CINXE.COM

Search results for: segmentation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: segmentation</title> <meta name="description" content="Search results for: segmentation"> <meta name="keywords" content="segmentation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="segmentation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="segmentation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 326</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: segmentation</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">326</span> A Comparative Study of Image Segmentation Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mehdi%20Hosseinzadeh">Mehdi Hosseinzadeh</a>, <a href="https://publications.waset.org/search?q=Parisa%20Khoshvaght"> Parisa Khoshvaght</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In some applications, such as image recognition or compression, segmentation refers to the process of partitioning a digital image into multiple segments. Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. Image segmentation is to classify or cluster an image into several parts (regions) according to the feature of image, for example, the pixel value or the frequency response. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain visual characteristics. The result of image segmentation is a set of segments that collectively cover the entire image, or a set of contours extracted from the image. Several image segmentation algorithms were proposed to segment an image before recognition or compression. Up to now, many image segmentation algorithms exist and be extensively applied in science and daily life. According to their segmentation method, we can approximately categorize them into region-based segmentation, data clustering, and edge-base segmentation. In this paper, we give a study of several popular image segmentation algorithms that are available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20Segmentation" title="Image Segmentation">Image Segmentation</a>, <a href="https://publications.waset.org/search?q=hierarchical%20segmentation" title=" hierarchical segmentation"> hierarchical segmentation</a>, <a href="https://publications.waset.org/search?q=partitional%20segmentation" title=" partitional segmentation"> partitional segmentation</a>, <a href="https://publications.waset.org/search?q=density%20estimation." title=" density estimation."> density estimation.</a> </p> <a href="https://publications.waset.org/10002407/a-comparative-study-of-image-segmentation-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002407/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002407/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002407/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002407/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002407/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002407/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002407/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002407/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002407/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002407/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2918</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">325</span> A Review on Image Segmentation Techniques and Performance Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=David%20Libouga%20Li%20Gwet">David Libouga Li Gwet</a>, <a href="https://publications.waset.org/search?q=Marius%20Otesteanu"> Marius Otesteanu</a>, <a href="https://publications.waset.org/search?q=Ideal%20Oscar%20Libouga"> Ideal Oscar Libouga</a>, <a href="https://publications.waset.org/search?q=Laurent%20Bitjoka"> Laurent Bitjoka</a>, <a href="https://publications.waset.org/search?q=Gheorghe%20D.%20Popa"> Gheorghe D. Popa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image segmentation is a method to extract regions of interest from an image. It remains a fundamental problem in computer vision. The increasing diversity and the complexity of segmentation algorithms have led us firstly, to make a review and classify segmentation techniques, secondly to identify the most used measures of segmentation performance and thirdly, discuss deeply on segmentation philosophy in order to help the choice of adequate segmentation techniques for some applications. To justify the relevance of our analysis, recent algorithms of segmentation are presented through the proposed classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Classification" title="Classification">Classification</a>, <a href="https://publications.waset.org/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/search?q=measures%20of%20performance." title=" measures of performance."> measures of performance.</a> </p> <a href="https://publications.waset.org/10009909/a-review-on-image-segmentation-techniques-and-performance-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009909/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009909/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009909/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009909/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009909/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009909/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009909/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009909/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009909/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009909/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2052</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">324</span> Lung Segmentation Algorithm for CAD System in CTA Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20%C3%96zkan">H. 脰zkan</a>, <a href="https://publications.waset.org/search?q=O.%20Osman"> O. Osman</a>, <a href="https://publications.waset.org/search?q=S.%20%C5%9Eahin"> S. 艦ahin</a>, <a href="https://publications.waset.org/search?q=M.%20M.%20Atasoy"> M. M. Atasoy</a>, <a href="https://publications.waset.org/search?q=H.%20Barutca"> H. Barutca</a>, <a href="https://publications.waset.org/search?q=A.%20F.%20Boz"> A. F. Boz</a>, <a href="https://publications.waset.org/search?q=A.%20Olsun"> A. Olsun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, we present a new and fast algorithm for lung segmentation using CTA images. This process is quite important especially at lung vessel segmentation, detection of pulmonary emboly, finding nodules or segmentation of airways. Applied method has been carried out at four steps. At first step, images have been applied optimal threshold. At the second one, the subsegment vessels, which have a place in lung region and which are in small dimension, have been removed. At the third one, identifying and segmentation of lungs and airway edges have been carried out. Lastly, by throwing away the airway, lung segmentation has been presented.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Lung%20segmentation" title="Lung segmentation">Lung segmentation</a>, <a href="https://publications.waset.org/search?q=computed%20tomography%0D%0Aangiography" title=" computed tomography angiography"> computed tomography angiography</a>, <a href="https://publications.waset.org/search?q=computer-aided%20diagnostic%20system" title=" computer-aided diagnostic system"> computer-aided diagnostic system</a> </p> <a href="https://publications.waset.org/15507/lung-segmentation-algorithm-for-cad-system-in-cta-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15507/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15507/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15507/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15507/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15507/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15507/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15507/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15507/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15507/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15507/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2008</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">323</span> A Comparative Study of Image Segmentation using Edge-Based Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rajiv%20Kumar">Rajiv Kumar</a>, <a href="https://publications.waset.org/search?q=Arthanariee%20A.%20M."> Arthanariee A. M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Image segmentation is the process to segment a given image into several parts so that each of these parts present in the image can be further analyzed. There are numerous techniques of image segmentation available in literature. In this paper, authors have been analyzed the edge-based approach for image segmentation. They have been implemented the different edge operators like Prewitt, Sobel, LoG, and Canny on the basis of their threshold parameter. The results of these operators have been shown for various images.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Edge%20Operator" title="Edge Operator">Edge Operator</a>, <a href="https://publications.waset.org/search?q=Edge-based%20Segmentation" title=" Edge-based Segmentation"> Edge-based Segmentation</a>, <a href="https://publications.waset.org/search?q=Image%20Segmentation" title=" Image Segmentation"> Image Segmentation</a>, <a href="https://publications.waset.org/search?q=Matlab%2010.4." title=" Matlab 10.4."> Matlab 10.4.