft_id=https%3A%2F%2Fdoi.org%2F10.1017%252FS1431927619000497&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-156"><span class="mw-cite-backlink"><b><a href="#cite_ref-156">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.gatan.com/techniques/4d-stem">"4D STEM | Gatan, Inc"</a>. <i>www.gatan.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-03-13</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.gatan.com&rft.atitle=4D+STEM+%7C+Gatan%2C+Inc.&rft_id=https%3A%2F%2Fwww.gatan.com%2Ftechniques%2F4d-stem&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-157"><span class="mw-cite-backlink"><b><a href="#cite_ref-157">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHageNichollsYatesMcCulloch2018" class="citation journal cs1">Hage, Fredrik S.; Nicholls, Rebecca J.; Yates, Jonathan R.; McCulloch, Dougal G.; Lovejoy, Tracy C.; Dellby, Niklas; Krivanek, Ondrej L.; Refson, Keith; Ramasse, Quentin M. (2018). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6018998">"Nanoscale momentum-resolved vibrational spectroscopy"</a>. <i>Science Advances</i>. <b>4</b> (6): eaar7495. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018SciA....4.7495H">2018SciA....4.7495H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fsciadv.aar7495">10.1126/sciadv.aar7495</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2375-2548">2375-2548</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6018998">6018998</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29951584">29951584</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science+Advances&rft.atitle=Nanoscale+momentum-resolved+vibrational+spectroscopy&rft.volume=4&rft.issue=6&rft.pages=eaar7495&rft.date=2018&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6018998%23id-name%3DPMC&rft_id=info%3Abibcode%2F2018SciA....4.7495H&rft_id=info%3Apmid%2F29951584&rft_id=info%3Adoi%2F10.1126%2Fsciadv.aar7495&rft.issn=2375-2548&rft.aulast=Hage&rft.aufirst=Fredrik+S.&rft.au=Nicholls%2C+Rebecca+J.&rft.au=Yates%2C+Jonathan+R.&rft.au=McCulloch%2C+Dougal+G.&rft.au=Lovejoy%2C+Tracy+C.&rft.au=Dellby%2C+Niklas&rft.au=Krivanek%2C+Ondrej+L.&rft.au=Refson%2C+Keith&rft.au=Ramasse%2C+Quentin+M.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6018998&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-158"><span class="mw-cite-backlink"><b><a href="#cite_ref-158">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGilmoreMarksGrozeaCollazo1997" class="citation journal cs1">Gilmore, C.J.; Marks, L.D.; Grozea, D.; Collazo, C.; Landree, E.; Twesten, R.D. (1997). <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/S0039602897000629">"Direct solutions of the Si(111) 7 × 7 structure"</a>. <i>Surface Science</i>. <b>381</b> (2–3): 77–91. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1997SurSc.381...77G">1997SurSc.381...77G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0039-6028%2897%2900062-9">10.1016/S0039-6028(97)00062-9</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Surface+Science&rft.atitle=Direct+solutions+of+the+Si%28111%29+7+%C3%97+7+structure&rft.volume=381&rft.issue=2%E2%80%933&rft.pages=77-91&rft.date=1997&rft_id=info%3Adoi%2F10.1016%2FS0039-6028%2897%2900062-9&rft_id=info%3Abibcode%2F1997SurSc.381...77G&rft.aulast=Gilmore&rft.aufirst=C.J.&rft.au=Marks%2C+L.D.&rft.au=Grozea%2C+D.&rft.au=Collazo%2C+C.&rft.au=Landree%2C+E.&rft.au=Twesten%2C+R.D.&rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0039602897000629&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-159"><span class="mw-cite-backlink"><b><a href="#cite_ref-159">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobinson1983" class="citation journal cs1">Robinson, I. K. (1983). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRevLett.50.1145">"Direct Determination of the Au(110) Reconstructed Surface by X-Ray Diffraction"</a>. <i>Physical Review Letters</i>. <b>50</b> (15): 1145–1148. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1983PhRvL..50.1145R">1983PhRvL..50.1145R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.50.1145">10.1103/PhysRevLett.50.1145</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-9007">0031-9007</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Direct+Determination+of+the+Au%28110%29+Reconstructed+Surface+by+X-Ray+Diffraction&rft.volume=50&rft.issue=15&rft.pages=1145-1148&rft.date=1983&rft.issn=0031-9007&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.50.1145&rft_id=info%3Abibcode%2F1983PhRvL..50.1145R&rft.aulast=Robinson&rft.aufirst=I.+K.&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevLett.50.1145&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-160"><span class="mw-cite-backlink"><b><a href="#cite_ref-160">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEnterkinSubramanianRussellCastell2010" class="citation journal cs1">Enterkin, James A.; Subramanian, Arun K.; Russell, Bruce C.; Castell, Martin R.; Poeppelmeier, Kenneth R.; Marks, Laurence D. (2010). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/nmat2636">"A homologous series of structures on the surface of SrTiO3(110)"</a>. <i>Nature Materials</i>. <b>9</b> (3): 245–248. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010NatMa...9..245E">2010NatMa...9..245E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnmat2636">10.1038/nmat2636</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-4660">1476-4660</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20154691">20154691</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Materials&rft.atitle=A+homologous+series+of+structures+on+the+surface+of+SrTiO3%28110%29&rft.volume=9&rft.issue=3&rft.pages=245-248&rft.date=2010&rft_id=info%3Adoi%2F10.1038%2Fnmat2636&rft.issn=1476-4660&rft_id=info%3Apmid%2F20154691&rft_id=info%3Abibcode%2F2010NatMa...9..245E&rft.aulast=Enterkin&rft.aufirst=James+A.&rft.au=Subramanian%2C+Arun+K.&rft.au=Russell%2C+Bruce+C.&rft.au=Castell%2C+Martin+R.&rft.au=Poeppelmeier%2C+Kenneth+R.&rft.au=Marks%2C+Laurence+D.&rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fnmat2636&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-161"><span class="mw-cite-backlink"><b><a href="#cite_ref-161">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKienzleMarks2012" class="citation journal cs1">Kienzle, Danielle M.; Marks, Laurence D. (2012). <a rel="nofollow" class="external text" href="http://xlink.rsc.org/?DOI=c2ce25204j">"Surface transmission electron diffraction for SrTiO3 surfaces"</a>. <i>CrystEngComm</i>. <b>14</b> (23): 7833. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2Fc2ce25204j">10.1039/c2ce25204j</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1466-8033">1466-8033</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=CrystEngComm&rft.atitle=Surface+transmission+electron+diffraction+for+SrTiO3+surfaces&rft.volume=14&rft.issue=23&rft.pages=7833&rft.date=2012&rft_id=info%3Adoi%2F10.1039%2Fc2ce25204j&rft.issn=1466-8033&rft.aulast=Kienzle&rft.aufirst=Danielle+M.&rft.au=Marks%2C+Laurence+D.&rft_id=http%3A%2F%2Fxlink.rsc.org%2F%3FDOI%3Dc2ce25204j&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:16-162"><span class="mw-cite-backlink">^ <a href="#cite_ref-:16_162-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:16_162-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBraun1999" class="citation book cs1">Braun, Wolfgang (1999). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/40857022"><i>Applied RHEED : reflection high-energy electron diffraction during crystal growth</i></a>. Berlin: Springer. pp. Chpts 2–4, 7. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/3-540-65199-3" title="Special:BookSources/3-540-65199-3"><bdi>3-540-65199-3</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/40857022">40857022</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Applied+RHEED+%3A+reflection+high-energy+electron+diffraction+during+crystal+growth&rft.place=Berlin&rft.pages=Chpts+2-4%2C+7&rft.pub=Springer&rft.date=1999&rft_id=info%3Aoclcnum%2F40857022&rft.isbn=3-540-65199-3&rft.aulast=Braun&rft.aufirst=Wolfgang&rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F40857022&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:14-163"><span class="mw-cite-backlink">^ <a href="#cite_ref-:14_163-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:14_163-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:14_163-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOberhammer1989" class="citation journal cs1">Oberhammer, H. (1989). