CINXE.COM
Search results for: stem cell therapy
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: stem cell therapy</title> <meta name="description" content="Search results for: stem cell therapy"> <meta name="keywords" content="stem cell therapy"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="stem cell therapy" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="stem cell therapy"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5838</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: stem cell therapy</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5838</span> Up-Regulation of SCUBE2 Expression in Co-Cultures of Human Mesenchymal Stem Cell and Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hirowati%20Ali">Hirowati Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisyah%20Ellyanti"> Aisyah Ellyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewi%20Rusnita"> Dewi Rusnita</a>, <a href="https://publications.waset.org/abstracts/search?q=Septelia%20Inawati%20Wanandi"> Septelia Inawati Wanandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stem cell has been known for its potency to be differentiated in many cells. Recently stem cell has been used for many treatment of degenerative medicine. It is still controversy whether stem cell can be used for therapy or these cells can activate cancer stem cell. SCUBE2 is a novel secreted and membrane-anchored protein which has been reported to its role in better prognosis and inhibition of cancer cell proliferation. Our study aims to observe whether stem cell can up-regulate SCUBE2 gene in MCF7 breast cancer cell line. We used in vitro study using MCF-7 cell treated with stem cell derived from placenta Wharton's jelly which has been known for its stemness and widely used. Our results showed that MCF-7 cell line grows up rapidly in 6-well culture dish. Stem cell was cultured in 6-well dish. After 50%-60% MCF-7 confluence, we co-cultured these cells with stem cells for 24 hours and 48 hours. We hypothesize SCUBE2 gene which is previously known for its higher expression in better prognosis of breast cancer, is up-regulated after stem cells addition in MCF7 culture dishes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20cells" title="breast cancer cells">breast cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20cancer%20cells" title=" inhibition of cancer cells"> inhibition of cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=SCUBE2" title=" SCUBE2"> SCUBE2</a> </p> <a href="https://publications.waset.org/abstracts/84557/up-regulation-of-scube2-expression-in-co-cultures-of-human-mesenchymal-stem-cell-and-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5837</span> Induction of HIV-1 Resistance: The New Approaches Based on Gene Modification and Stem Cell Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alieh%20Farshbaf">Alieh Farshbaf </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Current anti-retroviral drugs have some restrictions for treatment of HIV-1 infection. The efficacy of retroviral drugs is not same in different infected patients and the virus rebound from latent reservoirs after stopping them. Recently, the engineering of stem cells and gene therapy provide new approaches to eliminate some drug problems by induction of resistance to HIV-1. Literature review: Up to now, AIDS-restriction genes (ARGs) were suitable candidate for gene and cell therapies, such as cc-chemokine receptor-5 (CCR5). In this manner, CCR5 provide effective cure in Berlin and Boston patients by inducing of HIV-1 resistance with allogeneic stem cell transplantation. It is showed that Zinc Finger Nuclease (ZFN) could induce HIV-1 resistance in stem cells of infected patients by homologous recombination or non-end joining mechanism and eliminate virus loading after returning the modified cells. Then, gene modification by HIV restriction factors, as TRIM5, introduced another gene candidate for HIV by interfering in infection process. These gene modifications/editing provided by stem cell futures that improve treatment in refractory disease such as HIV-1. Conclusion: Although stem cell transplantation has some complications, but in compare to retro-viral drugs demonstrated effective cure by elimination of virus loading. On the other hand, gene therapy is cost-effective for an infected patient than retroviral drugs payment in a person life-long. The results of umbilical cord blood stem cell transplantation showed that gene and cell therapy will be applied easier than previous treatment of AIDS with high efficacy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title="stem cell">stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=AIDS" title=" AIDS"> AIDS</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20modification" title=" gene modification"> gene modification</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20engineering" title=" cell engineering"> cell engineering</a> </p> <a href="https://publications.waset.org/abstracts/37049/induction-of-hiv-1-resistance-the-new-approaches-based-on-gene-modification-and-stem-cell-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5836</span> Ageing Gingiva: A New Hope for Autologous Stem Cell Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankush%20M.%20Dewle">Ankush M. Dewle</a>, <a href="https://publications.waset.org/abstracts/search?q=Suditi%20Bhattacharya"> Suditi Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Prachi%20R.%20Abhang"> Prachi R. Abhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Savita%20Datar"> Savita Datar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20J.%20Jog"> Ajay J. Jog</a>, <a href="https://publications.waset.org/abstracts/search?q=Rupesh%20K.%20Srivastava"> Rupesh K. Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Geetanjali%20Tomar"> Geetanjali Tomar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: The aim of this study was to investigate the quality of mesenchymal stem cells (MSCs) obtained from ageing gingival tissues, in order to suggest their potential role in autologous stem cell therapy for old individuals. Methods: MSCs were isolated from gingival tissues of young (18-45 years) and old (above 45 years) donors by enzymatic digestion. MSCs were analysed for cfu-f, surface marker expression by flow-cytometry and multilineage differentiation potential. The angiogenic potential was compared in a chick embryo yolk sac membrane model. The aging and differentiation markers including SA-β-galactosidase and p21 respectively were analysed by staining and flow-cytometry analysis. Additionally, osteogenic markers such as glucocorticoid receptor (GR), vitamin D receptor (VDR) were measured by flow-cytometry and RT-qPCR was performed for quantification of osteogenic gene expression. Alizarin Red S and alkaline phosphatase (ALP) activity were also quantitated. Results: Gingival MSCs (GMSCs) from both the age groups were similar in their morphology and displayed cfu-f. They had similar expression of MSC surface markers and p21, comparable rate of proliferation and differentiated to all the four lineages. GMSCs from young donors had a higher adipogenic differentiation potential as compared to the old GMSCs. Moreover, these cells did not display a significant difference in ALP activity probably due to comparable expression of GR, VDR, and osteogenic genes. Conclusions: Ageing of GMSCs occurs at a much slower rate than stem cells from other sources. Thus we suggest GMSCs as an excellent candidate for autologous stem cell therapy in degenerative diseases of elderly individuals. Clinical Significance: GMSCs could help overcome the setbacks in clinical implementation of autologous stem cell therapy for regenerative medicine in all age group of patient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20regeneration" title="bone regeneration">bone regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20therapy" title=" cell therapy"> cell therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=senescence" title=" senescence"> senescence</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title=" stem cell"> stem cell</a> </p> <a href="https://publications.waset.org/abstracts/81618/ageing-gingiva-a-new-hope-for-autologous-stem-cell-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5835</span> Osteogenesis in Thermo-Sensitive Hydrogel Using Mesenchymal Stem Cell Derived from Human Turbinate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Reum%20Son">A. Reum Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Seon%20Kwon"> Jin Seon Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Hun%20Park"> Seung Hun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hai%20Bang%20Lee"> Hai Bang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon%20Suk%20Kim"> Moon Suk Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These days, stem cell therapy is focused on for promising source of treatment in clinical human disease. As a supporter of stem cells, in situ-forming hydrogels with growth factors and cells appear to be a promising approach in tissue engineering. To examine osteogenic differentiation of hTMSCs which is one of mesenchymal stem cells in vivo in an injectable hydrogel, we use a methoxy polyethylene glycol-polycaprolactone blockcopolymer (MPEG-PCL) solution with osteogenic factors. We synthesized MPEG-PCL hydrogel and measured viscosity to check sol-gel transition. In order to demonstrate osteogenic ability of hTMSCs, we conducted in vitro osteogenesis experiment. Then, to confirm the cell cytotoxicity, we performed WST-1 with hTMSCs and MPEG-PCL. As the result of in vitro experiment, we implanted cell and hydrogel mixture into animal model and checked degree of osteogenesis with histological analysis and amount of expression genes. Through these experimental data, MPEG-PCL hydrogel has sol-gel transition in temperature change and is biocompatible with stem cells. In histological analysis and gene expression, hTMSCs are very good source of osteogenesis with hydrogel and will use it to tissue engineering