CINXE.COM

Search results for: chemically modified electrode

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: chemically modified electrode</title> <meta name="description" content="Search results for: chemically modified electrode"> <meta name="keywords" content="chemically modified electrode"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="chemically modified electrode" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="chemically modified electrode"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3161</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: chemically modified electrode</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3161</span> Electrochemical Behavior of Cocaine on Carbon Paste Electrode Chemically Modified with Cu(II) Trans 3-MeO Salcn Complex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alex%20Soares%20Castro">Alex Soares Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=Matheus%20Manoel%20Teles%20de%20Menezes"> Matheus Manoel Teles de Menezes</a>, <a href="https://publications.waset.org/abstracts/search?q=Larissa%20Silva%20de%20Azevedo"> Larissa Silva de Azevedo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Carolina%20Caleffi%20Patelli"> Ana Carolina Caleffi Patelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Osmair%20Vital%20de%20Oliveira"> Osmair Vital de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Aline%20Thais%20Bruni"> Aline Thais Bruni</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20Firmino%20de%20Oliveira"> Marcelo Firmino de Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering the problem of the seizure of illicit drugs, as well as the development of electrochemical sensors using chemically modified electrodes, this work shows the study of the electrochemical activity of cocaine in carbon paste electrode chemically modified with Cu (II) trans 3-MeO salcn complex. In this context, cyclic voltammetry was performed on 0.1 mol.L⁻¹ KCl supporting electrolyte at a scan speed of 100 mV s⁻¹, using an electrochemical cell composed of three electrodes: Ag /AgCl electrode (filled KCl 3 mol.L⁻¹) from Metrohm® (reference electrode); a platinum spiral electrode, as an auxiliary electrode, and a carbon paste electrode chemically modified with Cu (II) trans 3-MeO complex (as working electrode). Two forms of cocaine were analyzed: cocaine hydrochloride (pH 3) and cocaine free base form (pH 8). The PM7 computational method predicted that the hydrochloride form is more stable than the free base form of cocaine, so with cyclic voltammetry, we found electrochemical signal only for cocaine in the form of hydrochloride, with an anodic peak at 1.10 V, with a linearity range between 2 and 20 μmol L⁻¹ had LD and LQ of 2.39 and 7.26x10-5 mol L⁻¹, respectively. The study also proved that cocaine is adsorbed on the surface of the working electrode, where through an irreversible process, where only anode peaks are observed, we have the oxidation of cocaine, which occurs in the hydrophilic region due to the loss of two electrons. The mechanism of this reaction was confirmed by the ab-inito quantum method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ab-initio%20computational%20method" title="ab-initio computational method">ab-initio computational method</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20method" title=" analytical method"> analytical method</a>, <a href="https://publications.waset.org/abstracts/search?q=cocaine" title=" cocaine"> cocaine</a>, <a href="https://publications.waset.org/abstracts/search?q=Schiff%20base%20complex" title=" Schiff base complex"> Schiff base complex</a>, <a href="https://publications.waset.org/abstracts/search?q=voltammetry" title=" voltammetry"> voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/93544/electrochemical-behavior-of-cocaine-on-carbon-paste-electrode-chemically-modified-with-cuii-trans-3-meo-salcn-complex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3160</span> Sensitive Determination of Copper(II) by Square Wave Anodic Stripping Voltammetry with Tetracarbonylmolybdenum(0) Multiwalled Carbon Nanotube Paste Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Illyas%20Md%20Isa">Illyas Md Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Idris%20Saidin"> Mohamad Idris Saidin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustaffa%20Ahmad"> Mustaffa Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhayati%20Hashim"> Norhayati Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A highly selective and sensitive carbon paste electrode modified with multiwall carbon nanotubes and 2,6–diacetylpyridine-di-(1R)–(-)–fenchone diazine tetracarbonylmolybdenum(0) complex was used for determination of trace amounts of Cu(II) using square wave anodic stripping voltammetry (SWASV). The influences of experimental variables on the proposed electrode such as pH, supporting electrolyte, preconcentration potential and time, and square wave parameters were investigated. Under optimal conditions, the proposed electrode showed a linear relationship with concentration in the range of 1.0 × 10–10 to 1.0 × 10– 6 M Cu(II) with a limit of detection 8.0 × 10–11 M. The relative standard deviation (n = 5) for a solution containing 1.0 × 10– 6 M of Cu(II) was 0.036. The presence of various cations (in 10 and 100-folds concentration) did not interfere. Electrochemical impedance spectroscopy (EIS) showed that the charge transfer at the electrode-solution interface was favourable. The proposed electrode was applied for the determination of Cu(II) in several water samples. Results agreed very well with those obtained by inductively coupled plasma-optical emission spectrometry. The modified electrode was then proposed as an alternative for determination of Cu(II). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemically%20modified%20electrode" title="chemically modified electrode">chemically modified electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu%28II%29" title=" Cu(II)"> Cu(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry" title=" square wave anodic stripping voltammetry"> square wave anodic stripping voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=tetracarbonylmolybdenum%280%29" title=" tetracarbonylmolybdenum(0)"> tetracarbonylmolybdenum(0)</a> </p> <a href="https://publications.waset.org/abstracts/37515/sensitive-determination-of-copperii-by-square-wave-anodic-stripping-voltammetry-with-tetracarbonylmolybdenum0-multiwalled-carbon-nanotube-paste-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3159</span> Square Wave Anodic Stripping Voltammetry of Copper (II) at the Tetracarbonylmolybdenum(0) MWCNT Paste Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Illyas%20Isa">Illyas Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Idris%20Saidin"> Mohamad Idris Saidin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustaffa%20Ahmad"> Mustaffa Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhayati%20Hashim"> Norhayati Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A highly selective and sensitive electrode for determination of trace amounts of Cu (II) using square wave anodic stripping voltammetry (SWASV) was proposed. The electrode was made of the paste of multiwall carbon nanotubes (MWCNT) and 2,6–diacetylpyridine-di-(1R)–(-)–fenchone diazine tetracarbonylmolybdenum(0) at 100:5 (w/w). Under optimal conditions the electrode showed a linear relationship with concentration in the range of 1.0 × 10–10 to 1.0 × 10– 6 M Cu (II) and limit of detection 8.0 × 10–11 M Cu (II). The relative standard deviation (n = 5) of response to 1.0 × 10–6 M Cu(II) was 0.036. The interferences of cations such as Ni(II), Mg(II), Cd(II), Co(II), Hg(II), and Zn(II) (in 10 and 100-folds concentration) are negligible except from Pb (II). Electrochemical impedance spectroscopy (EIS) showed that the charge transfer at the electrode-solution interface was favorable. Result of analysis of Cu(II) in several water samples agreed well with those obtained by inductively coupled plasma-optical emission spectrometry (ICP-OES). The proposed electrode was then recommended as an alternative to spectroscopic technique in analyzing Cu (II). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemically%20modified%20electrode" title="chemically modified electrode">chemically modified electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu%28II%29" title=" Cu(II)"> Cu(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=Square%20wave%20anodic%20stripping%20voltammetry" title=" Square wave anodic stripping voltammetry"> Square wave anodic stripping voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=tetracarbonylmolybdenum%280%29" title=" tetracarbonylmolybdenum(0)"> tetracarbonylmolybdenum(0)</a> </p> <a href="https://publications.waset.org/abstracts/45191/square-wave-anodic-stripping-voltammetry-of-copper-ii-at-the-tetracarbonylmolybdenum0-mwcnt-paste-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3158</span> Quantitative Analysis of Caffeine in Pharmaceutical Formulations Using a Cost-Effective Electrochemical Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20T.%20Gebreslassie">Y. T. Gebreslassie</a>, <a href="https://publications.waset.org/abstracts/search?q=Abrha%20Tadesse"> Abrha Tadesse</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20C.%20Saini"> R. C. Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Rishi%20Pal"> Rishi Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Caffeine, known chemically as 3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione, is a naturally occurring alkaloid classified as an N-methyl derivative of xanthine. Given its widespread use in coffee and other caffeine-containing products, it is the most commonly consumed psychoactive substance in everyday human life. This research aimed to develop a cost-effective, sensitive, and easily manufacturable sensor for the detection of caffeine. Antraquinone-modified carbon paste electrode (AQMCPE) was fabricated, and the electrochemical behavior of caffeine on this electrode was investigated using cyclic voltammetry (CV) and square wave voltammetry (SWV) in a solution of 0.1M perchloric acid at pH 0.56. The modified electrode displayed enhanced electrocatalytic activity towards caffeine oxidation, exhibiting a two-fold increase in peak current and an 82 mV shift of the peak potential in the negative direction compared to an unmodified carbon paste electrode (UMCPE). Exploiting the electrocatalytic properties of the modified electrode, SWV was employed for the quantitative determination of caffeine. Under optimized experimental conditions, a linear relationship between peak current and concentration was observed within the range of 2.0 x 10⁻⁶ to 1.0× 10⁻⁴ M, with a correlation coefficient of 0.998 and a detection limit of 1.47× 10⁻⁷ M (signal-to-noise ratio = 3). Finally, the proposed method was successfully applied to the quantitative analysis of caffeine in pharmaceutical formulations, yielding recovery percentages ranging from 95.27% to 106.75%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antraquinone-modified%20carbon%20paste%20electrode" title="antraquinone-modified carbon paste electrode">antraquinone-modified carbon paste electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=caffeine" title=" caffeine"> caffeine</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title=" electrochemical sensor"> electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20analysis" title=" quantitative analysis"> quantitative analysis</a> </p> <a href="https://publications.waset.org/abstracts/180289/quantitative-analysis-of-caffeine-in-pharmaceutical-formulations-using-a-cost-effective-electrochemical-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3157</span> Simple Fabrication of Au (111)-Like Electrode and Its Applications to Electrochemical Determination of Dopamine and Ascorbic Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahrah%20Thamer%20Althagafi">Zahrah Thamer Althagafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20I.%20Awad"> Mohamed I. Awad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple method for the fabrication of Au (111)-like electrode via controlled reductive desorption of a pre-adsorbed cysteine monolayer onto polycrystalline gold (poly-Au) electrode is introduced. Then, the voltammetric behaviour of dopamine (DA) and ascorbic acid (AA) on the thus modified electrode is investigated. Electrochemical characterization of the modified electrode is achieved using cyclic voltammetry and square wave voltammetry. For the binary mixture of DA and AA, the results showed that Au (111)-like electrode exhibits excellent electrocatalytic activity towards the oxidation of DA and AA. This allows highly selective and simultaneous determination of DA and AA. The effect of various experimental parameters on the voltammetric responses of DA and AA was investigated. The enrichment of the Au (111) facet of the poly-Au electrode is thought to be behind the electrocatalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold%20electrode" title="gold electrode">gold electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=electroanalysis" title=" electroanalysis"> electroanalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalysis" title=" electrocatalysis"> electrocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=monolayers" title=" monolayers"> monolayers</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembly" title=" self-assembly"> self-assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=cysteine" title=" cysteine"> cysteine</a>, <a href="https://publications.waset.org/abstracts/search?q=dopamine" title=" dopamine"> dopamine</a>, <a href="https://publications.waset.org/abstracts/search?q=ascorbic%20acid" title=" ascorbic acid"> ascorbic acid</a> </p> <a href="https://publications.waset.org/abstracts/117052/simple-fabrication-of-au-111-like-electrode-and-its-applications-to-electrochemical-determination-of-dopamine-and-ascorbic-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3156</span> Determination of Nanomolar Mercury (II) by Using Multi-Walled Carbon Nanotubes Modified Carbon Zinc/Aluminum Layered Double Hydroxide – 3 (4-Methoxyphenyl) Propionate Nanocomposite Paste Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Illyas%20Md%20Isa">Illyas Md Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharifah%20Norain%20Mohd%20Sharif"> Sharifah Norain Mohd Sharif</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhayati%20Hashima"> Norhayati Hashima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mercury(II) sensor was developed by using multi-walled carbon nanotubes (MWCNTs) paste electrode modified with Zn/Al layered double hydroxide-3(4-methoxyphenyl)propionate nanocomposite (Zn/Al-HMPP). The optimum conditions by cyclic voltammetry were observed at electrode composition 2.5% (w/w) of Zn/Al-HMPP/MWCNTs, 0.4 M potassium chloride, pH 4.0, and scan rate of 100 mVs-1. The sensor exhibited wide linear range from 1x10-3 M to 1x10-7 M Hg2+ and 1x10-7 M to 1x10-9 M Hg2+, with a detection limit of 1x10-10 M Hg2+. The high sensitivity of the proposed electrode towards Hg(II) was confirmed by double potential-step chronocoulometry which indicated these values; diffusion coefficient 1.5445 x 10-9 cm2 s-1, surface charge 524.5 µC s-½ and surface coverage 4.41 x 10-2 mol cm-2. The presence of 25-fold concentration of most metal ions had no influence on the anodic peak current. With characteristics such as high sensitivity, selectivity and repeatability the electrode was then proposed as the appropriate alternative for the determination of mercury(II). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title="cyclic voltammetry">cyclic voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=mercury%28II%29" title=" mercury(II)"> mercury(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20carbon%20paste%20electrode" title=" modified carbon paste electrode"> modified carbon paste electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite "> nanocomposite </a> </p> <a href="https://publications.waset.org/abstracts/15881/determination-of-nanomolar-mercury-ii-by-using-multi-walled-carbon-nanotubes-modified-carbon-zincaluminum-layered-double-hydroxide-3-4-methoxyphenyl-propionate-nanocomposite-paste-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3155</span> Determination of Nanomolar Mercury (II) by Using Multi-Walled Carbon Nanotubes Modified Carbon Zinc/Aluminum Layered Double Hydroxide-3(4-Methoxyphenyl) Propionate Nanocomposite Paste Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Illyas%20Md%20Isa">Illyas Md Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharifah%20Norain%20Mohd%20Sharif"> Sharifah Norain Mohd Sharif</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhayati%20Hashim"> Norhayati Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mercury(II) sensor was developed by using multi-walled carbon nano tubes (MWCNTs) paste electrode modified with Zn/Al layered double hydroxide-3(4-methoxyphenyl) propionate nano composite (Zn/Al-HMPP). The optimum conditions by cyclic voltammetry were observed at electrode composition 2.5% (w/w) of Zn/Al-HMPP/MWCNTs, 0.4 M potassium chloride, pH 4.0, and scan rate of 100 mVs-1. The sensor exhibited wide linear range from 1x10-3 M to 1x10-7 M Hg2+ and 1x10-7 M to 1x10-9 M Hg2+, with a detection limit of 1 x 10-10 M Hg2+. The high sensitivity of the proposed electrode towards Hg(II) was confirmed by double potential-step chronocoulometry which indicated these values; diffusion coefficient 1.5445 x 10-9 cm2 s-1, surface charge 524.5 µC s-½ and surface coverage 4.41 x 10-2 mol cm-2. The presence of 25-fold concentration of most metal ions had no influence on the anodic peak current. With characteristics such as high sensitivity, selectivity and repeatability the electrode was then proposed as the appropriate alternative for the determination of mercury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cyclic%20voltammetry" title="Cyclic voltammetry">Cyclic voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=Mercury%28II%29" title=" Mercury(II)"> Mercury(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=Modified%20carbon%20paste%20electrode" title=" Modified carbon paste electrode"> Modified carbon paste electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanocomposite" title=" Nanocomposite"> Nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/23508/determination-of-nanomolar-mercury-ii-by-using-multi-walled-carbon-nanotubes-modified-carbon-zincaluminum-layered-double-hydroxide-34-methoxyphenyl-propionate-nanocomposite-paste-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3154</span> Detection of Epinephrine in Chicken Serum at Iron Oxide Screen Print Modified Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwole%20Opeyemi%20Dina">Oluwole Opeyemi Dina</a>, <a href="https://publications.waset.org/abstracts/search?q=Saheed%20E.