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1002/bbpc.19890931027">"I. Hargittai, M. Hargittai (Eds.): The Electron Diffraction Technique, Part A von: Stereochemical Applications of Gas-Phase Electron Diffraction, VCH Verlagsgesellschaft, Weinheim, Basel. Cambridge, New York 1988. 206 Seiten, Preis: DM 210,-"</a>. <i>Berichte der Bunsengesellschaft für physikalische Chemie</i>. <b>93</b> (10): 1151–1152. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fbbpc.19890931027">10.1002/bbpc.19890931027</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0005-9021">0005-9021</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Berichte+der+Bunsengesellschaft+f%C3%BCr+physikalische+Chemie&rft.atitle=I.+Hargittai%2C+M.+Hargittai+%28Eds.%29%3A+The+Electron+Diffraction+Technique%2C+Part+A+von%3A+Stereochemical+Applications+of+Gas-Phase+Electron+Diffraction%2C+VCH+Verlagsgesellschaft%2C+Weinheim%2C+Basel.+Cambridge%2C+New+York+1988.+206+Seiten%2C+Preis%3A+DM+210%2C-.&rft.volume=93&rft.issue=10&rft.pages=1151-1152&rft.date=1989&rft_id=info%3Adoi%2F10.1002%2Fbbpc.19890931027&rft.issn=0005-9021&rft.aulast=Oberhammer&rft.aufirst=H.&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1002%2Fbbpc.19890931027&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:10-164"><span class="mw-cite-backlink">^ <a href="#cite_ref-:10_164-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:10_164-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:10_164-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchåfer1976" class="citation journal cs1">Schåfer, Lothar (1976). <a rel="nofollow" class="external text" href="http://journals.sagepub.com/doi/10.1366/000370276774456381">"Electron Diffraction as a Tool of Structural Chemistry"</a>. <i>Applied Spectroscopy</i>. <b>30</b> (2): 123–149. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1976ApSpe..30..123S">1976ApSpe..30..123S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1366%2F000370276774456381">10.1366/000370276774456381</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-7028">0003-7028</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:208256341">208256341</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Applied+Spectroscopy&rft.atitle=Electron+Diffraction+as+a+Tool+of+Structural+Chemistry&rft.volume=30&rft.issue=2&rft.pages=123-149&rft.date=1976&rft_id=info%3Adoi%2F10.1366%2F000370276774456381&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A208256341%23id-name%3DS2CID&rft.issn=0003-7028&rft_id=info%3Abibcode%2F1976ApSpe..30..123S&rft.aulast=Sch%C3%A5fer&rft.aufirst=Lothar&rft_id=http%3A%2F%2Fjournals.sagepub.com%2Fdoi%2F10.1366%2F000370276774456381&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Seip-165"><span class="mw-cite-backlink">^ <a href="#cite_ref-Seip_165-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Seip_165-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSeipStrandStølevik1969" class="citation journal cs1">Seip, H.M.; Strand, T.G.; Stølevik, R. (1969). <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/0009261469851250">"Least-squares refinements and error analysis based on correlated electron diffraction intensities of gaseous molecules"</a>. <i>Chemical Physics Letters</i>. <b>3</b> (8): 617–623. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1969CPL.....3..617S">1969CPL.....3..617S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0009-2614%2869%2985125-0">10.1016/0009-2614(69)85125-0</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Chemical+Physics+Letters&rft.atitle=Least-squares+refinements+and+error+analysis+based+on+correlated+electron+diffraction+intensities+of+gaseous+molecules&rft.volume=3&rft.issue=8&rft.pages=617-623&rft.date=1969&rft_id=info%3Adoi%2F10.1016%2F0009-2614%2869%2985125-0&rft_id=info%3Abibcode%2F1969CPL.....3..617S&rft.aulast=Seip&rft.aufirst=H.M.&rft.au=Strand%2C+T.G.&rft.au=St%C3%B8levik%2C+R.&rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2F0009261469851250&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-Andersen-166"><span class="mw-cite-backlink">^ <a href="#cite_ref-Andersen_166-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Andersen_166-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAndersenSeipStrandStølevik1969" class="citation journal cs1">Andersen, B.; Seip, H. M.; Strand, T. G.; Stølevik, R.; Borch, Gunner; Craig, J. Cymerman (1969). <a rel="nofollow" class="external text" href="https://doi.org/10.3891%2Facta.chem.scand.23-3224">"Procedure and Computer Programs for the Structure Determination of Gaseous Molecules from Electron Diffraction Data"</a>. <i>Acta Chemica Scandinavica</i>. <b>23</b>: 3224–3234. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3891%2Facta.chem.scand.23-3224">10.3891/acta.chem.scand.23-3224</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0904-213X">0904-213X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Chemica+Scandinavica&rft.atitle=Procedure+and+Computer+Programs+for+the+Structure+Determination+of+Gaseous+Molecules+from+Electron+Diffraction+Data.&rft.volume=23&rft.pages=3224-3234&rft.date=1969&rft_id=info%3Adoi%2F10.3891%2Facta.chem.scand.23-3224&rft.issn=0904-213X&rft.aulast=Andersen&rft.aufirst=B.&rft.au=Seip%2C+H.+M.&rft.au=Strand%2C+T.+G.&rft.au=St%C3%B8levik%2C+R.&rft.au=Borch%2C+Gunner&rft.au=Craig%2C+J.+Cymerman&rft_id=https%3A%2F%2Fdoi.org%2F10.3891%252Facta.chem.scand.23-3224&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-167"><span class="mw-cite-backlink"><b><a href="#cite_ref-167">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLengyelKáLmáN1974" class="citation journal cs1">Lengyel, SáNdor; KáLmáN, Erika (1974). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/248405a0">"Electron diffraction on liquid water"</a>. <i>Nature</i>. <b>248</b> (5447): 405–406. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1974Natur.248..405L">1974Natur.248..405L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F248405a0">10.1038/248405a0</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0028-0836">0028-0836</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4201332">4201332</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Electron+diffraction+on+liquid+water&rft.volume=248&rft.issue=5447&rft.pages=405-406&rft.date=1974&rft_id=info%3Adoi%2F10.1038%2F248405a0&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4201332%23id-name%3DS2CID&rft.issn=0028-0836&rft_id=info%3Abibcode%2F1974Natur.248..405L&rft.aulast=Lengyel&rft.aufirst=S%C3%A1Ndor&rft.au=K%C3%A1Lm%C3%A1N%2C+Erika&rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2F248405a0&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-168"><span class="mw-cite-backlink"><b><a href="#cite_ref-168">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKálmánPálinkásKovács1977" class="citation journal cs1">Kálmán, E.; Pálinkás, G.; Kovács, P. (1977). <a rel="nofollow" class="external text" href="https://www.tandfonline.com/doi/full/10.1080/00268977700101871">"Liquid water: I. Electron scattering"</a>. <i>Molecular Physics</i>. <b>34</b> (2): 505–524. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00268977700101871">10.1080/00268977700101871</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0026-8976">0026-8976</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Molecular+Physics&rft.atitle=Liquid+water%3A+I.+Electron+scattering&rft.volume=34&rft.issue=2&rft.pages=505-524&rft.date=1977&rft_id=info%3Adoi%2F10.1080%2F00268977700101871&rft.issn=0026-8976&rft.aulast=K%C3%A1lm%C3%A1n&rft.aufirst=E.