CINXE.COM

Trapezoidal rule - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Trapezoidal rule - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"e3b8c235-2931-42aa-95ce-a144880bb5f6","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Trapezoidal_rule","wgTitle":"Trapezoidal rule","wgCurRevisionId":1235292523,"wgRevisionId":1235292523,"wgArticleId":573452,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Numerical integration (quadrature)"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Trapezoidal_rule","wgRelevantArticleId":573452,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{ "status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q833293","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready", "site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging", "ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Trapezoidal_rule_illustration.svg/1200px-Trapezoidal_rule_illustration.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="901"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Trapezoidal_rule_illustration.svg/800px-Trapezoidal_rule_illustration.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="601"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Trapezoidal_rule_illustration.svg/640px-Trapezoidal_rule_illustration.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="480"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Trapezoidal rule - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Trapezoidal_rule"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Trapezoidal_rule&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Trapezoidal_rule"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Trapezoidal_rule rootpage-Trapezoidal_rule skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Trapezoidal+rule" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Trapezoidal+rule" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Trapezoidal+rule" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Trapezoidal+rule" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Numerical_implementation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Numerical_implementation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Numerical implementation</span> </div> </a> <button aria-controls="toc-Numerical_implementation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Numerical implementation subsection</span> </button> <ul id="toc-Numerical_implementation-sublist" class="vector-toc-list"> <li id="toc-Non-uniform_grid" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Non-uniform_grid"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Non-uniform grid</span> </div> </a> <ul id="toc-Non-uniform_grid-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Uniform_grid" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Uniform_grid"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Uniform grid</span> </div> </a> <ul id="toc-Uniform_grid-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Error_analysis" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Error_analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Error analysis</span> </div> </a> <button aria-controls="toc-Error_analysis-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Error analysis subsection</span> </button> <ul id="toc-Error_analysis-sublist" class="vector-toc-list"> <li id="toc-Proof" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Proof"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Proof</span> </div> </a> <ul id="toc-Proof-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Periodic_and_peak_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Periodic_and_peak_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Periodic and peak functions</span> </div> </a> <ul id="toc-Periodic_and_peak_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-&quot;Rough&quot;_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#&quot;Rough&quot;_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>"Rough" functions</span> </div> </a> <ul id="toc-&quot;Rough&quot;_functions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applicability_and_alternatives" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applicability_and_alternatives"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Applicability and alternatives</span> </div> </a> <ul id="toc-Applicability_and_alternatives-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Trapezoidal rule</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 26 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-26" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">26 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%82%D8%A7%D8%B9%D8%AF%D8%A9_%D8%B4%D8%A8%D9%87_%D8%A7%D9%84%D9%85%D9%86%D8%AD%D8%B1%D9%81" title="قاعدة شبه المنحرف – Arabic" lang="ar" hreflang="ar" data-title="قاعدة شبه المنحرف" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/M%C3%A8tode_trapezial" title="Mètode trapezial – Catalan" lang="ca" hreflang="ca" data-title="Mètode trapezial" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%BF%D0%B5%D1%86%D0%B8%D1%81%D0%B5%D0%BD_%D0%BC%D0%B5%D1%81%D0%BB%D0%B5%D1%87%C4%95" title="Трапецисен меслечĕ – Chuvash" lang="cv" hreflang="cv" data-title="Трапецисен меслечĕ" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Lichob%C4%9B%C5%BEn%C3%ADkov%C3%A1_metoda" title="Lichoběžníková metoda – Czech" lang="cs" hreflang="cs" data-title="Lichoběžníková metoda" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Rheol_trapesoid" title="Rheol trapesoid – Welsh" lang="cy" hreflang="cy" data-title="Rheol trapesoid" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Trapezmetode" title="Trapezmetode – Danish" lang="da" hreflang="da" data-title="Trapezmetode" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Trapezregel" title="Trapezregel – German" lang="de" hreflang="de" data-title="Trapezregel" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Regla_del_trapecio" title="Regla del trapecio – Spanish" lang="es" hreflang="es" data-title="Regla del trapecio" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%82%D8%A7%D9%86%D9%88%D9%86_%D8%B0%D9%88%D8%B2%D9%86%D9%82%D9%87" title="قانون ذوزنقه – Persian" lang="fa" hreflang="fa" data-title="قانون ذوزنقه" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/M%C3%A9thode_des_trap%C3%A8zes" title="Méthode des trapèzes – French" lang="fr" hreflang="fr" data-title="Méthode des trapèzes" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Riail_an_traip%C3%A9isiam" title="Riail an traipéisiam – Irish" lang="ga" hreflang="ga" data-title="Riail an traipéisiam" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%82%AC%EB%8B%A4%EB%A6%AC%EA%BC%B4_%EA%B3%B5%EC%8B%9D" title="사다리꼴 공식 – Korean" lang="ko" hreflang="ko" data-title="사다리꼴 공식" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Regola_del_trapezio" title="Regola del trapezio – Italian" lang="it" hreflang="it" data-title="Regola del trapezio" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A9%D7%99%D7%98%D7%AA_%D7%94%D7%98%D7%A8%D7%A4%D7%96" title="שיטת הטרפז – Hebrew" lang="he" hreflang="he" data-title="שיטת הטרפז" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Trap%C3%A9zszab%C3%A1ly" title="Trapézszabály – Hungarian" lang="hu" hreflang="hu" data-title="Trapézszabály" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Trapeziumregel" title="Trapeziumregel – Dutch" lang="nl" hreflang="nl" data-title="Trapeziumregel" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%8F%B0%E5%BD%A2%E5%85%AC%E5%BC%8F" title="台形公式 – Japanese" lang="ja" hreflang="ja" data-title="台形公式" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Trapesintegrasjon" title="Trapesintegrasjon – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Trapesintegrasjon" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Wz%C3%B3r_trapez%C3%B3w" title="Wzór trapezów – Polish" lang="pl" hreflang="pl" data-title="Wzór trapezów" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D1%82%D1%80%D0%B0%D0%BF%D0%B5%D1%86%D0%B8%D0%B9" title="Метод трапеций – Russian" lang="ru" hreflang="ru" data-title="Метод трапеций" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Rregulli_i_trapezit" title="Rregulli i trapezit – Albanian" lang="sq" hreflang="sq" data-title="Rregulli i trapezit" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%BF%D0%B5%D0%B7%D0%BE%D0%B8%D0%B4%D0%BD%D0%BE_%D0%BF%D1%80%D0%B0%D0%B2%D0%B8%D0%BB%D0%BE" title="Трапезоидно правило – Serbian" lang="sr" hreflang="sr" data-title="Трапезоидно правило" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Puolisuunnikass%C3%A4%C3%A4nt%C3%B6" title="Puolisuunnikassääntö – Finnish" lang="fi" hreflang="fi" data-title="Puolisuunnikassääntö" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Trapetsregeln" title="Trapetsregeln – Swedish" lang="sv" hreflang="sv" data-title="Trapetsregeln" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D1%82%D1%80%D0%B0%D0%BF%D0%B5%D1%86%D1%96%D0%B9_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Метод трапецій (математика) – Ukrainian" lang="uk" hreflang="uk" data-title="Метод трапецій (математика)" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%A2%AF%E5%BD%A2%E5%85%AC%E5%BC%8F" title="梯形公式 – Chinese" lang="zh" hreflang="zh" data-title="梯形公式" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q833293#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Trapezoidal_rule" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Trapezoidal_rule" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Trapezoidal_rule"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Trapezoidal_rule&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Trapezoidal_rule&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Trapezoidal_rule"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Trapezoidal_rule&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Trapezoidal_rule&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Trapezoidal_rule" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Trapezoidal_rule" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Trapezoidal_rule&amp;oldid=1235292523" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Trapezoidal_rule&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Trapezoidal_rule&amp;id=1235292523&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTrapezoidal_rule"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTrapezoidal_rule"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Trapezoidal_rule&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Trapezoidal_rule&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Trapezium_rule" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q833293" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Numerical integration method</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about a rule for approximating integrals. For the trapezoidal rule used for initial value problems, see <a href="/wiki/Trapezoidal_rule_(differential_equations)" title="Trapezoidal rule (differential equations)">Trapezoidal rule (differential equations)</a> and <a href="/wiki/Heun%27s_method" title="Heun&#39;s method">Heun's method</a>.</div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Trapezoidal_rule_illustration.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/Trapezoidal_rule_illustration.svg/220px-Trapezoidal_rule_illustration.svg.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/Trapezoidal_rule_illustration.svg/330px-Trapezoidal_rule_illustration.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/40/Trapezoidal_rule_illustration.svg/440px-Trapezoidal_rule_illustration.svg.png 2x" data-file-width="365" data-file-height="274" /></a><figcaption>The function <i>f</i>(<i>x</i>) (in blue) is approximated by a linear function (in red).</figcaption></figure> <p>In <a href="/wiki/Calculus" title="Calculus">calculus</a>, the <b>trapezoidal rule</b> (also known as the <b>trapezoid rule</b> or <b>trapezium rule</b>)<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> is a technique for <a href="/wiki/Numerical_integration" title="Numerical integration">numerical integration</a>, i.e., approximating the <a href="/wiki/Integral" title="Integral">definite integral</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f(x)\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f(x)\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/249ee3fdbced31dfc328ff357f67bb134ca66b8d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.786ex; height:6.343ex;" alt="{\displaystyle \int _{a}^{b}f(x)\,dx.}"></span> </p><p>The trapezoidal rule works by approximating the region under the graph of the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> as a <a href="/wiki/Trapezoid" title="Trapezoid">trapezoid</a> and calculating its area. It follows that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f(x)\,dx\approx (b-a)\cdot {\tfrac {1}{2}}(f(a)+f(b)).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>&#x2248;<!