%20Elugoke"> Saheed E. Elugoke</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Olutope%20Fayemi"> Peter Olutope Fayemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Omolola%20E.%20Fayemi"> Omolola E. Fayemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the detection of epinephrine (EP) at Fe₃O₄ modified screen printed silver electrode (SPSE). The iron oxide (Fe₃O₄) nanoparticles were characterized with UV-visible spectroscopy, Fourier-Transform infrared spectroscopy (FT-IR) and Scanning electron microscopy (SEM) prior to the modification of the SPSE. The EP oxidation peak current (Iap) increased with an increase in the concentration of EP as well as the scan rate (from 25 - 400 mVs⁻¹). Using cyclic voltammetry (CV), the relationship between Iap and EP concentration was linear over a range of 3.8 -118.9 µM and 118.9-175 µM with a detection limit of 41.99 µM and 83.16 µM, respectively. Selective detection of EP in the presence of ascorbic acid was also achieved at this electrode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=screenprint%20electrode" title="screenprint electrode">screenprint electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticle" title=" iron oxide nanoparticle"> iron oxide nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=epinephrine" title=" epinephrine"> epinephrine</a>, <a href="https://publications.waset.org/abstracts/search?q=serum" title=" serum"> serum</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltametry" title=" cyclic voltametry"> cyclic voltametry</a> </p> <a href="https://publications.waset.org/abstracts/144358/detection-of-epinephrine-in-chicken-serum-at-iron-oxide-screen-print-modified-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3153</span> Disposable PANI-CeO2 Sensor for the Electrocatalytic Simultaneous Quantification of Amlodipine and Nebivolol </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nimisha%20Jadon">Nimisha Jadon</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Jain"> Rajeev Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Swati%20Sharma"> Swati Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A chemically modified carbon paste sensor has been developed for the simultaneous determination of amlodipine (AML) and nebivolol (NBV). Carbon paste electrode (CPE) was fabricated by the addition of Gr/PANI-CeO2. Gr/PANI-CeO2/CPE has achieved excellent electrocatalytic activity and sensitivity. AML and NBV exhibited oxidation peaks at 0.70 and 0.90 V respectively on Gr/ PANI-CeO2/CPE. The linearity range of AML and NBV was 0.1 to 1.6 μgmL-1 in BR buffer (pH 8.0). The Limit of detection (LOD) was 20.0 ngmL-1 for AML and 30.0 ngmL-1 for NBV and limit of quantification (LOQ) was 80.0 ngmL-1 for AML and 100 ngmL-1 for NBV respectively. These analyses were also determined in pharmaceutical formulation and human serum and good recovery was obtained for the developed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amlodipine" title="amlodipine">amlodipine</a>, <a href="https://publications.waset.org/abstracts/search?q=nebivolol" title=" nebivolol"> nebivolol</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20wave%20voltammetry" title=" square wave voltammetry"> square wave voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20paste%20electrode" title=" carbon paste electrode"> carbon paste electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneous%20quantification" title=" simultaneous quantification"> simultaneous quantification</a> </p> <a href="https://publications.waset.org/abstracts/80595/disposable-pani-ceo2-sensor-for-the-electrocatalytic-simultaneous-quantification-of-amlodipine-and-nebivolol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3152</span> Investigating Concentration of Multi-Walled Carbon Nanotubes on Electrochemical Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Adabi">Mohsen Adabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Adabi"> Mahdi Adabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Saber"> Reza Saber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recent advancements in nanomaterials have provided a platform to develop efficient transduction matrices for sensors. Modified electrodes allow to electrochemists to enhance the property of electrode surface and provide desired properties such as improved sensing capabilities, higher electron transfer rate and prevention of undesirable reactions competing kinetically with desired electrode process. Nanostructured electrodes including arrays of carbon nanotubes have demonstrated great potential for the development of electrochemical sensors and biosensors. The aim of this work is to evaluate the concentration of multi-walled carbon nanotubes (MWCNTs) on the conductivity of gold electrode. For this work, raw MWCNTs was functionalized and shortened. Raw and shorten MWCNTs were characterized using transfer electron microscopy (TEM). Next, 0.5, 2 and 3.5 mg of Shortened and functionalized MWCNTs were dispersed in 2 mL Dimethyl formamide (DMF) and cysteamine modified gold electrodes were incubated in the different concentrations of MWCNTs for 8 hours. Then, the immobilization of MWCNTs on cysteamine modified gold electrode was characterized by scanning electron microscopy (SEM) and the effect of MWCNT concentrations on electron transfer of modified electrodes was investigated by cyclic voltammetry (CV). The results demonstrated that CV response of ferricyanide redox at modified gold electrodes increased as concentration of MWCNTs enhanced from 0.5 to 2 mg in 2 mL DMF. This increase can be attributed to the number of MWCNTs which enhance on the surface of cysteamine modified gold electrode as the MWCNTs concentration increased whereas CV response of ferricyanide redox at modified gold electrodes did not changed significantly as the MWCNTs concentration increased from 2 to 3.5 mg in 2 mL DMF. The reason may be that amine groups of cysteamine modified gold electrodes are limited to a given number which can interact with the given number of carboxylic groups of MWCNTs and CV response of ferricyanide redox at modified gold do not enhance after amine groups of cysteamine are saturated with carboxylic groups of MWCNTs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=cysteamine" title=" cysteamine"> cysteamine</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title=" electrochemical sensor"> electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20electrode" title=" gold electrode"> gold electrode</a> </p> <a href="https://publications.waset.org/abstracts/24360/investigating-concentration-of-multi-walled-carbon-nanotubes-on-electrochemical-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3151</span> Acceleration of DNA Hybridization Using Electroosmotic Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yun-Hsiang%20Wang">Yun-Hsiang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Huai-Yi%20Chen"> Huai-Yi Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kin%20Fong%20Lei"> Kin Fong Lei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deoxyribonucleic acid (DNA) hybridization is a common technique used in genetic assay widely. However, the hybridization ratio and rate are usually limited by the diffusion effect. Here, microfluidic electrode platform producing electroosmosis generated by alternating current signal has been proposed to enhance the hybridization ratio and rate. The electrode was made of aurum fabricated by microfabrication technique. Thiol-modified oligo probe was immobilized on the electrode for specific capture of target, which is modified by fluorescent tag. Alternative electroosmosis can induce local microfluidic vortexes to accelerate DNA hybridization. This study provides a strategy to enhance the rate of DNA hybridization in the genetic assay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20hybridization" title="DNA hybridization">DNA hybridization</a>, <a href="https://publications.waset.org/abstracts/search?q=electroosmosis" title=" electroosmosis"> electroosmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20enhancement" title=" electrical enhancement"> electrical enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=hybridization%20ratio" title=" hybridization ratio"> hybridization ratio</a> </p> <a href="https://publications.waset.org/abstracts/9637/acceleration-of-dna-hybridization-using-electroosmotic-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3150</span> Electrochemical Detection of Hydroquinone by Square Wave Voltammetry Using a Zn Layered Hydroxide-Ferulate Modified Multiwall Carbon Nanotubes Paste Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Syahrizal%20Ahmad">Mohamad Syahrizal Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Illyas%20M.