&rft.au=P%C3%A1link%C3%A1s%2C+G.&rft.au=Kov%C3%A1cs%2C+P.&rft_id=https%3A%2F%2Fwww.tandfonline.com%2Fdoi%2Ffull%2F10.1080%2F00268977700101871&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-169"><span class="mw-cite-backlink"><b><a href="#cite_ref-169">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFde_KockAzimKassierMiller2020" class="citation journal cs1">de Kock, M. B.; Azim, S.; Kassier, G. H.; Miller, R. J. D. (2020-11-21). <a rel="nofollow" class="external text" href="https://pubs.aip.org/jcp/article/153/19/194504/199326/Determining-the-radial-distribution-function-of">"Determining the radial distribution function of water using electron scattering: A key to solution phase chemistry"</a>. <i>The Journal of Chemical Physics</i>. <b>153</b> (19). <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020JChPh.153s4504D">2020JChPh.153s4504D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F5.0024127">10.1063/5.0024127</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/21.11116%2F0000-0007-6FBC-A">21.11116/0000-0007-6FBC-A</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0021-9606">0021-9606</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33218233">33218233</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:227100401">227100401</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Journal+of+Chemical+Physics&rft.atitle=Determining+the+radial+distribution+function+of+water+using+electron+scattering%3A+A+key+to+solution+phase+chemistry&rft.volume=153&rft.issue=19&rft.date=2020-11-21&rft_id=info%3Ahdl%2F21.11116%2F0000-0007-6FBC-A&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A227100401%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2020JChPh.153s4504D&rft.issn=0021-9606&rft_id=info%3Adoi%2F10.1063%2F5.0024127&rft_id=info%3Apmid%2F33218233&rft.aulast=de+Kock&rft.aufirst=M.+B.&rft.au=Azim%2C+S.&rft.au=Kassier%2C+G.+H.&rft.au=Miller%2C+R.+J.+D.&rft_id=https%3A%2F%2Fpubs.aip.org%2Fjcp%2Farticle%2F153%2F19%2F194504%2F199326%2FDetermining-the-radial-distribution-function-of&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-170"><span class="mw-cite-backlink"><b><a href="#cite_ref-170">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDingleyRandle1992" class="citation journal cs1">Dingley, D. J.; Randle, V. (1992). <a rel="nofollow" class="external text" href="http://link.springer.com/10.1007/BF01165988">"Microtexture determination by electron back-scatter diffraction"</a>. <i>Journal of Materials Science</i>. <b>27</b> (17): 4545–4566. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992JMatS..27.4545D">1992JMatS..27.4545D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01165988">10.1007/BF01165988</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0022-2461">0022-2461</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:137281137">137281137</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Materials+Science&rft.atitle=Microtexture+determination+by+electron+back-scatter+diffraction&rft.volume=27&rft.issue=17&rft.pages=4545-4566&rft.date=1992&rft_id=info%3Adoi%2F10.1007%2FBF01165988&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A137281137%23id-name%3DS2CID&rft.issn=0022-2461&rft_id=info%3Abibcode%2F1992JMatS..27.4545D&rft.aulast=Dingley&rft.aufirst=D.+J.&rft.au=Randle%2C+V.&rft_id=http%3A%2F%2Flink.springer.com%2F10.1007%2FBF01165988&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-171"><span class="mw-cite-backlink"><b><a href="#cite_ref-171">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAdamsWrightKunze1993" class="citation journal cs1">Adams, Brent L.; Wright, Stuart I.; Kunze, Karsten (1993). <a rel="nofollow" class="external text" href="http://link.springer.com/10.1007/BF02656503">"Orientation imaging: The emergence of a new microscopy"</a>. <i>Metallurgical Transactions A</i>. <b>24</b> (4): 819–831. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1993MTA....24..819A">1993MTA....24..819A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02656503">10.1007/BF02656503</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0360-2133">0360-2133</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:137379846">137379846</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Metallurgical+Transactions+A&rft.atitle=Orientation+imaging%3A+The+emergence+of+a+new+microscopy&rft.volume=24&rft.issue=4&rft.pages=819-831&rft.date=1993&rft_id=info%3Adoi%2F10.1007%2FBF02656503&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A137379846%23id-name%3DS2CID&rft.issn=0360-2133&rft_id=info%3Abibcode%2F1993MTA....24..819A&rft.aulast=Adams&rft.aufirst=Brent+L.&rft.au=Wright%2C+Stuart+I.&rft.au=Kunze%2C+Karsten&rft_id=http%3A%2F%2Flink.springer.com%2F10.1007%2FBF02656503&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-172"><span class="mw-cite-backlink"><b><a href="#cite_ref-172">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDingley2004" class="citation journal cs1">Dingley, D. (2004). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/10.1111/j.0022-2720.2004.01321.x">"Progressive steps in the development of electron backscatter diffraction and orientation imaging microscopy: EBSD AND OIM"</a>. <i>Journal of Microscopy</i>. <b>213</b> (3): 214–224. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.0022-2720.2004.01321.x">10.1111/j.0022-2720.2004.01321.x</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15009688">15009688</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:41385346">41385346</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Microscopy&rft.atitle=Progressive+steps+in+the+development+of+electron+backscatter+diffraction+and+orientation+imaging+microscopy%3A+EBSD+AND+OIM&rft.volume=213&rft.issue=3&rft.pages=214-224&rft.date=2004&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A41385346%23id-name%3DS2CID&rft_id=info%3Apmid%2F15009688&rft_id=info%3Adoi%2F10.1111%2Fj.0022-2720.2004.01321.x&rft.aulast=Dingley&rft.aufirst=D.&rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1111%2Fj.0022-2720.2004.01321.x&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> <li id="cite_note-:19-173"><span class="mw-cite-backlink">^ <a href="#cite_ref-:19_173-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:19_173-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchwartzKumarAdamsField2009" class="citation book cs1">Schwartz, Adam J; Kumar, Mukul; Adams, Brent L; Field, David P (2009). <a rel="nofollow" class="external text" href="http://worldcat.org/oclc/902763902"><i>Electron backscatter diffraction in materials science</i></a>. Springer New York. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4899-9334-2" title="Special:BookSources/978-1-4899-9334-2"><bdi>978-1-4899-9334-2</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/902763902">902763902</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Electron+backscatter+diffraction+in+materials+science&rft.pub=Springer+New+York&rft.date=2009&rft_id=info%3Aoclcnum%2F902763902&rft.isbn=978-1-4899-9334-2&rft.aulast=Schwartz&rft.aufirst=Adam+J&rft.au=Kumar%2C+Mukul&rft.au=Adams%2C+Brent+L&rft.au=Field%2C+David+P&rft_id=http%3A%2F%2Fworldcat.org%2Foclc%2F902763902&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Electron_diffraction&action=edit&section=30" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_M.1995" class="citation book cs1">John M., Cowley (1995). <a rel="nofollow" class="external text" href="http://worldcat.org/oclc/247191522"><i>Diffraction physics</i></a>. Elsevier. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-444-82218-6" title="Special:BookSources/0-444-82218-6"><bdi>0-444-82218-6</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/247191522">247191522</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Diffraction+physics&rft.pub=Elsevier&rft.date=1995&rft_id=info%3Aoclcnum%2F247191522&rft.isbn=0-444-82218-6&rft.aulast=John+M.&rft.aufirst=Cowley&rft_id=http%3A%2F%2Fworldcat.org%2Foclc%2F247191522&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span>. Contains extensive coverage of kinematical and other diffraction.