CINXE.COM
Implicit coupled Hilfer–Hadamard fractional differential systems under weak topologies | Advances in Continuous and Discrete Models | Full Text
<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width, initial-scale=1"> <title>Implicit coupled Hilfer–Hadamard fractional differential systems under weak topologies | Advances in Continuous and Discrete Models | Full Text</title> <meta name="citation_abstract" content="In this article, we present some existence of weak solutions for a coupled system of implicit fractional differential equations of Hilfer–Hadamard type. Our approach is based on Mönch’s fixed point theorem associated with the technique of measure of weak noncompactness."/> <meta name="journal_id" content="13662"/> <meta name="dc.title" content="Implicit coupled Hilfer–Hadamard fractional differential systems under weak topologies"/> <meta name="dc.source" content="Advances in Difference Equations 2018 2018:1"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="SpringerOpen"/> <meta name="dc.date" content="2018-09-18"/> <meta name="dc.type" content="OriginalPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2018 The Author(s)"/> <meta name="dc.rights" content="2018 The Author(s)"/> <meta name="dc.rightsAgent" content="reprints@biomedcentral.com"/> <meta name="dc.description" content="In this article, we present some existence of weak solutions for a coupled system of implicit fractional differential equations of Hilfer–Hadamard type. Our approach is based on Mönch’s fixed point theorem associated with the technique of measure of weak noncompactness."/> <meta name="prism.issn" content="1687-1847"/> <meta name="prism.publicationName" content="Advances in Difference Equations"/> <meta name="prism.publicationDate" content="2018-09-18"/> <meta name="prism.volume" content="2018"/> <meta name="prism.number" content="1"/> <meta name="prism.section" content="OriginalPaper"/> <meta name="prism.startingPage" content="1"/> <meta name="prism.endingPage" content="17"/> <meta name="prism.copyright" content="2018 The Author(s)"/> <meta name="prism.rightsAgent" content="reprints@biomedcentral.com"/> <meta name="prism.url" content="https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-018-1787-4"/> <meta name="prism.doi" content="doi:10.1186/s13662-018-1787-4"/> <meta name="citation_pdf_url" content="https://advancesincontinuousanddiscretemodels.springeropen.com/counter/pdf/10.1186/s13662-018-1787-4"/> <meta name="citation_fulltext_html_url" content="https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-018-1787-4"/> <meta name="citation_journal_title" content="Advances in Difference Equations"/> <meta name="citation_journal_abbrev" content="Adv Differ Equ"/> <meta name="citation_publisher" content="SpringerOpen"/> <meta name="citation_issn" content="1687-1847"/> <meta name="citation_title" content="Implicit coupled Hilfer–Hadamard fractional differential systems under weak topologies"/> <meta name="citation_volume" content="2018"/> <meta name="citation_issue" content="1"/> <meta name="citation_publication_date" content="2018/12"/> <meta name="citation_online_date" content="2018/09/18"/> <meta name="citation_firstpage" content="1"/> <meta name="citation_lastpage" content="17"/> <meta name="citation_article_type" content="Research"/> <meta name="citation_fulltext_world_readable" content=""/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1186/s13662-018-1787-4"/> <meta name="DOI" content="10.1186/s13662-018-1787-4"/> <meta name="size" content="811352"/> <meta name="citation_doi" content="10.1186/s13662-018-1787-4"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1186/s13662-018-1787-4&api_key="/> <meta name="description" content="In this article, we present some existence of weak solutions for a coupled system of implicit fractional differential equations of Hilfer–Hadamard type. Our approach is based on Mönch’s fixed point theorem associated with the technique of measure of weak noncompactness."/> <meta name="dc.creator" content="Abbas, Saïd"/> <meta name="dc.creator" content="Benchohra, Mouffak"/> <meta name="dc.creator" content="Hamidi, Naima"/> <meta name="dc.creator" content="Zhou, Yong"/> <meta name="dc.subject" content="Difference and Functional Equations"/> <meta name="dc.subject" content="Mathematics, general"/> <meta name="dc.subject" content="Analysis"/> <meta name="dc.subject" content="Functional Analysis"/> <meta name="dc.subject" content="Ordinary Differential Equations"/> <meta name="dc.subject" content="Partial Differential Equations"/> <meta name="citation_reference" content="citation_journal_title=Adv. Dyn. Syst. Appl.; citation_title=Weak solutions for implicit differential equations of Hilfer–Hadamard fractional derivative; citation_author=S. Abbas, M. Benchohra, M. Bohner; citation_volume=12; citation_issue=1; citation_publication_date=2017; citation_pages=1-16; citation_id=CR1"/> <meta name="citation_reference" content="citation_title=Implicit Fractional Differential and Integral Equations: Existence and Stability; citation_publication_date=2018; citation_id=CR2; citation_author=S. Abbas; citation_author=M. Benchohra; citation_author=J.R. Graef; citation_author=J. Henderson; citation_publisher=De Gruyter"/> <meta name="citation_reference" content="citation_title=Topics in Fractional Differential Equations; citation_publication_date=2012; citation_id=CR3; citation_author=S. Abbas; citation_author=M. Benchohra; citation_author=G.M. N’Guérékata; citation_publisher=Springer"/> <meta name="citation_reference" content="citation_title=Advanced Fractional Differential and Integral Equations; citation_publication_date=2015; citation_id=CR4; citation_author=S. Abbas; citation_author=M. Benchohra; citation_author=G.M. N’Guérékata; citation_publisher=Nova Science Publishers"/> <meta name="citation_reference" content="citation_journal_title=Fract. Calc. Appl. Anal.; citation_title=On fractional order derivatives and Darboux problem for implicit differential equations; citation_author=S. Abbas, M. Benchohra, A.N. Vityuk; citation_volume=15; citation_issue=2; citation_publication_date=2012; citation_pages=168-182; citation_doi=10.2478/s13540-012-0012-5; citation_id=CR5"/> <meta name="citation_reference" content="citation_title=Measures of Noncompactness and Condensing Operators; citation_publication_date=1992; citation_id=CR6; citation_author=R.R. Akhmerov; citation_author=M.I. Kamenskii; citation_author=A.S. Patapov; citation_author=A.E. Rodkina; citation_author=B.N. Sadovskii; citation_publisher=Birkhauser Verlag"/> <meta name="citation_reference" content="citation_journal_title=Rev. Real. Acad. Cienc. Exact. Fis. Natur. Madrid; citation_title=Measure of noncompactness and fixed points of nonexpansive condensing mappings in locally convex spaces; citation_author=J.C. Alvárez; citation_volume=79; citation_publication_date=1985; citation_pages=53-66; citation_id=CR7"/> <meta name="citation_reference" content="citation_title=Measures of Noncompactness in Banach Spaces; citation_publication_date=1980; citation_id=CR8; citation_author=J. Banaś; citation_author=K. Goebel; citation_publisher=Marcel Dekker"/> <meta name="citation_reference" content="citation_journal_title=Ann. Mat. Pura Appl.; citation_title=An existence theorem for implicit differential equations in a Banach space; citation_author=T.D. Benavides; citation_volume=4; citation_publication_date=1978; citation_pages=119-130; citation_doi=10.1007/BF02415125; citation_id=CR9"/> <meta name="citation_reference" content="citation_journal_title=Nonlinear Dyn. Syst. Theory; citation_title=Weak solutions for boundary-value problems with nonlinear fractional differential inclusions; citation_author=M. Benchohra, J. Graef, F.Z. Mostefai; citation_volume=11; citation_issue=3; citation_publication_date=2011; citation_pages=227-237; citation_id=CR10"/> <meta name="citation_reference" content="citation_journal_title=Comput. Math. Appl.; citation_title=Weak solutions for hyperbolic partial fractional differential inclusions in Banach spaces; citation_author=M. Benchohra, J. Henderson, F.Z. Mostefai; citation_volume=64; citation_publication_date=2012; citation_pages=3101-3107; citation_doi=10.1016/j.camwa.2011.12.055; citation_id=CR11"/> <meta name="citation_reference" content="citation_journal_title=Commun. Appl. Anal.; citation_title=Measure of noncompactness and fractional differential equations in Banach spaces; citation_author=M. Benchohra, J. Henderson, D. Seba; citation_volume=12; citation_issue=4; citation_publication_date=2008; citation_pages=419-428; citation_id=CR12"/> <meta name="citation_reference" content="citation_journal_title=Nonlinear Anal.; citation_title=Kneser’s theorem for weak solutions of the Darboux problem in a Banach space; citation_author=D. Bugajewski, S. Szufla; citation_volume=20; citation_issue=2; citation_publication_date=1993; citation_pages=169-173; citation_doi=10.1016/0362-546X(93)90015-K; citation_id=CR13"/> <meta name="citation_reference" content="citation_journal_title=Bull. Math. Soc. Sci. Math. Roum.; citation_title=On the property of the unit sphere in a Banach space; citation_author=F.S. Blasi; citation_volume=21; citation_publication_date=1977; citation_pages=259-262; citation_id=CR14"/> <meta name="citation_reference" content="citation_journal_title=Electron. J. Differ. Equ.; citation_title=Non-existence of global solutions for a differential equation involving Hilfer fractional derivative; citation_author=K.M. Furati, M.D. Kassim; citation_volume=2013; citation_publication_date=2013; citation_doi=10.1186/1687-1847-2013-235; citation_id=CR15"/> <meta name="citation_reference" content="citation_journal_title=Comput. Math. Appl.; citation_title=Existence and uniqueness for a problem involving Hilfer fractional derivative; citation_author=K.M. Furati, M.D. Kassim, N.E. Tatar; citation_volume=64; citation_publication_date=2012; citation_pages=1616-1626; citation_doi=10.1016/j.camwa.2012.01.009; citation_id=CR16"/> <meta name="citation_reference" content="citation_title=Nonlinear Integral Equations in Abstract Spaces; citation_publication_date=1996; citation_id=CR17; citation_author=D. Guo; citation_author=V. Lakshmikantham; citation_author=X. Liu; citation_publisher=Kluwer Academic"/> <meta name="citation_reference" content="citation_title=Applications of Fractional Calculus in Physics; citation_publication_date=2000; citation_id=CR18; citation_author=R. Hilfer; citation_publisher=World Scientific"/> <meta name="citation_reference" content="citation_journal_title=Int. J. Bifurc. Chaos; citation_title=Existence results for fractional boundary value problem via critical point theory; citation_author=F. Jiao, Y. Zhou; citation_volume=22; citation_issue=4; citation_publication_date=2012; citation_doi=10.1142/S0218127412500861; citation_id=CR19"/> <meta name="citation_reference" content="citation_journal_title=Electron. J. Qual. Theory Differ. Equ.; citation_title=On fractional Cauchy-type problems containing Hilfer’s derivative; citation_author=R. Kamocki, C. Obczyński; citation_volume=2016; citation_publication_date=2016; citation_doi=10.1186/s13662-015-0735-9; citation_id=CR20"/> <meta name="citation_reference" content="citation_journal_title=J. Korean Math. Soc.; citation_title=Hadamard-type fractional calculus; citation_author=A.A. Kilbas; citation_volume=38; citation_issue=6; citation_publication_date=2001; citation_pages=1191-1204; citation_id=CR21"/> <meta name="citation_reference" content="citation_title=Theory and Applications of Fractional Differential Equations; citation_publication_date=2006; citation_id=CR22; citation_author=A.A. Kilbas; citation_author=H.M. Srivastava; citation_author=J.J. Trujillo; citation_publisher=Elsevier Science B.V."/> <meta name="citation_reference" content="citation_journal_title=Appl. Math. Comput.; citation_title=Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations; citation_author=M. Li, J.R. Wang; citation_volume=324; citation_publication_date=2018; citation_pages=254-265; citation_id=CR23"/> <meta name="citation_reference" content="citation_title=Nonlinear equations in abstract spaces; citation_inbook_title=An Existence Theorem for Weak Solutions of Differential Equations in Banach Spaces; citation_publication_date=1978; citation_pages=387-403; citation_id=CR24; citation_author=A.R. Mitchell; citation_author=C. Smith; citation_publisher=Academic Press"/> <meta name="citation_reference" content="citation_journal_title=Math. Comput. Model.; citation_title=Fixed point theory for weakly sequentially continuous mapping; citation_author=D. O’Regan; citation_volume=27; citation_issue=5; citation_publication_date=1998; citation_pages=1-14; citation_doi=10.1016/S0895-7177(98)00014-4; citation_id=CR25"/> <meta name="citation_reference" content="citation_journal_title=Appl. Math. Lett.; citation_title=Weak solutions of ordinary differential equations in Banach spaces; citation_author=D. O’Regan; citation_volume=12; citation_publication_date=1999; citation_pages=101-105; citation_doi=10.1016/S0893-9659(98)00133-5; citation_id=CR26"/> <meta name="citation_reference" content="citation_journal_title=Trans. Am. Math. Soc.; citation_title=On integration in vector spaces; citation_author=B.J. Pettis; citation_volume=44; citation_publication_date=1938; citation_pages=277-304; citation_doi=10.1090/S0002-9947-1938-1501970-8; citation_id=CR27"/> <meta name="citation_reference" content="citation_journal_title=Abstr. Appl. Anal.; citation_title=On a differential equation involving Hilfer–Hadamard fractional derivative; citation_author=M.D. Qassim, K.M. Furati, N.-E. Tatar; citation_volume=2012; citation_publication_date=2012; citation_doi=10.1155/2012/391062; citation_id=CR28"/> <meta name="citation_reference" content="citation_journal_title=Abstr. Appl. Anal.; citation_title=Well-posedness and stability for a differential problem with Hilfer–Hadamard fractional derivative; citation_author=M.D. Qassim, N.E. Tatar; citation_volume=2013; citation_publication_date=2013; citation_id=CR29"/> <meta name="citation_reference" content="citation_title=Fractional Integrals and Derivatives. Theory and Applications; citation_publication_date=1987; citation_id=CR30; citation_author=S.G. Samko; citation_author=A.A. Kilbas; citation_author=O.I. Marichev; citation_publisher=Gordon and Breach"/> <meta name="citation_reference" content="citation_title=Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media; citation_publication_date=2010; citation_id=CR31; citation_author=V.E. Tarasov; citation_publisher=Springer"/> <meta name="citation_reference" content="citation_journal_title=Integral Transforms Spec. Funct.; citation_title=Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions; citation_author=Ž. Tomovski, R. Hilfer, H.M. Srivastava; citation_volume=21; citation_issue=11; citation_publication_date=2010; citation_pages=797-814; citation_doi=10.1080/10652461003675737; citation_id=CR32"/> <meta name="citation_reference" content="citation_journal_title=J. Math. Sci.; citation_title=The Darboux problem for an implicit fractional-order differential equation; citation_author=A.N. Vityuk, A.V. Mykhailenko; citation_volume=175; citation_issue=4; citation_publication_date=2011; citation_pages=391-401; citation_doi=10.1007/s10958-011-0353-3; citation_id=CR33"/> <meta name="citation_reference" content="citation_journal_title=Appl. Math. Comput.; citation_title=Nonlocal initial value problems for differential equations with Hilfer fractional derivative; citation_author=J.R. Wang, Y. Zhang; citation_volume=266; citation_publication_date=2015; citation_pages=850-859; citation_id=CR34"/> <meta name="citation_reference" content="citation_journal_title=Fract. Calc. Appl. Anal.; citation_title=Attractivity for fractional evolution equations with almost sectorial operators; citation_author=Y. Zhou; citation_volume=21; citation_issue=3; citation_publication_date=2018; citation_pages=786-800; citation_doi=10.1515/fca-2018-0041; citation_id=CR35"/> <meta name="citation_reference" content="citation_journal_title=Appl. Math. Lett.; citation_title=Existence of nonoscillatory solutions for fractional neutral differential equations; citation_author=Y. Zhou, B. Ahmad, A. Alsaedi; citation_volume=72; citation_publication_date=2017; citation_pages=70-74; citation_doi=10.1016/j.aml.2017.04.016; citation_id=CR36"/> <meta name="citation_reference" content="citation_journal_title=Math. Methods Appl. Sci.; citation_title=A class of time-fractional reaction–diffusion equation with nonlocal boundary condition; citation_author=Y. Zhou, L. Shangerganesh, J. Manimaran, A. Debbouche; citation_volume=41; citation_publication_date=2018; citation_pages=2987-2999; citation_doi=10.1002/mma.4796; citation_id=CR37"/> <meta name="citation_reference" content="citation_journal_title=Evol. Equ. Control Theory; citation_title=Controllability for fractional evolution inclusions without compactness; citation_author=Y. Zhou, V. Vijayakumar, R. Murugesu; citation_volume=4; citation_publication_date=2015; citation_pages=507-524; citation_doi=10.3934/eect.2015.4.507; citation_id=CR38"/> <meta name="citation_reference" content="citation_journal_title=Comput. Math. Appl.; citation_title=Existence and multiplicity results of homoclinic solutions for fractional Hamiltonian systems; citation_author=Y. Zhou, L. Zhang; citation_volume=73; citation_publication_date=2017; citation_pages=1325-1345; citation_doi=10.1016/j.camwa.2016.04.041; citation_id=CR39"/> <meta name="citation_reference" content="citation_journal_title=J. Integral Equ. Appl.; citation_title=Existence of mild solutions for fractional evolution equations; citation_author=Y. Zhou, L. Zhang, X.H. Shen; citation_volume=25; citation_publication_date=2013; citation_pages=557-586; citation_doi=10.1216/JIE-2013-25-4-557; citation_id=CR40"/> <meta name="citation_author" content="Abbas, Saïd"/> <meta name="citation_author_institution" content="Laboratory of Mathematics, Geometry, Analysis, Control and Applications, Tahar Moulay University of Saïda, Saïda, Algeria"/> <meta name="citation_author" content="Benchohra, Mouffak"/> <meta name="citation_author_institution" content="Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès, Sidi Bel-Abbès, Algeria"/> <meta name="citation_author" content="Hamidi, Naima"/> <meta name="citation_author_institution" content="Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès, Sidi Bel-Abbès, Algeria"/> <meta name="citation_author" content="Zhou, Yong"/> <meta name="citation_author_institution" content="Faculty of Mathematics and Computational Science, Xiangtan University, Hunan, P.R. China"/> <meta name="citation_author_institution" content="Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia"/> <meta name="format-detection" content="telephone=no"> <link rel="apple-touch-icon" sizes="180x180" href=/static/img/favicons/darwin/apple-touch-icon.png> <link rel="icon" type="image/png" sizes="192x192" href=/static/img/favicons/darwin/android-chrome-192x192.png> <link rel="icon" type="image/png" sizes="32x32" href=/static/img/favicons/darwin/favicon-32x32.png> <link rel="icon" type="image/png" sizes="16x16" href=/static/img/favicons/darwin/favicon-16x16.png> <link rel="shortcut icon" data-test="shortcut-icon" href=/static/img/favicons/darwin/favicon.ico> <meta name="theme-color" content="#e6e6e6"> <script>(function(H){H.className=H.className.replace(/\bno-js\b/,'js')})(document.documentElement)</script> <link rel="stylesheet" media="screen" href=/static/app-springeropen/css/core-article-f3872e738d.css> <link rel="stylesheet" media="screen" href=/static/app-springeropen/css/core-b516af10bc.css> <link rel="stylesheet" media="print" href=/static/app-springeropen/css/print-b8af42253b.css> <!-- This template is only used by BMC for now --> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { button{line-height:inherit}html,label{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}html{-webkit-font-smoothing:subpixel-antialiased;box-sizing:border-box;color:#333;font-size:100%;height:100%;line-height:1.61803;overflow-y:scroll}*{box-sizing:inherit}body{background:#fcfcfc;margin:0;max-width:100%;min-height:100%}button,div,form,input,p{margin:0;padding:0}body{padding:0}a{color:#004b83;text-decoration:underline;text-decoration-skip-ink:auto}a>img{vertical-align:middle}h1{font-size:2.25rem}h2{font-size:1.75rem}h1,h2,h3{font-family:Georgia,Palatino,serif;font-style:normal;font-weight:400;line-height:1.4}h3{font-size:1.5rem}h1,h2,h3{margin:0}h2+*{margin-block-start:1rem}h1+*{margin-block-start:3rem}[style*="display: none"]:first-child+*{margin-block-start:0}.c-navbar{background:#e6e6e6;border-bottom:1px solid #d9d9d9;border-top:1px solid #d9d9d9;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;line-height:1.61803;padding:16px 0}.c-navbar--with-submit-button{padding-bottom:24px}@media only screen and (min-width:540px){.c-navbar--with-submit-button{padding-bottom:16px}}.c-navbar__container{display:flex;flex-wrap:wrap;justify-content:space-between;margin:0 auto;max-width:1280px;padding:0 16px}.c-navbar__content{display:flex;flex:0 1 auto}.c-navbar__nav{align-items:center;display:flex;flex-wrap:wrap;gap:16px 16px;list-style:none;margin:0;padding:0}.c-navbar__item{flex:0 0 auto}.c-navbar__link{background:0 0;border:0;color:currentcolor;display:block;text-decoration:none;text-transform:capitalize}.c-navbar__link--is-shown{text-decoration:underline}.c-ad{text-align:center}@media only screen and (min-width:320px){.c-ad{padding:8px}}.c-ad--728x90{background-color:#ccc;display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}.c-ad--728x90 iframe{height:90px;max-width:970px}@media only screen and (min-width:768px){.js .c-ad--728x90{display:none}.js .u-show-following-ad+.c-ad--728x90{display:block}}.c-ad iframe{border:0;overflow:auto;vertical-align:top}.c-ad__label{color:#333;font-weight:400;line-height:1.5;margin-bottom:4px}.c-ad__label,.c-skip-link{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem}.c-skip-link{background:#f7fbfe;bottom:auto;color:#004b83;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:link{color:#004b83}.c-dropdown__button:after{border-color:transparent transparent transparent #fff;border-style:solid;border-width:4px 0 4px 14px;content:"";display:block;height:0;margin-left:3px;width:0}.c-dropdown{display:inline-block;position:relative}.c-dropdown__button{background-color:transparent;border:0;display:inline-block;padding:0;white-space:nowrap}.c-dropdown__button:after{border-color:currentcolor transparent transparent;border-width:5px 4px 0 5px;display:inline-block;margin-left:8px;vertical-align:middle}.c-dropdown__menu{background-color:#fff;border:1px solid #d9d9d9;border-radius:3px;box-shadow:0 2px 6px rgba(0,0,0,.1);font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.125rem;line-height:1.4;list-style:none;margin:0;padding:8px 0;position:absolute;top:100%;transform:translateY(8px);width:180px;z-index:100}.c-dropdown__menu:after,.c-dropdown__menu:before{border-style:solid;bottom:100%;content:"";display:block;height:0;left:16px;position:absolute;width:0}.c-dropdown__menu:before{border-color:transparent transparent #d9d9d9;border-width:0 9px 9px;transform:translateX(-1px)}.c-dropdown__menu:after{border-color:transparent transparent #fff;border-width:0 8px 8px}.c-dropdown__menu--right{left:auto;right:0}.c-dropdown__menu--right:after,.c-dropdown__menu--right:before{left:auto;right:16px}.c-dropdown__menu--right:before{transform:translateX(1px)}.c-dropdown__link{background-color:transparent;color:#004b83;display:block;padding:4px 16px}.c-header{background-color:#fff;border-bottom:4px solid #00285a;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.125rem;padding:16px 0}.c-header__container,.c-header__menu{align-items:center;display:flex;flex-wrap:wrap}@supports (gap:2em){.c-header__container,.c-header__menu{gap:2em 2em}}.c-header__menu{list-style:none;margin:0;padding:0}.c-header__item{color:inherit}@supports not (gap:2em){.c-header__item{margin-left:24px}}.c-header__container{justify-content:space-between;margin:0 auto;max-width:1280px;padding:0 16px}@supports not (gap:2em){.c-header__brand{margin-right:32px}}.c-header__brand a{display:block;text-decoration:none}.c-header__link{color:inherit}.c-form-field{margin-bottom:1em}.c-form-field__label{color:#666;display:block;font-size:.875rem;margin-bottom:.4em}.c-form-field__input{border:1px solid #b3b3b3;border-radius:3px;box-shadow:inset 0 1px 3px 0 rgba(0,0,0,.21);font-size:.875rem;line-height:1.28571;padding:.75em 1em;vertical-align:middle;width:100%}.c-journal-header__title>a{color:inherit}.c-popup-search{background-color:#f2f2f2;box-shadow:0 3px 3px -3px rgba(0,0,0,.21);padding:16px 0;position:relative;z-index:10}@media only screen and (min-width:1024px){.js .c-popup-search{position:absolute;top:100%;width:100%}.c-popup-search__container{margin:auto;max-width:70%}}.ctx-search .c-form-field{margin-bottom:0}.ctx-search .c-form-field__input{border-bottom-right-radius:0;border-top-right-radius:0;margin-right:0}.c-journal-header{background-color:#f2f2f2;padding-top:16px}.c-journal-header__title{font-size:1.3125rem;margin:0 0 16px}.c-journal-header__grid{column-gap:1.25rem;display:grid;grid-template-areas:"main" "side";grid-template-columns:1fr;width:100%}@media only screen and (min-width:768px){.c-journal-header__grid{column-gap:1.25rem;grid-template-areas:"main side";grid-template-columns:1fr 160px}}@media only screen and (min-width:1024px){.c-journal-header__grid{column-gap:3.125rem;grid-template-areas:"main side";grid-template-columns:1fr 190px}}@media only screen and (min-width:768px){.c-journal-header__grid-main{margin:0!important;width:auto!important}}.c-journal-header__grid-main{grid-area:main/main/main/main}.c-navbar{font-size:.875rem}.u-button{align-items:center;background-color:#f2f2f2;background-image:linear-gradient(#fff,#f2f2f2);border:1px solid #ccc;border-radius:2px;cursor:pointer;display:inline-flex;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;justify-content:center;line-height:1.3;margin:0;padding:8px;position:relative;text-decoration:none;transition:all .25s ease 0s,color .25s ease 0s,border-color .25s ease 0s;width:auto}.u-button svg,.u-button--primary svg,.u-button--tertiary svg{fill:currentcolor}.u-button{color:#004b83}.u-button--primary,.u-button--tertiary{background-color:#33629d;background-image:linear-gradient(#4d76a9,#33629d);border:1px solid rgba(0,59,132,.5);color:#fff}.u-button--tertiary{font-weight:400}.u-button--full-width{display:flex;width:100%}.u-clearfix:after,.u-clearfix:before{content:"";display:table}.u-clearfix:after{clear:both}.u-color-open-access{color:#b74616}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-display-flex{display:flex;width:100%}.u-align-items-center{align-items:center}.u-justify-content-space-between{justify-content:space-between}.u-flex-static{flex:0 0 auto}.u-display-none{display:none}.js .u-js-hide{display:none;visibility:hidden}@media print{.u-hide-print{display:none}}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-list-reset{list-style:none;margin:0;padding:0}.u-position-relative{position:relative}.u-mt-32{margin-top:32px}.u-mr-24{margin-right:24px}.u-mr-48{margin-right:48px}.u-mb-32{margin-bottom:32px}.u-ml-8{margin-left:8px}.u-button-reset{background-color:transparent;border:0;padding:0}.u-text-sm{font-size:1rem}.u-h3,.u-h4{font-style:normal;line-height:1.4}.u-h3{font-family:Georgia,Palatino,serif;font-size:1.5rem;font-weight:400}.u-h4{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.25rem;font-weight:700}.u-vh-full{min-height:100vh}.u-hide{display:none;visibility:hidden}.u-hide:first-child+*{margin-block-start:0}@media only screen and (min-width:1024px){.u-hide-at-lg{display:none;visibility:hidden}}@media only screen and (max-width:1023px){.u-hide-at-lt-lg{display:none;visibility:hidden}.u-hide-at-lt-lg:first-child+*{margin-block-start:0}}.u-visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}.u-button--tertiary{font-size:.875rem;padding:8px 16px}@media only screen and (max-width:539px){.u-button--alt-colour-on-mobile{background-color:#f2f2f2;background-image:linear-gradient(#fff,#f2f2f2);border:1px solid #ccc;color:#004b83}}body{font-size:1.125rem}.c-header__navigation{display:flex;gap:.5rem .5rem} }</style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { button{line-height:inherit}html,label{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}html{-webkit-font-smoothing:subpixel-antialiased;box-sizing:border-box;color:#333;font-size:100%;height:100%;line-height:1.61803;overflow-y:scroll}*{box-sizing:inherit}body{background:#fcfcfc;margin:0;max-width:100%;min-height:100%}button,div,form,input,p{margin:0;padding:0}body{padding:0}a{color:#004b83;overflow-wrap:break-word;text-decoration:underline;text-decoration-skip-ink:auto;word-break:break-word}a>img{vertical-align:middle}h1{font-size:2.25rem}h2{font-size:1.75rem}h1,h2,h3{font-family:Georgia,Palatino,serif;font-style:normal;font-weight:400;line-height:1.4}h3{font-size:1.5rem}h1,h2,h3{margin:0}h2+*{margin-block-start:1rem}h1+*{margin-block-start:3rem}[style*="display: none"]:first-child+*{margin-block-start:0}p{overflow-wrap:break-word;word-break:break-word}.c-article-associated-content__container .c-article-associated-content__collection-label,.u-h3{font-weight:700}.u-h3{font-size:1.5rem}.c-reading-companion__figure-title,.u-h4{font-size:1.25rem;font-weight:700}body{font-size:1.125rem}.c-article-header{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;margin-bottom:40px}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}.c-article-title{font-size:1.5rem;line-height:1.25;margin-bottom:16px}@media only screen and (min-width:768px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list svg{margin-left:4px}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:539px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#173962;border-color:transparent;color:#fff}.c-article-info-details{font-size:1rem;margin-bottom:8px;margin-top:16px}.c-article-info-details__cite-as{border-left:1px solid #6f6f6f;margin-left:8px;padding-left:8px}.c-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3}.c-article-metrics-bar__wrapper{margin:0 0 16px}.c-article-metrics-bar__item{align-items:baseline;border-right:1px solid #6f6f6f;margin-right:8px}.c-article-metrics-bar__item:last-child{border-right:0}.c-article-metrics-bar__count{font-weight:700;margin:0}.c-article-metrics-bar__label{color:#626262;font-style:normal;font-weight:400;margin:0 10px 0 5px}.c-article-metrics-bar__details{margin:0}.c-article-main-column{font-family:Georgia,Palatino,serif;margin-right:8.6%;width:60.2%}@media only screen and (max-width:1023px){.c-article-main-column{margin-right:0;width:100%}}.c-article-extras{float:left;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;width:31.2%}@media only screen and (max-width:1023px){.c-article-extras{display:none}}.c-article-associated-content__container .c-article-associated-content__title,.c-article-section__title{border-bottom:2px solid #d5d5d5;font-size:1.25rem;margin:0;padding-bottom:8px}@media only screen and (min-width:768px){.c-article-associated-content__container .c-article-associated-content__title,.c-article-section__title{font-size:1.5rem;line-height:1.24}}.c-article-associated-content__container .c-article-associated-content__title{margin-bottom:8px}.c-article-section{clear:both}.c-article-section__content{margin-bottom:40px;margin-top:0;padding-top:8px}@media only screen and (max-width:1023px){.c-article-section__content{padding-left:0}}.c-article__sub-heading{color:#222;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.125rem;font-style:normal;font-weight:400;line-height:1.3;margin:24px 0 8px}@media only screen and (min-width:768px){.c-article__sub-heading{font-size:1.5rem;line-height:1.24}}.c-article__sub-heading:first-child{margin-top:0}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#069;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-context-bar{box-shadow:0 0 10px 0 rgba(51,51,51,.2);position:relative;width:100%}.c-context-bar__title{display:none}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__sticky{max-width:389px}.c-reading-companion__scroll-pane{margin:0;min-height:200px;overflow:hidden auto}.c-reading-companion__tabs{display:flex;flex-flow:row nowrap;font-size:1rem;list-style:none;margin:0 0 8px;padding:0}.c-reading-companion__tabs>li{flex-grow:1}.c-reading-companion__tab{background-color:#eee;border:1px solid #d5d5d5;border-image:initial;border-left-width:0;color:#069;font-size:1rem;padding:8px 8px 8px 15px;text-align:left;width:100%}.c-reading-companion__tabs li:first-child .c-reading-companion__tab{border-left-width:1px}.c-reading-companion__tab--active{background-color:#fcfcfc;border-bottom:1px solid #fcfcfc;color:#222;font-weight:700}.c-reading-companion__sections-list{list-style:none;padding:0}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__references-list--numeric{list-style:decimal inside}.c-reading-companion__sections-list{margin:0 0 8px;min-height:50px}.c-reading-companion__section-item{font-size:1rem;padding:0}.c-reading-companion__section-item a{display:block;line-height:1.5;overflow:hidden;padding:8px 0 8px 16px;text-overflow:ellipsis;white-space:nowrap}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:8px 8px 8px 16px}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-reading-companion__figure-full-link svg{height:.8em;margin-left:2px}.c-reading-companion__panel{border-top:none;display:none;margin-top:0;padding-top:0}.c-reading-companion__panel--active{display:block}.c-pdf-download__link .u-icon{padding-top:2px}.c-pdf-download{display:flex;margin-bottom:16px;max-height:48px}@media only screen and (min-width:540px){.c-pdf-download{max-height:none}}@media only screen and (min-width:1024px){.c-pdf-download{max-height:48px}}.c-pdf-download__link{display:flex;flex:1 1 0%;padding:13px 24px!important}.c-pdf-download__text{padding-right:4px}@media only screen and (max-width:539px){.c-pdf-download__text{text-transform:capitalize}}@media only screen and (min-width:540px){.c-pdf-download__text{padding-right:8px}}.c-pdf-container{display:flex;justify-content:flex-end}@media only screen and (max-width:539px){.c-pdf-container .c-pdf-download{display:flex;flex-basis:100%}}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-hide:first-child+*{margin-block-start:0}.u-visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}@media print{.u-hide-print{display:none}}@media only screen and (min-width:1024px){.u-hide-at-lg{display:none;visibility:hidden}}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-list-reset{list-style:none;margin:0;padding:0}.hide{display:none;visibility:hidden}.c-journal-header__title>a{color:inherit}.c-article-associated-content__container .c-article-associated-content__collection.collection~.c-article-associated-content__collection.collection .c-article-associated-content__collection-label,.c-article-associated-content__container .c-article-associated-content__collection.section~.c-article-associated-content__collection.section .c-article-associated-content__collection-label,.c-article-associated-content__container .c-article-associated-content__title{display:none}.c-article-associated-content__container a{text-decoration:underline}.c-article-associated-content__container .c-article-associated-content__collection.collection .c-article-associated-content__collection-label,.c-article-associated-content__container .c-article-associated-content__collection.section .c-article-associated-content__collection-label{display:block}.c-article-associated-content__container .c-article-associated-content__collection.collection,.c-article-associated-content__container .c-article-associated-content__collection.section{margin-bottom:5px}.c-article-associated-content__container .c-article-associated-content__collection.section~.c-article-associated-content__collection.collection{margin-top:28px}.c-article-associated-content__container .c-article-associated-content__collection:first-child{margin-top:0}.c-article-associated-content__container .c-article-associated-content__collection-label{color:#1b3051;margin-bottom:8px}.c-article-associated-content__container .c-article-associated-content__collection-title{font-size:1.0625rem;font-weight:400} }</style> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href="/static/app-springeropen/css/enhanced-3013c4b686.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href="/static/app-springeropen/css/enhanced-article-49340521ae.