as important treatment method. hTMSCs could be a good adult stem cell source for usability of isolation and high proliferation. When hTMSCs are used as cell therapy method with in situ-formed hydrogel, they may provide various benefits like a noninvasive alternative for bone tissue engineering applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injectable%20hydrogel" title="injectable hydrogel">injectable hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title=" stem cell"> stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=osteogenic%20differentiation" title=" osteogenic differentiation"> osteogenic differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/9285/osteogenesis-in-thermo-sensitive-hydrogel-using-mesenchymal-stem-cell-derived-from-human-turbinate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5834</span> Human Mesenchymal Stem Cells as a Potential Source for Cell Therapy in Liver Disorders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laila%20Montaser">Laila Montaser</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20Gabr"> Hala Gabr</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20El-Bassuony"> Maha El-Bassuony</a>, <a href="https://publications.waset.org/abstracts/search?q=Gehan%20Tawfeek"> Gehan Tawfeek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orthotropic liver transplantation (OLT) is the final procedure of both end stage and metabolic liver diseases. Hepatocyte transplantation is an alternative for OLT, but the sources of hepatocytes are limited. Bone marrow mesenchymal stem cells (BM-MSCs) can differentiate into hepatocyte-like cells and are a potential alternative source for hepatocytes. The MSCs from bone marrow are a promising target population as they are capable of differentiating along multiple lineages and, at least in vitro, have significant expansion capability. MSCs from bone marrow may have the potential to differentiate in vitro and in vivo into hepatocytes. Our study examined whether mesenchymal stem cells (MSCs), which are stem cells originated from human bone marrow, are able to differentiate into functional hepatocyte-like cells in vitro. Our aim was to investigate the differentiation potential of BM-MSCs into hepatocyte-like cells. Adult stem cell therapy could solve the problem of degenerative disorders, including liver disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20marrow" title="bone marrow">bone marrow</a>, <a href="https://publications.waset.org/abstracts/search?q=differentiation" title=" differentiation"> differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatocyte" title=" hepatocyte"> hepatocyte</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cells" title=" stem cells "> stem cells </a> </p> <a href="https://publications.waset.org/abstracts/13255/human-mesenchymal-stem-cells-as-a-potential-source-for-cell-therapy-in-liver-disorders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5833</span> CCR5 as an Ideal Candidate for Immune Gene Therapy and Modification for the Induced Resistance to HIV-1 Infection </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alieh%20Farshbaf">Alieh Farshbaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Tayyeb%20Bahrami"> Tayyeb Bahrami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Cc-chemokine receptor-5 (CCR5) is known as a main co-receptor in human immunodeficiency virus type-1 (HIV-1) infection. Many studies showed 32bp deletion (Δ32) in CCR5 gene, provide natural resistance to HIV-1 infection in homozygous individuals. Inducing the resistance mechanism by CCR5 in HIV-1 infected patients eliminated many problems of highly-active-anti retroviral therapy (HAART) drugs like as low safety, side-effects and virus rebounding from latent reservoirs. New treatments solved some restrictions that are based on gene modification and cell therapy. Literature review: The stories of the “Berlin and Boston patients” showed autologous hematopoietic stem cells transplantation (HSCT) could provide effective cure of HIV-1 infected patients. Furthermore, gene modification by zinc finger nuclease (ZFN) demonstrated another successful result again. Despite the other studies for gene therapy by ∆32 genotype, there is another mutation -CCR5 ∆32/m303- that provides HIV-1 resistant. It is a heterozygote genotype for ∆32 and T→A point mutation at nucleotide 303. These results approved the key role of CCR5 gene. Conclusion: Recent studies showed immune gene therapy and cell therapy could provide effective cure for refractory disease like as HIV. Eradication of HIV-1 from immune system was not observed by HAART, because of reloading virus genome from latent reservoirs after stopping them. It is showed that CCR5 could induce natural resistant to HIV-1 infection by the new approaches based on stem cell transplantation and gene modifying. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CCR5" title="CCR5">CCR5</a>, <a href="https://publications.waset.org/abstracts/search?q=HIV-1" title=" HIV-1"> HIV-1</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title=" stem cell"> stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20gene%20therapy" title=" immune gene therapy"> immune gene therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20modification" title=" gene modification"> gene modification</a> </p> <a href="https://publications.waset.org/abstracts/37333/ccr5-as-an-ideal-candidate-for-immune-gene-therapy-and-modification-for-the-induced-resistance-to-hiv-1-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5832</span> Isolation and Expansion of Human Periosteum-Derived Mesenchymal Stem Cells in Defined Serum-Free Culture Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ainur%20Mukhambetova">Ainur Mukhambetova</a>, <a href="https://publications.waset.org/abstracts/search?q=Miras%20Karzhauov"> Miras Karzhauov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vyacheslav%20Ogay"> Vyacheslav Ogay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Mesenchymal stem cells (MSCs) have the capacity to be differentiated into several cell lineages and are a promising source for cell therapy and tissue engineering. However, currently most MSCs culturing protocols use media supplemented with fetal bovine serum (FBS), which limits their application in clinic due to the possibility of zoonotic infections, contamination and immunological reactions. Consequently, formulating effective serum free culture medium becomes one of the important problems in contemporary cell biotechnology. Objectives: The aim of this study was to define an optimal serum-free medium for culturing of periosteum derived MSCs. Materials and methods: The MSCs were extracted from human periosteum and transferred to the culture flasks pretreated with CELLstart™. Immunophenotypic characterization, proliferation and in vitro differentiation of cells grown on STEM PRO® MSC SFM were compared to the cells cultured in the standard FBS containing media. Chromosome analysis and flow cytometry were also performed. Results: We have shown that cells were grown on STEM PRO® MSC SFM retained all the morphological, immunophenotypic (CD73, CD90, CD105, vimentin and Stro-1) and cell differentiation characteristics specific to MSCs. Chromosome analysis indicated no anomalies in the chromosome structure. Flow cytometry showed a high expression of cell adhesion molecules CD44 (98,8%), CD90 (97,4%), CD105 (99,1%). In addition, we have shown that cell is grown on STEM PRO® MSC SFM have higher proliferation capacity compared to cell expanded on standard FBS containing the medium. Conclusion: We have shown that STEM PRO® MSC SFM is optimal for culturing periosteum derived human MSCs which subsequently can be safely used in cell therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20technologies" title="cell technologies">cell technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=periosteum-derived%20MSCs" title=" periosteum-derived MSCs"> periosteum-derived MSCs</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20medicine" title=" regenerative medicine"> regenerative medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=serum-free%20medium" title=" serum-free medium"> serum-free medium</a> </p> <a href="https://publications.waset.org/abstracts/31395/isolation-and-expansion-of-human-periosteum-derived-mesenchymal-stem-cells-in-defined-serum-free-culture-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5831</span> Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vytautas%20Galvanauskas">Vytautas Galvanauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vykantas%20Grincas"> Vykantas Grincas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rimvydas%20Simutis"> Rimvydas Simutis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggregates, can lead to cell starvation and death. In this research, the oxygen concentration profile inside of stem cell aggregates in a stem cell expansion process was predicted using a modified oxygen diffusion model. This profile can be realized during the stem cells cultivation process by manipulating the oxygen concentration in inlet gas or inlet gas flow. The proposed approach is relatively simple and may be attractive for installation in a real pluripotent stem cell expansion processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregated%20stem%20cells" title="aggregated stem cells">aggregated stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolved%20oxygen%20profiles" title=" dissolved oxygen profiles"> dissolved oxygen profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=stirred-tank" title=" stirred-tank"> stirred-tank</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20expansion" title=" 3D expansion"> 3D expansion</a> </p> <a href="https://publications.waset.org/abstracts/49847/modeling-of-oxygen-supply-profiles-in-stirred-tank-aggregated-stem-cells-cultivation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5830</span> Epigenomic Analysis of Lgr5+ Stem Cells in Gastrointestinal