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReimer2013" class="citation book cs1">Reimer, Ludwig (2013). <a rel="nofollow" class="external text" href="http://worldcat.org/oclc/1066178493"><i>Transmission Electron Microscopy : Physics of Image Formation and Microanalysis</i></a>. Springer Berlin / Heidelberg. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-662-13553-2" title="Special:BookSources/978-3-662-13553-2"><bdi>978-3-662-13553-2</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1066178493">1066178493</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Transmission+Electron+Microscopy+%3A+Physics+of+Image+Formation+and+Microanalysis.&rft.pub=Springer+Berlin+%2F+Heidelberg&rft.date=2013&rft_id=info%3Aoclcnum%2F1066178493&rft.isbn=978-3-662-13553-2&rft.aulast=Reimer&rft.aufirst=Ludwig&rft_id=http%3A%2F%2Fworldcat.org%2Foclc%2F1066178493&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span> Large coverage of many different areas of electron microscopy with large numbers of references.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHirschHowieNicholsonPashley1965" class="citation book cs1">Hirsch, P. B.; Howie, A.; Nicholson, R. B.; Pashley, D. W.; Whelan, M. J. (1965). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/2365578"><i>Electron microscopy of thin crystals</i></a>. London: Butterworths. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-408-18550-3" title="Special:BookSources/0-408-18550-3"><bdi>0-408-18550-3</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/2365578">2365578</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Electron+microscopy+of+thin+crystals&rft.place=London&rft.pub=Butterworths&rft.date=1965&rft_id=info%3Aoclcnum%2F2365578&rft.isbn=0-408-18550-3&rft.aulast=Hirsch&rft.aufirst=P.+B.&rft.au=Howie%2C+A.&rft.au=Nicholson%2C+R.+B.&rft.au=Pashley%2C+D.+W.&rft.au=Whelan%2C+M.+J.&rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F2365578&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span>, often called the bible of electron microscopy.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpenceZuo1992" class="citation book cs1">Spence, J. C. H.; Zuo, J. M. (1992). <a rel="nofollow" class="external text" href="http://link.springer.com/10.1007/978-1-4899-2353-0"><i>Electron Microdiffraction</i></a>. Boston, MA: Springer US. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4899-2353-0">10.1007/978-1-4899-2353-0</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4899-2355-4" title="Special:BookSources/978-1-4899-2355-4"><bdi>978-1-4899-2355-4</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:45473741">45473741</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Electron+Microdiffraction&rft.place=Boston%2C+MA&rft.pub=Springer+US&rft.date=1992&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A45473741%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2F978-1-4899-2353-0&rft.isbn=978-1-4899-2355-4&rft.aulast=Spence&rft.aufirst=J.+C.+H.&rft.au=Zuo%2C+J.+M.&rft_id=http%3A%2F%2Flink.springer.com%2F10.1007%2F978-1-4899-2353-0&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span>, a large coverage of topic related to dynamical diffraction and <a href="/wiki/CBED" class="mw-redirect" title="CBED">CBED</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPengDudarevWhelan2011" class="citation book cs1">Peng, L.-M.; Dudarev, S. L.; Whelan, M. J. (2011). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/656767858"><i>High energy electron diffraction and microscopy</i></a>. Oxford: Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-960224-7" title="Special:BookSources/978-0-19-960224-7"><bdi>978-0-19-960224-7</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/656767858">656767858</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=High+energy+electron+diffraction+and+microscopy&rft.place=Oxford&rft.pub=Oxford+University+Press&rft.date=2011&rft_id=info%3Aoclcnum%2F656767858&rft.isbn=978-0-19-960224-7&rft.aulast=Peng&rft.aufirst=L.-M.&rft.au=Dudarev%2C+S.+L.&rft.au=Whelan%2C+M.+J.&rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F656767858&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span>. Very extensive coverage of modern dynamical diffraction.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarterWilliamsThomas2016" class="citation book cs1">Carter, C. Barry; Williams, David B.; Thomas, John M., eds. (2016). <i>Transmission electron microscopy: diffraction, imaging, and spectrometry</i>. Cham, Switzerland: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-26649-7" title="Special:BookSources/978-3-319-26649-7"><bdi>978-3-319-26649-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Transmission+electron+microscopy%3A+diffraction%2C+imaging%2C+and+spectrometry&rft.place=Cham%2C+Switzerland&rft.pub=Springer&rft.date=2016&rft.isbn=978-3-319-26649-7&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span>, a recent textbook with many images, stronger on experimental aspects.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEdington1977" class="citation book cs1">Edington, Jeffrey William (1977). <a rel="nofollow" class="external text" href="http://worldcat.org/oclc/27997701"><i>Practical electron microscopy in materials science</i></a>. Techbooks. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/27997701">27997701</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Practical+electron+microscopy+in+materials+science&rft.pub=Techbooks&rft.date=1977&rft_id=info%3Aoclcnum%2F27997701&rft.aulast=Edington&rft.aufirst=Jeffrey+William&rft_id=http%3A%2F%2Fworldcat.org%2Foclc%2F27997701&rfr_id=info%3Asid%2Fen.wikipedia.org%3AElectron+diffraction" class="Z3988"></span>, an older source for experimental details, albeit hard to find.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Crystallography" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Crystallography" title="Template:Crystallography"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Crystallography" title="Template talk:Crystallography"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Crystallography" title="Special:EditPage/Template:Crystallography"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Crystallography" style="font-size:114%;margin:0 4em"><a href="/wiki/Crystallography" title="Crystallography">Crystallography</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;">Key concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Timeline_of_crystallography" title="Timeline of crystallography">Timeline of crystallography</a> <ul><li><a href="/wiki/Category:Crystallographers" title="Category:Crystallographers">Crystallographers</a></li></ul></li> <li><a href="/wiki/Metallurgy" title="Metallurgy">Metallurgy</a></li> <li><a href="/w/index.php?title=Biocrystallography&action=edit&redlink=1" class="new" title="Biocrystallography (page does not exist)">Biocrystallography</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Crystal_structure" title="Crystal structure">Structure</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Unit_cell" title="Unit cell">Unit cell</a> <ul><li><a href="/wiki/Bravais_lattice" title="Bravais lattice">Bravais lattice</a></li> <li><a href="/wiki/Miller_index" title="Miller index">Miller index</a></li> <li><a href="/wiki/Crystallographic_point_group" title="Crystallographic point group">Point group</a></li> <li><a href="/wiki/Reciprocal_lattice" title="Reciprocal lattice">Reciprocal lattice</a></li> <li><a href="/wiki/Crystallographic_restriction_theorem" title="Crystallographic restriction theorem">Restriction theorem</a></li></ul></li> <li><a href="/wiki/Periodic_table_(crystal_structure)" title="Periodic table (crystal structure)">Periodic table</a></li> <li><a href="/wiki/Crystal_structure_prediction" title="Crystal structure prediction">Structure prediction</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Systems" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Crystal_system" title="Crystal