CINXE.COM
CERN Document Server: Exhibition Objects
<?xml version="1.0" encoding="UTF-8"?> <rss version="2.0" xmlns:media="http://search.yahoo.com/mrss/" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/"> <channel> <title>CERN Document Server: Exhibition Objects</title> <link>https://cds.cern.ch/collection/Exhibition%20Objects</link> <description>CERN Document Server latest documents in Exhibition Objects</description> <language>en</language> <pubDate>Mon, 17 Feb 2025 14:48:15 GMT</pubDate> <category></category> <generator>Invenio 1.1.3.1106-62468</generator> <ttl>360</ttl> <atom:link rel="previous" href="/rss?cc=Exhibition+Objects&ln=ca" /> <atom:link rel="next" href="/rss?cc=Exhibition+Objects&jrec=36&ln=ca" /> <atom:link rel="self" href="/rss?cc=Exhibition+Objects&jrec=11&ln=ca" /> <opensearch:totalResults>368</opensearch:totalResults> <opensearch:startIndex>11</opensearch:startIndex> <opensearch:itemsPerPage>25</opensearch:itemsPerPage> <image> <url>https://cds.cern.ch/img/site_logo_rss.png</url> <title>CERN Document Server</title> <link>https://cds.cern.ch</link> </image> <atom:link rel="search" href="https://cds.cern.ch/opensearchdescription" type="application/opensearchdescription+xml" title="Content Search" /> <textInput> <title>Search </title> <description>Search this site:</description> <name>p</name> <link>https://cds.cern.ch/search</link> </textInput> <item> <title>Atlas Muon Drift Tube Chamber</title> <link>https://cds.cern.ch/record/2867273</link> <description>The ATLAS Muon Drift Tube Chamber is a precision tracking detector used to identify and track muons in the ATLAS experiment at CERN. It's crucial for the study of the Higgs boson and other fundamental particles, helping researchers understand the basic forces and constituents of the universe.</description> <pubDate>Thu, 10 Aug 2023 12:46:48 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-DE-110</dc:source> <guid>https://cds.cern.ch/record/2867273</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2867273/files/Screenshot 2023-08-10 at 14.28.44.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2867273/files/Screenshot 2023-08-10 at 14.28.44.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2867273/files/Screenshot 2023-08-10 at 14.28.44.png?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr">Chambre à muons à tubes de dérives - ATLAS</dc:title> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">DE</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">110</dc:hasVersion> </item> <item> <title>LEP accelerating radio frequency cavity (copper)</title> <link>https://cds.cern.ch/record/2866197</link> <description>The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.</description> <pubDate>Fri, 28 Jul 2023 10:19:47 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-AC-079</dc:source> <guid>https://cds.cern.ch/record/2866197</guid> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2866197/files/LEP cavity"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2866197/files/LEP 1"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2866197/files/LEP 3"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2866197/files/LEP 4"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2866197/files/LEP 5"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr">Cavité radiofréquence accélératrice du LEP (cuivre)</dc:title> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">AC</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">079</dc:hasVersion> </item> <item> <title>Particle Tracks from Cloud Chambers</title> <link>https://cds.cern.ch/record/2800482</link> <description>Particles coming from the universe are crossing the earth all the time – they are harmless but invisible to us. Cloud Chambers are detectors which make the tracks of the particles visible. Some decades ago these detectors were used at CERN in the first particle physics experiments.</description> <pubDate>Wed, 26 Jan 2022 12:47:08 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-DE-123</dc:source> <guid>https://cds.cern.ch/record/2800482</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber1.gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber2.gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber3.gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber4.gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber5.gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber6.gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber7.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber1.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber2.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber3.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber4.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber5.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber6.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber7.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber1.png?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber2.png?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber3.png?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber4.png?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber5.png?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber6.png?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800482/files/bubblechamber7.png?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr"/> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">DE</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">123</dc:hasVersion> </item> <item> <title>Medipix Chip</title> <link>https://cds.cern.ch/record/2800481</link> <description>Medipix is a family of read-out chips for particle imaging and detection developed by the Medipix Collaborations. The original concept is that it works like a camera, detecting and counting each individual particle hitting the pixels when its electronic shutter is open. This enables high-resolution, high-contrast, noise hit free images – making it unique for imaging applications. Hybrid pixel detector technology was initially developed to address the needs of particle tracking at the CERN LHC. The Medipix1 chip, which uses identical front-end circuitry to the Omega3 particle tracking chip, demonstrated the great potential for the technology outside of high-energy physics. To further develop this novel technology and take it into new scientific fields the Medipix2 Collaboration was started in 1999, the Medipix3 collaboration in 2005 and finally the Medipix4 collaboration in 2016. </description> <pubDate>Wed, 26 Jan 2022 12:36:25 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-DE-115</dc:source> <guid>https://cds.cern.ch/record/2800481</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800481/files/Medipix chip.