</a> </p> <a href="https://publications.waset.org/16809/a-comparative-study-of-image-segmentation-using-edge-based-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16809/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16809/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16809/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16809/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16809/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16809/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16809/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16809/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16809/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16809/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3606</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">322</span> Fast Document Segmentation Using Contourand X-Y Cut Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Boontee%20Kruatrachue">Boontee Kruatrachue</a>, <a href="https://publications.waset.org/search?q=Narongchai%20Moongfangklang"> Narongchai Moongfangklang</a>, <a href="https://publications.waset.org/search?q=Kritawan%20Siriboon"> Kritawan Siriboon </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper describes fast and efficient method for page segmentation of document containing nonrectangular block. The segmentation is based on edge following algorithm using small window of 16 by 32 pixels. This segmentation is very fast since only border pixels of paragraph are used without scanning the whole page. Still, the segmentation may contain error if the space between them is smaller than the window used in edge following. Consequently, this paper reduce this error by first identify the missed segmentation point using direction information in edge following then, using X-Y cut at the missed segmentation point to separate the connected columns. The advantage of the proposed method is the fast identification of missed segmentation point. This methodology is faster with fewer overheads than other algorithms that need to access much more pixel of a document.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Contour%20Direction%20Technique" title="Contour Direction Technique">Contour Direction Technique</a>, <a href="https://publications.waset.org/search?q=Missed%20SegmentationPoints" title=" Missed SegmentationPoints"> Missed SegmentationPoints</a>, <a href="https://publications.waset.org/search?q=Page%20Segmentation" title=" Page Segmentation"> Page Segmentation</a>, <a href="https://publications.waset.org/search?q=Recursive%20X-Y%20Cut%20Technique" title=" Recursive X-Y Cut Technique"> Recursive X-Y Cut Technique</a> </p> <a href="https://publications.waset.org/15977/fast-document-segmentation-using-contourand-x-y-cut-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15977/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15977/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15977/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15977/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15977/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15977/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15977/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15977/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15977/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15977/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2785</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">321</span> A Comparative Study of Medical Image Segmentation Methods for Tumor Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mayssa%20Bensalah">Mayssa Bensalah</a>, <a href="https://publications.waset.org/search?q=Atef%20Boujelben"> Atef Boujelben</a>, <a href="https://publications.waset.org/search?q=Mouna%20Baklouti"> Mouna Baklouti</a>, <a href="https://publications.waset.org/search?q=Mohamed%20Abid"> Mohamed Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Image segmentation has a fundamental role in analysis and interpretation for many applications. The automated segmentation of organs and tissues throughout the body using computed imaging has been rapidly increasing. Indeed, it represents one of the most important parts of clinical diagnostic tools. In this paper, we discuss a thorough literature review of recent methods of tumour segmentation from medical images which are briefly explained with the recent contribution of various researchers. This study was followed by comparing these methods in order to define new directions to develop and improve the performance of the segmentation of the tumour area from medical images.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Features%20extraction" title="Features extraction">Features extraction</a>, <a href="https://publications.waset.org/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/search?q=medical%20images" title=" medical images"> medical images</a>, <a href="https://publications.waset.org/search?q=tumour%20detection." title=" tumour detection."> tumour detection.</a> </p> <a href="https://publications.waset.org/10011999/a-comparative-study-of-medical-image-segmentation-methods-for-tumor-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011999/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011999/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011999/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011999/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011999/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011999/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011999/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011999/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011999/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011999/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">320</span> Recognition-based Segmentation in Persian Character Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohsen%20Zand">Mohsen Zand</a>, <a href="https://publications.waset.org/search?q=Ahmadreza%20Naghsh%20Nilchi"> Ahmadreza Naghsh Nilchi</a>, <a href="https://publications.waset.org/search?q=S.%20Amirhassan%20Monadjemi"> S. Amirhassan Monadjemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical character recognition of cursive scripts presents a number of challenging problems in both segmentation and recognition processes in different languages, including Persian. In order to overcome these problems, we use a newly developed Persian word segmentation method and a recognition-based segmentation technique to overcome its segmentation problems. This method is robust as well as flexible. It also increases the system-s tolerances to font variations. The implementation results of this method on a comprehensive database show a high degree of accuracy which meets the requirements for commercial use. Extended with a suitable pre and post-processing, the method offers a simple and fast framework to develop a full OCR system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=OCR" title="OCR">OCR</a>, <a href="https://publications.waset.org/search?q=Persian" title=" Persian"> Persian</a>, <a href="https://publications.waset.org/search?q=Recognition" title=" Recognition"> Recognition</a>, <a href="https://publications.waset.org/search?q=Segmentation." title=" Segmentation."> Segmentation.</a> </p> <a href="https://publications.waset.org/9003/recognition-based-segmentation-in-persian-character-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9003/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9003/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9003/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9003/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9003/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9003/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9003/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9003/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9003/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9003/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1840</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">319</span> 3D Anisotropic Diffusion for Liver Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wan%20Nural%20Jawahir%20Wan%20Yussof">Wan Nural Jawahir Wan Yussof</a>, <a href="https://publications.waset.org/search?q=Hans%20Burkhardt"> Hans Burkhardt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liver segmentation is the first significant process for liver diagnosis of the Computed Tomography. It segments the liver structure from other abdominal organs. Sophisticated filtering techniques are indispensable for a proper segmentation. In this paper, we employ a 3D anisotropic diffusion as a preprocessing step. While removing image noise, this technique preserve the significant parts of the image, typically edges, lines or other details that are important for the interpretation of the image. The segmentation task is done by using thresholding with automatic threshold values selection and finally the false liver region is eliminated using 3D connected component. The result shows that by employing the 3D anisotropic filtering, better liver segmentation results could be achieved eventhough simple segmentation technique is used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=3D%20Anisotropic%20Diffusion" title="3D Anisotropic Diffusion">3D Anisotropic Diffusion</a>, <a href="https://publications.waset.org/search?q=non-linear%20filtering" title=" non-linear filtering"> non-linear filtering</a>, <a href="https://publications.waset.org/search?q=CT%20Liver." title=" CT Liver."> CT Liver.