CINXE.COM
Search results for: fiber-modified adhesives
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fiber-modified adhesives</title> <meta name="description" content="Search results for: fiber-modified adhesives"> <meta name="keywords" content="fiber-modified adhesives"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fiber-modified adhesives" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fiber-modified adhesives"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 55</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fiber-modified adhesives</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Olive Seed Tannins as Bioadhesives for Manufacturing Wood-Based Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajith%20K.%20A.%20Gedara">Ajith K. A. Gedara</a>, <a href="https://publications.waset.org/abstracts/search?q=Iva%20Chianella"> Iva Chianella</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20L.%20Endrino"> Jose L. Endrino</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Zhang"> Qi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The olive seed is a by-product of the olive oil production industry. Biuret test and ferric chloride test revealed that water or alkali NaOH extractions of olive seed flour are rich in proteins and tannins. Both protein and tannins are well-known bio-based wood adhesives in the wood-based panel industry. In general, tannins-based adhesives show better mechanical and physical properties than protein wood adhesives. This paper explores different methods of extracting tannins from olive seed flour against the tannins yield and their applications as bio-based adhesives in wood-based panels. Once investigated, the physical and the mechanical properties of wood-based panels made using bio-adhesives based tannins extracted from olive seed flour revealed that the resulting products seemed to satisfy the Japanese Industrial Standards JIS A 5908:2015. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-adhesives" title="bio-adhesives">bio-adhesives</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20seed%20flour" title=" olive seed flour"> olive seed flour</a>, <a href="https://publications.waset.org/abstracts/search?q=tannins" title=" tannins"> tannins</a>, <a href="https://publications.waset.org/abstracts/search?q=wood-based%20panels" title=" wood-based panels"> wood-based panels</a> </p> <a href="https://publications.waset.org/abstracts/137443/olive-seed-tannins-as-bioadhesives-for-manufacturing-wood-based-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Modification of Polyurethane Adhesive for OSB/EPS Panel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stepan%20Hysek">Stepan Hysek</a>, <a href="https://publications.waset.org/abstracts/search?q=Premysl%20Sedivka"> Premysl Sedivka</a>, <a href="https://publications.waset.org/abstracts/search?q=Petra%20Gajdacova"> Petra Gajdacova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, structural composite materials contain cellulose-based particles (wood chips, fibers) bonded with synthetic adhesives containing formaldehyde (urea-formaldehyde, melamine-formaldehyde adhesives and others). Formaldehyde is classified as a volatile substance with provable carcinogenic effects on live organisms, and an emphasis has been put on continual reduction of its content in products. One potential solution could be the development of an agglomerated material which does not contain adhesives releasing formaldehyde. A potential alternative to formaldehyde-based adhesives could be polyurethane adhesives containing no formaldehyde. Such adhesives have been increasingly used in applications where a few years ago formaldehyde-based adhesives were the only option. Advantages of polyurethane adhesive in comparison with others in the industry include the high elasticity of the joint, which is able to resist dynamic stress, and resistance to increased humidity and climatic effects. These properties predict polyurethane adhesives to be used in OSB/EPS panel production. The objective of this paper is to develop an adhesive for bonding of sandwich panels made of material based on wood and other materials, e.g. SIP) and optimization of input components in order to obtain an adhesive with required properties suitable for bonding of the given materials without involvement of formaldehyde. It was found that polyurethane recyclate as a filler is suitable modification of polyurethane adhesive and results have clearly revealed that modified adhesive can be used for OSB/EPS panel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive" title="adhesive">adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title=" polyurethane"> polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=recyclate" title=" recyclate"> recyclate</a>, <a href="https://publications.waset.org/abstracts/search?q=SIP" title=" SIP"> SIP</a> </p> <a href="https://publications.waset.org/abstracts/72185/modification-of-polyurethane-adhesive-for-osbeps-panel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> The Influence of Fiber Fillers on the Bonding Safety of Structural Adhesives: A Fracture Analytical Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brandtner-Hafner%20Martin">Brandtner-Hafner Martin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adhesives have established themselves as an innovative joining technology in the industry. Their strengths lie in joining different materials, avoiding structural weakening as in welding or screwing, and enabling lightweight construction methods. Now there are a variety of ways to improve the efficiency and effectiveness of bonded joints. One way is to add fiber fillers. This leads to an improvement in adhesion and cohesion (structural integrity). In this study, the effectiveness of fiber-modified adhesives for bonding different construction materials is reviewed. A series of experimental tests were