system">Systems</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cubic_crystal_system" title="Cubic crystal system">Cubic</a></li> <li><a href="/wiki/Hexagonal_crystal_family" title="Hexagonal crystal family">Hexagonal</a></li> <li><a href="/wiki/Monoclinic_crystal_system" title="Monoclinic crystal system">Monoclinic</a></li> <li><a href="/wiki/Orthorhombic_crystal_system" title="Orthorhombic crystal system">Orthorhombic</a></li> <li><a href="/wiki/Tetragonal_crystal_system" title="Tetragonal crystal system">Tetragonal</a></li> <li><a href="/wiki/Triclinic_crystal_system" title="Triclinic crystal system">Triclinic</a></li></ul> </div></td></tr></tbody></table><div> <ul><li><a href="/wiki/Crystal_growth" title="Crystal growth">Growth</a> <ul><li><a href="/wiki/Crystallite" title="Crystallite">Crystallite</a></li> <li><a href="/wiki/Equiaxed_crystal" title="Equiaxed crystal">Equiaxed</a></li></ul></li> <li><a href="/wiki/Crystal_twinning" title="Crystal twinning">Twinning</a> <ul><li><a href="/wiki/Fiveling" title="Fiveling">Fiveling</a></li></ul></li> <li><a href="/wiki/Aperiodic_crystal" title="Aperiodic crystal">Aperiodic crystal</a> <ul><li><a href="/wiki/Quasicrystal" title="Quasicrystal">Quasicrystal</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Phase_transition" title="Phase transition">Phase<br />transition</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Phase_diagram" title="Phase diagram">Phase diagram</a> <ul><li><a href="/wiki/Eutectic_system" title="Eutectic system">Eutectic</a></li> <li><a href="/wiki/Miscibility_gap" title="Miscibility gap">Miscibility gap</a></li> <li><a href="/wiki/Crystal_polymorphism" title="Crystal polymorphism">Polymorphism</a></li> <li><a href="/wiki/Liquid_crystal" title="Liquid crystal">Liquid crystal</a></li></ul></li> <li><a href="/wiki/Phase_transformation_crystallography" title="Phase transformation crystallography">Phase transformation crystallography</a></li> <li><a href="/wiki/Precipitation_hardening" title="Precipitation hardening">Precipitation</a></li> <li><a href="/wiki/Segregation_(materials_science)" title="Segregation (materials science)">Segregation</a></li> <li><a href="/wiki/Spinodal_decomposition" title="Spinodal decomposition">Spinodal decomposition</a></li> <li><a href="/wiki/Supersaturation" title="Supersaturation">Supersaturation</a></li> <li><a href="/wiki/Guinier%E2%80%93Preston_zone" title="Guinier–Preston zone">GP-zone</a></li> <li><a href="/wiki/Ostwald_ripening" title="Ostwald ripening">Ostwald ripening</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Crystallographic_defect" title="Crystallographic defect">Defects</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Grain_boundary" title="Grain boundary">Grain boundary</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Disclination" title="Disclination">Disclination</a></li> <li><a href="/w/index.php?title=Coincidence_site_lattice&action=edit&redlink=1" class="new" title="Coincidence site lattice (page does not exist)">CSL</a></li> <li><a href="/wiki/Grain_growth" title="Grain growth">Growth</a></li> <li><a href="/wiki/Abnormal_grain_growth" title="Abnormal grain growth">Abnormal growth</a></li></ul> </div></td></tr></tbody></table><div> <ul><li><a href="/wiki/Perfect_crystal" title="Perfect crystal">Perfect crystal</a></li> <li><a href="/wiki/Stacking_fault" title="Stacking fault">Stacking fault</a></li> <li><a href="/wiki/Dislocation" title="Dislocation">Dislocation</a> <ul><li><a href="/wiki/Burgers_vector" title="Burgers vector">Burgers vector</a></li> <li><a href="/wiki/Partial_dislocation" title="Partial dislocation">Partial dislocation</a></li> <li><a href="/wiki/Kink_(materials_science)" title="Kink (materials science)">Kink</a></li> <li><a href="/wiki/Cross_slip" title="Cross slip">Cross slip</a></li> <li><a href="/wiki/Frank%E2%80%93Read_source" title="Frank–Read source">Frank–Read source</a></li> <li><a href="/wiki/Cottrell_atmosphere" title="Cottrell atmosphere">Cottrell atmosphere</a></li> <li><a href="/wiki/Peierls_stress" title="Peierls stress">Peierls stress</a></li> <li><a href="/wiki/Geometrically_necessary_dislocations" title="Geometrically necessary dislocations">GND</a></li> <li><a href="/wiki/Lomer%E2%80%93Cottrell_junction" title="Lomer–Cottrell junction">Lomer–Cottrell junction</a></li></ul></li> <li><a href="/wiki/Slip_(materials_science)" title="Slip (materials science)">Slip</a> <ul><li><a href="/wiki/Slip_bands_in_metals" title="Slip bands in metals">Slip bands</a></li></ul></li> <li><a href="/wiki/Interstitial_defect" title="Interstitial defect">Interstitials</a> <ul><li><a href="/wiki/Bjerrum_defect" title="Bjerrum defect">Bjerrum defect</a></li> <li><a href="/wiki/Frenkel_defect" title="Frenkel defect">Frenkel defect</a></li> <li><a href="/wiki/Wigner_effect" title="Wigner effect">Wigner effect</a></li></ul></li> <li><a href="/wiki/Vacancy_defect" title="Vacancy defect">Vacancy</a> <ul><li><a href="/wiki/Schottky_defect" title="Schottky defect">Schottky defect</a></li> <li><a href="/wiki/F-center" title="F-center">F-center</a></li></ul></li> <li><a href="/wiki/Stone%E2%80%93Wales_defect" title="Stone–Wales defect">Stone–Wales defect</a></li> <li><a href="/wiki/Crystallographic_defects_in_diamond" title="Crystallographic defects in diamond">Defects in diamond</a></li></ul></div></td></tr></tbody></table><div> <ul><li><a href="/wiki/Bragg%27s_law" title="Bragg's law">Bragg's law</a></li> <li><a href="/wiki/Bragg_plane" title="Bragg plane">Bragg plane</a></li> <li><a href="/wiki/Ewald%27s_sphere" title="Ewald's sphere">Ewald's sphere</a></li> <li><a href="/wiki/Friedel%27s_law" title="Friedel's law">Friedel's law</a></li> <li><a href="/wiki/Hermann%E2%80%93Mauguin_notation" title="Hermann–Mauguin notation">Hermann–Mauguin notation</a></li> <li><a href="/wiki/Structure_factor" title="Structure factor">Structure factor</a></li> <li><a href="/wiki/Thermal_ellipsoid" title="Thermal ellipsoid">Thermal ellipsoid</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="8" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:Sites_interstitiels_cubique_a_faces_centrees.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Sites_interstitiels_cubique_a_faces_centrees.svg/50px-Sites_interstitiels_cubique_a_faces_centrees.svg.png" decoding="async" width="50" height="52" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Sites_interstitiels_cubique_a_faces_centrees.svg/75px-Sites_interstitiels_cubique_a_faces_centrees.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Sites_interstitiels_cubique_a_faces_centrees.svg/100px-Sites_interstitiels_cubique_a_faces_centrees.svg.png 2x" data-file-width="120" data-file-height="125" /></a></span><br /></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;"><a href="/w/index.php?title=Crystallographic_characterization&action=edit&redlink=1" class="new" title="Crystallographic characterization (page does not exist)">Characterisation</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Electron_crystallography" title="Electron crystallography">Electron</a> <ul><li><a class="mw-selflink selflink">Diffraction</a></li> <li><a href="/wiki/Electron_scattering" title="Electron scattering">Scattering</a></li></ul></li> <li><a href="/wiki/Neutron_crystallography" class="mw-redirect" title="Neutron crystallography">Neutron</a> <ul><li><a href="/wiki/Neutron_diffraction" title="Neutron diffraction">Diffraction</a></li> <li><a href="/wiki/Neutron_scattering" title="Neutron scattering">Scattering</a></li></ul></li> <li><a href="/wiki/Nuclear_magnetic_resonance_crystallography" title="Nuclear magnetic resonance crystallography">Nuclear magnetic resonance</a></li> <li><a href="/wiki/X-ray_crystallography" title="X-ray crystallography">X-ray</a> <ul><li><a href="/wiki/X-ray_diffraction" title="X-ray diffraction">Diffraction</a></li> <li><a href="/wiki/X-ray_scattering" class="mw-redirect" title="X-ray