-- ≈ --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f(x)\,dx\approx (b-a)\cdot {\tfrac {1}{2}}(f(a)+f(b)).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/659bca091a6b81d79c7d4e8a59d0f6dae46e2421" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:38.152ex; height:6.343ex;" alt="{\displaystyle \int _{a}^{b}f(x)\,dx\approx (b-a)\cdot {\tfrac {1}{2}}(f(a)+f(b)).}"></span> </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:WikiTrap.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/10/WikiTrap.gif/220px-WikiTrap.gif" decoding="async" width="220" height="124" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/10/WikiTrap.gif/330px-WikiTrap.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/10/WikiTrap.gif/440px-WikiTrap.gif 2x" data-file-width="640" data-file-height="360" /></a><figcaption>An animation that shows what the trapezoidal rule is and how the error in approximation decreases as the step size decreases</figcaption></figure> <p>The trapezoidal rule may be viewed as the result obtained by averaging the <a href="/wiki/Riemann_sum#Left_rule" title="Riemann sum">left</a> and <a href="/wiki/Riemann_sum#Right_rule" title="Riemann sum">right</a> <a href="/wiki/Riemann_sum" title="Riemann sum">Riemann sums</a>, and is sometimes defined this way. The integral can be even better approximated by <a href="/wiki/Partition_of_an_interval" title="Partition of an interval">partitioning the integration interval</a>, applying the trapezoidal rule to each subinterval, and summing the results. In practice, this "chained" (or "composite") trapezoidal rule is usually what is meant by "integrating with the trapezoidal rule". Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x_{k}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x_{k}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da303cc40bcf961218a8415e24719e51f30c224e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.743ex; height:2.843ex;" alt="{\displaystyle \{x_{k}\}}"></span> be a partition of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=x_{0}&lt;x_{1}&lt;\cdots &lt;x_{N-1}&lt;x_{N}=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&lt;</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&lt;</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo>=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=x_{0}&lt;x_{1}&lt;\cdots &lt;x_{N-1}&lt;x_{N}=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdfca87610b6f00bb7b0da65289fde68531e56c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:36.452ex; height:2.509ex;" alt="{\displaystyle a=x_{0}&lt;x_{1}&lt;\cdots &lt;x_{N-1}&lt;x_{N}=b}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af86c89a9afb61599558a7cdeaaef9e8f0e4c267" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.354ex; height:2.509ex;" alt="{\displaystyle \Delta x_{k}}"></span> be the length of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-th subinterval (that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x_{k}=x_{k}-x_{k-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x_{k}=x_{k}-x_{k-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6500cf35b5aafad2c612e7114ffabdc9edf54c63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.23ex; height:2.509ex;" alt="{\displaystyle \Delta x_{k}=x_{k}-x_{k-1}}"></span>), then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f(x)\,dx\approx \sum _{k=1}^{N}{\frac {f(x_{k-1})+f(x_{k})}{2}}\Delta x_{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>&#x2248;<!-- ≈ --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f(x)\,dx\approx \sum _{k=1}^{N}{\frac {f(x_{k-1})+f(x_{k})}{2}}\Delta x_{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4af8afa183224c221932fd8b5d96bbffa4ffa9d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:39.77ex; height:7.343ex;" alt="{\displaystyle \int _{a}^{b}f(x)\,dx\approx \sum _{k=1}^{N}{\frac {f(x_{k-1})+f(x_{k})}{2}}\Delta x_{k}.}"></span> When the partition has a regular spacing, as is often the case, that is, when all the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af86c89a9afb61599558a7cdeaaef9e8f0e4c267" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.354ex; height:2.509ex;" alt="{\displaystyle \Delta x_{k}}"></span> have the same value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9fa5197ff8e1c53d392357475db99666bf7fa62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.912ex; height:2.509ex;" alt="{\displaystyle \Delta x,}"></span> the formula can be simplified for calculation efficiency by factoring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3890eb866b6258d7a304fc34c70ee3fb3a81a70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.266ex; height:2.176ex;" alt="{\displaystyle \Delta x}"></span> out:. <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f(x)\,dx\approx {\frac {\Delta x}{2}}\left(f(x_{0})+2f(x_{1})+2f(x_{2})+2f(x_{3})+2f(x_{4})+\cdots +2f(x_{N-1})+f(x_{N})\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mn>2</mn> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f(x)\,dx\approx {\frac {\Delta x}{2}}\left(f(x_{0})+2f(x_{1})+2f(x_{2})+2f(x_{3})+2f(x_{4})+\cdots +2f(x_{N-1})+f(x_{N})\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2f8cc2abd19dee769aee750928b4f3d41fc26b2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:91.665ex; height:6.343ex;" alt="{\displaystyle \int _{a}^{b}f(x)\,dx\approx {\frac {\Delta x}{2}}\left(f(x_{0})+2f(x_{1})+2f(x_{2})+2f(x_{3})+2f(x_{4})+\cdots +2f(x_{N-1})+f(x_{N})\right).}"></span> </p><p>The approximation becomes more accurate as the resolution of the partition increases (that is, for larger <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>, all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af86c89a9afb61599558a7cdeaaef9e8f0e4c267" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.354ex; height:2.509ex;" alt="{\displaystyle \Delta x_{k}}"></span> decrease). </p><p>As discussed below, it is also possible to place error bounds on the accuracy of the value of a definite integral estimated using a trapezoidal rule. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Integration_num_trapezes_notation.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Integration_num_trapezes_notation.svg/220px-Integration_num_trapezes_notation.svg.png" decoding="async" width="220" height="184" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Integration_num_trapezes_notation.svg/330px-Integration_num_trapezes_notation.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Integration_num_trapezes_notation.svg/440px-Integration_num_trapezes_notation.svg.png 2x" data-file-width="691" data-file-height="579" /></a><figcaption>Illustration of "chained trapezoidal rule" used on an irregularly-spaced partition of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span>.</figcaption></figure> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trapezoidal_rule&amp;action=edit&amp;section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A 2016 <i><a href="/wiki/Science_(journal)" title="Science (journal)">Science</a></i> paper reports that the trapezoid rule was in use in <a href="/wiki/Babylon" title="Babylon">Babylon</a> before 50 BCE for integrating the velocity of <a href="/wiki/Jupiter" title="Jupiter">Jupiter</a> along the <a href="/wiki/Ecliptic" title="Ecliptic">ecliptic</a>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Numerical_implementation">Numerical implementation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trapezoidal_rule&amp;action=edit&amp;section=2" title="Edit section: Numerical implementation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Non-uniform_grid">Non-uniform grid</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trapezoidal_rule&amp;action=edit&amp;section=3" title="Edit section: Non-uniform grid"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When the grid spacing is non-uniform, one can use the formula <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f(x)\,dx\approx \sum _{k=1}^{N}{\frac {f(x_{k-1})+f(x_{k})}{2}}\Delta x_{k},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>&#x2248;<!-- ≈ --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f(x)\,dx\approx \sum _{k=1}^{N}{\frac {f(x_{k-1})+f(x_{k})}{2}}\Delta x_{k},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39c80fb18f0fb979a7ac9da31099954d0755fe93" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:39.77ex; height:7.343ex;" alt="{\displaystyle \int _{a}^{b}f(x)\,dx\approx \sum _{k=1}^{N}{\frac {f(x_{k-1})+f(x_{k})}{2}}\Delta x_{k},}"></span> wherein <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x_{k}=x_{k}-x_{k-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x_{k}=x_{k}-x_{k-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac7dd174520fdbbf834088803a007fbf8b81670a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.877ex; height:2.509ex;" alt="{\displaystyle \Delta x_{k}=x_{k}-x_{k-1}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Uniform_grid">Uniform grid</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trapezoidal_rule&amp;action=edit&amp;section=4" title="Edit section: Uniform grid"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For a domain discretized into <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> equally spaced panels, considerable simplification may occur. Let <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x_{k}=\Delta x={\frac {b-a}{N}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mi>N</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x_{k}=\Delta x={\frac {b-a}{N}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5ca2988159575256fbed7799d824cb5852c119d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.721ex; height:5.343ex;" alt="{\displaystyle \Delta x_{k}=\Delta x={\frac {b-a}{N}}}"></span> the approximation to the integral becomes <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\int _{a}^{b}f(x)\,dx&amp;\approx {\frac {\Delta x}{2}}\sum _{k=1}^{N}\left(f(x_{k-1})+f(x_{k})\right)\\[1ex]&amp;={\frac {\Delta x}{2}}{\Biggl (}f(x_{0})+2f(x_{1})+2f(x_{2})+2f(x_{3})+\dotsb +2f(x_{N-1})+f(x_{N}){\Biggr )}\\[1ex]&amp;=\Delta x\left({\frac {f(x_{N})+f(x_{0})}{2}}+\sum _{k=1}^{N-1}f(x_{k})\right).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.73em 0.73em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.470em" minsize="2.470em">(</mo> </mrow> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mn>2</mn> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.470em" minsize="2.470em">)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\int _{a}^{b}f(x)\,dx&amp;\approx {\frac {\Delta x}{2}}\sum _{k=1}^{N}\left(f(x_{k-1})+f(x_{k})\right)\\[1ex]&amp;={\frac {\Delta x}{2}}{\Biggl (}f(x_{0})+2f(x_{1})+2f(x_{2})+2f(x_{3})+\dotsb +2f(x_{N-1})+f(x_{N}){\Biggr )}\\[1ex]&amp;=\Delta x\left({\frac {f(x_{N})+f(x_{0})}{2}}+\sum _{k=1}^{N-1}f(x_{k})\right).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbf262ab114addeef44142cbc4afc1286fcceeaa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.838ex; width:83.393ex; height:24.843ex;" alt="{\displaystyle {\begin{aligned}\int _{a}^{b}f(x)\,dx&amp;\approx {\frac {\Delta x}{2}}\sum _{k=1}^{N}\left(f(x_{k-1})+f(x_{k})\right)\\[1ex]&amp;={\frac {\Delta x}{2}}{\Biggl (}f(x_{0})+2f(x_{1})+2f(x_{2})+2f(x_{3})+\dotsb +2f(x_{N-1})+f(x_{N}){\Biggr )}\\[1ex]&amp;=\Delta x\left({\frac {f(x_{N})+f(x_{0})}{2}}+\sum _{k=1}^{N-1}f(x_{k})\right).\end{aligned}}}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Error_analysis">Error analysis</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trapezoidal_rule&amp;action=edit&amp;section=5" title="Edit section: Error analysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Trapezium2.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Trapezium2.gif/220px-Trapezium2.gif" decoding="async" width="220" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Trapezium2.gif/330px-Trapezium2.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Trapezium2.gif/440px-Trapezium2.gif 2x" data-file-width="600" data-file-height="400" /></a><figcaption>An animation showing how the trapezoidal rule approximation improves with more strips for an interval with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4208bf5a67fc2ceb3a3bcd75aebb1d74fbb531bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.491ex; height:2.176ex;" alt="{\displaystyle a=2}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=8}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <mn>8</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b=8}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95b40f949f363b461a9a4eed26dbcd6cccedab1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.258ex; height:2.176ex;" alt="{\displaystyle b=8}"></span>. As the number of intervals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> increases, so too does the accuracy of the result.