performed using the fracture analytical GF principle to study the adhesive bonding safety and performance of the joint. Three different structural adhesive systems based on epoxy, CA/A hybrid, and PUR were modified with different fiber materials on different substrates. The results show that significant performance improvements can be achieved and that bonding reliability can be sustainably increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber-modified%20adhesives" title="fiber-modified adhesives">fiber-modified adhesives</a>, <a href="https://publications.waset.org/abstracts/search?q=bonding%20safety" title=" bonding safety"> bonding safety</a>, <a href="https://publications.waset.org/abstracts/search?q=GF-principle" title=" GF-principle"> GF-principle</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20analysis" title=" fracture analysis"> fracture analysis</a> </p> <a href="https://publications.waset.org/abstracts/137880/the-influence-of-fiber-fillers-on-the-bonding-safety-of-structural-adhesives-a-fracture-analytical-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Adhesive Based upon Polyvinyl Alcohol And Chemical Modified Oca (Oxalis tuberosa) Starch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samantha%20Borja">Samantha Borja</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Valle"> Vladimir Valle</a>, <a href="https://publications.waset.org/abstracts/search?q=Pamela%20Molina"> Pamela Molina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of adhesives from renewable raw materials attracts the attention of the scientific community, due to it promises the reduction of the dependence with materials derived from oil. This work proposes the use of modified 'oca (Oxalis tuberosa)' starch and polyvinyl alcohol (PVA) in the elaboration of adhesives for lignocellulosic substrates. The investigation focused on the formulation of adhesives with 3 different PVA:starch (modified and native) ratios (of 1,0:0,33; 1,0:1,0; 1,0:1,67). The first step to perform it was the chemical modification of starch through acid hydrolysis and a subsequent urea treatment to get carbamate starch. Then, the adhesive obtained was characterized in terms of instantaneous viscosity, Fourier-transform infrared spectroscopy (FTIR) and shear strength. The results showed that viscosity and mechanical tests exhibit data with the same tendency in relation to the native and modified starch concentration. It was observed that the data started to reduce its values to a certain concentration, where the values began to grow. On the other hand, two relevant bands were found in the FTIR spectrogram. The first in 3300 cm⁻¹ of OH group with the same intensity for all the essays and the other one in 2900 cm⁻¹, belonging to the group of alkanes with a different intensity for each adhesive. On the whole, the ratio PVA:starch (1:1) will not favor crosslinking in the adhesive structure and causes the viscosity reduction, whereas, in the others ones, the viscosity is higher. It was also observed that adhesives made with modified starch had better characteristics, but the adhesives with high concentrations of native starch could equal the properties of the adhesives made with low concentrations of modified starch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyvinyl%20alcohol" title="polyvinyl alcohol">polyvinyl alcohol</a>, <a href="https://publications.waset.org/abstracts/search?q=PVA" title=" PVA"> PVA</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20modification" title=" chemical modification"> chemical modification</a>, <a href="https://publications.waset.org/abstracts/search?q=starch" title=" starch"> starch</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a> </p> <a href="https://publications.waset.org/abstracts/114442/adhesive-based-upon-polyvinyl-alcohol-and-chemical-modified-oca-oxalis-tuberosa-starch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> The Influence of Fiber Fillers on the Bonding Safety of Wood-Adhesive Interfaces: A Fracture Energetic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Brandtner-Hafner">M. H. Brandtner-Hafner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adhesives have established themselves as an innovative joining technology in the wood industry. The strengths of adhesive bonding lie in the realization of lightweight designs, the avoidance of material weakening, and the joining of different types of materials. There is now a number of ways to positively influence the properties of bonded joints. One way is to add fiber fillers. This leads to an improvement in adhesion, structural integrity, and fracture toughness. In this study, the effectiveness of fiber-modified adhesives for bonding wooden joints is reviewed. A series of experimental tests were performed using the fracture analytical GF-principle to study the adhesive bonding safety and performance of the wood-adhesive interface. Two different construction adhesives based on epoxy and PUR were modified with different fiber materials and applied to bond wooden joints. The results show that bonding efficiency by adding fibrous materials to the bonding matrix leads to significant improvements in structural material properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber-modified%20adhesives" title="fiber-modified adhesives">fiber-modified adhesives</a>, <a href="https://publications.waset.org/abstracts/search?q=bonding%20safety" title=" bonding safety"> bonding safety</a>, <a href="https://publications.waset.org/abstracts/search?q=wood-adhesive%20interfaces" title=" wood-adhesive interfaces"> wood-adhesive interfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20analysis" title=" fracture analysis"> fracture analysis</a> </p> <a href="https://publications.waset.org/abstracts/137969/the-influence-of-fiber-fillers-on-the-bonding-safety-of-wood-adhesive-interfaces-a-fracture-energetic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Genome