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800481/files/Medipix chip.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800481/files/Medipix chip.png?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr"/> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">DE</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">115</dc:hasVersion> </item> <item> <title>StorageTek T10000T2 Tape Cartridge (used at CERN until 2019)</title> <link>https://cds.cern.ch/record/2800480</link> <description>The cartridges had a total capacity of up to 8.5 TB. They were actually manufactured by the Fujifilm company, used Barium Ferrite (BaFe) magnetic particle technology to store the user data and were equipped with a Radio-Frequency IDentification (RFID) chip (for quick access to the cartridge metadata).\ The tape length inside of each cartridge is 1147 meters while it is only 5.2 microns thick. Once mounted in a tape drive, the media moves over the drive head at the speeds of up to 4.7 meters/second when reading or writing, but up to 13 meters/second when locating to a file. Since 2019, all data that had been stored on such cartridges have been copied onto more modern supports. As of 2022, CERN uses similar tapes produced by other suppliers and having a capacity of up to 20 TB.</description> <pubDate>Wed, 26 Jan 2022 12:10:17 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-IT-137</dc:source> <guid>https://cds.cern.ch/record/2800480</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800480/files/LHC data tapes.gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800480/files/StorageTek T10000T2 .gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800480/files/LHC data tapes.jpg"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800480/files/LHC data tapes.jpg?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800480/files/StorageTek T10000T2 .png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2800480/files/StorageTek T10000T2 .png?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr"/> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">IT</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">137</dc:hasVersion> </item> <item> <title>Niobium Treatment</title> <link>https://cds.cern.ch/record/2773869</link> <description/> <pubDate>Thu, 24 Jun 2021 11:45:29 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-AC-078</dc:source> <guid>https://cds.cern.ch/record/2773869</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2773869/files/Traitement niobium.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2773869/files/Traitement niobium.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2773869/files/Traitement niobium.png?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr">Traitement Niobium</dc:title> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">AC</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">078</dc:hasVersion> </item> <item> <title>Soufflet</title> <link>https://cds.cern.ch/record/2773868</link> <description/> <pubDate>Thu, 24 Jun 2021 11:43:31 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-AC-077</dc:source> <guid>https://cds.cern.ch/record/2773868</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2773868/files/Soufflet.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2773868/files/Soufflet.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2773868/files/Soufflet.png?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr"/> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">AC</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">077</dc:hasVersion> </item> <item> <title>CMS Endcap Silicon Tracker</title> <link>https://cds.cern.ch/record/2773289</link> <description>A beautiful module of tracker from the CMS experiment, made up of silicon. </description> <pubDate>Fri, 18 Jun 2021 07:54:01 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-DE-111</dc:source> <guid>https://cds.cern.ch/record/2773289</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2773289/files/CMS endcap.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2773289/files/CMS endcap.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2773289/files/CMS endcap.png?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr"/> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">DE</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">111</dc:hasVersion> </item> <item> <title>Slice through an LHC bending magnet</title> <link>https://cds.cern.ch/record/2773288</link> <description>Slice through an LHC superconducting dipole (bending) magnet. The slice includes a cut through the magnet wiring (niobium titanium), the beampipe and the steel magnet yokes. Particle beams in the Large Hadron Collider (LHC) have the same energy as a high-speed train, squeezed ready for collision into a space narrower than a human hair. Huge forces are needed to control them. Dipole magnets (2 poles) are used to bend the paths of the protons around the 27 km ring. Quadrupole magnets (4 poles) focus the proton beams and squeeze them so that more particles collide when the beams’ paths cross. There are 1232 15m long dipole magnets in the LHC.</description> <pubDate>Fri, 18 Jun 2021 07:48:24 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-AC-076</dc:source> <guid>https://cds.cern.ch/record/2773288</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2773288/files/coupe dipôle.