</figcaption></figure> <p>The error of the composite trapezoidal rule is the difference between the value of the integral and the numerical result: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{E}}=\int _{a}^{b}f(x)\,dx-{\frac {b-a}{N}}\left[{f(a)+f(b) \over 2}+\sum _{k=1}^{N-1}f\left(a+k{\frac {b-a}{N}}\right)\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>E</mtext> </mrow> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mi>N</mi> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mi>N</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{E}}=\int _{a}^{b}f(x)\,dx-{\frac {b-a}{N}}\left[{f(a)+f(b) \over 2}+\sum _{k=1}^{N-1}f\left(a+k{\frac {b-a}{N}}\right)\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69bbf6fd3feca24e5b54d2648875a66b554edce8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:62.801ex; height:7.509ex;" alt="{\displaystyle {\text{E}}=\int _{a}^{b}f(x)\,dx-{\frac {b-a}{N}}\left[{f(a)+f(b) \over 2}+\sum _{k=1}^{N-1}f\left(a+k{\frac {b-a}{N}}\right)\right]}"></span> </p><p>There exists a number <i>ξ</i> between <i>a</i> and <i>b</i>, such that<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{E}}=-{\frac {(b-a)^{3}}{12N^{2}}}f''(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>E</mtext> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mrow> <mn>12</mn> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{E}}=-{\frac {(b-a)^{3}}{12N^{2}}}f''(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7113ab6717265e834b79947d34562b0067871eaa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:20.554ex; height:6.009ex;" alt="{\displaystyle {\text{E}}=-{\frac {(b-a)^{3}}{12N^{2}}}f&#039;&#039;(\xi )}"></span> </p><p>It follows that if the integrand is <a href="/wiki/Concave_up" class="mw-redirect" title="Concave up">concave up</a> (and thus has a positive second derivative), then the error is negative and the trapezoidal rule overestimates the true value. This can also be seen from the geometric picture: the trapezoids include all of the area under the curve and extend over it. Similarly, a <a href="/wiki/Concave-down" class="mw-redirect" title="Concave-down">concave-down</a> function yields an underestimate because area is unaccounted for under the curve, but none is counted above. If the interval of the integral being approximated includes an inflection point, the sign of the error is harder to identify. </p><p>An asymptotic error estimate for <i>N</i> → ∞ is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{E}}=-{\frac {(b-a)^{2}}{12N^{2}}}{\big [}f'(b)-f'(a){\big ]}+O(N^{-3}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>E</mtext> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>12</mn> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> <mo>+</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{E}}=-{\frac {(b-a)^{2}}{12N^{2}}}{\big [}f'(b)-f'(a){\big ]}+O(N^{-3}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cd5ac77d42c690b44c7f4e0046485375e36abae" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:41.419ex; height:6.009ex;" alt="{\displaystyle {\text{E}}=-{\frac {(b-a)^{2}}{12N^{2}}}{\big [}f&#039;(b)-f&#039;(a){\big ]}+O(N^{-3}).}"></span> Further terms in this error estimate are given by the Euler–Maclaurin summation formula. </p><p>Several techniques can be used to analyze the error, including:<sup id="cite_ref-w0223_4-0" class="reference"><a href="#cite_note-w0223-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <ol><li><a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a></li> <li><a href="/wiki/Residue_calculus" class="mw-redirect" title="Residue calculus">Residue calculus</a></li> <li><a href="/wiki/Euler%E2%80%93Maclaurin_summation_formula" class="mw-redirect" title="Euler–Maclaurin summation formula">Euler–Maclaurin summation formula</a><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Polynomial_interpolation" title="Polynomial interpolation">Polynomial interpolation</a><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup></li></ol> <p>It is argued that the speed of convergence of the trapezoidal rule reflects and can be used as a definition of classes of smoothness of the functions.<sup id="cite_ref-rs90_8-0" class="reference"><a href="#cite_note-rs90-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Proof">Proof</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trapezoidal_rule&amp;action=edit&amp;section=6" title="Edit section: Proof"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>First suppose that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h={\frac {b-a}{N}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mi>N</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h={\frac {b-a}{N}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40884140b7e265bf43da90fef7dcf90a340b96eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.341ex; height:5.343ex;" alt="{\displaystyle h={\frac {b-a}{N}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{k}=a+(k-1)h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{k}=a+(k-1)h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77373c00bdf644a3727bb20804584bb7068ee54c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.85ex; height:2.843ex;" alt="{\displaystyle a_{k}=a+(k-1)h}"></span>. Let <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{k}(t)={\frac {1}{2}}t[f(a_{k})+f(a_{k}+t)]-\int _{a_{k}}^{a_{k}+t}f(x)\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>t</mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>&#x2212;<!-- − --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mi>t</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{k}(t)={\frac {1}{2}}t[f(a_{k})+f(a_{k}+t)]-\int _{a_{k}}^{a_{k}+t}f(x)\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f7adf3c2fb86c683193757c4143af68d348ff66" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:46.286ex; height:6.509ex;" alt="{\displaystyle g_{k}(t)={\frac {1}{2}}t[f(a_{k})+f(a_{k}+t)]-\int _{a_{k}}^{a_{k}+t}f(x)\,dx}"></span> be the function such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |g_{k}(h)|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |g_{k}(h)|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bcc4ab62d0a14b4029960ab5f2a06d31711f40fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.64ex; height:2.843ex;" alt="{\displaystyle |g_{k}(h)|}"></span> is the error of the trapezoidal rule on one of the intervals, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a_{k},a_{k}+h]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mi>h</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a_{k},a_{k}+h]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4278d1e363fde482a2cf9e04b012205776c5a9a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.144ex; height:2.843ex;" alt="{\displaystyle [a_{k},a_{k}+h]}"></span>. Then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {dg_{k} \over dt}={1 \over 2}[f(a_{k})+f(a_{k}+t)]+{1 \over 2}t\cdot f'(a_{k}+t)-f(a_{k}+t),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>t</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {dg_{k} \over dt}={1 \over 2}[f(a_{k})+f(a_{k}+t)]+{1 \over 2}t\cdot f'(a_{k}+t)-f(a_{k}+t),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0340ea2941deffa7beed8c8595a4aaf897d797bd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:57.718ex; height:5.509ex;" alt="{\displaystyle {dg_{k} \over dt}={1 \over 2}[f(a_{k})+f(a_{k}+t)]+{1 \over 2}t\cdot f&#039;(a_{k}+t)-f(a_{k}+t),}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {d^{2}g_{k} \over dt^{2}}={1 \over 2}t\cdot f''(a_{k}+t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>t</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {d^{2}g_{k} \over dt^{2}}={1 \over 2}t\cdot f''(a_{k}+t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63c737245089ea8f84a66536097418ce9f00482a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:23.834ex; height:6.009ex;" alt="{\displaystyle {d^{2}g_{k} \over dt^{2}}={1 \over 2}t\cdot f&#039;&#039;(a_{k}+t).}"></span> </p><p>Now suppose that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|f''(x)\right|\leq \left|f''(\xi )\right|,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mrow> <mo>|</mo> <mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|f''(x)\right|\leq \left|f''(\xi )\right|,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99c26cc2bff9af27434e6f2ca46bfe0ebf6d7fc3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.613ex; height:3.009ex;" alt="{\displaystyle \left|f&#039;&#039;(x)\right|\leq \left|f&#039;&#039;(\xi )\right|,}"></span> which holds if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is sufficiently smooth. It then follows that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|f''(a_{k}+t)\right|\leq f''(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|f''(a_{k}+t)\right|\leq f''(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b472e7e6661a2d464babd003fb0dd5eb7b3ed15" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.955ex; height:3.009ex;" alt="{\displaystyle \left|f&#039;&#039;(a_{k}+t)\right|\leq f&#039;&#039;(\xi )}"></span> which is equivalent to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -f''(\xi )\leq f''(a_{k}+t)\leq f''(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -f''(\xi )\leq f''(a_{k}+t)\leq f''(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e9a2f52b54a7600a8aba37e45873f81819d1ce6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.865ex; height:3.009ex;" alt="{\displaystyle -f&#039;&#039;(\xi )\leq f&#039;&#039;(a_{k}+t)\leq f&#039;&#039;(\xi )}"></span>, or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {f''(\xi )t}{2}}\leq g_{k}''(t)\leq {\frac {f''(\xi )t}{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mi>t</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mo>&#x2033;</mo> </msubsup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mi>t</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {f''(\xi )t}{2}}\leq g_{k}''(t)\leq {\frac {f''(\xi )t}{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/701a94aafa909bb33e726479afcf1cf0ea38b1cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:27.502ex; height:5.676ex;" alt="{\displaystyle -{\frac {f&#039;&#039;(\xi )t}{2}}\leq g_{k}&#039;&#039;(t)\leq {\frac {f&#039;&#039;(\xi )t}{2}}.}"></span> </p><p>Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{k}'(0)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{k}'(0)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1525900386c7e5c428e3bf003307763bad5da97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.43ex; height:3.009ex;" alt="{\displaystyle g_{k}&#039;(0)=0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{k}(0)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{k}(0)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c644b016ecfb6412aa5312f89fdb7e5208b5bc11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.43ex; height:2.843ex;" alt="{\displaystyle g_{k}(0)=0}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{t}g_{k}''(x)dx=g_{k}'(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mo>&#x2033;</mo> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{t}g_{k}''(x)dx=g_{k}'(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb98ec621f0cbc7c7f95c86bf18fb4cda6b5422a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:19.562ex; height:6.176ex;" alt="{\displaystyle \int _{0}^{t}g_{k}&#039;&#039;(x)dx=g_{k}&#039;(t)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{t}g_{k}'(x)dx=g_{k}(t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{t}g_{k}'(x)dx=g_{k}(t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7a349ec75c8a8e1ce6b10e93de088ead600c508" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:20.151ex; height:6.176ex;" alt="{\displaystyle \int _{0}^{t}g_{k}&#039;(x)dx=g_{k}(t).}"></span> </p><p>Using these results, we find <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {f''(\xi )t^{2}}{4}}\leq g_{k}'(t)\leq {\frac {f''(\xi )t^{2}}{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>4</mn> </mfrac> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>4</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {f''(\xi )t^{2}}{4}}\leq g_{k}'(t)\leq {\frac {f''(\xi )t^{2}}{4}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3710ad15f248e61ea9df7c736feb0b6155694d77" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:28.906ex; height:5.843ex;" alt="{\displaystyle -{\frac {f&#039;&#039;(\xi )t^{2}}{4}}\leq g_{k}&#039;(t)\leq {\frac {f&#039;&#039;(\xi )t^{2}}{4}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {f''(\xi )t^{3}}{12}}\leq g_{k}(t)\leq {\frac {f''(\xi )t^{3}}{12}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>12</mn> </mfrac> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>12</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {f''(\xi )t^{3}}{12}}\leq g_{k}(t)\leq {\frac {f''(\xi )t^{3}}{12}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/285c56653519c4e827fad7ecebfb4352e9f7fdd8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:28.906ex; height:5.843ex;" alt="{\displaystyle -{\frac {f&#039;&#039;(\xi )t^{3}}{12}}\leq g_{k}(t)\leq {\frac {f&#039;&#039;(\xi )t^{3}}{12}}}"></span> </p><p>Letting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26e5b8f1e5a88e465c16e7642224a510671b8477" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.277ex; height:2.176ex;" alt="{\displaystyle t=h}"></span> we find <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {f''(\xi )h^{3}}{12}}\leq g_{k}(h)\leq {\frac {f''(\xi )h^{3}}{12}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>12</mn> </mfrac> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>12</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {f''(\xi )h^{3}}{12}}\leq g_{k}(h)\leq {\frac {f''(\xi )h^{3}}{12}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/724ec29550ea00ff7c00224a72021095742fd66b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:31.051ex; height:5.843ex;" alt="{\displaystyle -{\frac {f&#039;&#039;(\xi )h^{3}}{12}}\leq g_{k}(h)\leq {\frac {f&#039;&#039;(\xi )h^{3}}{12}}.