of Bio-Based Construction Adhesives and Complex Rheological Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ellie%20Fini">Ellie Fini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahour%20Parast"> Mahour Parast</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Oldham"> Daniel Oldham</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrzad%20Hosseinnezhad"> Shahrzad Hosseinnezhad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the relationship between molecular species of four different bio-based adhesives (made from Swine Manure, Miscanthus Pellet, Corn Stover, and Wood Pellet) and their rheological behavior before and after they undergo extensive oxidative aging. To study the effect of oxidative aging on the chemical structure of bio-adhesives, Infrared Attenuated Total Reflectance Spectroscopy (Fourier transform infrared) was utilised. In addition, a Drop Shape Analyser, Rotational Viscometer, and Dynamic Shear Rheometer were used to evaluate the surface properties and rheological behaviour of each bio-adhesive. Overall, bio-adhesives were found to be significantly different in terms of their ageing characteristics. Accordingly, their surface and rheological properties were found to be ranked differently before and after ageing. The results showed that the bio-adhesive from swine manure is less susceptible to aging compared to plant-based bio-oils. This can be further attributed to the chemical structure and the high lipid contents of the bio-adhesive from swine manure, making it less affected by oxidative ageing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-adhesive" title="bio-adhesive">bio-adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-mass" title=" bio-mass"> bio-mass</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20genome" title=" material genome"> material genome</a> </p> <a href="https://publications.waset.org/abstracts/55277/genome-of-bio-based-construction-adhesives-and-complex-rheological-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Synthesis and Properties of Oxidized Corn Starch Based Wood Adhesive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salise%20Oktay">Salise Oktay</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilgun%20Kizilcan"> Nilgun Kizilcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Basak%20Bengu"> Basak Bengu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, formaldehyde-based adhesives such as urea-formaldehyde (UF), melamine-formaldehyde (MF), melamine – urea-formaldehyde (MUF), etc. are mostly used in wood-based panel industry because of their high reactivity, chemical versatility, and economic competitiveness. However, formaldehyde-based wood adhesives are produced from non- renewable resources and also formaldehyde is classified as a probable human carcinogen (Group B1) by the U.S. Environmental Protection Agency (EPA). Therefore, there has been a growing interest in the development of environment-friendly, economically competitive, bio-based wood adhesives to meet wood-based panel industry requirements. In this study, like a formaldehyde-free adhesive, oxidized starch – urea wood adhesives was synthesized. In this scope, firstly, acid hydrolysis of corn starch was conducted and then acid thinned corn starch was oxidized by using hydrogen peroxide and CuSO₄ as an oxidizer and catalyst, respectively. Secondly, the polycondensation reaction between oxidized starch and urea conducted. Finally, nano – TiO₂ was added to the reaction system to strengthen the adhesive network. Solid content, viscosity, and gel time analyses of the prepared adhesive were performed to evaluate the adhesive processability. FTIR, DSC, TGA, SEM characterization techniques were used to investigate chemical structures, thermal, and morphological properties of the adhesive, respectively. Rheological analysis of the adhesive was also performed. In order to evaluate the quality of oxidized corn starch – urea adhesives, particleboards were produced in laboratory scale and mechanical and physical properties of the boards were investigated such as an internal bond, modulus of rupture, modulus of elasticity, formaldehyde emission, etc. The obtained results revealed that oxidized starch – urea adhesives were synthesized successfully and it can be a good potential candidate to use the wood-based panel industry with some developments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-TiO%E2%82%82" title="nano-TiO₂">nano-TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20starch" title=" corn starch"> corn starch</a>, <a href="https://publications.waset.org/abstracts/search?q=formaldehyde%20emission" title=" formaldehyde emission"> formaldehyde emission</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20adhesives" title=" wood adhesives"> wood adhesives</a> </p> <a href="https://publications.waset.org/abstracts/115506/synthesis-and-properties-of-oxidized-corn-starch-based-wood-adhesive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Mimosa Tannin – Starch - Sugar Based Wood Adhesive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salise%20Oktay">Salise Oktay</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilg%C3%BCn%20Kizilcan"> Nilgün Kizilcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ba%C5%9Fak%20Beng%C3%BC"> Başak Bengü</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, formaldehyde based adhesives such as urea formaldehyde (UF), melamine formaldehyde (MF), melamine – urea formaldehyde (MUF), etc. are mostly used in wood based panel industry because of their high reactivity, chemical versatility, and economic competitiveness. However, formaldehyde based wood adhesives are produced from non- renewable resources. Hence, there has been a growing interest in the development of environment friendly, economically competitive, bio-based wood adhesives in order to meet wood