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <script type="text/javascript"> config = { env: 'live', site: 'advancesincontinuousanddiscretemodels.springeropen.com', siteWithPath: 'advancesincontinuousanddiscretemodels.springeropen.com' + window.location.pathname, twitterHashtag: '', cmsPrefix: 'https://studio-cms.springernature.com/studio/', doi: '10.1186/s13662-018-1787-4', figshareScriptUrl: 'https://widgets.figshare.com/static/figshare.js', hasFigshareInvoked: false, publisherBrand: 'SpringerOpen', mustardcut: false }; </script> <script type="text/javascript" data-test="dataLayer"> window.dataLayer = [{"content":{"article":{"doi":"10.1186/s13662-018-1787-4","articleType":"Research","peerReviewType":"Closed","supplement":null,"keywords":"26A33;45D05;45G05;45M10;Coupled fractional differential system;Left-sided mixed Pettis–Hadamard integral of fractional order;Hilfer–Hadamard fractional derivative;Weak solution;Implicit;Fixed point"},"contentInfo":{"imprint":"SpringerOpen","title":"Implicit coupled Hilfer–Hadamard fractional differential systems under weak topologies","publishedAt":1537228800000,"publishedAtDate":"2018-09-18","author":["Saïd Abbas","Mouffak Benchohra","Naima Hamidi","Yong Zhou"],"collection":[]},"attributes":{"deliveryPlatform":"oscar","template":"classic","cms":null,"copyright":{"creativeCommonsType":"CC BY","openAccess":true},"environment":"live"},"journal":{"siteKey":"advancesincontinuousanddiscretemodels.springeropen.com","volume":"2018","issue":"1","title":"Advances in Continuous and Discrete Models","type":null,"journalID":13662,"section":[]},"category":{"pmc":{"primarySubject":"Mathematics"},"contentType":"Research","publishingSegment":"Math-12","snt":["Difference and Functional Equations","Mathematics","Analysis","Functional Analysis","Differential Equations"]}},"session":{"authentication":{"authenticationID":[]}},"version":"1.0.0","page":{"category":{"pageType":"article"},"attributes":{"featureFlags":[],"environment":"live","darwin":false}},"japan":false,"event":"dataLayerCreated","collection":null,"publisherBrand":"SpringerOpen"}]; </script> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ ga4MeasurementId: 'G-PJCTJWPV25', ga360TrackingId: 'UA-54492316-9', twitterId: 'o47a2', baiduId: '29dee5557e2c7961c284a143a770fac0', ga4ServerUrl: 'https://collect.biomedcentral.com', imprint: 'springeropen' }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <script> (function () { if ( typeof window.CustomEvent === "function" ) return false; function CustomEvent ( event, params ) { params = params || { bubbles: false, cancelable: false, detail: null }; var evt = document.createEvent( 'CustomEvent' ); evt.initCustomEvent( event, params.bubbles, params.cancelable, params.detail ); return evt; } CustomEvent.prototype = window.Event.prototype; window.CustomEvent = CustomEvent; })(); </script> <script class="js-entry"> if (window.config.mustardcut) { (function(w, d) { window.Component = {}; window.suppressShareButton = true; window.onArticlePage = true; var currentScript = d.currentScript || d.head.querySelector('script.js-entry'); function catchNoModuleSupport() { var scriptEl = d.createElement('script'); return (!('noModule' in scriptEl) && 'onbeforeload' in scriptEl) } var headScripts = [ {'src': '/static/js/polyfill-es5-bundle-572d4fec60.js', 'async': false} ]; var bodyScripts = [ {'src': '/static/js/app-es5-bundle-d0ac94c97e.js', 'async': false, 'module': false}, {'src': '/static/js/app-es6-bundle-5ee1a6879c.js', 'async': false, 'module': true} , {'src': '/static/js/global-article-es5-bundle-1c69b4c5bd.js', 'async': false, 'module': false}, {'src': '/static/js/global-article-es6-bundle-4ce7a1563f.js', 'async': false, 'module': true} ]; function createScript(script) { var scriptEl = d.createElement('script'); scriptEl.src = script.src; scriptEl.async = script.async; if (script.module === true) { scriptEl.type = "module"; if (catchNoModuleSupport()) { scriptEl.src = ''; } } else if (script.module === false) { scriptEl.setAttribute('nomodule', true) } if (script.charset) { scriptEl.setAttribute('charset', script.charset); } return scriptEl; } for (var i = 0; i < headScripts.length; ++i) { var scriptEl = createScript(headScripts[i]); currentScript.parentNode.insertBefore(scriptEl, currentScript.nextSibling); } d.addEventListener('DOMContentLoaded', function() { for (var i = 0; i < bodyScripts.length; ++i) { var scriptEl = createScript(bodyScripts[i]); d.body.appendChild(scriptEl); } }); // Webfont repeat view var config = w.config; if (config && config.publisherBrand && sessionStorage.fontsLoaded === 'true') { d.documentElement.className += ' webfonts-loaded'; } })(window, document); } </script> <script data-src="https://cdn.optimizely.com/js/27195530232.js" data-cc-script="C03"></script> <script data-test="gtm-head"> window.initGTM = function() { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://sgtm.springernature.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } </script> <meta name="360-site-verification" content="6ebcece7bd3d627674314d9ecc077510" /> <script> (function (w, d, t) { function cc() { var h = w.location.hostname; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('springer.com') > -1 && h.indexOf('biomedcentral.com') === -1 && h.indexOf('springeropen.com') === -1) { if (h.indexOf('link-qa.springer.com') > -1 || h.indexOf('test-www.springer.com') > -1) { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-54.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-54.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('biomedcentral.com') > -1) { if (h.indexOf('biomedcentral.com.qa') > -1) { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-39.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-39.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springeropen.com') > -1) { if (h.indexOf('springeropen.com.qa') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springernature.com') > -1) { if (h.indexOf('beta-qa.springernature.com') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } } else { e.src = '/static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window, document, 'script'); </script> <link rel="canonical" href="https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-018-1787-4"/> <meta property="og:url" content="https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-018-1787-4"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="SpringerOpen"/> <meta property="og:title" content="Implicit coupled Hilfer–Hadamard fractional differential systems under weak topologies - Advances in Continuous and Discrete Models"/> <meta property="og:description" content="In this article, we present some existence of weak solutions for a coupled system of implicit fractional differential equations of Hilfer–Hadamard type. Our approach is based on Mönch’s fixed point theorem associated with the technique of measure of weak noncompactness."/> <meta property="og:image" content="https://media.springernature.com/full/springer-static/cover-hires/journal/13662"/> <script type="application/ld+json">{"mainEntity":{"headline":"Implicit coupled Hilfer–Hadamard fractional differential systems under weak topologies","description":"In this article, we present some existence of weak solutions for a coupled system of implicit fractional differential equations of Hilfer–Hadamard type. Our approach is based on Mönch’s fixed point theorem associated with the technique of measure of weak noncompactness.","datePublished":"2018-09-18T00:00:00Z","dateModified":"2018-09-18T00:00:00Z","pageStart":"1","pageEnd":"17","sameAs":"https://doi.org/10.1186/s13662-018-1787-4","keywords":["26A33","45D05","45G05","45M10","Coupled fractional differential system","Left-sided mixed Pettis–Hadamard integral of fractional order","Hilfer–Hadamard fractional derivative","Weak solution","Implicit","Fixed point","Difference and Functional Equations","Mathematics","general","Analysis","Functional Analysis","Ordinary Differential Equations","Partial Differential Equations"],"image":[],"isPartOf":{"name":"Advances in Difference Equations","issn":["1687-1847"],"volumeNumber":"2018","@type":["Periodical","PublicationVolume"]},"publisher":{"name":"Springer International Publishing","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Saïd Abbas","affiliation":[{"name":"Tahar Moulay University of Saïda","address":{"name":"Laboratory of Mathematics, Geometry, Analysis, Control and Applications, Tahar Moulay University of Saïda, Saïda, Algeria","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Mouffak Benchohra","affiliation":[{"name":"Djillali Liabes University of Sidi Bel-Abbès","address":{"name":"Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès, Sidi Bel-Abbès, Algeria","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Naima Hamidi","affiliation":[{"name":"Djillali Liabes University of Sidi Bel-Abbès","address":{"name":"Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès, Sidi Bel-Abbès, Algeria","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Yong Zhou","url":"http://orcid.org/0000-0002-4099-8077","affiliation":[{"name":"Xiangtan University","address":{"name":"Faculty of Mathematics and Computational Science, Xiangtan University, Hunan, P.R. China","@type":"PostalAddress"},"@type":"Organization"},{"name":"King Abdulaziz University","address":{"name":"Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia","@type":"PostalAddress"},"@type":"Organization"}],"email":"yzhou@xtu.edu.cn","@type":"Person"}],"isAccessibleForFree":true,"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> </head> <body class="journal journal-fulltext" > <div class="ctm"></div> <!-- Google Tag Manager (noscript) --> <noscript> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="u-visually-hidden" aria-hidden="true"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="a" d="M0 .74h56.72v55.24H0z"/></defs><symbol id="icon-access" viewBox="0 0 18 18"><path d="m14 8c.5522847 0 1 .44771525 1 1v7h2.5c.2761424 0 .5.2238576.5.5v1.5h-18v-1.5c0-.2761424.22385763-.5.5-.5h2.5v-7c0-.55228475.44771525-1 1-1s1 .44771525 1 1v6.9996556h8v-6.9996556c0-.55228475.4477153-1 1-1zm-8 0 2 1v5l-2 1zm6 0v7l-2-1v-5zm-2.42653766-7.59857636 7.03554716 4.92488299c.4162533.29137735.5174853.86502537.226108 1.28127873-.1721584.24594054-.4534847.39241464-.7536934.39241464h-14.16284822c-.50810197 0-.92-.41189803-.92-.92 0-.30020869.1464741-.58153499.39241464-.75369337l7.03554714-4.92488299c.34432015-.2410241.80260453-.2410241 1.14692468 0zm-.57346234 2.03988748-3.65526982 2.55868888h7.31053962z" fill-rule="evenodd"/></symbol><symbol id="icon-account" viewBox="0 0 18 18"><path d="m10.2379028 16.9048051c1.3083556-.2032362 2.5118471-.7235183 3.5294683-1.4798399-.8731327-2.5141501-2.0638925-3.935978-3.7673711-4.3188248v-1.27684611c1.1651924-.41183641 2-1.52307546 2-2.82929429 0-1.65685425-1.3431458-3-3-3-1.65685425 0-3 1.34314575-3 3 0 1.30621883.83480763 2.41745788 2 2.82929429v1.27684611c-1.70347856.3828468-2.89423845 1.8046747-3.76737114 4.3188248 1.01762123.7563216 2.22111275 1.2766037 3.52946833 1.4798399.40563808.0629726.81921174.0951949 1.23790281.0951949s.83226473-.0322223 1.2379028-.0951949zm4.3421782-2.1721994c1.4927655-1.4532925 2.419919-3.484675 2.419919-5.7326057 0-4.418278-3.581722-8-8-8s-8 3.581722-8 8c0 2.2479307.92715352 4.2793132 2.41991895 5.7326057.75688473-2.0164459 1.83949951-3.6071894 3.48926591-4.3218837-1.14534283-.70360829-1.90918486-1.96796271-1.90918486-3.410722 0-2.209139 1.790861-4 4-4s4 1.790861 4 4c0 1.44275929-.763842 2.70711371-1.9091849 3.410722 1.6497664.7146943 2.7323812 2.3054378 3.4892659 4.3218837zm-5.580081 3.2673943c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-alert" viewBox="0 0 18 18"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-broad" viewBox="0 0 16 16"><path d="m6.10307866 2.97190702v7.69043288l2.44965196-2.44676915c.38776071-.38730439 1.0088052-.39493524 1.38498697-.01919617.38609051.38563612.38643641 1.01053024-.00013864 1.39665039l-4.12239817 4.11754683c-.38616704.3857126-1.01187344.3861062-1.39846576-.0000311l-4.12258206-4.11773056c-.38618426-.38572979-.39254614-1.00476697-.01636437-1.38050605.38609047-.38563611 1.01018509-.38751562 1.4012233.00306241l2.44985644 2.4469734v-8.67638639c0-.54139983.43698413-.98042709.98493125-.98159081l7.89910522-.0043627c.5451687 0 .9871152.44142642.9871152.98595351s-.4419465.98595351-.9871152.98595351z" fill-rule="evenodd" transform="matrix(-1 0 0 -1 14 15)"/></symbol><symbol id="icon-arrow-down" viewBox="0 0 16 16"><path d="m3.28337502 11.5302405 4.03074001 4.176208c.37758093.3912076.98937525.3916069 1.367372-.0000316l4.03091977-4.1763942c.3775978-.3912252.3838182-1.0190815.0160006-1.4001736-.3775061-.39113013-.9877245-.39303641-1.3700683.003106l-2.39538585 2.4818345v-11.6147896l-.00649339-.11662112c-.055753-.49733869-.46370161-.88337888-.95867408-.88337888-.49497246 0-.90292107.38604019-.95867408.88337888l-.00649338.11662112v11.6147896l-2.39518594-2.4816273c-.37913917-.39282218-.98637524-.40056175-1.35419292-.0194697-.37750607.3911302-.37784433 1.0249269.00013556 1.4165479z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-left" viewBox="0 0 16 16"><path d="m4.46975946 3.28337502-4.17620792 4.03074001c-.39120768.37758093-.39160691.98937525.0000316 1.367372l4.1763942 4.03091977c.39122514.3775978 1.01908149.3838182 1.40017357.0160006.39113012-.3775061.3930364-.9877245-.00310603-1.3700683l-2.48183446-2.39538585h11.61478958l.1166211-.00649339c.4973387-.055753.8833789-.46370161.8833789-.95867408 0-.49497246-.3860402-.90292107-.8833789-.95867408l-.1166211-.00649338h-11.61478958l2.4816273-2.39518594c.39282216-.37913917.40056173-.98637524.01946965-1.35419292-.39113012-.37750607-1.02492687-.37784433-1.41654791.00013556z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-right" viewBox="0 0 16 16"><path d="m11.5302405 12.716625 4.176208-4.03074003c.3912076-.37758093.3916069-.98937525-.0000316-1.367372l-4.1763942-4.03091981c-.3912252-.37759778-1.0190815-.38381821-1.4001736-.01600053-.39113013.37750607-.39303641.98772445.003106 1.37006824l2.4818345 2.39538588h-11.6147896l-.11662112.00649339c-.49733869.055753-.88337888.46370161-.88337888.95867408 0 .49497246.38604019.90292107.88337888.95867408l.11662112.00649338h11.6147896l-2.4816273 2.39518592c-.39282218.3791392-.40056175.9863753-.0194697 1.3541929.3911302.3775061 1.0249269.3778444 1.4165479-.0001355z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-sub" viewBox="0 0 16 16"><path d="m7.89692134 4.97190702v7.69043288l-2.44965196-2.4467692c-.38776071-.38730434-1.0088052-.39493519-1.38498697-.0191961-.38609047.3856361-.38643643 1.0105302.00013864 1.3966504l4.12239817 4.1175468c.38616704.3857126 1.01187344.3861062 1.39846576-.0000311l4.12258202-4.1177306c.3861843-.3857298.3925462-1.0047669.0163644-1.380506-.3860905-.38563612-1.0101851-.38751563-1.4012233.0030624l-2.44985643 2.4469734v-8.67638639c0-.54139983-.43698413-.98042709-.98493125-.98159081l-7.89910525-.0043627c-.54516866 0-.98711517.44142642-.98711517.98595351s.44194651.98595351.98711517.98595351z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-up" viewBox="0 0 16 16"><path d="m12.716625 4.46975946-4.03074003-4.17620792c-.37758093-.39120768-.98937525-.39160691-1.367372.0000316l-4.03091981 4.1763942c-.37759778.39122514-.38381821 1.01908149-.01600053 1.40017357.37750607.39113012.98772445.3930364 1.37006824-.00310603l2.39538588-2.48183446v11.61478958l.00649339.1166211c.055753.4973387.46370161.8833789.95867408.8833789.49497246 0 .90292107-.3860402.95867408-.8833789l.00649338-.1166211v-11.61478958l2.39518592 2.4816273c.3791392.39282216.9863753.40056173 1.3541929.01946965.3775061-.39113012.3778444-1.02492687-.0001355-1.41654791z" fill-rule="evenodd"/></symbol><symbol id="icon-article" viewBox="0 0 18 18"><path d="m13 15v-12.9906311c0-.0073595-.0019884-.0093689.0014977-.0093689l-11.00158888.00087166v13.00506804c0 .5482678.44615281.9940603.99415146.9940603h10.27350412c-.1701701-.2941734-.2675644-.6357129-.2675644-1zm-12 .0059397v-13.00506804c0-.5562408.44704472-1.00087166.99850233-1.00087166h11.00299537c.5510129 0 .9985023.45190985.9985023 1.0093689v2.9906311h3v9.9914698c0 1.1065798-.8927712 2.0085302-1.9940603 2.0085302h-12.01187942c-1.09954652 0-1.99406028-.8927712-1.99406028-1.9940603zm13-9.0059397v9c0 .5522847.4477153 1 1 1s1-.4477153 1-1v-9zm-10-2h7v4h-7zm1 1v2h5v-2zm-1 4h7v1h-7zm0 2h7v1h-7zm0 2h7v1h-7z" fill-rule="evenodd"/></symbol><symbol id="icon-audio" viewBox="0 0 18 18"><path d="m13.0957477 13.5588459c-.195279.1937043-.5119137.193729-.7072234.0000551-.1953098-.193674-.1953346-.5077061-.0000556-.7014104 1.0251004-1.0168342 1.6108711-2.3905226 1.6108711-3.85745208 0-1.46604976-.5850634-2.83898246-1.6090736-3.85566829-.1951894-.19379323-.1950192-.50782531.0003802-.70141028.1953993-.19358497.512034-.19341614.7072234.00037709 1.2094886 1.20083761 1.901635 2.8250555 1.901635 4.55670148 0 1.73268608-.6929822 3.35779608-1.9037571 4.55880738zm2.1233994 2.1025159c-.195234.193749-.5118687.1938462-.7072235.0002171-.1953548-.1936292-.1954528-.5076613-.0002189-.7014104 1.5832215-1.5711805 2.4881302-3.6939808 2.4881302-5.96012998 0-2.26581266-.9046382-4.3883241-2.487443-5.95944795-.1952117-.19377107-.1950777-.50780316.0002993-.70141031s.5120117-.19347426.7072234.00029682c1.7683321 1.75528196 2.7800854 4.12911258 2.7800854 6.66056144 0 2.53182498-1.0120556 4.90597838-2.7808529 6.66132328zm-14.21898205-3.6854911c-.5523759 0-1.00016505-.4441085-1.00016505-.991944v-3.96777631c0-.54783558.44778915-.99194407 1.00016505-.99194407h2.0003301l5.41965617-3.8393633c.44948677-.31842296 1.07413994-.21516983 1.39520191.23062232.12116339.16823446.18629727.36981184.18629727.57655577v12.01603479c0 .5478356-.44778914.9919441-1.00016505.9919441-.20845738 0-.41170538-.0645985-.58133413-.184766l-5.41965617-3.8393633zm0-.991944h2.32084805l5.68047235 4.0241292v-12.01603479l-5.68047235 4.02412928h-2.32084805z" fill-rule="evenodd"/></symbol><symbol id="icon-block" viewBox="0 0 24 24"><path d="m0 0h24v24h-24z" fill-rule="evenodd"/></symbol><symbol id="icon-book" viewBox="0 0 18 18"><path d="m4 13v-11h1v11h11v-11h-13c-.55228475 0-1 .44771525-1 1v10.2675644c.29417337-.1701701.63571286-.2675644 1-.2675644zm12 1h-13c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1h13zm0 3h-13c-1.1045695 0-2-.8954305-2-2v-12c0-1.1045695.8954305-2 2-2h13c.5522847 0 1 .44771525 1 1v14c0 .5522847-.4477153 1-1 1zm-8.5-13h6c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm1 2h4c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-4c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-broad" viewBox="0 0 24 24"><path d="m9.18274226 7.81v7.7999954l2.48162734-2.4816273c.3928221-.3928221 1.0219731-.4005617 1.4030652-.0194696.3911301.3911301.3914806 1.0249268-.0001404 1.4165479l-4.17620796 4.1762079c-.39120769.3912077-1.02508144.3916069-1.41671995-.0000316l-4.1763942-4.1763942c-.39122514-.3912251-.39767006-1.0190815-.01657798-1.4001736.39113012-.3911301 1.02337106-.3930364 1.41951349.0031061l2.48183446 2.4818344v-8.7999954c0-.54911294.4426881-.99439484.99778758-.99557515l8.00221246-.00442485c.5522847 0 1 .44771525 1 1s-.4477153 1-1 1z" fill-rule="evenodd" transform="matrix(-1 0 0 -1 20.182742 24.805206)"/></symbol><symbol id="icon-calendar" viewBox="0 0 18 18"><path d="m12.5 0c.2761424 0 .5.21505737.5.49047852v.50952148h2c1.1072288 0 2 .89451376 2 2v12c0 1.1072288-.8945138 2-2 2h-12c-1.1072288 0-2-.8945138-2-2v-12c0-1.1072288.89451376-2 2-2h1v1h-1c-.55393837 0-1 .44579254-1 1v3h14v-3c0-.55393837-.4457925-1-1-1h-2v1.50952148c0 .27088381-.2319336.49047852-.5.49047852-.2761424 0-.5-.21505737-.5-.49047852v-3.01904296c0-.27088381.2319336-.49047852.5-.49047852zm3.5 7h-14v8c0 .5539384.44579254 1 1 1h12c.5539384 0 1-.4457925 1-1zm-11 6v1h-1v-1zm3 0v1h-1v-1zm3 0v1h-1v-1zm-6-2v1h-1v-1zm3 0v1h-1v-1zm6 0v1h-1v-1zm-3 0v1h-1v-1zm-3-2v1h-1v-1zm6 0v1h-1v-1zm-3 0v1h-1v-1zm-5.5-9c.27614237 0 .5.21505737.5.49047852v.50952148h5v1h-5v1.50952148c0 .27088381-.23193359.49047852-.5.49047852-.27614237 0-.5-.21505737-.5-.49047852v-3.01904296c0-.27088381.23193359-.49047852.5-.49047852z" fill-rule="evenodd"/></symbol><symbol id="icon-cart" viewBox="0 0 18 18"><path d="m5 14c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm10 0c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm-10 1c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1 1-.4477153 1-1-.44771525-1-1-1zm10 0c-.5522847 0-1 .4477153-1 1s.4477153 1 1 1 1-.4477153 1-1-.4477153-1-1-1zm-12.82032249-15c.47691417 0 .88746157.33678127.98070211.80449199l.23823144 1.19501025 13.36277974.00045554c.5522847.00001882.9999659.44774934.9999659 1.00004222 0 .07084994-.0075361.14150708-.022474.2107727l-1.2908094 5.98534344c-.1007861.46742419-.5432548.80388386-1.0571651.80388386h-10.24805106c-.59173366 0-1.07142857.4477153-1.07142857 1 0 .5128358.41361449.9355072.94647737.9932723l.1249512.0067277h10.35933776c.2749512 0 .4979349.2228539.4979349.4978051 0 .2749417-.2227336.4978951-.4976753.4980063l-10.35959736.0041886c-1.18346732 0-2.14285714-.8954305-2.14285714-2 0-.6625717.34520317-1.24989198.87690425-1.61383592l-1.63768102-8.19004794c-.01312273-.06561364-.01950005-.131011-.0196107-.19547395l-1.71961253-.00064219c-.27614237 0-.5-.22385762-.5-.5 0-.27614237.22385763-.5.5-.5zm14.53193359 2.99950224h-13.11300004l1.20580469 6.02530174c.11024034-.0163252.22327998-.02480398.33844139-.02480398h10.27064786z"/></symbol><symbol id="icon-chevron-less" viewBox="0 0 10 10"><path d="m5.58578644 4-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" fill-rule="evenodd" transform="matrix(0 -1 -1 0 9 9)"/></symbol><symbol id="icon-chevron-more" viewBox="0 0 10 10"><path d="m5.58578644 6-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4.00000002c-.39052429.3905243-1.02368927.3905243-1.41421356 0s-.39052429-1.02368929 0-1.41421358z" fill-rule="evenodd" transform="matrix(0 1 -1 0 11 1)"/></symbol><symbol id="icon-chevron-right" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-circle-fill" viewBox="0 0 16 16"><path d="m8 14c-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6 6 2.6862915 6 6-2.6862915 6-6 6z" fill-rule="evenodd"/></symbol><symbol id="icon-circle" viewBox="0 0 16 16"><path d="m8 12c2.209139 0 4-1.790861 4-4s-1.790861-4-4-4-4 1.790861-4 4 1.790861 4 4 4zm0 2c-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6 6 2.6862915 6 6-2.6862915 6-6 6z" fill-rule="evenodd"/></symbol><symbol id="icon-citation" viewBox="0 0 18 18"><path d="m8.63593473 5.99995183c2.20913897 0 3.99999997 1.79084375 3.99999997 3.99996146 0 1.40730761-.7267788 2.64486871-1.8254829 3.35783281 1.6240224.6764218 2.8754442 2.0093871 3.4610603 3.6412466l-1.0763845.000006c-.5310008-1.2078237-1.5108121-2.1940153-2.7691712-2.7181346l-.79002167-.329052v-1.023992l.63016577-.4089232c.8482885-.5504661 1.3698342-1.4895187 1.3698342-2.51898361 0-1.65683828-1.3431457-2.99996146-2.99999997-2.99996146-1.65685425 0-3 1.34312318-3 2.99996146 0 1.02946491.52154569 1.96851751 1.36983419 2.51898361l.63016581.4089232v1.023992l-.79002171.329052c-1.25835905.5241193-2.23817037 1.5103109-2.76917113 2.7181346l-1.07638453-.000006c.58561612-1.6318595 1.8370379-2.9648248 3.46106024-3.6412466-1.09870405-.7129641-1.82548287-1.9505252-1.82548287-3.35783281 0-2.20911771 1.790861-3.99996146 4-3.99996146zm7.36897597-4.99995183c1.1018574 0 1.9950893.89353404 1.9950893 2.00274083v5.994422c0 1.10608317-.8926228 2.00274087-1.9950893 2.00274087l-3.0049107-.0009037v-1l3.0049107.00091329c.5490631 0 .9950893-.44783123.9950893-1.00275046v-5.994422c0-.55646537-.4450595-1.00275046-.9950893-1.00275046h-14.00982141c-.54906309 0-.99508929.44783123-.99508929 1.00275046v5.9971821c0 .66666024.33333333.99999036 1 .99999036l2-.00091329v1l-2 .0009037c-1 0-2-.99999041-2-1.99998077v-5.9971821c0-1.10608322.8926228-2.00274083 1.99508929-2.00274083zm-8.5049107 2.9999711c.27614237 0 .5.22385547.5.5 0 .2761349-.22385763.5-.5.5h-4c-.27614237 0-.5-.2238651-.5-.5 0-.27614453.22385763-.5.5-.5zm3 0c.2761424 0 .5.22385547.5.5 0 .2761349-.2238576.5-.5.5h-1c-.27614237 0-.5-.2238651-.5-.5 0-.27614453.22385763-.5.5-.5zm4 0c.2761424 0 .5.22385547.5.5 0 .2761349-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238651-.5-.5 0-.27614453.2238576-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-close" viewBox="0 0 16 16"><path d="m2.29679575 12.2772478c-.39658757.3965876-.39438847 1.0328109-.00062148 1.4265779.39651227.3965123 1.03246768.3934888 1.42657791-.0006214l4.27724782-4.27724787 4.2772478 4.27724787c.3965876.3965875 1.0328109.3943884 1.4265779.0006214.3965123-.3965122.3934888-1.0324677-.0006214-1.4265779l-4.27724787-4.2772478 4.27724787-4.27724782c.3965875-.39658757.3943884-1.03281091.0006214-1.42657791-.3965122-.39651226-1.0324677-.39348875-1.4265779.00062148l-4.2772478 4.27724782-4.27724782-4.27724782c-.39658757-.39658757-1.03281091-.39438847-1.42657791-.00062148-.39651226.39651227-.39348875 1.03246768.00062148 1.42657791l4.27724782 4.27724782z" fill-rule="evenodd"/></symbol><symbol id="icon-collections" viewBox="0 0 18 18"><path d="m15 4c1.1045695 0 2 .8954305 2 2v9c0 1.1045695-.8954305 2-2 2h-8c-1.1045695 0-2-.8954305-2-2h1c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h8c.5128358 0 .9355072-.3860402.9932723-.8833789l.0067277-.1166211v-9c0-.51283584-.3860402-.93550716-.8833789-.99327227l-.1166211-.00672773h-1v-1zm-4-3c1.1045695 0 2 .8954305 2 2v9c0 1.1045695-.8954305 2-2 2h-8c-1.1045695 0-2-.8954305-2-2v-9c0-1.1045695.8954305-2 2-2zm0 1h-8c-.51283584 0-.93550716.38604019-.99327227.88337887l-.00672773.11662113v9c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h8c.5128358 0 .9355072-.3860402.9932723-.8833789l.0067277-.1166211v-9c0-.51283584-.3860402-.93550716-.8833789-.99327227zm-1.5 7c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm0-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm0-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-compare" viewBox="0 0 18 18"><path d="m12 3c3.3137085 0 6 2.6862915 6 6s-2.6862915 6-6 6c-1.0928452 0-2.11744941-.2921742-2.99996061-.8026704-.88181407.5102749-1.90678042.8026704-3.00003939.8026704-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6c1.09325897 0 2.11822532.29239547 3.00096303.80325037.88158756-.51107621 1.90619177-.80325037 2.99903697-.80325037zm-6 1c-2.76142375 0-5 2.23857625-5 5 0 2.7614237 2.23857625 5 5 5 .74397391 0 1.44999672-.162488 2.08451611-.4539116-1.27652344-1.1000812-2.08451611-2.7287264-2.08451611-4.5460884s.80799267-3.44600721 2.08434391-4.5463015c-.63434719-.29121054-1.34037-.4536985-2.08434391-.4536985zm6 0c-.7439739 0-1.4499967.16248796-2.08451611.45391156 1.27652341 1.10008123 2.08451611 2.72872644 2.08451611 4.54608844s-.8079927 3.4460072-2.08434391 4.5463015c.63434721.2912105 1.34037001.4536985 2.08434391.4536985 2.7614237 0 5-2.2385763 5-5 0-2.76142375-2.2385763-5-5-5zm-1.4162763 7.0005324h-3.16744736c.15614659.3572676.35283837.6927622.58425872 1.0006671h1.99892988c.23142036-.3079049.42811216-.6433995.58425876-1.0006671zm.4162763-2.0005324h-4c0 .34288501.0345146.67770871.10025909 1.0011864h3.79948181c.0657445-.32347769.1002591-.65830139.1002591-1.0011864zm-.4158423-1.99953894h-3.16831543c-.13859957.31730812-.24521946.651783-.31578599.99935097h3.79988742c-.0705665-.34756797-.1771864-.68204285-.315786-.99935097zm-1.58295822-1.999926-.08316107.06199199c-.34550042.27081213-.65446126.58611297-.91825862.93727862h2.00044041c-.28418626-.37830727-.6207872-.71499149-.99902072-.99927061z" fill-rule="evenodd"/></symbol><symbol id="icon-download-file" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm0 1h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v14.00982141c0 .5500396.44491393.9950893.99406028.9950893h12.01187942c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717zm-1.5046024 4c.27614237 0 .5.21637201.5.49209595v6.14827645l1.7462789-1.77990922c.1933927-.1971171.5125222-.19455839.7001689-.0069117.1932998.19329992.1910058.50899492-.0027774.70277812l-2.59089271 2.5908927c-.19483374.1948337-.51177825.1937771-.70556873-.0000133l-2.59099079-2.5909908c-.19484111-.1948411-.19043735-.5151448-.00279066-.70279146.19329987-.19329987.50465175-.19237083.70018565.00692852l1.74638684 1.78001764v-6.14827695c0-.27177709.23193359-.49209595.5-.49209595z" fill-rule="evenodd"/></symbol><symbol id="icon-download" viewBox="0 0 16 16"><path d="m12.9975267 12.999368c.5467123 0 1.0024733.4478567 1.0024733 1.000316 0 .5563109-.4488226 1.000316-1.0024733 1.000316h-9.99505341c-.54671233 0-1.00247329-.4478567-1.00247329-1.000316 0-.5563109.44882258-1.000316 1.00247329-1.000316zm-4.9975267-11.999368c.55228475 0 1 .44497754 1 .99589209v6.80214418l2.4816273-2.48241149c.3928222-.39294628 1.0219732-.4006883 1.4030652-.01947579.3911302.39125371.3914806 1.02525073-.0001404 1.41699553l-4.17620792 4.17752758c-.39120769.3913313-1.02508144.3917306-1.41671995-.0000316l-4.17639421-4.17771394c-.39122513-.39134876-.39767006-1.01940351-.01657797-1.40061601.39113012-.39125372 1.02337105-.3931606 1.41951349.00310701l2.48183446 2.48261871v-6.80214418c0-.55001601.44386482-.99589209 1-.99589209z" fill-rule="evenodd"/></symbol><symbol id="icon-editors" viewBox="0 0 18 18"><path d="m8.72592184 2.54588137c-.48811714-.34391207-1.08343326-.54588137-1.72592184-.54588137-1.65685425 0-3 1.34314575-3 3 0 1.02947485.5215457 1.96853646 1.3698342 2.51900785l.6301658.40892721v1.02400182l-.79002171.32905522c-1.93395773.8055207-3.20997829 2.7024791-3.20997829 4.8180274v.9009805h-1v-.9009805c0-2.5479714 1.54557359-4.79153984 3.82548288-5.7411543-1.09870406-.71297106-1.82548288-1.95054399-1.82548288-3.3578652 0-2.209139 1.790861-4 4-4 1.09079823 0 2.07961816.43662103 2.80122451 1.1446278-.37707584.09278571-.7373238.22835063-1.07530267.40125357zm-2.72592184 14.45411863h-1v-.9009805c0-2.5479714 1.54557359-4.7915398 3.82548288-5.7411543-1.09870406-.71297106-1.82548288-1.95054399-1.82548288-3.3578652 0-2.209139 1.790861-4 4-4s4 1.790861 4 4c0 1.40732121-.7267788 2.64489414-1.8254829 3.3578652 2.2799093.9496145 3.8254829 3.1931829 3.8254829 5.7411543v.9009805h-1v-.9009805c0-2.1155483-1.2760206-4.0125067-3.2099783-4.8180274l-.7900217-.3290552v-1.02400184l.6301658-.40892721c.8482885-.55047139 1.3698342-1.489533 1.3698342-2.51900785 0-1.65685425-1.3431458-3-3-3-1.65685425 0-3 1.34314575-3 3 0 1.02947485.5215457 1.96853646 1.3698342 2.51900785l.6301658.40892721v1.02400184l-.79002171.3290552c-1.93395773.8055207-3.20997829 2.7024791-3.20997829 4.8180274z" fill-rule="evenodd"/></symbol><symbol id="icon-email" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587h-14.00982141c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm0 1h-14.00982141c-.54871518 0-.99508929.44887827-.99508929 1.00585866v9.98828264c0 .5572961.44630695 1.0058587.99508929 1.0058587h14.00982141c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-.0049107 2.55749512v1.44250488l-7 4-7-4v-1.44250488l7 4z" fill-rule="evenodd"/></symbol><symbol id="icon-error" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm2.8630343 4.71100931-2.8630343 2.86303426-2.86303426-2.86303426c-.39658757-.39658757-1.03281091-.39438847-1.4265779-.00062147-.39651227.39651226-.39348876 1.03246767.00062147 1.4265779l2.86303426 2.86303426-2.86303426 2.8630343c-.39658757.3965875-.39438847 1.0328109-.00062147 1.4265779.39651226.3965122 1.03246767.3934887 1.4265779-.0006215l2.86303426-2.8630343 2.8630343 2.8630343c.3965875.3965876 1.0328109.3943885 1.4265779.0006215.3965122-.3965123.3934887-1.0324677-.0006215-1.4265779l-2.8630343-2.8630343 2.8630343-2.86303426c.3965876-.39658757.3943885-1.03281091.0006215-1.4265779-.3965123-.39651227-1.0324677-.39348876-1.4265779.00062147z" fill-rule="evenodd"/></symbol><symbol id="icon-ethics" viewBox="0 0 18 18"><path d="m6.76384967 1.41421356.83301651-.8330165c.77492941-.77492941 2.03133823-.77492941 2.80626762 0l.8330165.8330165c.3750728.37507276.8837806.58578644 1.4142136.58578644h1.3496361c1.1045695 0 2 .8954305 2 2v1.34963611c0 .53043298.2107137 1.03914081.5857864 1.41421356l.8330165.83301651c.7749295.77492941.7749295 2.03133823 0 2.80626762l-.8330165.8330165c-.3750727.3750728-.5857864.8837806-.5857864 1.4142136v1.3496361c0 1.1045695-.8954305 2-2 2h-1.3496361c-.530433 0-1.0391408.2107137-1.4142136.5857864l-.8330165.8330165c-.77492939.7749295-2.03133821.7749295-2.80626762 0l-.83301651-.8330165c-.37507275-.3750727-.88378058-.5857864-1.41421356-.5857864h-1.34963611c-1.1045695 0-2-.8954305-2-2v-1.3496361c0-.530433-.21071368-1.0391408-.58578644-1.4142136l-.8330165-.8330165c-.77492941-.77492939-.77492941-2.03133821 0-2.80626762l.8330165-.83301651c.37507276-.37507275.58578644-.88378058.58578644-1.41421356v-1.34963611c0-1.1045695.8954305-2 2-2h1.34963611c.53043298 0 1.03914081-.21071368 1.41421356-.58578644zm-1.41421356 1.58578644h-1.34963611c-.55228475 0-1 .44771525-1 1v1.34963611c0 .79564947-.31607052 1.55871121-.87867966 2.12132034l-.8330165.83301651c-.38440512.38440512-.38440512 1.00764896 0 1.39205408l.8330165.83301646c.56260914.5626092.87867966 1.3256709.87867966 2.1213204v1.3496361c0 .5522847.44771525 1 1 1h1.34963611c.79564947 0 1.55871121.3160705 2.12132034.8786797l.83301651.8330165c.38440512.3844051 1.00764896.3844051 1.39205408 0l.83301646-.8330165c.5626092-.5626092 1.3256709-.8786797 2.1213204-.8786797h1.3496361c.5522847 0 1-.4477153 1-1v-1.3496361c0-.7956495.3160705-1.5587112.8786797-2.1213204l.8330165-.83301646c.3844051-.38440512.3844051-1.00764896 0-1.39205408l-.8330165-.83301651c-.5626092-.56260913-.8786797-1.32567087-.8786797-2.12132034v-1.34963611c0-.55228475-.4477153-1-1-1h-1.3496361c-.7956495 0-1.5587112-.31607052-2.1213204-.87867966l-.83301646-.8330165c-.38440512-.38440512-1.00764896-.38440512-1.39205408 0l-.83301651.8330165c-.56260913.56260914-1.32567087.87867966-2.12132034.87867966zm3.58698944 11.4960218c-.02081224.002155-.04199226.0030286-.06345763.002542-.98766446-.0223875-1.93408568-.3063547-2.75885125-.8155622-.23496767-.1450683-.30784554-.4531483-.16277726-.688116.14506827-.2349677.45314827-.3078455.68811595-.1627773.67447084.4164161 1.44758575.6483839 2.25617384.6667123.01759529.0003988.03495764.0017019.05204365.0038639.01713363-.0017748.03452416-.0026845.05212715-.0026845 2.4852814 0 4.5-2.0147186 4.5-4.5 0-1.04888973-.3593547-2.04134635-1.0074477-2.83787157-.1742817-.21419731-.1419238-.5291218.0722736-.70340353.2141973-.17428173.5291218-.14192375.7034035.07227357.7919032.97327203 1.2317706 2.18808682 1.2317706 3.46900153 0 3.0375661-2.4624339 5.5-5.5 5.5-.02146768 0-.04261937-.0013529-.06337445-.0039782zm1.57975095-10.78419583c.2654788.07599731.419084.35281842.3430867.61829728-.0759973.26547885-.3528185.419084-.6182973.3430867-.37560116-.10752146-.76586237-.16587951-1.15568824-.17249193-2.5587807-.00064534-4.58547766 2.00216524-4.58547766 4.49928198 0 .62691557.12797645 1.23496.37274865 1.7964426.11035133.2531347-.0053975.5477984-.25853224.6581497-.25313473.1103514-.54779841-.0053975-.65814974-.2585322-.29947131-.6869568-.45606667-1.43097603-.45606667-2.1960601 0-3.05211432 2.47714695-5.50006595 5.59399617-5.49921198.48576182.00815502.96289603.0795037 1.42238033.21103795zm-1.9766658 6.41091303 2.69835-2.94655317c.1788432-.21040373.4943901-.23598862.7047939-.05714545.2104037.17884318.2359886.49439014.0571454.70479387l-3.01637681 3.34277395c-.18039088.1999106-.48669547.2210637-.69285412.0478478l-1.93095347-1.62240047c-.21213845-.17678204-.24080048-.49206439-.06401844-.70420284.17678204-.21213844.49206439-.24080048.70420284-.06401844z" fill-rule="evenodd"/></symbol><symbol id="icon-expand"><path d="M7.498 11.918a.997.997 0 0 0-.003-1.411.995.995 0 0 0-1.412-.003l-4.102 4.102v-3.51A1 1 0 0 0 .98 10.09.992.992 0 0 0 0 11.092V17c0 .554.448 1.002 1.002 1.002h5.907c.554 0 1.002-.45 1.002-1.003 0-.539-.45-.978-1.006-.978h-3.51zm3.005-5.835a.997.997 0 0 0 .003 1.412.995.995 0 0 0 1.411.003l4.103-4.103v3.51a1 1 0 0 0 1.001 1.006A.992.992 0 0 0 18 6.91V1.002A1 1 0 0 0 17 0h-5.907a1.003 1.003 0 0 0-1.002 1.003c0 .539.45.978 1.006.978h3.51z" fill-rule="evenodd"/></symbol><symbol id="icon-explore" viewBox="0 0 18 18"><path d="m9 17c4.418278 0 8-3.581722 8-8s-3.581722-8-8-8-8 3.581722-8 8 3.581722 8 8 8zm0 1c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9zm0-2.5c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5c2.969509 0 5.400504-2.3575119 5.497023-5.31714844.0090007-.27599565.2400359-.49243782.5160315-.48343711.2759957.0090007.4924378.2400359.4834371.51603155-.114093 3.4985237-2.9869632 6.284554-6.4964916 6.284554zm-.29090657-12.99359748c.27587424-.01216621.50937715.20161139.52154336.47748563.01216621.27587423-.20161139.50937715-.47748563.52154336-2.93195733.12930094-5.25315116 2.54886451-5.25315116 5.49456849 0 .27614237-.22385763.5-.5.5s-.5-.22385763-.5-.5c0-3.48142406 2.74307146-6.34074398 6.20909343-6.49359748zm1.13784138 8.04763908-1.2004882-1.20048821c-.19526215-.19526215-.19526215-.51184463 0-.70710678s.51184463-.19526215.70710678 0l1.20048821 1.2004882 1.6006509-4.00162734-4.50670359 1.80268144-1.80268144 4.50670359zm4.10281269-6.50378907-2.6692597 6.67314927c-.1016411.2541026-.3029834.4554449-.557086.557086l-6.67314927 2.6692597 2.66925969-6.67314926c.10164107-.25410266.30298336-.45544495.55708602-.55708602z" fill-rule="evenodd"/></symbol><symbol id="icon-filter" viewBox="0 0 16 16"><path d="m14.9738641 0c.5667192 0 1.0261359.4477136 1.0261359 1 0 .24221858-.0902161.47620768-.2538899.65849851l-5.6938314 6.34147206v5.49997973c0 .3147562-.1520673.6111434-.4104543.7999971l-2.05227171 1.4999945c-.45337535.3313696-1.09655869.2418269-1.4365902-.1999993-.13321514-.1730955-.20522717-.3836284-.20522717-.5999978v-6.99997423l-5.69383133-6.34147206c-.3731872-.41563511-.32996891-1.0473954.09653074-1.41107611.18705584-.15950448.42716133-.2474224.67571519-.2474224zm-5.9218641 8.5h-2.105v6.491l.01238459.0070843.02053271.0015705.01955278-.0070558 2.0532976-1.4990996zm-8.02585008-7.5-.01564945.00240169 5.83249953 6.49759831h2.313l5.836-6.499z"/></symbol><symbol id="icon-home" viewBox="0 0 18 18"><path d="m9 5-6 6v5h4v-4h4v4h4v-5zm7 6.5857864v4.4142136c0 .5522847-.4477153 1-1 1h-5v-4h-2v4h-5c-.55228475 0-1-.4477153-1-1v-4.4142136c-.25592232 0-.51184464-.097631-.70710678-.2928932l-.58578644-.5857864c-.39052429-.3905243-.39052429-1.02368929 0-1.41421358l8.29289322-8.29289322 8.2928932 8.29289322c.3905243.39052429.3905243 1.02368928 0 1.41421358l-.5857864.5857864c-.1952622.1952622-.4511845.2928932-.7071068.2928932zm-7-9.17157284-7.58578644 7.58578644.58578644.5857864 7-6.99999996 7 6.99999996.5857864-.5857864z" fill-rule="evenodd"/></symbol><symbol id="icon-image" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm-3.49645283 10.1752453-3.89407257 6.7495552c.11705545.048464.24538859.0751995.37998328.0751995h10.60290092l-2.4329715-4.2154691-1.57494129 2.7288098zm8.49779013 6.8247547c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v13.98991071l4.50814957-7.81026689 3.08089884 5.33809539 1.57494129-2.7288097 3.5875735 