scattering">Scattering</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;">Algorithms</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Direct_methods_(crystallography)" title="Direct methods (crystallography)">Direct methods</a></li> <li><a href="/wiki/Isomorphous_replacement" title="Isomorphous replacement">Isomorphous replacement</a></li> <li><a href="/wiki/Molecular_replacement" title="Molecular replacement">Molecular replacement</a></li> <li><a href="/wiki/Molecular_dynamics" title="Molecular dynamics">Molecular dynamics</a></li> <li><a href="/wiki/Patterson_map" class="mw-redirect" title="Patterson map">Patterson map</a></li> <li><a href="/wiki/Phase_retrieval" title="Phase retrieval">Phase retrieval</a> <ul><li><a href="/wiki/Gerchberg%E2%80%93Saxton_algorithm" title="Gerchberg–Saxton algorithm">Gerchberg–Saxton</a></li></ul></li> <li><a href="/wiki/Single_particle_analysis" title="Single particle analysis">Single particle analysis</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;"><a href="/wiki/Category:Crystallography_software" title="Category:Crystallography software">Software</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Collaborative_Computational_Project_Number_4" title="Collaborative Computational Project Number 4">CCP4</a></li> <li><a href="/wiki/Coot_(software)" title="Coot (software)">Coot</a></li> <li><a href="/wiki/CrystalExplorer" title="CrystalExplorer">CrystalExplorer</a></li> <li><a href="/wiki/Disordered_Structure_Refinement" title="Disordered Structure Refinement">DSR</a></li> <li><a rel="nofollow" class="external text" href="http://jana.fzu.cz/">JANA2020</a></li> <li><a href="/wiki/MTEX" title="MTEX">MTEX</a></li> <li><a href="/wiki/OctaDist" title="OctaDist">OctaDist</a></li> <li><a href="/wiki/Olex2" title="Olex2">Olex2</a></li> <li><a href="/wiki/ShelXle" title="ShelXle">SHELX</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;"><a href="/wiki/Crystallographic_database" title="Crystallographic database">Databases</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bilbao_Crystallographic_Server" title="Bilbao Crystallographic Server">Bilbao Crystallographic Server</a></li> <li><a href="/wiki/Cambridge_Structural_Database" title="Cambridge Structural Database">CCDC</a></li> <li><a href="/wiki/Crystallographic_Information_File" title="Crystallographic Information File">CIF</a></li> <li><a href="/wiki/Crystallography_Open_Database" title="Crystallography Open Database">COD</a></li> <li><a href="/wiki/Inorganic_Crystal_Structure_Database" title="Inorganic Crystal Structure Database">ICSD</a></li> <li><a href="/wiki/International_Centre_for_Diffraction_Data" title="International Centre for Diffraction Data">ICDD</a></li> <li><a href="/wiki/Protein_Data_Bank" title="Protein Data Bank">PDB</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;"><a href="/wiki/Category:Crystallography_journals" title="Category:Crystallography journals">Journals</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Crystal_Growth_%26_Design" title="Crystal Growth & Design">Crystal Growth & Design</a></li> <li><a href="/wiki/Crystallography_Reviews" title="Crystallography Reviews">Crystallography Reviews</a></li> <li><a href="/wiki/Journal_of_Chemical_Crystallography" title="Journal of Chemical Crystallography">Journal of Chemical Crystallography</a></li> <li><a href="/wiki/Journal_of_Crystal_Growth" title="Journal of Crystal Growth">Journal of Crystal Growth</a></li> <li><a href="/wiki/Kristallografija" title="Kristallografija">Kristallografija</a></li> <li><a href="/wiki/Zeitschrift_f%C3%BCr_Kristallographie_%E2%80%93_Crystalline_Materials" title="Zeitschrift für Kristallographie – Crystalline Materials">Zeitschrift für Kristallographie – Crystalline Materials</a></li> <li><a href="/wiki/Zeitschrift_f%C3%BCr_Kristallographie_%E2%80%93_New_Crystal_Structures" title="Zeitschrift für Kristallographie – New Crystal Structures">Zeitschrift für Kristallographie – New Crystal Structures</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;"><a href="/wiki/Category:Crystallography_awards" title="Category:Crystallography awards">Awards</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Carl_Hermann_Medal" title="Carl Hermann Medal">Carl Hermann Medal</a></li> <li><a href="/wiki/Ewald_Prize" title="Ewald Prize">Ewald Prize</a></li> <li><a href="/wiki/Gregori_Aminoff_Prize" title="Gregori Aminoff Prize">Gregori Aminoff Prize</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;"><a href="/wiki/Category:Crystallography_organizations" title="Category:Crystallography organizations">Organisation</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/International_Union_of_Crystallography" title="International Union of Crystallography">IUCr</a></li> <li><a href="/wiki/International_Organization_for_Biological_Crystallization" title="International Organization for Biological Crystallization">IOBCr</a></li> <li><a href="/wiki/Shubnikov_Institute_of_Crystallography_RAS" title="Shubnikov Institute of Crystallography RAS">RAS</a></li> <li><a href="/wiki/German_Mineralogical_Society" title="German Mineralogical Society">DMG</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Associations" scope="row" class="navbox-group" style="width:1%">Associations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/European_Crystallographic_Association" title="European Crystallographic Association">Europe</a> <ul><li><a href="/wiki/French_Crystallographic_Association" title="French Crystallographic Association">France</a></li> <li><a href="/wiki/German_Crystallographic_Society" title="German Crystallographic Society">Germany</a></li> <li><a href="/wiki/British_Crystallographic_Association" title="British Crystallographic Association">UK</a></li></ul></li> <li><a href="/wiki/American_Crystallographic_Association" title="American Crystallographic Association">US</a></li> <li><a href="/wiki/Crystallographic_Society_of_Japan" title="Crystallographic Society of Japan">Japan</a></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="3"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/Category:Crystallography" title="Category:Crystallography">Category</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <b><a href="https://commons.wikimedia.org/wiki/Category:Crystallography" class="extiw" title="commons:Category:Crystallography">Commons</a></b></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Electron_microscopy" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Electron_microscopy" title="Template:Electron microscopy"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Electron_microscopy" title="Template talk:Electron microscopy"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Electron_microscopy" title="Special:EditPage/Template:Electron microscopy"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Electron_microscopy" style="font-size:114%;margin:0 4em"><a href="/wiki/Electron_microscopy" class="mw-redirect" title="Electron microscopy">Electron microscopy</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basics</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Electron_microscopy" class="mw-redirect" title="Electron microscopy">Electron microscopy</a></li> <li><a href="/wiki/History_of_electron_microscopy" class="mw-redirect" title="History of electron microscopy">History</a></li> <li><a href="/wiki/Micrograph" title="Micrograph">Micrograph</a></li> <li><a href="/wiki/Microscope" title="Microscope">Microscope</a></li> <li><a href="/wiki/Timeline_of_microscope_technology" title="Timeline of microscope technology">Timeline of microscope technology</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Electron" title="Electron">Electron</a> interaction<br />with matter</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Auger_effect" title="Auger effect">Auger effect</a></li> <li><a href="/wiki/Bremsstrahlung" title="Bremsstrahlung">Bremsstrahlung</a></li> <li><a class="mw-selflink selflink">Electron diffraction</a></li> <li><a