based panel industry requirements. In this study, as formaldehyde free adhesive, Mimosa tannin, starch, sugar based wood adhesivewas synthesized. Citric acid and tartaric acid were used as hardener for the resin system. Solid content, viscosity, and gel time analyzes of the prepared adhesive were performed in order to evaluate the adhesive processability. FTIR characterization technique was used to elucidate the chemical structures of the cured adhesivesamples. In order to evaluate the performance of the prepared bio-based resin formulation, particleboards were produced in a laboratory scale, and mechanical, physical properties of the boards were investigated. Besides, the formaldehyde contents of the boards were determined by using the perforator method. The obtained results revealed that the developed bio-based wood adhesive formulation can be a good potential candidate to use wood based panel industry with some developments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-based%20wood%20adhesives" title="bio-based wood adhesives">bio-based wood adhesives</a>, <a href="https://publications.waset.org/abstracts/search?q=mimosa%20tannin" title=" mimosa tannin"> mimosa tannin</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20starch" title=" corn starch"> corn starch</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar" title=" sugar"> sugar</a>, <a href="https://publications.waset.org/abstracts/search?q=polycarboxyclic%20acid" title=" polycarboxyclic acid"> polycarboxyclic acid</a> </p> <a href="https://publications.waset.org/abstracts/141855/mimosa-tannin-starch-sugar-based-wood-adhesive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Effect of Three Desensitizers on Dentinal Tubule Occlusion and Bond Strength of Dentin Adhesives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zou%20Xuan">Zou Xuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Hongchen"> Liu Hongchen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ideal dentin desensitizing agent should not only have good biological safety, simple clinical operation mode, the superior treatment effect, but also should have a durable effect to resist the oral environmental temperature change and oral mechanical abrasion, so as to achieve a persistent desensitization effect. Also, when using desensitizing agent to prevent the post-operative hypersensitivity, we should not only prevent it from affecting crowns’ retention, but must understand its effects on bond strength of dentin adhesives. There are various of desensitizers and dentin adhesives in clinical treatment. They have different chemical or physical properties. Whether the use of desensitizing agent would affect the bond strength of dentin adhesives still need further research. In this in vitro study, we built the hypersensitive dentin model and post-operative dentin model, to evaluate the sealing effects and durability on exposed tubule by three different dentin desensitizers and to evaluate the sealing effects and the bond strength of dentin adhesives after using three different dentin desensitizers on post-operative dentin. The result of this study could provide some important references for clinical use of dentin desensitizing agent. 1. As to the three desensitizers, the hypersensitive dentin model was built to evaluate their sealing effects on exposed tubule by SEM observation and dentin permeability analysis. All of them could significantly reduce the dentin permeability. 2. Test specimens of three groups treated by desensitizers were subjected to aging treatment with 5000 times thermal cycling and toothbrush abrasion, and then dentin permeability was measured to evaluate the sealing durability of these three desensitizers on exposed tubule. The sealing durability of three groups were different. 3. The post-operative dentin model was built to evaluate the sealing effects of the three desensitizers on post-operative dentin by SEM and methylene blue. All of three desensitizers could reduce the dentin permeability significantly. 4. The influences of three desensitizers on the bonding efficiency of total-etch and self-etch adhesives were evaluated with the micro-tensile bond strength study and bond interface morphology observation. The dentin bond strength for Green or group was significantly lower than the other two groups (P<0.05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dentin" title="dentin">dentin</a>, <a href="https://publications.waset.org/abstracts/search?q=desensitizer" title=" desensitizer"> desensitizer</a>, <a href="https://publications.waset.org/abstracts/search?q=dentin%20permeability" title=" dentin permeability"> dentin permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cycling" title=" thermal cycling"> thermal cycling</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-tensile%20bond%20strength" title=" micro-tensile bond strength"> micro-tensile bond strength</a> </p> <a href="https://publications.waset.org/abstracts/22953/effect-of-three-desensitizers-on-dentinal-tubule-occlusion-and-bond-strength-of-dentin-adhesives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Sulfanilamide/Epoxy Resin and Its Application as Tackifier in Epoxy Adhesives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oiane%20Ruiz%20de%20Azua">Oiane Ruiz de Azua</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvador%20Borros"> Salvador Borros</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuria%20Agullo"> Nuria Agullo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordi%20Arbusa"> Jordi Arbusa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tackiness is described as the ability to spontaneously form a bond to another material under light pressures within a short application time. During the first few minutes of the adhesive's curing, it is necessary to have enough tack to keep the substrates together while cohesion is increasing within