Tract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyo-Min%20Kim">Hyo-Min Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seokjin%20Ham"> Seokjin Ham</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi-Joung%20Yoo"> Mi-Joung Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Minseon%20Kim"> Minseon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Young%20Roh"> Tae-Young Roh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gastrointestinal (GI) tract of most animals, including murine, is highly compartmentalized epithelia which also provide distinct different functions of its own tissue. Nevertheless, these epithelia share certain characteristics that enhance immune responses to infections and maintain the barrier function of the intestine. GI tract epithelia also undergo regeneration not only in homeostatic conditions but also in a response to the damage. A full turnover of the murine gastrointestinal epithelium occurs every 4-5 day, a process that is regulated and maintained by a minor population of Lgr5+ adult stem cell that commonly conserved in the bottom of crypts through GI tract. Maintenance of the stem cell is somehow regulated by epigenetic factors according to recent studies. Chromatin vacancy, remodelers, histone variants and histone modifiers could affect adult stem cell fate. In this study, Lgr5-EGFP reporter mouse was used to take advantage of exploring the epigenetic dynamics among Lgr5 positive mutual stem cell in GI tract. Cells were isolated by fluorescence-activated cell sorting (FACS), gene expression levels, chromatin accessibility changes and histone modifications were analyzed. Some notable chromatin structural related epigenetic variants were detected. To identify the overall cell-cell interaction inside the stem cell niche, an extensive genome-wide analysis should be also followed. According to the results, nevertheless, we expected a broader understanding of cellular niche maintaining stem cells and epigenetic barriers through conserved stem cell in GI tract. We expect that our study could provide more evidence of adult stem cell plasticity and more chances to understand each stem cell that takes parts in certain organs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adult%20stem%20cell" title="adult stem cell">adult stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=epigenetics" title=" epigenetics"> epigenetics</a>, <a href="https://publications.waset.org/abstracts/search?q=LGR5%20stem%20cell" title=" LGR5 stem cell"> LGR5 stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=gastrointestinal%20tract" title=" gastrointestinal tract"> gastrointestinal tract</a> </p> <a href="https://publications.waset.org/abstracts/84885/epigenomic-analysis-of-lgr5-stem-cells-in-gastrointestinal-tract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5829</span> Safety Study of Intravenously Administered Human Cord Blood Stem Cells in the Treatment of Symptoms Related to Chronic Inflammation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brian%20M.%20Mehling">Brian M. Mehling</a>, <a href="https://publications.waset.org/abstracts/search?q=Louis%20Quartararo"> Louis Quartararo</a>, <a href="https://publications.waset.org/abstracts/search?q=Marine%20Manvelyan"> Marine Manvelyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Wang"> Paul Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Cheng%20Wu"> Dong-Cheng Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerous investigations suggest that Mesenchymal Stem Cells (MSCs) in general represent a valuable tool for therapy of symptoms related to chronic inflammatory diseases. Blue Horizon Stem Cell Therapy Program is a leading provider of adult and children’s stem cell therapies. Uniquely we have safely and efficiently treated more than 600 patients with documenting each procedure. The purpose of our study is primarily to monitor the immune response in order to validate the safety of intravenous infusion of human umbilical cord blood derived MSCs (UC-MSCs), and secondly, to evaluate effects on biomarkers associated with chronic inflammation. Nine patients were treated for conditions associated with chronic inflammation and for the purpose of anti-aging. They have been given one intravenous infusion of UC-MSCs. Our study of blood test markers of 9 patients with chronic inflammation before and within three months after MSCs treatment demonstrates that there is no significant changes and MSCs treatment was safe for the patients. Analysis of different indicators of chronic inflammation and aging included in initial, 24-hours, two weeks and three months protocols showed that stem cell treatment was safe for the patients; there were no adverse reactions. Moreover data from follow up protocols demonstrates significant improvement in energy level, hair, nails growth and skin conditions. Intravenously administered UC-MSCs were safe and effective in the improvement of symptoms related to chronic inflammation. Further close monitoring and inclusion of more patients are necessary to fully characterize the advantages of UC-MSCs application in treatment of symptoms related to chronic inflammation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20inflammatory%20diseases" title="chronic inflammatory diseases">chronic inflammatory diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=intravenous%20infusion" title=" intravenous infusion"> intravenous infusion</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell%20therapy" title=" stem cell therapy"> stem cell therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=umbilical%20cord%20blood%20derived%20mesenchymal%20stem%20cells%20%28UC-MSCs%29" title=" umbilical cord blood derived mesenchymal stem cells (UC-MSCs)"> umbilical cord blood derived mesenchymal stem cells (UC-MSCs)</a> </p> <a href="https://publications.waset.org/abstracts/32420/safety-study-of-intravenously-administered-human-cord-blood-stem-cells-in-the-treatment-of-symptoms-related-to-chronic-inflammation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5828</span> Intelligent CRISPR Design for Bone Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Chen%20Hu">Yu-Chen Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gene editing by CRISPR and gene regulation by microRNA or CRISPR activation have dramatically changed the way to manipulate cellular gene expression and cell fate. In recent years, various gene editing and gene manipulation technologies have been applied to control stem cell differentiation to enhance tissue regeneration. This research will focus on how to develop CRISPR, CRISPR activation (CRISPRa), CRISPR inhibition (CRISPRi), as well as bi-directional CRISPR-AI gene regulation technologies to control cell differentiation and bone regeneration. Moreover, in this study, CRISPR/Cas13d-mediated RNA editng for miRNA editing and bone regeneration will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gene%20therapy" title="gene therapy">gene therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20regeneration" title=" bone regeneration"> bone regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title=" stem cell"> stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=CRISPR" title=" CRISPR"> CRISPR</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20regulation" title=" gene regulation"> gene regulation</a> </p> <a href="https://publications.waset.org/abstracts/168750/intelligent-crispr-design-for-bone-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5827</span> The Physiological Effect of Cold Atmospheric Pressure Plasma on Cancer Cells, Cancer Stem Cells, and Adult Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeongyeon%20Park">Jeongyeon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeo%20Jun%20Yoon"> Yeo Jun Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiyoung%20Seo"> Jiyoung Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Seok%20Moon"> In Seok Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hae%20Jun%20Lee"> Hae Jun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiwon%20Song"> Kiwon Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold Atmospheric Pressure Plasma (CAPP) is defined as a partially ionized gas with electrically charged particles at room temperature and atmospheric pressure. CAPP generates reactive oxygen species (ROS) and reactive nitrogen species (RNS), and has potential as a new apoptosis-promoting cancer therapy. With an annular type dielectric barrier discharge (DBD) CAPP-generating device combined with a helium (He) gas feeding system, we showed that CAPP selectively induced apoptosis in various cancer cells while it promoted proliferation of the adipose tissue-derived stem cell (ASC). The apoptotic effect of CAPP was highly selective toward p53-mutated cancer cells. The intracellular ROS was mainly responsible for apoptotic cell death in CAPP-treated cancer cells. CAPP induced apoptosis even in doxorubicin-resistant cancer cell lines, demonstrating the feasibility of CAPP as a potent cancer therapy. With the same device and exposure conditions to cancer cells, CAPP stimulated proliferation of the ASC, a kind of mesenchymal stem cell that is capable of self-renewing and differentiating into adipocytes, chondrocytes, osteoblasts and neurons. CAPP-treated ASCs expressed the stem cell markers and differentiated into adipocytes as untreated ASCs. The increase of proliferation by CAPP in ASCs was offset by a NO scavenger but was not affected by ROS scavengers, suggesting that NO generated by CAPP is responsible for the activated proliferation in ASCs. Usually, cancer stem cells are reported to be resistant to known cancer therapies. When we applied CAPP of the same device and exposure conditions to cancer cells to liver cancer stem cells (CSCs) that express CD133 and epithelial cell adhesion molecule (EpCAM) cancer stem cell markers, apoptotic cell death was not examined. Apoptotic cell death of liver CSCs was induced by the CAPP generated from a device with an air-based flatten type DBD. An exposure of liver CSCs to CAPP decreased the viability of liver CSCs