</a> </p> <a href="https://publications.waset.org/9741/3d-anisotropic-diffusion-for-liver-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9741/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9741/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9741/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9741/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9741/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9741/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9741/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9741/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9741/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9741/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1597</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">318</span> Image Segmentation Based on Graph Theoretical Approach to Improve the Quality of Image Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Deepthi%20Narayan">Deepthi Narayan</a>, <a href="https://publications.waset.org/search?q=Srikanta%20Murthy%20K."> Srikanta Murthy K.</a>, <a href="https://publications.waset.org/search?q=G.%20Hemantha%20Kumar"> G. Hemantha Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graph based image segmentation techniques are considered to be one of the most efficient segmentation techniques which are mainly used as time & space efficient methods for real time applications. How ever, there is need to focus on improving the quality of segmented images obtained from the earlier graph based methods. This paper proposes an improvement to the graph based image segmentation methods already described in the literature. We contribute to the existing method by proposing the use of a weighted Euclidean distance to calculate the edge weight which is the key element in building the graph. We also propose a slight modification of the segmentation method already described in the literature, which results in selection of more prominent edges in the graph. The experimental results show the improvement in the segmentation quality as compared to the methods that already exist, with a slight compromise in efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Graph%20based%20image%20segmentation" title="Graph based image segmentation">Graph based image segmentation</a>, <a href="https://publications.waset.org/search?q=threshold" title=" threshold"> threshold</a>, <a href="https://publications.waset.org/search?q=Weighted%20Euclidean%20distance." title="Weighted Euclidean distance.">Weighted Euclidean distance.</a> </p> <a href="https://publications.waset.org/7317/image-segmentation-based-on-graph-theoretical-approach-to-improve-the-quality-of-image-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7317/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7317/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7317/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7317/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7317/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7317/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7317/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7317/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7317/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7317/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1563</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">317</span> Hippocampus Segmentation using a Local Prior Model on its Boundary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dimitrios%20Zarpalas">Dimitrios Zarpalas</a>, <a href="https://publications.waset.org/search?q=Anastasios%20Zafeiropoulos"> Anastasios Zafeiropoulos</a>, <a href="https://publications.waset.org/search?q=Petros%20Daras"> Petros Daras</a>, <a href="https://publications.waset.org/search?q=Nicos%20Maglaveras">Nicos Maglaveras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Segmentation techniques based on Active Contour Models have been strongly benefited from the use of prior information during their evolution. Shape prior information is captured from a training set and is introduced in the optimization procedure to restrict the evolution into allowable shapes. In this way, the evolution converges onto regions even with weak boundaries. Although significant effort has been devoted on different ways of capturing and analyzing prior information, very little thought has been devoted on the way of combining image information with prior information. This paper focuses on a more natural way of incorporating the prior information in the level set framework. For proof of concept the method is applied on hippocampus segmentation in T1-MR images. Hippocampus segmentation is a very challenging task, due to the multivariate surrounding region and the missing boundary with the neighboring amygdala, whose intensities are identical. The proposed method, mimics the human segmentation way and thus shows enhancements in the segmentation accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Medical%20imaging%20%26%20processing" title="Medical imaging &amp; processing">Medical imaging &amp; processing</a>, <a href="https://publications.waset.org/search?q=Brain%20MRI%20segmentation" title=" Brain MRI segmentation"> Brain MRI segmentation</a>, <a href="https://publications.waset.org/search?q=hippocampus%20segmentation" title="hippocampus segmentation">hippocampus segmentation</a>, <a href="https://publications.waset.org/search?q=hippocampus-amygdala%20missingboundary" title=" hippocampus-amygdala missingboundary"> hippocampus-amygdala missingboundary</a>, <a href="https://publications.waset.org/search?q=weak%20boundary%20segmentation" title=" weak boundary segmentation"> weak boundary segmentation</a>, <a href="https://publications.waset.org/search?q=region%20based%20segmentation" title=" region based segmentation"> region based segmentation</a>, <a href="https://publications.waset.org/search?q=prior%20information" title="prior information">prior information</a>, <a href="https://publications.waset.org/search?q=local%20weighting%20scheme%20in%20level%20sets" title=" local weighting scheme in level sets"> local weighting scheme in level sets</a>, <a href="https://publications.waset.org/search?q=spatialdistribution%20of%20labels" title=" spatialdistribution of labels"> spatialdistribution of labels</a>, <a href="https://publications.waset.org/search?q=gradient%20distribution%20on%20boundary." title=" gradient distribution on boundary."> gradient distribution on boundary.</a> </p> <a href="https://publications.waset.org/3608/hippocampus-segmentation-using-a-local-prior-model-on-its-boundary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3608/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3608/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3608/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3608/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3608/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3608/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3608/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3608/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3608/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3608/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1752</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">316</span> Multidimensional Sports Spectators Segmentation and Social Media Marketing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Schmid">B. Schmid</a>, <a href="https://publications.waset.org/search?q=C.%20Kexel"> C. Kexel</a>, <a href="https://publications.waset.org/search?q=E.%20Djafarova"> E. Djafarova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding consumers is elementary for practitioners in marketing. Consumers of sports events, the sports spectators, are a particularly complex consumer crowd. In order to identify and define their profiles different segmentation approaches can be found in literature, one of them being multidimensional segmentation. Multidimensional segmentation models correspond to the broad range of attitudes, behaviours, motivations and beliefs of sports spectators, other than earlier models. Moreover, in sports there are some well-researched disciplines (e.g. football or North American sports) where consumer profiles and marketing strategies are elaborate and others where no research at all can be found. For example, there is almost no research on athletics spectators. This paper explores the current state of research on sports spectators segmentation. An in-depth literature review provides the framework for a spectators segmentation in athletics. On this basis, additional potential consumer groups and implications for social media marketing will be explored. The findings are the basis for further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Multidimensional%20segmentation" title="Multidimensional segmentation">Multidimensional segmentation</a>, <a href="https://publications.waset.org/search?q=social%20media" title=" social media"> social media</a>, <a href="https://publications.waset.org/search?q=sports%20marketing" title=" sports marketing"> sports marketing</a>, <a href="https://publications.waset.org/search?q=sports%20spectators%20segmentation." title=" sports spectators segmentation."> sports spectators segmentation.</a> </p> <a href="https://publications.waset.org/10005081/multidimensional-sports-spectators-segmentation-and-social-media-marketing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005081/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005081/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005081/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005081/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005081/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005081/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005081/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005081/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005081/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005081/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2613</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">315</span> Color Image Segmentation Using SVM Pixel Classification Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.