}"></span> </p><p>Summing all of the local error terms we find <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{N}g_{k}(h)={\frac {b-a}{N}}\left[{f(a)+f(b) \over 2}+\sum _{k=1}^{N-1}f\left(a+k{\frac {b-a}{N}}\right)\right]-\int _{a}^{b}f(x)dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mi>N</mi> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mi>N</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{N}g_{k}(h)={\frac {b-a}{N}}\left[{f(a)+f(b) \over 2}+\sum _{k=1}^{N-1}f\left(a+k{\frac {b-a}{N}}\right)\right]-\int _{a}^{b}f(x)dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99801ff97304978cf8907920a96c7c8e777d9b84" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:70.566ex; height:7.509ex;" alt="{\displaystyle \sum _{k=1}^{N}g_{k}(h)={\frac {b-a}{N}}\left[{f(a)+f(b) \over 2}+\sum _{k=1}^{N-1}f\left(a+k{\frac {b-a}{N}}\right)\right]-\int _{a}^{b}f(x)dx.}"></span> </p><p>But we also have <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\sum _{k=1}^{N}{\frac {f''(\xi )h^{3}}{12}}\leq \sum _{k=1}^{N}g_{k}(h)\leq \sum _{k=1}^{N}{\frac {f''(\xi )h^{3}}{12}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>12</mn> </mfrac> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>12</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\sum _{k=1}^{N}{\frac {f''(\xi )h^{3}}{12}}\leq \sum _{k=1}^{N}g_{k}(h)\leq \sum _{k=1}^{N}{\frac {f''(\xi )h^{3}}{12}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cf0f132801d3c243f75272b82463d077538202c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:42.017ex; height:7.343ex;" alt="{\displaystyle -\sum _{k=1}^{N}{\frac {f&#039;&#039;(\xi )h^{3}}{12}}\leq \sum _{k=1}^{N}g_{k}(h)\leq \sum _{k=1}^{N}{\frac {f&#039;&#039;(\xi )h^{3}}{12}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{N}{\frac {f''(\xi )h^{3}}{12}}={\frac {f''(\xi )h^{3}N}{12}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>12</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>N</mi> </mrow> <mn>12</mn> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{N}{\frac {f''(\xi )h^{3}}{12}}={\frac {f''(\xi )h^{3}N}{12}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21dc4df5bb2adbe922e7246a82530f5047592549" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:26.604ex; height:7.343ex;" alt="{\displaystyle \sum _{k=1}^{N}{\frac {f&#039;&#039;(\xi )h^{3}}{12}}={\frac {f&#039;&#039;(\xi )h^{3}N}{12}},}"></span> </p><p>so that </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {f''(\xi )h^{3}N}{12}}\leq {\frac {b-a}{N}}\left[{f(a)+f(b) \over 2}+\sum _{k=1}^{N-1}f\left(a+k{\frac {b-a}{N}}\right)\right]-\int _{a}^{b}f(x)dx\leq {\frac {f''(\xi )h^{3}N}{12}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>N</mi> </mrow> <mn>12</mn> </mfrac> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mi>N</mi> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mi>N</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>N</mi> </mrow> <mn>12</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {f''(\xi )h^{3}N}{12}}\leq {\frac {b-a}{N}}\left[{f(a)+f(b) \over 2}+\sum _{k=1}^{N-1}f\left(a+k{\frac {b-a}{N}}\right)\right]-\int _{a}^{b}f(x)dx\leq {\frac {f''(\xi )h^{3}N}{12}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2f3d6ee982441634a1ba4a23b22400f4f8f532e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:87.565ex; height:7.509ex;" alt="{\displaystyle -{\frac {f&#039;&#039;(\xi )h^{3}N}{12}}\leq {\frac {b-a}{N}}\left[{f(a)+f(b) \over 2}+\sum _{k=1}^{N-1}f\left(a+k{\frac {b-a}{N}}\right)\right]-\int _{a}^{b}f(x)dx\leq {\frac {f&#039;&#039;(\xi )h^{3}N}{12}}.}"></span> </p><p>Therefore the total error is bounded by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{error}}=\int _{a}^{b}f(x)\,dx-{\frac {b-a}{N}}\left[{f(a)+f(b) \over 2}+\sum _{k=1}^{N-1}f\left(a+k{\frac {b-a}{N}}\right)\right]={\frac {f''(\xi )h^{3}N}{12}}={\frac {f''(\xi )(b-a)^{3}}{12N^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>error</mtext> </mrow> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mi>N</mi> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mi>N</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>N</mi> </mrow> <mn>12</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mrow> <mn>12</mn> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{error}}=\int _{a}^{b}f(x)\,dx-{\frac {b-a}{N}}\left[{f(a)+f(b) \over 2}+\sum _{k=1}^{N-1}f\left(a+k{\frac {b-a}{N}}\right)\right]={\frac {f''(\xi )h^{3}N}{12}}={\frac {f''(\xi )(b-a)^{3}}{12N^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3499f9b1f021ad0084174d2d3a0deec83f5885ce" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:97.646ex; height:7.509ex;" alt="{\displaystyle {\text{error}}=\int _{a}^{b}f(x)\,dx-{\frac {b-a}{N}}\left[{f(a)+f(b) \over 2}+\sum _{k=1}^{N-1}f\left(a+k{\frac {b-a}{N}}\right)\right]={\frac {f&#039;&#039;(\xi )h^{3}N}{12}}={\frac {f&#039;&#039;(\xi )(b-a)^{3}}{12N^{2}}}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Periodic_and_peak_functions">Periodic and peak functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trapezoidal_rule&amp;action=edit&amp;section=7" title="Edit section: Periodic and peak functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The trapezoidal rule converges rapidly for periodic functions. This is an easy consequence of the <a href="/wiki/Euler-Maclaurin_summation_formula" class="mw-redirect" title="Euler-Maclaurin summation formula">Euler-Maclaurin summation formula</a>, which says that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> times continuously differentiable with period <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=0}^{N-1}f(kh)h=\int _{0}^{T}f(x)\,dx+\sum _{k=1}^{\lfloor p/2\rfloor }{\frac {B_{2k}}{(2k)!}}(f^{(2k-1)}(T)-f^{(2k-1)}(0))-(-1)^{p}h^{p}\int _{0}^{T}{\tilde {B}}_{p}(x/T)f^{(p)}(x)\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mi>h</mi> <mo stretchy="false">)</mo> <mi>h</mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>T</mi> <mo stretchy="false">)</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=0}^{N-1}f(kh)h=\int _{0}^{T}f(x)\,dx+\sum _{k=1}^{\lfloor p/2\rfloor }{\frac {B_{2k}}{(2k)!}}(f^{(2k-1)}(T)-f^{(2k-1)}(0))-(-1)^{p}h^{p}\int _{0}^{T}{\tilde {B}}_{p}(x/T)f^{(p)}(x)\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03f820cc2f8275ea58307ff83b77e68918452f4d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:96.923ex; height:7.843ex;" alt="{\displaystyle \sum _{k=0}^{N-1}f(kh)h=\int _{0}^{T}f(x)\,dx+\sum _{k=1}^{\lfloor p/2\rfloor }{\frac {B_{2k}}{(2k)!}}(f^{(2k-1)}(T)-f^{(2k-1)}(0))-(-1)^{p}h^{p}\int _{0}^{T}{\tilde {B}}_{p}(x/T)f^{(p)}(x)\,dx}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h:=T/N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>:=</mo> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h:=T/N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38d48923f3942297b8276a7f58367c77b1f32d14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.947ex; height:2.843ex;" alt="{\displaystyle h:=T/N}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {B}}_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {B}}_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/889c150226efded4c8e15595e9a3961175697fe1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.823ex; height:3.343ex;" alt="{\displaystyle {\tilde {B}}_{p}}"></span> is the periodic extension of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>th Bernoulli polynomial.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> Due to the periodicity, the derivatives at the endpoint cancel and we see that the error is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(h^{p})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(h^{p})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c9c07670a9a1a56a7b9a4723e9c3a3081a0a827" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.981ex; height:2.843ex;" alt="{\displaystyle O(h^{p})}"></span>. </p><p>A similar effect is available for peak-like functions, such as <a href="/wiki/Gaussian_function" title="Gaussian function">Gaussian</a>, <a href="/wiki/Exponentially_modified_Gaussian_distribution" title="Exponentially modified Gaussian distribution">Exponentially modified Gaussian</a> and other functions with derivatives at integration limits that can be neglected.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> The evaluation of the full integral of a Gaussian function by trapezoidal rule with 1% accuracy can be made using just 4 points.<sup id="cite_ref-:0_11-0" class="reference"><a href="#cite_note-:0-11"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Simpson%27s_rule" title="Simpson&#39;s rule">Simpson's rule</a> requires 1.8 times more points to achieve the same accuracy.<sup id="cite_ref-:0_11-1" class="reference"><a href="#cite_note-:0-11"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-w02_12-0" class="reference"><a href="#cite_note-w02-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>Although some effort has been made to extend the Euler-Maclaurin summation formula to higher dimensions,<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> the most straightforward proof of the rapid convergence of the trapezoidal rule in higher dimensions is to reduce the problem to that of convergence of Fourier series. This line of reasoning shows that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is periodic on a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional space with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> continuous derivatives, the speed of convergence is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(h^{p/d})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(h^{p/d})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7916a2f0c8a013f8642e13e222f4e20e961d66d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.662ex; height:3.343ex;" alt="{\displaystyle O(h^{p/d})}"></span>. For very large dimension, the shows that Monte-Carlo integration is most likely a better choice, but for 2 and 3 dimensions, equispaced sampling is efficient. This is exploited in computational solid state physics where equispaced sampling over primitive cells in the reciprocal lattice is known as <i>Monkhorst-Pack integration</i>.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="&quot;Rough&quot;_functions"><span id=".22Rough.22_functions"></span>"Rough" functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trapezoidal_rule&amp;action=edit&amp;section=8" title="Edit section: &quot;Rough&quot; functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For functions that are not in <a href="/wiki/Smoothness" title="Smoothness"><i>C</i><sup>2</sup></a>, the error bound given above is not applicable. Still, error bounds for such rough functions can be derived, which typically show a slower convergence with the number of function evaluations <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> than the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(N^{-2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(N^{-2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16b212e38989d77fb6effbc49d596855e03d2c23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.038ex; height:3.176ex;" alt="{\displaystyle O(N^{-2})}"></span> behaviour given above. Interestingly, in this case the trapezoidal rule often has sharper bounds than <a href="/wiki/Simpson%27s_rule" title="Simpson&#39;s rule">Simpson's rule</a> for the same number of function evaluations.<sup id="cite_ref-cun02_15-0" class="reference"><a href="#cite_note-cun02-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Applicability_and_alternatives">Applicability and alternatives</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trapezoidal_rule&amp;action=edit&amp;section=9" title="Edit section: Applicability and alternatives"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The trapezoidal rule is one of a family of formulas for <a href="/wiki/Numerical_integration" title="Numerical integration">numerical integration</a> called <a href="/wiki/Newton%E2%80%93Cotes_formulas" title="Newton–Cotes formulas">Newton–Cotes formulas</a>, of which the <a href="/wiki/Midpoint_rule" class="mw-redirect" title="Midpoint rule">midpoint rule</a> is similar to the trapezoid rule. <a href="/wiki/Simpson%27s_rule" title="Simpson&#39;s rule">Simpson's rule</a> is another member of the same family, and in general has faster convergence than the trapezoidal rule for functions which are twice continuously differentiable, though not in all specific cases. However, for various classes of rougher functions (ones with weaker smoothness conditions), the trapezoidal rule has faster convergence in general than Simpson's rule.