6.2159812zm-3.0059397-11c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm0 1c-.5522847 0-1 .44771525-1 1s.4477153 1 1 1 1-.44771525 1-1-.4477153-1-1-1z" fill-rule="evenodd"/></symbol><symbol id="icon-info" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm0 7h-1.5l-.11662113.00672773c-.49733868.05776511-.88337887.48043643-.88337887.99327227 0 .47338693.32893365.86994729.77070917.97358929l.1126697.01968298.11662113.00672773h.5v3h-.5l-.11662113.0067277c-.42082504.0488782-.76196299.3590206-.85696816.7639815l-.01968298.1126697-.00672773.1166211.00672773.1166211c.04887817.4208251.35902055.761963.76398144.8569682l.1126697.019683.11662113.0067277h3l.1166211-.0067277c.4973387-.0577651.8833789-.4804365.8833789-.9932723 0-.4733869-.3289337-.8699473-.7707092-.9735893l-.1126697-.019683-.1166211-.0067277h-.5v-4l-.00672773-.11662113c-.04887817-.42082504-.35902055-.76196299-.76398144-.85696816l-.1126697-.01968298zm0-3.25c-.69035594 0-1.25.55964406-1.25 1.25s.55964406 1.25 1.25 1.25 1.25-.55964406 1.25-1.25-.55964406-1.25-1.25-1.25z" fill-rule="evenodd"/></symbol><symbol id="icon-institution" viewBox="0 0 18 18"><path d="m7 16.9998189v-2.0003623h4v2.0003623h2v-3.0005434h-8v3.0005434zm-3-10.00181122h-1.52632364c-.27614237 0-.5-.22389817-.5-.50009056 0-.13995446.05863589-.27350497.16166338-.36820841l1.23156713-1.13206327h-2.36690687v12.00217346h3v-2.0003623h-3v-1.0001811h3v-1.0001811h1v-4.00072448h-1zm10 0v2.00036224h-1v4.00072448h1v1.0001811h3v1.0001811h-3v2.0003623h3v-12.00217346h-2.3695309l1.2315671 1.13206327c.2033191.186892.2166633.50325042.0298051.70660631-.0946863.10304615-.2282126.16169266-.3681417.16169266zm3-3.00054336c.5522847 0 1 .44779634 1 1.00018112v13.00235456h-18v-13.00235456c0-.55238478.44771525-1.00018112 1-1.00018112h3.45499992l4.20535144-3.86558216c.19129876-.17584288.48537447-.17584288.67667324 0l4.2053514 3.86558216zm-4 3.00054336h-8v1.00018112h8zm-2 6.00108672h1v-4.00072448h-1zm-1 0v-4.00072448h-2v4.00072448zm-3 0v-4.00072448h-1v4.00072448zm8-4.00072448c.5522847 0 1 .44779634 1 1.00018112v2.00036226h-2v-2.00036226c0-.55238478.4477153-1.00018112 1-1.00018112zm-12 0c.55228475 0 1 .44779634 1 1.00018112v2.00036226h-2v-2.00036226c0-.55238478.44771525-1.00018112 1-1.00018112zm5.99868798-7.81907007-5.24205601 4.81852671h10.48411203zm.00131202 3.81834559c-.55228475 0-1-.44779634-1-1.00018112s.44771525-1.00018112 1-1.00018112 1 .44779634 1 1.00018112-.44771525 1.00018112-1 1.00018112zm-1 11.00199236v1.0001811h2v-1.0001811z" fill-rule="evenodd"/></symbol><symbol id="icon-location" viewBox="0 0 18 18"><path d="m9.39521328 16.2688008c.79596342-.7770119 1.59208152-1.6299956 2.33285652-2.5295081 1.4020032-1.7024324 2.4323601-3.3624519 2.9354918-4.871847.2228715-.66861448.3364384-1.29323246.3364384-1.8674457 0-3.3137085-2.6862915-6-6-6-3.36356866 0-6 2.60156856-6 6 0 .57421324.11356691 1.19883122.3364384 1.8674457.50313169 1.5093951 1.53348863 3.1694146 2.93549184 4.871847.74077492.8995125 1.53689309 1.7524962 2.33285648 2.5295081.13694479.1336842.26895677.2602648.39521328.3793207.12625651-.1190559.25826849-.2456365.39521328-.3793207zm-.39521328 1.7311992s-7-6-7-11c0-4 3.13400675-7 7-7 3.8659932 0 7 3.13400675 7 7 0 5-7 11-7 11zm0-8c-1.65685425 0-3-1.34314575-3-3s1.34314575-3 3-3c1.6568542 0 3 1.34314575 3 3s-1.3431458 3-3 3zm0-1c1.1045695 0 2-.8954305 2-2s-.8954305-2-2-2-2 .8954305-2 2 .8954305 2 2 2z" fill-rule="evenodd"/></symbol><symbol id="icon-minus" viewBox="0 0 16 16"><path d="m2.00087166 7h11.99825664c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-11.99825664c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-newsletter" viewBox="0 0 18 18"><path d="m9 11.8482489 2-1.1428571v-1.7053918h-4v1.7053918zm-3-1.7142857v-2.1339632h6v2.1339632l3-1.71428574v-6.41967746h-12v6.41967746zm10-5.3839632 1.5299989.95624934c.2923814.18273835.4700011.50320827.4700011.8479983v8.44575236c0 1.1045695-.8954305 2-2 2h-14c-1.1045695 0-2-.8954305-2-2v-8.44575236c0-.34479003.1776197-.66525995.47000106-.8479983l1.52999894-.95624934v-2.75c0-.55228475.44771525-1 1-1h12c.5522847 0 1 .44771525 1 1zm0 1.17924764v3.07075236l-7 4-7-4v-3.07075236l-1 .625v8.44575236c0 .5522847.44771525 1 1 1h14c.5522847 0 1-.4477153 1-1v-8.44575236zm-10-1.92924764h6v1h-6zm-1 2h8v1h-8z" fill-rule="evenodd"/></symbol><symbol id="icon-orcid" viewBox="0 0 18 18"><path d="m9 1c4.418278 0 8 3.581722 8 8s-3.581722 8-8 8-8-3.581722-8-8 3.581722-8 8-8zm-2.90107518 5.2732337h-1.41865256v7.1712107h1.41865256zm4.55867178.02508949h-2.99247027v7.14612121h2.91062487c.7673039 0 1.4476365-.1483432 2.0410182-.445034s1.0511995-.7152915 1.3734671-1.2558144c.3222677-.540523.4833991-1.1603247.4833991-1.85942385 0-.68545815-.1602789-1.30270225-.4808414-1.85175082-.3205625-.54904856-.7707074-.97532211-1.3504481-1.27883343-.5797408-.30351132-1.2413173-.45526471-1.9847495-.45526471zm-.1892674 1.07933542c.7877654 0 1.4143875.22336734 1.8798852.67010873.4654977.44674138.698243 1.05546001.698243 1.82617415 0 .74343221-.2310402 1.34447791-.6931277 1.80315511-.4620874.4586773-1.0750688.6880124-1.8389625.6880124h-1.46810075v-4.98745039zm-5.08652545-3.71099194c-.21825533 0-.410525.08444276-.57681478.25333081-.16628977.16888806-.24943341.36245684-.24943341.58071218 0 .22345188.08314364.41961891.24943341.58850696.16628978.16888806.35855945.25333082.57681478.25333082.233845 0 .43390938-.08314364.60019916-.24943342.16628978-.16628977.24943342-.36375592.24943342-.59240436 0-.233845-.08314364-.43131115-.24943342-.59240437s-.36635416-.24163862-.60019916-.24163862z" fill-rule="evenodd"/></symbol><symbol id="icon-plus" viewBox="0 0 16 16"><path d="m2.00087166 7h4.99912834v-4.99912834c0-.55276616.44386482-1.00087166 1-1.00087166.55228475 0 1 .44463086 1 1.00087166v4.99912834h4.9991283c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-4.9991283v4.9991283c0 .5527662-.44386482 1.0008717-1 1.0008717-.55228475 0-1-.4446309-1-1.0008717v-4.9991283h-4.99912834c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-print" viewBox="0 0 18 18"><path d="m16.0049107 5h-14.00982141c-.54941618 0-.99508929.4467783-.99508929.99961498v6.00077002c0 .5570958.44271433.999615.99508929.999615h1.00491071v-3h12v3h1.0049107c.5494162 0 .9950893-.4467783.9950893-.999615v-6.00077002c0-.55709576-.4427143-.99961498-.9950893-.99961498zm-2.0049107-1v-2.00208688c0-.54777062-.4519464-.99791312-1.0085302-.99791312h-7.9829396c-.55661731 0-1.0085302.44910695-1.0085302.99791312v2.00208688zm1 10v2.0018986c0 1.103521-.9019504 1.9981014-2.0085302 1.9981014h-7.9829396c-1.1092806 0-2.0085302-.8867064-2.0085302-1.9981014v-2.0018986h-1.00491071c-1.10185739 0-1.99508929-.8874333-1.99508929-1.999615v-6.00077002c0-1.10435686.8926228-1.99961498 1.99508929-1.99961498h1.00491071v-2.00208688c0-1.10341695.90195036-1.99791312 2.0085302-1.99791312h7.9829396c1.1092806 0 2.0085302.89826062 2.0085302 1.99791312v2.00208688h1.0049107c1.1018574 0 1.9950893.88743329 1.9950893 1.99961498v6.00077002c0 1.1043569-.8926228 1.999615-1.9950893 1.999615zm-1-3h-10v5.0018986c0 .5546075.44702548.9981014 1.0085302.9981014h7.9829396c.5565964 0 1.0085302-.4491701 1.0085302-.9981014zm-9 1h8v1h-8zm0 2h5v1h-5zm9-5c-.5522847 0-1-.44771525-1-1s.4477153-1 1-1 1 .44771525 1 1-.4477153 1-1 1z" fill-rule="evenodd"/></symbol><symbol id="icon-search" viewBox="0 0 22 22"><path d="M21.697 20.261a1.028 1.028 0 01.01 1.448 1.034 1.034 0 01-1.448-.01l-4.267-4.267A9.812 9.811 0 010 9.812a9.812 9.811 0 1117.43 6.182zM9.812 18.222A8.41 8.41 0 109.81 1.403a8.41 8.41 0 000 16.82z" fill-rule="evenodd"/></symbol><symbol id="icon-social-facebook" viewBox="0 0 24 24"><path d="m6.00368507 20c-1.10660471 0-2.00368507-.8945138-2.00368507-1.9940603v-12.01187942c0-1.10128908.89451376-1.99406028 1.99406028-1.99406028h12.01187942c1.1012891 0 1.9940603.89451376 1.9940603 1.99406028v12.01187942c0 1.1012891-.88679 1.9940603-2.0032184 1.9940603h-2.9570132v-6.1960818h2.0797387l.3114113-2.414723h-2.39115v-1.54164807c0-.69911803.1941355-1.1755439 1.1966615-1.1755439l1.2786739-.00055875v-2.15974763l-.2339477-.02492088c-.3441234-.03134957-.9500153-.07025255-1.6293054-.07025255-1.8435726 0-3.1057323 1.12531866-3.1057323 3.19187953v1.78079225h-2.0850778v2.414723h2.0850778v6.1960818z" fill-rule="evenodd"/></symbol><symbol id="icon-social-twitter" viewBox="0 0 24 24"><path d="m18.8767135 6.87445248c.7638174-.46908424 1.351611-1.21167363 1.6250764-2.09636345-.7135248.43394112-1.50406.74870123-2.3464594.91677702-.6695189-.73342162-1.6297913-1.19486605-2.6922204-1.19486605-2.0399895 0-3.6933555 1.69603749-3.6933555 3.78628909 0 .29642457.0314329.58673729.0942985.8617704-3.06469922-.15890802-5.78835241-1.66547825-7.60988389-3.9574208-.3174714.56076194-.49978171 1.21167363-.49978171 1.90536824 0 1.31404706.65223085 2.47224203 1.64236444 3.15218497-.60350999-.0198635-1.17401554-.1925232-1.67222562-.47366811v.04583885c0 1.83355406 1.27302891 3.36609966 2.96411421 3.71294696-.31118484.0886217-.63651445.1329326-.97441718.1329326-.2357461 0-.47149219-.0229194-.69466516-.0672303.47149219 1.5065703 1.83253297 2.6036468 3.44975116 2.632678-1.2651707 1.0160946-2.85724264 1.6196394-4.5891906 1.6196394-.29861172 0-.59093688-.0152796-.88011875-.0504227 1.63450624 1.0726291 3.57548241 1.6990934 5.66104951 1.6990934 6.79263079 0 10.50641749-5.7711113 10.50641749-10.7751859l-.0094298-.48894775c.7229547-.53478659 1.3516109-1.20250585 1.8419628-1.96190282-.6632323.30100846-1.3751855.50422736-2.1217148.59590507z" fill-rule="evenodd"/></symbol><symbol id="icon-social-youtube" viewBox="0 0 24 24"><path d="m10.1415 14.3973208-.0005625-5.19318431 4.863375 2.60554491zm9.963-7.92753362c-.6845625-.73643756-1.4518125-.73990314-1.803375-.7826454-2.518875-.18714178-6.2971875-.18714178-6.2971875-.18714178-.007875 0-3.7861875 0-6.3050625.18714178-.352125.04274226-1.1188125.04620784-1.8039375.7826454-.5394375.56084773-.7149375 1.8344515-.7149375 1.8344515s-.18 1.49597903-.18 2.99138042v1.4024082c0 1.495979.18 2.9913804.18 2.9913804s.1755 1.2736038.7149375 1.8344515c.685125.7364376 1.5845625.7133337 1.9850625.7901542 1.44.1420891 6.12.1859866 6.12.1859866s3.78225-.005776 6.301125-.1929178c.3515625-.0433198 1.1188125-.0467854 1.803375-.783223.5394375-.5608477.7155-1.8344515.7155-1.8344515s.18-1.4954014.18-2.9913804v-1.4024082c0-1.49540139-.18-2.99138042-.18-2.99138042s-.1760625-1.27360377-.7155-1.8344515z" fill-rule="evenodd"/></symbol><symbol id="icon-subject-medicine" viewBox="0 0 18 18"><path d="m12.5 8h-6.5c-1.65685425 0-3 1.34314575-3 3v1c0 1.6568542 1.34314575 3 3 3h1v-2h-.5c-.82842712 0-1.5-.6715729-1.5-1.5s.67157288-1.5 1.5-1.5h1.5 2 1 2c1.6568542 0 3-1.34314575 3-3v-1c0-1.65685425-1.3431458-3-3-3h-2v2h1.5c.8284271 0 1.5.67157288 1.5 1.5s-.6715729 1.5-1.5 1.5zm-5.5-1v-1h-3.5c-1.38071187 0-2.5-1.11928813-2.5-2.5s1.11928813-2.5 2.5-2.5h1.02786405c.46573528 0 .92507448.10843528 1.34164078.31671843l1.13382424.56691212c.06026365-1.05041141.93116291-1.88363055 1.99667093-1.88363055 1.1045695 0 2 .8954305 2 2h2c2.209139 0 4 1.790861 4 4v1c0 2.209139-1.790861 4-4 4h-2v1h2c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2h-2c0 1.1045695-.8954305 2-2 2s-2-.8954305-2-2h-1c-2.209139 0-4-1.790861-4-4v-1c0-2.209139 1.790861-4 4-4zm0-2v-2.05652691c-.14564246-.03538148-.28733393-.08714006-.42229124-.15461871l-1.15541752-.57770876c-.27771087-.13885544-.583937-.21114562-.89442719-.21114562h-1.02786405c-.82842712 0-1.5.67157288-1.5 1.5s.67157288 1.5 1.5 1.5zm4 1v1h1.5c.2761424 0 .5-.22385763.5-.5s-.2238576-.5-.5-.5zm-1 1v-5c0-.55228475-.44771525-1-1-1s-1 .44771525-1 1v5zm-2 4v5c0 .5522847.44771525 1 1 1s1-.4477153 1-1v-5zm3 2v2h2c.5522847 0 1-.4477153 1-1s-.4477153-1-1-1zm-4-1v-1h-.5c-.27614237 0-.5.2238576-.5.5s.22385763.5.5.5zm-3.5-9h1c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-success" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm3.4860198 4.98163161-4.71802968 5.50657859-2.62834168-2.02300024c-.42862421-.36730544-1.06564993-.30775346-1.42283677.13301307-.35718685.44076653-.29927542 1.0958383.12934879 1.46314377l3.40735508 2.7323063c.42215801.3385221 1.03700951.2798252 1.38749189-.1324571l5.38450527-6.33394549c.3613513-.43716226.3096573-1.09278382-.115462-1.46437175-.4251192-.37158792-1.0626796-.31842941-1.4240309.11873285z" fill-rule="evenodd"/></symbol><symbol id="icon-table" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587l-4.0059107-.001.001.001h-1l-.001-.001h-5l.001.001h-1l-.001-.001-3.00391071.001c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm-11.0059107 5h-3.999v6.9941413c0 .5572961.44630695 1.0058587.99508929 1.0058587h3.00391071zm6 0h-5v8h5zm5.0059107-4h-4.0059107v3h5.001v1h-5.001v7.999l4.0059107.001c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-12.5049107 9c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.2238576.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238576-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm-6-2c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.2238576.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238576-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm-6-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.22385763-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm1.499-5h-5v3h5zm-6 0h-3.00391071c-.54871518 0-.99508929.44887827-.99508929 1.00585866v1.99414134h3.999z" fill-rule="evenodd"/></symbol><symbol id="icon-tick-circle" viewBox="0 0 24 24"><path d="m12 2c5.5228475 0 10 4.4771525 10 10s-4.4771525 10-10 10-10-4.4771525-10-10 4.4771525-10 10-10zm0 1c-4.97056275 0-9 4.02943725-9 9 0 4.9705627 4.02943725 9 9 9 4.9705627 0 9-4.0294373 9-9 0-4.97056275-4.0294373-9-9-9zm4.2199868 5.36606669c.3613514-.43716226.9989118-.49032077 1.424031-.11873285s.4768133 1.02720949.115462 1.46437175l-6.093335 6.94397871c-.3622945.4128716-.9897871.4562317-1.4054264.0971157l-3.89719065-3.3672071c-.42862421-.3673054-.48653564-1.0223772-.1293488-1.4631437s.99421256-.5003185 1.42283677-.1330131l3.11097438 2.6987741z" fill-rule="evenodd"/></symbol><symbol id="icon-tick" viewBox="0 0 16 16"><path d="m6.76799012 9.21106946-3.1109744-2.58349728c-.42862421-.35161617-1.06564993-.29460792-1.42283677.12733148s-.29927541 1.04903009.1293488 1.40064626l3.91576307 3.23873978c.41034319.3393961 1.01467563.2976897 1.37450571-.0948578l6.10568327-6.660841c.3613513-.41848908.3096572-1.04610608-.115462-1.4018218-.4251192-.35571573-1.0626796-.30482786-1.424031.11366122z" fill-rule="evenodd"/></symbol><symbol id="icon-update" viewBox="0 0 18 18"><path d="m1 13v1c0 .5522847.44771525 1 1 1h14c.5522847 0 1-.4477153 1-1v-1h-1v-10h-14v10zm16-1h1v2c0 1.1045695-.8954305 2-2 2h-14c-1.1045695 0-2-.8954305-2-2v-2h1v-9c0-.55228475.44771525-1 1-1h14c.5522847 0 1 .44771525 1 1zm-1 0v1h-4.5857864l-1 1h-2.82842716l-1-1h-4.58578644v-1h5l1 1h2l1-1zm-13-8h12v7h-12zm1 1v5h10v-5zm1 1h4v1h-4zm0 2h4v1h-4z" fill-rule="evenodd"/></symbol><symbol id="icon-upload" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm0 1h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v14.00982141c0 .5500396.44491393.9950893.99406028.9950893h12.01187942c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717zm-1.85576936 4.14572769c.19483374-.19483375.51177826-.19377714.70556874.00001334l2.59099082 2.59099079c.1948411.19484112.1904373.51514474.0027906.70279143-.1932998.19329987-.5046517.19237083-.7001856-.00692852l-1.74638687-1.7800176v6.14827687c0 .2717771-.23193359.492096-.5.492096-.27614237 0-.5-.216372-.5-.492096v-6.14827641l-1.74627892 1.77990922c-.1933927.1971171-.51252214.19455839-.70016883.0069117-.19329987-.19329988-.19100584-.50899493.00277731-.70277808z" fill-rule="evenodd"/></symbol><symbol id="icon-video" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587h-14.00982141c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm0 1h-14.00982141c-.54871518 0-.99508929.44887827-.99508929 1.00585866v9.98828264c0 .5572961.44630695 1.0058587.99508929 1.0058587h14.00982141c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-8.30912922 2.24944486 4.60460462 2.73982242c.9365543.55726659.9290753 1.46522435 0 2.01804082l-4.60460462 2.7398224c-.93655425.5572666-1.69578148.1645632-1.69578148-.8937585v-5.71016863c0-1.05087579.76670616-1.446575 1.69578148-.89375851zm-.67492769.96085624v5.5750128c0 .2995102-.10753745.2442517.16578928.0847713l4.58452283-2.67497259c.3050619-.17799716.3051624-.21655446 0-.39461026l-4.58452283-2.67497264c-.26630747-.15538481-.16578928-.20699944-.16578928.08477139z" fill-rule="evenodd"/></symbol><symbol id="icon-warning" viewBox="0 0 18 18"><path d="m9 11.75c.69035594 0 1.25.5596441 1.25 1.25s-.55964406 1.25-1.25 1.25-1.25-.5596441-1.25-1.25.55964406-1.25 1.25-1.25zm.41320045-7.75c.55228475 0 1.00000005.44771525 1.00000005 1l-.0034543.08304548-.3333333 4c-.043191.51829212-.47645714.91695452-.99654578.91695452h-.15973424c-.52008864 0-.95335475-.3986624-.99654576-.91695452l-.33333333-4c-.04586475-.55037702.36312325-1.03372649.91350028-1.07959124l.04148683-.00259031zm-.41320045 14c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-left-bullet" viewBox="0 0 8 16"><path d="M3 8l5 5v3L0 8l8-8v3L3 8z"/></symbol><symbol id="icon-chevron-down" viewBox="0 0 16 16"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" fill-rule="evenodd" transform="matrix(0 1 -1 0 11 3)"/></symbol><symbol id="icon-download-rounded"><path d="M0 13c0-.556.449-1 1.002-1h9.996a.999.999 0 110 2H1.002A1.006 1.006 0 010 13zM7 1v6.8l2.482-2.482c.392-.392 1.022-.4 1.403-.02a1.001 1.001 0 010 1.417l-4.177 4.177a1.001 1.001 0 01-1.416 0L1.115 6.715a.991.991 0 01-.016-1.4 1 1 0 011.42.003L5 7.8V1c0-.55.444-.996 1-.996.552 0 1 .445 1 .996z"/></symbol><symbol id="icon-ext-link" viewBox="0 0 16 16"><path d="M12.9 16H3.1C1.4 16 0 14.6 0 12.9V3.2C0 1.4 1.4 0 3.1 0h3.7v1H3.1C2 1 1 2 1 3.2v9.7C1 14 2 15 3.1 15h9.7c1.2 0 2.1-1 2.1-2.1V8.7h1v4.2c.1 1.7-1.3 3.1-3 3.1z"/><path d="M12.8 2.5l.7.7-9 8.9-.7-.7 9-8.9z"/><path d="M9.7 0L16 6.2V0z"/></symbol><symbol id="icon-remove" viewBox="-296 388 18 18"><path d="M-291.7 396.1h9v2h-9z"/><path d="M-287 405.5c-4.7 0-8.5-3.8-8.5-8.5s3.8-8.5 8.5-8.5 8.5 3.8 8.5 8.5-3.8 8.5-8.5 8.5zm0-16c-4.1 0-7.5 3.4-7.5 7.5s3.4 7.5 7.5 7.5 7.5-3.4 7.5-7.5-3.4-7.5-7.5-7.5z"/></symbol><symbol id="icon-rss" viewBox="0 0 18 18"><path d="m.97480857 6.01583891.11675372.00378391c5.75903295.51984988 10.34261021 5.10537458 10.85988231 10.86480098.0494035.5500707-.3564674 1.0360406-.906538 1.0854441-.5500707.0494036-1.0360406-.3564673-1.08544412-.906538-.43079083-4.7965248-4.25151132-8.61886853-9.04770289-9.05180573-.55004837-.04965115-.95570047-.53580366-.90604933-1.08585203.04610464-.5107592.46858035-.89701345.96909831-.90983323zm1.52519143 6.95474179c1.38071187 0 2.5 1.1192881 2.5 2.5s-1.11928813 2.5-2.5 2.5-2.5-1.1192881-2.5-2.5 1.11928813-2.5 2.5-2.5zm-1.43253846-12.96884168c9.09581416.53242539 16.37540296 7.8163886 16.90205336 16.91294558.0319214.5513615-.389168 1.0242056-.9405294 1.056127-.5513615.0319214-1.0242057-.389168-1.0561271-.9405294-.4679958-8.08344784-6.93949306-14.55883389-15.02226722-15.03196077-.55134101-.03227286-.97212889-.50538538-.93985602-1.05672639.03227286-.551341.50538538-.97212888 1.05672638-.93985602z" fill-rule="evenodd"/></symbol><symbol id="icon-springer-arrow-left"><path d="M15 7a1 1 0 000-2H3.385l2.482-2.482a.994.994 0 00.02-1.403 1.001 1.001 0 00-1.417 0L.294 5.292a1.001 1.001 0 000 1.416l4.176 4.177a.991.991 0 001.4.016 1 1 0 00-.003-1.42L3.385 7H15z"/></symbol><symbol id="icon-springer-arrow-right"><path d="M1 7a1 1 0 010-2h11.615l-2.482-2.482a.994.994 0 01-.02-1.403 1.001 1.001 0 011.417 0l4.176 4.177a1.001 1.001 0 010 1.416l-4.176 4.177a.991.991 0 01-1.4.016 1 1 0 01.003-1.42L12.615 7H1z"/></symbol><symbol id="icon-springer-collections" viewBox="3 3 32 32"><path fill-rule="evenodd" d="M25.583333,30.1249997 L25.583333,7.1207574 C25.583333,7.10772495 25.579812,7.10416665 25.5859851,7.10416665 L6.10400517,7.10571021 L6.10400517,30.1355179 C6.10400517,31.1064087 6.89406744,31.8958329 7.86448169,31.8958329 L26.057145,31.8958329 C25.7558021,31.374901 25.583333,30.7700915 25.583333,30.1249997 Z M4.33333333,30.1355179 L4.33333333,7.10571021 C4.33333333,6.12070047 5.12497502,5.33333333 6.10151452,5.33333333 L25.5859851,5.33333333 C26.5617372,5.33333333 27.3541664,6.13359035 27.3541664,7.1207574 L27.3541664,12.4166666 L32.6666663,12.4166666 L32.6666663,30.1098941 C32.6666663,32.0694626 31.0857174,33.6666663 29.1355179,33.6666663 L7.86448169,33.6666663 C5.91736809,33.6666663 4.33333333,32.0857174 4.33333333,30.1355179 Z M27.3541664,14.1874999 L27.3541664,30.1249997 C27.3541664,31.1030039 28.1469954,31.8958329 29.1249997,31.8958329 C30.1030039,31.8958329 30.8958329,31.1030039 30.8958329,30.1249997 L30.8958329,14.1874999 L27.3541664,14.1874999 Z M9.64583326,10.6458333 L22.0416665,10.6458333 L22.0416665,17.7291665 L9.64583326,17.7291665 L9.64583326,10.6458333 Z M11.4166666,12.4166666 L11.4166666,15.9583331 L20.2708331,15.9583331 L20.2708331,12.4166666 L11.4166666,12.4166666 Z M9.64583326,19.4999998 L22.0416665,19.4999998 L22.0416665,21.2708331 L9.64583326,21.2708331 L9.64583326,19.4999998 Z M9.64583326,23.0416665 L22.0416665,23.0416665 L22.0416665,24.8124997 L9.64583326,24.8124997 L9.64583326,23.0416665 Z M9.64583326,26.583333 L22.0416665,26.583333 L22.0416665,28.3541664 L9.64583326,28.3541664 L9.64583326,26.583333 Z"/></symbol><symbol id="icon-springer-download" viewBox="-301 390 9 14"><path d="M-301 395.6l4.5 5.1 4.5-5.1h-3V390h-3v5.6h-3zm0 6.5h9v1.9h-9z"/></symbol><symbol id="icon-springer-info" viewBox="0 0 24 24"><!--Generator: Sketch 63.1 (92452) - https://sketch.com--><g id="V&I" stroke="none" stroke-width="1" fill-rule="evenodd"><g id="info" fill-rule="nonzero"><path d="M12,0 C18.627417,0 24,5.372583 24,12 C24,18.627417 18.627417,24 12,24 C5.372583,24 0,18.627417 0,12 C0,5.372583 5.372583,0 12,0 Z M12.5540543,9.1 L11.5540543,9.1 C11.0017696,9.1 10.5540543,9.54771525 10.5540543,10.1 L10.5540543,10.1 L10.5540543,18.1 C10.5540543,18.6522847 11.0017696,19.1 11.5540543,19.1 L11.5540543,19.1 L12.5540543,19.1 C13.1063391,19.1 13.5540543,18.6522847 13.5540543,18.1 L13.5540543,18.1 L13.5540543,10.1 C13.5540543,9.54771525 13.1063391,9.1 12.5540543,9.1 L12.5540543,9.1 Z M12,5 C11.5356863,5 11.1529412,5.14640523 10.8517647,5.43921569 C10.5505882,5.73202614 10.4,6.11546841 10.4,6.58954248 C10.4,7.06361656 10.5505882,7.45054466 10.8517647,7.7503268 C11.1529412,8.05010893 11.5356863,8.2 12,8.2 C12.4768627,8.2 12.8627451,8.05010893 13.1576471,7.7503268 C13.452549,7.45054466 13.6,7.06361656 13.6,6.58954248 C13.6,6.11546841 13.452549,5.73202614 13.1576471,5.43921569 C12.8627451,5.14640523 12.4768627,5 12,5 Z" id="Combined-Shape"/></g></g></symbol><symbol id="icon-springer-tick-circle" viewBox="0 0 24 24"><g id="Page-1" stroke="none" stroke-width="1" fill-rule="evenodd"><g id="springer-tick-circle" fill-rule="nonzero"><path d="M12,24 C5.372583,24 0,18.627417 0,12 C0,5.372583 5.372583,0 12,0 C18.627417,0 24,5.372583 24,12 C24,18.627417 18.627417,24 12,24 Z M7.657,10.79 C7.45285634,10.6137568 7.18569967,10.5283283 6.91717333,10.5534259 C6.648647,10.5785236 6.40194824,10.7119794 6.234,10.923 C5.87705269,11.3666969 5.93445559,12.0131419 6.364,12.387 L10.261,15.754 C10.6765468,16.112859 11.3037113,16.0695601 11.666,15.657 L17.759,8.713 C18.120307,8.27302248 18.0695334,7.62621189 17.644,7.248 C17.4414817,7.06995024 17.1751516,6.9821166 16.9064461,7.00476032 C16.6377406,7.02740404 16.3898655,7.15856958 16.22,7.368 L10.768,13.489 L7.657,10.79 Z" id="path-1"/></g></g></symbol><symbol id="icon-updates" viewBox="0 0 18 18"><g fill-rule="nonzero"><path d="M16.98 3.484h-.48c-2.52-.058-5.04 1.161-7.44 2.903-2.46-1.8-4.74-2.903-8.04-2.903-.3 0-.54.29-.54.58v9.813c0 .29.24.523.54.581 2.76.348 4.86 1.045 7.62 2.903.24.116.54.116.72 0 2.76-1.858 4.86-2.555 7.62-2.903.3-.058.54-.29.54-.58V4.064c0-.29-.24-.523-.54-.581zm-15.3 1.22c2.34 0 4.86 1.509 6.72 2.786v8.478c-2.34-1.394-4.38-2.09-6.72-2.439V4.703zm14.58 8.767c-2.34.348-4.38 1.045-6.72 2.439V7.374C12 5.632 14.1 4.645 16.26 4.645v8.826z"/><path d="M9 .058c-1.56 0-2.76 1.22-2.76 2.671C6.24 4.181 7.5 5.4 9 5.4c1.5 0 2.76-1.22 2.76-2.671 0-1.452-1.2-2.67-2.76-2.67zm0 4.413c-.96 0-1.8-.755-1.8-1.742C7.2 1.8 7.98.987 9 .987s1.8.755 1.8 1.742c0 .93-.84 1.742-1.8 1.742z"/></g></symbol><symbol id="icon-checklist-banner" viewBox="0 0 56.69 56.69"><path style="fill:none" d="M0 0h56.69v56.69H0z"/><clipPath id="b"><use xlink:href="#a" style="overflow:visible"/></clipPath><path d="M21.14 34.46c0-6.77 5.48-12.26 12.24-12.26s12.24 5.49 12.24 12.26-5.48 12.26-12.24 12.26c-6.76-.01-12.24-5.49-12.24-12.26zm19.33 10.66 10.23 9.22s1.21 1.09 2.3-.12l2.09-2.32s1.09-1.21-.12-2.3l-10.23-9.22m-19.29-5.92c0-4.38 3.55-7.94 7.93-7.94s7.93 3.55 7.93 7.94c0 4.38-3.55 7.94-7.93 7.94-4.38-.01-7.93-3.56-7.93-7.94zm17.58 12.99 4.14-4.81" style="clip-path:url(#b);fill:none;stroke:#01324b;stroke-width:2;stroke-linecap:round"/><path d="M8.26 9.75H28.6M8.26 15.98H28.6m-20.34 6.2h12.5m14.42-5.2V4.86s0-2.93-2.93-2.93H4.13s-2.93 0-2.93 2.93v37.57s0 2.93 2.93 2.93h15.01M8.26 9.75H28.6M8.26 15.98H28.6m-20.34 6.2h12.5" style="clip-path:url(#b);fill:none;stroke:#01324b;stroke-width:2;stroke-linecap:round;stroke-linejoin:round"/></symbol><symbol id="icon-submit-closed" viewBox="0 0 18 18"><path d="m15 0c1.1045695 0 2 .8954305 2 2v4.5c0 .27614237-.2238576.5-.5.5s-.5-.22385763-.5-.5v-4.5c0-.51283584-.3860402-.93550716-.8833789-.99327227l-.1166211-.00672773h-9v3c0 1.1045695-.8954305 2-2 2h-3v10c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h4.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-4.5c-1.1045695 0-2-.8954305-2-2v-10.17157288c0-.53043297.21071368-1.0391408.58578644-1.41421356l3.82842712-3.82842712c.37507276-.37507276.88378059-.58578644 1.41421356-.58578644zm-2.5 7c3.0375661 0 5.5 2.46243388 5.5 5.5 0 3.0375661-2.4624339 5.5-5.5 5.5-3.03756612 0-5.5-2.4624339-5.5-5.5 0-3.03756612 2.46243388-5.5 5.5-5.5zm0 1c-2.4852814 0-4.5 2.0147186-4.5 4.5s2.0147186 4.5 4.5 4.5 4.5-2.0147186 4.5-4.5-2.0147186-4.5-4.5-4.5zm2.3087379 2.1912621c.2550161.2550162.2550161.668479 0 .9234952l-1.3859024 1.3845831 1.3859024 1.3859023c.2550161.2550162.2550161.668479 0 .9234952-.2550162.2550161-.668479.2550161-.9234952 0l-1.3859023-1.3859024-1.3845831 1.3859024c-.2550162.2550161-.668479.2550161-.9234952 0-.25501614-.2550162-.25501614-.668479 0-.9234952l1.3845831-1.3859023-1.3845831-1.3845831c-.25501614-.2550162-.25501614-.668479 0-.9234952.2550162-.25501614.668479-.25501614.9234952 0l1.3845831 1.3845831 1.3859023-1.3845831c.2550162-.25501614.668479-.25501614.9234952 0zm-9.8087379-8.7782621-3.587 3.587h2.587c.55228475 0 1-.44771525 1-1z"/></symbol><symbol id="icon-submit-open" viewBox="0 0 18 18"><path d="m15 0c1.1045695 0 2 .8954305 2 2v5.5c0 .27614237-.2238576.5-.5.5s-.5-.22385763-.5-.5v-5.5c0-.51283584-.3860402-.93550716-.8833789-.99327227l-.1166211-.00672773h-9v3c0 1.1045695-.8954305 2-2 2h-3v10c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h7.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-7.5c-1.1045695 0-2-.8954305-2-2v-10.17157288c0-.53043297.21071368-1.0391408.58578644-1.41421356l3.82842712-3.82842712c.37507276-.37507276.88378059-.58578644 1.41421356-.58578644zm-.5442863 8.18867991 3.3545404 3.35454039c.2508994.2508994.2538696.6596433.0035959.909917-.2429543.2429542-.6561449.2462671-.9065387-.0089489l-2.2609825-2.3045251.0010427 7.2231989c0 .3569916-.2898381.6371378-.6473715.6371378-.3470771 0-.6473715-.2852563-.6473715-.6371378l-.0010428-7.2231995-2.2611222 2.3046654c-.2531661.2580415-.6562868.2592444-.9065605.0089707-.24295423-.2429542-.24865597-.6576651.0036132-.9099343l3.3546673-3.35466731c.2509089-.25090888.6612706-.25227691.9135302-.00001728zm-.9557137-3.18867991c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm-8.5-3.587-3.587 3.587h2.587c.55228475 0 1-.44771525 1-1zm8.5 1.587c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z"/></symbol><symbol id="icon-submit-upcoming" viewBox="0 0 18 18"><path d="m15 0c1.1045695 0 2 .8954305 2 2v4.5c0 .27614237-.2238576.5-.5.5s-.5-.22385763-.5-.5v-4.5c0-.51283584-.3860402-.93550716-.8833789-.99327227l-.1166211-.00672773h-9v3c0 1.1045695-.8954305 2-2 2h-3v10c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h4.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-4.5c-1.1045695 0-2-.8954305-2-2v-10.17157288c0-.53043297.21071368-1.0391408.58578644-1.41421356l3.82842712-3.82842712c.37507276-.37507276.88378059-.58578644 1.41421356-.58578644zm-2.5 7c3.0375661 0 5.5 2.46243388 5.5 5.5 0 3.0375661-2.4624339 5.5-5.5 5.5-3.03756612 0-5.5-2.4624339-5.5-5.5 0-1.6607442.73606908-3.14957021 1.89976608-4.15803695l-1.51549374.02214397c-.27613212.00263356-.49998143-.22483432-.49998143-.49020681 0-.24299316.17766103-.44509007.40961587-.48700057l.08928713-.00797472h2.66407569c.2449213 0 .4486219.17766776.490865.40963137l.008038.08929051v2.6642143c0 .275547-.2296028.4989219-.4949753.4989219-.24299317 0-.44342617-.1744719-.4830969-.4093269l-.00710993-.0906783.01983146-1.46576707c-.96740882.82538117-1.58082193 2.05345007-1.58082193 3.42478927 0 2.4852814 2.0147186 4.5 4.5 4.5s4.5-2.0147186 4.5-4.5-2.0147186-4.5-4.5-4.5c-.7684937 0-.7684937-1 0-1zm0 2.85c.3263501 0 .5965265.2405082.6429523.5539478l.0070477.0960522v1.731l.8096194.8093806c.2284567.2284567.2513024.5846637.068537.8386705l-.068537.0805683c-.2284567.2284567-.5846637.2513024-.8386705.068537l-.0805683-.068537-.9707107-.9707107c-.1125218-.1125218-.1855975-.257116-.2103268-.412296l-.0093431-.1180341v-1.9585786c0-.3589851.2910149-.65.65-.65zm-7.5-8.437-3.587 3.587h2.587c.55228475 0 1-.44771525 1-1z"/></symbol><symbol id="icon-facebook-bordered" viewBox="463.812 263.868 32 32"><path d="M479.812,263.868c-8.837,0-16,7.163-16,16s7.163,16,16,16s16-7.163,16-16S488.649,263.868,479.812,263.868z M479.812,293.868c-7.732,0-14-6.269-14-14s6.268-14,14-14s14,6.269,14,14S487.545,293.868,479.812,293.868z"/><path d="M483.025,280.48l0.32-2.477h-2.453v-1.582c0-0.715,0.199-1.207,1.227-1.207h1.311v-2.213 c-0.227-0.029-1.003-0.098-1.907-0.098c-1.894,0-3.186,1.154-3.186,3.271v1.826h-2.142v2.477h2.142v6.354h2.557v-6.354 L483.025,280.48L483.025,280.48z"/></symbol><symbol id="icon-twitter-bordered" viewBox="463.812 263.868 32 32"><g><path d="M486.416,276.191c-0.483,0.215-1.007,0.357-1.554,0.429c0.558-0.338,0.991-0.868,1.19-1.502 c-0.521,0.308-1.104,0.536-1.72,0.657c-0.494-0.526-1.2-0.854-1.979-0.854c-1.496,0-2.711,1.213-2.711,2.71 c0,0.212,0.023,0.419,0.069,0.616c-2.252-0.111-4.25-1.19-5.586-2.831c-0.231,0.398-0.365,0.866-0.365,1.361 c0,0.94,0.479,1.772,1.204,2.257c-0.441-0.015-0.861-0.138-1.227-0.339v0.031c0,1.314,0.937,2.41,2.174,2.656 c-0.227,0.062-0.47,0.098-0.718,0.098c-0.171,0-0.343-0.018-0.511-0.049c0.35,1.074,1.347,1.859,2.531,1.883 c-0.928,0.726-2.095,1.16-3.366,1.16c-0.22,0-0.433-0.014-0.644-0.037c1.2,0.768,2.621,1.215,4.155,1.215 c4.983,0,7.71-4.129,7.71-7.711c0-0.115-0.004-0.232-0.006-0.351C485.592,277.212,486.054,276.734,486.416,276.191z"/></g><path d="M479.812,263.868c-8.837,0-16,7.163-16,16s7.163,16,16,16s16-7.163,16-16S488.649,263.868,479.812,263.868z M479.812,293.868c-7.732,0-14-6.269-14-14s6.268-14,14-14s14,6.269,14,14S487.545,293.868,479.812,293.868z"/></symbol><symbol id="icon-weibo-bordered" viewBox="463.812 263.868 32 32"><path d="M479.812,263.868c-8.838,0-16,7.163-16,16s7.162,16,16,16c8.837,0,16-7.163,16-16S488.649,263.868,479.812,263.868z M479.812,293.868c-7.732,0-14-6.269-14-14s6.268-14,14-14c7.731,0,14,6.269,14,14S487.545,293.868,479.812,293.868z"/><g><path d="M478.552,285.348c-2.616,0.261-4.876-0.926-5.044-2.649c-0.167-1.722,1.814-3.33,4.433-3.588 c2.609-0.263,4.871,0.926,5.041,2.647C483.147,283.479,481.164,285.089,478.552,285.348 M483.782,279.63 c-0.226-0.065-0.374-0.109-0.259-0.403c0.25-0.639,0.276-1.188,0.005-1.581c-0.515-0.734-1.915-0.693-3.521-0.021 c0,0-0.508,0.224-0.378-0.181c0.247-0.798,0.209-1.468-0.178-1.852c-0.87-0.878-3.194,0.032-5.183,2.027 c-1.489,1.494-2.357,3.082-2.357,4.453c0,2.619,3.354,4.213,6.631,4.213c4.297,0,7.154-2.504,7.154-4.493 C485.697,280.594,484.689,279.911,483.782,279.63"/><path d="M486.637,274.833c-1.039-1.154-2.57-1.592-3.982-1.291l0,0c-0.325,0.068-0.532,0.391-0.465,0.72 c0.068,0.328,0.391,0.537,0.72,0.466c1.005-0.215,2.092,0.104,2.827,0.92c0.736,0.818,0.938,1.939,0.625,2.918l0,0 c-0.102,0.318,0.068,0.661,0.39,0.762c0.32,0.104,0.658-0.069,0.763-0.391v-0.001C487.953,277.558,487.674,275.985,486.637,274.833 "/><path d="M485.041,276.276c-0.504-0.562-1.25-0.774-1.938-0.63c-0.279,0.06-0.461,0.339-0.396,0.621 c0.062,0.281,0.335,0.461,0.617,0.398l0,0c0.336-0.071,0.702,0.03,0.947,0.307s0.312,0.649,0.207,0.979l0,0 c-0.089,0.271,0.062,0.565,0.336,0.654c0.274,0.09,0.564-0.062,0.657-0.336C485.686,277.604,485.549,276.837,485.041,276.276"/><path d="M478.694,282.227c-0.09,0.156-0.293,0.233-0.451,0.166c-0.151-0.062-0.204-0.235-0.115-0.389 c0.093-0.155,0.284-0.229,0.44-0.168C478.725,281.892,478.782,282.071,478.694,282.227 M477.862,283.301 c-0.253,0.405-0.795,0.58-1.202,0.396c-0.403-0.186-0.521-0.655-0.27-1.051c0.248-0.39,0.771-0.566,1.176-0.393 C477.979,282.423,478.109,282.889,477.862,283.301 M478.812,280.437c-1.244-0.326-2.65,0.294-3.19,1.396 c-0.553,1.119-0.021,2.369,1.236,2.775c1.303,0.42,2.84-0.225,3.374-1.436C480.758,281.989,480.1,280.77,478.812,280.437"/></g></symbol></svg> </div> <div class="u-vh-full"> <a class="c-skip-link" href="#main-content">Skip to main content</a> <div class="u-hide u-show-following-ad"></div> <aside class="adsbox c-ad c-ad--728x90" data-component-mpu> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-LB1" data-ad-type="LB1" data-test="LB1-ad" data-pa11y-ignore data-gpt data-gpt-unitpath="/270604982/springer_open/advancesincontinuousanddiscretemodels/articles" data-gpt-sizes="728x90,970x90" data-gpt-targeting="pos=LB1;doi=10.1186/s13662-018-1787-4;type=article;kwrd=26A33,45D05,45G05,45M10,Coupled fractional differential system,Left-sided mixed Pettis–Hadamard integral of fractional order,Hilfer–Hadamard fractional derivative,Weak solution,Implicit,Fixed point;pmc=M12031,M00009,M12007,M12066,M12147,M12155;" > <noscript> <a href="//pubads.g.doubleclick.net/gampad/jump?iu=/270604982/springer_open/advancesincontinuousanddiscretemodels/articles&sz=728x90,970x90&pos=LB1&doi=10.1186/s13662-018-1787-4&type=article&kwrd=26A33,45D05,45G05,45M10,Coupled fractional differential system,Left-sided mixed Pettis–Hadamard integral of fractional order,Hilfer–Hadamard fractional derivative,Weak solution,Implicit,Fixed point&pmc=M12031,M00009,M12007,M12066,M12147,M12155&"> <img data-test="gpt-advert-fallback-img" src="//pubads.g.doubleclick.net/gampad/ad?iu=/270604982/springer_open/advancesincontinuousanddiscretemodels/articles&sz=728x90,970x90&pos=LB1&doi=10.1186/s13662-018-1787-4&type=article&kwrd=26A33,45D05,45G05,45M10,Coupled fractional differential system,Left-sided mixed Pettis–Hadamard integral of fractional order,Hilfer–Hadamard fractional derivative,Weak solution,Implicit,Fixed point&pmc=M12031,M00009,M12007,M12066,M12147,M12155&" alt="Advertisement" width="728" height="90"> </a> </noscript> </div> </div> </aside> <div id="membership-message-loader-desktop" class="placeholder" data-placeholder="/placeholder/v1/membership/message"></div> <div id="top" class="u-position-relative"> <header class="c-header" data-test="publisher-header"> <div class="c-header__container"> <div class="c-header__brand u-mr-48" itemscope itemtype="http://schema.org/Organization" data-test="navbar-logo-header"> <a href="https://www.springeropen.com" itemprop="url"> <img alt="SpringerOpen" itemprop="logo" width="160" height="30" role="img" src=/static/images/springeropen/logo-springer-open-d04c3ea16c.svg> </a> </div> <div class="c-header__navigation"> <button type="button" class="c-header__link u-button-reset u-mr-24" data-expander data-expander-target="#publisher-header-search" data-expander-autofocus="firstTabbable" data-test="header-search-button" aria-controls="publisher-header-search" aria-expanded="false"> <span class="u-display-flex u-align-items-center"> <span>Search</span> <svg class="u-icon u-flex-static u-ml-8" aria-hidden="true" focusable="false"> <use xlink:href="#icon-search"></use> </svg> </span> </button> <nav> <ul class="c-header__menu" data-enhanced-menu data-test="publisher-navigation"> <li class="c-header__item u-hide-at-lt-lg"> <a class="c-header__link" href="//www.springeropen.com/get-published"> Get published </a> </li> <li class="c-header__item u-hide-at-lt-lg"> <a class="c-header__link" href="//www.springeropen.com/journals"> Explore Journals </a> </li> <li class="c-header__item u-hide-at-lt-lg"> <a class="c-header__link" href="https://www.springer.com/gp/open-access/books"> Books </a> </li> <li class="c-header__item u-hide-at-lt-lg"> <a class="c-header__link" href="//www.springeropen.com/about"> About </a> </li> <li class="c-header__item"> <a data-enhanced-account class="c-header__link" href="https://www.springeropen.com/account" data-test="login-link"> My account </a> </li> </ul> </nav> </div> </div> </header> <div class="c-popup-search u-js-hide" id="publisher-header-search"> <div class="u-container"> <div class="c-popup-search__container"> <div class="ctx-search"> <form role="search" class="c-form-field js-skip-validation" method="GET" action="//www.springeropen.com/search" data-track="search" data-track-context="pop out website-wide search in bmc website header" data-track-category="Search and Results" data-track-action="Submit search" data-dynamic-track-label data-track-label="" data-test="global-search"> <label for="publisherSearch" class="c-form-field__label">Search all SpringerOpen articles</label> <div class="u-display-flex"> <input id="publisherSearch" class="c-form-field__input" data-search-input autocomplete="off" role="textbox" data-test="search-input" name="query" type="text" value=""/> <div> <button class="u-button u-button--primary" type="submit" data-test="search-submit-button"> <span class="u-visually-hidden">Search</span> <svg class="u-icon u-flex-static" width="16" height="16" aria-hidden="true" focusable="false"> <use xlink:href="#icon-search"></use> </svg> </button> </div> </div> <input type="hidden" name="searchType" value="publisherSearch"/> </form> </div> </div> </div> </div> </div> <header class="c-journal-header ctx-journal-header"> <div class="u-container"> <div class="c-journal-header__grid"> <div class="c-journal-header__grid-main"> <div class="h2 c-journal-header__title" id="journalTitle"> <a href="/">Advances in Continuous and Discrete Models</a> </div> <p class="c-journal-header__subtitle">Theory and Modern Applications</p> </div> </div> </div> <div class="c-navbar c-navbar--with-submit-button"> <div class="c-navbar__container"> <div class="c-navbar__content"> <nav class="c-navbar__nav"> <ul class="c-navbar__nav c-navbar__nav--journal" role="menu" data-test="site-navigation"> <li class="c-navbar__item" role="menuitem"> <a class="c-navbar__link" data-track="click" data-track-category="About" data-track-action="Clicked journal navigation link" href='/about'>About</a> </li> <li class="c-navbar__item" role="menuitem"> <a class="c-navbar__link c-navbar__link--is-shown" data-track="click" data-track-category="Articles" data-track-action="Clicked journal navigation link" href='/articles'>Articles</a> </li> <li class="c-navbar__item" role="menuitem"> <a class="c-navbar__link" data-track="click" data-track-category="Submission Guidelines" data-track-action="Clicked journal navigation link" href='/submission-guidelines'>Submission Guidelines</a> </li> <li class="c-navbar__item" role="menuitem" data-test="journal-header-submit-button"> <div class=""> <a class="u-button u-button--tertiary u-button--alt-colour-on-mobile" href="https://www.editorialmanager.com/aide/" data-track="click_submit_manuscript" data-track-action="manuscript submission" data-track-category="article" data-track-label="button in journal nav" data-track-context="journal header on article page" data-track-external data-gtm-criteo="submit-manuscript" data-test="submit-manuscript-button">Submit manuscript<svg class="u-ml-8" width="15" height="16" aria-hidden="true" focusable="false"><use xlink:href="#icon-submit-open"></use></svg></a> </div> </li> </ul> </nav> </div> </div> </div> </header> <div class="u-container u-mt-32 u-mb-32 u-clearfix" id="main-content" data-component="article-container"> <main class="c-article-main-column u-float-left js-main-column" data-track-component="article body"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container" data-track-context="sticky banner"> <div class="c-context-bar__title"> Implicit coupled Hilfer–Hadamard fractional differential systems under weak topologies </div> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both"> <a href="//advancesincontinuousanddiscretemodels.springeropen.com/counter/pdf/10.1186/s13662-018-1787-4.