%20Sakthivel">K. Sakthivel</a>, <a href="https://publications.waset.org/search?q=R.%20Nallusamy"> R. Nallusamy</a>, <a href="https://publications.waset.org/search?q=C.%20Kavitha"> C. Kavitha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The goal of image segmentation is to cluster pixels into salient image regions. Segmentation could be used for object recognition, occlusion boundary estimation within motion or stereo systems, image compression, image editing, or image database lookup. In this paper, we present a color image segmentation using support vector machine (SVM) pixel classification. Firstly, the pixel level color and texture features of the image are extracted and they are used as input to the SVM classifier. These features are extracted using the homogeneity model and Gabor Filter. With the extracted pixel level features, the SVM Classifier is trained by using FCM (Fuzzy C-Means).The image segmentation takes the advantage of both the pixel level information of the image and also the ability of the SVM Classifier. The Experiments show that the proposed method has a very good segmentation result and a better efficiency, increases the quality of the image segmentation compared with the other segmentation methods proposed in the literature.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20Segmentation" title="Image Segmentation">Image Segmentation</a>, <a href="https://publications.waset.org/search?q=Support%20Vector%20Machine" title=" Support Vector Machine"> Support Vector Machine</a>, <a href="https://publications.waset.org/search?q=Fuzzy%20C%E2%80%93Means" title=" Fuzzy C鈥揗eans"> Fuzzy C鈥揗eans</a>, <a href="https://publications.waset.org/search?q=Pixel%20Feature" title=" Pixel Feature"> Pixel Feature</a>, <a href="https://publications.waset.org/search?q=Texture%20Feature" title=" Texture Feature"> Texture Feature</a>, <a href="https://publications.waset.org/search?q=Homogeneity%0D%0Amodel" title=" Homogeneity model"> Homogeneity model</a>, <a href="https://publications.waset.org/search?q=Gabor%20Filter." title=" Gabor Filter."> Gabor Filter.</a> </p> <a href="https://publications.waset.org/10000781/color-image-segmentation-using-svm-pixel-classification-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000781/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000781/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000781/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000781/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000781/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000781/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000781/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000781/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000781/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000781/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">6747</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">314</span> Segmentation of Ascending and Descending Aorta in CTA Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20%C3%96zkan">H. 脰zkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a new and fast algorithm for Ascending Aorta (AscA) and Descending Aorta (DesA) segmentation is presented using Computed Tomography Angiography images. This process is quite important especially at the detection of aortic plaques, aneurysms, calcification or stenosis. The applied method has been carried out at four steps. At first step, lung segmentation is achieved. At the second one, Mediastinum Region (MR) is detected to use in the segmentation. At the third one, images have been applied optimal threshold and components which are outside of the MR were removed. Lastly, identifying and segmentation of AscA and DesA have been carried out. The performance of the applied method is found quite well for radiologists and it gives enough results to the surgeries medically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ascending%20aorta%20%28AscA%29" title="Ascending aorta (AscA)">Ascending aorta (AscA)</a>, <a href="https://publications.waset.org/search?q=Descending%20aorta%20%28DesA%29" title=" Descending aorta (DesA)"> Descending aorta (DesA)</a>, <a href="https://publications.waset.org/search?q=Computed%20tomography%20angiography%20%28CTA%29" title=" Computed tomography angiography (CTA)"> Computed tomography angiography (CTA)</a>, <a href="https://publications.waset.org/search?q=Computer%20aided%0Adetection%20%28CAD%29" title=" Computer aided detection (CAD)"> Computer aided detection (CAD)</a>, <a href="https://publications.waset.org/search?q=Segmentation" title=" Segmentation"> Segmentation</a> </p> <a href="https://publications.waset.org/313/segmentation-of-ascending-and-descending-aorta-in-cta-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/313/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/313/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/313/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/313/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/313/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/313/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/313/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/313/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/313/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/313/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1833</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">313</span> Image Segmentation Using 2-D Histogram in RGB Color Space in Digital Libraries </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=El%20Asnaoui%20Khalid">El Asnaoui Khalid</a>, <a href="https://publications.waset.org/search?q=Aksasse%20Brahim"> Aksasse Brahim</a>, <a href="https://publications.waset.org/search?q=Ouanan%20Mohammed"> Ouanan Mohammed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an unsupervised color image segmentation method. It is based on a hierarchical analysis of 2-D histogram in RGB color space. This histogram minimizes storage space of images and thus facilitates the operations between them. The improved segmentation approach shows a better identification of objects in a color image and, at the same time, the system is fast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20segmentation" title="Image segmentation">Image segmentation</a>, <a href="https://publications.waset.org/search?q=hierarchical%20analysis" title=" hierarchical analysis"> hierarchical analysis</a>, <a href="https://publications.waset.org/search?q=2-D%20histogram" title=" 2-D histogram"> 2-D histogram</a>, <a href="https://publications.waset.org/search?q=Classification." title=" Classification."> Classification.</a> </p> <a href="https://publications.waset.org/10003798/image-segmentation-using-2-d-histogram-in-rgb-color-space-in-digital-libraries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003798/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003798/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003798/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003798/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003798/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003798/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003798/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003798/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003798/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003798/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1626</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">312</span> Unconstrained Arabic Online Handwritten Words Segmentation using New HMM State Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Randa%20Ibrahim%20Elanwar">Randa Ibrahim Elanwar</a>, <a href="https://publications.waset.org/search?q=Mohsen%20Rashwan"> Mohsen Rashwan</a>, <a href="https://publications.waset.org/search?q=Samia%20Mashali"> Samia Mashali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper we propose a segmentation system for unconstrained Arabic online handwriting. An essential problem addressed by analytical-based word recognition system. The system is composed of two-stages the first is a newly special designed hidden Markov model (HMM) and the second is a rules based stage. In our system, handwritten words are broken up into characters by simultaneous segmentation-recognition using HMMs of unique design trained using online features most of which are novel. The HMM output characters boundaries represent the proposed segmentation points (PSP) which are then validated by rules-based post stage without any contextual information help to solve different segmentation errors. The HMM has been designed and tested using a self collected dataset (OHASD) [1]. Most errors cases are cured and remarkable segmentation enhancement is achieved. Very promising word and character segmentation rates are obtained regarding the unconstrained Arabic handwriting difficulty and not using context help.