<sup id="cite_ref-cun02_15-1" class="reference"><a href="#cite_note-cun02-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p><p>Moreover, the trapezoidal rule tends to become extremely accurate when <a href="/wiki/Periodic_function" title="Periodic function">periodic functions</a> are integrated over their periods, which can be <a href="#Periodic_and_peak_functions">analyzed in various ways</a>.<sup id="cite_ref-rs90_8-1" class="reference"><a href="#cite_note-rs90-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-w02_12-1" class="reference"><a href="#cite_note-w02-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> A similar effect is available for peak functions.<sup id="cite_ref-:0_11-2" class="reference"><a href="#cite_note-:0-11"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-w02_12-2" class="reference"><a href="#cite_note-w02-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>For non-periodic functions, however, methods with unequally spaced points such as <a href="/wiki/Gaussian_quadrature" title="Gaussian quadrature">Gaussian quadrature</a> and <a href="/wiki/Clenshaw%E2%80%93Curtis_quadrature" title="Clenshaw–Curtis quadrature">Clenshaw–Curtis quadrature</a> are generally far more accurate; Clenshaw–Curtis quadrature can be viewed as a change of variables to express arbitrary integrals in terms of periodic integrals, at which point the trapezoidal rule can be applied accurately. </p> <div class="mw-heading mw-heading2"><h2 id="Example">Example</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trapezoidal_rule&amp;action=edit&amp;section=10" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following integral is given: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0.1}^{1.3}{5xe^{-2x}{dx}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0.1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1.3</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> <mi>x</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>x</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>x</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0.1}^{1.3}{5xe^{-2x}{dx}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7a20cd0c6c82628a9ed5f5ab188996af5f5a84c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:14.579ex; height:6.176ex;" alt="{\displaystyle \int _{0.1}^{1.3}{5xe^{-2x}{dx}}}"></span> </p> <div><ol style="list-style-type:lower-alpha"><li>&#160;Use the composite trapezoidal rule to estimate the value of this integral. Use three segments.</li><li>&#160;Find the true error <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle E_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle E_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c272d27dff4daeedcd678f53904f032acbd6ebc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.541ex; height:2.509ex;" alt="{\textstyle E_{t}}"></span> for part (a).</li><li>&#160;Find the absolute relative true error <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left|\varepsilon _{t}\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>|</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left|\varepsilon _{t}\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7560d59a92f7dffcd3d09fcc72cce578b2a7368d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.203ex; height:2.843ex;" alt="{\textstyle \left|\varepsilon _{t}\right|}"></span> for part (a).</li></ol></div> <p><b>Solution</b> </p> <div><ol style="list-style-type:lower-alpha"><li>The solution using the composite trapezoidal rule with 3 segments is applied as follows. <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}{f(x){dx}}\approx {\frac {b-a}{2n}}\left\lbrack f(a)+2\sum _{i=1}^{n-1}{f(a+{ih})}+f(b)\right\rbrack }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>x</mi> </mrow> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>h</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}{f(x){dx}}\approx {\frac {b-a}{2n}}\left\lbrack f(a)+2\sum _{i=1}^{n-1}{f(a+{ih})}+f(b)\right\rbrack }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9b39f08eba72dc78815764ebd4b7d12a6fc54c3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:51.527ex; height:7.509ex;" alt="{\displaystyle \int _{a}^{b}{f(x){dx}}\approx {\frac {b-a}{2n}}\left\lbrack f(a)+2\sum _{i=1}^{n-1}{f(a+{ih})}+f(b)\right\rbrack }"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}n&amp;=3\\a&amp;=0.1\\b&amp;=1.3\\h&amp;={\frac {b-a}{n}}={\frac {1.3-0.1}{3}}=0.4\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>n</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0.1</mn> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1.3</mn> </mtd> </mtr> <mtr> <mtd> <mi>h</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1.3</mn> <mo>&#x2212;<!-- − --></mo> <mn>0.1</mn> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>=</mo> <mn>0.4</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}n&amp;=3\\a&amp;=0.1\\b&amp;=1.3\\h&amp;={\frac {b-a}{n}}={\frac {1.3-0.1}{3}}=0.4\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18e9f65373d76758629e278082dddb4bb0d8b97c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.364ex; margin-bottom: -0.307ex; width:29.937ex; height:14.509ex;" alt="{\displaystyle {\begin{aligned}n&amp;=3\\a&amp;=0.1\\b&amp;=1.3\\h&amp;={\frac {b-a}{n}}={\frac {1.3-0.1}{3}}=0.4\end{aligned}}}"></span> </p><p>Using the composite trapezoidal rule formula <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\int _{a}^{b}{f(x){dx}}\approx {\frac {b-a}{2n}}\left\lbrack f(a)+2\left\{\sum _{i=1}^{n-1}{f(a+{ih})}\right\}+f(b)\right\rbrack \;\;\;\;\;\;\;\;\;\;\;\;(3)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>x</mi> </mrow> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mrow> <mo>{</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>h</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mrow> <mo>}</mo> </mrow> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\int _{a}^{b}{f(x){dx}}\approx {\frac {b-a}{2n}}\left\lbrack f(a)+2\left\{\sum _{i=1}^{n-1}{f(a+{ih})}\right\}+f(b)\right\rbrack \;\;\;\;\;\;\;\;\;\;\;\;(3)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6948905f4aac29510365482f1e755900d8fd0221" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:67.126ex; height:7.509ex;" alt="{\displaystyle {\begin{aligned}\int _{a}^{b}{f(x){dx}}\approx {\frac {b-a}{2n}}\left\lbrack f(a)+2\left\{\sum _{i=1}^{n-1}{f(a+{ih})}\right\}+f(b)\right\rbrack \;\;\;\;\;\;\;\;\;\;\;\;(3)\end{aligned}}}"></span> </p> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}I&amp;\approx {\frac {1.3-0.1}{6}}\left\lbrack f(0.1)+2\sum _{i=1}^{3-1}{f(0.1+0.4i)}+f(1.3)\right\rbrack \\I&amp;\approx {\frac {1.3-0.1}{6}}\left\lbrack f(0.1)+2\sum _{i=1}^{2}{f(0.1+0.4i)}+f(1.3)\right\rbrack \\&amp;=0.2\lbrack f(0.1)+2f(0.5)+2f(0.9)+f(1.3)\rbrack \\&amp;=0.2[5\times 0.1\times e^{-2(0.1)}+2(5\times 0.5\times e^{-2(0.5)})+2(5\times 0.9\times e^{-2(0.9)})+5\times 1.3\times e^{-2(1.3)}\rbrack \\&amp;=0.84385\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>I</mi> </mtd> <mtd> <mi></mi> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1.3</mn> <mo>&#x2212;<!-- − --></mo> <mn>0.1</mn> </mrow> <mn>6</mn> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0.1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0.1</mn> <mo>+</mo> <mn>0.4</mn> <mi>i</mi> <mo stretchy="false">)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>1.3</mn> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>I</mi> </mtd> <mtd> <mi></mi> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1.3</mn> <mo>&#x2212;<!-- − --></mo> <mn>0.1</mn> </mrow> <mn>6</mn> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0.1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0.1</mn> <mo>+</mo> <mn>0.4</mn> <mi>i</mi> <mo stretchy="false">)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>1.3</mn> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>0.2</mn> <mo fence="false" stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0.1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0.5</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0.9</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>1.3</mn> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">]</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>0.2</mn> <mo stretchy="false">[</mo> <mn>5</mn> <mo>&#x00D7;<!-- × --></mo> <mn>0.1</mn> <mo>&#x00D7;<!-- × --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">(</mo> <mn>0.1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mn>5</mn> <mo>&#x00D7;<!-- × --></mo> <mn>0.5</mn> <mo>&#x00D7;<!-- × --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">(</mo> <mn>0.5</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mn>5</mn> <mo>&#x00D7;<!-- × --></mo> <mn>0.9</mn> <mo>&#x00D7;<!-- × --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">(</mo> <mn>0.9</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mn>5</mn> <mo>&#x00D7;<!-- × --></mo> <mn>1.3</mn> <mo>&#x00D7;<!-- × --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">(</mo> <mn>1.3</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo fence="false" stretchy="false">]</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>0.84385</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}I&amp;\approx {\frac {1.3-0.1}{6}}\left\lbrack f(0.1)+2\sum _{i=1}^{3-1}{f(0.1+0.4i)}+f(1.3)\right\rbrack \\I&amp;\approx {\frac {1.3-0.1}{6}}\left\lbrack f(0.1)+2\sum _{i=1}^{2}{f(0.1+0.4i)}+f(1.3)\right\rbrack \\&amp;=0.2\lbrack f(0.1)+2f(0.5)+2f(0.9)+f(1.3)\rbrack \\&amp;=0.2[5\times 0.1\times e^{-2(0.1)}+2(5\times 0.5\times e^{-2(0.5)})+2(5\times 0.9\times e^{-2(0.9)})+5\times 1.3\times e^{-2(1.3)}\rbrack \\&amp;=0.84385\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a750093d6288b8ddd289bfea8a0684c5226b445d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.838ex; width:90.2ex; height:24.843ex;" alt="{\displaystyle {\begin{aligned}I&amp;\approx {\frac {1.3-0.1}{6}}\left\lbrack f(0.1)+2\sum _{i=1}^{3-1}{f(0.1+0.4i)}+f(1.3)\right\rbrack \\I&amp;\approx {\frac {1.3-0.1}{6}}\left\lbrack f(0.1)+2\sum _{i=1}^{2}{f(0.1+0.4i)}+f(1.3)\right\rbrack \\&amp;=0.2\lbrack f(0.1)+2f(0.5)+2f(0.9)+f(1.3)\rbrack \\&amp;=0.2[5\times 0.1\times e^{-2(0.1)}+2(5\times 0.5\times e^{-2(0.5)})+2(5\times 0.9\times e^{-2(0.9)})+5\times 1.3\times e^{-2(1.3)}\rbrack \\&amp;=0.84385\end{aligned}}}"></span></li><li>The exact value of the above integral can be found by integration by parts and is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0.1}^{1.3}5xe^{-2x}{dx}=0.89387}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0.1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1.3</mn> </mrow> </msubsup> <mn>5</mn> <mi>x</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>x</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>x</mi> </mrow> <mo>=</mo> <mn>0.89387</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0.1}^{1.3}5xe^{-2x}{dx}=0.89387}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb25d48f6f072f57cabbfa4040bb2eabf26a82f2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.299ex; height:6.176ex;" alt="{\displaystyle \int _{0.1}^{1.3}5xe^{-2x}{dx}=0.89387}"></span> So the true error is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}E_{t}&amp;={\text{True Value}}-{\text{Approximate Value}}\\&amp;=0.89387-0.84385\\&amp;=0.05002\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>True Value</mtext> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Approximate Value</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>0.89387</mn> <mo>&#x2212;<!-- − --></mo> <mn>0.84385</mn> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>0.05002</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}E_{t}&amp;={\text{True Value}}-{\text{Approximate Value}}\\&amp;=0.89387-0.84385\\&amp;=0.05002\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad4aa19b4b7ab7d7456a81e7b38a983e64c5c95f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:40.374ex; height:8.843ex;" alt="{\displaystyle {\begin{aligned}E_{t}&amp;={\text{True Value}}-{\text{Approximate Value}}\\&amp;=0.89387-0.84385\\&amp;=0.05002\end{aligned}}}"></span></li><li>The absolute relative true error is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle {\begin{aligned}\left|\varepsilon _{t}\right|&amp;=\left|{\frac {\text{True Error}}{\text{True Value}}}\right|\times 100\%\\&amp;=\left|{\frac {0.05002}{0.89387}}\right|\times 100\%\\&amp;=5.5959\%\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow> <mo>|</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>|</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mtext>True Error</mtext> <mtext>True Value</mtext> </mfrac> </mrow> <mo>|</mo> </mrow> <mo>&#x00D7;<!