CINXE.COM

core in Michael Shulman

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> core in Michael Shulman </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #504685; } a:visited.existingWikiWord { color: #352e58; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/michaelshulman/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/michaelshulman/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">Michael Shulman</span> core </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/michaelshulman/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/michaelshulman/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/michaelshulman/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="/michaelshulman/authors" title="Everybody who has made an edit">Authors</a> | <form accept-charset="utf-8" action="/michaelshulman/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title></title></head> <body> <h1 id="cores">Cores</h1> <p>The <strong>core</strong> of a category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> is the maximal subcategory of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> that is a groupoid, consisting of all its objects and all isomorphisms between them. The core is not a functor on the 2-category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Cat</mi></mrow><annotation encoding="application/x-tex">Cat</annotation></semantics></math>, but it is a functor on the (2,1)-category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Cat</mi> <mi>g</mi></msub></mrow><annotation encoding="application/x-tex">Cat_g</annotation></semantics></math> of categories, functors, and natural isomorphisms. In fact, it is a coreflection of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Cat</mi> <mi>g</mi></msub></mrow><annotation encoding="application/x-tex">Cat_g</annotation></semantics></math> into <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Gpd</mi></mrow><annotation encoding="application/x-tex">Gpd</annotation></semantics></math>.</p> <p>In general, for any 2-category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math> we write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mi>g</mi></msub></mrow><annotation encoding="application/x-tex">K_g</annotation></semantics></math> for its “homwise core:” the sub-2-category determined by all the objects and morphisms but only the iso 2-cells. Of course, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mi>g</mi></msub></mrow><annotation encoding="application/x-tex">K_g</annotation></semantics></math> is a (2,1)-category. Then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>gpd</mi><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">gpd(K)</annotation></semantics></math> is a full sub-2-category of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mi>g</mi></msub></mrow><annotation encoding="application/x-tex">K_g</annotation></semantics></math>, and we can ask whether it is coreflective. In a <a class="existingWikiWord" href="/michaelshulman/show/regular+2-category">regular 2-category</a>, however, it turns out that there is a stronger and more useful notion which implies this coreflectivity.</p> <div class="num_defn"> <h6 id="definition">Definition</h6> <p>A <strong>core</strong> of an object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> in a regular 2-category is a morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>J</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">J\to A</annotation></semantics></math> which is eso, <a class="existingWikiWord" href="/nlab/show/pseudomonic+functor">pseudomonic</a>, and where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>J</mi></mrow><annotation encoding="application/x-tex">J</annotation></semantics></math> is groupoidal.</p> </div> <div class="num_lemma"> <h6 id="lemma">Lemma</h6> <p>In a regular 2-category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math>, any core <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>J</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">J\to A</annotation></semantics></math> is a coreflection of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mi>g</mi></msub></mrow><annotation encoding="application/x-tex">K_g</annotation></semantics></math> into <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>gpd</mi><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">gpd(K)</annotation></semantics></math>.</p> </div> <div class="proof"> <h6 id="proof">Proof</h6> <p>We must show that for any groupoidal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>, the functor</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>gpd</mi><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>J</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>K</mi> <mi>g</mi></msub><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>J</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>K</mi> <mi>g</mi></msub><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">gpd(K)(G,J)=K_g(G,J)\to K_g(G,A)</annotation></semantics></math></div> <p>is an equivalence. Since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>J</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">J\to A</annotation></semantics></math> is pseudomonic in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math>, it is ff in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mi>g</mi></msub></mrow><annotation encoding="application/x-tex">K_g</annotation></semantics></math>, so this functor is full and faithful; thus it remains to show it is eso. Given any map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">G\to A</annotation></semantics></math>, take the pullback</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>P</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>J</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>G</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>A</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\array{P &amp; \to &amp; J\\ \downarrow &amp;&amp; \downarrow \\ G &amp; \to &amp; A}</annotation></semantics></math></div> <p>and let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>P</mi> <mn>1</mn></msub><mspace width="thickmathspace"></mspace><mo>⇉</mo><mspace width="thickmathspace"></mspace><mi>P</mi></mrow><annotation encoding="application/x-tex">P_1\;\rightrightarrows\; P</annotation></semantics></math> be the kernel of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>→</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">P\to