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="link" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-download"/></svg> </a> </div> </div> </div> </div> <div class="c-pdf-button__container u-hide-at-lg js-context-bar-sticky-point-mobile"> <div class="c-pdf-container" data-track-context="article body"> <div class="c-pdf-download u-clear-both"> <a href="//advancesincontinuousanddiscretemodels.springeropen.com/counter/pdf/10.1186/s13662-018-1787-4.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="link" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-download"/></svg> </a> </div> </div> </div> <article lang="en"> <div class="c-article-header"> <ul class="c-article-identifiers" data-test="article-identifier"> <li class="c-article-identifiers__item" data-test="article-category">Research</li> <li class="c-article-identifiers__item"> <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link" class="u-color-open-access" data-test="open-access">Open access</a> </li> <li class="c-article-identifiers__item">Published: <time datetime="2018-09-18">18 September 2018</time></li> </ul> <h1 class="c-article-title" data-test="article-title" data-article-title="">Implicit coupled Hilfer–Hadamard fractional differential systems under weak topologies</h1> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Sa_d-Abbas-Aff1" data-author-popup="auth-Sa_d-Abbas-Aff1" data-author-search="Abbas, Saïd">Saïd Abbas</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Mouffak-Benchohra-Aff2" data-author-popup="auth-Mouffak-Benchohra-Aff2" data-author-search="Benchohra, Mouffak">Mouffak Benchohra</a><sup class="u-js-hide"><a href="#Aff2">2</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Naima-Hamidi-Aff2" data-author-popup="auth-Naima-Hamidi-Aff2" data-author-search="Hamidi, Naima">Naima Hamidi</a><sup class="u-js-hide"><a href="#Aff2">2</a></sup> & </li><li class="c-article-author-list__show-more" aria-label="Show all 4 authors for this article" title="Show all 4 authors for this article">…</li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Yong-Zhou-Aff3-Aff4" data-author-popup="auth-Yong-Zhou-Aff3-Aff4" data-author-search="Zhou, Yong" data-corresp-id="c1">Yong Zhou<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><span class="u-js-hide"> <a class="js-orcid" href="http://orcid.org/0000-0002-4099-8077"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-4099-8077</a></span><sup class="u-js-hide"><a href="#Aff3">3</a>,<a href="#Aff4">4</a></sup> </li></ul><button aria-expanded="false" class="c-article-author-list__button"><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-down-medium"></use></svg><span>Show authors</span></button> <p class="c-article-info-details" data-container-section="info"> <a data-test="journal-link" href="/" data-track="click" data-track-action="journal homepage" data-track-category="article body" data-track-label="link"><i data-test="journal-title">Advances in Difference Equations</i></a> <b data-test="journal-volume"><span class="u-visually-hidden">volume</span> 2018</b>, Article number: <span data-test="article-number">328</span> (<span data-test="article-publication-year">2018</span>) <a href="#citeas" class="c-article-info-details__cite-as u-hide-print" data-track="click" data-track-action="cite this article" data-track-label="link">Cite this article</a> </p> <div class="c-article-metrics-bar__wrapper u-clear-both"> <ul class="c-article-metrics-bar u-list-reset"> <li class=" c-article-metrics-bar__item" data-test="access-count"> <p class="c-article-metrics-bar__count">1549 <span class="c-article-metrics-bar__label">Accesses</span></p> </li> <li class="c-article-metrics-bar__item"> <p class="c-article-metrics-bar__details"><a href="/articles/10.1186/s13662-018-1787-4/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Metrics <span class="u-visually-hidden">details</span></a></p> </li> </ul> </div> </div> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Abs1">Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>In this article, we present some existence of weak solutions for a coupled system of implicit fractional differential equations of Hilfer–Hadamard type. Our approach is based on Mönch’s fixed point theorem associated with the technique of measure of weak noncompactness.</p></div></div></section> <section data-title="Introduction"><div class="c-article-section" id="Sec1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec1"><span class="c-article-section__title-number">1 </span>Introduction</h2><div class="c-article-section__content" id="Sec1-content"><p>In recent years, fractional calculus and fractional differential equations are emerging as a useful tool in modeling the dynamics of many physical systems and electrical phenomena, which has been demonstrated by many researchers in the fields of mathematics, science, and engineering; see [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="
					Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York (2012)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR3" id="ref-link-section-d126833688e411">3</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="
					Abbas, S., Benchohra, M., N’Guérékata, G.M.: Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York (2015)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR4" id="ref-link-section-d126833688e414">4</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 18" title="
					Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR18" id="ref-link-section-d126833688e417">18</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="
					Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurc. Chaos 22(4), 1250086 (2012)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR19" id="ref-link-section-d126833688e420">19</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="
					Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR22" id="ref-link-section-d126833688e423">22</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 23" title="
					Li, M., Wang, J.R.: Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl. Math. Comput. 324, 254–265 (2018)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR23" id="ref-link-section-d126833688e427">23</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 30" title="
					Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Amsterdam (1987) Engl. Trans. from the Russian
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR30" id="ref-link-section-d126833688e430">30</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 31" title="
					Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg (2010)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR31" id="ref-link-section-d126833688e433">31</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 35" title="
					Zhou, Y.: Attractivity for fractional evolution equations with almost sectorial operators. Fract. Calc. Appl. Anal. 21(3), 786–800 (2018)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR35" id="ref-link-section-d126833688e436">35</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 40" title="
					Zhou, Y., Zhang, L., Shen, X.H.: Existence of mild solutions for fractional evolution equations. J. Integral Equ. Appl. 25, 557–586 (2013)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR40" id="ref-link-section-d126833688e439">40</a>]. Recently, considerable attention has been given to the existence of solutions of initial and boundary value problems for fractional differential equations with Hilfer fractional derivative [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 15" title="
					Furati, K.M., Kassim, M.D.: Non-existence of global solutions for a differential equation involving Hilfer fractional derivative. Electron. J. Differ. Equ. 2013, 235 (2013)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR15" id="ref-link-section-d126833688e442">15</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="
					Furati, K.M., Kassim, M.D., Tatar, N.E.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64, 1616–1626 (2012)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR16" id="ref-link-section-d126833688e446">16</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 18" title="
					Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR18" id="ref-link-section-d126833688e449">18</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="
					Kamocki, R., Obczyński, C.: On fractional Cauchy-type problems containing Hilfer’s derivative. Electron. J. Qual. Theory Differ. Equ. 2016, 50 (2016)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR20" id="ref-link-section-d126833688e452">20</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 32" title="
					Tomovski, Ž., Hilfer, R., Srivastava, H.M.: Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integral Transforms Spec. Funct. 21(11), 797–814 (2010)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR32" id="ref-link-section-d126833688e455">32</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 34" title="
					Wang, J.R., Zhang, Y.: Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 266, 850–859 (2015)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR34" id="ref-link-section-d126833688e458">34</a>] and other problems with Hilfer–Hadamard fractional derivative [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 28" title="
					Qassim, M.D., Furati, K.M., Tatar, N.-E.: On a differential equation involving Hilfer–Hadamard fractional derivative. Abstr. Appl. Anal. 2012, Article ID 391062 (2012)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR28" id="ref-link-section-d126833688e461">28</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 29" title="
					Qassim, M.D., Tatar, N.E.: Well-posedness and stability for a differential problem with Hilfer–Hadamard fractional derivative. Abstr. Appl. Anal. 2013, Article ID 605029 (2013)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR29" id="ref-link-section-d126833688e465">29</a>].</p><p>The measure of weak noncompactness was introduced by De Blasi [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 14" title="
					De Blasi, F.S.: On the property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. Math. Roum. 21, 259–262 (1977)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR14" id="ref-link-section-d126833688e471">14</a>]. The strong measure of noncompactness was developed first by Banaś and Goebel [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="
					Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Marcel Dekker, New York (1980)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR8" id="ref-link-section-d126833688e474">8</a>] and subsequently developed and used in many papers; see, for example, Akhmerov et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="
					Akhmerov, R.R., Kamenskii, M.I., Patapov, A.S., Rodkina, A.E., Sadovskii, B.N.: Measures of Noncompactness and Condensing Operators. Birkhauser Verlag, Basel (1992)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR6" id="ref-link-section-d126833688e477">6</a>], Alvárez [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="
					Alvárez, J.C.: Measure of noncompactness and fixed points of nonexpansive condensing mappings in locally convex spaces. Rev. Real. Acad. Cienc. Exact. Fis. Natur. Madrid 79, 53–66 (1985)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR7" id="ref-link-section-d126833688e480">7</a>], Benchohra et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="
					Benchohra, M., Henderson, J., Seba, D.: Measure of noncompactness and fractional differential equations in Banach spaces. Commun. Appl. Anal. 12(4), 419–428 (2008)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR12" id="ref-link-section-d126833688e483">12</a>], Guo et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="
					Guo, D., Lakshmikantham, V., Liu, X.: Nonlinear Integral Equations in Abstract Spaces. Kluwer Academic, Dordrecht (1996)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR17" id="ref-link-section-d126833688e487">17</a>], and the references therein. In [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="
					Benchohra, M., Henderson, J., Seba, D.: Measure of noncompactness and fractional differential equations in Banach spaces. Commun. Appl. Anal. 12(4), 419–428 (2008)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR12" id="ref-link-section-d126833688e490">12</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 26" title="
					O’Regan, D.: Weak solutions of ordinary differential equations in Banach spaces. Appl. Math. Lett. 12, 101–105 (1999)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR26" id="ref-link-section-d126833688e493">26</a>], the authors considered some existence results by the technique of measure of noncompactness. Recently, several researchers obtained other results by the technique of measure of weak noncompactness; see [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="
					Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: Implicit Fractional Differential and Integral Equations: Existence and Stability. De Gruyter, Berlin (2018)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR2" id="ref-link-section-d126833688e496">2</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="
					Abbas, S., Benchohra, M., N’Guérékata, G.M.: Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York (2015)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR4" id="ref-link-section-d126833688e499">4</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="
					Benchohra, M., Graef, J., Mostefai, F.Z.: Weak solutions for boundary-value problems with nonlinear fractional differential inclusions. Nonlinear Dyn. Syst. Theory 11(3), 227–237 (2011)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR10" id="ref-link-section-d126833688e502">10</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="
					Benchohra, M., Henderson, J., Mostefai, F.Z.: Weak solutions for hyperbolic partial fractional differential inclusions in Banach spaces. Comput. Math. Appl. 64, 3101–3107 (2012)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR11" id="ref-link-section-d126833688e506">11</a>] and the references therein.</p><p>Consider the following coupled system of implicit Hilfer–Hadamard fractional differential equations: </p><div id="Equ1" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \textstyle\begin{cases} ({}^{H}D_{1}^{\alpha,\beta }u_{1})(t)=f_{1}(t,u_{1}(t),u_{2}(t),({}^{H}D_{1}^{\alpha,\beta }u_{1})(t),({}^{H}D_{1}^{\alpha,\beta}u_{2})(t)), &\\ ({}^{H}D_{1}^{\alpha,\beta }u_{2})(t)=f_{2}(t,u_{1}(t),u_{2}(t),({}^{H}D_{1}^{\alpha,\beta }u_{1})(t),({}^{H}D_{1}^{\alpha,\beta}u_{2})(t)), \end{cases}\displaystyle t\in I, $$</span></div><div class="c-article-equation__number"> (1) </div></div><p> with the initial conditions </p><div id="Equ2" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \textstyle\begin{cases} ({}^{H}I_{1}^{1-\gamma}u_{i})(t)|_{t=1}=\phi_{1}, &\\ ({}^{H}I_{1}^{1-\gamma}u_{2})(t)|_{t=1}=\phi_{2}, \end{cases} $$</span></div><div class="c-article-equation__number"> (2) </div></div><p> where <span class="mathjax-tex">\(I:=[1,T], T>1, \alpha\in(0,1), \beta\in[0,1], \gamma =\alpha+\beta-\alpha\beta, \phi_{i}\in E\)</span>, <span class="mathjax-tex">\(f_{i}:I\times E^{4}\to E, i=1,2\)</span>, are given continuous functions, <i>E</i> is a real (or complex) Banach space with norm <span class="mathjax-tex">\(\|\cdot\|_{E}\)</span> and dual <span class="mathjax-tex">\(E^{*}\)</span>, such that <i>E</i> is the dual of a weakly compactly generated Banach space <i>X</i>, <span class="mathjax-tex">\({}^{H}I_{1}^{1-\gamma}\)</span> is the left-sided mixed Hadamard integral of order <span class="mathjax-tex">\(1-\gamma\)</span>, and <span class="mathjax-tex">\({}^{H}D_{1}^{\alpha,\beta}\)</span> is the Hilfer–Hadamard fractional derivative of order <i>α</i> and type <i>β</i>. In this paper, we prove the existence of weak solutions for a coupled system of implicit fractional differential equations of Hilfer–Hadamard type.</p></div></div></section><section data-title="Preliminaries"><div class="c-article-section" id="Sec2-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec2"><span class="c-article-section__title-number">2 </span>Preliminaries</h2><div class="c-article-section__content" id="Sec2-content"><p>Let C be the Banach space of all continuous functions <i>v</i> from <i>I</i> into <i>E</i> with the supremum (uniform) norm </p><div id="Equa" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\Vert v \Vert _{\infty}:= \sup _{t\in I} \bigl\Vert v(t) \bigr\Vert _{E}. $$</span></div></div><p> As usual, <span class="mathjax-tex">\(\mathrm{AC}(I)\)</span> denotes the space of absolutely continuous functions from <i>I</i> into <i>E</i>. We define the space </p><div id="Equb" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\mathrm{AC}^{1}(I):=\bigl\{ w:I\to E:w'\in\mathrm{AC}(I) \bigr\} , $$</span></div></div><p> where <span class="mathjax-tex">\(w'(t)=\frac{\mathrm{d}}{\mathrm{d}t}w(t), t\in I\)</span>. Let </p><div id="Equc" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\delta=t\frac{\mathrm{d}}{\mathrm{d}t},\qquad n=[q]+1, $$</span></div></div><p> where <span class="mathjax-tex">\([q]\)</span> is the integer part of <span class="mathjax-tex">\(q>0\)</span>. Define the space </p><div id="Equd" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\mathrm{AC}_{\delta}^{n}:=\bigl\{ u:[1,T]\to E: \delta^{n-1}(u)\in\mathrm {AC}(I)\bigr\} . $$</span></div></div><p> Let <span class="mathjax-tex">\(\gamma\in(0,1]\)</span>. By <span class="mathjax-tex">\(\mathrm{C}_{\gamma}(I), \mathrm{C}^{1}_{\gamma}(I)\)</span>, and <span class="mathjax-tex">\(\mathrm{C}_{\gamma,\ln}(I)\)</span> we denote the weighted spaces of continuous functions defined by </p><div id="Eque" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\mathrm{C}_{\gamma}(I)=\bigl\{ w:(1,T]\to E: \in\bar{w}\in\mathrm{C}\bigr\} , $$</span></div></div><p> where <span class="mathjax-tex">\(\bar{w}(t)= t^{1-\gamma}w(t), t\in(1,T]\)</span>, with the norm </p><div id="Equf" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} &\Vert w \Vert _{\mathrm{C}_{\gamma}}:= \sup _{t\in I} \bigl\Vert \bar{w}(t) \bigr\Vert _{E}, \\ &\mathrm{C}^{1}_{\gamma}(I)=\bigl\{ w\in\mathrm{C}: w'\in\mathrm{C}_{\gamma}\bigr\} \end{aligned}$$ </span></div></div><p> with the norm </p><div id="Equg" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\Vert w \Vert _{\mathrm{C}^{1}_{\gamma}}:= \Vert w \Vert _{\infty}+ \bigl\Vert w' \bigr\Vert _{\mathrm{C}_{\gamma}}, $$</span></div></div><p> and </p><div id="Equh" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\mathrm{C}_{\gamma,\ln}(I)=\{w:I\to E:\widetilde{w}\in\mathrm{C}\}, $$</span></div></div><p> where <span class="mathjax-tex">\(\widetilde{w}(t)= (\ln t)^{1-\gamma}w(t), t\in I\)</span>, with the norm </p><div id="Equi" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\Vert w \Vert _{\mathrm{C}_{\gamma,\ln}}:= \sup _{t\in I} \bigl\Vert \widetilde{w}(t) \bigr\Vert _{E}. $$</span></div></div><p> We further denote <span class="mathjax-tex">\(\|w\|_{\mathrm{C}_{\gamma,\ln}}\)</span> by <span class="mathjax-tex">\(\|w\|_{C}\)</span>.</p><p>Define the weighted product space <span class="mathjax-tex">\({\mathcal {C}}:=C_{\gamma,\ln}(I)\times C_{\gamma,\ln}(I)\)</span> with the norm </p><div id="Equj" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl\Vert (w_{1},w_{2}) \bigr\Vert _{\mathcal{C}}:= \Vert w_{1} \Vert _{C}+ \Vert w_{2} \Vert _{C}. $$</span></div></div><p> In the same way, we can define the the weighted product space <span class="mathjax-tex">\({\overline{C}}:=(C_{\gamma,\ln}(I))^{n}\)</span> with the norm </p><div id="Equk" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl\Vert (w_{1},w_{2},\ldots,w_{n}) \bigr\Vert _{\overline{C}}:= \sum _{k=1}^{n} \Vert w_{k} \Vert _{C}. $$</span></div></div><p> Let <span class="mathjax-tex">\((E,w)=(E,\sigma(E,E^{*}))\)</span> be the Banach space <i>E</i> with weak topology.</p> <h3 class="c-article__sub-heading" id="FPar1">Definition 2.1</h3> <p>A Banach space <i>X</i> is said to be weakly compactly generated (WCG) if it contains a weakly compact set whose linear span is dense in <i>X</i>.</p> <h3 class="c-article__sub-heading" id="FPar2">Definition 2.2</h3> <p>A function <span class="mathjax-tex">\(h:E\rightarrow E\)</span> is said to be weakly sequentially continuous if <i>h</i> takes each weakly convergent sequence in <i>E</i> to a weakly convergent sequence in <i>E</i> (i.e., for any <span class="mathjax-tex">\((u_{n})\)</span> in <i>E</i> with <span class="mathjax-tex">\(u_{n}\rightarrow u\)</span> in <span class="mathjax-tex">\((E,w)\)</span>, we have <span class="mathjax-tex">\(h(u_{n})\rightarrow h(u)\)</span> in <span class="mathjax-tex">\((E,w)\)</span>).</p> <h3 class="c-article__sub-heading" id="FPar3">Definition 2.3</h3> <p>([<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 27" title="
					Pettis, B.J.: On integration in vector spaces. Trans. Am. Math. Soc. 44, 277–304 (1938)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR27" id="ref-link-section-d126833688e3540">27</a>])</p> <p>The function <span class="mathjax-tex">\(u:I\rightarrow E\)</span> is said to be Pettis integrable on <i>I</i> if and only if there is an element <span class="mathjax-tex">\(u_{J}\in E\)</span> corresponding to each <span class="mathjax-tex">\(J\subset I\)</span> such that <span class="mathjax-tex">\(\phi(u_{J})=\int_{J} \phi(u(s))\,\mathrm{d}s\)</span> for all <span class="mathjax-tex">\(\phi\in E^{\ast}\)</span>, where the integral on the right-hand side is assumed to exist in the Lebesgue sense (by definition <span class="mathjax-tex">\(u_{J}=\int_{J}u(s)\,\mathrm{d}s)\)</span>.</p> <p>Let <span class="mathjax-tex">\(\mathrm{P}(I,E)\)</span> be the space of all <i>E</i>-valued Pettis-integrable functions on <i>I</i>, and let <span class="mathjax-tex">\(L^{1}(I,E)\)</span> be the Banach space of Bochner-integrable measurable functions <span class="mathjax-tex">\(u:I\to E\)</span>. Define the class </p><div id="Equl" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\mathrm{P}_{1}(I,E)=\bigl\{ u\in P(I,E): \varphi(u)\in L^{1}(I,{\mathbb {R}}) \text{ for every } \varphi\in E^{*}\bigr\} . $$</span></div></div><p> The space <span class="mathjax-tex">\(\mathrm{P}_{1}(I,E) \)</span> is normed by </p><div id="Equm" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\Vert u \Vert _{\mathrm{P}_{1}}= \sup _{\varphi\in E^{*}, \Vert \varphi \Vert \leq1} \int _{1}^{T} \bigl\vert \varphi\bigl(u(x)\bigr) \bigr\vert \,\mathrm{d}\lambda x, $$</span></div></div><p> where <i>λ</i> is the Lebesgue measure on <i>I</i>.</p><p>The following result is due to Pettis [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 27" title="
					Pettis, B.J.: On integration in vector spaces. Trans. Am. Math. Soc. 44, 277–304 (1938)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR27" id="ref-link-section-d126833688e4181">27</a>, Thm. 3.4 and Cor. 3.41].</p> <h3 class="c-article__sub-heading" id="FPar4">Proposition 2.4</h3> <p>([<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 27" title="
					Pettis, B.J.: On integration in vector spaces. Trans. Am. Math. Soc. 44, 277–304 (1938)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR27" id="ref-link-section-d126833688e4191">27</a>])</p> <p><i>If</i> <span class="mathjax-tex">\(u\in\mathrm{P}_{1}(I,E)\)</span> <i>and</i> <i>h</i> <i>is a measurable and essentially bounded</i> <i>E</i>-<i>valued function</i>, <i>then</i> <span class="mathjax-tex">\(uh\in\mathrm{P}_{1}(I,E)\)</span>.</p> <p>In what follows, the symbol “∫” denotes the Pettis integral.</p><p>Now, we give some results and properties of fractional calculus.</p> <h3 class="c-article__sub-heading" id="FPar5">Definition 2.5</h3> <p>([<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="
					Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York (2012)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR3" id="ref-link-section-d126833688e4319">3</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="
					Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR22" id="ref-link-section-d126833688e4322">22</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 30" title="
					Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Amsterdam (1987) Engl. Trans. from the Russian
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR30" id="ref-link-section-d126833688e4325">30</a>])</p> <p>The left-sided mixed Riemann–Liouville integral of order <span class="mathjax-tex">\(r>0\)</span> of a function <span class="mathjax-tex">\(w\in L^{1}(I)\)</span> is defined by </p><div id="Equn" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl( I_{1}^{r}w\bigr) (t) =\frac{1}{\Gamma(r)} \int_{1}^{t}( t-s) ^{r-1}w(s)\,\mathrm{d}s\quad \text{for a.e. } t\in I, $$</span></div></div><p> where Γ is the (Euler) gamma function defined by </p><div id="Equo" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\Gamma(\xi)= \int_{0}^{\infty}t^{\xi-1}e^{-t}\,{ \mathrm {d}}t,\quad \xi>0. $$</span></div></div> <p>Notice that, for all <span class="mathjax-tex">\(r,r_{1},r_{2}>0\)</span> and <span class="mathjax-tex">\(w\in\mathrm{C}\)</span>, we have <span class="mathjax-tex">\(I_{0}^{r}w\in\mathrm{C}\)</span> and </p><div id="Equp" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl(I_{1}^{r_{1}}I_{1}^{r_{2}}w\bigr) (t)= \bigl(I_{1}^{r_{1}+r_{2}}w\bigr) (t);\quad \mbox{for a.e. } t\in I. $$</span></div></div> <h3 class="c-article__sub-heading" id="FPar6">Definition 2.6</h3> <p>([<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="
					Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York (2012)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR3" id="ref-link-section-d126833688e4847">3</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="
					Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR22" id="ref-link-section-d126833688e4850">22</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 30" title="
					Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Amsterdam (1987) Engl. Trans. from the Russian
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR30" id="ref-link-section-d126833688e4853">30</a>])</p> <p>The Riemann–Liouville fractional derivative of order <span class="mathjax-tex">\(r>0\)</span> of a function <span class="mathjax-tex">\(w\in L^{1}(I)\)</span> is defined by </p><div id="Equq" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} \bigl(D^{r}_{1} w\bigr) (t)&=\biggl(\frac{\mathrm{d}^{n}}{\mathrm{d}t^{n}}I_{1}^{n-r}w \biggr) (t) \\ &=\frac{1}{\Gamma(n-r)}\frac{\mathrm{d}^{n}}{\mathrm{d}t^{n}} \int _{1}^{t}(t-s)^{n-r-1}w(s)\,\mathrm{d}s\quad \text{for a.e. } t\in I, \end{aligned}$$ </span></div></div><p> where <span class="mathjax-tex">\(n=[r]+1\)</span>, and <span class="mathjax-tex">\([r]\)</span> is the integer part of <i>r</i>.</p> <p>In particular, if <span class="mathjax-tex">\(r\in(0,1]\)</span>, then </p><div id="Equr" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} \bigl(D^{r}_{1} w\bigr) (t)&= \biggl(\frac{\mathrm{d}}{\mathrm{d}t}I_{1}^{1-r}w \biggr) (t) \\ &=\frac{1}{\Gamma(1-r)}\frac{\mathrm{d}}{\mathrm{d}t} \int _{1}^{t}(t-s)^{-r}w(s)\,\mathrm{d}s\quad \text{for a.e. } t\in I. \end{aligned}$$ </span></div></div><p> Let <span class="mathjax-tex">\(r\in(0,1], \gamma\in[0,1)\)</span>, and <span class="mathjax-tex">\(w\in\mathrm{C}_{1-\gamma }(I)\)</span>. Then the following expression leads to the left inverse operator: </p><div id="Equs" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl(D_{1}^{r}I_{1}^{r}w\bigr) (t)=w(t) \quad\text{for all } t\in(1,T]. $$</span></div></div><p> Moreover, if <span class="mathjax-tex">\(I_{1}^{1-r}w\in C^{1}_{1-\gamma}(I)\)</span>, then the following composition is proved in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 30" title="
					Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Amsterdam (1987) Engl. Trans. from the Russian
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR30" id="ref-link-section-d126833688e5742">30</a>]: </p><div id="Equt" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl(I_{1}^{r}D_{1}^{r}w\bigr) (t)=w(t)-\frac{(I_{1}^{1-r}w)(1^{+})}{\Gamma (r)}t^{r-1} \quad\text{for all } t\in(1,T]. $$</span></div></div> <h3 class="c-article__sub-heading" id="FPar7">Definition 2.7</h3> <p>([<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="
					Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York (2012)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR3" id="ref-link-section-d126833688e5916">3</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="
					Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR22" id="ref-link-section-d126833688e5919">22</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 30" title="
					Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Amsterdam (1987) Engl. Trans. from the Russian
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR30" id="ref-link-section-d126833688e5922">30</a>])</p> <p>The Caputo fractional derivative of order <span class="mathjax-tex">\(r>0\)</span> of a function <span class="mathjax-tex">\(w\in L^{1}(I)\)</span> is defined by </p><div id="Equu" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} \bigl({}^{c}D^{r}_{1}w\bigr) (t)&= \biggl(I_{1}^{n-r}\frac{\mathrm{d}^{n}}{\mathrm{d}t^{n}}w \biggr) (t) \\ &=\frac{1}{\Gamma(n-r)} \int_{1}^{t}(t-s)^{n-r-1}\frac {\mathrm{d}^{n}}{\mathrm{d}s^{n}}w(s)\,{ \mathrm {d}}s \quad\text{for a.e. } t\in I. \end{aligned}$$ </span></div></div> <p>In particular, if <span class="mathjax-tex">\(r\in(0,1]\)</span>, then </p><div id="Equv" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} \bigl({}^{c}D^{r}_{1}w\bigr) (t)&= \biggl(I_{1}^{1-r}\frac{\mathrm{d}}{\mathrm{d}t}w \biggr) (t) \\ &=\frac{1}{\Gamma(1-r)} \int_{1}^{t}(t-s)^{-r}\frac{d}{\mathrm {d}s}w(s)\,{ \mathrm {d}}s \quad\text{for a.e. } t\in I. \end{aligned}$$ </span></div></div><p> Let us recall some definitions and properties of Hadamard fractional integration and differentiation. We refer to [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="
					Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR22" id="ref-link-section-d126833688e6508">22</a>] for more details.</p> <h3 class="c-article__sub-heading" id="FPar8">Definition 2.8</h3> <p>([<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="
					Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR22" id="ref-link-section-d126833688e6519">22</a>])</p> <p>The Hadamard fractional integral of order <span class="mathjax-tex">\(q>0\)</span> for a function <span class="mathjax-tex">\(g\in L^{1}(I,E)\)</span> is defined as </p><div id="Equw" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl({}^{H}I_{1}^{q}g\bigr) (x)= \frac{1}{\Gamma(q)} \int_{1}^{x} \biggl(\ln\frac {x}{s} \biggr)^{q-1}\frac{g(s)}{s}\,\mathrm{d}s, $$</span></div></div><p> provided that the integral exists.</p> <h3 class="c-article__sub-heading" id="FPar9">Example 2.9</h3> <p>Let <span class="mathjax-tex">\(0< q<1\)</span>. Then </p><div id="Equx" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$^{H}I_{1}^{q} \ln t=\frac{1}{\Gamma(2+q)}(\ln t)^{1+q} \quad\text{for a.e. } t\in[0,e]. $$</span></div></div> <h3 class="c-article__sub-heading" id="FPar10">Remark 2.10</h3> <p>Let <span class="mathjax-tex">\(g\in\mathrm{P}_{1}(I, E)\)</span>. For every <span class="mathjax-tex">\(\varphi\in E^{*}\)</span>, we have </p><div id="Equy" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\varphi\bigl({}^{H}I_{1}^{q}g\bigr) (t)= \bigl({}^{H}I_{1}^{q}\varphi g\bigr) (t) \quad\text{for a.e. } t\in I. $$</span></div></div> <p>Similarly to the Riemann–Liouville fractional calculus, the Hadamard fractional derivative is defined in terms of the Hadamard fractional integral as follows.</p> <h3 class="c-article__sub-heading" id="FPar11">Definition 2.11</h3> <p>([<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="
					Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR22" id="ref-link-section-d126833688e7072">22</a>])</p> <p>The Hadamard fractional derivative of order <span class="mathjax-tex">\(q>0\)</span> applied to a function <span class="mathjax-tex">\(w\in\mathrm{AC}_{\delta}^{n}\)</span> is defined as </p><div id="Equz" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl({}^{H}D_{1}^{q}w\bigr) (x)= \delta^{n} \bigl({}^{H}I_{1}^{n-q}w\bigr) (x). $$</span></div></div> <p>In particular, if <span class="mathjax-tex">\(q\in(0,1]\)</span>, then </p><div id="Equaa" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl({}^{H}D_{1}^{q}w\bigr) (x)=\delta \bigl({}^{H}I_{1}^{1-q}w\bigr) (x). $$</span></div></div> <h3 class="c-article__sub-heading" id="FPar12">Example 2.12</h3> <p>Let <span class="mathjax-tex">\(0< q<1\)</span>. Then </p><div id="Equab" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$^{H}D_{1}^{q} \ln t=\frac{1}{\Gamma(2-q)}(\ln t)^{1-q} \quad\text{for a.e. } t\in[0,e]. $$</span></div></div> <p>It has been proved (see, e.g., Kilbas [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 21" title="
					Kilbas, A.A.: Hadamard-type fractional calculus. J. Korean Math. Soc. 38(6), 1191–1204 (2001)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR21" id="ref-link-section-d126833688e7525">21</a>, Thm. 4.8]) that, in the space <span class="mathjax-tex">\(L^{1}(I,E)\)</span>, the Hadamard fractional derivative is the left-inverse operator to the Hadamard fractional integral, that is, </p><div id="Equac" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl({}^{H}D_{1}^{q}\bigr) \bigl({}^{H}I_{1}^{q}w \bigr) (x)=w(x). $$</span></div></div><p> From [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="
					Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR22" id="ref-link-section-d126833688e7657">22</a>, Thm. 2.3] we have </p><div id="Equad" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl({}^{H}I_{1}^{q}\bigr) \bigl({}^{H}D_{1}^{q}w \bigr) (x)=w(x)-\frac {({}^{H}I_{1}^{1-q}w)(1)}{\Gamma(q)}(\ln x)^{q-1}. $$</span></div></div><p>Similarly to the Hadamard fractional calculus, the Caputo–Hadamard fractional derivative is defined as follows.</p> <h3 class="c-article__sub-heading" id="FPar13">Definition 2.13</h3> <p>The Caputo–Hadamard fractional derivative of order <span class="mathjax-tex">\(q>0\)</span> applied to a function <span class="mathjax-tex">\(w\in\mathrm{AC}_{\delta}^{n}\)</span> is defined as </p><div id="Equae" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl({}^{Hc}D_{1}^{q}w\bigr) (x)= \bigl({}^{H}I_{1}^{n-q}\delta^{n}w\bigr) (x). $$</span></div></div> <p>In particular, if <span class="mathjax-tex">\(q\in(0,1]\)</span>, then </p><div id="Equaf" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl({}^{Hc}D_{1}^{q}w\bigr) (x)= \bigl({}^{H}I_{1}^{1-q}\delta w\bigr) (x). $$</span></div></div><p>Hilfer [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 18" title="
					Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR18" id="ref-link-section-d126833688e8159">18</a>] studied applications of the generalized fractional operator having the Riemann–Liouville and the Caputo derivatives as particular cases (see also [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="
					Kamocki, R., Obczyński, C.: On fractional Cauchy-type problems containing Hilfer’s derivative. Electron. J. Qual. Theory Differ. Equ. 2016, 50 (2016)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR20" id="ref-link-section-d126833688e8162">20</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 32" title="
					Tomovski, Ž., Hilfer, R., Srivastava, H.M.: Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integral Transforms Spec. Funct. 21(11), 797–814 (2010)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR32" id="ref-link-section-d126833688e8165">32</a>]).</p> <h3 class="c-article__sub-heading" id="FPar14">Definition 2.14</h3> <p>Let <span class="mathjax-tex">\(\alpha\in(0,1), \beta\in[0,1], w\in L^{1}(I)\)</span> and <span class="mathjax-tex">\(I_{1}^{(1-\alpha)(1-\beta)}w\in\mathrm{AC}^{1}(I)\)</span>. The Hilfer fractional derivative of order <i>α</i> and type <i>β</i> of <i>w</i> is defined as </p><div id="Equ3" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \bigl(D_{1}^{\alpha,\beta}w\bigr) (t)= \biggl(I_{1}^{\beta(1-\alpha)}\frac{d}{\mathrm {d}t} I_{1}^{(1-\alpha)(1-\beta)}w \biggr) (t) \quad\text{for a.e. } t\in I. $$</span></div><div class="c-article-equation__number"> (3) </div></div> <h3 class="c-article__sub-heading" id="FPar15">Properties</h3> <p>Let <span class="mathjax-tex">\(\alpha\in(0,1), \beta\in[0,1], \gamma =\alpha+\beta-\alpha\beta\)</span>, and <span class="mathjax-tex">\(w\in L^{1}(I)\)</span>. </p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">1.</span> <p>The operator <span class="mathjax-tex">\((D_{1}^{\alpha,\beta}w)(t)\)</span> can be written as </p><div id="Equag" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl(D_{1}^{\alpha,\beta}w\bigr) (t)= \biggl(I_{1}^{\beta(1-\alpha)} \frac{d}{\mathrm {d}t} I_{1}^{1-\gamma}w \biggr) (t)= \bigl(I_{1}^{\beta(1-\alpha)} D_{1}^{\gamma}w \bigr) (t)\quad \text{for a.e. } t\in I. $$</span></div></div><p> Moreover, the parameter <i>γ</i> satisfies </p><div id="Equah" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\gamma\in(0,1],\qquad \gamma\geq\alpha,\qquad \gamma>\beta,\qquad 1-\gamma < 1-\beta(1-\alpha). $$</span></div></div> </li> <li> <span class="u-custom-list-number">2.</span> <p>For <span class="mathjax-tex">\(\beta=0\)</span>, generalization (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/10.1186/s13662-018-1787-4#Equ3">3</a>) coincides with the Riemann–Liouville derivative and for <span class="mathjax-tex">\(\beta=1\)</span>, with the Caputo derivative: </p><div id="Equai" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$D_{1}^{\alpha,0}=D_{1}^{\alpha}\quad \mbox{and}\quad D_{1}^{\alpha,1}= ^{c}D_{1}^{\alpha}. $$</span></div></div> </li> <li> <span class="u-custom-list-number">3.</span> <p>If <span class="mathjax-tex">\(D_{1}^{\beta(1-\alpha)}w\)</span> exists and is in <span class="mathjax-tex">\(L^{1}(I)\)</span>, then </p><div id="Equaj" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl(D_{1}^{\alpha,\beta}I_{1}^{\alpha}w\bigr) (t)= \bigl(I_{1}^{\beta(1-\alpha )}D_{1}^{\beta(1-\alpha)}w\bigr) (t)\quad \text{for a.e. } t\in I. $$</span></div></div><p> Furthermore, if <span class="mathjax-tex">\(w\in C_{\gamma}(I)\)</span> and <span class="mathjax-tex">\(I_{1}^{1-\beta(1-\alpha )}w\in C^{1}_{\gamma}(I)\)</span>, then </p><div id="Equak" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl(D_{1}^{\alpha,\beta}I_{1}^{\alpha}w\bigr) (t)=w(t) \quad\text{for a.e. } t\in I. $$</span></div></div> </li> <li> <span class="u-custom-list-number">4.</span> <p>If <span class="mathjax-tex">\(D_{1}^{\gamma}w\)</span> exists and is in <span class="mathjax-tex">\(L^{1}(I)\)</span>, then </p><div id="Equal" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl(I_{1}^{\alpha}D_{1}^{\alpha,\beta}w\bigr) (t)= \bigl(I_{1}^{\gamma}D_{1}^{\gamma}w\bigr) (t) =w(t)-\frac{I_{1}^{1-\gamma}(1^{+})}{\Gamma(\gamma)}t^{\gamma-1} \quad\text{for a.e. } t\in I. $$</span></div></div> </li> </ol> <p>Based on the Hadamard fractional integral, the Hilfer–Hadamard fractional derivative (introduced for the first time in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 28" title="
					Qassim, M.D., Furati, K.M., Tatar, N.-E.: On a differential equation involving Hilfer–Hadamard fractional derivative. Abstr. Appl. Anal. 2012, Article ID 391062 (2012)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR28" id="ref-link-section-d126833688e9802">28</a>]) is defined as follows.</p> <h3 class="c-article__sub-heading" id="FPar16">Definition 2.15</h3> <p>Let <span class="mathjax-tex">\(\alpha\in(0,1), \beta\in[0,1]\)</span>, <span class="mathjax-tex">\(\gamma=\alpha+\beta -\alpha\beta, w\in L^{1}(I)\)</span>, and <span class="mathjax-tex">\({}^{H}I_{1}^{(1-\alpha)(1-\beta)}w\in\mathrm{AC}^{1}(I)\)</span>. The Hilfer–Hadamard fractional derivative of order <i>α</i> and type <i>β</i> applied to a function <i>w</i> is defined as </p><div id="Equ4" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} \bigl({}^{H}D_{1}^{\alpha,\beta}w \bigr) (t)&= \bigl({}^{H}I_{1}^{\beta(1-\alpha )} \bigl({}^{H}D_{1}^{\gamma}w\bigr) \bigr) (t) \\ &= \bigl({}^{H}I_{1}^{\beta(1-\alpha)}\delta\bigl({}^{H}I_{1}^{1-\gamma }w \bigr) \bigr) (t)\quad \text{for a.e. } t\in I. \end{aligned}$$ </span></div><div class="c-article-equation__number"> (4) </div></div> <p>This new fractional derivative (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/10.1186/s13662-018-1787-4#Equ4">4</a>) may be viewed as interpolation of the Hadamard and Caputo–Hadamard fractional derivatives. Indeed, for <span class="mathjax-tex">\(\beta=0\)</span>, this derivative reduces to the Hadamard fractional derivative, and, for <span class="mathjax-tex">\(\beta=1\)</span>, we recover the Caputo–Hadamard fractional derivative: </p><div id="Equam" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$^{H}D_{1}^{\alpha,0}= ^{H}D_{1}^{\alpha}\quad \mbox{and}\quad ^{H}D_{1}^{\alpha,1}= ^{Hc}D_{1}^{\alpha}. $$</span></div></div><p>From [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 29" title="
					Qassim, M.D., Tatar, N.E.: Well-posedness and stability for a differential problem with Hilfer–Hadamard fractional derivative. Abstr. Appl. Anal. 2013, Article ID 605029 (2013)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR29" id="ref-link-section-d126833688e10432">29</a>, Thm. 21] we have the following lemma.</p> <h3 class="c-article__sub-heading" id="FPar17">Lemma 2.16</h3> <p><i>Let</i> <span class="mathjax-tex">\(f_{i}:I\times E^{4}\rightarrow E, i=1,2\)</span>, <i>be such that</i> <span class="mathjax-tex">\(f_{i}(\cdot ,u,v,\bar{u},\bar{v})\in\mathrm{C}_{\gamma,\ln}(I)\)</span> <i>for any</i> <span class="mathjax-tex">\(u,v,\bar{u},\bar{v}\in\mathrm{C}_{\gamma,\ln}(I)\)</span>. <i>Then system</i> (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/10.1186/s13662-018-1787-4#Equ1">1</a>)<i>–</i>(<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/10.1186/s13662-018-1787-4#Equ2">2</a>) <i>is equivalent to the problem of obtaining the solution of the coupled system</i> </p><div id="Equan" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\textstyle\begin{cases} g_{1}(t)=f_{1} (t,\frac{\phi_{1}}{\Gamma(\gamma)}(\ln t)^{\gamma -1}+({}^{H}I_{1}^{\alpha}g_{1})(t), \frac{\phi_{2}}{\Gamma(\gamma)}(\ln t)^{\gamma-1}+({}^{H}I_{1}^{\alpha }g_{2})(t),g_{1}(t),g_{2}(t) ),\\ g_{2}(t)=f_{2} (t,\frac{\phi_{1}}{\Gamma(\gamma)}(\ln t)^{\gamma -1}+({}^{H}I_{1}^{\alpha}g_{1})(t), \frac{\phi_{2}}{\Gamma(\gamma)}(\ln t)^{\gamma-1}+({}^{H}I_{1}^{\alpha }g_{2})(t),g_{1}(t),g_{2}(t) ), \end{cases} $$</span></div></div><p> <i>and if</i> <span class="mathjax-tex">\(g_{i}(\cdot)\in\mathrm{C}_{\gamma,\ln}\)</span> <i>are the solutions of this system</i>, <i>then</i> </p><div id="Equao" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\textstyle\begin{cases} u_{1}(t)=\frac{\phi_{1}}{\Gamma(\gamma)}(\ln t)^{\gamma -1}+({}^{H}I_{1}^{\alpha}g_{1})(t),\\ u_{2}(t)=\frac{\phi_{2}}{\Gamma(\gamma)}(\ln t)^{\gamma -1}+({}^{H}I_{1}^{\alpha}g_{2})(t). \end{cases} $$</span></div></div> <h3 class="c-article__sub-heading" id="FPar18">Definition 2.17</h3> <p>([<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 14" title="
					De Blasi, F.S.: On the property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. Math. Roum. 21, 259–262 (1977)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR14" id="ref-link-section-d126833688e11549">14</a>])</p> <p>Let <i>E</i> be a Banach space, let <span class="mathjax-tex">\(\Omega_{E}\)</span> be the set of bounded subsets of <i>E</i>, and let <span class="mathjax-tex">\(B_{1}\)</span> be the unit ball of <i>E</i>. The De Blasi measure of weak noncompactness is the map <span class="mathjax-tex">\(\mu:\Omega_{E}\rightarrow[0, \infty)\)</span> defined by </p><div id="Equap" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\mu(X)=\inf\{\varepsilon>0: \text{there exists a weakly compact set } \Omega \subset E \text{ such that } X\subset\varepsilon B_{1}+ \Omega\}. $$</span></div></div> <p>The De Blasi measure of weak noncompactness satisfies the following properties: </p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">(a)</span> <p><span class="mathjax-tex">\(A\subset B\Rightarrow\mu(A)\leq\mu(B)\)</span>,</p> </li> <li> <span class="u-custom-list-number">(b)</span> <p><span class="mathjax-tex">\(\mu(A)= 0 \Leftrightarrow A \)</span> is weakly relatively compact,</p> </li> <li> <span class="u-custom-list-number">(c)</span> <p><span class="mathjax-tex">\(\mu(A\cup B)=\max\{\mu(A), \mu(B)\}\)</span>,</p> </li> <li> <span class="u-custom-list-number">(d)</span> <p><span class="mathjax-tex">\(\mu(\overline{A}^{\omega})=\mu(A)\)</span>, where <span class="mathjax-tex">\(\overline{A}^{\omega}\)</span> denotes the weak closure of <i>A</i>,</p> </li> <li> <span class="u-custom-list-number">(e)</span> <p><span class="mathjax-tex">\(\mu(A+B)\leq\mu(A)+\mu(B)\)</span>,</p> </li> <li> <span class="u-custom-list-number">(f)</span> <p><span class="mathjax-tex">\(\mu(\lambda A)=|\lambda| \mu(A)\)</span>,</p> </li> <li> <span class="u-custom-list-number">(g)</span> <p><span class="mathjax-tex">\(\mu(\operatorname{conv}(A))=\mu(A)\)</span>,</p> </li> <li> <span class="u-custom-list-number">(h)</span> <p><span class="mathjax-tex">\(\mu(\bigcup_{|\lambda|\leq h} \lambda A)= h \mu(A)\)</span>.</p> </li> </ol><p>The next result follows directly from the Hahn–Banach theorem.</p> <h3 class="c-article__sub-heading" id="FPar19">Proposition 2.18</h3> <p><i>If</i> <i>E</i> <i>is a normed space and</i> <span class="mathjax-tex">\(x_{0}\in E-\{0\}\)</span>, <i>then there exists</i> <span class="mathjax-tex">\(\varphi\in E^{\ast}\)</span> <i>with</i> <span class="mathjax-tex">\(\|\varphi\|=1\)</span> <i>and</i> <span class="mathjax-tex">\(\varphi(x_{0})=\|x_{0}\|\)</span>.</p> <p>For a given set <i>V</i> of functions <span class="mathjax-tex">\(v: I\to E\)</span>, let us denote </p><div id="Equaq" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$V(t)=\bigl\{ v(t): v\in V\bigr\} ; \quad t\in I \quad\textit{and}\quad V(I)=\bigl\{ v(t):v\in V, t\in I\bigr\} . $$</span></div></div> <h3 class="c-article__sub-heading" id="FPar20">Lemma 2.19</h3> <p>([<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="
					Guo, D., Lakshmikantham, V., Liu, X.: Nonlinear Integral Equations in Abstract Spaces. Kluwer Academic, Dordrecht (1996)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR17" id="ref-link-section-d126833688e12628">17</a>] )</p> <p><i>Let</i> <span class="mathjax-tex">\(H\subset C\)</span> <i>be a bounded equicontinuous subset</i>. <i>Then the function</i> <span class="mathjax-tex">\(t\to\mu(H(t))\)</span> <i>is continuous on</i> <i>I</i>, </p><div id="Equar" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\mu_{C}(H)= \max _{t\in I}\mu\bigl(H(t)\bigr), $$</span></div></div><p> <i>and</i> </p><div id="Equas" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\mu \biggl( \int_{I}u(s)\,\mathrm{d}s \biggr)\leq \int_{I}\mu\bigl(H(s)\bigr)\,\mathrm{d}s, $$</span></div></div><p> <i>where</i> <span class="mathjax-tex">\(H(t)=\{u(t):u\in H\}, t\in I\)</span>, <i>and</i> <span class="mathjax-tex">\(\mu_{C}\)</span> <i>is the De Blasi measure of weak noncompactness defined on the bounded sets of</i> <i>C</i>.</p> <p>For our purpose, we will need the following fixed point theorem.</p> <h3 class="c-article__sub-heading" id="FPar21">Theorem 2.20</h3> <p>([<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 25" title="
					O’Regan, D.: Fixed point theory for weakly sequentially continuous mapping. Math. Comput. Model. 27(5), 1–14 (1998)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR25" id="ref-link-section-d126833688e12996">25</a>])</p> <p><i>Let</i> <i>Q</i> <i>be a nonempty</i>, <i>closed</i>, <i>convex</i>, <i>and equicontinuous subset of a metrizable locally convex vector space</i> <span class="mathjax-tex">\(C(I,E)\)</span> <i>such that</i> <span class="mathjax-tex">\(0\in{Q}\)</span>. <i>Suppose</i> <span class="mathjax-tex">\(T:Q\rightarrow Q\)</span> <i>is weakly sequentially continuous</i>. <i>If the implication</i> </p><div id="Equ5" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \overline{V}=\overline{\operatorname{conv}}\bigl(\{0\}\cup T(V)\bigr) \Rightarrow V \quad\textit{is relatively weakly compact} $$</span></div><div class="c-article-equation__number"> (5) </div></div><p> <i>holds for every subset</i> <span class="mathjax-tex">\(V\subset Q\)</span>, <i>then the operator</i> <i>T</i> <i>has a fixed point</i>.</p> </div></div></section><section data-title="Existence of weak solutions"><div class="c-article-section" id="Sec3-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec3"><span class="c-article-section__title-number">3 </span>Existence of weak solutions</h2><div class="c-article-section__content" id="Sec3-content"><p>Let us start by the definition of a weak solution of problem (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/10.1186/s13662-018-1787-4#Equ1">1</a>).</p> <h3 class="c-article__sub-heading" id="FPar22">Definition 3.1</h3> <p>By a weak solution of the coupled system (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/10.1186/s13662-018-1787-4#Equ1">1</a>)–(<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/10.1186/s13662-018-1787-4#Equ2">2</a>) we mean a coupled measurable functions <span class="mathjax-tex">\((u_{1},u_{2})\in{\mathcal{C}}\)</span> such that <span class="mathjax-tex">\(({}^{H}I_{1}^{1-\gamma }u_{i})(1^{+})=\phi_{i}, i=1,2\)</span>, and the equations <span class="mathjax-tex">\(({}^{H}D_{1}^{\alpha,\beta }u_{i})(t)=f_{i}(t,u_{1}(t),u_{2}(t),({}^{H}D_{1}^{\alpha,\beta }u_{1})(t),({}^{H}D_{1}^{\alpha,\beta}u_{2})(t))\)</span> are satisfied on <i>I</i>.</p> <p>We further will use the following hypotheses. </p><dl class="c-abbreviation_list"><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn> <span class="mathjax-tex">\((H_{1})\)</span> :</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>The functions <span class="mathjax-tex">\(v\to f_{i}(t,v,w,\bar{v},\bar{w}), w\to f_{i}(t,v,w,\bar{v},\bar{w}), \bar{v}\to f_{i}(t,v,w,\bar{v},\bar{w})\)</span>, and <span class="mathjax-tex">\(\bar{w}\to f_{i}(t,v,w,\bar{v},\bar{w}), i=1,2\)</span>, are weakly sequentially continuous for a.e. <span class="mathjax-tex">\(t\in I\)</span>,</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn> <span class="mathjax-tex">\((H_{2})\)</span> :</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>For all <span class="mathjax-tex">\(v,w,\bar{v},\bar{w}\in E\)</span>, the functions <span class="mathjax-tex">\(t\to f_{i}(t,v,w,\bar{v},\bar{w}), i=1,2\)</span>, are Pettis integrable a.e. on <i>I</i>,</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn> <span class="mathjax-tex">\((H_{3})\)</span> :</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>There exist <span class="mathjax-tex">\(p_{i},q_{i}\in C(I,[0,\infty))\)</span> such that, for all <span class="mathjax-tex">\(\varphi\in E^{*}\)</span>, </p><div id="Equat" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl\vert \varphi\bigl(f_{i}(t,u,v,\bar{u},\bar{v})\bigr) \bigr\vert \leq\frac{p_{i}(t) \Vert u \Vert _{E}+q_{i}(t) \Vert v \Vert _{E}}{1+ \Vert \varphi \Vert + \Vert u \Vert _{E}+ \Vert v \Vert _{E}+ \Vert \bar{u} \Vert _{E}+ \Vert \bar{v} \Vert _{E}} $$</span></div></div><p> <span class="mathjax-tex">\(\text{ for a.e. } t\in I \text{ and all } u,v,\bar{u},\bar{v}\in E\)</span>,</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn> <span class="mathjax-tex">\((H_{4})\)</span> :</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>For all bounded measurable sets <span class="mathjax-tex">\(B_{i}\subset E, i=1,2\)</span>, and all <span class="mathjax-tex">\(t\in I\)</span>, we have </p><div id="Equau" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\mu\bigl(f_{1}\bigl(t,B_{1},B_{2},^{H}D_{1}^{\alpha,\beta}B_{1},^{H}D_{1}^{\alpha,\beta }B_{2} \bigr),0\bigr)\leq p_{1}(t)\mu(B_{1})+q_{1}(t) \mu(B_{2}) $$</span></div></div><p> and </p><div id="Equav" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\mu\bigl(0,f_{2}\bigl(t,B_{1},B_{2},^{H}D_{1}^{\alpha,\beta}B_{1},^{H}D_{1}^{\alpha,\beta }B_{2} \bigr)\bigr)\leq p_{2}(t)\mu(B_{1})+q_{2}(t) \mu(B_{2}), $$</span></div></div><p> where <span class="mathjax-tex">\(^{H}D_{1}^{\alpha,\beta}B_{i}=\{^{H}D_{1}^{\alpha,\beta}w:w\in B_{i}\}, i=1,2\)</span>.</p> </dd></dl><p> Set </p><div id="Equaw" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$p_{i}^{*}= \sup _{t\in I}p_{i}(t) \quad\mbox{and}\quad q_{i}^{*}= \sup _{t\in I}q_{i}(t),\quad i=1,2. $$</span></div></div> <h3 class="c-article__sub-heading" id="FPar23">Theorem 3.2</h3> <p><i>Assume that the hypotheses</i> <span class="mathjax-tex">\((H_{1})\)</span><i>–</i><span class="mathjax-tex">\((H_{4}) \)</span> <i>hold</i>. <i>If</i> </p><div id="Equ6" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ L:=\frac{(p_{1}^{*}+p_{2}^{*}+q_{1}^{*}+q_{2}^{*})(\ln T)^{\alpha}}{\Gamma (1+\alpha)}< 1, $$</span></div><div class="c-article-equation__number"> (6) </div></div><p> <i>then the coupled system</i> (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/10.1186/s13662-018-1787-4#Equ1">1</a>)<i>–</i>(<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/10.1186/s13662-018-1787-4#Equ2">2</a>) <i>has at least one weak solution defined on</i> <i>I</i>.</p> <h3 class="c-article__sub-heading" id="FPar24">Proof</h3> <p>Consider the operators <span class="mathjax-tex">\(N_{i}:C_{\gamma,\ln }\rightarrow C_{\gamma,\ln}, i=1,2\)</span>, defined by </p><div id="Equax" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$(N_{i}u_{i}) (t)=\frac{\phi_{i}}{\Gamma(\gamma)}(\ln t)^{\gamma -1}+ \bigl({}^{H}I_{1}^{\alpha}g_{i}\bigr) (t), $$</span></div></div><p> where <span class="mathjax-tex">\(g_{i}\in C_{\gamma,\ln}, i=1,2\)</span>, are defined as </p><div id="Equay" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$g_{i}(t)=f_{i} \biggl(t,\frac{\phi_{1}}{\Gamma(\gamma)}(\ln t)^{\gamma -1}+\bigl({}^{H}I_{1}^{\alpha}g_{1} \bigr) (t), \frac{\phi_{2}}{\Gamma(\gamma)}(\ln t)^{\gamma-1}+\bigl({}^{H}I_{1}^{\alpha }g_{2} \bigr) (t),g_{1}(t),g_{2}(t) \biggr). $$</span></div></div><p> Consider the operator <span class="mathjax-tex">\(N:{\mathcal{C}}\to{\mathcal{C}}\)</span> such that, for any <span class="mathjax-tex">\((u_{1},u_{2})\in{\mathcal{C}}\)</span>, </p><div id="Equ7" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \bigl(N(u_{1},u_{2})\bigr) (t)= \bigl((N_{1}u_{1}) (t),(N_{2}u_{2}) (t) \bigr). $$</span></div><div class="c-article-equation__number"> (7) </div></div><p> First, notice that the hypotheses imply that, for each <span class="mathjax-tex">\(g_{i}\in C_{\gamma,\ln}, i=1,2\)</span>, the function </p><div id="Equaz" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$t\mapsto \biggl(\ln\frac{t}{s} \biggr)^{\alpha-1}g_{i}(s) $$</span></div></div><p> is Pettis integrable over <i>I</i>, and </p><div id="Equba" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$t\mapsto f_{i} \biggl(t,\frac{\phi_{1}}{\Gamma(\gamma)}(\ln t)^{\gamma -1}+ \bigl({}^{H}I_{1}^{\alpha}g_{1}\bigr) (t), \frac{\phi_{2}}{\Gamma(\gamma)}(\ln t)^{\gamma-1}+\bigl({}^{H}I_{1}^{\alpha }g_{2} \bigr) (t),g_{1}(t),g_{2}(t) \biggr) $$</span></div></div><p> <span class="mathjax-tex">\(\text{for a.e. } t\in I\)</span> is Pettis integrable. Thus, the operator <i>N</i> is well defined. Let <span class="mathjax-tex">\(R>0\)</span> be such that <span class="mathjax-tex">\(R>L_{1}+L_{2}\)</span>, where </p><div id="Equbb" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$L_{i}:=\frac{(p_{i}^{*}+q_{i}^{*})(\ln T)^{1-\gamma+\alpha}}{\Gamma (1+\alpha)},\quad i=1,2, $$</span></div></div><p> and consider the set </p><div id="Equbc" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} Q={}& \biggl\{ (u_{1},u_{2})\in{ \mathcal{C}}: \bigl\Vert (u_{1},u_{2}) \bigr\Vert _{\mathcal{C}}\leq R \text{ and } \bigl\Vert (\ln t_{2})^{1-\gamma}u_{i}(t_{2})-( \ln t_{1})^{1-\gamma}u_{i}(t_{1}) \bigr\Vert _{E} \\ \leq{}& L_{i} \biggl(\ln\frac{t_{2}}{t_{1}} \biggr)^{\alpha} \\ &{} +\frac{p_{i}^{*}+q_{i}^{*}}{\Gamma(\alpha)} \int_{1}^{t_{1}} \biggl\vert (\ln t_{2})^{1-\gamma} \biggl(\ln\frac{t_{2}}{s} \biggr)^{\alpha-1} -(\ln t_{1})^{1-\gamma} \biggl(\ln \frac{t_{1}}{s} \biggr)^{\alpha -1} \biggr\vert \,\mathrm{d}s, i=1,2 \biggr\} . \end{aligned}$$ </span></div></div><p> Clearly, the subset <i>Q</i> is closed, convex, and equicontinuous. We will show that the operator <i>N</i> satisfies all the assumptions of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/articles/10.1186/s13662-018-1787-4#FPar21">2.20</a>. The proof will be given in several steps.</p> <p><i>Step</i> 1. <i>N</i> <i>maps</i> <i>Q</i> <i>into itself.</i> Let <span class="mathjax-tex">\((u_{1},u_{2})\in Q, t\in I\)</span>, and assume that <span class="mathjax-tex">\((N(u_{1},u_{2}))(t)\neq(0.0)\)</span>. Then there exists <span class="mathjax-tex">\(\varphi\in E^{*}\)</span> such that <span class="mathjax-tex">\(\|(\ln t)^{1-\gamma}(N_{i}u_{i})(t)\|_{E}=|\varphi((\ln t)^{1-\gamma }(N_{i}u_{i})(t))|, i=1,2\)</span>. Thus, for any <span class="mathjax-tex">\(i\in\{1,2\}\)</span>, we have </p><div id="Equbd" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl\Vert (\ln t)^{1-\gamma}(N_{i}u_{i}) (t) \bigr\Vert _{E}=\varphi \biggl(\frac{\phi _{i}}{\Gamma(\gamma)}+\frac{(\ln t)^{1-\gamma}}{\Gamma(\alpha)} \int_{1}^{t} \biggl(\ln\frac{t}{s} \biggr)^{\alpha-1}g_{i}(s)\frac {\mathrm{d}s}{s} \biggr), $$</span></div></div><p> where <span class="mathjax-tex">\(g_{i}\in C_{\gamma,\ln}\)</span> are defined as </p><div id="Eqube" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$g_{i}(t)=f_{i} \biggl(t,\frac{\phi_{1}}{\Gamma(\gamma)}(\ln t)^{\gamma -1}+\bigl({}^{H}I_{1}^{\alpha}g_{1} \bigr) (t), \frac{\phi_{2}}{\Gamma(\gamma)}(\ln t)^{\gamma-1}+\bigl({}^{H}I_{1}^{\alpha }g_{2} \bigr) (t),g_{1}(t),g_{2}(t) \biggr). $$</span></div></div><p> Then from <span class="mathjax-tex">\((H_{3})\)</span> we get </p><div id="Equbf" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl\vert \varphi\bigl(g_{i}(t)\bigr) \bigr\vert \leq p_{i}^{*}+q_{i}^{*}. $$</span></div></div><p> Thus </p><div id="Equbg" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} &\bigl\Vert (\ln t)^{1-\gamma}(N_{i}u_{i}) (t) \bigr\Vert _{E}\\ &\quad\leq\frac{(\ln t)^{1-\gamma }}{\Gamma(\alpha)} \int_{1}^{t} \biggl(\ln\frac{t}{s} \biggr)^{\alpha-1} \bigl\vert \varphi \bigl(g_{i}(s)\bigr) \bigr\vert \frac{\mathrm{d}s}{s} \\ &\quad\leq \frac{(p_{i}^{*}+q_{i}^{*})(\ln T)^{1-\gamma}}{\Gamma(\alpha)} \int_{1}^{t} \biggl(\ln\frac{t}{s} \biggr)^{\alpha-1}\frac{\mathrm {d}s}{s} \\ &\quad\leq \frac{(p_{i}^{*}+q_{i}^{*})(\ln T)^{1-\gamma+\alpha}}{\Gamma (1+\alpha)} \\ &\quad= L_{i}. \end{aligned}$$ </span></div></div><p> Hence we get </p><div id="Equbh" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl\Vert N(u_{1},u_{1}) \bigr\Vert _{\mathcal{C}}\leq L_{1}+L_{2}< R. $$</span></div></div><p> Next, let <span class="mathjax-tex">\(t_{1},t_{2}\in I\)</span> be such that <span class="mathjax-tex">\(t_{1}< t_{2}\)</span>, and let <span class="mathjax-tex">\(u\in Q\)</span> be such that </p><div id="Equbi" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$(\ln t_{2})^{1-\gamma}(N_{i}u_{i}) (t_{2})-(\ln t_{1})^{1-\gamma }(N_{i}u_{i}) (t_{1})\neq0. $$</span></div></div><p> Then there exists <span class="mathjax-tex">\(\varphi\in E^{*}\)</span> such that </p><div id="Equbj" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} &\bigl\Vert (\ln t_{2})^{1-\gamma}(N_{i}u_{i}) (t_{2})-(\ln t_{1})^{1-\gamma }(N_{i}u_{i}) (t_{1}) \bigr\Vert _{E}\\ &\quad= \bigl\vert \varphi\bigl((\ln t_{2})^{1-\gamma}(N_{i}u_{i}) (t_{2})-(\ln t_{1})^{1-\gamma }(N_{i}u_{i}) (t_{1})\bigr) \bigr\vert \end{aligned}$$ </span></div></div><p> and <span class="mathjax-tex">\(\|\varphi\|=1\)</span>. Then, for any <span class="mathjax-tex">\(i\in\{1,2\}\)</span>, we have </p><div id="Equbk" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} & \bigl\Vert (\ln t_{2})^{1-\gamma}(N_{i}u_{i}) (t_{2})-(\ln t_{1})^{1-\gamma }(N_{i}u_{i}) (t_{1}) \bigr\Vert _{E} \\ &\quad = \bigl\vert \varphi\bigl((\ln t_{2})^{1-\gamma}(N_{i}u_{i}) (t_{2})-(\ln t_{1})^{1-\gamma }(N_{i}u_{i}) (t_{1})\bigr) \bigr\vert \\ &\quad\leq\varphi \biggl((\ln t_{2})^{1-\gamma} \int_{1}^{t_{2}} \biggl(\ln \frac{t_{2}}{s} \biggr)^{\alpha-1}\frac{g_{i}(s)}{s\Gamma(\alpha)}\,\mathrm{d}s- (\ln t_{1})^{1-\gamma} \int_{1}^{t_{1}} \biggl(\ln\frac{t_{1}}{s} \biggr)^{\alpha-1}\frac{g_{i}(s)}{s\Gamma(\alpha)}\,\mathrm{d}s \biggr), \end{aligned}$$ </span></div></div><p> where <span class="mathjax-tex">\(g_{i}\in\mathrm{C}_{\gamma,\ln}\)</span> are defined as </p><div id="Equbl" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$g_{i}(t)=f_{i} \biggl(t,\frac{\phi_{1}}{\Gamma(\gamma)}(\ln t)^{\gamma -1}+\bigl({}^{H}I_{1}^{\alpha}g_{1} \bigr) (t),\frac{\phi_{1}}{\Gamma(\gamma)}(\ln t)^{\gamma-1}+\bigl({}^{H}I_{1}^{\alpha}g_{2} \bigr) (t),g_{1}(t),g_{2}(t) \biggr). $$</span></div></div><p> Then </p><div id="Equbm" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} & \bigl\Vert (\ln t_{2})^{1-\gamma}(N_{i}u_{i}) (t_{2})-(\ln t_{1})^{1-\gamma }(N_{i}u_{i}) (t_{1}) \bigr\Vert _{E} \\ &\quad\leq(\ln t_{2})^{1-\gamma} \int_{t_{1}}^{t_{2}} \biggl(\ln\frac {t_{2}}{s} \biggr)^{\alpha-1}\frac{ \vert \varphi(g_{i}(s)) \vert }{s\Gamma(\alpha )}\,\mathrm{d}s \\ &\qquad{} + \int_{1}^{t_{1}} \biggl\vert (\ln t_{2})^{1-\gamma} \biggl(\ln\frac {t_{2}}{s} \biggr)^{\alpha-1} -(\ln t_{1})^{1-\gamma} \biggl(\ln \frac{t_{1}}{s} \biggr)^{\alpha -1} \biggr\vert \frac{ \vert \varphi(g_{i}(s)) \vert }{s\Gamma(\alpha)}\, \mathrm{d}s \\ &\quad\leq(\ln t_{2})^{1-\gamma} \int_{t_{1}}^{t_{2}} \biggl(\ln\frac {t_{2}}{s} \biggr)^{\alpha-1}\frac{p_{i}(s)+q_{i}(s)}{s\Gamma(\alpha)}\,\mathrm {d}s \\ & \qquad{}+ \int_{1}^{t_{1}} \biggl\vert (\ln t_{2})^{1-\gamma} \biggl(\ln\frac {t_{2}}{s} \biggr)^{\alpha-1} -(\ln t_{1})^{1-\gamma} \biggl(\ln \frac{t_{1}}{s} \biggr)^{\alpha -1} \biggr\vert \frac{p_{i}(s)+q_{i}(s)}{s\Gamma(\alpha)}\, \mathrm{d}s. \end{aligned}$$ </span></div></div><p> Thus, we get </p><div id="Equbn" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} & \bigl\Vert (\ln t_{2})^{1-\gamma}(N_{i}u_{i}) (t_{2})-(\ln t_{1})^{1-\gamma }(N_{i}u_{i}) (t_{1}) \bigr\Vert _{E} \\ &\quad\leq L_{i} \biggl(\ln \frac{t_{2}}{t_{1}} \biggr)^{\alpha} \\ & \qquad{}+\frac{p_{i}^{*}+q_{i}^{*}}{\Gamma(\alpha)} \int_{1}^{t_{1}} \biggl\vert (\ln t_{2})^{1-\gamma} \biggl(\ln\frac{t_{2}}{s} \biggr)^{\alpha-1} -(\ln t_{1})^{1-\gamma} \biggl(\ln \frac{t_{1}}{s} \biggr)^{\alpha -1} \biggr\vert \,\mathrm{d}s. \end{aligned}$$ </span></div></div><p> Hence <span class="mathjax-tex">\(N(Q)\subset Q\)</span>.</p> <p><i>Step</i> 2. <i>N</i> <i>is weakly sequentially continuous.</i> Let <span class="mathjax-tex">\(\{(u_{n},v_{n})\}_{n}\)</span> be a sequence in <i>Q</i>, and let <span class="mathjax-tex">\((u_{n}(t),v_{n}(t)\to (u(t),v(t)) \)</span> in <span class="mathjax-tex">\((E,\omega)\times(E,\omega)\)</span> for each <span class="mathjax-tex">\(t\in I\)</span>. Fix <span class="mathjax-tex">\(t\in I\)</span>. Since for any <span class="mathjax-tex">\(i\in{1,2}\)</span>, the function <span class="mathjax-tex">\(f_{i}\)</span> satisfies assumption <span class="mathjax-tex">\((H_{1})\)</span>, we have that <span class="mathjax-tex">\(f_{i}(t,u_{n}(t),v_{n}(t),({}^{H}D_{1}^{\alpha,\beta }u_{n})(t), ({}^{H}D_{1}^{\alpha,\beta}v_{n})(t))\)</span> converges weakly uniformly to <span class="mathjax-tex">\(f_{i}(t,u(t),v(t),(D_{0}^{\alpha,\beta}u)(t),(D_{0}^{\alpha ,\beta}v)(t))\)</span>. Hence the Lebesgue dominated convergence theorem for Pettis integral implies that <span class="mathjax-tex">\((N(u_{n},v_{n}))(t)\)</span> converges weakly uniformly to <span class="mathjax-tex">\((N(u,v))(t)\)</span> in <span class="mathjax-tex">\((E,\omega)\)</span> for each <span class="mathjax-tex">\(t\in I\)</span>. Thus <span class="mathjax-tex">\(N(u_{n},v_{n})\to N(u,v)\)</span>. Hence <span class="mathjax-tex">\(N:Q\to Q\)</span> is weakly sequentially continuous.</p> <p><i>Step</i> 3. <i>Implication (</i><a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/10.1186/s13662-018-1787-4#Equ5"> <i>5</i> </a><i>) holds.</i> Let <i>V</i> be a subset of <i>Q</i> such that <span class="mathjax-tex">\(\overline{V}=\overline{ {\operatorname{conv}}}(N(V)\cup\{(0,0)\})\)</span>. Obviously, </p><div id="Equbo" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$V(t)\subset\overline{\operatorname{conv}}(NV) (t))\cup\bigl\{ (0,0)\bigr\} ),\quad t\in I. $$</span></div></div><p> Further, as <i>V</i> is bounded and equicontinuous, by [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="
					Bugajewski, D., Szufla, S.: Kneser’s theorem for weak solutions of the Darboux problem in a Banach space. Nonlinear Anal. 20(2), 169–173 (1993)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR13" id="ref-link-section-d126833688e23067">13</a>, Lemma 3] the function <span class="mathjax-tex">\(t\to\mu(V(t))\)</span> is continuous on <i>I</i>. From <span class="mathjax-tex">\((H_{3}), (H_{4})\)</span>, Lemma <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/articles/10.1186/s13662-018-1787-4#Sec2">2.19</a>, and the properties of the measure <i>μ</i>, for any <span class="mathjax-tex">\(t\in I\)</span>, we have </p><div id="Equbp" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} &\mu\bigl((\ln t)^{1-\gamma}V(t)\bigr)\\ &\quad\leq\mu\bigl((\ln t)^{1-\gamma}(NV) (t)\cup \bigl\{ (0,0)\bigr\} \bigr) \\ &\quad\leq\mu\bigl((\ln t)^{1-\gamma}(NV) (t)\bigr) \\ &\quad\leq\mu(\bigl\{ \bigl((\ln t)^{1-\gamma}(N_{1}v_{1}) (t),(\ln t)^{1-\gamma }(N_{2}v_{2}) (t):(v_{1},v_{2}) \in V\bigr\} \bigr) \\ &\quad \leq\frac{1}{\Gamma(\alpha)} \int_{1}^{t} \biggl(\ln\frac {t}{s} \biggr)^{\alpha-1}\mu\bigl(\bigl\{ (\ln s)^{1-\gamma }\bigl(f_{1} \bigl(s,v_{1}(s),v_{2}(s), \\ &\qquad\bigl({}^{H}D_{1}^{\alpha,\beta}v_{1}\bigr) (t), \bigl({}^{H}D_{1}^{\alpha,\beta }v_{2}\bigr) (t) \bigr),0\bigr):(v_{1},v_{2})\in V\bigr\} \bigr) \frac{\mathrm{d}s}{s} \\ &\qquad{}+\frac{1}{\Gamma(\alpha)} \int_{1}^{t} \biggl(\ln\frac {t}{s} \biggr)^{\alpha-1}\mu\bigl(\bigl\{ (\ln s)^{1-\gamma }\bigl(0,f_{2} \bigl(s,v_{1}(s),v_{2}(s), \\ &\qquad\bigl({}^{H}D_{1}^{\alpha,\beta}v_{1}\bigr) (t), \bigl({}^{H}D_{1}^{\alpha,\beta }v_{2}\bigr) (t)\bigr) \bigr):(v_{1},v_{2})\in V\bigr\} \bigr)\frac{\mathrm{d}s}{s} \\ &\quad\leq\frac{1}{\Gamma(\alpha)} \int_{1}^{t} \biggl(\ln\frac {t}{s} \biggr)^{\alpha-1}\bigl[p_{1}(s)\mu\bigl(\bigl\{ (\ln s)^{1-\gamma }\bigl(v_{1}(s),0\bigr):(v_{1},0)\in V\bigr\} \bigr) \\ &\qquad{}+q_{1}(s)\mu\bigl(\bigl\{ (\ln s)^{1-\gamma}\bigl(0,v_{2}(s) \bigr):(0,v_{2})\in V\bigr\} \bigr)\bigr]\frac {\mathrm{d}s}{s} \\ &\qquad{}+\frac{1}{\Gamma(\alpha)} \int_{1}^{t} \biggl(\ln\frac {t}{s} \biggr)^{\alpha-1}\bigl[p_{2}(s)\mu\bigl(\bigl\{ (\ln s)^{1-\gamma }\bigl(v_{1}(s),0\bigr):(v_{1},0)\in V\bigr\} \bigr) \\ &\qquad{}+q_{2}(s)\mu\bigl(\bigl\{ (\ln s)^{1-\gamma}\bigl(0,v_{2}(s) \bigr):(0,v_{2})\in V\bigr\} \bigr)\bigr]\frac {\mathrm{d}s}{s}. \end{aligned}$$ </span></div></div><p> Thus </p><div id="Equbq" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} &\mu\bigl((\ln t)^{1-\gamma}V(t)\bigr) \\ &\quad \leq\frac{1}{\Gamma(\alpha)} \int_{1}^{t} \biggl(\ln\frac {t}{s} \biggr)^{\alpha-1}\bigl(p_{1}(s)+q_{1}(s)+p_{2}(s)+q_{2}(s) \bigr) \\ &\qquad{}\times\mu\bigl((\ln s)^{1-\gamma}V(s)\bigr)\frac{\mathrm{d}s}{s} \\ &\quad \leq\frac{1}{\Gamma(\alpha)} \int_{1}^{t} \biggl(\ln\frac{t}{s} \biggr)^{\alpha -1}\bigl(p_{1}(s)+q_{1}(s)+p_{2}(s)+q_{2}(s) \bigr) \\ &\qquad{}\times \sup _{s\in I}\mu\bigl((\ln s)^{1-\gamma}V(s)\bigr) \frac{\mathrm {d}s}{s} \\ &\quad\leq\frac{(p_{1}^{*}+p_{2}^{*}+q_{1}^{*}+q_{2}^{*})(\ln T)^{\alpha }}{\Gamma(1+\alpha)} \sup _{t\in I}\mu\bigl((\ln t)^{1-\gamma}V(t) \bigr). \end{aligned}$$ </span></div></div><p> Hence </p><div id="Equbr" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\sup _{t\in I}\mu\bigl((\ln t)^{1-\gamma}V(t)\bigr)\leq L \sup _{t\in I}\mu \bigl((\ln t)^{1-\gamma}V(t)\bigr). $$</span></div></div><p> From (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/10.1186/s13662-018-1787-4#Equ6">6</a>) we get <span class="mathjax-tex">\(\sup _{t\in I}\mu((\ln t)^{1-\gamma }V(t))=0\)</span>, that is, <span class="mathjax-tex">\(\mu(V(t))=0\)</span> for each <span class="mathjax-tex">\(t\in I\)</span>. Then by [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 24" title="