href="/wiki/Electron_scattering" title="Electron scattering">Electron scattering</a></li> <li><a href="/wiki/Kikuchi_lines_(physics)" title="Kikuchi lines (physics)">Kikuchi lines</a></li> <li><a href="/wiki/Secondary_electrons" title="Secondary electrons">Secondary electrons</a></li> <li><a href="/wiki/X-ray_fluorescence" title="X-ray fluorescence">X-ray fluorescence</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Instrumentation</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Detectors_for_transmission_electron_microscopy" title="Detectors for transmission electron microscopy">Detectors for transmission electron microscopy</a></li> <li><a href="/wiki/Electron_gun" title="Electron gun">Electron gun</a></li> <li><a href="/wiki/Everhart%E2%80%93Thornley_detector" title="Everhart–Thornley detector">Everhart–Thornley detector</a></li> <li><a href="/wiki/Field_electron_emission" title="Field electron emission">Field electron emission</a></li> <li><a href="/wiki/Field_emission_gun" title="Field emission gun">Field emission gun</a></li> <li><a href="/wiki/Magnetic_lens" title="Magnetic lens">Magnetic lens</a></li> <li><a href="/wiki/Stigmator" title="Stigmator">Stigmator</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Microscopes</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Electron_microprobe" title="Electron microprobe">EM</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Correlative_light-electron_microscopy" title="Correlative light-electron microscopy">Correlative light EM</a></li> <li><a href="/wiki/Cryogenic_electron_microscopy" title="Cryogenic electron microscopy">Cryo-EM</a></li> <li><a href="/wiki/Electron_microprobe" title="Electron microprobe">EMP</a></li> <li><a href="/wiki/Liquid-Phase_Electron_Microscopy" title="Liquid-Phase Electron Microscopy">Liquid-Phase EM</a></li> <li><a href="/wiki/Low-energy_electron_microscopy" title="Low-energy electron microscopy">Low-energy EM</a></li> <li><a href="/wiki/Photoemission_electron_microscopy" title="Photoemission electron microscopy">Photoemission EM</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Scanning_electron_microscope" title="Scanning electron microscope">SEM</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Environmental_scanning_electron_microscope" title="Environmental scanning electron microscope">Environmental SEM</a></li> <li><a href="/wiki/Scanning_electron_cryomicroscopy" title="Scanning electron cryomicroscopy">CryoSEM</a></li> <li><a href="/wiki/Scanning_confocal_electron_microscopy" title="Scanning confocal electron microscopy">Confocal SEM</a></li> <li><a href="/wiki/SEM-XRF" title="SEM-XRF">SEM-XRF</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Transmission_electron_microscopy" title="Transmission electron microscopy">TEM</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Transmission_electron_cryomicroscopy" title="Transmission electron cryomicroscopy">Cryo-TEM</a> <ul><li><a href="/wiki/Electron_cryotomography" class="mw-redirect" title="Electron cryotomography">Cryo-ET</a></li></ul></li> <li><a href="/wiki/Energy_filtered_transmission_electron_microscopy" title="Energy filtered transmission electron microscopy">EFTEM</a></li> <li><a href="/wiki/High-resolution_transmission_electron_microscopy" title="High-resolution transmission electron microscopy">HRTEM</a></li> <li><a href="/wiki/Scanning_transmission_electron_microscopy" title="Scanning transmission electron microscopy">STEM</a> <ul><li><a href="/wiki/4D_scanning_transmission_electron_microscopy" title="4D scanning transmission electron microscopy">4D STEM</a></li></ul></li> <li><a href="/wiki/Aberration-Corrected_Transmission_Electron_Microscopy" title="Aberration-Corrected Transmission Electron Microscopy">Aberration-Corrected TEM</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Techniques</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/4D_scanning_transmission_electron_microscopy" title="4D scanning transmission electron microscopy">4D STEM</a></li> <li><a href="/wiki/Annular_dark-field_imaging" title="Annular dark-field imaging">Annular dark-field imaging</a></li> <li><a href="/wiki/Cathodoluminescence" title="Cathodoluminescence">Cathodoluminescence</a></li> <li><a href="/wiki/Charge_contrast_imaging" title="Charge contrast imaging">Charge contrast imaging</a></li> <li><a href="/wiki/Convergent_beam_electron_diffraction" title="Convergent beam electron diffraction">CBED</a></li> <li><a href="/wiki/Cryogenic_electron_microscopy" title="Cryogenic electron microscopy">cryoEM</a></li> <li><a href="/wiki/Dark-field_microscopy" title="Dark-field microscopy">Dark-field microscopy</a></li> <li><a href="/wiki/Energy-dispersive_X-ray_spectroscopy" title="Energy-dispersive X-ray spectroscopy">EDS</a></li> <li><a href="/wiki/Electron_backscatter_diffraction" title="Electron backscatter diffraction">EBSD</a> <ul><li><a href="/wiki/Transmission_Kikuchi_diffraction" title="Transmission Kikuchi diffraction">TKD</a></li></ul></li> <li><a href="/wiki/Electron_channelling_contrast_imaging" title="Electron channelling contrast imaging">ECCI</a></li> <li><a href="/wiki/Electron_energy_loss_spectroscopy" title="Electron energy loss spectroscopy">EELS</a></li> <li><a href="/wiki/Electron_beam-induced_current" title="Electron beam-induced current">EBIC</a></li> <li><a href="/wiki/Electron_holography" title="Electron holography">Electron holography</a></li> <li><a href="/wiki/Electron_tomography" title="Electron tomography">Electron tomography</a></li> <li><a href="/wiki/Focused_ion_beam" title="Focused ion beam">FIB</a></li> <li><a href="/wiki/Fluctuation_electron_microscopy" title="Fluctuation electron microscopy">FEM</a></li> <li><a href="/wiki/Immune_electron_microscopy" title="Immune electron microscopy">Immune electron microscopy</a></li> <li><a href="/wiki/Geometric_phase_analysis" title="Geometric phase analysis">Geometric phase analysis</a></li> <li><a href="/wiki/Photon-Induced_Near-field_Electron_Microscopy" title="Photon-Induced Near-field Electron Microscopy">PINEM</a></li> <li><a href="/wiki/Precession_electron_diffraction" title="Precession electron diffraction">Precession electron diffraction</a></li> <li><a href="/wiki/Serial_block-face_scanning_electron_microscopy" title="Serial block-face scanning electron microscopy">Serial block-face scanning electron microscopy</a></li> <li><a href="/wiki/Wavelength-dispersive_X-ray_spectroscopy" title="Wavelength-dispersive X-ray spectroscopy">WDXS</a></li> <li><a href="/wiki/Weak-beam_dark-field_microscopy" title="Weak-beam dark-field microscopy">WBDF</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Others</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Developers</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Albert_Crewe" title="Albert Crewe">Albert Crewe</a></li> <li><a href="/wiki/Bodo_von_Borries" title="Bodo von Borries">Bodo von Borries</a></li> <li><a href="/wiki/Dennis_Gabor" title="Dennis Gabor">Dennis Gabor</a></li> <li><a href="/wiki/Ernst_G._Bauer" title="Ernst G. Bauer">Ernst G. Bauer</a></li> <li><a href="/wiki/Ernst_Ruska" title="Ernst Ruska">Ernst Ruska</a></li> <li><a href="/wiki/Gerasimos_Danilatos" title="Gerasimos Danilatos">Gerasimos Danilatos</a></li> <li><a href="/wiki/Harald_Rose" title="Harald Rose">Harald Rose</a></li> <li><a href="/wiki/James_Hillier" title="James Hillier">James Hillier</a></li> <li><a href="/wiki/Manfred_von_Ardenne" title="Manfred von Ardenne">Manfred von Ardenne</a></li> <li><a href="/wiki/Max_Knoll" title="Max Knoll">Max Knoll</a></li> <li><a href="/wiki/Maximilian_Haider" title="Maximilian Haider">Maximilian Haider</a></li> <li><a href="/wiki/Nestor_J._Zaluzec" title="Nestor J. Zaluzec">Nestor J. Zaluzec</a></li> <li><a href="/wiki/Ondrej_Krivanek" title="Ondrej Krivanek">Ondrej Krivanek</a></li> <li><a href="/wiki/Thomas_Eugene_Everhart" title="Thomas Eugene Everhart">Thomas Eugene Everhart</a></li> <li><a href="/wiki/Vernon_Ellis_Cosslett" title="Vernon Ellis Cosslett">Vernon