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2773288/files/coupe dipôle.JPG"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2773288/files/coupe dipôle.jpg?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr"/> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">AC</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">076</dc:hasVersion> </item> <item> <title>Slice through an LHC focusing magnet</title> <link>https://cds.cern.ch/record/2773286</link> <description>Slice through an LHC superconducting quadrupole (focusing) magnet. The slice includes a cut through the magnet wiring (niobium titanium), the beampipe and the steel magnet yokes. Particle beams in the Large Hadron Collider (LHC) have the same energy as a high-speed train, squeezed ready for collision into a space narrower than a human hair. Huge forces are needed to control them. Dipole magnets (2 poles) are used to bend the paths of the protons around the 27 km ring. Quadrupole magnets (4 poles) focus the proton beams and squeeze them so that more particles collide when the beams’ paths cross. Bringing beams into collision requires a precision comparable to making two knitting needles collide, launched from either side of the Atlantic Ocean.</description> <pubDate>Fri, 18 Jun 2021 07:41:30 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-AC-075</dc:source> <guid>https://cds.cern.ch/record/2773286</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2773286/files/coupe quadripole.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2773286/files/coupe quadripole.JPG"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2773286/files/coupe quadripole.jpg?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr">Coupe quadripôle</dc:title> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">AC</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">075</dc:hasVersion> </item> <item> <title>ATLAS Transition Radiation Tracker - straw tube</title> <link>https://cds.cern.ch/record/2773285</link> <description>The ATLAS transition radiation tracker is made of 300'000 straw tubes, up to 144cm long. Filled with a gas mixture and threaded with a wire, each straw is a complete mini-detector in its own right. An electric field is applied between the wire and the outside wall of the straw. As particles pass through, they collide with atoms in the gas, knocking out electrons. The avalanche of electrons is detected as an electrical signal on the wire in the centre. The tracker plays two important roles. Firstly, it makes more position measurements, giving more dots for the computers to join up to recreate the particle tracks. Also, together with the ATLAS calorimeters, it distinguishes between different types of particles depending on whether they emit radiation as they make the transition from the surrounding foil into the straws.</description> <pubDate>Fri, 18 Jun 2021 07:27:45 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-DE-122</dc:source> <guid>https://cds.cern.ch/record/2773285</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2773285/files/ATLAS TRT-paille.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2773285/files/ATLAS TRT-paille.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2773285/files/ATLAS TRT-paille.png?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr">Paille ATLAS TRT</dc:title> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">DE</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">122</dc:hasVersion> </item> <item> <title>ISOLDE target</title> <link>https://cds.cern.ch/record/2765069</link> <description>A good dozen different targets are available for ISOLDE, made of different materials and equipped with different kinds of ion-sources, according to the needs of the experiments. Each separator (GPS: general purpose; HRS: high resolution) has its own target. Because of the high radiation levels, robots effect the target changes, about 80 times per year. In the standard unit shown in picture _01, the target is the cylindrical object in the front. It contains uranium-carbide kept at a temperature of 2200 deg C, necessary for the isotopes to be able to escape. At either end, one sees the heater current leads, carrying 700 A. The Booster beam, some 3E13 protons per pulse, enters the target from left. The evaporated isotope atoms enter a hot-plasma ion source (the black object behind the target). The whole unit sits at 60 kV potential (pulsed in synchronism with the arrival of the Booster beam) which accelerates the ions (away from the viewer) towards one of the 2 separators.</description> <pubDate>Mon, 26 Apr 2021 07:28:31 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-DE-121</dc:source> <guid>https://cds.cern.ch/record/2765069</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2765069/files/isolde target 1.gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2765069/files/isolde target 2.gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2765069/files/isolde target3.gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2765069/files/isolde target 4.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2765069/files/isolde target 1.jpg"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2765069/files/isolde target 2.jpg"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2765069/files/isolde target3.jpg"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2765069/files/isolde target 4.jpg"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2765069/files/isolde target 1.jpg?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2765069/files/isolde target 2.jpg?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2765069/files/isolde target3.jpg?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2765069/files/isolde target 4.jpg?