to a great extent, suggesting plasma be used as a promising anti-cancer treatment. To validate whether CAPP can be a promising anti-cancer treatment or an adjuvant modality to eliminate remnant tumor in cancer surgery of vestibular schwannoma, we applied CAPP to mouse schwannoma cell line SC4 Nf2 ‑/‑ and human schwannoma cell line HEI-193. A CAPP treatment leads to anti-proliferative effect in both cell lines. We are currently studying the molecular mechanisms of differential physiological effect of CAPP; the proliferation of ASCs and apoptosis of various cancer cells and CSCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20atmospheric%20pressure%20plasma" title="cold atmospheric pressure plasma">cold atmospheric pressure plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=proliferation" title=" proliferation"> proliferation</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20cells" title=" cancer cells"> cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=adult%20stem%20cells" title=" adult stem cells"> adult stem cells</a> </p> <a href="https://publications.waset.org/abstracts/55506/the-physiological-effect-of-cold-atmospheric-pressure-plasma-on-cancer-cells-cancer-stem-cells-and-adult-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5826</span> Biological Optimization following BM-MSC Seeding of Partially Demineralized and Partially Demineralized Laser-Perforated Structural Bone Allografts Implanted in Critical Femoral Defects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20AliReza%20Mirghasemi">S. AliReza Mirghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zameer%20Hussain"> Zameer Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saleh%20Sadeghi"> Mohammad Saleh Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Narges%20Rahimi%20Gabaran"> Narges Rahimi Gabaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamadreza%20Baghaban%20Eslaminejad"> Mohamadreza Baghaban Eslaminejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Despite promising results have shown by osteogenic cell-based demineralized bone matrix composites, they need to be optimized for grafts that act as structural frameworks in load-bearing defects. The purpose of this experiment is to determine the effect of bone-marrow-mesenchymal-stem-cells seeding on partially demineralized laser-perforated structural allografts that have been implanted in critical femoral defects. Materials and Methods: P3 stem cells were used for graft seeding. Laser perforation in four rows of three holes was achieved. Cell-seeded grafts were incubated for one hour until they were planted into the defect. We used four types of grafts: partially demineralized only (Donly), partially demineralized stem cell seeded (DST), partially demineralized laser-perforated (DLP), and partially demineralized laser-perforated stem cell seeded (DLPST). histologic and histomorphometric analysis were performed at 12 weeks. Results: Partially demineralized laser-perforated had the highest woven bone formation within graft limits, stem cell seeded demineralized laser-perforated remained intact, and the difference between partially demineralized only and partially demineralized stem cell seeded was insignificant. At interface, partially demineralized laser-perforated and partially demineralized only had comparable osteogenesis, but partially demineralized stem cell seeded was inferior. The interface in stem cell seeded demineralized laser-perforated was almost replaced by distinct endochondral osteogenesis with higher angiogenesis in the vicinity. Partially demineralized stem cell seeded and stem cell seeded demineralized laser-perforated graft surfaces had extra vessel-ingrowth-like porosities, a sign of delayed resorption. Conclusion: This demonstrates that simple cell-based composites are not optimal and necessitates the supplementation of synergistic stipulations and surface changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20bone%20allograft" title="structural bone allograft">structural bone allograft</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20demineralization" title=" partial demineralization"> partial demineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20perforation" title=" laser perforation"> laser perforation</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cell" title=" mesenchymal stem cell"> mesenchymal stem cell</a> </p> <a href="https://publications.waset.org/abstracts/34775/biological-optimization-following-bm-msc-seeding-of-partially-demineralized-and-partially-demineralized-laser-perforated-structural-bone-allografts-implanted-in-critical-femoral-defects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5825</span> Effect of Locally Injected Mesenchymal Stem Cells on Bone Regeneration of Rat Calvaria Defects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gileade%20P.%20Freitas">Gileade P. Freitas</a>, <a href="https://publications.waset.org/abstracts/search?q=Helena%20B.%20Lopes"> Helena B. Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=Alann%20T.%20P.%20Souza"> Alann T. P. Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20G.%20F.%20P.%20Oliveira"> Paula G. F. P. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20L.%20G.%20Almeida"> Adriana L. G. Almeida</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20G.%20Coelho"> Paulo G. Coelho</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcio%20M.%20Beloti"> Marcio M. Beloti</a>, <a href="https://publications.waset.org/abstracts/search?q=Adalberto%20L.%20Rosa"> Adalberto L. Rosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bone tissue presents great capacity to regenerate when injured by trauma, infectious processes, or neoplasia. However, the extent of injury may exceed the inherent tissue regeneration capability demanding some kind of additional intervention. In this scenario, cell therapy has emerged as a promising alternative to treat challenging bone defects. This study aimed at evaluating the effect of local injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs) on bone regeneration of rat calvaria defects. BM-MSCs and AT-MSCs were isolated and characterized by expression of surface markers; cell viability was evaluated after injection through a 21G needle. Defects of 5 mm in diameter were created in calvaria and after two weeks a single injection of BM-MSCs, AT-MSCs or vehicle-PBS without cells (Control) was carried out. Cells were tracked by bioluminescence and at 4 weeks post-injection bone formation was evaluated by micro-computed tomography (μCT) and histology, nanoindentation, and through gene expression of bone remodeling markers. The data were evaluated by one-way analysis of variance (p≤0.05). BM-MSCs and AT-MSCs presented characteristics of mesenchymal stem cells, kept viability after passing through a 21G needle and remained in the defects until day 14. In general, injection of both BM-MSCs and AT-MSCs resulted in higher bone formation compared to Control. Additionally, this bone tissue displayed elastic modulus and hardness similar to the pristine calvaria bone. The expression of all evaluated genes involved in bone formation was upregulated in bone tissue formed by BM-MSCs compared to AT-MSCs while genes involved in bone resorption were upregulated in AT-MSCs-formed bone. We show that cell therapy based on the local injection of BM-MSCs or AT-MSCs is effective in delivering viable cells that displayed local engraftment and induced a significant improvement in bone healing. Despite differences in the molecular cues observed between BM-MSCs and AT-MSCs, both cells were capable of forming bone tissue at comparable amounts and properties. These findings may drive cell therapy approaches toward the complete bone regeneration of challenging sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20therapy" title="cell therapy">cell therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20repair" title=" bone repair"> bone repair</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20culture" title=" cell culture"> cell culture</a> </p> <a href="https://publications.waset.org/abstracts/103816/effect-of-locally-injected-mesenchymal-stem-cells-on-bone-regeneration-of-rat-calvaria-defects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5824</span> The Using of Hybrid Superparamagnetic Magnetite Nanoparticles (Fe₃O₄)- Graphene Oxide Functionalized Surface with Collagen, to Target the Cancer Stem Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Khalaf%20Reyad%20Raslan">Ahmed Khalaf Reyad Raslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer stem cells (CSCs) describe a class of pluripotent cancer cells that behave analogously to normal stem cells in their ability to differentiate into the spectrum of cell types observed in tumors. The de-differentiation processes, such as an epithelial-mesenchymal transition (EMT), are known to enhance cellular plasticity. Here, we demonstrate a new hypothesis to use hybrid superparamagnetic magnetite nanoparticles (Fe₃O₄)- graphene oxide functionalized surface with Collagen to target the cancer stem cell as an early detection tool for cancer. We think that with the use of magnetic resonance imaging (MRI) and the new hybrid system would be possible to track the cancer stem cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title="hydrogel">hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate" title=" alginate"> alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=collagen" title=" collagen"> collagen</a> </p> <a href="https://publications.waset.org/abstracts/145693/the-using-of-hybrid-superparamagnetic-magnetite-nanoparticles-fe3o4-graphene-oxide-functionalized-surface-with-collagen-to-target-the-cancer-stem-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5823</span> Preparation of Natural Polymeric Scaffold with Desired Pore Morphology for Stem Cell Differentiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojdeh%20Mohseni">Mojdeh Mohseni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the context of tissue engineering, the