Ellis Cosslett</a></li> <li><a href="/wiki/Vladimir_K._Zworykin" title="Vladimir K. Zworykin">Vladimir K. Zworykin</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Manufacturers</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Carl_Zeiss_AG" title="Carl Zeiss AG">Carl Zeiss AG</a></li> <li><a href="/wiki/FEI_Company" title="FEI Company">FEI Company</a></li> <li><a href="/wiki/Hitachi" title="Hitachi">Hitachi High-Technologies</a></li> <li><a href="/wiki/JEOL" title="JEOL">JEOL</a></li> <li><a href="/wiki/Leica_Microsystems" title="Leica Microsystems">Leica</a></li> <li><a href="/wiki/Nion_Company" class="mw-redirect" title="Nion Company">Nion Company</a></li> <li><a href="/wiki/TESCAN" title="TESCAN">TESCAN</a></li> <li><a href="/wiki/Thermo_Fisher_Scientific" title="Thermo Fisher Scientific">Thermo Fisher Scientific</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Software</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a rel="nofollow" class="external text" href="https://www.gegi.usherbrooke.ca/casino/index.html">CASINO</a></li> <li><a href="/wiki/CrysTBox" title="CrysTBox">CrysTBox</a></li> <li><a href="/wiki/EM_Data_Bank" title="EM Data Bank">EM Data Bank</a></li> <li><a rel="nofollow" class="external text" href="https://github.com/EMsoft-org/EMsoft">EMsoft</a></li> <li><a rel="nofollow" class="external text" href="https://www.gatan.com/products/tem-analysis/gatan-microscopy-suite-software">Digital Micrograph</a></li> <li><a href="/wiki/Direct_methods_(electron_microscopy)" title="Direct methods (electron microscopy)">Direct methods</a></li> <li><a rel="nofollow" class="external text" href="https://www.iucr.org/resources/commissions/electron-crystallography/software">IUCr</a></li> <li><a href="/wiki/MTEX" title="MTEX">MTEX</a></li> <li><a href="/wiki/Multislice" title="Multislice">Multislice</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/Category:Electron_microscopy" title="Category:Electron microscopy">Category</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <b><a href="https://commons.wikimedia.org/wiki/Category:Electron_microscopy" class="extiw" title="commons:Category:Electron microscopy">Commons</a></b></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q864822#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00561426">Japan</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐6bb4bcc5b5‐rfcfs Cached time: 20241127140220 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.793 seconds Real time usage: 3.127 seconds Preprocessor visited node count: 28316/1000000 Post‐expand include size: 540413/2097152 bytes Template argument size: 11179/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 21/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 752061/5000000 bytes Lua time usage: 1.519/10.000 seconds Lua memory usage: 9547011/52428800 bytes Lua Profile: ? 280 ms 17.7% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 260 ms 16.5% dataWrapper <mw.lua:672> 140 ms 8.9% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 120 ms 7.6% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getExpandedArgument 80 ms 5.1% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::find 80 ms 5.1% type 80 ms 5.1% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::plain 60 ms 3.8% select_one <Module:Citation/CS1/Utilities:426> 60 ms 3.8% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::match 60 ms 3.8% [others] 360 ms 22.8% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 2448.164 1 -total 54.24% 1327.827 2 Template:Reflist 31.11% 761.587 118 Template:Cite_journal 16.57% 405.685 62 Template:Rp 15.75% 385.655 62 Template:R/superscript 13.26% 324.553 38 Template:Cite_book 7.74% 189.556 186 Template:R/where 5.39% 132.016 8 Template:Navbox 4.68% 114.625 1 Template:Crystallography 4.49% 109.960 1 Template:Short_description --> <!-- Saved in parser cache with key enwiki:pcache:277702:|#|:idhash:canonical and timestamp 20241127140220 and revision id 1248558676. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Electron_diffraction&oldid=1248558676">https://en.wikipedia.org/w/index.php?title=Electron_diffraction&oldid=1248558676</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Applied_and_interdisciplinary_physics" title="Category:Applied and interdisciplinary physics">Applied and interdisciplinary physics</a></li><li><a href="/wiki/Category:Crystallography" title="Category:Crystallography">Crystallography</a></li><li><a href="/wiki/Category:Diffraction" title="Category:Diffraction">Diffraction</a></li><li><a href="/wiki/Category:Electron" title="Category:Electron">Electron</a></li><li><a href="/wiki/Category:Electron_microscopy" title="Category:Electron microscopy">Electron microscopy</a></li><li><a href="/wiki/Category:Materials_science" title="Category:Materials science">Materials science</a></li><li><a href="/wiki/Category:Quantum_mechanics" title="Category:Quantum mechanics">Quantum mechanics</a></li><li><a href="/wiki/Category:Scattering" title="Category:Scattering">Scattering</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">CS1 maint: location missing publisher</a></li><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">CS1 maint: multiple names: authors list</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Good_articles" title="Category:Good articles">Good articles</a></li><li><a href="/wiki/Category:Pages_using_multiple_image_with_auto_scaled_images" title="Category:Pages using multiple image with auto scaled images">Pages using multiple image with auto scaled images</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 30 September 2024, at 05:19<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Electron_diffraction&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.canary-74676dc46c-298g4","wgBackendResponseTime":196,"wgPageParseReport":{"limitreport":{"cputime":"2.793","walltime":"3.127","ppvisitednodes":{"value":28316,"limit":1000000},"postexpandincludesize":{"value":540413,"limit":2097152},"templateargumentsize":{"value":11179,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":21,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":752061,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 2448.164 1 -total"," 54.24% 1327.827 2 Template:Reflist"," 31.11% 761.587 118 Template:Cite_journal"," 16.57% 405.685 62 Template:Rp"," 15.75% 385.655 62 Template:R/superscript"," 13.26% 324.553 38 Template:Cite_book"," 7.74% 189.556 186 Template:R/where"," 5.39% 132.016 8 Template:Navbox"," 4.68% 114.625 1 Template:Crystallography"," 4.49% 109.960 1 Template:Short_description"]},"scribunto":{"limitreport-timeusage":{"value":"1.519","limit":"10.000"},"limitreport-memusage":{"value":9547011,"limit":52428800},"limitreport-profile":[["?","280","17.7"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","260","16.5"],["dataWrapper \u003Cmw.lua:672\u003E","140","8.9"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","120","7.6"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getExpandedArgument","80","5.1"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::find","80","5.1"],["type","80","5.1"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::plain","60","3.8"],["select_one \u003CModule:Citation/CS1/Utilities:426\u003E","60","3.8"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::match","60","3.8"],["[others]","360","22.8"]]},"cachereport":{"origin":"mw-web.codfw.main-6bb4bcc5b5-rfcfs","timestamp":"20241127140220","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Electron diffraction","url":"https:\/\/en.wikipedia.org\/wiki\/Electron_diffraction","sameAs":"http:\/\/www.wikidata.org\/entity\/Q864822","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q864822","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-07-26T10:51:13Z","dateModified":"2024-09-30T05:19:19Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/3\/3d\/Austenite_ZADP.jpg","headline":"Bending of electron beams due to electrostatic interactions with matter"}</script> </body> </html>