%20Isa"> Illyas M. Isa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a multiwall carbon nanotubes (MWCNT) paste electrode modified by a Zn layered hydroxide-ferulate (ZLH-F) was used for detection of hydroquinone (HQ). The morphology and characteristic of the ZLH-F/MWCNT were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM) and square wave voltammetry (SWV). Under optimal conditions, the SWV response showed linear plot for HQ concentration in the range of 1.0×10⁻⁵ M – 1.0×10⁻³ M. The detection limit was found to be 5.7×10⁻⁶ M and correlation coefficient of 0.9957. The glucose, fructose, sucrose, bisphenol A, acetaminophen, lysine, NO₃⁻, Cl⁻ and SO₄²⁻ did not interfere the HQ response. This modified electrode can be used to determine HQ content in wastewater and cosmetic cream with range of recovery 97.8% - 103.0%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1" title="1">1</a>, <a href="https://publications.waset.org/abstracts/search?q=4-dihydroxybenzene" title="4-dihydroxybenzene">4-dihydroxybenzene</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroquinone" title=" hydroquinone"> hydroquinone</a>, <a href="https://publications.waset.org/abstracts/search?q=multiwall%20carbon%20nanotubes" title=" multiwall carbon nanotubes"> multiwall carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20wave%20voltammetry" title=" square wave voltammetry"> square wave voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/84969/electrochemical-detection-of-hydroquinone-by-square-wave-voltammetry-using-a-zn-layered-hydroxide-ferulate-modified-multiwall-carbon-nanotubes-paste-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3149</span> Rapid Detection of Melamine in Milk Products Based on Modified Gold Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rovina%20Kobun">Rovina Kobun</a>, <a href="https://publications.waset.org/abstracts/search?q=Shafiquzzaman%20Siddiquee"> Shafiquzzaman Siddiquee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel and simple electrochemical sensor for the determination of melamine was developed based on modified gold electrode (AuE) with chitosan (CHIT) nanocomposite membrane, zinc oxide nanoparticles (ZnONPs) and ionic liquids ([EMIM][Otf]) to enhance the potential current response of melamine. Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behaviour between melamine and modified AuE in the presence of methylene blue as a redox indicator. The experimental results indicated that the interaction of melamine with CHIT/ZnONPs/([EMIM][Otf])/AuE were based on the strong interaction of hydrogen bonds. The morphological characterization of modified AuE was observed under scanning electron microscope. Under optimal conditions, the current signal was directly proportional to the melamine concentration ranging from 9.6 x 10-5 to 9.6 x 10-11 M, with a correlation coefficient of 0.9656. The detection limit was 9.6 x 10-12 M. Finally, the proposed method was successfully applied and displayed an excellent sensitivity in the determination of melamine in milk samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melamine" title="melamine">melamine</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20electrode" title=" gold electrode"> gold electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide%20nanoparticles" title=" zinc oxide nanoparticles"> zinc oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetries" title=" cyclic voltammetries"> cyclic voltammetries</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20pulse%20voltammetries" title=" differential pulse voltammetries"> differential pulse voltammetries</a> </p> <a href="https://publications.waset.org/abstracts/20195/rapid-detection-of-melamine-in-milk-products-based-on-modified-gold-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3148</span> Bienzymatic Nanocomposites Biosensors Complexed with Gold Nanoparticles, Polyaniline, Recombinant MN Peroxidase from Corn, and Glucose Oxidase to Measure Glucose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anahita%20Izadyar">Anahita Izadyar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using a recombinant enzyme derived from corn and a simple modification, we are fabricating a facile, fast, and cost-beneficial novel biosensor to measure glucose. We are applying Plant Produced Mn Peroxidase (PPMP), glucose oxidase (GOx), polyaniline (PANI) as conductive polymer and gold nanoparticles (AuNPs) on Au electrode using electrochemical response to detect glucose. We applied the entrapment method of enzyme composition, which is generally used to immobilize conductive polymer and facilitate electron transfer from the enzyme oxidation-reduction center to the sample solution. In this work, the oxidation of glucose on the modified gold electrode was quantified with Linear Sweep Voltammetry(LSV). We expect that the modified biosensor has the potential for monitoring various biofluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant-produced%20manganese%20peroxidase" title="plant-produced manganese peroxidase">plant-produced manganese peroxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme-based%20biosensors" title=" enzyme-based biosensors"> enzyme-based biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20gold%20nanoparticles%20electrode" title=" modified gold nanoparticles electrode"> modified gold nanoparticles electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title=" polyaniline"> polyaniline</a> </p> <a href="https://publications.waset.org/abstracts/141685/bienzymatic-nanocomposites-biosensors-complexed-with-gold-nanoparticles-polyaniline-recombinant-mn-peroxidase-from-corn-and-glucose-oxidase-to-measure-glucose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3147</span> Electrochemically Reduced Graphene Oxide Modified Boron-Doped Diamond Paste Electrode on Paper-Based Analytical Device for Simultaneous Determination of Norepinephrine and Serotonin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siriwan%20Nantaphol">Siriwan Nantaphol</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20B.%20Channon"> Robert B. Channon</a>, <a href="https://publications.waset.org/abstracts/search?q=Takeshi%20Kondo"> Takeshi Kondo</a>, <a href="https://publications.waset.org/abstracts/search?q=Weena%20Siangproh"> Weena Siangproh</a>, <a href="https://publications.waset.org/abstracts/search?q=Orawon%20Chailapakul"> Orawon Chailapakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20S.%20Henry"> Charles S. Henry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we demonstrate a novel electrochemically reduced graphene oxide (ERGO) modified boron-doped diamond paste (BDDP) electrode on paper-based analytical devices (PADs) for simultaneous determination of norepinephrine (NE) and serotonin (5-HT). The BDD paste electrode was easily constructed by filling BDD paste in small channels, which made in transparency film sheets using a CO₂ laser etching 
system. The counter and reference electrodes were fabricated on paper by in-house screen-printing and then combined with BDD paste microelectrode. The electrochemical characterization of the device was investigated by cyclic voltammetry (CV). Differential pulse voltammetry (DPV) was employed for the simultaneous determination of NE and 5-HT. The ERGO-modified BDDP electrode displayed excellent electrocatalytic activities toward the oxidation of NE and 5-HT and strong function for resolving the overlapping voltammetric responses of NE and 5-HT into two well-defined voltammetric peaks. This device was capable of simultaneously detecting NE and 5-HT in wide concentration ranges and with a low limit of detections. In addition, it has the advantages in terms of ease of use, low cost, and disposability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron-doped%20diamond%20paste%20electrode" title="boron-doped diamond paste electrode">boron-doped diamond paste electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemically%20reduced%20graphene%20oxide" title=" electrochemically reduced graphene oxide"> electrochemically reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=norepinephrine" title=" norepinephrine"> norepinephrine</a>, <a href="https://publications.waset.org/abstracts/search?q=paper-based%20analytical%20device" title=" paper-based analytical device"> paper-based analytical device</a>, <a href="https://publications.waset.org/abstracts/search?q=serotonin" title=" serotonin"> serotonin</a> </p> <a href="https://publications.waset.org/abstracts/67753/electrochemically-reduced-graphene-oxide-modified-boron-doped-diamond-paste-electrode-on-paper-based-analytical-device-for-simultaneous-determination-of-norepinephrine-and-serotonin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3146</span> Combination of Electrochemical Impedance Spectroscopy and Electromembrane Extraction for the Determination of Zolpidem Using Modified Screen-Printed Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Naeemy">Ali Naeemy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mir%20Ghasem%20Hoseini"> Mir Ghasem Hoseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, for the first time, an analytical method developed and validated by combining electrochemical impedance spectroscopy and electromembrane extraction (EIS-EME) by Vulcan/poly pyrrole nanocomposite modified screen-printed electrode (PPY–VU/SPE) for accurately quantifying zolpidem. EME parameters optimized, including solvent composition, voltage, pH adjustments and extraction time. Zolpidem was transferred from a donor solution (pH 5) to an acceptor solution (pH 13) using a hollow fiber in 1-octanol as a membrane, driven by a 60 V voltage for 25 minutes, ensuring precise and selective