effect of microtopography as afforded by scaffold morphology is an important design parameter. Since the morphology of pores can effect on cell behavior, in this study, porous Chitosan (CHIT) - Gelatin (GEL)- Alginate (ALG) scaffolds with microtubule orientation structure were manufactured by unidirectional freeze-drying method and the effect of pore morphology on differentiation of Mesenchymal Stem Cells (MSCs) was investigated. This study showed that, the provided scaffold with natural polymer had good properties for cell behavior and the pores with highest orientation rate have produced appropriate substrate for the differentiation of stem cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chitosan" title="Chitosan">Chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatin" title=" gelatin"> gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=Alginate" title=" Alginate"> Alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=pore%20morphology" title=" pore morphology"> pore morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell%20differentiation" title=" stem cell differentiation"> stem cell differentiation</a> </p> <a href="https://publications.waset.org/abstracts/15601/preparation-of-natural-polymeric-scaffold-with-desired-pore-morphology-for-stem-cell-differentiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5822</span> Neuron Point-of-Care Stem Cell Therapy: Intrathecal Transplant of Autologous Bone Marrow-Derived Stem Cells in Patients with Cerebral Palsy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Ruiz-Navarro">F. Ruiz-Navarro</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Matzner"> M. Matzner</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Kobinia"> G. Kobinia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Cerebral palsy (CP) encompasses the largest group of childhood movement disorders, the patterns and severity varies widely. Today, the management focuses only on a rehabilitation therapy that tries to secure the functions remained and prevents complications. However the treatments are not aimed to cure the disease. Stem cells (SCs) transplant via intrathecal is a new approach to the disease. Method: Our aim was to performed a pilot study under the condition of unproven treatment on clinical practice to assessed the safety and efficacy of Neuron Point-of-care Stem cell Therapy (N-POCST), an ambulatory procedure of autologous bone marrow derived SCs (BM-SCs) harvested from the posterior superior iliac crest undergo an on-site cell separation for intrathecal infusion via lumbar puncture. Results: 82 patients were treated in a period of 28 months, with a follow-up after 6 months. They had a mean age of 6,2 years old and male predominance (65,9%). Our preliminary results show that: A. No patient had any major side effects, B. Only 20% presented mild headache due to LP, C. 53% of the patients had an improvement in spasticity, D. 61% improved the coordination abilities, 23% improved the motor function, 15% improved the speech, 23% reduced the number of convulsive events with the same doses or less doses of anti-convulsive medication and 94% of the patients report a subjective general improvement. Conclusions: These results support previous worldwide publications that described the safety and effectiveness of autologous BM-SCs transplant for patients wit CP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autologous%20transplant" title="autologous transplant">autologous transplant</a>, <a href="https://publications.waset.org/abstracts/search?q=cerebral%20palsy" title=" cerebral palsy"> cerebral palsy</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20of%20care" title=" point of care"> point of care</a>, <a href="https://publications.waset.org/abstracts/search?q=childhood%20movement%20disorders" title=" childhood movement disorders"> childhood movement disorders</a> </p> <a href="https://publications.waset.org/abstracts/17261/neuron-point-of-care-stem-cell-therapy-intrathecal-transplant-of-autologous-bone-marrow-derived-stem-cells-in-patients-with-cerebral-palsy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5821</span> Rejuvenation of Premature Ovarian Failure with Stem Cells/IVA Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Vojoudi">Elham Vojoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marzieh%20Mehrafza"> Marzieh Mehrafza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Hosseini"> Ahmad Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Azadeh%20Raofi"> Azadeh Raofi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Najafi"> Maryam Najafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Premature ovarian failure (POF) has become one of the main causes of infertility in women of childbearing age and the incidence of this disorder is increasing year by year. In these patients, poor ovarian response (POR) to gonadotropins reflects a diminished ovarian reserve (DOR) that gives place to few follicles despite aggressive stimulation. Up to now, egg donation is the only way to resolve infertility problems in POF patients. Therefore, some novel aspects such as activating (Akt signaling pathway) and inhibiting (Hippo-signaling) elements have been identified as IVA procedure that promotes primordial follicle activation. In this study, we used the newly developed technique (combination of in vitro activation of dormant follicles (IVA) and stem cell therapy) to promote ovarian follicle growth much more efficiently than the natural, in vivo process for women with POF. Transplantation of Warton Jelly-MSCs to the ovaries of POF patients rescued overall ovarian function. Participants (10 patients) were followed up monthly for a period of six months by hormonal (AMH, FSH, LH and E2), clinical (resuming menstruation), and US (folliculometry) outcomes after a laparoscopic operation. In summary, IVA/WJ-MSC transplantation may provide an effective treatment for POF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=POF" title="POF">POF</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20activation" title=" in vitro activation"> in vitro activation</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell%20therapy" title=" stem cell therapy"> stem cell therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=infertility" title=" infertility"> infertility</a> </p> <a href="https://publications.waset.org/abstracts/149531/rejuvenation-of-premature-ovarian-failure-with-stem-cellsiva-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5820</span> Immobilized Iron Oxide Nanoparticles for Stem Cell Reconstruction in Magnetic Particle Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kolja%20Them">Kolja Them</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Salamon"> Johannes Salamon</a>, <a href="https://publications.waset.org/abstracts/search?q=Harald%20Ittrich"> Harald Ittrich</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Kaul"> Michael Kaul</a>, <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Knopp"> Tobias Knopp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superparamagnetic iron oxide nanoparticles (SPIONs) are nanoscale magnets which can be biologically functionalized for biomedical applications. Stem cell therapies to repair damaged tissue, magnetic fluid hyperthermia for cancer therapy and targeted drug delivery based on SPIONs are prominent examples where the visualization of a preferably low concentrated SPION distribution is essential. In 2005 a new method for tomographic SPION imaging has been introduced. The method named magnetic particle imaging (MPI) takes advantage of the nanoparticles magnetization change caused by an oscillating, external magnetic field and allows to directly image the time-dependent nanoparticle distribution. The SPION magnetization can be changed by the electron spin dynamics as well as by a mechanical rotation of the nanoparticle. In this work different calibration methods in MPI are investigated for image reconstruction of magnetically labeled stem cells. It is shown that a calibration using rotationally immobilized SPIONs provides a higher quality of stem cell images with fewer artifacts than a calibration using mobile SPIONs. The enhancement of the image quality and the reduction of artifacts enables the localization and identification of a smaller number of magnetically labeled stem cells. This is important for future medical applications where low concentrations of functionalized SPIONs interacting with biological matter have to be localized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical%20imaging" title="biomedical imaging">biomedical imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles" title=" iron oxide nanoparticles"> iron oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20particle%20imaging" title=" magnetic particle imaging"> magnetic particle imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell%20imaging" title=" stem cell imaging"> stem cell imaging</a> </p> <a href="https://publications.waset.org/abstracts/35704/immobilized-iron-oxide-nanoparticles-for-stem-cell-reconstruction-in-magnetic-particle-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5819</span> A Prospective Study on the Efficacy of Mesenchymal Stem Cells in Intervertebral Disc Regeneration </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prabhu%20Thangaraju">Prabhu Thangaraju</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Deepak"> Manoj Deepak</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sivakumar"> A. Sivakumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Removal of inter vertebral disc along with spinal fusion has many disadvantages such as causing stress fractures. If it is possible regenerate the spine it would be possible avoid the complications of the surgery and achieve better results. Our study involves the use of mesenchymal stem cells in regenerating the discs. Our study involved 10 patients who presented with degenerative disc disease between 2008-2011 in our hospital. After adequate pre-operative check prepared mesenchymal stem cells were injected into the disc spaces. These patients were subjected to conservative therapy for a minimum of six weeks before they were accepted into the study. They were followed up regularly for a minimum of 2years with serial radiographs and MRI. 8 out of the 10 patients had completed reduction in the pain. The T2 weighted MRI images in 9 out of the 10 patients showed a bright signal compared the previous Images which indicated that there was improvement in the hydration levels. From the case study of 10 patients who were subjected to mesenchymal cell therapy in our hospital, we can conclude that the use of mesenchymal cells in treatment of intervertebral disc degeneration in a safe and effective option. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title="mesenchymal stem cells">mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=intervertebral%20disc" title=" intervertebral disc"> intervertebral disc</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20spine" title=" the spine"> the spine</a>, <a href="https://publications.waset.org/abstracts/search?q=disc%20degeneration" title=" disc degeneration "> disc degeneration </a> </p> <a href="https://publications.waset.org/abstracts/16025/a-prospective-study-on-the-efficacy-of-mesenchymal-stem-cells-in-intervertebral-disc-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5818</span> The Comparison of the Effects of Adipose-Derived Mesenchymal Stem Cells Delivery by Systemic and Intra-Tracheal Injection on Elastase-Induced Emphysema Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Radan">Maryam Radan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fereshteh%20Nejad%20Dehbashi"> Fereshteh Nejad Dehbashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vahid%20%20Bayati"> Vahid Bayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahin%20Dianat"> Mahin Dianat</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Ali%20Mard"> Seyyed Ali Mard</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20%20Mansouri"> Zahra Mansouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pulmonary emphysema is a pathological respiratory condition identified by alveolar destruction which leads to limitation of airflow and diminished lung function. A substantial body of evidence suggests that mesenchymal stem cells (MSCs) have the ability to induce tissue repair primarily through a paracrine effect. In this study, we aimed to determine the efficacy of Intratracheal adipose-derived mesenchymal stem cells (ADSCs) therapy in comparison to this approach with that of Intravenous (Systemic) therapy. Fifty adult male Sprague–Dawley rats weighing between 180 and 200 g were used in this experiment. The animals were randomized to Control groups (Intratracheal or Intravenous vehicle), Elastase group (intratracheal administration of porcine pancreatic elastase; 25 U/kg on day 0 and day 10th), Elastase+Intratracheal ADSCs therapy (1x107 Cells, on day 28) and Elastase+Systemic ADSCs therapy (1x107 Cells, on day 28). The rats which not subjected to any treatment, considered as the control. All rats were sacrificed 3 weeks later. Morphometric findings in lung tissues (Mean linear intercept) confirmed the establishment of the emphysema model via alveolar disruption. Contrarily, ADSCs administration partially restored alveolar architecture. These results were associated with improving arterial oxygenation, reducing lung edema, and decreasing lung inflammation with higher significant effects in the Intratracheal therapy route. These results documented that the efficacy of intratracheal ADSCs was comparable with intravenous ADSCs therapy. Accordingly, the obtained data suggested that intratracheal delivery of ADSCs would enhance lung repair in pulmonary emphysema. Moreover, this method provides benefits over a systemic administration, such as the reduction of cell number and the low risk to engraft other organs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cell" title="mesenchymal stem cell">mesenchymal stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=emphysema" title=" emphysema"> emphysema</a>, <a href="https://publications.waset.org/abstracts/search?q=Intratracheal" title=" Intratracheal"> Intratracheal</a>, <a href="https://publications.waset.org/abstracts/search?q=systemic" title=" systemic"> systemic</a> </p> <a href="https://publications.waset.org/abstracts/136584/the-comparison-of-the-effects-of-adipose-derived-mesenchymal-stem-cells-delivery-by-systemic-and-intra-tracheal-injection-on-elastase-induced-emphysema-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5817</span> Usage of Cord Blood Stem Cells of Asphyxia Infants for Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Shah%20Farhat">Ahmad Shah Farhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Prenatal asphyxia or birth asphyxia is the medical situation resulting from a newborn infant that lasts long enough during the birth process to cause physical harm, usually to the brain. Human umbilical cord blood (UCB) is a well-established source of hematopoietic stem/progenitor cells (HSPCs) for allogeneic stem cell transplantation. These can be used clinically to care for children with malignant diseases. Low O2 can cause in proliferation and differentiation of stem cells. Method: the cord blood of 11 infants with 3-5 Apgar scores or need to cardiac pulmonary Resuscitation as an asphyxia group and ten normal infants with more than 8 Apgar scores as the normal group was collected, and after isolating hematopoietic stem cells, the cells were cultured in enriched media for 14 days to compare the numbers of colonies by microscope. Results: There was a significant difference in the number of RBC precursor colonies (red colonies) in cultured media with 107 cord blood hematopoietic stem cells of infants who were exposed to hypoxemia in two wells of palate. There was not a significant difference in the number of white cell colonies in the two groups in the two wells of the plate. Conclusion: Hypoxia in the perinatal period can cause the increase of hematopoietic stem cells of cord blood, special red precursor stem cells in vitro, like an increase of red blood cells in the body when exposed to low oxygen conditions. Thus, it will be usable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphyxia" title="asphyxia">asphyxia</a>, <a href="https://publications.waset.org/abstracts/search?q=neonre" title=" neonre"> neonre</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title=" stem cell"> stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20cell" title=" red cell"> red cell</a> </p> <a href="https://publications.waset.org/abstracts/177379/usage-of-cord-blood-stem-cells-of-asphyxia-infants-for-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5816</span> Cell-Based and Exosome Treatments for Hair Restoration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armin%20Khaghani%20Boroujeni">Armin Khaghani Boroujeni</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Dehghani"> Leila Dehghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Parham%20Talebi%20Boroujeni"> Parham Talebi Boroujeni</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Rostamian"> Sahar Rostamian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Asilian"> Ali Asilian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Hair loss is a common complaint observed in both genders. Androgenetic alopecia is known pattern for hair loss. To assess new regenerative strategies (PRP, A-SC-BT, conditioned media, exosome-based treatments) compared to conventional therapies for hair loss or hair regeneration, an updated review was undertaken. To address this issue, we carried out this systematic review to comprehensively evaluate the efficacy of cell-based therapies on hair loss. Methods: The available online databases, including ISI Web of Science, Scopus, and PubMed, were searched systematically up to February 2022. The quality assessment of included studies was done using the Cochrane Collaboration's tool. Results: As a result, a total of 90 studies involving 2345 participants were included in the present study. The enrolled studies were conducted between 2010 and 2022. The subjects’ mean age ranged from 19 to 55.11 years old. Approaches using platelet rich plasma (PRP) provide a beneficial impact on hair regrowth. However, other cell-based therapies, including stem cell transplant, stem cell-derived conditioned medium, and stem cell-derived exosomes, revealed conflicting evidence. Conclusion: However, cell-based therapies for hair loss are still in their infancy, and more robust clinical studies are needed to better evaluate their mechanisms of action, efficacy, safety, benefits, and limitations. In this review, we provide the resources to the latest clinical studies and a more detailed description of the latest clinical studies concerning cell-based therapies in hair loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell-based%20therapy" title="cell-based therapy">cell-based therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=exosome" title=" exosome"> exosome</a>, <a href="https://publications.waset.org/abstracts/search?q=hair%20restoration" title=" hair restoration"> hair restoration</a>, <a href="https://publications.waset.org/abstracts/search?q=systematic%20review" title=" systematic review"> systematic review</a> </p> <a href="https://publications.waset.org/abstracts/147922/cell-based-and-exosome-treatments-for-hair-restoration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5815</span> In vitro Establishment and Characterization of Oral Squamous Cell Carcinoma Derived Cancer Stem-Like Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Varsha%20Salian">Varsha Salian</a>, <a href="https://publications.waset.org/abstracts/search?q=Shama%20Rao"> Shama Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Narendra"> N. Narendra</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Mohana%20Kumar"> B. Mohana Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evolving evidence proposes the