G</annotation></semantics></math>. Since the composite <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">P\to A</annotation></semantics></math> descends to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>, it comes equipped with an action by this kernel. However, since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> is groupoidal, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>P</mi> <mn>1</mn></msub><mspace width="thickmathspace"></mspace><mo>⇉</mo><mspace width="thickmathspace"></mspace><mi>P</mi></mrow><annotation encoding="application/x-tex">P_1\;\rightrightarrows\; P</annotation></semantics></math> is a <a class="existingWikiWord" href="/michaelshulman/show/n-congruence">(2,1)-congruence</a>, so the 2-cell defining the action must be an isomorphism. Therefore, it must factor uniquely through the pseudomonic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>J</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">J\to A</annotation></semantics></math>, so <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>→</mo><mi>J</mi></mrow><annotation encoding="application/x-tex">P\to J</annotation></semantics></math> has an action as well; thus it descends to a map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>→</mo><mi>J</mi></mrow><annotation encoding="application/x-tex">G\to J</annotation></semantics></math>, as desired.</p> </div> <p>In particular, cores in a regular 2-category are unique up to unique equivalence. We write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>J</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">J(A)</annotation></semantics></math> for the core of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>, when it exists.</p> <div class="num_lemma"> <h6 id="lemma_2">Lemma</h6> <p>An object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> of a (2,1)-exact 2-category has a core if and only if there is an eso <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">C\to A</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is groupoidal.</p> </div> <div class="proof"> <h6 id="proof_2">Proof</h6> <p>“Only if” is clear, so suppose that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>:</mo><mi>C</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">p:C\to A</annotation></semantics></math> is eso and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is groupoidal. Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub><mo>=</mo><mi>C</mi><msub><mo>×</mo> <mi>A</mi></msub><mi>C</mi></mrow><annotation encoding="application/x-tex">C_1 = C\times_A C</annotation></semantics></math> be the pullback. Then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">C_1</annotation></semantics></math> is also groupoidal and is a (2,1)-congruence on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>, so by exactness it is the kernel of some eso <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi><mo>:</mo><mi>C</mi><mo>→</mo><mi>J</mi></mrow><annotation encoding="application/x-tex">q:C\to J</annotation></semantics></math>. There is an evident induced map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo>:</mo><mi>J</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">m:J\to A</annotation></semantics></math>; we claim that this is a core of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>.</p> <p>Evidently <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo>:</mo><mi>J</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">m:J\to A</annotation></semantics></math> is eso, since the eso <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">C\to A</annotation></semantics></math> factors through it. And since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">C_1</annotation></semantics></math> is a (2,1)-congruence, the classification of <a class="existingWikiWord" href="/michaelshulman/show/n-congruence">congruences</a> implies that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>J</mi></mrow><annotation encoding="application/x-tex">J</annotation></semantics></math> is groupoidal; thus it remains to show that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math> is pseudomonic.</p> <p>First suppose given <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>,</mo><mi>g</mi><mo>:</mo><mi>X</mi><mspace width="thickmathspace"></mspace><mo>⇉</mo><mspace width="thickmathspace"></mspace><mi>J</mi></mrow><annotation encoding="application/x-tex">f,g: X\;\rightrightarrows\; J</annotation></semantics></math>. Pulling back <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi></mrow><annotation encoding="application/x-tex">q</annotation></semantics></math> along <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>g</mi></mrow><annotation encoding="application/x-tex">g</annotation></semantics></math> gives esos <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>P</mi> <mn>1</mn></msub><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">P_1\to X</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>P</mi> <mn>2</mn></msub><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">P_2\to X</annotation></semantics></math>, whose pullback <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>=</mo><msub><mi>P</mi> <mn>1</mn></msub><msub><mo>×</mo> <mi>X</mi></msub><msub><mi>P</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">P = P_1\times_X P_2</annotation></semantics></math> comes with an eso <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>r</mi><mo>:</mo><mi>P</mi><mo>→</mo><mi>T</mi></mrow><annotation encoding="application/x-tex">r:P \to T</annotation></semantics></math> and two morphisms <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>h</mi><mo>,</mo><mi>k</mi><mo>:</mo><mi>P</mi><mo>→</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">h,k:P \to C</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi><mi>h</mi><mo>≅</mo><mi>f</mi><mi>r</mi></mrow><annotation encoding="application/x-tex">q h \cong f r</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi><mi>k</mi><mo>≅</mo><mi>g</mi><mi>r</mi></mrow><annotation encoding="application/x-tex">q k \cong g r</annotation></semantics></math>. Then any pair of 2-cells <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo>,</mo><mi>β</mi><mo>:</mo><mi>f</mi><mo>→</mo><mi>g</mi></mrow><annotation encoding="application/x-tex">\alpha,\beta: f\to g</annotation></semantics></math> induce maps <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mspace width="thickmathspace"></mspace><mo>⇉</mo><mspace