extraction. In comparison with SPE, VU/SPE and PPY/SPE, the PPY–VU/SPE was much more efficient for ZP oxidation. Calibration curves with good linearity were obtained in the concentration range of 2-75 µmol L-1 using the EIS-EME with the detection limit of 0.5 µmol L-1 . Finally, the EIS-EME by using the PPY– VU/SPE was successfully used to determine ZP in tablet dosage form, urine and plasma samples. Keywords: Electrochemical impedance spectroscopy, Electromembrane extraction, Zolpidem, Vulcan, poly pyrrole, Screen printed electrode <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20impedance%20spectroscopy" title="electrochemical impedance spectroscopy">electrochemical impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=electromembrane%20extraction" title=" electromembrane extraction"> electromembrane extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20printed%20electrode" title=" screen printed electrode"> screen printed electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=zolpidem" title=" zolpidem"> zolpidem</a> </p> <a href="https://publications.waset.org/abstracts/186746/combination-of-electrochemical-impedance-spectroscopy-and-electromembrane-extraction-for-the-determination-of-zolpidem-using-modified-screen-printed-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3145</span> Preparation of Indium Tin Oxide Nanoparticle-Modified 3-Aminopropyltrimethoxysilane-Functionalized Indium Tin Oxide Electrode for Electrochemical Sulfide Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Abdul%20Aziz">Md. Abdul Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfide ion is water soluble, highly corrosive, toxic and harmful to the human beings. As a result, knowing the exact concentration of sulfide in water is very important. However, the existing detection and quantification methods have several shortcomings, such as high cost, low sensitivity, and massive instrumentation. Consequently, the development of novel sulfide sensor is relevant. Nevertheless, electrochemical methods gained enormous popularity due to a vast improvement in the technique and instrumentation, portability, low cost, rapid analysis and simplicity of design. Successful field application of electrochemical devices still requires vast improvement, which depends on the physical, chemical and electrochemical aspects of the working electrode. The working electrode made of bulk gold (Au) and platinum (Pt) are quite common, being very robust and endowed with good electrocatalytic properties. High cost, and electrode poisoning, however, have so far hindered their practical application in many industries. To overcome these obstacles, we developed a sulfide sensor based on an indium tin oxide nanoparticle (ITONP)-modified ITO electrode. To prepare ITONP-modified ITO, various methods were tested. Drop-drying of ITONPs (aq.) on aminopropyltrimethoxysilane-functionalized ITO (APTMS/ITO) was found to be the best method on the basis of voltammetric analysis of the sulfide ion. ITONP-modified APTMS/ITO (ITONP/APTMS/ITO) yielded much better electrocatalytic properties toward sulfide electro-οxidation than did bare or APTMS/ITO electrodes. The ITONPs and ITONP-modified ITO were also characterized using transmission electron microscopy and field emission scanning electron microscopy, respectively. Optimization of the type of inert electrolyte and pH yielded an ITONP/APTMS/ITO detector whose amperometrically and chronocoulοmetrically determined limits of detection for sulfide in aqueous solution were 3.0 µM and 0.90 µM, respectively. ITONP/APTMS/ITO electrodes which displayed reproducible performances were highly stable and were not susceptible to interference by common contaminants. Thus, the developed electrode can be considered as a promising tool for sensing sulfide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amperometry" title="amperometry">amperometry</a>, <a href="https://publications.waset.org/abstracts/search?q=chronocoulometry" title=" chronocoulometry"> chronocoulometry</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalytic%20properties" title=" electrocatalytic properties"> electrocatalytic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=ITO-nanoparticle-modified%20ITO" title=" ITO-nanoparticle-modified ITO"> ITO-nanoparticle-modified ITO</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfide%20sensor" title=" sulfide sensor"> sulfide sensor</a> </p> <a href="https://publications.waset.org/abstracts/85921/preparation-of-indium-tin-oxide-nanoparticle-modified-3-aminopropyltrimethoxysilane-functionalized-indium-tin-oxide-electrode-for-electrochemical-sulfide-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3144</span> ZnMn₂O₄ / Carbon Composite Recycled from Spent Zinc-Carbon Batteries for Zn-Air Battery Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nivedha%20L.%20K.">Nivedha L. K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhinesh%20Kumar%20Murugaiah"> Dhinesh Kumar Murugaiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ganapathi%20Rao%20Kandregula"> Ganapathi Rao Kandregula</a>, <a href="https://publications.waset.org/abstracts/search?q=Raja%20Murugan"> Raja Murugan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kothandaraman%20R."> Kothandaraman R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ZnMn₂O₄, a non-precious metal catalyst for oxygen reduction reaction (ORR), was recycled from the spent primary Zn-C battery and utilized in the zinc-air battery. Catalysts exhibiting facile ORR kinetics are a requirement for building efficient Zinc-air batteries. ZnMn₂O₄ demonstrated excellent catalytic activity towards ORR in an aqueous alkaline medium, with an onset potential of 0. 90 V vs. RHE. The recycled ZnMn₂O₄ manifested a similar performance (at ~ 1.0 V) as the chemically synthesized one with a specific capacity of 210 mAh gzn-¹ at a constant current discharge of 15 mA cm-². A single electrode potential study was done to comprehend the losses at the electrodes and to identify the limiting electrode. Interestingly, the cathode was improving during discharge, which is in contrast to the expectation due to the accumulation of peroxide around the catalytic layer. Although the anode has exhibited minimal polarization, beyond a capacity of 210 mAh g-¹, the supersaturation of electrolyte occurs with zincate ion causing precipitation of ZnO on the cell components, thereby leading to sudden polarization of the cell and hence zinc electrode act as a limiting electrode in this system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20recycling" title="battery recycling">battery recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20reduction%20reaction" title=" oxygen reduction reaction"> oxygen reduction reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20electrode%20measurement" title=" single electrode measurement"> single electrode measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=Zn-air%20battery" title=" Zn-air battery"> Zn-air battery</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnMn%E2%82%82O%E2%82%84%20recovery" title=" ZnMn₂O₄ recovery"> ZnMn₂O₄ recovery</a> </p> <a href="https://publications.waset.org/abstracts/165897/znmn2o4-carbon-composite-recycled-from-spent-zinc-carbon-batteries-for-zn-air-battery-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3143</span> Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meareg%20Amare">Meareg Amare</a>, <a href="https://publications.waset.org/abstracts/search?q=Senait%20Aklog"> Senait Aklog</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lignin film was deposited at the surface of the glassy carbon electrode potential-statically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at the modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 × 10⁻⁶ to 100 × 10⁻⁶ mol L⁻¹ with determination coefficient and method detection limit (LoD = 3 s/slope) of 0.99925 and 8.37 × 10⁻⁷ mol L⁻¹, respectively, supplemented by recovery results of 93.79–102.17%, validated the developed method. An attempt was made to determine the caffeine content of aqueous coffee extracts of Ethiopian coffees grown in four coffee cultivating localities (Wonbera, Wolega, Finoteselam, and Zegie) and hence to evaluate the correlation between users preference and caffeine content. In agreement with reported works, caffeine contents (w/w%) of 0.164 in Wonbera coffee; 0.134 in Wolega coffee; 0.097 in Finoteselam coffee; and 0.089 in Zegie coffee were detected, confirming the applicability of the developed method for determination of caffeine in a complex matrix environment. The result indicated that users’ highest preference for Wonbera and least preference for Zegie cultivated coffees are in agreement with the caffeine content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title="electrochemical">electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin" title=" lignin"> lignin</a>, <a href="https://publications.waset.org/abstracts/search?q=caffeine" title=" caffeine"> caffeine</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a> </p> <a href="https://publications.waset.org/abstracts/147641/electrochemical-determination-of-caffeine-content-in-ethiopian-coffee-samples-using-lignin-modified-glassy-carbon-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3142</span> Mesoporous Carbon Ceramic SiO2/C Prepared by Sol-Gel