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr">Cible ISOLDE </dc:title> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">DE</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">121</dc:hasVersion> </item> <item> <title>Large Hadron Collider (LHC) Dipole Magnet Cutaway</title> <link>https://cds.cern.ch/record/2764842</link> <description>Dipole Magnet - Guiding the protons around the ring This is a cut-through of the coil of a dipole magnet, that generates the magnetic field used to bend the paths of circulating protons. Looking closely, you can distinguish insulated cables made of individual wires. High and extremely stable magnetic fields are needed for guiding the proton beams, so a superconducting material called Niobium-Titanium was chosen for the wires. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. They carry a very stable current of 13.000 amps, about 20.000 times that used to power this screen. In addition to dipole magnets, the Large Hadron Collider contains quadrupoles and other higher order magnets, used to prepare the proton beams for collision. Dipoles are two pole magnets used for bending the beams of protons around the ring. Quadrupoles have four magnetic poles and are used for focusing the beam, squeezing protons closer together to increase the chance of collision when the beams cross inside the experiments. In total, the LHC uses more than 50 different types of magnet to adjust the particle beams even more finely. The Beam-Pipe - Where the beams of protons circulate Proton beams can circulate for over 10 hours in the Large Hadron Collider. Over this time, protons make four hundred million revolutions of the 27 km machine, traveling a distance equivalent to the diameter of the solar system. They must travel in a pipe that is emptied of air, to avoid collisions with molecules of gas. The beam-pipes are therefore pumped down to an air pressure similar to that on the surface of the moon. There are two pipes, one for each direction of the circulating beams. The two beams only meet inside the four experiments where collisions take place. Liquid Helium - Bringing in the cooling fluid This pipe carries liquid helium through the Large Hadron Collider magnets to keep them at 1.9 degrees above absolute zero - about 300 degrees below room temperature. 800'000 litres of superfluid helium are used to cool down the 36'000 tonnes of equipment. This is the world's biggest cryogenic installation and its reliability and efficiency is essential for the magnets. The pipe connects to the main cryogenic line that you can see running along behind the blue magnets via &quot;jumper connections&quot; like the one to your right. Support Post - Insulating and extremely tough The magnet supports bridge a difference in temperature of nearly 300 degrees! Electrical connections, instrumentation and the posts on which the magnets stand are the only points where heat transfer can happen through conduction. They are all carefully designed to draw off heat progressively. The posts are made of 4 mm thick glass-fibre - epoxy composite material. Each post supports 10'000 kg of magnet and leaks just 0.1 W of heat. There are three per magnet. Magnet Collars - Preventing the wires from moving The LHC accelerates two proton beams moving in opposite directions, so it is really two accelerators in one. To keep the machine as compact and economical as possible, two magnets are built into a single housing that must withstand enormous electromagnetic forces. These forces tend to open-up the coils, and squeeze them. At full field, the force on one metre of coil is comparable to the weight of a jumbo jet. Great care must be taken to prevent movements as the field changes - any friction could create hot spots that would cause the wire to lost its superconducting stage. Magnet collars made from reinforced steel keep the coils firmly in place. Insulation - Preventing heat from leaking In The LHC, beam-tube and magnets are inside a vacuum tank to reduce to a minimum the heat flowing in through convection. To prevent heat inflow through radiation, they are surrounded by a super insulator - multi-layer, reflective, aluminized Mylar. Then to prevent heat flow via conduction, ingenious solutions had to be found for the electrical connections and the support posts. Iron Yoke - Shielding the magnetic field The LHC magnet cables are surrounded by a layered iron yoke that shields the powerful magnetic field - 100'000 times stronger than the Earth's - so that stray fields outside the magnet are negligible. This action also helps enhance the magnetic field within the beam-pipe, where it is needed for control of the proton beams. In addition, the layers of iron yoke, called laminations, play a role together with the magnet collars in keeping cables from moving when the magnet powers up. The technical challenge of manufacturing the laminations centred on ensuring both strength and magnetic homogeneity across a large-scale production. Over 6 million laminations are needed for the 1232 dipole magnets installed around the LHC's 27km ring.</description> <pubDate>Wed, 21 Apr 2021 13:02:30 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-AC-074</dc:source> <guid>https://cds.cern.ch/record/2764842</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/dipole.gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/dipole2.gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/filaments.gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/beam-pipe.gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/liquid helium.gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/support post.gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/magnet collars.gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/dipole-insulation-02.gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/dipole-iron-yoke.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/dipole.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/dipole2.jpg"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/filaments.jpg"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/beam-pipe.jpg"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/liquid helium.jpg"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/support post.jpg"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/magnet collars.jpg"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/dipole-insulation-02.jpg"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/dipole-iron-yoke.jpg"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/dipole.png?