width="thickmathspace"></mspace><msub><mi>C</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">P\;\rightrightarrows\; C_1</annotation></semantics></math>, since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">C_1</annotation></semantics></math> is the kernel <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>q</mi><mo stretchy="false">/</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(q/q)</annotation></semantics></math>. But if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mi>α</mi><mo>=</mo><mi>m</mi><mi>β</mi></mrow><annotation encoding="application/x-tex">m\alpha = m\beta</annotation></semantics></math>, then these two maps must be equal, since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">C_1</annotation></semantics></math> is also the kernel <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo stretchy="false">/</mo><mi>p</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(p/p)</annotation></semantics></math>. Therefore, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mi>r</mi><mo>=</mo><mi>β</mi><mi>r</mi></mrow><annotation encoding="application/x-tex">\alpha r=\beta r</annotation></semantics></math>, and since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>r</mi></mrow><annotation encoding="application/x-tex">r</annotation></semantics></math> is eso, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo>=</mo><mi>β</mi></mrow><annotation encoding="application/x-tex">\alpha=\beta</annotation></semantics></math>; thus <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math> is faithful.</p> <p>On the other hand, again given <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>,</mo><mi>g</mi><mo>:</mo><mi>X</mi><mspace width="thickmathspace"></mspace><mo>⇉</mo><mspace width="thickmathspace"></mspace><mi>J</mi></mrow><annotation encoding="application/x-tex">f,g: X\;\rightrightarrows\; J</annotation></semantics></math>, any isomorphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo>:</mo><mi>m</mi><mi>f</mi><mo>≅</mo><mi>m</mi><mi>g</mi></mrow><annotation encoding="application/x-tex">\alpha: m f\cong m g</annotation></semantics></math> induces a map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>→</mo><msub><mi>C</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">P\to C_1</annotation></semantics></math> and therefore a 2-cell <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>β</mi><mo>:</mo><mi>f</mi><mi>r</mi><mo>→</mo><mi>g</mi><mi>r</mi></mrow><annotation encoding="application/x-tex">\beta: f r\to g r</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mi>β</mi><mo>=</mo><mi>α</mi><mi>r</mi></mrow><annotation encoding="application/x-tex">m\beta = \alpha r</annotation></semantics></math>. To show that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>β</mi></mrow><annotation encoding="application/x-tex">\beta</annotation></semantics></math> descends to a 2-cell <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>→</mo><mi>g</mi></mrow><annotation encoding="application/x-tex">f\to g</annotation></semantics></math>, we must verify that it is an action 2-cell for the actions of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mspace width="thickmathspace"></mspace><mo>⇉</mo><mspace width="thickmathspace"></mspace><mi>J</mi></mrow><annotation encoding="application/x-tex">P\;\rightrightarrows\; J</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mi>r</mi></mrow><annotation encoding="application/x-tex">f r</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>g</mi><mi>r</mi></mrow><annotation encoding="application/x-tex">g r</annotation></semantics></math>. But <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mi>β</mi></mrow><annotation encoding="application/x-tex">m\beta</annotation></semantics></math> is an action 2-cell, since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mi>β</mi><mo>=</mo><mi>α</mi><mi>r</mi></mrow><annotation encoding="application/x-tex">m\beta = \alpha r</annotation></semantics></math>, and we now know that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math> is faithful, so it reflects the axiom for an action 2-cell. Therefore, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math> is full-on-isomorphisms, and hence pseudomonic.</p> </div> <h1 id="enough_groupoids">Enough groupoids</h1> <p>We say that a regular 2-category has <strong>enough groupoids</strong> if every object admits an eso from a groupoidal one. Thus, a (2,1)-exact 2-category has cores if and only if it has enough groupoids.</p> <p>Likewise, we say that a regular 2-category has <strong>enough discretes</strong> if every object admits an eso from a discrete one. Clearly this is a stronger condition. Note, though, that if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math> has enough groupoids, then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>pos</mi><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">pos(K)</annotation></semantics></math> has enough discretes, since the core of any posetal object is discrete.</p> <p>Having enough discretes, or at least enough groupoids, is a very familiar aspect of 2-categories such as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Cat</mi></mrow><annotation encoding="application/x-tex">Cat</annotation></semantics></math>. It also turns out to make the <a class="existingWikiWord" href="/michaelshulman/show/2-internal+logic">internal logic</a> noticeably easier to work with. However, in a sense none of the really “new” 2-categories have enough groupoids or discretes.</p> <ul> <li> <p>The 2-exact 2-categories having enough discretes are precisely the categories of internal categories and anafunctors in 1-exact 1-categories; see <a class="existingWikiWord" href="/michaelshulman/show/exact+completion+of+a+2-category">exact completion of a 2-category</a>. Likewise, any 2-exact 2-categories having enough groupoids consists of certain internal categories in a (2,1)-category.</p> </li> <li> <p>Basically the only <a class="existingWikiWord" href="/michaelshulman/show/Grothendieck+2-topos">Grothendieck 2-topos</a>es having enough discretes are the 2-categories of stacks on <a class="existingWikiWord" href="/michaelshulman/show/2-site">1-sites</a>, and the only ones having enough groupoids are the 2-categories of stacks on (2,1)-sites. The “honestly 2-dimensional” case of stacks on 2-sites (almost?) never have enough of either.