					Mitchell, A.R., Smith, C.: Nonlinear equations in abstract spaces. In: Lakshmikantham, V. (ed.) An Existence Theorem for Weak Solutions of Differential Equations in Banach Spaces, pp. 387–403. Academic Press, New York (1978)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR24" id="ref-link-section-d126833688e25912">24</a>, Thm. 2] <i>V</i> is weakly relatively compact in <span class="mathjax-tex">\({\mathcal{C}}\)</span>. From Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/articles/10.1186/s13662-018-1787-4#FPar21">2.20</a> we conclude that <i>N</i> has a fixed point, which is a weak solution of the coupled system (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/10.1186/s13662-018-1787-4#Equ1">1</a>)–(<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/10.1186/s13662-018-1787-4#Equ2">2</a>). □</p> <p>As a consequence of the theorem, we get the following corollary.</p> <h3 class="c-article__sub-heading" id="FPar25">Corollary 3.3</h3> <p><i>Consider the following system of implicit Hilfer–Hadamard fractional differential equations</i>: </p><div id="Equ8" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} &\textstyle\begin{cases} ({}^{H}D_{1}^{\alpha,\beta}u_{1})(t)\\ \quad=f_{1}(t,u_{1}(t),u_{2}(t),\ldots,u_{n}(t),\\ \qquad({}^{H}D_{1}^{\alpha,\beta}u_{1})(t),({}^{H}D_{1}^{\alpha,\beta }u_{2})(t),\ldots,({}^{H}D_{1}^{\alpha,\beta}u_{n})(t)), \\ ({}^{H}D_{1}^{\alpha,\beta}u_{2})(t)\\ \quad=f_{2}(t,u_{1}(t),u_{2}(t),\ldots,u_{n}(t),\\ \qquad({}^{H}D_{1}^{\alpha,\beta}u_{1})(t),({}^{H}D_{1}^{\alpha,\beta }u_{2})(t),\ldots,({}^{H}D_{1}^{\alpha,\beta}u_{n})(t)), \\ \vdots\\ ({}^{H}D_{1}^{\alpha,\beta}u_{n})(t)\\ \quad=f_{n}(t,u_{1}(t),u_{2}(t),\ldots,u_{n}(t),\\ \qquad({}^{H}D_{1}^{\alpha,\beta}u_{1})(t),({}^{H}D_{1}^{\alpha,\beta }u_{2})(t),\ldots,({}^{H}D_{1}^{\alpha,\beta}u_{n})(t)), \end{cases}\displaystyle t\in I, \end{aligned}$$ </span></div><div class="c-article-equation__number"> (8) </div></div> <div id="Equ9" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} & \bigl({}^{H}I_{1}^{1-\gamma}u_{i} \bigr) (t)|_{t=1}=\phi_{i},\quad i=1,2,\dots,n, \end{aligned}$$ </span></div><div class="c-article-equation__number"> (9) </div></div><p> <span class="mathjax-tex">\(I:=[1,T], T>1, \alpha\in(0,1), \beta\in[0,1], \gamma=\alpha +\beta-\alpha\beta, \phi_{i}\in E, f_{i}:I\times E^{2n}\to E, i=1,2,\dots,n\)</span>, <i>are given continuous functions</i>, <i>E</i> <i>is a real</i> (<i>or complex</i>) <i>Banach space with norm</i> <span class="mathjax-tex">\(\|\cdot\|_{E}\)</span> <i>and dual</i> <span class="mathjax-tex">\(E^{*}\)</span>, <i>such that</i> <i>E</i> <i>is the dual of a weakly compactly generated Banach space</i> <i>X</i>, <span class="mathjax-tex">\({}^{H}I_{1}^{1-\gamma}\)</span> <i>is the left</i>-<i>sided mixed Hadamard integral of order</i> <span class="mathjax-tex">\(1-\gamma\)</span>, <i>and</i> <span class="mathjax-tex">\({}^{H}D_{1}^{\alpha,\beta}\)</span> <i>is the Hilfer–Hadamard fractional derivative of order</i> <i>α</i> <i>and type</i> <i>β</i>.</p> <p><i>Assume that the following hypotheses hold</i>: </p><dl class="c-abbreviation_list"><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn> <span class="mathjax-tex">\((H_{01})\)</span> :</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p><i>The functions</i> <span class="mathjax-tex">\(v_{j}\to f_{i}(t,v_{1},v_{2},\dots,v_{j},\dots ,v_{2n}), i=1,\dots,n, j=1,\dots,2n\)</span>, <i>are weakly sequentially continuous for a</i>.<i>e</i>. <span class="mathjax-tex">\(t\in I\)</span>,</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn> <span class="mathjax-tex">\((H_{02})\)</span> :</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p><i>For each</i> <span class="mathjax-tex">\(v_{j}\in E, j=1,\dots,2n\)</span>, <i>the functions</i> <span class="mathjax-tex">\(t\to f_{i}(t,v_{1},v_{2},\dots,v_{j},\dots,v_{2n}), i=1,2\)</span>, <i>are Pettis integrable a</i>.<i>e</i>. <i>on</i> <i>I</i>,</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn> <span class="mathjax-tex">\((H_{03})\)</span> :</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p><i>There exist</i> <span class="mathjax-tex">\(p_{ij}\in C(I,[0,\infty))\)</span> <i>such that</i>, <i>for all</i> <span class="mathjax-tex">\(\varphi\in E^{*}\)</span>, <i>we have</i> </p><div id="Equbs" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl\vert \varphi\bigl(f_{i}(t,v_{1},v_{2}, \dots,v_{2n})\bigr) \bigr\vert \leq\frac{ \sum _{i=1}^{n} \sum _{j=1}^{n}p_{ij}(t) \Vert v_{j} \Vert _{E}}{1+ \Vert \varphi \Vert + \sum _{j=1}^{n} \Vert v_{i} \Vert _{E}} $$</span></div></div><p> <span class="mathjax-tex">\(\textit{for a.e. }t\in I\textit{ and each }v_{i}\in E, i=1,2,\dots,n\)</span>,</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn> <span class="mathjax-tex">\((H_{04})\)</span> :</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p><i>For all bounded measurable sets</i> <span class="mathjax-tex">\(B_{i}\subset E, i=1,\dots,n\)</span>, <i>and for each</i> <span class="mathjax-tex">\(t\in I\)</span>, <i>we have</i> </p><div id="Equbt" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} &\mu\bigl(0,\dots,f_{j}\bigl(t,B_{1},B_{2}, \dots,B_{n},^{H}D_{1}^{\alpha,\beta }B_{1},^{H}D_{1}^{\alpha,\beta}B_{2}, \dots, ^{H}D_{1}^{\alpha,\beta}B_{n}\bigr),\dots,0 \bigr) \\ &\quad\leq \sum _{i=1}^{n}p_{ij}(t)\mu(B_{i}),\quad j=1,\dots,n, \end{aligned}$$ </span></div></div><p> <i>where</i> <span class="mathjax-tex">\(^{H}D_{1}^{\alpha,\beta}B_{i}=\{^{H}D_{1}^{\alpha,\beta}w:w\in B_{i}\}, i=1,\dots,n\)</span>.</p> </dd></dl><p> <i>If</i> </p><div id="Equbu" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$L^{*}:=\frac{ \sum _{i=1}^{n} \sum _{j=1}^{n}p_{ij}^{*}(\ln T)^{\alpha }}{\Gamma(1+\alpha)}< 1, $$</span></div></div><p> <i>where</i> </p><div id="Equbv" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$p_{ij}^{*}= \sup _{t\in I}p_{ij}(t),\quad i,j=1,\dots,n, $$</span></div></div><p> <i>then the coupled system</i> (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/10.1186/s13662-018-1787-4#Equ8">8</a>)<i>–</i>(<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/10.1186/s13662-018-1787-4#Equ9">9</a>) <i>has at least one weak solution defined on</i> <i>I</i>.</p> </div></div></section><section data-title="An example"><div class="c-article-section" id="Sec4-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec4"><span class="c-article-section__title-number">4 </span>An example</h2><div class="c-article-section__content" id="Sec4-content"><p>Let </p><div id="Equbw" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$E=l^{1}= \bigl\{ u =(u_{1}, u_{2},\ldots, u_{n},\ldots), \sum ^{\infty }_{n=1} \vert u_{n} \vert < \infty \bigr\} $$</span></div></div><p> be the Banach space with the norm </p><div id="Equbx" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\Vert u \Vert _{E}= \sum _{n=1}^{\infty} \vert u_{n} \vert . $$</span></div></div><p> As an application of our results, we consider the coupled system of Hilfer–Hadamard fractional differential equations </p><div id="Equ10" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} &\textstyle\begin{cases} ({}^{H}D_{1}^{\frac{1}{2},\frac {1}{2}}u_{n})(t)=f_{n}(t,u(t),v(t),({}^{H}D_{1}^{\frac{1}{2},\frac{1}{2}}u_{n})(t), ({}^{H}D_{1}^{\frac{1}{2},\frac{1}{2}}v_{n})(t)),\\ ({}^{H}D_{1}^{\frac{1}{2},\frac {1}{2}}v_{n})(t)=g_{n}(t,u(t),v(t),({}^{H}D_{1}^{\frac{1}{2},\frac{1}{2}}u_{n})(t), ({}^{H}D_{1}^{\frac{1}{2},\frac{1}{2}}v_{n})(t)), \end{cases}\displaystyle t\in[1,e], \end{aligned}$$ </span></div><div class="c-article-equation__number"> (10) </div></div> <div id="Equ11" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} & \bigl({}^{H}I_{1}^{\frac{1}{4}}u\bigr) (t)|_{t=1}=\bigl({}^{H}I_{1}^{\frac {1}{4}}v\bigr) (t)|_{t=1}=(0,0,\ldots,0,\ldots), \end{aligned}$$ </span></div><div class="c-article-equation__number"> (11) </div></div><p> where </p><div id="Equby" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$f_{n}\bigl(t,u(t),v(t)\bigr)=\frac{ct^{2}}{1+ \Vert u(t) \Vert _{E}+ \Vert v(t) \Vert _{E}+ \Vert \bar{u}(t) \Vert _{E}+ \Vert \bar{v}(t) \Vert _{E}}\frac{u_{n}(t)}{e^{t+4}},\quad t \in[1,e], $$</span></div></div><p> and </p><div id="Equbz" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$g_{n}\bigl(t,u(t),v(t)\bigr)=\frac{ct^{2}}{1+ \Vert v(t) \Vert _{E}+ \Vert v(t) \Vert _{E}+ \Vert \bar{u}(t) \Vert _{E}+ \Vert \bar{v}(t) \Vert _{E}}\frac{u_{n}(t)}{e^{t+4}},\quad t \in[1,e], $$</span></div></div><p> with </p><div id="Equca" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$u=(u_{1},u_{2},\ldots,u_{n},\ldots),\qquad v=(v_{1},v_{2},\ldots,v_{n},\ldots) \quad\mbox{and}\quad c:=\frac{e^{3}}{16}\sqrt{\pi}. $$</span></div></div><p> Set </p><div id="Equcb" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$f=(f_{1},f_{2},\ldots,f_{n},\ldots) \quad\mbox{and}\quad g=(g_{1},g_{2},\ldots ,g_{n},\ldots). $$</span></div></div><p> Clearly, the functions <i>f</i> and <i>g</i> are continuous.</p><p>For all <span class="mathjax-tex">\(u,v,\bar{u},\bar{v}\in E\)</span> and <span class="mathjax-tex">\(t\in[1,e]\)</span>, we have </p><div id="Equcc" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\bigl\Vert f\bigl(t,u(t),v(t),\bar{u}(t),\bar{v}(t)\bigr) \bigr\Vert _{E}\leq ct^{2}\frac{1}{e^{t+4}} \quad\mbox{and}\quad \bigl\Vert g \bigl(t,u(t),v(t),\bar{u}(t),\bar{v}(t)\bigr) \bigr\Vert _{E}\leq ct^{2}\frac {1}{e^{t+4}}. $$</span></div></div><p> Hence, hypothesis <span class="mathjax-tex">\((H_{3})\)</span> is satisfied with <span class="mathjax-tex">\(p_{i}^{*}=ce^{-3}\)</span> and <span class="mathjax-tex">\(q_{i}^{*}=0, i=1,2\)</span>. We will show that condition (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/10.1186/s13662-018-1787-4#Equ6">6</a>) holds with <span class="mathjax-tex">\(T=e\)</span>. Indeed, </p><div id="Equcd" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\frac{(p_{1}^{*}+q_{1}^{*}+p_{2}^{*}+q_{2}^{*})(\ln T)^{\alpha}}{\Gamma (1+\alpha)} =\frac{4ce^{-3}}{\sqrt{\pi}}=\frac{1}{4}< 1. $$</span></div></div><p> Simple computations show that all conditions of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/articles/10.1186/s13662-018-1787-4#FPar23">3.2</a> are satisfied. It follows that the coupled system (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/10.1186/s13662-018-1787-4#Equ10">10</a>)–(<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/10.1186/s13662-018-1787-4#Equ11">11</a>) has at least one weak solution defined on <span class="mathjax-tex">\([1,e]\)</span>.</p></div></div></section><section data-title="Conclusion"><div class="c-article-section" id="Sec5-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec5"><span class="c-article-section__title-number">5 </span>Conclusion</h2><div class="c-article-section__content" id="Sec5-content"><p>In the recent years, implicit functional differential equations have been considered by many authors [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="
					Abbas, S., Benchohra, M., Bohner, M.: Weak solutions for implicit differential equations of Hilfer–Hadamard fractional derivative. Adv. Dyn. Syst. Appl. 12(1), 1–16 (2017)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR1" id="ref-link-section-d126833688e31391">1</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="
					Abbas, S., Benchohra, M., Vityuk, A.N.: On fractional order derivatives and Darboux problem for implicit differential equations. Fract. Calc. Appl. Anal. 15(2), 168–182 (2012)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR5" id="ref-link-section-d126833688e31394">5</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="
					Benavides, T.D.: An existence theorem for implicit differential equations in a Banach space. Ann. Mat. Pura Appl. 4, 119–130 (1978)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR9" id="ref-link-section-d126833688e31397">9</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 33" title="
					Vityuk, A.N., Mykhailenko, A.V.: The Darboux problem for an implicit fractional-order differential equation. J. Math. Sci. 175(4), 391–401 (2011)
				" href="/articles/10.1186/s13662-018-1787-4#ref-CR33" id="ref-link-section-d126833688e31400">33</a>]. In this work, we give some existence results for coupled implicit Hilfer–Hadamard fractional differential systems. This paper initiates the application of the measure of weak noncompactness to such a class of problems.</p></div></div></section> <div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ol class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="1."><p class="c-article-references__text" id="ref-CR1"> Abbas, S., Benchohra, M., Bohner, M.: Weak solutions for implicit differential equations of Hilfer–Hadamard fractional derivative. Adv. Dyn. Syst. Appl. <b>12</b>(1), 1–16 (2017) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3690560" aria-label="MathSciNet reference 1">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 1" href="http://scholar.google.com/scholar_lookup?&title=Weak%20solutions%20for%20implicit%20differential%20equations%20of%20Hilfer%E2%80%93Hadamard%20fractional%20derivative&journal=Adv.%20Dyn.%20Syst.%20Appl.&volume=12&issue=1&pages=1-16&publication_year=2017&author=Abbas%2CS.&author=Benchohra%2CM.&author=Bohner%2CM."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="2."><p class="c-article-references__text" id="ref-CR2"> Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: Implicit Fractional Differential and Integral Equations: Existence and Stability. De Gruyter, Berlin (2018) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1515/9783110553819" data-track-item_id="10.1515/9783110553819" data-track-value="book reference" data-track-action="book reference" href="https://doi.org/10.1515%2F9783110553819" aria-label="Book reference 2" data-doi="10.1515/9783110553819">Book</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 2" href="http://scholar.google.com/scholar_lookup?&title=Implicit%20Fractional%20Differential%20and%20Integral%20Equations%3A%20Existence%20and%20Stability&doi=10.1515%2F9783110553819&publication_year=2018&author=Abbas%2CS.&author=Benchohra%2CM.&author=Graef%2CJ.R.&author=Henderson%2CJ."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="3."><p class="c-article-references__text" id="ref-CR3"> Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York (2012) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-1-4614-4036-9" data-track-item_id="10.1007/978-1-4614-4036-9" data-track-value="book reference" data-track-action="book reference" href="https://link.springer.com/doi/10.1007/978-1-4614-4036-9" aria-label="Book reference 3" data-doi="10.1007/978-1-4614-4036-9">Book</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 3" href="http://scholar.google.com/scholar_lookup?&title=Topics%20in%20Fractional%20Differential%20Equations&doi=10.1007%2F978-1-4614-4036-9&publication_year=2012&author=Abbas%2CS.&author=Benchohra%2CM.&author=N%E2%80%99Gu%C3%A9r%C3%A9kata%2CG.M."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="4."><p class="c-article-references__text" id="ref-CR4"> Abbas, S., Benchohra, M., N’Guérékata, G.M.: Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York (2015) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1314.34002" aria-label="MATH reference 4">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 4" href="http://scholar.google.com/scholar_lookup?&title=Advanced%20Fractional%20Differential%20and%20Integral%20Equations&publication_year=2015&author=Abbas%2CS.&author=Benchohra%2CM.&author=N%E2%80%99Gu%C3%A9r%C3%A9kata%2CG.M."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="5."><p class="c-article-references__text" id="ref-CR5"> Abbas, S., Benchohra, M., Vityuk, A.N.: On fractional order derivatives and Darboux problem for implicit differential equations. Fract. Calc. Appl. Anal. <b>15</b>(2), 168–182 (2012) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2478/s13540-012-0012-5" data-track-item_id="10.2478/s13540-012-0012-5" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2478%2Fs13540-012-0012-5" aria-label="Article reference 5" data-doi="10.2478/s13540-012-0012-5">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2897771" aria-label="MathSciNet reference 5">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 5" href="http://scholar.google.com/scholar_lookup?&title=On%20fractional%20order%20derivatives%20and%20Darboux%20problem%20for%20implicit%20differential%20equations&journal=Fract.%20Calc.%20Appl.%20Anal.&doi=10.2478%2Fs13540-012-0012-5&volume=15&issue=2&pages=168-182&publication_year=2012&author=Abbas%2CS.&author=Benchohra%2CM.&author=Vityuk%2CA.N."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="6."><p class="c-article-references__text" id="ref-CR6"> Akhmerov, R.R., Kamenskii, M.I., Patapov, A.S., Rodkina, A.E., Sadovskii, B.N.: Measures of Noncompactness and Condensing Operators. Birkhauser Verlag, Basel (1992) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-3-0348-5727-7" data-track-item_id="10.1007/978-3-0348-5727-7" data-track-value="book reference" data-track-action="book reference" href="https://link.springer.com/doi/10.1007/978-3-0348-5727-7" aria-label="Book reference 6" data-doi="10.1007/978-3-0348-5727-7">Book</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 6" href="http://scholar.google.com/scholar_lookup?&title=Measures%20of%20Noncompactness%20and%20Condensing%20Operators&doi=10.1007%2F978-3-0348-5727-7&publication_year=1992&author=Akhmerov%2CR.R.&author=Kamenskii%2CM.I.&author=Patapov%2CA.S.&author=Rodkina%2CA.E.&author=Sadovskii%2CB.N."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="7."><p class="c-article-references__text" id="ref-CR7"> Alvárez, J.C.: Measure of noncompactness and fixed points of nonexpansive condensing mappings in locally convex spaces. Rev. Real. Acad. Cienc. Exact. Fis. Natur. Madrid <b>79</b>, 53–66 (1985) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=835168" aria-label="MathSciNet reference 7">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?0589.47054" aria-label="MATH reference 7">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 7" href="http://scholar.google.com/scholar_lookup?&title=Measure%20of%20noncompactness%20and%20fixed%20points%20of%20nonexpansive%20condensing%20mappings%20in%20locally%20convex%20spaces&journal=Rev.%20Real.%20Acad.%20Cienc.%20Exact.%20Fis.%20Natur.%20Madrid&volume=79&pages=53-66&publication_year=1985&author=Alv%C3%A1rez%2CJ.C."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="8."><p class="c-article-references__text" id="ref-CR8"> Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Marcel Dekker, New York (1980) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?0441.47056" aria-label="MATH reference 8">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 8" href="http://scholar.google.com/scholar_lookup?&title=Measures%20of%20Noncompactness%20in%20Banach%20Spaces&publication_year=1980&author=Bana%C5%9B%2CJ.&author=Goebel%2CK."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="9."><p class="c-article-references__text" id="ref-CR9"> Benavides, T.D.: An existence theorem for implicit differential equations in a Banach space. Ann. Mat. Pura Appl. <b>4</b>, 119–130 (1978) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/BF02415125" data-track-item_id="10.1007/BF02415125" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/BF02415125" aria-label="Article reference 9" data-doi="10.1007/BF02415125">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=533602" aria-label="MathSciNet reference 9">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 9" href="http://scholar.google.com/scholar_lookup?&title=An%20existence%20theorem%20for%20implicit%20differential%20equations%20in%20a%20Banach%20space&journal=Ann.%20Mat.%20Pura%20Appl.&doi=10.1007%2FBF02415125&volume=4&pages=119-130&publication_year=1978&author=Benavides%2CT.D."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="10."><p class="c-article-references__text" id="ref-CR10"> Benchohra, M., Graef, J., Mostefai, F.Z.: Weak solutions for boundary-value problems with nonlinear fractional differential inclusions. Nonlinear Dyn. Syst. Theory <b>11</b>(3), 227–237 (2011) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2858134" aria-label="MathSciNet reference 10">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1236.34004" aria-label="MATH reference 10">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 10" href="http://scholar.google.com/scholar_lookup?&title=Weak%20solutions%20for%20boundary-value%20problems%20with%20nonlinear%20fractional%20differential%20inclusions&journal=Nonlinear%20Dyn.%20Syst.%20Theory&volume=11&issue=3&pages=227-237&publication_year=2011&author=Benchohra%2CM.&author=Graef%2CJ.&author=Mostefai%2CF.Z."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="11."><p class="c-article-references__text" id="ref-CR11"> Benchohra, M., Henderson, J., Mostefai, F.Z.: Weak solutions for hyperbolic partial fractional differential inclusions in Banach spaces. Comput. Math. Appl. <b>64</b>, 3101–3107 (2012) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.camwa.2011.12.055" data-track-item_id="10.1016/j.camwa.2011.12.055" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.camwa.2011.12.055" aria-label="Article reference 11" data-doi="10.1016/j.camwa.2011.12.055">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2989339" aria-label="MathSciNet reference 11">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="http://scholar.google.com/scholar_lookup?&title=Weak%20solutions%20for%20hyperbolic%20partial%20fractional%20differential%20inclusions%20in%20Banach%20spaces&journal=Comput.%20Math.%20Appl.&doi=10.1016%2Fj.camwa.2011.12.055&volume=64&pages=3101-3107&publication_year=2012&author=Benchohra%2CM.&author=Henderson%2CJ.&author=Mostefai%2CF.Z."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="12."><p class="c-article-references__text" id="ref-CR12"> Benchohra, M., Henderson, J., Seba, D.: Measure of noncompactness and fractional differential equations in Banach spaces. Commun. Appl. Anal. <b>12</b>(4), 419–428 (2008) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2494987" aria-label="MathSciNet reference 12">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1182.26007" aria-label="MATH reference 12">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 12" href="http://scholar.google.com/scholar_lookup?&title=Measure%20of%20noncompactness%20and%20fractional%20differential%20equations%20in%20Banach%20spaces&journal=Commun.%20Appl.%20Anal.&volume=12&issue=4&pages=419-428&publication_year=2008&author=Benchohra%2CM.&author=Henderson%2CJ.&author=Seba%2CD."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="13."><p class="c-article-references__text" id="ref-CR13"> Bugajewski, D., Szufla, S.: Kneser’s theorem for weak solutions of the Darboux problem in a Banach space. Nonlinear Anal. <b>20</b>(2), 169–173 (1993) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0362-546X(93)90015-K" data-track-item_id="10.1016/0362-546X(93)90015-K" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0362-546X%2893%2990015-K" aria-label="Article reference 13" data-doi="10.1016/0362-546X(93)90015-K">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=1200387" aria-label="MathSciNet reference 13">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 13" href="http://scholar.google.com/scholar_lookup?&title=Kneser%E2%80%99s%20theorem%20for%20weak%20solutions%20of%20the%20Darboux%20problem%20in%20a%20Banach%20space&journal=Nonlinear%20Anal.&doi=10.1016%2F0362-546X%2893%2990015-K&volume=20&issue=2&pages=169-173&publication_year=1993&author=Bugajewski%2CD.&author=Szufla%2CS."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="14."><p class="c-article-references__text" id="ref-CR14"> De Blasi, F.S.: On the property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. Math. Roum. <b>21</b>, 259–262 (1977) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=482402" aria-label="MathSciNet reference 14">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?0365.46015" aria-label="MATH reference 14">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 14" href="http://scholar.google.com/scholar_lookup?&title=On%20the%20property%20of%20the%20unit%20sphere%20in%20a%20Banach%20space&journal=Bull.%20Math.%20Soc.%20Sci.%20Math.%20Roum.&volume=21&pages=259-262&publication_year=1977&author=Blasi%2CF.S."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="15."><p class="c-article-references__text" id="ref-CR15"> Furati, K.M., Kassim, M.D.: Non-existence of global solutions for a differential equation involving Hilfer fractional derivative. Electron. J. Differ. Equ. <b>2013</b>, 235 (2013) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1186/1687-1847-2013-235" data-track-item_id="10.1186/1687-1847-2013-235" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1186/1687-1847-2013-235" aria-label="Article reference 15" data-doi="10.1186/1687-1847-2013-235">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3138810" aria-label="MathSciNet reference 15">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 15" href="http://scholar.google.com/scholar_lookup?&title=Non-existence%20of%20global%20solutions%20for%20a%20differential%20equation%20involving%20Hilfer%20fractional%20derivative&journal=Electron.%20J.%20Differ.%20Equ.&doi=10.1186%2F1687-1847-2013-235&volume=2013&publication_year=2013&author=Furati%2CK.M.&author=Kassim%2CM.D."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="16."><p class="c-article-references__text" id="ref-CR16"> Furati, K.M., Kassim, M.D., Tatar, N.E.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. <b>64</b>, 1616–1626 (2012) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.camwa.2012.01.009" data-track-item_id="10.1016/j.camwa.2012.01.009" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.camwa.2012.01.009" aria-label="Article reference 16" data-doi="10.1016/j.camwa.2012.01.009">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2960788" aria-label="MathSciNet reference 16">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 16" href="http://scholar.google.com/scholar_lookup?&title=Existence%20and%20uniqueness%20for%20a%20problem%20involving%20Hilfer%20fractional%20derivative&journal=Comput.%20Math.%20Appl.&doi=10.1016%2Fj.camwa.2012.01.009&volume=64&pages=1616-1626&publication_year=2012&author=Furati%2CK.M.&author=Kassim%2CM.D.&author=Tatar%2CN.E."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="17."><p class="c-article-references__text" id="ref-CR17"> Guo, D., Lakshmikantham, V., Liu, X.: Nonlinear Integral Equations in Abstract Spaces. Kluwer Academic, Dordrecht (1996) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-1-4613-1281-9" data-track-item_id="10.1007/978-1-4613-1281-9" data-track-value="book reference" data-track-action="book reference" href="https://link.springer.com/doi/10.1007/978-1-4613-1281-9" aria-label="Book reference 17" data-doi="10.1007/978-1-4613-1281-9">Book</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 17" href="http://scholar.google.com/scholar_lookup?&title=Nonlinear%20Integral%20Equations%20in%20Abstract%20Spaces&doi=10.1007%2F978-1-4613-1281-9&publication_year=1996&author=Guo%2CD.&author=Lakshmikantham%2CV.&author=Liu%2CX."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="18."><p class="c-article-references__text" id="ref-CR18"> Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1142/3779" data-track-item_id="10.1142/3779" data-track-value="book reference" data-track-action="book reference" href="https://doi.org/10.1142%2F3779" aria-label="Book reference 18" data-doi="10.1142/3779">Book</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 18" href="http://scholar.google.com/scholar_lookup?&title=Applications%20of%20Fractional%20Calculus%20in%20Physics&doi=10.1142%2F3779&publication_year=2000&author=Hilfer%2CR."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="19."><p class="c-article-references__text" id="ref-CR19"> Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurc. Chaos <b>22</b>(4), 1250086 (2012) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1142/S0218127412500861" data-track-item_id="10.1142/S0218127412500861" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1142%2FS0218127412500861" aria-label="Article reference 19" data-doi="10.1142/S0218127412500861">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2926062" aria-label="MathSciNet reference 19">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 19" href="http://scholar.google.com/scholar_lookup?&title=Existence%20results%20for%20fractional%20boundary%20value%20problem%20via%20critical%20point%20theory&journal=Int.%20J.%20Bifurc.%20Chaos&doi=10.1142%2FS0218127412500861&volume=22&issue=4&publication_year=2012&author=Jiao%2CF.&author=Zhou%2CY."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="20."><p class="c-article-references__text" id="ref-CR20"> Kamocki, R., Obczyński, C.: On fractional Cauchy-type problems containing Hilfer’s derivative. Electron. J. Qual. Theory Differ. Equ. <b>2016</b>, 50 (2016) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1186/s13662-015-0735-9" data-track-item_id="10.1186/s13662-015-0735-9" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1186/s13662-015-0735-9" aria-label="Article reference 20" data-doi="10.1186/s13662-015-0735-9">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3533260" aria-label="MathSciNet reference 20">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 20" href="http://scholar.google.com/scholar_lookup?&title=On%20fractional%20Cauchy-type%20problems%20containing%20Hilfer%E2%80%99s%20derivative&journal=Electron.%20J.%20Qual.%20Theory%20Differ.%20Equ.&doi=10.1186%2Fs13662-015-0735-9&volume=2016&publication_year=2016&author=Kamocki%2CR.&author=Obczy%C5%84ski%2CC."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="21."><p class="c-article-references__text" id="ref-CR21"> Kilbas, A.A.: Hadamard-type fractional calculus. J. Korean Math. Soc. <b>38</b>(6), 1191–1204 (2001) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=1858760" aria-label="MathSciNet reference 21">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1018.26003" aria-label="MATH reference 21">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 21" href="http://scholar.google.com/scholar_lookup?&title=Hadamard-type%20fractional%20calculus&journal=J.%20Korean%20Math.%20Soc.&volume=38&issue=6&pages=1191-1204&publication_year=2001&author=Kilbas%2CA.A."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="22."><p class="c-article-references__text" id="ref-CR22"> Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1092.45003" aria-label="MATH reference 22">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 22" href="http://scholar.google.com/scholar_lookup?&title=Theory%20and%20Applications%20of%20Fractional%20Differential%20Equations&publication_year=2006&author=Kilbas%2CA.A.&author=Srivastava%2CH.M.&author=Trujillo%2CJ.J."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="23."><p class="c-article-references__text" id="ref-CR23"> Li, M., Wang, J.R.: Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl. Math. Comput. <b>324</b>, 254–265 (2018) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3743671" aria-label="MathSciNet reference 23">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 23" href="http://scholar.google.com/scholar_lookup?&title=Exploring%20delayed%20Mittag-Leffler%20type%20matrix%20functions%20to%20study%20finite%20time%20stability%20of%20fractional%20delay%20differential%20equations&journal=Appl.%20Math.%20Comput.&volume=324&pages=254-265&publication_year=2018&author=Li%2CM.&author=Wang%2CJ.R."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="24."><p class="c-article-references__text" id="ref-CR24"> Mitchell, A.R., Smith, C.: Nonlinear equations in abstract spaces. In: Lakshmikantham, V. (ed.) An Existence Theorem for Weak Solutions of Differential Equations in Banach Spaces, pp. 387–403. Academic Press, New York (1978) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 24" href="http://scholar.google.com/scholar_lookup?&title=Nonlinear%20equations%20in%20abstract%20spaces&pages=387-403&publication_year=1978&author=Mitchell%2CA.R.&author=Smith%2CC."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="25."><p class="c-article-references__text" id="ref-CR25"> O’Regan, D.: Fixed point theory for weakly sequentially continuous mapping. Math. Comput. Model. <b>27</b>(5), 1–14 (1998) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/S0895-7177(98)00014-4" data-track-item_id="10.1016/S0895-7177(98)00014-4" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2FS0895-7177%2898%2900014-4" aria-label="Article reference 25" data-doi="10.1016/S0895-7177(98)00014-4">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=1616796" aria-label="MathSciNet reference 25">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 25" href="http://scholar.google.com/scholar_lookup?&title=Fixed%20point%20theory%20for%20weakly%20sequentially%20continuous%20mapping&journal=Math.%20Comput.%20Model.&doi=10.1016%2FS0895-7177%2898%2900014-4&volume=27&issue=5&pages=1-14&publication_year=1998&author=O%E2%80%99Regan%2CD."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="26."><p class="c-article-references__text" id="ref-CR26"> O’Regan, D.: Weak solutions of ordinary differential equations in Banach spaces. Appl. Math. Lett. <b>12</b>, 101–105 (1999) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/S0893-9659(98)00133-5" data-track-item_id="10.1016/S0893-9659(98)00133-5" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2FS0893-9659%2898%2900133-5" aria-label="Article reference 26" data-doi="10.1016/S0893-9659(98)00133-5">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=1663477" aria-label="MathSciNet reference 26">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 26" href="http://scholar.google.com/scholar_lookup?&title=Weak%20solutions%20of%20ordinary%20differential%20equations%20in%20Banach%20spaces&journal=Appl.%20Math.%20Lett.&doi=10.1016%2FS0893-9659%2898%2900133-5&volume=12&pages=101-105&publication_year=1999&author=O%E2%80%99Regan%2CD."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="27."><p class="c-article-references__text" id="ref-CR27"> Pettis, B.J.: On integration in vector spaces. Trans. Am. Math. Soc. <b>44</b>, 277–304 (1938) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1090/S0002-9947-1938-1501970-8" data-track-item_id="10.1090/S0002-9947-1938-1501970-8" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1090%2FS0002-9947-1938-1501970-8" aria-label="Article reference 27" data-doi="10.1090/S0002-9947-1938-1501970-8">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=1501970" aria-label="MathSciNet reference 27">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 27" href="http://scholar.google.com/scholar_lookup?&title=On%20integration%20in%20vector%20spaces&journal=Trans.%20Am.%20Math.%20Soc.&doi=10.1090%2FS0002-9947-1938-1501970-8&volume=44&pages=277-304&publication_year=1938&author=Pettis%2CB.J."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="28."><p class="c-article-references__text" id="ref-CR28"> Qassim, M.D., Furati, K.M., Tatar, N.-E.: On a differential equation involving Hilfer–Hadamard fractional derivative. Abstr. Appl. Anal. <b>2012</b>, Article ID 391062 (2012) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1155/2012/391062" data-track-item_id="10.1155/2012/391062" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1155%2F2012%2F391062" aria-label="Article reference 28" data-doi="10.1155/2012/391062">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2926900" aria-label="MathSciNet reference 28">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 28" href="http://scholar.google.com/scholar_lookup?&title=On%20a%20differential%20equation%20involving%20Hilfer%E2%80%93Hadamard%20fractional%20derivative&journal=Abstr.%20Appl.%20Anal.&doi=10.1155%2F2012%2F391062&volume=2012&publication_year=2012&author=Qassim%2CM.D.&author=Furati%2CK.M.&author=Tatar%2CN.-E."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="29."><p class="c-article-references__text" id="ref-CR29"> Qassim, M.D., Tatar, N.E.: Well-posedness and stability for a differential problem with Hilfer–Hadamard fractional derivative. Abstr. Appl. Anal. <b>2013</b>, Article ID 605029 (2013) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3139483" aria-label="MathSciNet reference 29">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 29" href="http://scholar.google.com/scholar_lookup?&title=Well-posedness%20and%20stability%20for%20a%20differential%20problem%20with%20Hilfer%E2%80%93Hadamard%20fractional%20derivative&journal=Abstr.%20Appl.%20Anal.&volume=2013&publication_year=2013&author=Qassim%2CM.D.&author=Tatar%2CN.E."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="30."><p class="c-article-references__text" id="ref-CR30"> Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Amsterdam (1987) Engl. Trans. from the Russian </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?0617.26004" aria-label="MATH reference 30">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 30" href="http://scholar.google.com/scholar_lookup?&title=Fractional%20Integrals%20and%20Derivatives.%20Theory%20and%20Applications&publication_year=1987&author=Samko%2CS.G.&author=Kilbas%2CA.A.&author=Marichev%2CO.I."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="31."><p class="c-article-references__text" id="ref-CR31"> Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg (2010) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-3-642-14003-7" data-track-item_id="10.1007/978-3-642-14003-7" data-track-value="book reference" data-track-action="book reference" href="https://link.springer.com/doi/10.1007/978-3-642-14003-7" aria-label="Book reference 31" data-doi="10.1007/978-3-642-14003-7">Book</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 31" href="http://scholar.google.com/scholar_lookup?&title=Fractional%20Dynamics%3A%20Application%20of%20Fractional%20Calculus%20to%20Dynamics%20of%20Particles%2C%20Fields%20and%20Media&doi=10.1007%2F978-3-642-14003-7&publication_year=2010&author=Tarasov%2CV.E."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="32."><p class="c-article-references__text" id="ref-CR32"> Tomovski, Ž., Hilfer, R., Srivastava, H.M.: Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integral Transforms Spec. Funct. <b>21</b>(11), 797–814 (2010) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/10652461003675737" data-track-item_id="10.1080/10652461003675737" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F10652461003675737" aria-label="Article reference 32" data-doi="10.1080/10652461003675737">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2739389" aria-label="MathSciNet reference 32">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 32" href="http://scholar.google.com/scholar_lookup?&title=Fractional%20and%20operational%20calculus%20with%20generalized%20fractional%20derivative%20operators%20and%20Mittag-Leffler%20type%20functions&journal=Integral%20Transforms%20Spec.%20Funct.&doi=10.1080%2F10652461003675737&volume=21&issue=11&pages=797-814&publication_year=2010&author=Tomovski%2C%C5%BD.&author=Hilfer%2CR.&author=Srivastava%2CH.M."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="33."><p class="c-article-references__text" id="ref-CR33"> Vityuk, A.N., Mykhailenko, A.V.: The Darboux problem for an implicit fractional-order differential equation. J. Math. Sci. <b>175</b>(4), 391–401 (2011) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10958-011-0353-3" data-track-item_id="10.1007/s10958-011-0353-3" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10958-011-0353-3" aria-label="Article reference 33" data-doi="10.1007/s10958-011-0353-3">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2977138" aria-label="MathSciNet reference 33">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 33" href="http://scholar.google.com/scholar_lookup?&title=The%20Darboux%20problem%20for%20an%20implicit%20fractional-order%20differential%20equation&journal=J.%20Math.%20Sci.&doi=10.1007%2Fs10958-011-0353-3&volume=175&issue=4&pages=391-401&publication_year=2011&author=Vityuk%2CA.N.&author=Mykhailenko%2CA.V."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="34."><p class="c-article-references__text" id="ref-CR34"> Wang, J.R., Zhang, Y.: Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. <b>266</b>, 850–859 (2015) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3377602" aria-label="MathSciNet reference 34">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 34" href="http://scholar.google.com/scholar_lookup?&title=Nonlocal%20initial%20value%20problems%20for%20differential%20equations%20with%20Hilfer%20fractional%20derivative&journal=Appl.%20Math.%20Comput.&volume=266&pages=850-859&publication_year=2015&author=Wang%2CJ.R.&author=Zhang%2CY."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="35."><p class="c-article-references__text" id="ref-CR35"> Zhou, Y.: Attractivity for fractional evolution equations with almost sectorial operators. Fract. Calc. Appl. Anal. <b>21</b>(3), 786–800 (2018) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1515/fca-2018-0041" data-track-item_id="10.1515/fca-2018-0041" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1515%2Ffca-2018-0041" aria-label="Article reference 35" data-doi="10.1515/fca-2018-0041">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3827154" aria-label="MathSciNet reference 35">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 35" href="http://scholar.google.com/scholar_lookup?