Method and Modified with Cobalt Phthalocyanine and Used as an Electrochemical Sensor for Nitrite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdur%20Rahim">Abdur Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Lauro%20Tatsuo%20Kubota"> Lauro Tatsuo Kubota</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshitaka%20Gushikem"> Yoshitaka Gushikem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon ceramic mesoporous SiO2/50wt%C (SBET= 170 m2g-1), where C is graphite, was prepared by the sol gel method. Scanning electron microscopy images and the respective element mapping showed that, within the magnification used, no phase segregation was detectable. It presented the electric conductivities of 0.49 S cm-1. This material was used to support cobalt phthalocyanine, prepared in situ, to assure a homogeneous dispersion of the electro active complex in the pores of the matrix. The surface density of cobalt phthalocyanine, on the matrix surfaces was 0.015 mol cm-2. Pressed disk, made with SiO2/50wt%C/CoPc, was used to fabricate an electrode and tested as sensors for nitrite determination by electro chemical technique. A linear response range between 0.039 and 0.42 mmol l−1,and correlation coefficient r=0.9996 was obtained. The electrode was chemically very stable and presented very high sensitivity for this analyte, with a limit of detection, LOD = 1.087 x 10-6 mol L-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SiO2%2FC%2FCoPc" title="SiO2/C/CoPc">SiO2/C/CoPc</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title=" sol-gel method"> sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title=" electrochemical sensor"> electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrite%20oxidation" title=" nitrite oxidation"> nitrite oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20ceramic%20material" title=" carbon ceramic material"> carbon ceramic material</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt%20phthalocyanine" title=" cobalt phthalocyanine"> cobalt phthalocyanine</a> </p> <a href="https://publications.waset.org/abstracts/18924/mesoporous-carbon-ceramic-sio2c-prepared-by-sol-gel-method-and-modified-with-cobalt-phthalocyanine-and-used-as-an-electrochemical-sensor-for-nitrite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3141</span> Synthesis of Pd@ Cu Core−Shell Nanowires by Galvanic Displacement of Cu by Pd²⁺ Ions as a Modified Glassy Carbon Electrode for the Simultaneous Determination of Dihydroxybenzene Isomers Speciation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Farsadrouh%20Rashti">Majid Farsadrouh Rashti</a>, <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Jahani"> Parisa Jahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Shafiee"> Amir Shafiee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Mofidi"> Mehrdad Mofidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dihydroxybenzene isomers, hydroquinone (HQ), catechol (CC) and resorcinol (RS) have been widely recognized as important environmental pollutants due to their toxicity and low degradability in the ecological environment. Speciation of HQ, CC and RS is very important for environmental analysis because they co-exist of these isomers in environmental samples and are too difficult to degrade as an environmental contaminant with high toxicity. There are many analytical methods have been reported for detecting these isomers, such as spectrophotometry, fluorescence, High-performance liquid chromatography (HPLC) and electrochemical methods. These methods have attractive advantages such as simple and fast response, low maintenance costs, wide linear analysis range, high efficiency, excellent selectivity and high sensitivity. A novel modified glassy carbon electrode (GCE) with Pd@ Cu/CNTs core−shell nanowires for the simultaneous determination of hydroquinone (HQ), catechol (CC) and resorcinol (RS) is described. A detailed investigation by field emission scanning electron microscopy and electrochemistry was performed in order to elucidate the preparation process and properties of the GCE/ Pd/CuNWs-CNTs. The electrochemical response characteristic of the modified GPE/LFOR toward HQ, CC and RS were investigated by cyclic voltammetry, differential pulse voltammetry (DPV) and Chronoamperometry. Under optimum conditions, the calibrations curves were linear up to 228 µM for each with detection limits of 0.4, 0.6 and 0.8 µM for HQ, CC and RS, respectively. The diffusion coefficient for the oxidation of HQ, CC and RS at the modified electrode was calculated as 6.5×10⁻⁵, 1.6 ×10⁻⁵ and 8.5 ×10⁻⁵ cm² s⁻¹, respectively. DPV was used for the simultaneous determination of HQ, CC and RS at the modified electrode and the relative standard deviations were 2.1%, 1.9% and 1.7% for HQ, CC and RS, respectively. Moreover, GCE/Pd/CuNWs-CNTs was successfully used for determination of HQ, CC and RS in real samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dihydroxybenzene%20isomers" title="dihydroxybenzene isomers">dihydroxybenzene isomers</a>, <a href="https://publications.waset.org/abstracts/search?q=galvanized%20copper%20nanowires" title=" galvanized copper nanowires"> galvanized copper nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title=" electrochemical sensor"> electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Palladium" title=" Palladium"> Palladium</a>, <a href="https://publications.waset.org/abstracts/search?q=speciation" title=" speciation"> speciation</a> </p> <a href="https://publications.waset.org/abstracts/96527/synthesis-of-pd-at-cu-coreshell-nanowires-by-galvanic-displacement-of-cu-by-pd2-ions-as-a-modified-glassy-carbon-electrode-for-the-simultaneous-determination-of-dihydroxybenzene-isomers-speciation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3140</span> Development of a Sensitive Electrochemical Sensor Based on Carbon Dots and Graphitic Carbon Nitride for the Detection of 2-Chlorophenol and Arsenic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theo%20H.%20G.%20Moundzounga">Theo H. G. Moundzounga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arsenic and 2-chlorophenol are priority pollutants that pose serious health threats to humans and ecology. An electrochemical sensor, based on graphitic carbon nitride (g-C₃N₄) and carbon dots (CDs), was fabricated and used for the determination of arsenic and 2-chlorophenol. The g-C₃N₄/CDs nanocomposite was prepared via microwave irradiation heating method and was dropped-dried on the surface of the glassy carbon electrode (GCE). Transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL), Fourier transform infrared spectroscopy (FTIR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) were used for the characterization of structure and morphology of the nanocomposite. Electrochemical characterization was done by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical behaviors of arsenic and 2-chlorophenol on different electrodes (GCE, CDs/GCE, and g-C₃N₄/CDs/GCE) was investigated by differential pulse voltammetry (DPV). The results demonstrated that the g-C₃N₄/CDs/GCE significantly enhanced the oxidation peak current of both analytes. The analytes detection sensitivity was greatly improved, suggesting that this new modified electrode has great potential in the determination of trace level of arsenic and 2-chlorophenol. Experimental conditions which affect the electrochemical response of arsenic and 2-chlorophenol were studied, the oxidation peak currents displayed a good linear relationship to concentration for 2-chlorophenol (R²=0.948, n=5) and arsenic (R²=0.9524, n=5), with a linear range from 0.5 to 2.5μM for 2-CP and arsenic and a detection limit of 2.15μM and 0.39μM respectively. The modified electrode was used to determine arsenic and 2-chlorophenol in spiked tap and effluent water samples by the standard addition method, and the results were satisfying. According to the measurement, the new modified electrode is a good alternative as chemical sensor for determination of other phenols. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemistry" title="electrochemistry">electrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20of%20detection" title=" limit of detection"> limit of detection</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a> </p> <a href="https://publications.waset.org/abstracts/123651/development-of-a-sensitive-electrochemical-sensor-based-on-carbon-dots-and-graphitic-carbon-nitride-for-the-detection-of-2-chlorophenol-and-arsenic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3139</span> Removal of Xylenol Orange and Eriochrome Black T Dyes from Aqueous Solution Using Chemically Activated Cocos nucifera and Mango Seed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Padmesh%20Tirunelveli%20Narayanapillai">Padmesh Tirunelveli Narayanapillai</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20Sharwinkumar"> Joel Sharwinkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaitri%20Saravanan"> Gaitri Saravanan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biosorption of Xylenol Orange (XO) and Eriochrome Black T (EBT) from aqueous solutions by chemically activated Cocos nucifera and mango seed as a low-cost, natural, and eco-friendly biosorbents was investigated. The study for biosorption of XO and EBT was optimized by different experimental parameters, initial pH 2–7, temperature 30–60 °C, biosorbent dosage 0.1 – 0.5 g, and XO: EBT dye proportions 0 – 100 by weight %. Physicochemical characteristic studies were conducted by Fourier Transform Infrared (FTIR). The equilibrium uptake was increased with an increase in the initial dye concentrations in the solution. Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The experimental isotherms data were analyzed using Langmuir, Freundlich, Redlich-Peterson, and Toth isotherm equations. Thermodynamic parameters ∆Go, ∆Ho, and ∆So were calculated indicating that the biosorption of Xo and EBT dye is a spontaneous and endothermic process. The Langmuir model gave the best fit by higher correlation coefficient (R2 =0.9971) for both biosorbents at optimum circumstances as pH 3, temperature 30°C, dosage 0.5 g for chemically activated Cocos nucifera and 0.4 g for chemically activated mango seeds it assumes as monolayer adsorption. The maximum dye removal efficiency was determined as 79.75% with chemically activated mango seeds compared to chemically activated Cocos nucifera. In summary, this research work showed that chemically modified activated mango seed can be effectively used as a promising low-cost biosorbent for the removal of different XO and EBT mixed dye combinations from aqueous solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixed%20dye%20proportions" title="mixed dye proportions">mixed dye proportions</a>, <a href="https://publications.waset.org/abstracts/search?q=xylenol%20orange%20and%20eriochrome%20black%20t" title=" xylenol orange and eriochrome black t"> xylenol orange and eriochrome black t</a>, <a href="https://publications.waset.org/abstracts/search?q=chemically%20activated%20cocos%20nucifera%20and%20mango%20seed" title=" chemically activated cocos nucifera and mango seed"> chemically activated cocos nucifera and mango seed</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm%20and%20thermodynamic%20studies" title=" isotherm and thermodynamic studies"> isotherm and thermodynamic studies</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a> </p> <a href="https://publications.waset.org/abstracts/169805/removal-of-xylenol-orange-and-eriochrome-black-t-dyes-from-aqueous-solution-using-chemically-activated-cocos-nucifera-and-mango-seed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3138</span> Carbon Supported Cu and TiO2 Catalysts Applied for Ozone Decomposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katya%20Milenova">Katya Milenova</a>, <a href="https://publications.waset.org/abstracts/search?q=Penko%20Nikolov"> Penko Nikolov</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Stambolova"> Irina Stambolova</a>, <a href="https://publications.waset.org/abstracts/search?q=Plamen%20Nikolov"> Plamen Nikolov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Blaskov"> Vladimir Blaskov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent article, a comparison was made between Cu and TiO2 supported catalysts on activated carbon for ozone decomposition reaction. The activated carbon support in the case of TiO2/AC sample was prepared by physicochemical pyrolysis and for Cu/AC samples the supports are chemically modified carbons. The prepared catalysts were synthesized by impregnation method. The samples were annealed in two different regimes-in air and under vacuum. To examine adsorption efficiency of the samples BET method was used. All investigated catalysts supported on chemically modified carbons have higher specific surface area compared to the specific surface area of TiO2 supported catalysts, varying in the range 590÷620 m2/g. The method of synthesis of the precursors had influenced catalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone%20decomposition" title=" ozone decomposition"> ozone decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2 "> TiO2 </a> </p> <a href="https://publications.waset.org/abstracts/19265/carbon-supported-cu-and-tio2-catalysts-applied-for-ozone-decomposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3137</span> Development of Sulfite Biosensor Based on Sulfite Oxidase Immobilized on 3-Aminoproplytriethoxysilane Modified Indium Tin Oxide Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawasuth%20Saengdee">Pawasuth Saengdee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chamras%20Promptmas"> Chamras Promptmas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ting%20Zeng"> Ting Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Silke%20Leimk%C3%BChler"> Silke Leimkühler</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulla%20Wollenberger"> Ulla Wollenberger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfite has been used as a versatile preservative to limit the microbial growth and to control the taste in some food and beverage. However, it has been reported to cause a wide spectrum of severe adverse reactions. Therefore, it is important to determine the amount of sulfite in food and beverage to ensure consumer safety. An efficient electrocatalytic biosensor for sulfite detection was developed by immobilizing of human sulfite oxidase (hSO) on 3-aminoproplytriethoxysilane (APTES) modified indium tin oxide (ITO) electrode. Cyclic voltammetry was employed to investigate the electrochemical characteristics of the hSO modified ITO electrode for various pretreatment and binding conditions. Amperometry was also utilized to demonstrate the current responses of the sulfite sensor toward sodium sulfite in an aqueous solution at a potential of 0 V (vs. Ag/AgCl 1 M KCl). The proposed sulfite sensor has a linear range between 0.5 to 2 mM with a correlation coefficient 0.972. Then, the additional polymer layer of PVA was introduced to extend the linear range of sulfite sensor and protect the enzyme. The linear range of sulfite sensor with 5% coverage increases from 2.8 to 20 mM at a correlation coefficient of 0.983. In addition, the stability of sulfite sensor with 5% PVA coverage increases until 14 days when kept in 0.5 mM Tris-buffer, pH 7.0 at 4 8C. Therefore, this sensor could be applied for the detection of sulfite in the real sample, especially in food and beverage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sulfite%20oxidase" title="sulfite oxidase">sulfite oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=bioelectrocatalytsis" title=" bioelectrocatalytsis"> bioelectrocatalytsis</a>, <a href="https://publications.waset.org/abstracts/search?q=indium%20tin%20oxide" title=" indium tin oxide"> indium tin oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20electrochemistry" title=" direct electrochemistry"> direct electrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfite%20sensor" title=" sulfite sensor"> sulfite sensor</a> </p> <a href="https://publications.waset.org/abstracts/67534/development-of-sulfite-biosensor-based-on-sulfite-oxidase-immobilized-on-3-aminoproplytriethoxysilane-modified-indium-tin-oxide-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3136</span> Comparison of White Sauce Prepared from Native and Chemically Modified Corn and Pearl Millet Starches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marium%20%20Shaikh">Marium Shaikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahira%20M.%20Ali"> Tahira M. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Abid%20Hasnain"> Abid Hasnain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical and sensory properties of white sauces prepared from native and chemically modified corn and pearl millet starches were compared. Interestingly, no syneresis was observed in hydroxypropylated corn and pearl millet starch containing white sauce even after nine days of cold storage (4 °C), while other modifications also reduced the syneresis significantly in comparison to their native counterparts. White sauce containing succinylated corn starch showed least oil separation due to its greater emulsion stability. Light microscopy was used to visualize the size and shape of fat globules, and it was found that they were most homogenously distributed in succinylated and hydroxypropylated samples. Sensory results revealed that chemical modification of corn and pearl millet starch improved the consistency, thickness and overall acceptability of white sauces. Viscosity profiles showed that pasting parameters of native pearl millet starch are almost similar to native corn starch suggesting pearl millet starch as an alternative of corn starch. Also, white sauce prepared from modified pearl millet starch showed better cold storage stability in terms of various textural attributes like hardness, cohesiveness, chewiness, and springiness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corn%20starch" title="corn starch">corn starch</a>, <a href="https://publications.waset.org/abstracts/search?q=pearl%20millet" title=" pearl millet"> pearl millet</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxypropylation" title=" hydroxypropylation"> hydroxypropylation</a>, <a href="https://publications.waset.org/abstracts/search?q=succinylation" title=" succinylation"> succinylation</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20sauce" title=" white sauce"> white sauce</a> </p> <a href="https://publications.waset.org/abstracts/62328/comparison-of-white-sauce-prepared-from-native-and-chemically-modified-corn-and-pearl-millet-starches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3135</span> An