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Arabic" title="Arabic">Arabic</a>, <a href="https://publications.waset.org/search?q=Hidden%20Markov%20Models" title=" Hidden Markov Models"> Hidden Markov Models</a>, <a href="https://publications.waset.org/search?q=online%20handwriting" title=" online handwriting"> online handwriting</a>, <a href="https://publications.waset.org/search?q=word%20segmentation" title=" word segmentation"> word segmentation</a> </p> <a href="https://publications.waset.org/15261/unconstrained-arabic-online-handwritten-words-segmentation-using-new-hmm-state-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15261/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15261/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15261/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15261/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15261/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15261/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15261/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15261/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15261/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15261/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1836</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">311</span> Color Image Segmentation Using Kekre-s Algorithm for Vector Quantization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20B.%20Kekre">H. B. Kekre</a>, <a href="https://publications.waset.org/search?q=Tanuja%20K.%20Sarode"> Tanuja K. Sarode</a>, <a href="https://publications.waset.org/search?q=Bhakti%20Raul"> Bhakti Raul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we propose segmentation approach based on Vector Quantization technique. Here we have used Kekre-s fast codebook generation algorithm for segmenting low-altitude aerial image. This is used as a preprocessing step to form segmented homogeneous regions. Further to merge adjacent regions color similarity and volume difference criteria is used. Experiments performed with real aerial images of varied nature demonstrate that this approach does not result in over segmentation or under segmentation. The vector quantization seems to give far better results as compared to conventional on-the-fly watershed algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20Segmentation" title="Image Segmentation">Image Segmentation</a>, <a href="https://publications.waset.org/search?q=" title=""></a>, <a href="https://publications.waset.org/search?q=Codebook" title=" Codebook"> Codebook</a>, <a href="https://publications.waset.org/search?q=Codevector" title=" Codevector"> Codevector</a>, <a href="https://publications.waset.org/search?q=data%0Acompression" title=" data compression"> data compression</a>, <a href="https://publications.waset.org/search?q=Encoding" title=" Encoding"> Encoding</a> </p> <a href="https://publications.waset.org/9491/color-image-segmentation-using-kekre-s-algorithm-for-vector-quantization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9491/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9491/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9491/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9491/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9491/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9491/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9491/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9491/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9491/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9491/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2195</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">310</span> A Selective Markovianity Approach for Image Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Melouah">A. Melouah</a>, <a href="https://publications.waset.org/search?q=H.%20Merouani"> H. Merouani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new Markovianity approach is introduced in this paper. This approach reduces the response time of classic Markov Random Fields approach. First, one region is determinated by a clustering technique. Then, this region is excluded from the study. The remaining pixel form the study zone and they are selected for a Markovianity segmentation task. With Selective Markovianity approach, segmentation process is faster than classic one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Markovianity" title="Markovianity">Markovianity</a>, <a href="https://publications.waset.org/search?q=response%20time" title=" response time"> response time</a>, <a href="https://publications.waset.org/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/search?q=study%20zone." title=" study zone."> study zone.</a> </p> <a href="https://publications.waset.org/10668/a-selective-markovianity-approach-for-image-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10668/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10668/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10668/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10668/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10668/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10668/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10668/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10668/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10668/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10668/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1458</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">309</span> A new Adaptive Approach for Histogram based Mouth Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Axel%20Panning">Axel Panning</a>, <a href="https://publications.waset.org/search?q=Robert%20Niese"> Robert Niese</a>, <a href="https://publications.waset.org/search?q=Ayoub%20Al-Hamadi"> Ayoub Al-Hamadi</a>, <a href="https://publications.waset.org/search?q=Bernd%20Michaelis"> Bernd Michaelis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The segmentation of mouth and lips is a fundamental problem in facial image analyisis. In this paper we propose a method for lip segmentation based on rg-color histogram. Statistical analysis shows, using the rg-color-space is optimal for this purpose of a pure color based segmentation. Initially a rough adaptive threshold selects a histogram region, that assures that all pixels in that region are skin pixels. Based on that pixels we build a gaussian model which represents the skin pixels distribution and is utilized to obtain a refined, optimal threshold. We are not incorporating shape or edge information. In experiments we show the performance of our lip pixel segmentation method compared to the ground truth of our dataset and a conventional watershed algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Feature%20extraction" title="Feature extraction">Feature extraction</a>, <a href="https://publications.waset.org/search?q=Segmentation" title=" Segmentation"> Segmentation</a>, <a href="https://publications.waset.org/search?q=Image%20processing" title=" Image processing"> Image processing</a>, <a href="https://publications.waset.org/search?q=Application" title=" Application"> Application</a> </p> <a href="https://publications.waset.org/10143/a-new-adaptive-approach-for-histogram-based-mouth-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10143/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10143/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10143/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10143/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10143/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10143/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10143/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10143/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10143/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10143/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1788</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">308</span> An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yanwen%20Li">Yanwen Li</a>, <a href="https://publications.waset.org/search?q=Shuguo%20Xie"> Shuguo Xie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gradient%20image" title="Gradient image">Gradient image</a>, <a href="https://publications.waset.org/search?q=segmentation%20and%20extract" title=" segmentation and extract"> segmentation and extract</a>, <a href="https://publications.waset.org/search?q=mean-shift%20algorithm" title=" mean-shift algorithm"> mean-shift algorithm</a>, <a href="https://publications.waset.org/search?q=dictionary%20learning." title=" dictionary learning."> dictionary learning.</a> </p> <a href="https://publications.waset.org/10008139/an-image-segmentation-algorithm-for-gradient-target-based-on-mean-shift-and-dictionary-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008139/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008139/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008139/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008139/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008139/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008139/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008139/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008139/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008139/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008139/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">970</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">307</span> A Quantum-Inspired Evolutionary Algorithm forMultiobjective Image Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hichem%20Talbi">Hichem Talbi</a>, <a href="https://publications.waset.org/search?q=Mohamed%20Batouche"> Mohamed Batouche</a>, <a href="https://publications.waset.org/search?q=Amer%20Draa"> Amer Draa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we present a new approach to deal with image segmentation. The fact that a single segmentation result do not generally allow a higher level process to take into account all the elements included in the image has motivated the consideration of image segmentation as a multiobjective optimization problem. The proposed algorithm adopts a split/merge strategy that uses the result of the k-means algorithm as input for a quantum evolutionary algorithm to establish a set of non-dominated solutions. The evaluation is made simultaneously according to two distinct features: intra-region homogeneity and inter-region heterogeneity. The experimentation of the new approach on natural images has proved its efficiency and usefulness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20segmentation" title="Image segmentation">Image segmentation</a>, <a href="https://publications.waset.org/search?q=multiobjective%20optimization" title=" multiobjective optimization"> multiobjective optimization</a>, <a href="https://publications.waset.org/search?q=quantum%20computing" title="quantum computing">quantum computing</a>, <a href="https://publications.waset.org/search?q=evolutionary%20algorithms." title=" evolutionary algorithms."