CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–12 of 12 results for author: <span class="mathjax">Hu, C Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&query=Hu%2C+C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Hu, C Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Hu%2C+C+Y&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Hu, C Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.02610">arXiv:1704.02610</a> <span> [<a href="https://arxiv.org/pdf/1704.02610">pdf</a>, <a href="https://arxiv.org/ps/1704.02610">ps</a>, <a href="https://arxiv.org/format/1704.02610">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.245307">10.1103/PhysRevB.94.245307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-based single-photon transistor, dynamic random access memory, diodes and routers in semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Hu%2C+C+Y">C. Y. Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.02610v1-abstract-short" style="display: inline;"> The realization of quantum computers and quantum Internet requires not only quantum gates and quantum memories, but also transistors at single-photon levels to control the flow of information encoded on single photons. Single-photon transistor (SPT) is an optical transistor in the quantum limit, which uses a single photon to open or block a photonic channel. In sharp contrast to all previous SPT p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.02610v1-abstract-full').style.display = 'inline'; document.getElementById('1704.02610v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.02610v1-abstract-full" style="display: none;"> The realization of quantum computers and quantum Internet requires not only quantum gates and quantum memories, but also transistors at single-photon levels to control the flow of information encoded on single photons. Single-photon transistor (SPT) is an optical transistor in the quantum limit, which uses a single photon to open or block a photonic channel. In sharp contrast to all previous SPT proposals which are based on single-photon nonlinearities, here I present a novel design for a high-gain and high-speed (up to THz) SPT based on a linear optical effect - giant circular birefringence (GCB) induced by a single spin in a double-sided optical microcavity. A gate photon sets the spin state via projective measurement and controls the light propagation in the optical channel. This spin-cavity transistor can be directly configured as diodes, routers, DRAM units, switches, modulators, etc. Due to the duality as quantum gate and transistor, the spin-cavity unit provides a solid-state platform ideal for future Internet - a mixture of all-optical Internet with quantum Internet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.02610v1-abstract-full').style.display = 'none'; document.getElementById('1704.02610v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 245307(2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.3787">arXiv:1409.3787</a> <span> [<a href="https://arxiv.org/pdf/1409.3787">pdf</a>, <a href="https://arxiv.org/ps/1409.3787">ps</a>, <a href="https://arxiv.org/format/1409.3787">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.075304">10.1103/PhysRevB.91.075304 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extended linear regime of cavity-QED enhanced optical circular birefringence induced by a charged quantum dot </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Hu%2C+C+Y">C. Y. Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Rarity%2C+J+G">J. G. Rarity</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.3787v2-abstract-short" style="display: inline;"> Giant optical Faraday rotation (GFR) and giant optical circular birefringence (GCB) induced by a single quantum-dot spin in an optical microcavity can be regarded as linear effects in the weak-excitation approximation if the input field lies in the low-power limit [Hu et al, Phys.Rev. B {\bf 78}, 085307(2008) and ibid {\bf 80}, 205326(2009)]. In this work, we investigate the transition from the we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.3787v2-abstract-full').style.display = 'inline'; document.getElementById('1409.3787v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.3787v2-abstract-full" style="display: none;"> Giant optical Faraday rotation (GFR) and giant optical circular birefringence (GCB) induced by a single quantum-dot spin in an optical microcavity can be regarded as linear effects in the weak-excitation approximation if the input field lies in the low-power limit [Hu et al, Phys.Rev. B {\bf 78}, 085307(2008) and ibid {\bf 80}, 205326(2009)]. In this work, we investigate the transition from the weak-excitation approximation moving into the saturation regime comparing a semiclassical approximation with the numerical results from a quantum optics toolbox [S.M. Tan, J. Opt. B {\bf 1}, 424 (1999)]. We find that the GFR and GCB around the cavity resonance in the strong coupling regime are input-field independent at intermediate powers and can be well described by the semiclassical approximation. Those associated with the dressed state resonances in the strong coupling regime or merging with the cavity resonance in the Purcell regime are sensitive to input field at intermediate powers, and cannot be well described by the semiclassical approximation due to the quantum dot saturation. As the GFR and GCB around the cavity resonance are relatively immune to the saturation effects, the rapid read out of single electron spins can be carried out with coherent state and other statistically fluctuating light fields. This also shows that high speed quantum entangling gates, robust against input power variations, can be built exploiting these linear effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.3787v2-abstract-full').style.display = 'none'; document.getElementById('1409.3787v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Section IV has been added to show the linear GFR/GCB is not affected by high-order dressed state resonances in reflection/transmission spectra. 