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/dipole2.jpg?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/filaments.jpg?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/beam-pipe.jpg?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/liquid helium.jpg?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/support post.jpg?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/magnet collars.jpg?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/dipole-insulation-02.jpg?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764842/files/dipole-iron-yoke.jpg?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr"/> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">AC</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">074</dc:hasVersion> </item> <item> <title>Scintillating Fibres</title> <link>https://cds.cern.ch/record/2764622</link> <description>An alternative method of detecting particles spraying out of collisions in the inner regions of experiments uses scintillating fibres.</description> <pubDate>Mon, 19 Apr 2021 14:46:29 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-DE-113</dc:source> <guid>https://cds.cern.ch/record/2764622</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764622/files/fibres.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764622/files/fibres.JPG"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2764622/files/fibres.jpg?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr"/> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">DE</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">113</dc:hasVersion> </item> <item> <title>Silicon tracker from the CMS experiment </title> <link>https://cds.cern.ch/record/2759099</link> <description>A half shell of the barrel CMS Pixel Phase-0 that was installed at the start-up of the Large Hadron Collider (2009-2016 in operation) and has been involved in the discovery of the Higgs boson.</description> <pubDate>Thu, 25 Mar 2021 13:02:10 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-DE-116</dc:source> <guid>https://cds.cern.ch/record/2759099</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759099/files/CMS_detector.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759099/files/CMS_detector.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759099/files/CMS_detector.png?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr"/> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">DE</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">116</dc:hasVersion> </item> <item> <title>Fast Ionization Chamber and MicroMegas detector from the n_TOF experiment</title> <link>https://cds.cern.ch/record/2759098</link> <description>An ionization chamber with fast timing properties was built at CERN for measuring fission cross-sections of minor actinides at the n_TOF neutron beam. The design of this chamber and of the front-end electronics was optimized to match the innovative features of the n_TOF facility, in particular the high instantaneous neutron flux and low background. Micromegas (Micro-MEsh Gaseous Structure) detectors are gas detectors consisting of a stack of one ionization and one proportional chamber. A micromesh separates the two communicating regions, where two different electric fields establish respectively a charge drift and a charge multiplication regime. The n_TOF facility at CERN provides a white neutron beam (from thermal up to GeV neutrons) for neutron induced cross section measurements.</description> <pubDate>Thu, 25 Mar 2021 12:53:54 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-DE-119</dc:source> <guid>https://cds.cern.ch/record/2759098</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759098/files/Fast ionization chamber .gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759098/files/MicroMegas detector.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759098/files/Fast ionization chamber .jpg"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759098/files/MicroMegas detector.jpg"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759098/files/Fast ionization chamber .jpg?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759098/files/MicroMegas detector.jpg?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr"/> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">DE</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">119</dc:hasVersion> </item> <item> <title>CELESTA Cubesat mini satellite</title> <link>https://cds.cern.ch/record/2759096</link> <description>CELESTA (CERN Latch-up Experiment Student Satellite) will be the first CERN-driven microsatellite, developed in collaboration with the University of Montpellier in the framework of a collaboration agreement defined and signed in 2015. The project, supported through the KT Fund, has two main objectives: one is developing and flying a space version of CERN radiation monitor (RadMon) coupled with a latch-up experiment; the second is showing that the space radiation environment of Low Earth Orbit can be reproduced in the CERN High energy AcceleRator Mixed field facility (CHARM). This would open the use for space system qualification activities, and provide a radiation monitor module for future missions.</description> <pubDate>Thu, 25 Mar 2021 12:44:25 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-DE-120</dc:source> <guid>https://cds.cern.ch/record/2759096</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759096/files/CELESTA Cubesat mini satellite.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759096/files/CELESTA Cubesat mini satellite.jpg"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759096/files/CELESTA Cubesat mini satellite.jpg?