the adhesive. This property plays a key role in the manufacturing process of pieces. Epoxy adhesives, unlike other adhesives, usually present low tackiness before curing; however, there is very little literature about the use of tackifiers in epoxy adhesives, except for the high molecular weight epoxy additives. In the present work, a tetrafunctional epoxy resin based on Bisphenol-A and Sulfanilamide has been synthesized in order to be used as a tackifier. This additive offers improved specific adhesion to two-component (2K) epoxy adhesives. The dosage of the tackifier has to be done carefully not to alter the mechanical and rheological properties of the adhesive. The synthetized product has been analyzed by FTIR and ¹H-NMR analysis, and the effect of the addition of 1 wt % of the tackifier on rheological properties, viscoelastic behavior, and mechanical properties has been studied. On one hand, the addition of the product in the epoxy resin part showed a significant increase in tackiness regarding the neat epoxy resin. On the other hand, tackiness of the whole formulation was also increased. Curing time of the adhesive has not undergone any relevant changes with the tackifier addition. Regarding viscoelastic properties, Storage Modulus (G') and Loss Modulus (G'') remain also unchanged at ambient temperature. Probably, in case higher tackifier concentration would be added, differences in viscoelastic properties would be observed. The study of mechanical properties shows that hardness and tensile strength also keep their values unchanged regarding neat two component adhesive. In conclusion, the addition of 1 wt % of sulfanilamide/epoxy enhanced the tackiness of the epoxy resin part, improves tack without modifying significantly either the rheological, the mechanical, or the viscoelastic properties of the product. Thus, the sulfanilamide presented could be a good candidate to be used as an additive to the 2k epoxy formulation for the manufacturing process of pieces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20adhesive" title="epoxy adhesive">epoxy adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20process%20of%20pieces" title=" manufacturing process of pieces"> manufacturing process of pieces</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfanilamide" title=" sulfanilamide"> sulfanilamide</a>, <a href="https://publications.waset.org/abstracts/search?q=tackifiers" title=" tackifiers"> tackifiers</a> </p> <a href="https://publications.waset.org/abstracts/131587/sulfanilamideepoxy-resin-and-its-application-as-tackifier-in-epoxy-adhesives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Evaluation of the Elastic Mechanical Properties of a Hybrid Adhesive Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moudar%20H.%20A.%20Zgoul">Moudar H. A. Zgoul</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Al%20Zamer"> Amin Al Zamer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adhesive materials and adhesion have been the focal point of multiple research works related to numerous applications, particularly, aerospace, and aviation industries. To enhance the properties of conventional adhesive materials, additives have been introduced to the mix in order to enhance their mechanical and physical properties by creating a hybrid adhesive material. The evaluation of the mechanical properties of such hybrid adhesive materials is thus of an essential requirement for the purpose of properly modeling their behavior accurately. This paper presents an approach/tool to simulate the behavior such hybrid adhesives in a way that will allow researchers to better understand their behavior while in service. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive%20materials" title="adhesive materials">adhesive materials</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20adhesives" title=" hybrid adhesives"> hybrid adhesives</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/83532/evaluation-of-the-elastic-mechanical-properties-of-a-hybrid-adhesive-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Comparison of Microbiological Assessment of Non-adhesive Use and the Use of Adhesive on Complete Dentures </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyvee%20Gean%20Cabuso">Hyvee Gean Cabuso</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvin%20Taruc"> Arvin Taruc</a>, <a href="https://publications.waset.org/abstracts/search?q=Danielle%20%20Villanueva"> Danielle Villanueva</a>, <a href="https://publications.waset.org/abstracts/search?q=Channela%20Anais%20Hipolito"> Channela Anais Hipolito</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Bianca%20Alfonso"> Jia Bianca Alfonso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Denture adhesive aids to provide additional retention, support and comfort for patients with loose dentures, as well as for patients who seek to achieve optimal denture adhesion. But due to its growing popularity, arising oral health issues should be considered, including its possible impact that may alter the microbiological condition of the denture. Changes as such may further resolve to denture-related oral diseases that can affect the day-to-day lives of patients. Purpose: The study aims to assess and compare the microbiological status of dentures without adhesives versus dentures when adhesives were applied. The study also intends to identify the presence of specific microorganisms, their colony concentration and their possible effects on the oral microflora. This study also aims to educate subjects by introducing an alternative denture cleaning method as well as denture and oral health care. Methodology: Edentulous subjects age 50-80 years old, both physically and medically fit, were selected to participate. Before obtaining samples for the study, the alternative cleaning method was introduced by demonstrating a step-by-step cleaning process. Samples were