-- × --></mo> <mn>100</mn> <mi mathvariant="normal">&#x0025;<!-- % --></mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>0.05002</mn> <mn>0.89387</mn> </mfrac> </mrow> <mo>|</mo> </mrow> <mo>&#x00D7;<!-- × --></mo> <mn>100</mn> <mi mathvariant="normal">&#x0025;<!-- % --></mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>5.5959</mn> <mi mathvariant="normal">&#x0025;<!-- % --></mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \displaystyle {\begin{aligned}\left|\varepsilon _{t}\right|&amp;=\left|{\frac {\text{True Error}}{\text{True Value}}}\right|\times 100\%\\&amp;=\left|{\frac {0.05002}{0.89387}}\right|\times 100\%\\&amp;=5.5959\%\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1e06aacdfc1a799b8cfeb693f674d4ea64ad58a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:28.819ex; height:14.509ex;" alt="{\displaystyle \displaystyle {\begin{aligned}\left|\varepsilon _{t}\right|&amp;=\left|{\frac {\text{True Error}}{\text{True Value}}}\right|\times 100\%\\&amp;=\left|{\frac {0.05002}{0.89387}}\right|\times 100\%\\&amp;=5.5959\%\end{aligned}}}"></span></li></ol></div> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trapezoidal_rule&amp;action=edit&amp;section=11" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Gaussian_quadrature" title="Gaussian quadrature">Gaussian quadrature</a></li> <li><a href="/wiki/Newton%E2%80%93Cotes_formulas" title="Newton–Cotes formulas">Newton–Cotes formulas</a></li> <li><a href="/wiki/Rectangle_method" class="mw-redirect" title="Rectangle method">Rectangle method</a></li> <li><a href="/wiki/Romberg%27s_method" title="Romberg&#39;s method">Romberg's method</a></li> <li><a href="/wiki/Simpson%27s_rule" title="Simpson&#39;s rule">Simpson's rule</a></li> <li><a href="/wiki/Volterra_integral_equation#Numerical_Solution_using_Trapezoidal_Rule" title="Volterra integral equation">Volterra integral equation §&#160;Numerical Solution using Trapezoidal Rule</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trapezoidal_rule&amp;action=edit&amp;section=12" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">See <a href="/wiki/Trapezoid" title="Trapezoid">Trapezoid</a> for more information on terminology.</span> </li> </ol></div></div> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFOssendrijver2016" class="citation journal cs1">Ossendrijver, Mathieu (Jan 29, 2016). <a rel="nofollow" class="external text" href="https://www.science.org/doi/full/10.1126/science.aad8085">"Ancient Babylonian astronomers calculated Jupiter's position from the area under a time-velocity graph"</a>. <i>Science</i>. <b>351</b> (6272): 482–484. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.aad8085">10.1126/science.aad8085</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26823423">26823423</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:206644971">206644971</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Ancient+Babylonian+astronomers+calculated+Jupiter%27s+position+from+the+area+under+a+time-velocity+graph&amp;rft.volume=351&amp;rft.issue=6272&amp;rft.pages=482-484&amp;rft.date=2016-01-29&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A206644971%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F26823423&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.aad8085&amp;rft.aulast=Ossendrijver&amp;rft.aufirst=Mathieu&amp;rft_id=https%3A%2F%2Fwww.science.org%2Fdoi%2Ffull%2F10.1126%2Fscience.aad8085&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrapezoidal+rule" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><a href="#CITEREFAtkinson1989">Atkinson (1989</a>, equation (5.1.7))</span> </li> <li id="cite_note-w0223-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-w0223_4-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFWeideman2002">Weideman 2002</a>, p. 23, section 2)</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><a href="#CITEREFAtkinson1989">Atkinson (1989</a>, equation (5.1.9))</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><a href="#CITEREFAtkinson1989">Atkinson (1989</a>, p. 285)</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><a href="#CITEREFBurdenFaires2011">Burden &amp; Faires (2011</a>, p.&#160;194) </span> </li> <li id="cite_note-rs90-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-rs90_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-rs90_8-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFRahmanSchmeisser1990">Rahman &amp; Schmeisser 1990</a>)</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKress1998" class="citation book cs1">Kress, Rainer (1998). <i>Numerical Analysis, volume 181 of Graduate Texts in Mathematics</i>. Springer-Verlag.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Numerical+Analysis%2C+volume+181+of+Graduate+Texts+in+Mathematics&amp;rft.pub=Springer-Verlag&amp;rft.date=1998&amp;rft.aulast=Kress&amp;rft.aufirst=Rainer&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrapezoidal+rule" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoodwin1949" class="citation journal cs1">Goodwin, E. T. (1949). "The evaluation of integrals of the form". <i>Mathematical Proceedings of the Cambridge Philosophical Society</i>. <b>45</b> (2): 241–245. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0305004100024786">10.1017/S0305004100024786</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1469-8064">1469-8064</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematical+Proceedings+of+the+Cambridge+Philosophical+Society&amp;rft.atitle=The+evaluation+of+integrals+of+the+form&amp;rft.volume=45&amp;rft.issue=2&amp;rft.pages=241-245&amp;rft.date=1949&amp;rft_id=info%3Adoi%2F10.1017%2FS0305004100024786&amp;rft.issn=1469-8064&amp;rft.aulast=Goodwin&amp;rft.aufirst=E.+T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrapezoidal+rule" class="Z3988"></span></span> </li> <li id="cite_note-:0-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_11-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:0_11-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKalambetKozminSamokhin2018" class="citation journal cs1">Kalambet, Yuri; Kozmin, Yuri; Samokhin, Andrey (2018). "Comparison of integration rules in the case of very narrow chromatographic peaks". <i>Chemometrics and Intelligent Laboratory Systems</i>. <b>179</b>: 22–30. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.chemolab.2018.06.001">10.1016/j.chemolab.2018.06.001</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0169-7439">0169-7439</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemometrics+and+Intelligent+Laboratory+Systems&amp;rft.atitle=Comparison+of+integration+rules+in+the+case+of+very+narrow+chromatographic+peaks&amp;rft.volume=179&amp;rft.pages=22-30&amp;rft.date=2018&amp;rft_id=info%3Adoi%2F10.1016%2Fj.chemolab.2018.06.001&amp;rft.issn=0169-7439&amp;rft.aulast=Kalambet&amp;rft.aufirst=Yuri&amp;rft.au=Kozmin%2C+Yuri&amp;rft.au=Samokhin%2C+Andrey&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrapezoidal+rule" class="Z3988"></span></span> </li> <li id="cite_note-w02-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-w02_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-w02_12-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-w02_12-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFWeideman2002">Weideman 2002</a>)</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://math.stackexchange.com/q/30384">"Euler-Maclaurin Summation Formula for Multiple Sums"</a>. <i>math.stackexchange.com</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=math.stackexchange.com&amp;rft.atitle=Euler-Maclaurin+Summation+Formula+for+Multiple+Sums&amp;rft_id=https%3A%2F%2Fmath.stackexchange.com%2Fq%2F30384&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrapezoidal+rule" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThompson" class="citation web cs1">Thompson, Nick. <a rel="nofollow" class="external text" href="https://bandgap.io/blog/numerical_integration_bz/">"Numerical Integration over Brillouin Zones"</a>. <i>bandgap.io</i><span class="reference-accessdate">. Retrieved <span class="nowrap">19 December</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=bandgap.io&amp;rft.atitle=Numerical+Integration+over+Brillouin+Zones&amp;rft.aulast=Thompson&amp;rft.aufirst=Nick&amp;rft_id=https%3A%2F%2Fbandgap.io%2Fblog%2Fnumerical_integration_bz%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrapezoidal+rule" class="Z3988"></span></span> </li> <li id="cite_note-cun02-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-cun02_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-cun02_15-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFCruz-UribeNeugebauer2002">Cruz-Uribe &amp; Neugebauer 2002</a>)</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trapezoidal_rule&amp;action=edit&amp;section=13" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtkinson1989" class="citation cs2">Atkinson, Kendall E. (1989), <i>An Introduction to Numerical Analysis</i> (2nd&#160;ed.), New York: <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">John Wiley &amp; Sons</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-50023-0" title="Special:BookSources/978-0-471-50023-0"><bdi>978-0-471-50023-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Numerical+Analysis&amp;rft.place=New+York&amp;rft.edition=2nd&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1989&amp;rft.isbn=978-0-471-50023-0&amp;rft.aulast=Atkinson&amp;rft.aufirst=Kendall+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrapezoidal+rule" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRahmanSchmeisser1990" class="citation cs2">Rahman, Qazi I.; Schmeisser, Gerhard (December 1990), "Characterization of the speed of convergence of the trapezoidal rule", <i>Numerische Mathematik</i>, <b>57</b> (1): 123–138, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01386402">10.1007/BF01386402</a>, <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0945-3245">0945-3245</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122245944">122245944</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Numerische+Mathematik&amp;rft.atitle=Characterization+of+the+speed+of+convergence+of+the+trapezoidal+rule&amp;rft.volume=57&amp;rft.issue=1&amp;rft.pages=123-138&amp;rft.date=1990-12&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122245944%23id-name%3DS2CID&amp;rft.issn=0945-3245&amp;rft_id=info%3Adoi%2F10.1007%2FBF01386402&amp;rft.aulast=Rahman&amp;rft.aufirst=Qazi+I.&amp;rft.au=Schmeisser%2C+Gerhard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrapezoidal+rule" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBurdenFaires2011" class="citation cs2">Burden, Richard L.; Faires, J. Douglas (2011), <i>Numerical Analysis</i> (9th&#160;ed.), Brooks/Cole</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Numerical+Analysis&amp;rft.edition=9th&amp;rft.pub=Brooks%2FCole&amp;rft.date=2011&amp;rft.aulast=Burden&amp;rft.aufirst=Richard+L.&amp;rft.au=Faires%2C+J.+Douglas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrapezoidal+rule" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeideman2002" class="citation cs2">Weideman, J. A. C. (January 2002), "Numerical Integration of Periodic Functions: A Few Examples", <i><a href="/wiki/The_American_Mathematical_Monthly" title="The American Mathematical Monthly">The American Mathematical Monthly</a></i>, <b>109</b> (1): 21–36, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2695765">10.2307/2695765</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2695765">2695765</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=Numerical+Integration+of+Periodic+Functions%3A+A+Few+Examples&amp;rft.volume=109&amp;rft.issue=1&amp;rft.pages=21-36&amp;rft.date=2002-01&amp;rft_id=info%3Adoi%2F10.2307%2F2695765&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2695765%23id-name%3DJSTOR&amp;rft.aulast=Weideman&amp;rft.aufirst=J.+A.+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrapezoidal+rule" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCruz-UribeNeugebauer2002" class="citation cs2">Cruz-Uribe, D.; Neugebauer, C. J. (2002), <a rel="nofollow" class="external text" href="http://www.emis.de/journals/JIPAM/images/031_02_JIPAM/031_02.pdf">"Sharp Error Bounds for the Trapezoidal Rule and Simpson's Rule"</a> <span class="cs1-format">(PDF)</span>, <i>Journal of Inequalities in Pure and Applied Mathematics</i>, <b>3</b> (4)</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Inequalities+in+Pure+and+Applied+Mathematics&amp;rft.atitle=Sharp+Error+Bounds+for+the+Trapezoidal+Rule+and+Simpson%27s+Rule&amp;rft.volume=3&amp;rft.issue=4&amp;rft.date=2002&amp;rft.aulast=Cruz-Uribe&amp;rft.aufirst=D.&amp;rft.au=Neugebauer%2C+C.+J.&amp;rft_id=http%3A%2F%2Fwww.emis.de%2Fjournals%2FJIPAM%2Fimages%2F031_02_JIPAM%2F031_02.