&title=Attractivity%20for%20fractional%20evolution%20equations%20with%20almost%20sectorial%20operators&journal=Fract.%20Calc.%20Appl.%20Anal.&doi=10.1515%2Ffca-2018-0041&volume=21&issue=3&pages=786-800&publication_year=2018&author=Zhou%2CY."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="36."><p class="c-article-references__text" id="ref-CR36"> Zhou, Y., Ahmad, B., Alsaedi, A.: Existence of nonoscillatory solutions for fractional neutral differential equations. Appl. Math. Lett. <b>72</b>, 70–74 (2017) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.aml.2017.04.016" data-track-item_id="10.1016/j.aml.2017.04.016" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.aml.2017.04.016" aria-label="Article reference 36" data-doi="10.1016/j.aml.2017.04.016">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3652432" aria-label="MathSciNet reference 36">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 36" href="http://scholar.google.com/scholar_lookup?&title=Existence%20of%20nonoscillatory%20solutions%20for%20fractional%20neutral%20differential%20equations&journal=Appl.%20Math.%20Lett.&doi=10.1016%2Fj.aml.2017.04.016&volume=72&pages=70-74&publication_year=2017&author=Zhou%2CY.&author=Ahmad%2CB.&author=Alsaedi%2CA."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="37."><p class="c-article-references__text" id="ref-CR37"> Zhou, Y., Shangerganesh, L., Manimaran, J., Debbouche, A.: A class of time-fractional reaction–diffusion equation with nonlocal boundary condition. Math. Methods Appl. Sci. <b>41</b>, 2987–2999 (2018) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/mma.4796" data-track-item_id="10.1002/mma.4796" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fmma.4796" aria-label="Article reference 37" data-doi="10.1002/mma.4796">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3805103" aria-label="MathSciNet reference 37">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 37" href="http://scholar.google.com/scholar_lookup?&title=A%20class%20of%20time-fractional%20reaction%E2%80%93diffusion%20equation%20with%20nonlocal%20boundary%20condition&journal=Math.%20Methods%20Appl.%20Sci.&doi=10.1002%2Fmma.4796&volume=41&pages=2987-2999&publication_year=2018&author=Zhou%2CY.&author=Shangerganesh%2CL.&author=Manimaran%2CJ.&author=Debbouche%2CA."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="38."><p class="c-article-references__text" id="ref-CR38"> Zhou, Y., Vijayakumar, V., Murugesu, R.: Controllability for fractional evolution inclusions without compactness. Evol. Equ. Control Theory <b>4</b>, 507–524 (2015) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3934/eect.2015.4.507" data-track-item_id="10.3934/eect.2015.4.507" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3934%2Feect.2015.4.507" aria-label="Article reference 38" data-doi="10.3934/eect.2015.4.507">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3461697" aria-label="MathSciNet reference 38">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 38" href="http://scholar.google.com/scholar_lookup?&title=Controllability%20for%20fractional%20evolution%20inclusions%20without%20compactness&journal=Evol.%20Equ.%20Control%20Theory&doi=10.3934%2Feect.2015.4.507&volume=4&pages=507-524&publication_year=2015&author=Zhou%2CY.&author=Vijayakumar%2CV.&author=Murugesu%2CR."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="39."><p class="c-article-references__text" id="ref-CR39"> Zhou, Y., Zhang, L.: Existence and multiplicity results of homoclinic solutions for fractional Hamiltonian systems. Comput. Math. Appl. <b>73</b>, 1325–1345 (2017) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.camwa.2016.04.041" data-track-item_id="10.1016/j.camwa.2016.04.041" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.camwa.2016.04.041" aria-label="Article reference 39" data-doi="10.1016/j.camwa.2016.04.041">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3623125" aria-label="MathSciNet reference 39">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 39" href="http://scholar.google.com/scholar_lookup?&title=Existence%20and%20multiplicity%20results%20of%20homoclinic%20solutions%20for%20fractional%20Hamiltonian%20systems&journal=Comput.%20Math.%20Appl.&doi=10.1016%2Fj.camwa.2016.04.041&volume=73&pages=1325-1345&publication_year=2017&author=Zhou%2CY.&author=Zhang%2CL."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="40."><p class="c-article-references__text" id="ref-CR40"> Zhou, Y., Zhang, L., Shen, X.H.: Existence of mild solutions for fractional evolution equations. J. Integral Equ. Appl. <b>25</b>, 557–586 (2013) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1216/JIE-2013-25-4-557" data-track-item_id="10.1216/JIE-2013-25-4-557" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1216%2FJIE-2013-25-4-557" aria-label="Article reference 40" data-doi="10.1216/JIE-2013-25-4-557">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3161625" aria-label="MathSciNet reference 40">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 40" href="http://scholar.google.com/scholar_lookup?&title=Existence%20of%20mild%20solutions%20for%20fractional%20evolution%20equations&journal=J.%20Integral%20Equ.%20Appl.&doi=10.1216%2FJIE-2013-25-4-557&volume=25&pages=557-586&publication_year=2013&author=Zhou%2CY.&author=Zhang%2CL.&author=Shen%2CX.H."> Google Scholar</a> </p></li></ol><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1186/s13662-018-1787-4?format=refman&flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Availability of data and materials"><div class="c-article-section" id="Ack1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Ack1">Availability of data and materials</h2><div class="c-article-section__content" id="Ack1-content"><p>Not applicable.</p></div></div></section><section data-title="Funding"><div class="c-article-section" id="Fun-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Fun">Funding</h2><div class="c-article-section__content" id="Fun-content"><p>The work was supported by the National Natural Science Foundation of China (No. 11671339).</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">Laboratory of Mathematics, Geometry, Analysis, Control and Applications, Tahar Moulay University of Saïda, Saïda, Algeria</p><p class="c-article-author-affiliation__authors-list">Saïd Abbas</p></li><li id="Aff2"><p class="c-article-author-affiliation__address">Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès, Sidi Bel-Abbès, Algeria</p><p class="c-article-author-affiliation__authors-list">Mouffak Benchohra & Naima Hamidi</p></li><li id="Aff3"><p class="c-article-author-affiliation__address">Faculty of Mathematics and Computational Science, Xiangtan University, Hunan, P.R. China</p><p class="c-article-author-affiliation__authors-list">Yong Zhou</p></li><li id="Aff4"><p class="c-article-author-affiliation__address">Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia</p><p class="c-article-author-affiliation__authors-list">Yong Zhou</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Sa_d-Abbas-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Saïd Abbas</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="https://www.biomedcentral.com/search?query=author%23Sa%C3%AFd%20Abbas" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text"><span class="c-article-authors-search__links-text">You can also search for this author in</span><span class="c-article-identifiers"><a class="c-article-identifiers__item" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Sa%C3%AFd%20Abbas" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Sa%C3%AFd%20Abbas%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Mouffak-Benchohra-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">Mouffak Benchohra</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="https://www.biomedcentral.com/search?query=author%23Mouffak%20Benchohra" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text"><span class="c-article-authors-search__links-text">You can also search for this author in</span><span class="c-article-identifiers"><a class="c-article-identifiers__item" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Mouffak%20Benchohra" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Mouffak%20Benchohra%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Naima-Hamidi-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">Naima Hamidi</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="https://www.biomedcentral.com/search?query=author%23Naima%20Hamidi" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text"><span class="c-article-authors-search__links-text">You can also search for this author in</span><span class="c-article-identifiers"><a class="c-article-identifiers__item" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Naima%20Hamidi" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Naima%20Hamidi%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Yong-Zhou-Aff3-Aff4"><span class="c-article-authors-search__title u-h3 js-search-name">Yong Zhou</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="https://www.biomedcentral.com/search?query=author%23Yong%20Zhou" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text"><span class="c-article-authors-search__links-text">You can also search for this author in</span><span class="c-article-identifiers"><a class="c-article-identifiers__item" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Yong%20Zhou" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Yong%20Zhou%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="contributions">Contributions</h3><p>All the authors contributed equally to each part of this work. All authors read and approved the final manuscript.</p><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:yzhou@xtu.edu.cn">Yong Zhou</a>.</p></div></div></section><section data-title="Ethics declarations"><div class="c-article-section" id="ethics-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="ethics">Ethics declarations</h2><div class="c-article-section__content" id="ethics-content"> <h3 class="c-article__sub-heading" id="FPar26">Competing interests</h3> <p>The authors declare that they have no competing interests.</p> </div></div></section><section data-title="Additional information"><div class="c-article-section" id="additional-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="additional-information">Additional information</h2><div class="c-article-section__content" id="additional-information-content"><h3 class="c-article__sub-heading">Publisher’s Note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p></div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"> <p><b>Open Access</b> This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.</p> <p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=Implicit%20coupled%20Hilfer%E2%80%93Hadamard%20fractional%20differential%20systems%20under%20weak%20topologies&author=Sa%C3%AFd%20Abbas%20et%20al&contentID=10.1186%2Fs13662-018-1787-4&copyright=The%20Author%28s%29&publication=1687-1847&publicationDate=2018-09-18&publisherName=SpringerNature&orderBeanReset=true&oa=CC%20BY">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1186/s13662-018-1787-4" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1787-4" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">Abbas, S., Benchohra, M., Hamidi, N. <i>et al.</i> Implicit coupled Hilfer–Hadamard fractional differential systems under weak topologies. <i>Adv Differ Equ</i> <b>2018</b>, 328 (2018). https://doi.org/10.1186/s13662-018-1787-4</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1186/s13662-018-1787-4?format=refman&flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Received<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2018-07-19">19 July 2018</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Accepted<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2018-09-05">05 September 2018</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2018-09-18">18 September 2018</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1186/s13662-018-1787-4</span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><h3 class="c-article__sub-heading">MSC</h3><ul class="c-article-subject-list"><li class="c-article-subject-list__subject"><span><a href="/search?query=26A33&facet-discipline="Mathematics"" data-track="click" data-track-action="view keyword" data-track-label="link">26A33</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=45D05&facet-discipline="Mathematics"" data-track="click" data-track-action="view keyword" data-track-label="link">45D05</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=45G05&facet-discipline="Mathematics"" data-track="click" data-track-action="view keyword" data-track-label="link">45G05</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=45M10&facet-discipline="Mathematics"" data-track="click" data-track-action="view keyword" data-track-label="link">45M10</a></span></li></ul><h3 class="c-article__sub-heading">Keywords</h3><ul class="c-article-subject-list"><li class="c-article-subject-list__subject"><span><a href="/search?query=Coupled%20fractional%20differential%20system&facet-discipline="Mathematics"" data-track="click" data-track-action="view keyword" data-track-label="link">Coupled fractional differential system</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Left-sided%20mixed%20Pettis%E2%80%93Hadamard%20integral%20of%20fractional%20order&facet-discipline="Mathematics"" data-track="click" data-track-action="view keyword" data-track-label="link">Left-sided mixed Pettis–Hadamard integral of fractional order</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Hilfer%E2%80%93Hadamard%20fractional%20derivative&facet-discipline="Mathematics"" data-track="click" data-track-action="view keyword" data-track-label="link">Hilfer–Hadamard fractional derivative</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Weak%20solution&facet-discipline="Mathematics"" data-track="click" data-track-action="view keyword" data-track-label="link">Weak solution</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Implicit&facet-discipline="Mathematics"" data-track="click" data-track-action="view keyword" data-track-label="link">Implicit</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Fixed%20point&facet-discipline="Mathematics"" data-track="click" data-track-action="view keyword" data-track-label="link">Fixed point</a></span></li></ul><div data-component="article-info-list"></div></div></div></div></div></section> </article> </main> <div class="c-article-extras u-text-sm u-hide-print" data-container-type="reading-companion" data-track-component="reading companion"> <aside> <div data-test="download-article-link-wrapper" class="js-context-bar-sticky-point-desktop" data-track-context="reading companion"> <div class="c-pdf-download u-clear-both"> <a href="//advancesincontinuousanddiscretemodels.springeropen.com/counter/pdf/10.1186/s13662-018-1787-4.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="link" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-download"/></svg> </a> </div> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="js-ad u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu> <aside class="adsbox c-ad c-ad--300x250 u-mt-16" data-component-mpu> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-MPU1" data-ad-type="MPU1" data-test="MPU1-ad" data-pa11y-ignore data-gpt data-gpt-unitpath="/270604982/springer_open/advancesincontinuousanddiscretemodels/articles" data-gpt-sizes="300x250" data-gpt-targeting="pos=MPU1;doi=10.1186/s13662-018-1787-4;type=article;kwrd=26A33,45D05,45G05,45M10,Coupled fractional differential system,Left-sided mixed Pettis–Hadamard integral of fractional order,Hilfer–Hadamard fractional derivative,Weak solution,Implicit,Fixed point;pmc=M12031,M00009,M12007,M12066,M12147,M12155;" > <noscript> <a href="//pubads.g.doubleclick.net/gampad/jump?iu=/270604982/springer_open/advancesincontinuousanddiscretemodels/articles&sz=300x250&pos=MPU1&doi=10.1186/s13662-018-1787-4&type=article&kwrd=26A33,45D05,45G05,45M10,Coupled fractional differential system,Left-sided mixed Pettis–Hadamard integral of fractional order,Hilfer–Hadamard fractional derivative,Weak solution,Implicit,Fixed point&pmc=M12031,M00009,M12007,M12066,M12147,M12155&"> <img data-test="gpt-advert-fallback-img" src="//pubads.g.doubleclick.net/gampad/ad?iu=/270604982/springer_open/advancesincontinuousanddiscretemodels/articles&sz=300x250&pos=MPU1&doi=10.1186/s13662-018-1787-4&type=article&kwrd=26A33,45D05,45G05,45M10,Coupled fractional differential system,Left-sided mixed Pettis–Hadamard integral of fractional order,Hilfer–Hadamard fractional derivative,Weak solution,Implicit,Fixed point&pmc=M12031,M00009,M12007,M12066,M12147,M12155&" alt="Advertisement" width="300" height="250"> </a> </noscript> </div> </div> </aside> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> </div> <img rel="nofollow" class='tracker' style='display:none' src='/track/article/10.1186/s13662-018-1787-4' alt=""/> <footer> <div class="c-publisher-footer u-color-inherit" data-test="publisher-footer"> <div class="u-container"> <div class="u-display-flex u-flex-wrap u-justify-content-space-between" data-test="publisher-footer-menu"> <div class="u-display-flex"> <ul class="c-list-group c-list-group--sm u-mr-24 u-mb-16"> <li class="c-list-group__item"> <a class="u-gray-link" href="https://support.biomedcentral.com/support/home">Support and Contact</a> </li> <li class="c-list-group__item"> <a class="u-gray-link" href="//www.springeropen.com/about/jobs">Jobs</a> </li> <li class="c-list-group__item"> <a class="u-gray-link" href="https://authorservices.springernature.com/language-editing/">Language editing for authors</a> </li> <li class="c-list-group__item"> <a class="u-gray-link" href="https://authorservices.springernature.com/scientific-editing/">Scientific editing for authors</a> </li> <li class="c-list-group__item"> <a class="u-gray-link" href="https://biomedcentral.typeform.com/to/VLXboo">Leave feedback</a> </li> </ul> <ul class="c-list-group c-list-group--sm u-mr-24 u-mb-16"> <li class="c-list-group__item"> <a class="u-gray-link" href="//www.springeropen.com/terms-and-conditions">Terms and conditions</a> </li> <li class="c-list-group__item"> <a class="u-gray-link" href="//www.springeropen.com/privacy-statement">Privacy statement</a> </li> <li class="c-list-group__item"> <a class="u-gray-link" href="//www.springeropen.com/accessibility">Accessibility</a> </li> <li class="c-list-group__item"> <a class="u-gray-link" href="//www.springeropen.com/cookies">Cookies</a> </li> </ul> </div> <div class="u-mb-24"> <h3 id="social-menu" class="u-text-sm u-reset-margin u-text-normal">Follow SpringerOpen</h3> <ul class="u-display-flex u-list-reset" data-test="footer-social-links"> <li class="u-mt-8 u-mr-8"> <a href="https://twitter.com/springeropen" data-track="click" data-track-category="Social" data-track-action="Clicked SpringerOpen Twitter" class="u-gray-link"> <span class="u-visually-hidden">SpringerOpen Twitter page</span> <svg class="u-icon u-text-lg" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-twitter-bordered"></use> </svg> </a> </li> <li class="u-mt-8 u-mr-8"> <a href="https://www.facebook.com/SpringerOpn" data-track="click" data-track-category="Social" data-track-action="Clicked SpringerOpen Facebook" class="u-gray-link"> <span class="u-visually-hidden">SpringerOpen Facebook page</span> <svg class="u-icon u-text-lg" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-facebook-bordered"></use> </svg> </a> </li> </ul> </div> </div> <p class="u-reset-margin"> By using this website, you agree to our <a class="u-gray-link" href="//www.springeropen.com/terms-and-conditions">Terms and Conditions</a>, <a class="u-gray-link" href="https://www.springernature.com/ccpa">Your US state privacy rights</a>, <a class="u-gray-link" href="//www.springeropen.com/privacy-statement">Privacy statement</a> and <a class="u-gray-link" href="//www.springeropen.com/cookies" data-test="cookie-link">Cookies</a> policy. <a class="u-gray-link" data-cc-action="preferences" href="javascript:void(0);">Your privacy choices/Manage cookies</a> we use in the preference centre. </p> </div> </div> <div class="c-corporate-footer"> <div class="u-container"> <img src=/static/images/logo-springernature-acb40b85fb.svg class="c-corporate-footer__logo" alt="Springer Nature" itemprop="logo" role="img"> <p class="c-corporate-footer__legal" data-test="copyright"> © 2025 BioMed Central Ltd unless otherwise stated. Part of <a class="c-corporate-footer__link" href="https://www.springernature.com" itemscope itemtype="http://schema.org/Organization" itemid="#parentOrganization">Springer Nature</a>. </p> </div> </div> </footer> </div> <div class="u-visually-hidden" aria-hidden="true"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="a" d="M0 .74h56.72v55.24H0z"/></defs><symbol id="icon-access" viewBox="0 0 18 18"><path d="m14 8c.5522847 0 1 .44771525 1 1v7h2.5c.2761424 0 .5.2238576.5.5v1.5h-18v-1.5c0-.2761424.22385763-.5.5-.5h2.5v-7c0-.55228475.44771525-1 1-1s1 .44771525 1 1v6.9996556h8v-6.9996556c0-.55228475.4477153-1 1-1zm-8 0 2 1v5l-2 1zm6 0v7l-2-1v-5zm-2.42653766-7.59857636 7.03554716 4.92488299c.4162533.29137735.5174853.86502537.226108 1.28127873-.1721584.24594054-.4534847.39241464-.7536934.39241464h-14.16284822c-.50810197 0-.92-.41189803-.92-.92 0-.30020869.1464741-.58153499.39241464-.75369337l7.03554714-4.92488299c.34432015-.2410241.80260453-.2410241 1.14692468 0zm-.57346234 2.03988748-3.65526982 2.55868888h7.31053962z" fill-rule="evenodd"/></symbol><symbol id="icon-account" viewBox="0 0 18 18"><path d="m10.2379028 16.9048051c1.3083556-.2032362 2.5118471-.7235183 3.5294683-1.4798399-.8731327-2.5141501-2.0638925-3.935978-3.7673711-4.3188248v-1.27684611c1.1651924-.41183641 2-1.52307546 2-2.82929429 0-1.65685425-1.3431458-3-3-3-1.65685425 0-3 1.34314575-3 3 0 1.30621883.83480763 2.41745788 2 2.82929429v1.27684611c-1.70347856.3828468-2.89423845 1.8046747-3.76737114 4.3188248 1.01762123.7563216 2.22111275 1.2766037 3.52946833 1.4798399.40563808.0629726.81921174.0951949 1.23790281.0951949s.83226473-.0322223 1.2379028-.0951949zm4.3421782-2.1721994c1.4927655-1.4532925 2.419919-3.484675 2.419919-5.7326057 0-4.418278-3.581722-8-8-8s-8 3.581722-8 8c0 2.2479307.92715352 4.2793132 2.41991895 5.7326057.75688473-2.0164459 1.83949951-3.6071894 3.48926591-4.3218837-1.14534283-.70360829-1.90918486-1.96796271-1.90918486-3.410722 0-2.209139 1.790861-4 4-4s4 1.790861 4 4c0 1.44275929-.763842 2.70711371-1.9091849 3.410722 1.6497664.7146943 2.7323812 2.3054378 3.4892659 4.3218837zm-5.580081 3.2673943c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-alert" viewBox="0 0 18 18"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-broad" viewBox="0 0 16 16"><path d="m6.10307866 2.97190702v7.69043288l2.44965196-2.44676915c.38776071-.38730439 1.0088052-.39493524 1.38498697-.01919617.38609051.38563612.38643641 1.01053024-.00013864 1.39665039l-4.12239817 4.11754683c-.38616704.3857126-1.01187344.3861062-1.39846576-.0000311l-4.12258206-4.11773056c-.38618426-.38572979-.39254614-1.00476697-.01636437-1.38050605.38609047-.38563611 1.01018509-.38751562 1.4012233.00306241l2.44985644 2.4469734v-8.67638639c0-.54139983.43698413-.98042709.98493125-.98159081l7.89910522-.0043627c.5451687 0 .9871152.44142642.9871152.98595351s-.4419465.98595351-.9871152.98595351z" fill-rule="evenodd" transform="matrix(-1 0 0 -1 14 15)"/></symbol><symbol id="icon-arrow-down" viewBox="0 0 16 16"><path d="m3.28337502 11.5302405 4.03074001 4.176208c.37758093.3912076.98937525.3916069 1.367372-.0000316l4.03091977-4.1763942c.3775978-.3912252.3838182-1.0190815.0160006-1.4001736-.3775061-.39113013-.9877245-.39303641-1.3700683.003106l-2.39538585 2.4818345v-11.6147896l-.00649339-.11662112c-.055753-.49733869-.46370161-.88337888-.95867408-.88337888-.49497246 0-.90292107.38604019-.95867408.88337888l-.00649338.11662112v11.6147896l-2.39518594-2.4816273c-.37913917-.39282218-.98637524-.40056175-1.35419292-.0194697-.37750607.3911302-.37784433 1.0249269.00013556 1.4165479z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-left" viewBox="0 0 16 16"><path d="m4.46975946 3.28337502-4.17620792 4.03074001c-.39120768.37758093-.39160691.98937525.0000316 1.367372l4.1763942 4.03091977c.39122514.3775978 1.01908149.3838182 1.40017357.0160006.39113012-.3775061.3930364-.9877245-.00310603-1.3700683l-2.48183446-2.39538585h11.61478958l.1166211-.00649339c.4973387-.055753.8833789-.46370161.8833789-.95867408 0-.49497246-.3860402-.90292107-.8833789-.95867408l-.1166211-.00649338h-11.61478958l2.4816273-2.39518594c.39282216-.37913917.40056173-.98637524.01946965-1.35419292-.39113012-.37750607-1.02492687-.37784433-1.41654791.00013556z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-right" viewBox="0 0 16 16"><path d="m11.5302405 12.716625 4.176208-4.03074003c.3912076-.37758093.3916069-.98937525-.0000316-1.367372l-4.1763942-4.03091981c-.3912252-.37759778-1.0190815-.38381821-1.4001736-.01600053-.39113013.37750607-.39303641.98772445.003106 1.37006824l2.4818345 2.39538588h-11.6147896l-.11662112.00649339c-.49733869.055753-.88337888.46370161-.88337888.95867408 0 .49497246.38604019.90292107.88337888.95867408l.11662112.00649338h11.6147896l-2.4816273 2.39518592c-.39282218.3791392-.40056175.9863753-.0194697 1.3541929.3911302.3775061 1.0249269.3778444 1.4165479-.0001355z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-sub" viewBox="0 0 16 16"><path d="m7.89692134 4.97190702v7.69043288l-2.44965196-2.4467692c-.38776071-.38730434-1.0088052-.39493519-1.38498697-.0191961-.38609047.3856361-.38643643 1.0105302.00013864 1.3966504l4.12239817 4.1175468c.38616704.3857126 1.01187344.3861062 1.39846576-.0000311l4.12258202-4.1177306c.3861843-.3857298.3925462-1.0047669.0163644-1.380506-.3860905-.38563612-1.0101851-.38751563-1.4012233.0030624l-2.44985643 2.4469734v-8.67638639c0-.54139983-.43698413-.98042709-.98493125-.98159081l-7.89910525-.0043627c-.54516866 0-.98711517.44142642-.98711517.98595351s.44194651.98595351.98711517.98595351z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-up" viewBox="0 0 16 16"><path d="m12.716625 4.46975946-4.03074003-4.17620792c-.37758093-.39120768-.98937525-.39160691-1.367372.0000316l-4.03091981 4.1763942c-.37759778.39122514-.38381821 1.01908149-.01600053 1.40017357.37750607.39113012.98772445.3930364 1.37006824-.00310603l2.39538588-2.48183446v11.61478958l.00649339.1166211c.055753.4973387.46370161.8833789.95867408.8833789.49497246 0 .90292107-.3860402.95867408-.8833789l.00649338-.1166211v-11.61478958l2.39518592 2.4816273c.3791392.39282216.9863753.40056173 1.3541929.01946965.3775061-.39113012.3778444-1.02492687-.0001355-1.41654791z" fill-rule="evenodd"/></symbol><symbol id="icon-article" viewBox="0 0 18 18"><path d="m13 15v-12.9906311c0-.0073595-.0019884-.0093689.0014977-.0093689l-11.00158888.00087166v13.00506804c0 .5482678.44615281.9940603.99415146.9940603h10.27350412c-.1701701-.2941734-.2675644-.6357129-.2675644-1zm-12 .0059397v-13.00506804c0-.5562408.44704472-1.00087166.99850233-1.00087166h11.00299537c.5510129 0 .9985023.45190985.9985023 1.0093689v2.9906311h3v9.9914698c0 1.1065798-.8927712 2.0085302-1.9940603 2.0085302h-12.01187942c-1.09954652 0-1.99406028-.8927712-1.99406028-1.9940603zm13-9.0059397v9c0 .5522847.4477153 1 1 1s1-.4477153 1-1v-9zm-10-2h7v4h-7zm1 1v2h5v-2zm-1 4h7v1h-7zm0 2h7v1h-7zm0 2h7v1h-7z" fill-rule="evenodd"/></symbol><symbol id="icon-audio" viewBox="0 0 18 18"><path d="m13.0957477 13.5588459c-.195279.1937043-.5119137.193729-.7072234.0000551-.1953098-.193674-.1953346-.5077061-.0000556-.7014104 1.0251004-1.0168342 1.6108711-2.3905226 1.6108711-3.85745208 0-1.46604976-.5850634-2.83898246-1.6090736-3.85566829-.1951894-.19379323-.1950192-.50782531.0003802-.70141028.1953993-.19358497.512034-.19341614.7072234.00037709 1.2094886 1.20083761 1.901635 2.8250555 1.901635 4.55670148 0 1.73268608-.6929822 3.35779608-1.9037571 4.55880738zm2.1233994 2.1025159c-.195234.193749-.5118687.1938462-.7072235.0002171-.1953548-.1936292-.1954528-.5076613-.0002189-.7014104 1.5832215-1.5711805 2.4881302-3.6939808 2.4881302-5.96012998 0-2.26581266-.9046382-4.3883241-2.487443-5.95944795-.1952117-.19377107-.1950777-.50780316.0002993-.70141031s.5120117-.19347426.7072234.00029682c1.7683321 1.75528196 2.7800854 4.12911258 2.7800854 6.66056144 0 2.53182498-1.0120556 4.90597838-2.7808529 6.66132328zm-14.21898205-3.6854911c-.5523759 0-1.00016505-.4441085-1.00016505-.991944v-3.96777631c0-.54783558.44778915-.99194407 1.00016505-.99194407h2.0003301l5.41965617-3.8393633c.44948677-.31842296 1.07413994-.21516983 1.39520191.23062232.12116339.16823446.18629727.36981184.18629727.57655577v12.01603479c0 .5478356-.44778914.9919441-1.00016505.9919441-.20845738 0-.41170538-.0645985-.58133413-.184766l-5.41965617-3.8393633zm0-.991944h2.32084805l5.68047235 4.0241292v-12.01603479l-5.68047235 4.02412928h-2.32084805z" fill-rule="evenodd"/></symbol><symbol id="icon-block" viewBox="0 0 24 24"><path d="m0 0h24v24h-24z" fill-rule="evenodd"/></symbol><symbol id="icon-book" viewBox="0 0 18 18"><path d="m4 13v-11h1v11h11v-11h-13c-.55228475 0-1 .44771525-1 1v10.2675644c.29417337-.1701701.63571286-.2675644 1-.2675644zm12 1h-13c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1h13zm0 3h-13c-1.1045695 0-2-.8954305-2-2v-12c0-1.1045695.8954305-2 2-2h13c.5522847 0 1 .44771525 1 1v14c0 .5522847-.4477153 1-1 1zm-8.5-13h6c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm1 2h4c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-4c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-broad" viewBox="0 0 24 24"><path d="m9.18274226 7.81v7.7999954l2.48162734-2.4816273c.3928221-.3928221 1.0219731-.4005617 1.4030652-.0194696.3911301.3911301.3914806 1.0249268-.0001404 1.4165479l-4.17620796 4.1762079c-.39120769.3912077-1.02508144.3916069-1.41671995-.0000316l-4.1763942-4.1763942c-.39122514-.3912251-.39767006-1.0190815-.01657798-1.4001736.39113012-.3911301 1.02337106-.3930364 1.41951349.0031061l2.48183446 2.4818344v-8.7999954c0-.54911294.4426881-.99439484.99778758-.99557515l8.00221246-.00442485c.5522847 0 1 .44771525 1 1s-.4477153 1-1 1z" fill-rule="evenodd" transform="matrix(-1 0 0 -1 20.182742 24.805206)"/></symbol><symbol id="icon-calendar" viewBox="0 0 18 18"><path d="m12.5 0c.2761424 0 .5.21505737.5.49047852v.50952148h2c1.1072288 0 2 .89451376 2 2v12c0 1.1072288-.8945138 2-2 2h-12c-1.1072288 0-2-.8945138-2-2v-12c0-1.1072288.89451376-2 2-2h1v1h-1c-.55393837 0-1 .44579254-1 1v3h14v-3c0-.55393837-.4457925-1-1-1h-2v1.50952148c0 .27088381-.2319336.49047852-.5.49047852-.2761424 0-.5-.21505737-.5-.49047852v-3.01904296c0-.27088381.2319336-.49047852.5-.49047852zm3.5 7h-14v8c0 .5539384.44579254 1 1 1h12c.5539384 0 1-.4457925 1-1zm-11 6v1h-1v-1zm3 0v1h-1v-1zm3 0v1h-1v-1zm-6-2v1h-1v-1zm3 0v1h-1v-1zm6 0v1h-1v-1zm-3 0v1h-1v-1zm-3-2v1h-1v-1zm6 0v1h-1v-1zm-3 0v1h-1v-1zm-5.5-9c.27614237 0 .5.21505737.5.49047852v.50952148h5v1h-5v1.50952148c0 .27088381-.23193359.49047852-.5.49047852-.27614237 0-.5-.21505737-.5-.49047852v-3.01904296c0-.27088381.23193359-.49047852.5-.49047852z" fill-rule="evenodd"/></symbol><symbol id="icon-cart" viewBox="0 0 18 18"><path d="m5 14c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm10 0c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm-10 1c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1 1-.4477153 1-1-.44771525-1-1-1zm10 0c-.5522847 0-1 .4477153-1 1s.4477153 1 1 1 1-.4477153 1-1-.4477153-1-1-1zm-12.82032249-15c.47691417 0 .88746157.33678127.98070211.80449199l.23823144 1.19501025 13.36277974.00045554c.5522847.00001882.9999659.44774934.9999659 1.00004222 0 .07084994-.0075361.14150708-.022474.2107727l-1.2908094 5.98534344c-.1007861.46742419-.5432548.80388386-1.0571651.80388386h-10.24805106c-.59173366 0-1.07142857.4477153-1.07142857 1 0 .5128358.41361449.9355072.94647737.9932723l.1249512.0067277h10.35933776c.2749512 0 .4979349.2228539.4979349.4978051 0 .2749417-.2227336.4978951-.4976753.4980063l-10.35959736.0041886c-1.18346732 0-2.14285714-.8954305-2.14285714-2 0-.6625717.34520317-1.24989198.87690425-1.61383592l-1.63768102-8.19004794c-.01312273-.06561364-.01950005-.131011-.0196107-.19547395l-1.71961253-.00064219c-.27614237 0-.5-.22385762-.5-.5 0-.27614237.22385763-.5.5-.5zm14.53193359 2.99950224h-13.11300004l1.20580469 6.02530174c.11024034-.0163252.22327998-.02480398.33844139-.02480398h10.27064786z"/></symbol><symbol id="icon-chevron-less" viewBox="0 0 10 10"><path d="m5.58578644 4-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" fill-rule="evenodd" transform="matrix(0 -1 -1 0 9 9)"/></symbol><symbol id="icon-chevron-more" viewBox="0 0 10 10"><path d="m5.58578644 6-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4.00000002c-.39052429.3905243-1.02368927.3905243-1.41421356 0s-.39052429-1.02368929 0-1.41421358z" fill-rule="evenodd" transform="matrix(0 1 -1 0 11 1)"/></symbol><symbol id="icon-chevron-right" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-circle-fill" viewBox="0 0 16 16"><path d="m8 14c-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6 6 2.6862915 6 6-2.6862915 6-6 6z" fill-rule="evenodd"/></symbol><symbol id="icon-circle" viewBox="0 0 16 16"><path d="m8 12c2.209139 0 4-1.790861 4-4s-1.790861-4-4-4-4 1.790861-4 4 1.790861 4 4 4zm0 2c-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6 6 2.6862915 6 6-2.6862915 6-6 6z" fill-rule="evenodd"/></symbol><symbol id="icon-citation" viewBox="0 0 18 18"><path d="m8.63593473 5.99995183c2.20913897 0 3.99999997 1.79084375 3.99999997 3.99996146 0 1.40730761-.7267788 2.64486871-1.8254829 3.35783281 1.6240224.6764218 2.8754442 2.0093871 3.4610603 3.6412466l-1.0763845.000006c-.5310008-1.2078237-1.5108121-2.1940153-2.7691712-2.7181346l-.79002167-.329052v-1.023992l.63016577-.4089232c.8482885-.5504661 1.3698342-1.4895187 1.3698342-2.51898361 0-1.65683828-1.3431457-2.99996146-2.99999997-2.99996146-1.65685425 0-3 1.34312318-3 2.99996146 0 1.02946491.52154569 1.96851751 1.36983419 2.51898361l.63016581.4089232v1.023992l-.79002171.329052c-1.25835905.5241193-2.23817037 1.5103109-2.76917113 2.7181346l-1.07638453-.000006c.58561612-1.6318595 1.8370379-2.9648248 3.46106024-3.6412466-1.09870405-.7129641-1.82548287-1.9505252-1.82548287-3.35783281 0-2.20911771 1.790861-3.99996146 4-3.99996146zm7.36897597-4.99995183c1.1018574 0 1.9950893.89353404 1.9950893 2.00274083v5.994422c0 1.10608317-.8926228 2.00274087-1.9950893 2.00274087l-3.0049107-.0009037v-1l3.0049107.00091329c.5490631 0 .9950893-.44783123.9950893-1.00275046v-5.994422c0-.55646537-.4450595-1.00275046-.9950893-1.00275046h-14.00982141c-.54906309 0-.99508929.44783123-.99508929 1.00275046v5.9971821c0 .66666024.33333333.99999036 1 .99999036l2-.00091329v1l-2 .0009037c-1 0-2-.99999041-2-1.99998077v-5.9971821c0-1.10608322.8926228-2.00274083 1.99508929-2.00274083zm-8.5049107 2.9999711c.27614237 0 .5.22385547.5.5 0 .2761349-.22385763.5-.5.5h-4c-.27614237 0-.5-.2238651-.5-.5 0-.27614453.22385763-.5.5-.5zm3 0c.2761424 0 .5.22385547.5.5 0 .2761349-.2238576.5-.5.5h-1c-.27614237 0-.5-.2238651-.5-.5 0-.27614453.22385763-.5.5-.5zm4 0c.2761424 0 .5.22385547.5.5 0 .2761349-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238651-.5-.5 0-.27614453.2238576-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-close" viewBox="0 0 16 16"><path d="m2.29679575 12.2772478c-.39658757.3965876-.39438847 1.0328109-.00062148 1.4265779.39651227.3965123 1.03246768.3934888 1.42657791-.0006214l4.27724782-4.27724787 4.2772478 4.27724787c.3965876.3965875 1.0328109.3943884 1.4265779.0006214.3965123-.3965122.3934888-1.0324677-.0006214-1.4265779l-4.27724787-4.2772478 4.27724787-4.27724782c.3965875-.39658757.3943884-1.03281091.0006214-1.42657791-.3965122-.39651226-1.0324677-.39348875-1.4265779.00062148l-4.2772478 4.27724782-4.27724782-4.27724782c-.39658757-.39658757-1.03281091-.39438847-1.42657791-.00062148-.39651226.39651227-.39348875 1.03246768.00062148 1.42657791l4.27724782 4.27724782z" fill-rule="evenodd"/></symbol><symbol id="icon-collections" viewBox="0 0 18 18"><path d="m15 4c1.1045695 0 2 .8954305 2 2v9c0 1.1045695-.8954305 2-2 2h-8c-1.1045695 0-2-.8954305-2-2h1c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h8c.5128358 0 .9355072-.3860402.9932723-.8833789l.0067277-.1166211v-9c0-.51283584-.3860402-.93550716-.8833789-.99327227l-.1166211-.00672773h-1v-1zm-4-3c1.1045695 0 2 .8954305 2 2v9c0 1.1045695-.8954305 2-2 2h-8c-1.1045695 0-2-.8954305-2-2v-9c0-1.1045695.8954305-2 2-2zm0 1h-8c-.51283584 0-.93550716.38604019-.99327227.88337887l-.00672773.11662113v9c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h8c.5128358 0 .9355072-.3860402.9932723-.8833789l.0067277-.1166211v-9c0-.51283584-.3860402-.93550716-.8833789-.99327227zm-1.5 7c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm0-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm0-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-compare" viewBox="0 0 18 18"><path d="m12 3c3.3137085 0 6 2.6862915 6 6s-2.6862915 6-6 6c-1.0928452 0-2.11744941-.2921742-2.99996061-.8026704-.88181407.5102749-1.90678042.8026704-3.00003939.8026704-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6c1.09325897 0 2.11822532.29239547 3.00096303.80325037.88158756-.51107621 1.90619177-.80325037 2.99903697-.80325037zm-6 1c-2.76142375 0-5 2.23857625-5 5 0 2.7614237 2.23857625 5 5 5 .74397391 0 1.44999672-.162488 2.08451611-.4539116-1.27652344-1.1000812-2.08451611-2.7287264-2.08451611-4.5460884s.80799267-3.44600721 2.08434391-4.5463015c-.63434719-.29121054-1.34037-.4536985-2.08434391-.4536985zm6 0c-.7439739 