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr"/> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">DE</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">120</dc:hasVersion> </item> <item> <title>Antimatter Trap / Penning Trap</title> <link>https://cds.cern.ch/record/2759095</link> <description>This antimatter trap is used at the Antimatter decelerator to study atoms of antimatter. Electrically-charged antimatter can be trapped in this device, also called a Penning trap. The Penning trap requires an ultrahigh vacuum. Inside the trap, magnetic fields force the charged antiparticles to spiral around the magnetic field lines, and electric fields confine them along the magnetic axis. Even though at the beginning of the universe, antimatter has been produced in equal quantity with matter, it now seems to have completely disappeared.</description> <pubDate>Thu, 25 Mar 2021 12:27:38 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-DE-117</dc:source> <guid>https://cds.cern.ch/record/2759095</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759095/files/Antimatter Trap.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759095/files/Antimatter Trap.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759095/files/Antimatter Trap.png?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr"/> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">DE</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">117</dc:hasVersion> </item> <item> <title>ISOLDE target prototype</title> <link>https://cds.cern.ch/record/2759094</link> <description>Radioactive nuclei are produced at the ISOLDE facility by shooting a high-energy beam of protons on a thick target. By studying some of these nuclei, physicists are improving the knowledge of nucleosynthesis, the process through which stars produce chemical elements. This is a prototype that was developed for the CERN Open Days, in 2019.</description> <pubDate>Thu, 25 Mar 2021 12:22:00 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-DE-118</dc:source> <guid>https://cds.cern.ch/record/2759094</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759094/files/isolde target 1.gif?subformat=icon"/> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759094/files/Isolde target 2.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759094/files/isolde target 1.JPG"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759094/files/Isolde target 2.JPG"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759094/files/isolde target 1.jpg?subformat=icon-180"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2759094/files/Isolde target 2.jpg?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr">Cible ISOLDE</dc:title> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">DE</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">118</dc:hasVersion> </item> <item> <title>Champagne bottle - The Higgs Boson</title> <link>https://cds.cern.ch/record/2749310</link> <description>The discovery of the Higgs boson by the ATLAS and CMS experiments was announced in CERN’s main auditorium in July 2012. Here, finally, was the missing piece in the standard model describing our universe. For some, it was the culmination of over 40 years’ work. This champagne bottle was drunk by members of CERN’s Theoretical physics group on the occasion.</description> <pubDate>Thu, 14 Jan 2021 12:18:48 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-DE-109</dc:source> <guid>https://cds.cern.ch/record/2749310</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2749310/files/Champagne bottle.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2749310/files/Champagne bottle.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2749310/files/Champagne bottle.png?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr"/> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">DE</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">109</dc:hasVersion> </item> <item> <title>Sextupole Spool Piece Correctors MCS</title> <link>https://cds.cern.ch/record/2745901</link> <description>Each MCS magnet consists of six coils, a laminated iron yoke, an aluminium shrinking cylinder, an end plate that houses the electrical connections and an iron magnetic shield. The coils are made by counter-winding a single, rectangular cross-section, NbTi wire around a G11 central post. The superconductor has a rectangular cross-section and is enamel insulated. The coils are wet wound. After winding G11 end spacers are fitted to the ends of the coils which are then cured. The cured coils are assembled on a precise mandrel together with the connection plate, wrapped with a glass-fibre/epoxy pre-preg bandage and cured to make an MCS coil assembly. The MCS magnet module is built by stacking the eccentric yoke laminations [1] around the MCS coil assembly in 6 different azimuthal orientations and shrink fitting the aluminium shrinking cylinder. The radial interference between the inner diameter of the shrinking cylinder and the outer diameter of the yoke lamination stack is chosen such that the correct pre-stress is produced at operating temperature. This interference is obtained by precise machining of the cured coil assembly outer diameter. Precise dowel holes in the end plate allow accurate placement of the magnet module within the magnetic shield. The magnets are mounted on their support plate in the dipole cold mass by means of a bolted flange, this flange contains a pair of accurately drilled 6H7 holes for doweling to the support plate. Coil inter-connections are made by ultrasonic welding. Quench protection resistors are connected in parallel with each magnet and mounted in the gap between the shrinking cylinder and magnetic shield. [1] A. Ijspeert, J. Salminen, “Superconducting coil compression by scissor laminations”, EPAC-96, Sitges, Spain, June 1996.</description> <pubDate>Thu, 26 Nov 2020 12:54:44 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-AC-073</dc:source> <guid>https://cds.cern.ch/record/2745901</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2745901/files/MCS magnet.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2745901/files/MCS magnet.jpg"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2745901/files/MCS magnet.jpg?