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrapezoidal+rule" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trapezoidal_rule&amp;action=edit&amp;section=14" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></span></span></div> <div class="side-box-text plainlist">The Wikibook <i><a href="https://en.wikibooks.org/wiki/A-level_Mathematics" class="extiw" title="wikibooks:A-level Mathematics">A-level Mathematics</a></i> has a page on the topic of: <i><b><a href="https://en.wikibooks.org/wiki/A-level_Mathematics/C2/Integration#Trapezium_Rule" class="extiw" title="wikibooks:A-level Mathematics/C2/Integration">Trapezium Rule</a></b></i></div></div> </div> <ul><li><a rel="nofollow" class="external text" href="http://www.encyclopediaofmath.org/index.php?title=Trapezium_formula&amp;oldid=12696">Trapezium formula. I.P. Mysovskikh</a>, <i>Encyclopedia of Mathematics</i>, ed. M. Hazewinkel</li> <li><a rel="nofollow" class="external text" href="http://dedekind.mit.edu/~stevenj/trapezoidal.pdf">Notes on the convergence of trapezoidal-rule quadrature</a></li> <li><a rel="nofollow" class="external text" href="http://www.boost.org/doc/libs/1_66_0/libs/math/doc/html/math_toolkit/trapezoidal.html">An implementation of trapezoidal quadrature provided by Boost.Math</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Numerical_integration" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Numerical_integration" title="Template:Numerical integration"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Numerical_integration" title="Template talk:Numerical integration"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Numerical_integration" title="Special:EditPage/Template:Numerical integration"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Numerical_integration" style="font-size:114%;margin:0 4em"><a href="/wiki/Numerical_integration" title="Numerical integration">Numerical integration</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Newton%E2%80%93Cotes_formulas" title="Newton–Cotes formulas">Newton–Cotes formulas</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0;line-height:1.4em; padding:0.33em 0;"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Trapezoidal rule</a></li> <li><a href="/wiki/Simpson%27s_rule" title="Simpson&#39;s rule">Simpson's rule</a></li> <li><a href="/wiki/Simpson%27s_rule#Simpson&#39;s_3/8_rule" title="Simpson&#39;s rule">Simpson's 3/8 rule</a></li> <li><a href="/wiki/Adaptive_Simpson%27s_method" title="Adaptive Simpson&#39;s method">Adaptive Simpson's method</a></li> <li><a href="/wiki/Boole%27s_rule" title="Boole&#39;s rule">Boole's rule</a></li> <li><a href="/wiki/Romberg%27s_method" title="Romberg&#39;s method">Romberg's method</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Gaussian_quadrature" title="Gaussian quadrature">Gaussian quadrature</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0;line-height:1.4em; padding:0.33em 0;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gauss%E2%80%93Hermite_quadrature" title="Gauss–Hermite quadrature">Gauss–Hermite quadrature</a></li> <li><a href="/wiki/Gauss%E2%80%93Jacobi_quadrature" title="Gauss–Jacobi quadrature">Gauss–Jacobi quadrature</a></li> <li><a href="/wiki/Gauss%E2%80%93Kronrod_quadrature_formula" title="Gauss–Kronrod quadrature formula">Gauss–Kronrod quadrature formula</a></li> <li><a href="/wiki/Gauss%E2%80%93Laguerre_quadrature" title="Gauss–Laguerre quadrature">Gauss–Laguerre quadrature</a></li> <li><a href="/wiki/Gauss%E2%80%93Legendre_quadrature" title="Gauss–Legendre quadrature">Gauss–Legendre quadrature</a></li> <li><a href="/wiki/Chebyshev%E2%80%93Gauss_quadrature" title="Chebyshev–Gauss quadrature">Chebyshev–Gauss quadrature</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0;line-height:1.4em; padding:0.33em 0;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Barnes%E2%80%93Hut_simulation" title="Barnes–Hut simulation">Barnes–Hut simulation</a></li> <li><a href="/wiki/Bayesian_quadrature" title="Bayesian quadrature">Bayesian quadrature</a></li> <li><a href="/wiki/Clenshaw%E2%80%93Curtis_quadrature" title="Clenshaw–Curtis quadrature">Clenshaw–Curtis quadrature</a></li> <li><a href="/wiki/Filon_quadrature" title="Filon quadrature">Filon quadrature</a></li> <li><a href="/wiki/Lebedev_quadrature" title="Lebedev quadrature">Lebedev quadrature</a></li> <li><a href="/wiki/Tanh-sinh_quadrature" title="Tanh-sinh quadrature">Tanh-sinh quadrature</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Calculus" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Calculus_topics" title="Template:Calculus topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Calculus_topics" title="Template talk:Calculus topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Calculus_topics" title="Special:EditPage/Template:Calculus topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Calculus" style="font-size:114%;margin:0 4em"><a href="/wiki/Calculus" title="Calculus">Calculus</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Precalculus" title="Precalculus">Precalculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Binomial_theorem" title="Binomial theorem">Binomial theorem</a></li> <li><a href="/wiki/Concave_function" title="Concave function">Concave function</a></li> <li><a href="/wiki/Continuous_function" title="Continuous function">Continuous function</a></li> <li><a href="/wiki/Factorial" title="Factorial">Factorial</a></li> <li><a href="/wiki/Finite_difference" title="Finite difference">Finite difference</a></li> <li><a href="/wiki/Free_variables_and_bound_variables" title="Free variables and bound variables">Free variables and bound variables</a></li> <li><a href="/wiki/Graph_of_a_function" title="Graph of a function">Graph of a function</a></li> <li><a href="/wiki/Linear_function" title="Linear function">Linear function</a></li> <li><a href="/wiki/Radian" title="Radian">Radian</a></li> <li><a href="/wiki/Rolle%27s_theorem" title="Rolle&#39;s theorem">Rolle's theorem</a></li> <li><a href="/wiki/Secant_line" title="Secant line">Secant</a></li> <li><a href="/wiki/Slope" title="Slope">Slope</a></li> <li><a href="/wiki/Tangent" title="Tangent">Tangent</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">Limits</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Indeterminate_form" title="Indeterminate form">Indeterminate form</a></li> <li><a href="/wiki/Limit_of_a_function" title="Limit of a function">Limit of a function</a> <ul><li><a href="/wiki/One-sided_limit" title="One-sided limit">One-sided limit</a></li></ul></li> <li><a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">Limit of a sequence</a></li> <li><a href="/wiki/Order_of_approximation" title="Order of approximation">Order of approximation</a></li> <li><a href="/wiki/(%CE%B5,_%CE%B4)-definition_of_limit" class="mw-redirect" title="(ε, δ)-definition of limit">(ε, δ)-definition of limit</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Differential_calculus" title="Differential calculus">Differential calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Derivative" title="Derivative">Derivative</a></li> <li><a href="/wiki/Second_derivative" title="Second derivative">Second derivative</a></li> <li><a href="/wiki/Partial_derivative" title="Partial derivative">Partial derivative</a></li> <li><a href="/wiki/Differential_(mathematics)" title="Differential (mathematics)">Differential</a></li> <li><a href="/wiki/Differential_operator" title="Differential operator">Differential operator</a></li> <li><a href="/wiki/Mean_value_theorem" title="Mean value theorem">Mean value theorem</a></li> <li><a href="/wiki/Notation_for_differentiation" title="Notation for differentiation">Notation</a> <ul><li><a href="/wiki/Leibniz%27s_notation" title="Leibniz&#39;s notation">Leibniz's notation</a></li> <li><a href="/wiki/Newton%27s_notation_for_differentiation" class="mw-redirect" title="Newton&#39;s notation for differentiation">Newton's notation</a></li></ul></li> <li><a href="/wiki/Differentiation_rules" title="Differentiation rules">Rules of differentiation</a> <ul><li><a href="/wiki/Linearity_of_differentiation" title="Linearity of differentiation">linearity</a></li> <li><a href="/wiki/Power_rule" title="Power rule">Power</a></li> <li><a href="/wiki/Sum_rule_in_differentiation" class="mw-redirect" title="Sum rule in differentiation">Sum</a></li> <li><a href="/wiki/Chain_rule" title="Chain rule">Chain</a></li> <li><a href="/wiki/L%27H%C3%B4pital%27s_rule" title="L&#39;Hôpital&#39;s rule">L'Hôpital's</a></li> <li><a href="/wiki/Product_rule" title="Product rule">Product</a> <ul><li><a href="/wiki/General_Leibniz_rule" title="General Leibniz rule">General Leibniz's rule</a></li></ul></li> <li><a href="/wiki/Quotient_rule" title="Quotient rule">Quotient</a></li></ul></li> <li>Other techniques <ul><li><a href="/wiki/Implicit_differentiation" class="mw-redirect" title="Implicit differentiation">Implicit differentiation</a></li> <li><a href="/wiki/Inverse_functions_and_differentiation" class="mw-redirect" title="Inverse functions and differentiation">Inverse functions and differentiation</a></li> <li><a href="/wiki/Logarithmic_derivative" title="Logarithmic derivative">Logarithmic derivative</a></li> <li><a href="/wiki/Related_rates" title="Related rates">Related rates</a></li></ul></li> <li><a href="/wiki/Stationary_point" title="Stationary point">Stationary points</a> <ul><li><a href="/wiki/First_derivative_test" class="mw-redirect" title="First derivative test">First derivative test</a></li> <li><a href="/wiki/Second_derivative_test" class="mw-redirect" title="Second derivative test">Second derivative test</a></li> <li><a href="/wiki/Extreme_value_theorem" title="Extreme value theorem">Extreme value theorem</a></li> <li><a href="/wiki/Maximum_and_minimum" title="Maximum and minimum">Maximum and minimum</a></li></ul></li> <li>Further applications <ul><li><a href="/wiki/Newton%27s_method" title="Newton&#39;s method">Newton's method</a></li> <li><a href="/wiki/Taylor%27s_theorem" title="Taylor&#39;s theorem">Taylor's theorem</a></li></ul></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Differential equation</a> <ul><li><a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">Ordinary differential equation</a></li> <li><a href="/wiki/Partial_differential_equation" title="Partial differential equation">Partial differential equation</a></li> <li><a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">Stochastic differential equation</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Integral_calculus" class="mw-redirect" title="Integral calculus">Integral calculus</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Antiderivative" title="Antiderivative">Antiderivative</a></li> <li><a href="/wiki/Arc_length" title="Arc length">Arc length</a></li> <li><a href="/wiki/Riemann_integral" title="Riemann integral">Riemann integral</a></li> <li><a href="/wiki/Integral#Properties" title="Integral">Basic properties</a></li> <li><a href="/wiki/Constant_of_integration" title="Constant of integration">Constant of integration</a></li> <li><a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">Fundamental theorem of calculus</a> <ul><li><a href="/wiki/Leibniz_integral_rule" title="Leibniz integral rule">Differentiating under the integral sign</a></li></ul></li> <li><a href="/wiki/Integration_by_parts" title="Integration by parts">Integration by parts</a></li> <li><a href="/wiki/Integration_by_substitution" title="Integration by substitution">Integration by substitution</a> <ul><li><a href="/wiki/Trigonometric_substitution" title="Trigonometric substitution">trigonometric</a></li> <li><a href="/wiki/Euler_substitution" title="Euler substitution">Euler</a></li> <li><a href="/wiki/Tangent_half-angle_substitution" title="Tangent half-angle substitution">Tangent half-angle substitution</a></li></ul></li> <li><a href="/wiki/Partial_fractions_in_integration" class="mw-redirect" title="Partial fractions in integration">Partial fractions in integration</a> <ul><li><a href="/wiki/Quadratic_integral" title="Quadratic integral">Quadratic integral</a></li></ul></li> <li><a class="mw-selflink selflink">Trapezoidal rule</a></li> <li>Volumes <ul><li><a href="/wiki/Disc_integration" title="Disc integration">Washer method</a></li> <li><a href="/wiki/Shell_integration" title="Shell integration">Shell method</a></li></ul></li> <li><a href="/wiki/Integral_equation" title="Integral equation">Integral equation</a></li> <li><a href="/wiki/Integro-differential_equation" title="Integro-differential equation">Integro-differential equation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Vector_calculus" title="Vector calculus">Vector calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Derivatives <ul><li><a href="/wiki/Curl_(mathematics)" title="Curl (mathematics)">Curl</a></li> <li><a href="/wiki/Directional_derivative" title="Directional derivative">Directional derivative</a></li> <li><a href="/wiki/Divergence" title="Divergence">Divergence</a></li> <li><a href="/wiki/Gradient" title="Gradient">Gradient</a></li> <li><a