0-1.4499967.16248796-2.08451611.45391156 1.27652341 1.10008123 2.08451611 2.72872644 2.08451611 4.54608844s-.8079927 3.4460072-2.08434391 4.5463015c.63434721.2912105 1.34037001.4536985 2.08434391.4536985 2.7614237 0 5-2.2385763 5-5 0-2.76142375-2.2385763-5-5-5zm-1.4162763 7.0005324h-3.16744736c.15614659.3572676.35283837.6927622.58425872 1.0006671h1.99892988c.23142036-.3079049.42811216-.6433995.58425876-1.0006671zm.4162763-2.0005324h-4c0 .34288501.0345146.67770871.10025909 1.0011864h3.79948181c.0657445-.32347769.1002591-.65830139.1002591-1.0011864zm-.4158423-1.99953894h-3.16831543c-.13859957.31730812-.24521946.651783-.31578599.99935097h3.79988742c-.0705665-.34756797-.1771864-.68204285-.315786-.99935097zm-1.58295822-1.999926-.08316107.06199199c-.34550042.27081213-.65446126.58611297-.91825862.93727862h2.00044041c-.28418626-.37830727-.6207872-.71499149-.99902072-.99927061z" fill-rule="evenodd"/></symbol><symbol id="icon-download-file" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm0 1h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v14.00982141c0 .5500396.44491393.9950893.99406028.9950893h12.01187942c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717zm-1.5046024 4c.27614237 0 .5.21637201.5.49209595v6.14827645l1.7462789-1.77990922c.1933927-.1971171.5125222-.19455839.7001689-.0069117.1932998.19329992.1910058.50899492-.0027774.70277812l-2.59089271 2.5908927c-.19483374.1948337-.51177825.1937771-.70556873-.0000133l-2.59099079-2.5909908c-.19484111-.1948411-.19043735-.5151448-.00279066-.70279146.19329987-.19329987.50465175-.19237083.70018565.00692852l1.74638684 1.78001764v-6.14827695c0-.27177709.23193359-.49209595.5-.49209595z" fill-rule="evenodd"/></symbol><symbol id="icon-download" viewBox="0 0 16 16"><path d="m12.9975267 12.999368c.5467123 0 1.0024733.4478567 1.0024733 1.000316 0 .5563109-.4488226 1.000316-1.0024733 1.000316h-9.99505341c-.54671233 0-1.00247329-.4478567-1.00247329-1.000316 0-.5563109.44882258-1.000316 1.00247329-1.000316zm-4.9975267-11.999368c.55228475 0 1 .44497754 1 .99589209v6.80214418l2.4816273-2.48241149c.3928222-.39294628 1.0219732-.4006883 1.4030652-.01947579.3911302.39125371.3914806 1.02525073-.0001404 1.41699553l-4.17620792 4.17752758c-.39120769.3913313-1.02508144.3917306-1.41671995-.0000316l-4.17639421-4.17771394c-.39122513-.39134876-.39767006-1.01940351-.01657797-1.40061601.39113012-.39125372 1.02337105-.3931606 1.41951349.00310701l2.48183446 2.48261871v-6.80214418c0-.55001601.44386482-.99589209 1-.99589209z" fill-rule="evenodd"/></symbol><symbol id="icon-editors" viewBox="0 0 18 18"><path d="m8.72592184 2.54588137c-.48811714-.34391207-1.08343326-.54588137-1.72592184-.54588137-1.65685425 0-3 1.34314575-3 3 0 1.02947485.5215457 1.96853646 1.3698342 2.51900785l.6301658.40892721v1.02400182l-.79002171.32905522c-1.93395773.8055207-3.20997829 2.7024791-3.20997829 4.8180274v.9009805h-1v-.9009805c0-2.5479714 1.54557359-4.79153984 3.82548288-5.7411543-1.09870406-.71297106-1.82548288-1.95054399-1.82548288-3.3578652 0-2.209139 1.790861-4 4-4 1.09079823 0 2.07961816.43662103 2.80122451 1.1446278-.37707584.09278571-.7373238.22835063-1.07530267.40125357zm-2.72592184 14.45411863h-1v-.9009805c0-2.5479714 1.54557359-4.7915398 3.82548288-5.7411543-1.09870406-.71297106-1.82548288-1.95054399-1.82548288-3.3578652 0-2.209139 1.790861-4 4-4s4 1.790861 4 4c0 1.40732121-.7267788 2.64489414-1.8254829 3.3578652 2.2799093.9496145 3.8254829 3.1931829 3.8254829 5.7411543v.9009805h-1v-.9009805c0-2.1155483-1.2760206-4.0125067-3.2099783-4.8180274l-.7900217-.3290552v-1.02400184l.6301658-.40892721c.8482885-.55047139 1.3698342-1.489533 1.3698342-2.51900785 0-1.65685425-1.3431458-3-3-3-1.65685425 0-3 1.34314575-3 3 0 1.02947485.5215457 1.96853646 1.3698342 2.51900785l.6301658.40892721v1.02400184l-.79002171.3290552c-1.93395773.8055207-3.20997829 2.7024791-3.20997829 4.8180274z" fill-rule="evenodd"/></symbol><symbol id="icon-email" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587h-14.00982141c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm0 1h-14.00982141c-.54871518 0-.99508929.44887827-.99508929 1.00585866v9.98828264c0 .5572961.44630695 1.0058587.99508929 1.0058587h14.00982141c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-.0049107 2.55749512v1.44250488l-7 4-7-4v-1.44250488l7 4z" fill-rule="evenodd"/></symbol><symbol id="icon-error" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm2.8630343 4.71100931-2.8630343 2.86303426-2.86303426-2.86303426c-.39658757-.39658757-1.03281091-.39438847-1.4265779-.00062147-.39651227.39651226-.39348876 1.03246767.00062147 1.4265779l2.86303426 2.86303426-2.86303426 2.8630343c-.39658757.3965875-.39438847 1.0328109-.00062147 1.4265779.39651226.3965122 1.03246767.3934887 1.4265779-.0006215l2.86303426-2.8630343 2.8630343 2.8630343c.3965875.3965876 1.0328109.3943885 1.4265779.0006215.3965122-.3965123.3934887-1.0324677-.0006215-1.4265779l-2.8630343-2.8630343 2.8630343-2.86303426c.3965876-.39658757.3943885-1.03281091.0006215-1.4265779-.3965123-.39651227-1.0324677-.39348876-1.4265779.00062147z" fill-rule="evenodd"/></symbol><symbol id="icon-ethics" viewBox="0 0 18 18"><path d="m6.76384967 1.41421356.83301651-.8330165c.77492941-.77492941 2.03133823-.77492941 2.80626762 0l.8330165.8330165c.3750728.37507276.8837806.58578644 1.4142136.58578644h1.3496361c1.1045695 0 2 .8954305 2 2v1.34963611c0 .53043298.2107137 1.03914081.5857864 1.41421356l.8330165.83301651c.7749295.77492941.7749295 2.03133823 0 2.80626762l-.8330165.8330165c-.3750727.3750728-.5857864.8837806-.5857864 1.4142136v1.3496361c0 1.1045695-.8954305 2-2 2h-1.3496361c-.530433 0-1.0391408.2107137-1.4142136.5857864l-.8330165.8330165c-.77492939.7749295-2.03133821.7749295-2.80626762 0l-.83301651-.8330165c-.37507275-.3750727-.88378058-.5857864-1.41421356-.5857864h-1.34963611c-1.1045695 0-2-.8954305-2-2v-1.3496361c0-.530433-.21071368-1.0391408-.58578644-1.4142136l-.8330165-.8330165c-.77492941-.77492939-.77492941-2.03133821 0-2.80626762l.8330165-.83301651c.37507276-.37507275.58578644-.88378058.58578644-1.41421356v-1.34963611c0-1.1045695.8954305-2 2-2h1.34963611c.53043298 0 1.03914081-.21071368 1.41421356-.58578644zm-1.41421356 1.58578644h-1.34963611c-.55228475 0-1 .44771525-1 1v1.34963611c0 .79564947-.31607052 1.55871121-.87867966 2.12132034l-.8330165.83301651c-.38440512.38440512-.38440512 1.00764896 0 1.39205408l.8330165.83301646c.56260914.5626092.87867966 1.3256709.87867966 2.1213204v1.3496361c0 .5522847.44771525 1 1 1h1.34963611c.79564947 0 1.55871121.3160705 2.12132034.8786797l.83301651.8330165c.38440512.3844051 1.00764896.3844051 1.39205408 0l.83301646-.8330165c.5626092-.5626092 1.3256709-.8786797 2.1213204-.8786797h1.3496361c.5522847 0 1-.4477153 1-1v-1.3496361c0-.7956495.3160705-1.5587112.8786797-2.1213204l.8330165-.83301646c.3844051-.38440512.3844051-1.00764896 0-1.39205408l-.8330165-.83301651c-.5626092-.56260913-.8786797-1.32567087-.8786797-2.12132034v-1.34963611c0-.55228475-.4477153-1-1-1h-1.3496361c-.7956495 0-1.5587112-.31607052-2.1213204-.87867966l-.83301646-.8330165c-.38440512-.38440512-1.00764896-.38440512-1.39205408 0l-.83301651.8330165c-.56260913.56260914-1.32567087.87867966-2.12132034.87867966zm3.58698944 11.4960218c-.02081224.002155-.04199226.0030286-.06345763.002542-.98766446-.0223875-1.93408568-.3063547-2.75885125-.8155622-.23496767-.1450683-.30784554-.4531483-.16277726-.688116.14506827-.2349677.45314827-.3078455.68811595-.1627773.67447084.4164161 1.44758575.6483839 2.25617384.6667123.01759529.0003988.03495764.0017019.05204365.0038639.01713363-.0017748.03452416-.0026845.05212715-.0026845 2.4852814 0 4.5-2.0147186 4.5-4.5 0-1.04888973-.3593547-2.04134635-1.0074477-2.83787157-.1742817-.21419731-.1419238-.5291218.0722736-.70340353.2141973-.17428173.5291218-.14192375.7034035.07227357.7919032.97327203 1.2317706 2.18808682 1.2317706 3.46900153 0 3.0375661-2.4624339 5.5-5.5 5.5-.02146768 0-.04261937-.0013529-.06337445-.0039782zm1.57975095-10.78419583c.2654788.07599731.419084.35281842.3430867.61829728-.0759973.26547885-.3528185.419084-.6182973.3430867-.37560116-.10752146-.76586237-.16587951-1.15568824-.17249193-2.5587807-.00064534-4.58547766 2.00216524-4.58547766 4.49928198 0 .62691557.12797645 1.23496.37274865 1.7964426.11035133.2531347-.0053975.5477984-.25853224.6581497-.25313473.1103514-.54779841-.0053975-.65814974-.2585322-.29947131-.6869568-.45606667-1.43097603-.45606667-2.1960601 0-3.05211432 2.47714695-5.50006595 5.59399617-5.49921198.48576182.00815502.96289603.0795037 1.42238033.21103795zm-1.9766658 6.41091303 2.69835-2.94655317c.1788432-.21040373.4943901-.23598862.7047939-.05714545.2104037.17884318.2359886.49439014.0571454.70479387l-3.01637681 3.34277395c-.18039088.1999106-.48669547.2210637-.69285412.0478478l-1.93095347-1.62240047c-.21213845-.17678204-.24080048-.49206439-.06401844-.70420284.17678204-.21213844.49206439-.24080048.70420284-.06401844z" fill-rule="evenodd"/></symbol><symbol id="icon-expand"><path d="M7.498 11.918a.997.997 0 0 0-.003-1.411.995.995 0 0 0-1.412-.003l-4.102 4.102v-3.51A1 1 0 0 0 .98 10.09.992.992 0 0 0 0 11.092V17c0 .554.448 1.002 1.002 1.002h5.907c.554 0 1.002-.45 1.002-1.003 0-.539-.45-.978-1.006-.978h-3.51zm3.005-5.835a.997.997 0 0 0 .003 1.412.995.995 0 0 0 1.411.003l4.103-4.103v3.51a1 1 0 0 0 1.001 1.006A.992.992 0 0 0 18 6.91V1.002A1 1 0 0 0 17 0h-5.907a1.003 1.003 0 0 0-1.002 1.003c0 .539.45.978 1.006.978h3.51z" fill-rule="evenodd"/></symbol><symbol id="icon-explore" viewBox="0 0 18 18"><path d="m9 17c4.418278 0 8-3.581722 8-8s-3.581722-8-8-8-8 3.581722-8 8 3.581722 8 8 8zm0 1c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9zm0-2.5c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5c2.969509 0 5.400504-2.3575119 5.497023-5.31714844.0090007-.27599565.2400359-.49243782.5160315-.48343711.2759957.0090007.4924378.2400359.4834371.51603155-.114093 3.4985237-2.9869632 6.284554-6.4964916 6.284554zm-.29090657-12.99359748c.27587424-.01216621.50937715.20161139.52154336.47748563.01216621.27587423-.20161139.50937715-.47748563.52154336-2.93195733.12930094-5.25315116 2.54886451-5.25315116 5.49456849 0 .27614237-.22385763.5-.5.5s-.5-.22385763-.5-.5c0-3.48142406 2.74307146-6.34074398 6.20909343-6.49359748zm1.13784138 8.04763908-1.2004882-1.20048821c-.19526215-.19526215-.19526215-.51184463 0-.70710678s.51184463-.19526215.70710678 0l1.20048821 1.2004882 1.6006509-4.00162734-4.50670359 1.80268144-1.80268144 4.50670359zm4.10281269-6.50378907-2.6692597 6.67314927c-.1016411.2541026-.3029834.4554449-.557086.557086l-6.67314927 2.6692597 2.66925969-6.67314926c.10164107-.25410266.30298336-.45544495.55708602-.55708602z" fill-rule="evenodd"/></symbol><symbol id="icon-filter" viewBox="0 0 16 16"><path d="m14.9738641 0c.5667192 0 1.0261359.4477136 1.0261359 1 0 .24221858-.0902161.47620768-.2538899.65849851l-5.6938314 6.34147206v5.49997973c0 .3147562-.1520673.6111434-.4104543.7999971l-2.05227171 1.4999945c-.45337535.3313696-1.09655869.2418269-1.4365902-.1999993-.13321514-.1730955-.20522717-.3836284-.20522717-.5999978v-6.99997423l-5.69383133-6.34147206c-.3731872-.41563511-.32996891-1.0473954.09653074-1.41107611.18705584-.15950448.42716133-.2474224.67571519-.2474224zm-5.9218641 8.5h-2.105v6.491l.01238459.0070843.02053271.0015705.01955278-.0070558 2.0532976-1.4990996zm-8.02585008-7.5-.01564945.00240169 5.83249953 6.49759831h2.313l5.836-6.499z"/></symbol><symbol id="icon-home" viewBox="0 0 18 18"><path d="m9 5-6 6v5h4v-4h4v4h4v-5zm7 6.5857864v4.4142136c0 .5522847-.4477153 1-1 1h-5v-4h-2v4h-5c-.55228475 0-1-.4477153-1-1v-4.4142136c-.25592232 0-.51184464-.097631-.70710678-.2928932l-.58578644-.5857864c-.39052429-.3905243-.39052429-1.02368929 0-1.41421358l8.29289322-8.29289322 8.2928932 8.29289322c.3905243.39052429.3905243 1.02368928 0 1.41421358l-.5857864.5857864c-.1952622.1952622-.4511845.2928932-.7071068.2928932zm-7-9.17157284-7.58578644 7.58578644.58578644.5857864 7-6.99999996 7 6.99999996.5857864-.5857864z" fill-rule="evenodd"/></symbol><symbol id="icon-image" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm-3.49645283 10.1752453-3.89407257 6.7495552c.11705545.048464.24538859.0751995.37998328.0751995h10.60290092l-2.4329715-4.2154691-1.57494129 2.7288098zm8.49779013 6.8247547c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v13.98991071l4.50814957-7.81026689 3.08089884 5.33809539 1.57494129-2.7288097 3.5875735 6.2159812zm-3.0059397-11c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm0 1c-.5522847 0-1 .44771525-1 1s.4477153 1 1 1 1-.44771525 1-1-.4477153-1-1-1z" fill-rule="evenodd"/></symbol><symbol id="icon-info" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm0 7h-1.5l-.11662113.00672773c-.49733868.05776511-.88337887.48043643-.88337887.99327227 0 .47338693.32893365.86994729.77070917.97358929l.1126697.01968298.11662113.00672773h.5v3h-.5l-.11662113.0067277c-.42082504.0488782-.76196299.3590206-.85696816.7639815l-.01968298.1126697-.00672773.1166211.00672773.1166211c.04887817.4208251.35902055.761963.76398144.8569682l.1126697.019683.11662113.0067277h3l.1166211-.0067277c.4973387-.0577651.8833789-.4804365.8833789-.9932723 0-.4733869-.3289337-.8699473-.7707092-.9735893l-.1126697-.019683-.1166211-.0067277h-.5v-4l-.00672773-.11662113c-.04887817-.42082504-.35902055-.76196299-.76398144-.85696816l-.1126697-.01968298zm0-3.25c-.69035594 0-1.25.55964406-1.25 1.25s.55964406 1.25 1.25 1.25 1.25-.55964406 1.25-1.25-.55964406-1.25-1.25-1.25z" fill-rule="evenodd"/></symbol><symbol id="icon-institution" viewBox="0 0 18 18"><path d="m7 16.9998189v-2.0003623h4v2.0003623h2v-3.0005434h-8v3.0005434zm-3-10.00181122h-1.52632364c-.27614237 0-.5-.22389817-.5-.50009056 0-.13995446.05863589-.27350497.16166338-.36820841l1.23156713-1.13206327h-2.36690687v12.00217346h3v-2.0003623h-3v-1.0001811h3v-1.0001811h1v-4.00072448h-1zm10 0v2.00036224h-1v4.00072448h1v1.0001811h3v1.0001811h-3v2.0003623h3v-12.00217346h-2.3695309l1.2315671 1.13206327c.2033191.186892.2166633.50325042.0298051.70660631-.0946863.10304615-.2282126.16169266-.3681417.16169266zm3-3.00054336c.5522847 0 1 .44779634 1 1.00018112v13.00235456h-18v-13.00235456c0-.55238478.44771525-1.00018112 1-1.00018112h3.45499992l4.20535144-3.86558216c.19129876-.17584288.48537447-.17584288.67667324 0l4.2053514 3.86558216zm-4 3.00054336h-8v1.00018112h8zm-2 6.00108672h1v-4.00072448h-1zm-1 0v-4.00072448h-2v4.00072448zm-3 0v-4.00072448h-1v4.00072448zm8-4.00072448c.5522847 0 1 .44779634 1 1.00018112v2.00036226h-2v-2.00036226c0-.55238478.4477153-1.00018112 1-1.00018112zm-12 0c.55228475 0 1 .44779634 1 1.00018112v2.00036226h-2v-2.00036226c0-.55238478.44771525-1.00018112 1-1.00018112zm5.99868798-7.81907007-5.24205601 4.81852671h10.48411203zm.00131202 3.81834559c-.55228475 0-1-.44779634-1-1.00018112s.44771525-1.00018112 1-1.00018112 1 .44779634 1 1.00018112-.44771525 1.00018112-1 1.00018112zm-1 11.00199236v1.0001811h2v-1.0001811z" fill-rule="evenodd"/></symbol><symbol id="icon-location" viewBox="0 0 18 18"><path d="m9.39521328 16.2688008c.79596342-.7770119 1.59208152-1.6299956 2.33285652-2.5295081 1.4020032-1.7024324 2.4323601-3.3624519 2.9354918-4.871847.2228715-.66861448.3364384-1.29323246.3364384-1.8674457 0-3.3137085-2.6862915-6-6-6-3.36356866 0-6 2.60156856-6 6 0 .57421324.11356691 1.19883122.3364384 1.8674457.50313169 1.5093951 1.53348863 3.1694146 2.93549184 4.871847.74077492.8995125 1.53689309 1.7524962 2.33285648 2.5295081.13694479.1336842.26895677.2602648.39521328.3793207.12625651-.1190559.25826849-.2456365.39521328-.3793207zm-.39521328 1.7311992s-7-6-7-11c0-4 3.13400675-7 7-7 3.8659932 0 7 3.13400675 7 7 0 5-7 11-7 11zm0-8c-1.65685425 0-3-1.34314575-3-3s1.34314575-3 3-3c1.6568542 0 3 1.34314575 3 3s-1.3431458 3-3 3zm0-1c1.1045695 0 2-.8954305 2-2s-.8954305-2-2-2-2 .8954305-2 2 .8954305 2 2 2z" fill-rule="evenodd"/></symbol><symbol id="icon-minus" viewBox="0 0 16 16"><path d="m2.00087166 7h11.99825664c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-11.99825664c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-newsletter" viewBox="0 0 18 18"><path d="m9 11.8482489 2-1.1428571v-1.7053918h-4v1.7053918zm-3-1.7142857v-2.1339632h6v2.1339632l3-1.71428574v-6.41967746h-12v6.41967746zm10-5.3839632 1.5299989.95624934c.2923814.18273835.4700011.50320827.4700011.8479983v8.44575236c0 1.1045695-.8954305 2-2 2h-14c-1.1045695 0-2-.8954305-2-2v-8.44575236c0-.34479003.1776197-.66525995.47000106-.8479983l1.52999894-.95624934v-2.75c0-.55228475.44771525-1 1-1h12c.5522847 0 1 .44771525 1 1zm0 1.17924764v3.07075236l-7 4-7-4v-3.07075236l-1 .625v8.44575236c0 .5522847.44771525 1 1 1h14c.5522847 0 1-.4477153 1-1v-8.44575236zm-10-1.92924764h6v1h-6zm-1 2h8v1h-8z" fill-rule="evenodd"/></symbol><symbol id="icon-orcid" viewBox="0 0 18 18"><path d="m9 1c4.418278 0 8 3.581722 8 8s-3.581722 8-8 8-8-3.581722-8-8 3.581722-8 8-8zm-2.90107518 5.2732337h-1.41865256v7.1712107h1.41865256zm4.55867178.02508949h-2.99247027v7.14612121h2.91062487c.7673039 0 1.4476365-.1483432 2.0410182-.445034s1.0511995-.7152915 1.3734671-1.2558144c.3222677-.540523.4833991-1.1603247.4833991-1.85942385 0-.68545815-.1602789-1.30270225-.4808414-1.85175082-.3205625-.54904856-.7707074-.97532211-1.3504481-1.27883343-.5797408-.30351132-1.2413173-.45526471-1.9847495-.45526471zm-.1892674 1.07933542c.7877654 0 1.4143875.22336734 1.8798852.67010873.4654977.44674138.698243 1.05546001.698243 1.82617415 0 .74343221-.2310402 1.34447791-.6931277 1.80315511-.4620874.4586773-1.0750688.6880124-1.8389625.6880124h-1.46810075v-4.98745039zm-5.08652545-3.71099194c-.21825533 0-.410525.08444276-.57681478.25333081-.16628977.16888806-.24943341.36245684-.24943341.58071218 0 .22345188.08314364.41961891.24943341.58850696.16628978.16888806.35855945.25333082.57681478.25333082.233845 0 .43390938-.08314364.60019916-.24943342.16628978-.16628977.24943342-.36375592.24943342-.59240436 0-.233845-.08314364-.43131115-.24943342-.59240437s-.36635416-.24163862-.60019916-.24163862z" fill-rule="evenodd"/></symbol><symbol id="icon-plus" viewBox="0 0 16 16"><path d="m2.00087166 7h4.99912834v-4.99912834c0-.55276616.44386482-1.00087166 1-1.00087166.55228475 0 1 .44463086 1 1.00087166v4.99912834h4.9991283c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-4.9991283v4.9991283c0 .5527662-.44386482 1.0008717-1 1.0008717-.55228475 0-1-.4446309-1-1.0008717v-4.9991283h-4.99912834c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-print" viewBox="0 0 18 18"><path d="m16.0049107 5h-14.00982141c-.54941618 0-.99508929.4467783-.99508929.99961498v6.00077002c0 .5570958.44271433.999615.99508929.999615h1.00491071v-3h12v3h1.0049107c.5494162 0 .9950893-.4467783.9950893-.999615v-6.00077002c0-.55709576-.4427143-.99961498-.9950893-.99961498zm-2.0049107-1v-2.00208688c0-.54777062-.4519464-.99791312-1.0085302-.99791312h-7.9829396c-.55661731 0-1.0085302.44910695-1.0085302.99791312v2.00208688zm1 10v2.0018986c0 1.103521-.9019504 1.9981014-2.0085302 1.9981014h-7.9829396c-1.1092806 0-2.0085302-.8867064-2.0085302-1.9981014v-2.0018986h-1.00491071c-1.10185739 0-1.99508929-.8874333-1.99508929-1.999615v-6.00077002c0-1.10435686.8926228-1.99961498 1.99508929-1.99961498h1.00491071v-2.00208688c0-1.10341695.90195036-1.99791312 2.0085302-1.99791312h7.9829396c1.1092806 0 2.0085302.89826062 2.0085302 1.99791312v2.00208688h1.0049107c1.1018574 0 1.9950893.88743329 1.9950893 1.99961498v6.00077002c0 1.1043569-.8926228 1.999615-1.9950893 1.999615zm-1-3h-10v5.0018986c0 .5546075.44702548.9981014 1.0085302.9981014h7.9829396c.5565964 0 1.0085302-.4491701 1.0085302-.9981014zm-9 1h8v1h-8zm0 2h5v1h-5zm9-5c-.5522847 0-1-.44771525-1-1s.4477153-1 1-1 1 .44771525 1 1-.4477153 1-1 1z" fill-rule="evenodd"/></symbol><symbol id="icon-search" viewBox="0 0 22 22"><path d="M21.697 20.261a1.028 1.028 0 01.01 1.448 1.034 1.034 0 01-1.448-.01l-4.267-4.267A9.812 9.811 0 010 9.812a9.812 9.811 0 1117.43 6.182zM9.812 18.222A8.41 8.41 0 109.81 1.403a8.41 8.41 0 000 16.82z" fill-rule="evenodd"/></symbol><symbol id="icon-social-facebook" viewBox="0 0 24 24"><path d="m6.00368507 20c-1.10660471 0-2.00368507-.8945138-2.00368507-1.9940603v-12.01187942c0-1.10128908.89451376-1.99406028 1.99406028-1.99406028h12.01187942c1.1012891 0 1.9940603.89451376 1.9940603 1.99406028v12.01187942c0 1.1012891-.88679 1.9940603-2.0032184 1.9940603h-2.9570132v-6.1960818h2.0797387l.3114113-2.414723h-2.39115v-1.54164807c0-.69911803.1941355-1.1755439 1.1966615-1.1755439l1.2786739-.00055875v-2.15974763l-.2339477-.02492088c-.3441234-.03134957-.9500153-.07025255-1.6293054-.07025255-1.8435726 0-3.1057323 1.12531866-3.1057323 3.19187953v1.78079225h-2.0850778v2.414723h2.0850778v6.1960818z" fill-rule="evenodd"/></symbol><symbol id="icon-social-twitter" viewBox="0 0 24 24"><path d="m18.8767135 6.87445248c.7638174-.46908424 1.351611-1.21167363 1.6250764-2.09636345-.7135248.43394112-1.50406.74870123-2.3464594.91677702-.6695189-.73342162-1.6297913-1.19486605-2.6922204-1.19486605-2.0399895 0-3.6933555 1.69603749-3.6933555 3.78628909 0 .29642457.0314329.58673729.0942985.8617704-3.06469922-.15890802-5.78835241-1.66547825-7.60988389-3.9574208-.3174714.56076194-.49978171 1.21167363-.49978171 1.90536824 0 1.31404706.65223085 2.47224203 1.64236444 3.15218497-.60350999-.0198635-1.17401554-.1925232-1.67222562-.47366811v.04583885c0 1.83355406 1.27302891 3.36609966 2.96411421 3.71294696-.31118484.0886217-.63651445.1329326-.97441718.1329326-.2357461 0-.47149219-.0229194-.69466516-.0672303.47149219 1.5065703 1.83253297 2.6036468 3.44975116 2.632678-1.2651707 1.0160946-2.85724264 1.6196394-4.5891906 1.6196394-.29861172 0-.59093688-.0152796-.88011875-.0504227 1.63450624 1.0726291 3.57548241 1.6990934 5.66104951 1.6990934 6.79263079 0 10.50641749-5.7711113 10.50641749-10.7751859l-.0094298-.48894775c.7229547-.53478659 1.3516109-1.20250585 1.8419628-1.96190282-.6632323.30100846-1.3751855.50422736-2.1217148.59590507z" fill-rule="evenodd"/></symbol><symbol id="icon-social-youtube" viewBox="0 0 24 24"><path d="m10.1415 14.3973208-.0005625-5.19318431 4.863375 2.60554491zm9.963-7.92753362c-.6845625-.73643756-1.4518125-.73990314-1.803375-.7826454-2.518875-.18714178-6.2971875-.18714178-6.2971875-.18714178-.007875 0-3.7861875 0-6.3050625.18714178-.352125.04274226-1.1188125.04620784-1.8039375.7826454-.5394375.56084773-.7149375 1.8344515-.7149375 1.8344515s-.18 1.49597903-.18 2.99138042v1.4024082c0 1.495979.18 2.9913804.18 2.9913804s.1755 1.2736038.7149375 1.8344515c.685125.7364376 1.5845625.7133337 1.9850625.7901542 1.44.1420891 6.12.1859866 6.12.1859866s3.78225-.005776 6.301125-.1929178c.3515625-.0433198 1.1188125-.0467854 1.803375-.783223.5394375-.5608477.7155-1.8344515.7155-1.8344515s.18-1.4954014.18-2.9913804v-1.4024082c0-1.49540139-.18-2.99138042-.18-2.99138042s-.1760625-1.27360377-.7155-1.8344515z" fill-rule="evenodd"/></symbol><symbol id="icon-subject-medicine" viewBox="0 0 18 18"><path d="m12.5 8h-6.5c-1.65685425 0-3 1.34314575-3 3v1c0 1.6568542 1.34314575 3 3 3h1v-2h-.5c-.82842712 0-1.5-.6715729-1.5-1.5s.67157288-1.5 1.5-1.5h1.5 2 1 2c1.6568542 0 3-1.34314575 3-3v-1c0-1.65685425-1.3431458-3-3-3h-2v2h1.5c.8284271 0 1.5.67157288 1.5 1.5s-.6715729 1.5-1.5 1.5zm-5.5-1v-1h-3.5c-1.38071187 0-2.5-1.11928813-2.5-2.5s1.11928813-2.5 2.5-2.5h1.02786405c.46573528 0 .92507448.10843528 1.34164078.31671843l1.13382424.56691212c.06026365-1.05041141.93116291-1.88363055 1.99667093-1.88363055 1.1045695 0 2 .8954305 2 2h2c2.209139 0 4 1.790861 4 4v1c0 2.209139-1.790861 4-4 4h-2v1h2c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2h-2c0 1.1045695-.8954305 2-2 2s-2-.8954305-2-2h-1c-2.209139 0-4-1.790861-4-4v-1c0-2.209139 1.790861-4 4-4zm0-2v-2.05652691c-.14564246-.03538148-.28733393-.08714006-.42229124-.15461871l-1.15541752-.57770876c-.27771087-.13885544-.583937-.21114562-.89442719-.21114562h-1.02786405c-.82842712 0-1.5.67157288-1.5 1.5s.67157288 1.5 1.5 1.5zm4 1v1h1.5c.2761424 0 .5-.22385763.5-.5s-.2238576-.5-.5-.5zm-1 1v-5c0-.55228475-.44771525-1-1-1s-1 .44771525-1 1v5zm-2 4v5c0 .5522847.44771525 1 1 1s1-.4477153 1-1v-5zm3 2v2h2c.5522847 0 1-.4477153 1-1s-.4477153-1-1-1zm-4-1v-1h-.5c-.27614237 0-.5.2238576-.5.5s.22385763.5.5.5zm-3.5-9h1c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-success" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm3.4860198 4.98163161-4.71802968 5.50657859-2.62834168-2.02300024c-.42862421-.36730544-1.06564993-.30775346-1.42283677.13301307-.35718685.44076653-.29927542 1.0958383.12934879 1.46314377l3.40735508 2.7323063c.42215801.3385221 1.03700951.2798252 1.38749189-.1324571l5.38450527-6.33394549c.3613513-.43716226.3096573-1.09278382-.115462-1.46437175-.4251192-.37158792-1.0626796-.31842941-1.4240309.11873285z" fill-rule="evenodd"/></symbol><symbol id="icon-table" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587l-4.0059107-.001.001.001h-1l-.001-.001h-5l.001.001h-1l-.001-.001-3.00391071.001c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm-11.0059107 5h-3.999v6.9941413c0 .5572961.44630695 1.0058587.99508929 1.0058587h3.00391071zm6 0h-5v8h5zm5.0059107-4h-4.0059107v3h5.001v1h-5.001v7.999l4.0059107.001c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-12.5049107 9c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.2238576.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238576-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm-6-2c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.2238576.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238576-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm-6-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.22385763-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm1.499-5h-5v3h5zm-6 0h-3.00391071c-.54871518 0-.99508929.44887827-.99508929 1.00585866v1.99414134h3.999z" fill-rule="evenodd"/></symbol><symbol id="icon-tick-circle" viewBox="0 0 24 24"><path d="m12 2c5.5228475 0 10 4.4771525 10 10s-4.4771525 10-10 10-10-4.4771525-10-10 4.4771525-10 10-10zm0 1c-4.97056275 0-9 4.02943725-9 9 0 4.9705627 4.02943725 9 9 9 4.9705627 0 9-4.0294373 9-9 0-4.97056275-4.0294373-9-9-9zm4.2199868 5.36606669c.3613514-.43716226.9989118-.49032077 1.424031-.11873285s.4768133 1.02720949.115462 1.46437175l-6.093335 6.94397871c-.3622945.4128716-.9897871.4562317-1.4054264.0971157l-3.89719065-3.3672071c-.42862421-.3673054-.48653564-1.0223772-.1293488-1.4631437s.99421256-.5003185 1.42283677-.1330131l3.11097438 2.6987741z" fill-rule="evenodd"/></symbol><symbol id="icon-tick" viewBox="0 0 16 16"><path d="m6.76799012 9.21106946-3.1109744-2.58349728c-.42862421-.35161617-1.06564993-.29460792-1.42283677.12733148s-.29927541 1.04903009.1293488 1.40064626l3.91576307 3.23873978c.41034319.3393961 1.01467563.2976897 1.37450571-.0948578l6.10568327-6.660841c.3613513-.41848908.3096572-1.04610608-.115462-1.4018218-.4251192-.35571573-1.0626796-.30482786-1.424031.11366122z" fill-rule="evenodd"/></symbol><symbol id="icon-update" viewBox="0 0 18 18"><path d="m1 13v1c0 .5522847.44771525 1 1 1h14c.5522847 0 1-.4477153 1-1v-1h-1v-10h-14v10zm16-1h1v2c0 1.1045695-.8954305 2-2 2h-14c-1.1045695 0-2-.8954305-2-2v-2h1v-9c0-.55228475.44771525-1 1-1h14c.5522847 0 1 .44771525 1 1zm-1 0v1h-4.5857864l-1 1h-2.82842716l-1-1h-4.58578644v-1h5l1 1h2l1-1zm-13-8h12v7h-12zm1 1v5h10v-5zm1 1h4v1h-4zm0 2h4v1h-4z" fill-rule="evenodd"/></symbol><symbol id="icon-upload" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm0 1h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v14.00982141c0 .5500396.44491393.9950893.99406028.9950893h12.01187942c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717zm-1.85576936 4.14572769c.19483374-.19483375.51177826-.19377714.70556874.00001334l2.59099082 2.59099079c.1948411.19484112.1904373.51514474.0027906.70279143-.1932998.19329987-.5046517.19237083-.7001856-.00692852l-1.74638687-1.7800176v6.14827687c0 .2717771-.23193359.492096-.5.492096-.27614237 0-.5-.216372-.5-.492096v-6.14827641l-1.74627892 1.77990922c-.1933927.1971171-.51252214.19455839-.70016883.0069117-.19329987-.19329988-.19100584-.50899493.00277731-.70277808z" fill-rule="evenodd"/></symbol><symbol id="icon-video" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587h-14.00982141c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm0 1h-14.00982141c-.54871518 0-.99508929.44887827-.99508929 1.00585866v9.98828264c0 .5572961.44630695 1.0058587.99508929 1.0058587h14.00982141c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-8.30912922 2.24944486 4.60460462 2.73982242c.9365543.55726659.9290753 1.46522435 0 2.01804082l-4.60460462 2.7398224c-.93655425.5572666-1.69578148.1645632-1.69578148-.8937585v-5.71016863c0-1.05087579.76670616-1.446575 1.69578148-.89375851zm-.67492769.96085624v5.5750128c0 .2995102-.10753745.2442517.16578928.0847713l4.58452283-2.67497259c.3050619-.17799716.3051624-.21655446 0-.39461026l-4.58452283-2.67497264c-.26630747-.15538481-.16578928-.20699944-.16578928.08477139z" fill-rule="evenodd"/></symbol><symbol id="icon-warning" viewBox="0 0 18 18"><path d="m9 11.75c.69035594 0 1.25.5596441 1.25 1.25s-.55964406 1.25-1.25 1.25-1.25-.5596441-1.25-1.25.55964406-1.25 1.25-1.25zm.41320045-7.75c.55228475 0 1.00000005.44771525 1.00000005 1l-.0034543.08304548-.3333333 4c-.043191.51829212-.47645714.91695452-.99654578.91695452h-.15973424c-.52008864 0-.95335475-.3986624-.99654576-.91695452l-.33333333-4c-.04586475-.55037702.36312325-1.03372649.91350028-1.07959124l.04148683-.00259031zm-.41320045 14c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-checklist-banner" viewBox="0 0 56.69 56.69"><path style="fill:none" d="M0 0h56.69v56.69H0z"/><clipPath id="b"><use xlink:href="#a" style="overflow:visible"/></clipPath><path d="M21.14 34.46c0-6.77 5.48-12.26 12.24-12.26s12.24 5.49 12.24 12.26-5.48 12.26-12.24 12.26c-6.76-.01-12.24-5.49-12.24-12.26zm19.33 10.66 10.23 9.22s1.21 1.09 2.3-.12l2.09-2.32s1.09-1.21-.12-2.3l-10.23-9.22m-19.29-5.92c0-4.38 3.55-7.94 7.93-7.94s7.93 3.55 7.93 7.94c0 4.38-3.55 7.94-7.93 7.94-4.38-.01-7.93-3.56-7.93-7.94zm17.58 12.99 4.14-4.81" style="clip-path:url(#b);fill:none;stroke:#01324b;stroke-width:2;stroke-linecap:round"/><path d="M8.26 9.75H28.6M8.26 15.98H28.6m-20.34 6.2h12.5m14.42-5.2V4.86s0-2.93-2.93-2.93H4.13s-2.93 0-2.93 2.93v37.57s0 2.93 2.93 2.93h15.01M8.26 9.75H28.6M8.26 15.98H28.6m-20.34 6.2h12.5" style="clip-path:url(#b);fill:none;stroke:#01324b;stroke-width:2;stroke-linecap:round;stroke-linejoin:round"/></symbol><symbol id="icon-chevron-down" viewBox="0 0 16 16"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" fill-rule="evenodd" transform="matrix(0 1 -1 0 11 1)"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 16 16"><path d="m2.00087166 7h4.99912834v-4.99912834c0-.55276616.44386482-1.00087166 1-1.00087166.55228475 0 1 .44463086 1 1.00087166v4.99912834h4.9991283c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-4.9991283v4.9991283c0 .5527662-.44386482 1.0008717-1 1.0008717-.55228475 0-1-.4446309-1-1.0008717v-4.9991283h-4.99912834c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 16 16"><path d="m2.00087166 7h11.99825664c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-11.99825664c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 16 16"><path d="m2.29679575 12.2772478c-.39658757.3965876-.39438847 1.0328109-.00062148 1.4265779.39651227.3965123 1.03246768.3934888 1.42657791-.0006214l4.27724782-4.27724787 4.2772478 4.27724787c.3965876.3965875 1.0328109.3943884 1.4265779.0006214.3965123-.3965122.3934888-1.0324677-.0006214-1.4265779l-4.27724787-4.2772478 4.27724787-4.27724782c.3965875-.39658757.3943884-1.03281091.0006214-1.42657791-.3965122-.39651226-1.0324677-.39348875-1.4265779.00062148l-4.2772478 4.27724782-4.27724782-4.27724782c-.39658757-.39658757-1.03281091-.39438847-1.42657791-.00062148-.39651226.39651227-.39348875 1.03246768.00062148 1.42657791l4.27724782 4.27724782z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 16 16"><path d="m12.9975267 12.999368c.5467123 0 1.0024733.4478567 1.0024733 1.000316 0 .5563109-.4488226 1.000316-1.0024733 1.000316h-9.99505341c-.54671233 0-1.00247329-.4478567-1.00247329-1.000316 0-.5563109.44882258-1.000316 1.00247329-1.000316zm-4.9975267-11.999368c.55228475 0 1 .44497754 1 .99589209v6.80214418l2.4816273-2.48241149c.3928222-.39294628 1.0219732-.4006883 1.4030652-.01947579.3911302.39125371.3914806 1.02525073-.0001404 1.41699553l-4.17620792 4.17752758c-.39120769.3913313-1.02508144.3917306-1.41671995-.0000316l-4.17639421-4.17771394c-.39122513-.39134876-.39767006-1.01940351-.01657797-1.40061601.39113012-.39125372 1.02337105-.3931606 1.41951349.00310701l2.48183446 2.48261871v-6.80214418c0-.55001601.44386482-.99589209 1-.99589209z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm0 7h-1.5l-.11662113.00672773c-.49733868.05776511-.88337887.48043643-.88337887.99327227 0 .47338693.32893365.86994729.77070917.97358929l.1126697.01968298.11662113.00672773h.5v3h-.5l-.11662113.0067277c-.42082504.0488782-.76196299.3590206-.85696816.7639815l-.01968298.1126697-.00672773.1166211.00672773.1166211c.04887817.4208251.35902055.761963.76398144.8569682l.1126697.019683.11662113.0067277h3l.1166211-.0067277c.4973387-.0577651.8833789-.4804365.8833789-.9932723 0-.4733869-.3289337-.8699473-.7707092-.9735893l-.1126697-.019683-.1166211-.0067277h-.5v-4l-.00672773-.11662113c-.04887817-.42082504-.35902055-.76196299-.76398144-.85696816l-.1126697-.01968298zm0-3.25c-.69035594 0-1.25.55964406-1.25 1.25s.55964406 1.25 1.25 1.25 1.25-.55964406 1.25-1.25-.55964406-1.25-1.25-1.25z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="m19.462 0c1.413 0 2.538 1.184 2.538 2.619v12.762c0 1.435-1.125 2.619-2.538 2.619h-16.924c-1.413 0-2.538-1.184-2.538-2.619v-12.762c0-1.435 1.125-2.619 2.538-2.619zm.538 5.158-7.378 6.258a2.549 2.549 0 0 1 -3.253-.008l-7.369-6.248v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619zm-.538-3.158h-16.924c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 18 18"><path d="m9 11.75c.69035594 0 1.25.5596441 1.25 1.25s-.55964406 1.25-1.25 1.25-1.25-.5596441-1.25-1.25.55964406-1.25 1.25-1.25zm.41320045-7.75c.55228475 0 1.00000005.44771525 1.00000005 1l-.0034543.08304548-.3333333 4c-.043191.51829212-.47645714.91695452-.99654578.91695452h-.15973424c-.52008864 0-.95335475-.3986624-.99654576-.91695452l-.33333333-4c-.04586475-.55037702.36312325-1.03372649.91350028-1.07959124l.04148683-.00259031zm-.41320045 14c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-expand-image" viewBox="0 0 18 18"><path d="m7.49754099 11.9178212c.38955542-.3895554.38761957-1.0207846-.00290473-1.4113089-.39324695-.3932469-1.02238878-.3918247-1.41130883-.0029047l-4.10273549 4.1027355.00055454-3.5103985c.00008852-.5603185-.44832171-1.006032-1.00155062-1.0059446-.53903074.0000852-.97857527.4487442-.97866268 1.0021075l-.00093318 5.9072465c-.00008751.553948.44841131 1.001882 1.00174994 1.0017946l5.906983-.0009331c.5539233-.0000875 1.00197907-.4486389 1.00206646-1.0018679.00008515-.5390307-.45026621-.9784332-1.00588841-.9783454l-3.51010549.0005545zm3.00571741-5.83449376c-.3895554.38955541-.3876196 1.02078454.0029047 1.41130883.393247.39324696 1.0223888.39182478 1.4113089.00290473l4.1027355-4.10273549-.0005546 3.5103985c-.0000885.56031852.4483217 1.006032 1.0015506 1.00594461.5390308-.00008516.9785753-.44874418.9786627-1.00210749l.0009332-5.9072465c.0000875-.553948-.4484113-1.00188204-1.0017499-1.00179463l-5.906983.00093313c-.5539233.00008751-1.0019791.44863892-1.0020665 1.00186784-.0000852.53903074.4502662.97843325 1.0058884.97834547l3.5101055-.00055449z" fill-rule="evenodd"/></symbol><symbol id="icon-github" viewBox="0 0 100 100"><path fill-rule="evenodd" clip-rule="evenodd" d="M48.854 0C21.839 0 0 22 0 49.217c0 21.756 13.993 40.172 33.405 46.69 2.427.49 3.316-1.059 3.316-2.362 0-1.141-.08-5.052-.08-9.127-13.59 2.934-16.42-5.867-16.42-5.867-2.184-5.704-5.42-7.17-5.42-7.17-4.448-3.015.324-3.015.324-3.015 4.934.326 7.523 5.052 7.523 5.052 4.367 7.496 11.404 5.378 14.235 4.074.404-3.178 1.699-5.378 3.074-6.6-10.839-1.141-22.243-5.378-22.243-24.283 0-5.378 1.94-9.778 5.014-13.2-.485-1.222-2.184-6.275.486-13.038 0 0 4.125-1.304 13.426 5.052a46.97 46.97 0 0 1 12.214-1.63c4.125 0 8.33.571 12.213 1.63 9.302-6.356 13.427-5.052 13.427-5.052 2.67 6.763.97 11.816.485 13.038 3.155 3.422 5.015 7.822 5.015 13.2 0 18.905-11.404 23.06-22.324 24.283 1.78 1.548 3.316 4.481 3.316 9.126 0 6.6-.08 11.897-.08 13.526 0 1.304.89 2.853 3.316 2.364 19.412-6.52 33.405-24.935 33.405-46.691C97.707 22 75.788 0 48.854 0z"/></symbol><symbol id="icon-springer-arrow-left"><path d="M15 7a1 1 0 000-2H3.385l2.482-2.482a.994.994 0 00.02-1.403 1.001 1.001 0 00-1.417 0L.294 5.292a1.001 1.001 0 000 1.416l4.176 4.177a.991.991 0 001.4.016 1 1 0 00-.003-1.42L3.385 7H15z"/></symbol><symbol id="icon-springer-arrow-right"><path d="M1 7a1 1 0 010-2h11.615l-2.482-2.482a.994.994 0 01-.02-1.403 1.001 1.001 0 011.417 0l4.176 4.177a1.001 1.001 0 010 1.416l-4.176 4.177a.991.991 0 01-1.4.016 1 1 0 01.003-1.42L12.615 7H1z"/></symbol><symbol id="icon-submit-open" viewBox="0 0 16 17"><path d="M12 0c1.10457 0 2 .895431 2 2v5c0 .276142-.223858.5-.5.5S13 7.276142 13 7V2c0-.512836-.38604-.935507-.883379-.993272L12 1H6v3c0 1.10457-.89543 2-2 2H1v8c0 .512836.38604.935507.883379.993272L2 15h6.5c.276142 0 .5.223858.5.5s-.223858.5-.5.5H2c-1.104569 0-2-.89543-2-2V5.828427c0-.530433.210714-1.039141.585786-1.414213L4.414214.585786C4.789286.210714 5.297994 0 5.828427 0H12Zm3.41 11.14c.250899.250899.250274.659726 0 .91-.242954.242954-.649606.245216-.9-.01l-1.863671-1.900337.001043 5.869492c0 .356992-.289839.637138-.647372.637138-.347077 0-.647371-.285256-.647371-.637138l-.001043-5.869492L9.5 12.04c-.253166.258042-.649726.260274-.9.01-.242954-.242954-.252269-.657731 0-.91l2.942184-2.951303c.250908-.250909.66127-.252277.91353-.000017L15.41 11.14ZM5 1.413 1.413 5H4c.552285 0 1-.447715 1-1V1.413ZM11 3c.276142 0 .5.223858.5.5s-.223858.5-.5.5H7.5c-.276142 0-.5-.223858-.5-.5s.223858-.5.5-.5H11Zm0 2c.276142 0 .5.223858.5.5s-.223858.5-.5.5H7.5c-.276142 0-.5-.223858-.5-.5s.223858-.5.5-.5H11Z" fill-rule="nonzero"/></symbol></svg> </div> </body> </html>