> evolutionary algorithms.</a> </p> <a href="https://publications.waset.org/7741/a-quantum-inspired-evolutionary-algorithm-formultiobjective-image-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7741/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7741/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7741/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7741/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7741/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7741/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7741/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7741/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7741/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7741/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2359</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">306</span> Automatic Segmentation of Thigh Magnetic Resonance Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Lorena%20Urricelqui">Lorena Urricelqui</a>, <a href="https://publications.waset.org/search?q=Armando%20Malanda"> Armando Malanda</a>, <a href="https://publications.waset.org/search?q=Arantxa%20Villanueva"> Arantxa Villanueva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Purpose: To develop a method for automatic segmentation of adipose and muscular tissue in thighs from magnetic resonance images. Materials and methods: Thirty obese women were scanned on a Siemens Impact Expert 1T resonance machine. 1500 images were finally used in the tests. The developed segmentation method is a recursive and multilevel process that makes use of several concepts such as shaped histograms, adaptative thresholding and connectivity. The segmentation process was implemented in Matlab and operates without the need of any user interaction. The whole set of images were segmented with the developed method. An expert radiologist segmented the same set of images following a manual procedure with the aid of the SliceOmatic software (Tomovision). These constituted our &#39;goal standard&#39;. Results: The number of coincidental pixels of the automatic and manual segmentation procedures was measured. The average results were above 90 % of success in most of the images. Conclusions: The proposed approach allows effective automatic segmentation of MRIs from thighs, comparable to expert manual performance.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Segmentation" title="Segmentation">Segmentation</a>, <a href="https://publications.waset.org/search?q=thigh" title=" thigh"> thigh</a>, <a href="https://publications.waset.org/search?q=magnetic%20resonance%20image" title=" magnetic resonance image"> magnetic resonance image</a>, <a href="https://publications.waset.org/search?q=fat" title=" fat"> fat</a>, <a href="https://publications.waset.org/search?q=muscle." title=" muscle."> muscle.</a> </p> <a href="https://publications.waset.org/14805/automatic-segmentation-of-thigh-magnetic-resonance-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14805/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14805/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14805/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14805/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14805/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14805/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14805/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14805/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14805/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14805/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1905</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">305</span> Image Segmentation by Mathematical Morphology: An Approach through Linear, Bilinear and Conformal Transformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dibyendu%20Ghoshal">Dibyendu Ghoshal</a>, <a href="https://publications.waset.org/search?q=Pinaki%20Pratim%20Acharjya"> Pinaki Pratim Acharjya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Image segmentation process based on mathematical morphology has been studied in the paper. It has been established from the first principles of the morphological process, the entire segmentation is although a nonlinear signal processing task, the constituent wise, the intermediate steps are linear, bilinear and conformal transformation and they give rise to a non linear affect in a cumulative manner.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20segmentation" title="Image segmentation">Image segmentation</a>, <a href="https://publications.waset.org/search?q=linear%20transform" title=" linear transform"> linear transform</a>, <a href="https://publications.waset.org/search?q=bilinear%20transform" title=" bilinear transform"> bilinear transform</a>, <a href="https://publications.waset.org/search?q=conformal%20transform" title=" conformal transform"> conformal transform</a>, <a href="https://publications.waset.org/search?q=mathematical%20morphology." title=" mathematical morphology. "> mathematical morphology. </a> </p> <a href="https://publications.waset.org/9999279/image-segmentation-by-mathematical-morphology-an-approach-through-linear-bilinear-and-conformal-transformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999279/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999279/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999279/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999279/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999279/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999279/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999279/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999279/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999279/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999279/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2193</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">304</span> Dual Pyramid of Agents for Image Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.%20Idir">K. Idir</a>, <a href="https://publications.waset.org/search?q=H.%20Merouani"> H. Merouani</a>, <a href="https://publications.waset.org/search?q=Y.%20Tlili."> Y. Tlili.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An effective method for the early detection of breast cancer is the mammographic screening. One of the most important signs of early breast cancer is the presence of microcalcifications. For the detection of microcalcification in a mammography image, we propose to conceive a multiagent system based on a dual irregular pyramid. An initial segmentation is obtained by an incremental approach; the result represents level zero of the pyramid. The edge information obtained by application of the Canny filter is taken into account to affine the segmentation. The edge-agents and region-agents cooper level by level of the pyramid by exploiting its various characteristics to provide the segmentation process convergence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dual%20Pyramid" title="Dual Pyramid">Dual Pyramid</a>, <a href="https://publications.waset.org/search?q=Image%20Segmentation" title=" Image Segmentation"> Image Segmentation</a>, <a href="https://publications.waset.org/search?q=Multi-agent%0ASystem" title=" Multi-agent System"> Multi-agent System</a>, <a href="https://publications.waset.org/search?q=Region%2FEdge%20Cooperation." title=" Region/Edge Cooperation."> Region/Edge Cooperation.</a> </p> <a href="https://publications.waset.org/10867/dual-pyramid-of-agents-for-image-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10867/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10867/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10867/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10867/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10867/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10867/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10867/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10867/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10867/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10867/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1917</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">303</span> Deficiencies of Lung Segmentation Techniques using CT Scan Images for CAD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nisar%20Ahmed%20Memon">Nisar Ahmed Memon</a>, <a href="https://publications.waset.org/search?q=Anwar%20Majid%20Mirza"> Anwar Majid Mirza</a>, <a href="https://publications.waset.org/search?q=S.A.M.