</p> </li> </ul> <h1 id="subobjects">Subobjects</h1> <p>We also remark that cores, when they exist, “capture all the information about subobjects.”</p> <div class="num_prop"> <h6 id="proposition">Proposition</h6> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math> is a regular 2-category and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> is an object having a core <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>j</mi><mo>:</mo><mi>J</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">j:J\to A</annotation></semantics></math>, then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>j</mi> <mo>*</mo></msup><mo>:</mo><mi>Sub</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo>→</mo><mi>Sub</mi><mo stretchy="false">(</mo><mi>J</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">j^*:Sub(A)\to Sub(J)</annotation></semantics></math> is an equivalence.</p> </div> <div class="proof"> <h6 id="proof_3">Proof</h6> <p>It is a general fact in a regular 2-category that for any eso <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">f:X\to Y</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup><mo>:</mo><mi>Sub</mi><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo><mo>→</mo><mi>Sub</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f^*:Sub(Y)\to Sub(X)</annotation></semantics></math> is full (and faithful, which of course is automatic for a functor between posets). For if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup><mi>U</mi><mo>≤</mo><msup><mi>f</mi> <mo>*</mo></msup><mi>V</mi></mrow><annotation encoding="application/x-tex">f^*U \le f^*V</annotation></semantics></math>, then we have a square</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><msup><mi>f</mi> <mo>*</mo></msup><mi>U</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><msup><mi>f</mi> <mo>*</mo></msup><mi>V</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>V</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>U</mi></mtd> <mtd></mtd> <mtd><mo>→</mo></mtd> <mtd></mtd> <mtd><mi>Y</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\array{f^*U &amp; \to &amp; f^*V &amp; \to &amp; V\\ \downarrow &amp;&amp;&amp;&amp; \downarrow\\ U &amp; &amp; \to &amp; &amp; Y} </annotation></semantics></math></div> <p>in which <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup><mi>U</mi><mo>→</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">f^*U \to U</annotation></semantics></math> is eso and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">V\to Y</annotation></semantics></math> is ff, hence we have <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>→</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">U\to V</annotation></semantics></math> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math>.</p> <p>Thus, in our case, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>j</mi> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex">j^*</annotation></semantics></math> is full and faithful since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>j</mi></mrow><annotation encoding="application/x-tex">j</annotation></semantics></math> is eso, so it suffices to show that for any ff <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>→</mo><mi>J</mi></mrow><annotation encoding="application/x-tex">U\to J</annotation></semantics></math> we have <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>j</mi> <mo>*</mo></msup><msub><mo>∃</mo> <mi>j</mi></msub><mi>U</mi><mo>≤</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">j^* \exists_j U \le U</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Sub</mi><mo stretchy="false">(</mo><mi>J</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Sub(J)</annotation></semantics></math>. But we have a commutative square</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>U</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><msub><mo>∃</mo> <mi>j</mi></msub><mi>U</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>J</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>X</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\array{U &amp; \to &amp; \exists_j U\\ \downarrow &amp;&amp; \downarrow\\ J &amp; \to &amp; X} </annotation></semantics></math></div> <p>where the vertical arrows are ff and the bottom arrow <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>J</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">J\to X</annotation></semantics></math> is faithful and pseudomonic, from which it follows that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>→</mo><msub><mo>∃</mo> <mi>j</mi></msub><mi>U</mi></mrow><annotation encoding="application/x-tex">U\to \exists_j U</annotation></semantics></math> is also faithful and pseudomonic. Since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>→</mo><msub><mo>∃</mo> <mi>j</mi></msub><mi>U</mi></mrow><annotation encoding="application/x-tex">U\to \exists_j U</annotation></semantics></math> is eso by definition, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math> is a core of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo>∃</mo> <mi>j</mi></msub><mi>U</mi></mrow><annotation encoding="application/x-tex">\exists_j U</annotation></semantics></math>, and since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>j</mi> <mo>*</mo></msup><msub><mo>∃</mo> <mi>j</mi></msub><mi>U</mi></mrow><annotation encoding="application/x-tex">j^*\exists_j U</annotation></semantics></math> is a groupoid mapping to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo>∃</mo> <mi>j</mi></msub><mi>U</mi></mrow><annotation encoding="application/x-tex">\exists_j U</annotation></semantics></math>, it factors through <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math>, as desired.</p> </div> </body></html> </div> <div class="revisedby"> <p> Last revised on February 13, 2009 at 03:36:05. See the <a href="/michaelshulman/history/core" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/michaelshulman/edit/core" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussions/?CategoryID=0">Discuss</a><span class="backintime"><a href="/michaelshulman/revision/core/3" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/michaelshulman/show/diff/core" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/michaelshulman/history/core" accesskey="S" class="navlink" id="history" rel="nofollow">History (3 revisions)</a> <a href="/michaelshulman/print/core" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/michaelshulman/source/core" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10