existence of a highly tumorigenic subpopulation of undifferentiated, self-renewing cancer stem cells, responsible for exhibiting resistance to conventional anti-cancer therapy, recurrence, metastasis and heterogeneous tumor formation. Importantly, the mechanisms exploited by cancer stem cells to resist chemotherapy are very less understood. Oral squamous cell carcinoma (OSCC) is one of the most regularly diagnosed cancer types in India and is associated commonly with alcohol and tobacco use. Therefore, the isolation and in vitro characterization of cancer stem-like cells from patients with OSCC is a critical step to advance the understanding of the chemoresistance processes and for designing therapeutic strategies. With this, the present study aimed to establish and characterize cancer stem-like cells in vitro from OSCC. The primary cultures of cancer stem-like cell lines were established from the tissue biopsies of patients with clinical evidence of an ulceroproliferative lesion and histopathological confirmation of OSCC. The viability of cells assessed by trypan blue exclusion assay showed more than 95% at passage 1 (P1), P2 and P3. Replication rate was performed by plating cells in 12-well plate and counting them at various time points of culture. Cells had a more marked proliferative activity and the average doubling time was less than 20 hrs. After being cultured for 10 to 14 days, cancer stem-like cells gradually aggregated and formed sphere-like bodies. More spheroid bodies were observed when cultured in DMEM/F-12 under low serum conditions. Interestingly, cells with higher proliferative activity had a tendency to form more sphere-like bodies. Expression of specific markers, including membrane proteins or cell enzymes, such as CD24, CD29, CD44, CD133, and aldehyde dehydrogenase 1 (ALDH1) is being explored for further characterization of cancer stem-like cells. To summarize the findings, the establishment of OSCC derived cancer stem-like cells may provide scope for better understanding the cause for recurrence and metastasis in oral epithelial malignancies. Particularly, identification and characterization studies on cancer stem-like cells in Indian population seem to be lacking thus provoking the need for such studies in a population where alcohol consumption and tobacco chewing are major risk habits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20stem-like%20cells" title="cancer stem-like cells">cancer stem-like cells</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro" title=" in vitro"> in vitro</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20squamous%20cell%20carcinoma" title=" oral squamous cell carcinoma"> oral squamous cell carcinoma</a> </p> <a href="https://publications.waset.org/abstracts/85339/in-vitro-establishment-and-characterization-of-oral-squamous-cell-carcinoma-derived-cancer-stem-like-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5814</span> Comparative Study between Mesenchymal Stem Cells and Regulatory T-Cells in Macrophage Polarization for Organ Transplant Tolerance: In Vitro Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Madhuri%20Devraj">Vijaya Madhuri Devraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Swarnalatha%20Guditi"> Swarnalatha Guditi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiran%20Kumar%20Bokara"> Kiran Kumar Bokara</a>, <a href="https://publications.waset.org/abstracts/search?q=Gangadhar%20Taduri"> Gangadhar Taduri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell-based strategies may open therapeutic approaches that promote tolerance through manipulation of macrophages to increase long-term transplant survival rates and minimize side effects of the current immune suppressive regimens. The aim of the present study was, therefore, to test and compare the therapeutic potential of MSC and Tregs on macrophage polarization to develop an alternate cell-based treatment option in kidney transplantation. In the current protocol, macrophages from kidney transplant recipients with graft dysfunction were co-cultured with MSCs and Treg cells with and without cell-cell contact on transwell plates, further to quantitatively assess macrophage polarization in response to MSC and Treg treatment over time, M1 and M2 cell surface markers were used. Additionally, multiple soluble analytes were analyzed in cell supernatant by using bead-based immunoassays. Furthermore, to confirm our findings, gene expression analysis was done. MSCs induced the formation of M2 macrophages more than Tregs when macrophages M0 were cultured in transwell without cell contact. From this, we deduced the mechanism that soluble factors present in the MSCs condition media are involved in skewing of macrophages towards type 2 macrophages; similarly, in co-culture with cell-cell contact, MSCs resulted in more M2 type macrophages than Tregs. And an important finding of this study is the combination of both MSC-Treg showed significantly effective and consistent results in both with and without cell contact setups. Hence, it is suggestive to prefer MSCs over Tregs for secretome-based therapy and a combination of both for either therapy for effective transplantation outcomes. Our findings underline a key role of Tregs and MSCs in promoting macrophage polarization towards anti-inflammatory type. The study has great importance in prolongation of allograft and patient survival without any rejection by cell-based therapy, which induce self-tolerance and controlling infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graft%20rejection" title="graft rejection">graft rejection</a>, <a href="https://publications.waset.org/abstracts/search?q=graft%20tolerance" title=" graft tolerance"> graft tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=macrophage%20polarization" title=" macrophage polarization"> macrophage polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=regulatory%20T%20cells" title=" regulatory T cells"> regulatory T cells</a>, <a href="https://publications.waset.org/abstracts/search?q=transplant%20immunology" title=" transplant immunology"> transplant immunology</a> </p> <a href="https://publications.waset.org/abstracts/155631/comparative-study-between-mesenchymal-stem-cells-and-regulatory-t-cells-in-macrophage-polarization-for-organ-transplant-tolerance-in-vitro-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5813</span> Umbilical Cord-Derived Cells in Corneal Epithelial Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Mahmud%20Reza">Hasan Mahmud Reza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extensive studies of the human umbilical cord, both basic and translational, over the last three decades have unveiled a plethora of information. The cord lining harbors at least two phenotypically different multipotent stem cells: mesenchymal stem cells (MSCs) and cord lining epithelial stem cells (CLECs). These cells exhibit a mixed genetic profiling of both embryonic and adult stem cells, hence display a broader stem features than cells from other sources. We have observed that umbilical cord-derived cells are immunologically privileged and non-tumorigenic by animal study. These cells are ethically acceptable, thus provides a significant advantage over other stem cells. The high proliferative capacity, viability, differentiation potential, and superior harvest of these cells have made them better candidates in comparison to contemporary adult stem cells. Following 30 replication cycles, these cells have been observed to retain their stemness, with their phenotype and karyotype intact. Transplantation of bioengineered CLEC sheets in limbal stem cell-deficient rabbit eyes resulted in regeneration of clear cornea with phenotypic expression of the normal cornea-specific epithelial cytokeratin markers. The striking features of low immunogenicity protecting self along with co-transplanted allografts from rejection largely define the transplantation potential of umbilical cord-derived stem cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cord%20lining%20epithelial%20stem%20cells" title="cord lining epithelial stem cells">cord lining epithelial stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cell" title=" mesenchymal stem cell"> mesenchymal stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20medicine" title=" regenerative medicine"> regenerative medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=umbilical%20cord" title=" umbilical cord"> umbilical cord</a> </p> <a href="https://publications.waset.org/abstracts/117218/umbilical-cord-derived-cells-in-corneal-epithelial-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5812</span> Identification of Genes Regulating Differentiation and Stemness of Human Mesenchymal Stem Cells for Gene Therapy in Regenerative Medicine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tong%20Ming%20Liu">Tong Ming Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human mesenchymal stem cells (MSCs) represent the most used stem cells for clinical application, which have been used in over 1000 clinical trials to treat over 30 diseases due to multilineage differentiation potential, secretome and immunosuppression. Gene therapies of MSCs hold great promise in the treatment of many diseases due to enhanced MSC-based clinical outcomes. To identify genes for gene therapy of MSCs, by comparing gene expression profile before and after MSC differentiation following by functional screening, we have identified ZNF145 that regulated MSC differentiation. Forced expression of ZNF145 resulted in enhanced in vitro chondrogenesis of MSCs as an upstream factor of SOX9 and improved osteochondral repair upon implant into osteochondral defects in rodents. By comparing gene expression profile during differentiation of iPSCs toward MSCs, we also identified gene HOX regulating MSC stemness, which was much downregulated in late-passaged MSCs. Knockdown of this gene greatly compromised MSC stemness including abolished proliferation, decreased CFU-F, promoted senescence and reduced expression of cell surface