%20Gilani"> S.A.M. Gilani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Segmentation is an important step in medical image analysis and classification for radiological evaluation or computer aided diagnosis. This paper presents the problem of inaccurate lung segmentation as observed in algorithms presented by researchers working in the area of medical image analysis. The different lung segmentation techniques have been tested using the dataset of 19 patients consisting of a total of 917 images. We obtained datasets of 11 patients from Ackron University, USA and of 8 patients from AGA Khan Medical University, Pakistan. After testing the algorithms against datasets, the deficiencies of each algorithm have been highlighted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computer%20Aided%20Diagnosis%20%28CAD%29" title="Computer Aided Diagnosis (CAD)">Computer Aided Diagnosis (CAD)</a>, <a href="https://publications.waset.org/search?q=MathematicalMorphology" title=" MathematicalMorphology"> MathematicalMorphology</a>, <a href="https://publications.waset.org/search?q=Medical%20Image%20Analysis" title=" Medical Image Analysis"> Medical Image Analysis</a>, <a href="https://publications.waset.org/search?q=Region%20Growing" title=" Region Growing"> Region Growing</a>, <a href="https://publications.waset.org/search?q=Segmentation" title="Segmentation">Segmentation</a>, <a href="https://publications.waset.org/search?q=Thresholding" title=" Thresholding"> Thresholding</a>, <a href="https://publications.waset.org/search?q=" title=""></a> </p> <a href="https://publications.waset.org/6510/deficiencies-of-lung-segmentation-techniques-using-ct-scan-images-for-cad" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6510/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6510/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6510/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6510/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6510/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6510/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6510/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6510/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6510/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6510/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2340</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">302</span> Review of the Software Used for 3D Volumetric Reconstruction of the Liver</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.%20Strakos">P. Strakos</a>, <a href="https://publications.waset.org/search?q=M.%20Jaros"> M. Jaros</a>, <a href="https://publications.waset.org/search?q=T.%20Karasek"> T. Karasek</a>, <a href="https://publications.waset.org/search?q=T.%20Kozubek"> T. Kozubek</a>, <a href="https://publications.waset.org/search?q=P.%20Vavra"> P. Vavra</a>, <a href="https://publications.waset.org/search?q=T.%20Jonszta"> T. Jonszta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In medical imaging, segmentation of different areas of human body like bones, organs, tissues, etc. is an important issue. Image segmentation allows isolating the object of interest for further processing that can lead for example to 3D model reconstruction of whole organs. Difficulty of this procedure varies from trivial for bones to quite difficult for organs like liver. The liver is being considered as one of the most difficult human body organ to segment. It is mainly for its complexity, shape versatility and proximity of other organs and tissues. Due to this facts usually substantial user effort has to be applied to obtain satisfactory results of the image segmentation. Process of image segmentation then deteriorates from automatic or semi-automatic to fairly manual one. In this paper, overview of selected available software applications that can handle semi-automatic image segmentation with further 3D volume reconstruction of human liver is presented. The applications are being evaluated based on the segmentation results of several consecutive DICOM images covering the abdominal area of the human body.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20segmentation" title="Image segmentation">Image segmentation</a>, <a href="https://publications.waset.org/search?q=semi-automatic" title=" semi-automatic"> semi-automatic</a>, <a href="https://publications.waset.org/search?q=software" title=" software"> software</a>, <a href="https://publications.waset.org/search?q=3D%0D%0Avolumetric%20reconstruction." title=" 3D volumetric reconstruction."> 3D volumetric reconstruction.</a> </p> <a href="https://publications.waset.org/10000479/review-of-the-software-used-for-3d-volumetric-reconstruction-of-the-liver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000479/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000479/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000479/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000479/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000479/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000479/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000479/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000479/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000479/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000479/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4469</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">301</span> Medical Image Segmentation and Detection of MR Images Based on Spatial Multiple-Kernel Fuzzy C-Means Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=J.%20Mehena">J. Mehena</a>, <a href="https://publications.waset.org/search?q=M.%20C.%20Adhikary"> M. C. Adhikary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a spatial multiple-kernel fuzzy C-means (SMKFCM) algorithm is introduced for segmentation problem. A linear combination of multiples kernels with spatial information is used in the kernel FCM (KFCM) and the updating rules for the linear coefficients of the composite kernels are derived as well. Fuzzy cmeans (FCM) based techniques have been widely used in medical image segmentation problem due to their simplicity and fast convergence. The proposed SMKFCM algorithm provides us a new flexible vehicle to fuse different pixel information in medical image segmentation and detection of MR images. To evaluate the robustness of the proposed segmentation algorithm in noisy environment, we add noise in medical brain tumor MR images and calculated the success rate and segmentation accuracy. From the experimental results it is clear that the proposed algorithm has better performance than those of other FCM based techniques for noisy medical MR images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Clustering" title="Clustering">Clustering</a>, <a href="https://publications.waset.org/search?q=fuzzy%20C-means" title=" fuzzy C-means"> fuzzy C-means</a>, <a href="https://publications.waset.org/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/search?q=MR%0D%0Aimages" title=" MR images"> MR images</a>, <a href="https://publications.waset.org/search?q=multiple%20kernels." title=" multiple kernels."> multiple kernels.</a> </p> <a href="https://publications.waset.org/10002499/medical-image-segmentation-and-detection-of-mr-images-based-on-spatial-multiple-kernel-fuzzy-c-means-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002499/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002499/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002499/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002499/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002499/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002499/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002499/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002499/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002499/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002499/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2129</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">300</span> Segmental and Subsegmental Lung Vessel Segmentation in CTA Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20%C3%96zkan">H. 