obtained by swabbing the intaglio surface of their upper and lower prosthesis. These swabs were placed in a thioglycollate broth, which served as a transport and enrichment medium. The swabs were then processed through bacterial culture. The colony-forming units (CFUs) were calculated on MacConkey Agar Plate (MAP) and Blood Agar Plate (BAP) in order to identify and assess the microbiological status, including species identification and microbial counting. Result: Upon evaluation and analysis of collected data, the microbiological assessment of the upper dentures with adhesives showed little to no difference compared to dentures without adhesives, but for the lower dentures, (P=0.005), which is less than α = 0.05; therefore, the researchers reject (Ho) and that there is a significant difference between the mean ranks of the lower denture without adhesive to those with, implying that there is a significant decrease in the bacterial count. Conclusion: These results findings may implicate the possibility that the addition of denture adhesives may contribute to the significant decrease of microbial colonization on the dentures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=denture" title="denture">denture</a>, <a href="https://publications.waset.org/abstracts/search?q=denture%20adhesive" title=" denture adhesive"> denture adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=denture-related" title=" denture-related"> denture-related</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiological%20assessment" title=" microbiological assessment"> microbiological assessment</a> </p> <a href="https://publications.waset.org/abstracts/134225/comparison-of-microbiological-assessment-of-non-adhesive-use-and-the-use-of-adhesive-on-complete-dentures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Determination of Mechanical Properties of Adhesives via Digital Image Correlation (DIC) Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murat%20Demir%20Aydin">Murat Demir Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Elanur%20Celebi"> Elanur Celebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adhesively bonded joints are used as an alternative to traditional joining methods due to the important advantages they provide. The most important consideration in the use of adhesively bonded joints is that these joints have appropriate requirements for their use in terms of safety. In order to ensure control of this condition, damage analysis of the adhesively bonded joints should be performed by determining the mechanical properties of the adhesives. When the literature is investigated; it is generally seen that the mechanical properties of adhesives are determined by traditional measurement methods. In this study, to determine the mechanical properties of adhesives, the Digital Image Correlation (DIC) method, which can be an alternative to traditional measurement methods, has been used. The DIC method is a new optical measurement method which is used to determine the parameters of displacement and strain in an appropriate and correct way. In this study, tensile tests of Thick Adherent Shear Test (TAST) samples formed using DP410 liquid structural adhesive and steel materials and bulk tensile specimens formed using and DP410 liquid structural adhesive was performed. The displacement and strain values of the samples were determined by DIC method and the shear stress-strain curves of the adhesive for TAST specimens and the tensile strain curves of the bulk adhesive specimens were obtained. Various methods such as numerical methods are required as conventional measurement methods (strain gauge, mechanic extensometer, etc.) are not sufficient in determining the strain and displacement values of the very thin adhesive layer such as TAST samples. As a result, the DIC method removes these requirements and easily achieves displacement measurements with sufficient accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20adhesive" title="structural adhesive">structural adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesively%20bonded%20joints" title=" adhesively bonded joints"> adhesively bonded joints</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title=" digital image correlation"> digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=thick%20adhered%20shear%20test%20%28TAST%29" title=" thick adhered shear test (TAST)"> thick adhered shear test (TAST)</a> </p> <a href="https://publications.waset.org/abstracts/90385/determination-of-mechanical-properties-of-adhesives-via-digital-image-correlation-dic-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Biomimetic Adhesive Pads for Precision Manufacturing Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoon%20Yi">Hoon Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minho%20Sung"> Minho Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=Hangil%20Ko"> Hangil Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon%20Kyu%20Kwak"> Moon Kyu Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoon%20Eui%20Jeong"> Hoon Eui Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspired by the remarkable adhesion properties of gecko lizards, bio-inspired dry adhesives with smart adhesion properties have been developed in the last decade. Compared to earlier dry adhesives, the recently developed ones exhibit excellent adhesion strength, smart directional adhesion, and structural robustness. With these unique adhesion properties, bio-inspired dry adhesive pads have strong potential for use in precision industries such as semiconductor or display manufacturing. In this communication, we present a new manufacturing technology based on advanced dry adhesive systems that enable precise manipulation of large-area substrates over repeating cycles without any requirement for external force application. This new manufacturing technique is also highly accurate and