11 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 075304 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.3357">arXiv:1305.3357</a> <span> </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum enhanced metrology in the presence of arbitrary loss </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Rarity%2C+J+G">J. G. Rarity</a>, <a href="/search/quant-ph?searchtype=author&query=Bell%2C+B">B. Bell</a>, <a href="/search/quant-ph?searchtype=author&query=Young%2C+A+B">A. B. Young</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+C+Y">C. Y. Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.3357v2-abstract-short" style="display: inline;"> We introduce the concept of entanglement enhanced interferometry from the viewpoint of the detected photons. The standard quantum limit is achieved when sequentially detected photons are assumed to be in an uncorrelated product state. However when we access the correlations between the detected photons that existed before the interferometer it becomes clear that entanglement enhanced measurement b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.3357v2-abstract-full').style.display = 'inline'; document.getElementById('1305.3357v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.3357v2-abstract-full" style="display: none;"> We introduce the concept of entanglement enhanced interferometry from the viewpoint of the detected photons. The standard quantum limit is achieved when sequentially detected photons are assumed to be in an uncorrelated product state. However when we access the correlations between the detected photons that existed before the interferometer it becomes clear that entanglement enhanced measurement beyond the quantum limit could be achieved independent of loss. We describe possible realisations of this post-measurement entanglement detection using a small array of spin photon entangling gates. We then describe a proof of principle experiment using only linear optics resources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.3357v2-abstract-full').style.display = 'none'; document.getElementById('1305.3357v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper has been withdrawn by the authors due to some crucial errors</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1208.0455">arXiv:1208.0455</a> <span> [<a href="https://arxiv.org/pdf/1208.0455">pdf</a>, <a href="https://arxiv.org/ps/1208.0455">ps</a>, <a href="https://arxiv.org/format/1208.0455">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.87.012332">10.1103/PhysRevA.87.012332 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generating entanglement with low Q-factor microcavities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Young%2C+A+B">A. B. Young</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+C+Y">C. Y. Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Rarity%2C+J+G">J. G. Rarity</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1208.0455v1-abstract-short" style="display: inline;"> We propose a method of generating entanglement using single photons and electron spins in the regime of resonance scattering. The technique involves matching the spontaneous emission rate of the spin dipole transition in bulk dielectric to the modified rate of spontaneous emission of the dipole coupled to the fundamental mode of an optical microcavity. We call this regime resonance scattering wher… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.0455v1-abstract-full').style.display = 'inline'; document.getElementById('1208.0455v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1208.0455v1-abstract-full" style="display: none;"> We propose a method of generating entanglement using single photons and electron spins in the regime of resonance scattering. The technique involves matching the spontaneous emission rate of the spin dipole transition in bulk dielectric to the modified rate of spontaneous emission of the dipole coupled to the fundamental mode of an optical microcavity. We call this regime resonance scattering where interference between the input photons and those scattered by the resonantly coupled dipole transition result in a reflectivity of zero. The contrast between this and the unit reflectivity when the cavity is empty allow us to perform a non demolition measurement of the spin and to non deterministically generate entanglement between photons and spins. The chief advantage of working in the regime of resonance scattering is that the required cavity quality factors are orders of magnitude lower than is required for strong coupling, or Purcell enhancement. This makes engineering a suitable cavity much easier particularly in materials such as diamond where etching high quality factor cavities remains a significant challenge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.0455v1-abstract-full').style.display = 'none'; document.getElementById('1208.0455v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.0384">arXiv:1011.0384</a> <span> [<a href="https://arxiv.org/pdf/1011.0384">pdf</a>, <a href="https://arxiv.org/ps/1011.0384">ps</a>, <a href="https://arxiv.org/format/1011.0384">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.84.011803">10.1103/PhysRevA.84.011803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Conditional phase shift from a quantum dot in a pillar microcavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Young%2C+A+B">A. B. Young</a>, <a href="/search/quant-ph?searchtype=author&query=Oulton%2C+R">R. Oulton</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+C+Y">C. Y. Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Thijssen%2C+A+C+T">A. C. T. Thijssen</a>, <a href="/search/quant-ph?searchtype=author&query=Schneider%2C+C">C. Schneider</a>, <a href="/search/quant-ph?searchtype=author&query=Reitzenstein%2C+S">S. Reitzenstein</a>, <a href="/search/quant-ph?searchtype=author&query=Kamp%2C+M">M. Kamp</a>, <a href="/search/quant-ph?searchtype=author&query=Hoefling%2C+S">S. Hoefling</a>, <a href="/search/quant-ph?searchtype=author&query=Worschech%2C+L">L. Worschech</a>, <a href="/search/quant-ph?searchtype=author&query=Forchel%2C+A">A. Forchel</a>, <a href="/search/quant-ph?searchtype=author&query=Rarity%2C+J+G">J. G. Rarity</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.0384v1-abstract-short" style="display: inline;"> Large conditional phase shifts from coupled atom-cavity systems are a key requirement for building a spin photon interface. This in turn would allow the realisation of hybrid quantum information schemes using spin and photonic qubits. Here we perform high resolution reflection spectroscopy of a quantum dot resonantly coupled to a pillar microcavity. We show both the change in reflectivity as the q… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.0384v1-abstract-full').style.display = 'inline'; document.getElementById('1011.0384v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.0384v1-abstract-full" style="display: none;"> Large conditional phase shifts from coupled atom-cavity systems are a key requirement for building a spin photon interface. This in turn would allow the realisation of hybrid quantum information schemes using spin and photonic qubits. Here we perform high resolution reflection spectroscopy of a quantum dot resonantly coupled to a pillar microcavity. We show both the change in reflectivity as the quantum dot is tuned through the cavity resonance, and measure the conditional phase shift induced by the quantum dot using an ultra stable interferometer. These techniques could be extended to the study of charged quantum dots, where it would be possible to realise a spin photon interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.0384v1-abstract-full').style.display = 'none'; document.getElementById('1011.0384v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1005.5545">arXiv:1005.5545</a> <span> [<a href="https://arxiv.org/pdf/1005.5545">pdf</a>, <a href="https://arxiv.org/ps/1005.5545">ps</a>, <a href="https://arxiv.org/format/1005.5545">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.83.115303">10.1103/PhysRevB.83.115303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Hu%2C+C+Y">C. Y. Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Rarity%2C+J+G">J. G. Rarity</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1005.5545v2-abstract-short" style="display: inline;"> We present a scheme for efficient state teleportation and entanglement swapping using a single quantum-dot spin in an optical microcavity based on giant circular birefringence. State teleportation or entanglement swapping is heralded by the sequential detection of two photons, and is finished after the spin measurement. The spin-cavity unit works as a complete Bell-state analyzer with a built-in s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.5545v2-abstract-full').style.display = 'inline'; document.getElementById('1005.5545v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1005.5545v2-abstract-full" style="display: none;"> We present a scheme for efficient state teleportation and entanglement swapping using a single quantum-dot spin in an optical microcavity based on giant circular birefringence. State teleportation or entanglement swapping is heralded by the sequential detection of two photons, and is finished after the spin measurement. The spin-cavity unit works as a complete Bell-state analyzer with a built-in spin memory allowing loss-resistant repeater operation. This device can work in both the weak coupling and the strong coupling regime, but high efficiencies and high fidelities are only achievable when the side leakage and cavity loss is low. We assess the feasibility of this device, and show it can be implemented with current technology. We also propose a spin manipulation method using single photons, which could be used to preserve the spin coherence via spin echo techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.5545v2-abstract-full').style.display = 'none'; document.getElementById('1005.5545v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The manuscript is extended, including BSA fidelity, efficiency, and a compatible scheme for spin manipulations and spin echoes to prolong the spin coherence</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 83, 115303 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1003.1107">arXiv:1003.1107</a> <span> [<a href="https://arxiv.org/pdf/1003.1107">pdf</a>, <a href="https://arxiv.org/ps/1003.1107">ps</a>, <a href="https://arxiv.org/format/1003.1107">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjd/e2010-00103-y">10.1140/epjd/e2010-00103-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Memories. A Review based on the European Integrated Project "Qubit Applications (QAP)" </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Simon%2C+C">C. Simon</a>, <a href="/search/quant-ph?searchtype=author&query=Afzelius%2C+M">M. Afzelius</a>, <a href="/search/quant-ph?searchtype=author&query=Appel%2C+J">J. Appel</a>, <a href="/search/quant-ph?searchtype=author&query=de+la+Giroday%2C+A+B">A. Boyer de la Giroday</a>, <a href="/search/quant-ph?searchtype=author&query=Dewhurst%2C+S+J">S. J. Dewhurst</a>, <a href="/search/quant-ph?searchtype=author&query=Gisin%2C+N">N. Gisin</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+C+Y">C. Y. Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Jelezko%2C+F">F. Jelezko</a>, <a href="/search/quant-ph?searchtype=author&query=Kroll%2C+S">S. Kroll</a>, <a href="/search/quant-ph?searchtype=author&query=Muller%2C+J+H">J. H. Muller</a>, <a href="/search/quant-ph?searchtype=author&query=Nunn%2C+J">J. Nunn</a>, <a href="/search/quant-ph?searchtype=author&query=Polzik%2C+E">E. Polzik</a>, <a href="/search/quant-ph?searchtype=author&query=Rarity%2C+J">J. Rarity</a>, <a href="/search/quant-ph?searchtype=author&query=de+Riedmatten%2C+H">H. de Riedmatten</a>, <a href="/search/quant-ph?searchtype=author&query=Rosenfeld%2C+W">W. Rosenfeld</a>, <a href="/search/quant-ph?searchtype=author&query=Shields%2C+A+J">A. J. Shields</a>, <a href="/search/quant-ph?searchtype=author&query=Skold%2C+N">N. Skold</a>, <a href="/search/quant-ph?searchtype=author&query=Stevenson%2C+R+M">R. M. Stevenson</a>, <a href="/search/quant-ph?searchtype=author&query=Thew%2C+R">R. Thew</a>, <a href="/search/quant-ph?searchtype=author&query=Walmsley%2C+I">I. Walmsley</a>, <a href="/search/quant-ph?searchtype=author&query=Weber%2C+M">M. Weber</a>, <a href="/search/quant-ph?searchtype=author&query=Weinfurter%2C+H">H. Weinfurter</a>, <a href="/search/quant-ph?searchtype=author&query=Wrachtrup%2C+J">J. Wrachtrup</a>, <a href="/search/quant-ph?searchtype=author&query=Young%2C+R+J">R. J. Young</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1003.1107v1-abstract-short" style="display: inline;"> We perform a review of various approaches to the implementation of quantum memories, with an emphasis on activities within the quantum memory sub-project of the EU Integrated Project "Qubit Applications". We begin with a brief overview over different applications for quantum memories and different types of quantum memories. We discuss the most important criteria for assessing quantum memory perf… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.1107v1-abstract-full').style.display = 'inline'; document.getElementById('1003.1107v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1003.1107v1-abstract-full" style="display: none;"> We perform a review of various approaches to the implementation of quantum memories, with an emphasis on activities within the quantum memory sub-project of the EU Integrated Project "Qubit Applications". We begin with a brief overview over different applications for quantum memories and different types of quantum memories. We discuss the most important criteria for assessing quantum memory performance and the most important physical requirements. Then we review the different approaches represented in "Qubit Applications" in some detail. They include solid-state atomic ensembles, NV centers, quantum dots, single atoms, atomic gases and optical phonons in diamond. We compare the different approaches using the discussed criteria. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.1107v1-abstract-full').style.display = 'none'; document.getElementById('1003.1107v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. D 58, 1 (2010) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0910.4549">arXiv:0910.4549</a> <span> [<a href="https://arxiv.org/pdf/0910.4549">pdf</a>, <a href="https://arxiv.org/ps/0910.4549">ps</a>, <a href="https://arxiv.org/format/0910.4549">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.80.205326">10.1103/PhysRevB.80.205326 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The entanglement beam splitter: a quantum-dot spin in a double-sided optical microcavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Hu%2C+C+Y">C. Y. Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Munro%2C+W+J">W. J. Munro</a>, <a href="/search/quant-ph?searchtype=author&query=O%27Brien%2C+J+L">J. L. O'Brien</a>, <a href="/search/quant-ph?searchtype=author&query=Rarity%2C+J+G">J. G. Rarity</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0910.4549v1-abstract-short" style="display: inline;"> We propose an entanglement beam splitter (EBS) using a quantum-dot spin in a double-sided optical microcavity. In contrast to the conventional optical beam splitter, the EBS can directly split a photon-spin product state into two constituent entangled states via transmission and reflection with high fidelity and high efficiency (up to 100 percent). This device is based on giant optical circular… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.4549v1-abstract-full').style.display = 'inline'; document.getElementById('0910.4549v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0910.4549v1-abstract-full" style="display: none;"> We propose an entanglement beam splitter (EBS) using a quantum-dot spin in a double-sided optical microcavity. In contrast to the conventional optical beam splitter, the EBS can directly split a photon-spin product state into two constituent entangled states via transmission and reflection with high fidelity and high efficiency (up to 100 percent). This device is based on giant optical circular birefringence induced