Automated Sensor System for Cochlear Implants Electrode Array Insertion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Hou">Lei Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinli%20Du"> Xinli Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Boulgouris"> Nikolaos Boulgouris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A cochlear implant, referred to as a CI, is a small electronic device that can provide direct electrical stimulation to the auditory nerve. During cochlear implant surgery, atraumatic electrode array insertion is considered to be a crucial step. However, during implantation, the mechanical behaviour of an electrode array inside the cochlea is not known. The behaviour of an electrode array inside of the cochlea is hardly identified by regular methods. In this study, a CI electrode array capacitive sensor system is proposed. It is able to automatically determine the array state as a result of the capacitance variations. Instead of applying sensors to the electrode array, the capacitance information from the electrodes will be gathered and analysed. Results reveal that this sensing method is capable of recognising different states when fed into a pre-shaped model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cochlear%20implant" title="cochlear implant">cochlear implant</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=hearing%20preservation" title=" hearing preservation"> hearing preservation</a>, <a href="https://publications.waset.org/abstracts/search?q=insertion%20force" title=" insertion force"> insertion force</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitive%20sensing" title=" capacitive sensing"> capacitive sensing</a> </p> <a href="https://publications.waset.org/abstracts/80147/an-automated-sensor-system-for-cochlear-implants-electrode-array-insertion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3134</span> Modified Gold Screen Printed Electrode with Ruthenium Complex for Selective Detection of Porcine DNA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Aishah%20Hasbullah">Siti Aishah Hasbullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies on identification of pork content in food have grown rapidly to meet the Halal food standard in Malaysia. The used mitochondria DNA (mtDNA) approaches for the identification of pig species is thought to be the most precise marker due to the mtDNA genes are present in thousands of copies per cell, the large variability of mtDNA. The standard method commonly used for DNA detection is based on polymerase chain reaction (PCR) method combined with gel electrophoresis but has major drawback. Its major drawbacks are laborious, need longer time and toxic to handle. Therefore, the need for simplicity and fast assay of DNA is vital and has triggered us to develop DNA biosensors for porcine DNA detection. Therefore, the aim of this project is to develop electrochemical DNA biosensor based on ruthenium (II) complex, [Ru(bpy)2(p-PIP)]2+ as DNA hybridization label. The interaction of DNA and [Ru(bpy)2(p-HPIP)]2+ will be studied by electrochemical transduction using Gold Screen-Printed Electrode (GSPE) modified with gold nanoparticles (AuNPs) and succinimide acrylic microspheres. The electrochemical detection by redox active ruthenium (II) complex was measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results indicate that the interaction of [Ru(bpy)2(PIP)]2+ with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA. Under optimized condition, this porcine DNA biosensor incorporated modified GSPE shows good linear range towards porcine DNA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold" title="gold">gold</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20printed%20electrode" title=" screen printed electrode"> screen printed electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=ruthenium" title=" ruthenium"> ruthenium</a>, <a href="https://publications.waset.org/abstracts/search?q=porcine%20DNA" title=" porcine DNA"> porcine DNA</a> </p> <a href="https://publications.waset.org/abstracts/68407/modified-gold-screen-printed-electrode-with-ruthenium-complex-for-selective-detection-of-porcine-dna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3133</span> Engineering of Stable and Improved Electrochemical Activities of Redox Dominating Charge Storage Electrode Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Girish%20Sambhaji%20Gund">Girish Sambhaji Gund</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The controlled nanostructure growth and its strong coupling with the current collector are key factors to achieve good electrochemical performance of faradaic-dominant electroactive materials. We employed binder-less and additive-free hydrothermal and physical vapor doping methods for the synthesis of nickel (Ni) and cobalt (Co) based compounds nanostructures (NiO, NiCo2O4, NiCo2S4) deposited on different conductive substrates such as carbon nanotube (CNT) on stainless steel, and reduced graphene oxide (rGO) and N-doped rGO on nickel foam (NF). The size and density of Ni- and Co-based compound nanostructures are controlled through the strong coupling with carbon allotropes on stainless steel and NF substrates. This controlled nanostructure of Ni- and Co-based compounds with carbon allotropes leads to stable faradaic electrochemical reactions at the material/current collector interface and within the electrode, which is consequence of strong coupling of nanostructure with functionalized carbon surface as a buffer layer. Thus, it is believed that the results provide the synergistic approaches to stabilize electrode materials physically and chemically, and hence overall electrochemical activity of faradaic dominating battery-type electrode materials through buffer layer engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20compounds" title="metal compounds">metal compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20allotropes" title=" carbon allotropes"> carbon allotropes</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemicstry" title=" electrochemicstry"> electrochemicstry</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20supercapacitor" title=" hybrid supercapacitor"> hybrid supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/171622/engineering-of-stable-and-improved-electrochemical-activities-of-redox-dominating-charge-storage-electrode-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3132</span> Study of Parameters Affecting the Electrostatic Attractions Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Sabermand">Vahid Sabermand</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Hojjat"> Yousef Hojjat</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Hasanzadeh"> Majid Hasanzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper contains two main parts. In the first part of paper we simulated and studied three type of electrode patterns used in various industries for suspension and handling of the semiconductor and glass and we selected the best pattern by evaluating the electrostatic force, which was comb pattern electrode. In the second part, we investigated the parameters affecting the amount of electrostatic force such as the gap between surface and electrode (g), the electrode width (w), the gap between electrodes (t), the surface permittivity and electrode Length and methods of improvement of adhesion force by changing these values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20force" title="electrostatic force">electrostatic force</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20adhesion" title=" electrostatic adhesion"> electrostatic adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20chuck" title=" electrostatic chuck"> electrostatic chuck</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20application%20in%20industry" title=" electrostatic application in industry"> electrostatic application in industry</a>, <a href="https://publications.waset.org/abstracts/search?q=electroadhesive%20grippers" title=" electroadhesive grippers"> electroadhesive grippers</a> </p> <a href="https://publications.waset.org/abstracts/16573/study-of-parameters-affecting-the-electrostatic-attractions-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemically%20modified%20electrode&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemically%20modified%20electrode&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemically%20modified%20electrode&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemically%20modified%20electrode&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemically%20modified%20electrode&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemically%20modified%20electrode&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemically%20modified%20electrode&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemically%20modified%20electrode&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemically%20modified%20electrode&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemically%20modified%20electrode&amp;page=105">105</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemically%20modified%20electrode&amp;page=106">106</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemically%20modified%20electrode&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10