environment-friendly, and thus has strong potential as a next-generation clean manufacturing technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gecko" title="gecko">gecko</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20robot" title=" manufacturing robot"> manufacturing robot</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20manufacturing" title=" precision manufacturing"> precision manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/38058/biomimetic-adhesive-pads-for-precision-manufacturing-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Lignin Phenol Formaldehyde Resole Resin: Synthesis and Characteristics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Ghorbania">Masoumeh Ghorbania</a>, <a href="https://publications.waset.org/abstracts/search?q=Falk%20Liebnerb"> Falk Liebnerb</a>, <a href="https://publications.waset.org/abstracts/search?q=Hendrikus%20W.G.%20van%20Herwijnenc"> Hendrikus W.G. van Herwijnenc</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Konnertha"> Johannes Konnertha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenol formaldehyde (PF) resins are widely used as wood adhesives for variety of industrial products such as plywood, laminated veneer lumber and others. Lignin as a main constituent of wood has become well-known as a potential substitute for phenol in PF adhesives because of their structural similarity. During the last decades numerous research approaches have been carried out to substitute phenol with pulping-derived lignin, whereby the lower reactivity of resins synthesized with shares of lignin seem to be one of the major challenges. This work reports about a systematic screening of different types of lignin (plant origin and pulping process) for their suitability to replace phenol in phenolic resins. Lignin from different plant sources (softwood, hardwood and grass) were used, as these should differ significantly in their reactivity towards formaldehyde of their reactive phenolic core units. Additionally a possible influence of the pulping process was addressed by using the different types of lignin from soda, kraft, and organosolv process and various lignosulfonates (sodium, ammonium, calcium, magnesium). To determine the influence of lignin on the adhesive performance beside others the rate of viscosity development, bond strength development of varying hot pressing time and other thermal properties were investigated. To evaluate the performance of the cured end product, a few selected properties were studied at the example of solid wood-adhesive bond joints, compact panels and plywood. As main results it was found that lignin significantly accelerates the viscosity development in adhesive synthesis. Bonding strength development during curing of adhesives decelerated for all lignin types, while this trend was least for pine kraft lignin and spruce sodium lignosulfonate. However, the overall performance of the products prepared with the latter adhesives was able to fulfill main standard requirements, even after exposing the products to harsh environmental conditions. Thus, a potential application can be considered for processes where reactivity is less critical but adhesive cost and product performance is essential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenol%20formaldehyde%20resin" title="phenol formaldehyde resin">phenol formaldehyde resin</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin%20phenol%20formaldehyde%20resin" title=" lignin phenol formaldehyde resin"> lignin phenol formaldehyde resin</a>, <a href="https://publications.waset.org/abstracts/search?q=ABES" title=" ABES"> ABES</a>, <a href="https://publications.waset.org/abstracts/search?q=DSC" title=" DSC"> DSC</a> </p> <a href="https://publications.waset.org/abstracts/50817/lignin-phenol-formaldehyde-resole-resin-synthesis-and-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> An Investigation on the Sandwich Panels with Flexible and Toughened Adhesives under Flexural Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emre%20Kara">Emre Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eura%20Karakuzu"> Şura Karakuzu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Fatih%20Geylan"> Ahmet Fatih Geylan</a>, <a href="https://publications.waset.org/abstracts/search?q=Metehan%20Demir"> Metehan Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20Ko%C3%A7"> Kadir Koç</a>, <a href="https://publications.waset.org/abstracts/search?q=Halil%20Aykul"> Halil Aykul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The material selection in the design of the sandwich structures is very crucial aspect because of the positive or negative influences of the base materials to the mechanical properties of the entire panel. In the literature, it was presented that the selection of the skin and core materials plays very important role on the behavior of the sandwich. Beside this, the use of the correct adhesive can make the whole structure to show better mechanical results and behavior. By this way, the sandwich structures realized in the study were obtained with the combination of aluminum foam core and three different glass fiber reinforced polymer (GFRP) skins using two different commercial adhesives which are based on flexible polyurethane and toughened epoxy. The static and dynamic tests were already applied on the sandwiches with different types of adhesives. In the present work, the static three-point bending tests were performed on the sandwiches having an aluminum foam core with the thickness of 15 mm, the skins with three different types of fabrics ([0°/90°] cross ply E-Glass Biaxial stitched, [0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.75 mm) and two different commercial adhesives (flexible polyurethane and toughened epoxy based) at different values of support span distances (L= 55, 70, 80, 125 mm) by aiming the analyses of their flexural performance. The