antigens linked to the MSC phenotype. In addition, multi-linage differentiation was also greatly impaired. Notably, HOX overexpression resulted in improved multi-lineage differentiation. In the mechanism, HOX expression significantly deceased in late passage of MSCs compared with early passage of MSCs, correlating with MSC important genes. ChIP-seq data shown that HOX binds to genes related to MSC self-renewal and differentiation. Most importantly, most HOX binding sites are lost in late passage of MSCs. HOX exerts its effects by directing binding Twist1, one important gene of MSCs. The identification of the genes regulating MSC differentiation and stemness will provide and promising strategies for gene therapy of MSCs in regenerative medicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cell" title="mesenchymal stem cell">mesenchymal stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=novel%20transcription%20factor" title=" novel transcription factor"> novel transcription factor</a>, <a href="https://publications.waset.org/abstracts/search?q=stemness" title=" stemness"> stemness</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20therapy" title=" gene therapy"> gene therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=cartilage%20repair" title=" cartilage repair"> cartilage repair</a>, <a href="https://publications.waset.org/abstracts/search?q=signaling%20pathway" title=" signaling pathway"> signaling pathway</a> </p> <a href="https://publications.waset.org/abstracts/181981/identification-of-genes-regulating-differentiation-and-stemness-of-human-mesenchymal-stem-cells-for-gene-therapy-in-regenerative-medicine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5811</span> Stem Cell Fate Decision Depending on TiO2 Nanotubular Geometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung%20Park">Jung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Anca%20Mazare"> Anca Mazare</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus%20Von%20Der%20Mark"> Klaus Von Der Mark</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrik%20Schmuki"> Patrik Schmuki </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In clinical application of TiO2 implants on tooth and hip replacement, migration, adhesion and differentiation of neighboring mesenchymal stem cells onto implant surfaces are critical steps for successful bone regeneration. In a recent decade, accumulated attention has been paid on nanoscale electrochemical surface modifications on TiO2 layer for improving bone-TiO2 surface integration. We generated, on titanium surfaces, self-assembled layers of vertically oriented TiO2 nanotubes with defined diameters between 15 and 100 nm and here we show that mesenchymal stem cells finely sense TiO2 nanotubular geometry and quickly decide their cell fate either to differentiation into osteoblasts or to programmed cell death (apoptosis) on TiO2 nanotube layers. These cell fate decisions are critically dependent on nanotube size differences (15-100nm in diameters) of TiO2 nanotubes sensing by integrin clustering. We further demonstrate that nanoscale topography-sensing is feasible not only in mesenchymal stem cells but rather seems as generalized nanoscale microenvironment-cell interaction mechanism in several cell types composing bone tissue network including osteoblasts, osteoclast, endothelial cells and hematopoietic stem cells. Additionally we discuss the synergistic effect of simultaneous stimulation by nanotube-bound growth factor and nanoscale topographic cues on enhanced bone regeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TiO2%20nanotube" title="TiO2 nanotube">TiO2 nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell%20fate%20decision" title=" stem cell fate decision"> stem cell fate decision</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-scale%20microenvironment" title=" nano-scale microenvironment"> nano-scale microenvironment</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20regeneration" title=" bone regeneration"> bone regeneration</a> </p> <a href="https://publications.waset.org/abstracts/12191/stem-cell-fate-decision-depending-on-tio2-nanotubular-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5810</span> Deciphering the Action of Neuraminidase in Glioblastoma Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nathalie%20Baeza-Kallee">Nathalie Baeza-Kallee</a>, <a href="https://publications.waset.org/abstracts/search?q=Rapha%C3%ABl%20Berg%C3%A8s"> Raphaël Bergès</a>, <a href="https://publications.waset.org/abstracts/search?q=Victoria%20Hein"> Victoria Hein</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phanie%20Cabaret"> Stéphanie Cabaret</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeremy%20Garcia"> Jeremy Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Abiga%C3%ABlle%20Gros"> Abigaëlle Gros</a>, <a href="https://publications.waset.org/abstracts/search?q=Emeline%20Tabouret"> Emeline Tabouret</a>, <a href="https://publications.waset.org/abstracts/search?q=Aur%C3%A9lie%20Tchoghandjian"> Aurélie Tchoghandjian</a>, <a href="https://publications.waset.org/abstracts/search?q=Carole%20Colin"> Carole Colin</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominique%20Figarella-Branger"> Dominique Figarella-Branger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glioblastoma (GBM) contains cancer stem cells that are resistant to treatment. GBM cancer stem cell expresses glycolipids recognized by the A2B5 antibody. A2B5, induced by the enzyme ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyl transferase 3 (ST8Sia3), plays a crucial role in the proliferation, migration, clonogenicity, and tumorigenesis of GBM cancer stem cells. Our aim was to characterize the resulting effects of neuraminidase that remove A2B5 in order to target GBM cancer stem cells. To this end, we set up a GBM organotypic slice model; quantified A2B5 expression by flow cytometry in U87-MG, U87-ST8Sia3, and GBM cancer stem cell lines, treated or not by neuraminidase; performed RNAseq and DNA methylation profiling; and analyzed the ganglioside expression by liquid chromatography-mass spectrometry in these cell lines, treated or not with neuraminidase. Results demonstrated that neuraminidase decreased A2B5 expression, tumor size, and regrowth after surgical removal in the organotypic slice model but did not induce a distinct transcriptomic or epigenetic signature in GBM CSC lines. RNAseq analysis revealed that OLIG2, CHI3L1, TIMP3, TNFAIP2, and TNFAIP6 transcripts were significantly overexpressed in U87-ST8Sia3 compared to U87-MG. RT-qPCR confirmed these results and demonstrated that neuraminidase decreased gene expression in GBM cancer stem cell lines. Moreover, neuraminidase drastically reduced ganglioside expression in GBM cancer stem cell lines. Neuraminidase, by its pleiotropic action, is an attractive local treatment against GBM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20stem%20cell" title="cancer stem cell">cancer stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=ganglioside" title=" ganglioside"> ganglioside</a>, <a href="https://publications.waset.org/abstracts/search?q=glioblastoma" title=" glioblastoma"> glioblastoma</a>, <a href="https://publications.waset.org/abstracts/search?q=targeted%20treatment" title=" targeted treatment"> targeted treatment</a> </p> <a href="https://publications.waset.org/abstracts/171854/deciphering-the-action-of-neuraminidase-in-glioblastoma-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5809</span> Excellent Outcome with Early Diagnosis in an Infant with Wiskott-Aldrich Syndrome in a Tertiary Hospital in Oman</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surekha%20Tony">Surekha Tony</a>, <a href="https://publications.waset.org/abstracts/search?q=Roshan%20Mevada"> Roshan Mevada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency disease resulting in recurrent infections, eczema, and microthrombocytopenia. In its classical form, significant combined immune deficiency, autoimmune complications, and risk of hematological malignancy necessitate early correction, preferably before 2 years of age, with hematopoietic stem cell transplant (HSCT) or gene therapy. Clinical features and severity are varied, making the diagnosis difficult in milder cases. We report an Omani boy diagnosed in early infancy with WAS based on clinical presentation and confirmed by genetic diagnosis with cure by HSCT from an HLA-identical sibling donor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20diagnosis" title="genetic diagnosis">genetic diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=hematopoietic%20stem%20cell%20transplant" title=" hematopoietic stem cell transplant"> hematopoietic stem cell transplant</a>, <a href="https://publications.waset.org/abstracts/search?q=infant" title=" infant"> infant</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiskott-Aldrich%20syndrome" title=" Wiskott-Aldrich syndrome"> Wiskott-Aldrich syndrome</a> </p> <a href="https://publications.waset.org/abstracts/188928/excellent-outcome-with-early-diagnosis-in-an-infant-with-wiskott-aldrich-syndrome-in-a-tertiary-hospital-in-oman" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cell%20therapy&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cell%20therapy&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cell%20therapy&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cell%20therapy&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cell%20therapy&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cell%20therapy&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cell%20therapy&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cell%20therapy&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cell%20therapy&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cell%20therapy&page=194">194</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cell%20therapy&page=195">195</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cell%20therapy&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>