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr"/> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">AC</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">073</dc:hasVersion> </item> <item> <title>The ATLAS silicon strip detectors</title> <link>https://cds.cern.ch/record/2741407</link> <description>The innermost layers of all four LHC detectors are made of silicon. This piece comes from the ATLAS detector where its job is to record the paths of the particles close to the collision. Here, hundreds of particles spray outwards and the silicon detectors must identify the exact points from which the particles originate and make an accurate measurement of the curvature of every particle track. Inside ATLAS, the first layer is made of 80 million silicon pixels, each smaller than a grain of sand. Surrounding the pixels are six million silicon strips, each about the thickness of a hair. The object on display here contains 1536 such silicon strips. Together, the layers of tracking detectors are like a giant 92 mega pixel camera taking a photo 40 million times every second. </description> <pubDate>Wed, 14 Oct 2020 14:22:56 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-DE-108</dc:source> <guid>https://cds.cern.ch/record/2741407</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2741407/files/2-T1.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2741407/files/2-T1.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2741407/files/2-T1.png?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr">Les détecteurs à rubans de silicium d'ATLAS</dc:title> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">DE</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">108</dc:hasVersion> </item> <item> <title>The ALICE Time Projection Chamber</title> <link>https://cds.cern.ch/record/2741107</link> <description>This detector is part of the ALICE experiment's Time Projection Chamber (TPC). With incredible precision, the TPC records the thousands of tracks of charged particles spraying out from the collision, allowing each particle to be identified. In such a dense, electronics-filled environment, it is rare to find a relatively empty space - yet most of the TPC's 88m3 volume is filled with just gas, with read-out detectors, like this one located on the outer surface.</description> <pubDate>Mon, 12 Oct 2020 00:17:44 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-DE-107</dc:source> <guid>https://cds.cern.ch/record/2741107</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2741107/files/IMG_4934.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2741107/files/IMG_4934.jpg"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2741107/files/IMG_4934.jpg?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr">La chambre à projection temporelle d'ALICE</dc:title> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">DE</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">107</dc:hasVersion> </item> <item> <title>The LHCb wire chamber</title> <link>https://cds.cern.ch/record/2740931</link> <description>LHCb measures muons using gold plated tungsten wires stretched over read-out pads. A high voltage is applied across the wires and pads and the set-up is bathed in a gas mixture. Passing muons interact with the gas, knocking out electrons from its atoms in a process called ionization. Both the ionized atoms and the electrons then drift in the electric field. This movement creates an electric signal in the wires and pads that is used to identify where the muon has passed. In total, the LHCb muon detectors contain about 2 million wires and are capable of making measurements 40 million times a second – every time the particle beams collide.</description> <pubDate>Thu, 08 Oct 2020 23:16:18 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-DE-106</dc:source> <guid>https://cds.cern.ch/record/2740931</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2740931/files/13-M2.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2740931/files/13-M2.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2740931/files/13-M2.png?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr">La chambre à fils de LHCb</dc:title> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">DE</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">106</dc:hasVersion> </item> <item> <title>The ATLAS straw-tube tracker</title> <link>https://cds.cern.ch/record/2740930</link> <description>Each of these straws is a complete mini–detector in its own right. Every one is filled with a gas mixture and threaded with a wire. Imagine assembling 300’000 fragile drinking straws up to 144 cm long, with no bends or kinks allowed! This layer of tracker plays two important roles. Firstly, it makes more position measurements, giving more dots for the computers to join up to recreate the particle tracks. Then it also helps distinguish between different types of particles depending on whether they emit radiation as they make the transition from the surrounding foil into the straws. An electric field is applied between the wire and the outside wall of the straw. As particles pass through, they collide with atoms in the gas, knocking out electrons. The avalanche of electrons is detected as an electrical signal on the wire in the centre.</description> <pubDate>Thu, 08 Oct 2020 23:10:39 GMT</pubDate> <dc:source xmlns:dc="http://purl.org/dc/elements/1.1/">CERN-OBJ-DE-105</dc:source> <guid>https://cds.cern.ch/record/2740930</guid> <media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2740930/files/5-ID3.gif?subformat=icon"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2740930/files/5-ID3.png"/> <media:content xmlns:media="http://search.yahoo.com/mrss/" url="https://cds.cern.ch/record/2740930/files/5-ID3.png?subformat=icon-180"/> <dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr">Le Trajectographe à pailles d'ATLAS</dc:title> <dc:hasPart xmlns:dc="http://purl.org/dc/elements/1.1/">DE</dc:hasPart> <dc:hasVersion xmlns:dc="http://purl.org/dc/elements/1.1/">105</dc:hasVersion> </item> </channel> </rss>