href="/wiki/Laplace_operator" title="Laplace operator">Laplacian</a></li></ul></li> <li>Basic theorems <ul><li><a href="/wiki/Fundamental_Theorem_of_Line_Integrals" class="mw-redirect" title="Fundamental Theorem of Line Integrals">Line integrals</a></li> <li><a href="/wiki/Green%27s_theorem" title="Green&#39;s theorem">Green's</a></li> <li><a href="/wiki/Stokes%27_theorem" title="Stokes&#39; theorem">Stokes'</a></li> <li><a href="/wiki/Divergence_theorem" title="Divergence theorem">Gauss'</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Multivariable_calculus" title="Multivariable calculus">Multivariable calculus</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Divergence_theorem" title="Divergence theorem">Divergence theorem</a></li> <li><a href="/wiki/Geometric_calculus" title="Geometric calculus">Geometric</a></li> <li><a href="/wiki/Hessian_matrix" title="Hessian matrix">Hessian matrix</a></li> <li><a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian matrix and determinant</a></li> <li><a href="/wiki/Lagrange_multiplier" title="Lagrange multiplier">Lagrange multiplier</a></li> <li><a href="/wiki/Line_integral" title="Line integral">Line integral</a></li> <li><a href="/wiki/Matrix_calculus" title="Matrix calculus">Matrix</a></li> <li><a href="/wiki/Multiple_integral" title="Multiple integral">Multiple integral</a></li> <li><a href="/wiki/Partial_derivative" title="Partial derivative">Partial derivative</a></li> <li><a href="/wiki/Surface_integral" title="Surface integral">Surface integral</a></li> <li><a href="/wiki/Volume_integral" title="Volume integral">Volume integral</a></li> <li>Advanced topics <ul><li><a href="/wiki/Differential_form" title="Differential form">Differential forms</a></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></li> <li><a href="/wiki/Generalized_Stokes%27_theorem" class="mw-redirect" title="Generalized Stokes&#39; theorem">Generalized Stokes' theorem</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sequences and series</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arithmetico-geometric_sequence" title="Arithmetico-geometric sequence">Arithmetico-geometric sequence</a></li> <li>Types of series <ul><li><a href="/wiki/Alternating_series" title="Alternating series">Alternating</a></li> <li><a href="/wiki/Binomial_series" title="Binomial series">Binomial</a></li> <li><a href="/wiki/Fourier_series" title="Fourier series">Fourier</a></li> <li><a href="/wiki/Geometric_series" title="Geometric series">Geometric</a></li> <li><a href="/wiki/Harmonic_series_(mathematics)" title="Harmonic series (mathematics)">Harmonic</a></li> <li><a href="/wiki/Infinite_series" class="mw-redirect" title="Infinite series">Infinite</a></li> <li><a href="/wiki/Power_series" title="Power series">Power</a> <ul><li><a href="/wiki/Maclaurin_series" class="mw-redirect" title="Maclaurin series">Maclaurin</a></li> <li><a href="/wiki/Taylor_series" title="Taylor series">Taylor</a></li></ul></li> <li><a href="/wiki/Telescoping_series" title="Telescoping series">Telescoping</a></li></ul></li> <li>Tests of convergence <ul><li><a href="/wiki/Abel%27s_test" title="Abel&#39;s test">Abel's</a></li> <li><a href="/wiki/Alternating_series_test" title="Alternating series test">Alternating series</a></li> <li><a href="/wiki/Cauchy_condensation_test" title="Cauchy condensation test">Cauchy condensation</a></li> <li><a href="/wiki/Direct_comparison_test" title="Direct comparison test">Direct comparison</a></li> <li><a href="/wiki/Dirichlet%27s_test" title="Dirichlet&#39;s test">Dirichlet's</a></li> <li><a href="/wiki/Integral_test_for_convergence" title="Integral test for convergence">Integral</a></li> <li><a href="/wiki/Limit_comparison_test" title="Limit comparison test">Limit comparison</a></li> <li><a href="/wiki/Ratio_test" title="Ratio test">Ratio</a></li> <li><a href="/wiki/Root_test" title="Root test">Root</a></li> <li><a href="/wiki/Term_test" class="mw-redirect" title="Term test">Term</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Special functions<br />and numbers</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bernoulli_number" title="Bernoulli number">Bernoulli numbers</a></li> <li><a href="/wiki/E_(mathematical_constant)" title="E (mathematical constant)">e (mathematical constant)</a></li> <li><a href="/wiki/Exponential_function" title="Exponential function">Exponential function</a></li> <li><a href="/wiki/Natural_logarithm" title="Natural logarithm">Natural logarithm</a></li> <li><a href="/wiki/Stirling%27s_approximation" title="Stirling&#39;s approximation">Stirling's approximation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/History_of_calculus" title="History of calculus">History of calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adequality" title="Adequality">Adequality</a></li> <li><a href="/wiki/Brook_Taylor" title="Brook Taylor">Brook Taylor</a></li> <li><a href="/wiki/Colin_Maclaurin" title="Colin Maclaurin">Colin Maclaurin</a></li> <li><a href="/wiki/Generality_of_algebra" title="Generality of algebra">Generality of algebra</a></li> <li><a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Gottfried Wilhelm Leibniz</a></li> <li><a href="/wiki/Infinitesimal" title="Infinitesimal">Infinitesimal</a></li> <li><a href="/wiki/Infinitesimal_calculus" class="mw-redirect" title="Infinitesimal calculus">Infinitesimal calculus</a></li> <li><a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a></li> <li><a href="/wiki/Fluxion" title="Fluxion">Fluxion</a></li> <li><a href="/wiki/Law_of_Continuity" class="mw-redirect" title="Law of Continuity">Law of Continuity</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><i><a href="/wiki/Method_of_Fluxions" title="Method of Fluxions">Method of Fluxions</a></i></li> <li><i><a href="/wiki/The_Method_of_Mechanical_Theorems" title="The Method of Mechanical Theorems">The Method of Mechanical Theorems</a></i></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Lists</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Integrals" scope="row" class="navbox-group" style="width:1%;text-align:left"><a href="/wiki/Lists_of_integrals" title="Lists of integrals">Integrals</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_integrals_of_rational_functions" title="List of integrals of rational functions">rational functions</a></li> <li><a href="/wiki/List_of_integrals_of_irrational_functions" title="List of integrals of irrational functions">irrational functions</a></li> <li><a href="/wiki/List_of_integrals_of_exponential_functions" title="List of integrals of exponential functions">exponential functions</a></li> <li><a href="/wiki/List_of_integrals_of_logarithmic_functions" title="List of integrals of logarithmic functions">logarithmic functions</a></li> <li><a href="/wiki/List_of_integrals_of_hyperbolic_functions" title="List of integrals of hyperbolic functions">hyperbolic functions</a> <ul><li><a href="/wiki/List_of_integrals_of_inverse_hyperbolic_functions" title="List of integrals of inverse hyperbolic functions">inverse</a></li></ul></li> <li><a href="/wiki/List_of_integrals_of_trigonometric_functions" title="List of integrals of trigonometric functions">trigonometric functions</a> <ul><li><a href="/wiki/List_of_integrals_of_inverse_trigonometric_functions" title="List of integrals of inverse trigonometric functions">inverse</a></li> <li><a href="/wiki/Integral_of_the_secant_function" title="Integral of the secant function">Secant</a></li> <li><a href="/wiki/Integral_of_secant_cubed" title="Integral of secant cubed">Secant cubed</a></li></ul></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_limits" title="List of limits">List of limits</a></li> <li><a href="/wiki/Differentiation_rules" title="Differentiation rules">List of derivatives</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Miscellaneous topics</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Complex calculus <ul><li><a href="/wiki/Contour_integral" class="mw-redirect" title="Contour integral">Contour integral</a></li></ul></li> <li>Differential geometry <ul><li><a href="/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/wiki/Curvature" title="Curvature">Curvature</a></li> <li><a href="/wiki/Differential_geometry_of_curves" class="mw-redirect" title="Differential geometry of curves">of curves</a></li> <li><a href="/wiki/Differential_geometry_of_surfaces" title="Differential geometry of surfaces">of surfaces</a></li> <li><a href="/wiki/Tensor" title="Tensor">Tensor</a></li></ul></li> <li><a href="/wiki/Euler%E2%80%93Maclaurin_formula" title="Euler–Maclaurin formula">Euler–Maclaurin formula</a></li> <li><a href="/wiki/Gabriel%27s_horn" title="Gabriel&#39;s horn">Gabriel's horn</a></li> <li><a href="/wiki/Integration_Bee" title="Integration Bee">Integration Bee</a></li> <li><a href="/wiki/Proof_that_22/7_exceeds_%CF%80" title="Proof that 22/7 exceeds π">Proof that 22/7 exceeds π</a></li> <li><a href="/wiki/Regiomontanus%27_angle_maximization_problem" title="Regiomontanus&#39; angle maximization problem">Regiomontanus' angle maximization problem</a></li> <li><a href="/wiki/Steinmetz_solid" title="Steinmetz solid">Steinmetz solid</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐p92w8 Cached time: 20241122140724 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.488 seconds Real time usage: 0.729 seconds Preprocessor visited node count: 1874/1000000 Post‐expand include size: 63968/2097152 bytes Template argument size: 1221/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 59731/5000000 bytes Lua time usage: 0.267/10.000 seconds Lua memory usage: 7203559/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 481.484 1 -total 18.82% 90.617 3 Template:Cite_journal 18.45% 88.827 1 Template:Short_description 17.13% 82.454 3 Template:Navbox 16.43% 79.099 1 Template:Numerical_integration 11.16% 53.711 2 Template:Pagetype 7.61% 36.624 1 Template:About 7.00% 33.699 4 Template:Harvtxt 5.99% 28.848 1 Template:Wikibooks 5.51% 26.553 1 Template:Sister_project --> <!-- Saved in parser cache with key enwiki:pcache:idhash:573452-0!canonical and timestamp 20241122140724 and revision id 1235292523. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Trapezoidal_rule&amp;oldid=1235292523">https://en.wikipedia.org/w/index.php?title=Trapezoidal_rule&amp;oldid=1235292523</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Numerical_integration_(quadrature)" title="Category:Numerical integration (quadrature)">Numerical integration (quadrature)</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 18 July 2024, at 15:49<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Trapezoidal_rule&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-n2fsv","wgBackendResponseTime":182,"wgPageParseReport":{"limitreport":{"cputime":"0.488","walltime":"0.729","ppvisitednodes":{"value":1874,"limit":1000000},"postexpandincludesize":{"value":63968,"limit":2097152},"templateargumentsize":{"value":1221,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":59731,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 481.484 1 -total"," 18.82% 90.617 3 Template:Cite_journal"," 18.45% 88.827 1 Template:Short_description"," 17.13% 82.454 3 Template:Navbox"," 16.43% 79.099 1 Template:Numerical_integration"," 11.16% 53.711 2 Template:Pagetype"," 7.61% 36.624 1 Template:About"," 7.00% 33.699 4 Template:Harvtxt"," 5.99% 28.848 1 Template:Wikibooks"," 5.51% 26.553 1 Template:Sister_project"]},"scribunto":{"limitreport-timeusage":{"value":"0.267","limit":"10.000"},"limitreport-memusage":{"value":7203559,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAtkinson1989\"] = 1,\n [\"CITEREFBurdenFaires2011\"] = 1,\n [\"CITEREFCruz-UribeNeugebauer2002\"] = 1,\n [\"CITEREFGoodwin1949\"] = 1,\n [\"CITEREFKalambetKozminSamokhin2018\"] = 1,\n [\"CITEREFKress1998\"] = 1,\n [\"CITEREFOssendrijver2016\"] = 1,\n [\"CITEREFRahmanSchmeisser1990\"] = 1,\n [\"CITEREFThompson\"] = 1,\n [\"CITEREFWeideman2002\"] = 1,\n}\ntemplate_list = table#1 {\n [\"About\"] = 1,\n [\"Calculus topics\"] = 1,\n [\"Citation\"] = 5,\n [\"Cite book\"] = 1,\n [\"Cite journal\"] = 3,\n [\"Cite web\"] = 2,\n [\"Efn\"] = 1,\n [\"Harv\"] = 4,\n [\"Harvtxt\"] = 4,\n [\"Notelist\"] = 1,\n [\"Numerical integration\"] = 1,\n [\"Ordered list\"] = 2,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Short description\"] = 1,\n [\"Slink\"] = 1,\n [\"Wikibooks\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-p92w8","timestamp":"20241122140724","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Trapezoidal rule","url":"https:\/\/en.wikipedia.org\/wiki\/Trapezoidal_rule","sameAs":"http:\/\/www.wikidata.org\/entity\/Q833293","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q833293","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-04-03T09:24:08Z","dateModified":"2024-07-18T15:49:22Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/4\/40\/Trapezoidal_rule_illustration.svg","headline":"numerical integration method"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10