脰zkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a novel and fast algorithm for segmental and subsegmental lung vessel segmentation is introduced using Computed Tomography Angiography images. This process is quite important especially at the detection of pulmonary embolism, lung nodule, and interstitial lung disease. The applied method has been realized at five steps. At the first step, lung segmentation is achieved. At the second one, images are threshold and differences between the images are detected. At the third one, left and right lungs are gathered with the differences which are attained in the second step and Exact Lung Image (ELI) is achieved. At the fourth one, image, which is threshold for vessel, is gathered with the ELI. Lastly, identifying and segmentation of segmental and subsegmental lung vessel have been carried out thanks to image which is obtained in the fourth step. The performance of the applied method is found quite well for radiologists and it gives enough results to the surgeries medically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computed%20tomography%20angiography%20%28CTA%29" title="Computed tomography angiography (CTA)">Computed tomography angiography (CTA)</a>, <a href="https://publications.waset.org/search?q=Computer%20aided%20detection%20%28CAD%29" title=" Computer aided detection (CAD)"> Computer aided detection (CAD)</a>, <a href="https://publications.waset.org/search?q=Lung%20segmentation" title=" Lung segmentation"> Lung segmentation</a>, <a href="https://publications.waset.org/search?q=Lung%20vessel%0Asegmentation" title=" Lung vessel segmentation"> Lung vessel segmentation</a> </p> <a href="https://publications.waset.org/6518/segmental-and-subsegmental-lung-vessel-segmentation-in-cta-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6518/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6518/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6518/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6518/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6518/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6518/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6518/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6518/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6518/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6518/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2179</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">299</span> An Automatic Gridding and Contour Based Segmentation Approach Applied to DNA Microarray Image Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Alexandra%20Oliveros">Alexandra Oliveros</a>, <a href="https://publications.waset.org/search?q=Miguel%20Sotaquir%C3%A1"> Miguel Sotaquir谩</a> </p> <p class="card-text"><strong>Abstract:</strong></p> DNA microarray technology is widely used by geneticists to diagnose or treat diseases through gene expression. This technology is based on the hybridization of a tissue-s DNA sequence into a substrate and the further analysis of the image formed by the thousands of genes in the DNA as green, red or yellow spots. The process of DNA microarray image analysis involves finding the location of the spots and the quantification of the expression level of these. In this paper, a tool to perform DNA microarray image analysis is presented, including a spot addressing method based on the image projections, the spot segmentation through contour based segmentation and the extraction of relevant information due to gene expression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Contour%20segmentation" title="Contour segmentation">Contour segmentation</a>, <a href="https://publications.waset.org/search?q=DNA%20microarrays" title=" DNA microarrays"> DNA microarrays</a>, <a href="https://publications.waset.org/search?q=edge%0Adetection" title=" edge detection"> edge detection</a>, <a href="https://publications.waset.org/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/search?q=spot%20addressing." title=" spot addressing."> spot addressing.</a> </p> <a href="https://publications.waset.org/13665/an-automatic-gridding-and-contour-based-segmentation-approach-applied-to-dna-microarray-image-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13665/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13665/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13665/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13665/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13665/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13665/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13665/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13665/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13665/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13665/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1390</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">298</span> Color Image Segmentation and Multi-Level Thresholding by Maximization of Conditional Entropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.Sukesh%20Kumar">R.Sukesh Kumar</a>, <a href="https://publications.waset.org/search?q=Abhisek%20Verma"> Abhisek Verma</a>, <a href="https://publications.waset.org/search?q=Jasprit%20Singh"> Jasprit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work a novel approach for color image segmentation using higher order entropy as a textural feature for determination of thresholds over a two dimensional image histogram is discussed. A similar approach is applied to achieve multi-level thresholding in both grayscale and color images. The paper discusses two methods of color image segmentation using RGB space as the standard processing space. The threshold for segmentation is decided by the maximization of conditional entropy in the two dimensional histogram of the color image separated into three grayscale images of R, G and B. The features are first developed independently for the three ( R, G, B ) spaces, and combined to get different color component segmentation. By considering local maxima instead of the maximum of conditional entropy yields multiple thresholds for the same image which forms the basis for multilevel thresholding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=conditional%20entropy" title="conditional entropy">conditional entropy</a>, <a href="https://publications.waset.org/search?q=multi-level%20thresholding" title=" multi-level thresholding"> multi-level thresholding</a>, <a href="https://publications.waset.org/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/search?q=two%20dimensional%20image%20histogram" title=" two dimensional image histogram"> two dimensional image histogram</a> </p> <a href="https://publications.waset.org/4566/color-image-segmentation-and-multi-level-thresholding-by-maximization-of-conditional-entropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4566/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4566/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4566/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4566/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4566/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4566/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4566/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4566/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4566/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4566/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2998</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">297</span> Nature Inspired Metaheuristic Algorithms for Multilevel Thresholding Image Segmentation - A Survey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20Deepika">C. Deepika</a>, <a href="https://publications.waset.org/search?q=J.%20Nithya"> J. Nithya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Segmentation is one of the essential tasks in image processing. Thresholding is one of the simplest techniques for performing image segmentation. Multilevel thresholding is a simple and effective technique. The primary objective of bi-level or multilevel thresholding for image segmentation is to determine a best thresholding value. To achieve multilevel thresholding various techniques has been proposed. A study of some nature inspired metaheuristic algorithms for multilevel thresholding for image segmentation is conducted. Here, we study about Particle swarm optimization (PSO) algorithm, artificial bee colony optimization (ABC), Ant colony optimization (ACO) algorithm and Cuckoo search (CS) algorithm.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ant%20colony%20optimization" title="Ant colony optimization">Ant colony optimization</a>, <a href="https://publications.waset.org/search?q=Artificial%20bee%20colony%0D%0Aoptimization" title=" Artificial bee colony optimization"> Artificial bee colony optimization</a>, <a href="https://publications.waset.org/search?q=Cuckoo%20search%20algorithm" title=" Cuckoo search algorithm"> Cuckoo search algorithm</a>, <a href="https://publications.waset.org/search?q=Image%20segmentation" title=" Image segmentation"> Image segmentation</a>, <a href="https://publications.waset.org/search?q=Multilevel%20thresholding" title=" Multilevel thresholding"> Multilevel thresholding</a>, <a href="https://publications.waset.org/search?q=Particle%20swarm%20optimization." title=" Particle swarm optimization."> Particle swarm optimization.</a> </p> <a href="https://publications.waset.org/9999738/nature-inspired-metaheuristic-algorithms-for-multilevel-thresholding-image-segmentation-a-survey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999738/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999738/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999738/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999738/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999738/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999738/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999738/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999738/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999738/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999738/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3523</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=segmentation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=segmentation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=segmentation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=segmentation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=segmentation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=segmentation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=segmentation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=segmentation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=segmentation&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=segmentation&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=segmentation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10