by a single spin as a result of cavity quantum electrodynamics and the spin selection rule of trion transition (Pauli blocking). The EBS is robust and it is immune to the fine structure splitting in a realistic quantum dot. This quantum device can be used for deterministically creating photon-spin, photon-photon and spin-spin entanglement as well as a single-shot quantum non-demolition measurement of a single spin. Therefore, the EBS can find wide applications in quantum information science and technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.4549v1-abstract-full').style.display = 'none'; document.getElementById('0910.4549v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 80, 205326 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0901.3964">arXiv:0901.3964</a> <span> [<a href="https://arxiv.org/pdf/0901.3964">pdf</a>, <a href="https://arxiv.org/ps/0901.3964">ps</a>, <a href="https://arxiv.org/format/0901.3964">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Robust photon-spin entangling gate using a quantum-dot spin in a microcavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Hu%2C+C+Y">C. Y. Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Munro%2C+W+J">W. J. Munro</a>, <a href="/search/quant-ph?searchtype=author&query=O%27Brien%2C+J+L">J. L. O'Brien</a>, <a href="/search/quant-ph?searchtype=author&query=Rarity%2C+J+G">J. G. Rarity</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0901.3964v1-abstract-short" style="display: inline;"> Semiconductor quantum dots (known as artificial atoms) hold great promise for solid-state quantum networks and quantum computers. To realize a quantum network, it is crucial to achieve light-matter entanglement and coherent quantum-state transfer between light and matter. Here we present a robust photon-spin entangling gate with high fidelity and high efficiency (up to 50 percent) using a charge… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0901.3964v1-abstract-full').style.display = 'inline'; document.getElementById('0901.3964v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0901.3964v1-abstract-full" style="display: none;"> Semiconductor quantum dots (known as artificial atoms) hold great promise for solid-state quantum networks and quantum computers. To realize a quantum network, it is crucial to achieve light-matter entanglement and coherent quantum-state transfer between light and matter. Here we present a robust photon-spin entangling gate with high fidelity and high efficiency (up to 50 percent) using a charged quantum dot in a double-sided microcavity. This gate is based on giant circular birefringence induced by a single electron spin, and functions as an optical circular polariser which allows only one circularly-polarized component of light to be transmitted depending on the electron spin states. We show this gate can be used for single-shot quantum non-demolition measurement of a single electron spin, and can work as an entanglement filter to make a photon-spin entangler, spin entangler and photon entangler as well as a photon-spin quantum interface. This work allows us to make all building blocks for solid-state quantum networks with single photons and quantum-dot spins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0901.3964v1-abstract-full').style.display = 'none'; document.getElementById('0901.3964v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0807.0177">arXiv:0807.0177</a> <span> [<a href="https://arxiv.org/pdf/0807.0177">pdf</a>, <a href="https://arxiv.org/format/0807.0177">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/11/1/013007">10.1088/1367-2630/11/1/013007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cavity Enhanced Spin Measurement of an NV Centre in Diamond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Young%2C+A">A. Young</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+C+Y">C. Y. Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Marseglia%2C+L">L. Marseglia</a>, <a href="/search/quant-ph?searchtype=author&query=Harrison%2C+J+P">J. P. Harrison</a>, <a href="/search/quant-ph?searchtype=author&query=O%27Brien%2C+J+L">J. L. O'Brien</a>, <a href="/search/quant-ph?searchtype=author&query=Rarity%2C+J+G">J. G. Rarity</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0807.0177v1-abstract-short" style="display: inline;"> We propose a high efficiency high fidelity measurement of the ground state spin of a single NV center in diamond, using the effects of cavity quantum electrodynamics. The scheme we propose is based in the one dimensional atom or Purcell regime, removing the need for high Q cavities that are challenging to fabricate. The ground state of the NV center consists of three spin levels $^{3}A_{(m=0)}$… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0807.0177v1-abstract-full').style.display = 'inline'; document.getElementById('0807.0177v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0807.0177v1-abstract-full" style="display: none;"> We propose a high efficiency high fidelity measurement of the ground state spin of a single NV center in diamond, using the effects of cavity quantum electrodynamics. The scheme we propose is based in the one dimensional atom or Purcell regime, removing the need for high Q cavities that are challenging to fabricate. The ground state of the NV center consists of three spin levels $^{3}A_{(m=0)}$ and $^{3}A_{(m=\pm1)}$ (the $\pm1$ states are near degenerate in zero field). These two states can undergo transitions to the excited ($^{3}E$) state, with an energy difference of $\approx7-10$ $渭$eV between the two. By choosing the correct Q factor, this small detuning between the two transitions results in a dramatic change in the intensity of reflected light. We show the change in reflected intensity can allow us to read out the ground state spin using a low intensity laser with an error rate of $\approx5.5\times10^{-3}$, when realistic cavity and experimental parameters are considered. Since very low levels of light are used to probe the state of the spin we limit the number of florescence cycles, thereby limiting the non spin preserving transitions through the intermediate singlet state $^{1}A$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0807.0177v1-abstract-full').style.display = 'none'; document.getElementById('0807.0177v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2008. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0711.1431">arXiv:0711.1431</a> <span> [<a href="https://arxiv.org/pdf/0711.1431">pdf</a>, <a href="https://arxiv.org/ps/0711.1431">ps</a>, <a href="https://arxiv.org/format/0711.1431">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.78.125318">10.1103/PhysRevB.78.125318 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entangling photons using a charged quantum dot in a microcavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Hu%2C+C+Y">C. Y. Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Munro%2C+W+J">W. J. Munro</a>, <a href="/search/quant-ph?searchtype=author&query=Rarity%2C+J+G">J. G. Rarity</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0711.1431v1-abstract-short" style="display: inline;"> We present two novel schemes to generate photon polarization entanglement via single electron spins confined in charged quantum dots inside microcavities. One scheme is via entangled remote electron spins followed by negatively-charged exciton emissions, and another scheme is via a single electron spin followed by the spin state measurement. Both schemes are based on giant circular birefringence… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0711.1431v1-abstract-full').style.display = 'inline'; document.getElementById('0711.1431v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0711.1431v1-abstract-full" style="display: none;"> We present two novel schemes to generate photon polarization entanglement via single electron spins confined in charged quantum dots inside microcavities. One scheme is via entangled remote electron spins followed by negatively-charged exciton emissions, and another scheme is via a single electron spin followed by the spin state measurement. Both schemes are based on giant circular birefringence and giant Faraday rotation induced by a single electron spin in a microcavity. Our schemes are deterministic and can generate an arbitrary amount of multi-photon entanglement. Following similar procedures, a scheme for a photon-spin quantum interface is proposed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0711.1431v1-abstract-full').style.display = 'none'; document.getElementById('0711.1431v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 78, 125318 (2008) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0708.2019">arXiv:0708.2019</a> <span> [<a href="https://arxiv.org/pdf/0708.2019">pdf</a>, <a href="https://arxiv.org/ps/0708.2019">ps</a>, <a href="https://arxiv.org/format/0708.2019">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.78.085307">10.1103/PhysRevB.78.085307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant optical Faraday rotation induced by a single electron spin in a quantum dot: Applications to entangling remote spins via a single photon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Hu%2C+C+Y">C. Y. Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Young%2C+A">A. Young</a>, <a href="/search/quant-ph?searchtype=author&query=O%27Brien%2C+J+L">J. L. O'Brien</a>, <a href="/search/quant-ph?searchtype=author&query=Rarity%2C+J+G">J. G. Rarity</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0708.2019v2-abstract-short" style="display: inline;"> We propose a quantum non-demolition method - giant Faraday rotation - to detect a single electron spin in a quantum dot inside a microcavity where negatively-charged exciton strongly couples to the cavity mode. Left- and right-circularly polarized light reflected from the cavity feels different phase shifts due to cavity quantum electrodynamics and the optical spin selection rule. This yields gi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0708.2019v2-abstract-full').style.display = 'inline'; document.getElementById('0708.2019v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0708.2019v2-abstract-full" style="display: none;"> We propose a quantum non-demolition method - giant Faraday rotation - to detect a single electron spin in a quantum dot inside a microcavity where negatively-charged exciton strongly couples to the cavity mode. Left- and right-circularly polarized light reflected from the cavity feels different phase shifts due to cavity quantum electrodynamics and the optical spin selection rule. This yields giant and tunable Faraday rotation which can be easily detected experimentally. Based on this spin-detection technique, a scalable scheme to create an arbitrary amount of entanglement between two or more remote spins via a single photon is proposed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0708.2019v2-abstract-full').style.display = 'none'; document.getElementById('0708.2019v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2008; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 78, 085307 (2008) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>