skins used in the study were produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique and were easily bonded onto the aluminum foam core with flexible and toughened adhesives under a very low pressure using press machine with the alignment tabs having the total thickness of the whole panel. The main results of the flexural loading are: force-displacement curves obtained after the bending tests, peak force values, absorbed energy, collapse mechanisms, adhesion quality and the effect of the support span length and adhesive type. The experimental results presented that the sandwiches with epoxy based toughened adhesive and the skins made of S-Glass Woven fabrics indicated the best adhesion quality and mechanical properties. The sandwiches with toughened adhesive exhibited higher peak force and energy absorption values compared to the sandwiches with flexible adhesive. The core shear mode occurred in the sandwiches with flexible polyurethane based adhesive through the thickness of the core while the same mode took place in the sandwiches with toughened epoxy based adhesive along the length of the core. The use of these sandwich structures can lead to a weight reduction of the transport vehicles, providing an adequate structural strength under operating conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive%20and%20adhesion" title="adhesive and adhesion">adhesive and adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20foam" title=" aluminum foam"> aluminum foam</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=collapse%20mechanisms" title=" collapse mechanisms"> collapse mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/27466/an-investigation-on-the-sandwich-panels-with-flexible-and-toughened-adhesives-under-flexural-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Nanomaterials for Archaeological Stone Conservation: Re-Assembly of Archaeological Heavy Stones Using Epoxy Resin Modified with Clay Nanoparticles </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Mansour">Sayed Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20%20Aldoasri"> Mohammad Aldoasri</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagib%20Elmarzugi"> Nagib Elmarzugi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20A.%20Al-Mouallimi"> Nadia A. Al-Mouallimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The archaeological large stone used in construction of ancient Pharaonic tombs, temples, obelisks and other sculptures, always subject to physicomechanical deterioration and destructive forces, leading to their partial or total broken. The task of reassembling this type of artifact represent a big challenge for the conservators. Recently, the researchers are turning to new technologies to improve the properties of traditional adhesive materials and techniques used in re-assembly of broken large stone. The epoxy resins are used extensively in stone conservation and re-assembly of broken stone because of their outstanding mechanical properties. The introduction of nanoparticles to polymeric adhesives at low percentages may lead to substantial improvements of their mechanical performances in structural joints and large objects. The aim of this study is to evaluate the effectiveness of clay nanoparticles in enhancing the performances of epoxy adhesives used in re-assembly of archaeological massive stone by adding proper amounts of those nanoparticles. The nanoparticles reinforced epoxy nanocomposite was prepared by direct melt mixing with a nanoparticles content of 3% (w/v), and then mould forming in the form of rectangular samples, and used as adhesive for experimental stone samples. Scanning electron microscopy (SEM) was employed to investigate the morphology of the prepared nanocomposites, and the distribution of nanoparticles inside the composites. The stability and efficiency of the prepared epoxy-nanocomposites and stone block assemblies with new formulated adhesives were tested by aging artificially the samples under different environmental conditions. The effect of incorporating clay nanoparticles on the mechanical properties of epoxy adhesives was evaluated comparatively before and after aging by measuring the tensile, compressive, and Elongation strength tests. The morphological studies revealed that the mixture process between epoxy and nanoparticles has succeeded with a relatively homogeneous morphology and good dispersion in low nano-particles loadings in epoxy matrix was obtained. The results show that the epoxy-clay nanocomposites exhibited superior tensile, compressive, and Elongation strength. Moreover, a marked improvement of the mechanical properties of stone joints increased in all states by adding nano-clay to epoxy in comparison with pure epoxy resin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resins" title="epoxy resins">epoxy resins</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20nanoparticles" title=" clay nanoparticles"> clay nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=re-assembly" title=" re-assembly"> re-assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=archaeological%20massive%20stones" title=" archaeological massive stones"> archaeological massive stones</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/107224/nanomaterials-for-archaeological-stone-conservation-re-assembly-of-archaeological-heavy-stones-using-epoxy-resin-modified-with-clay-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Bonding Strength of Adhesive Scarf Joints Improved by Nano-Silica Subjected to Humidity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Paygozar">B. Paygozar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.A.%20Dizaji"> S.A. Dizaji</a>, <a href="https://publications.waset.org/abstracts/search?q=A.C.%20Kandemir"> A.C. Kandemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effects of the modified adhesive including different concentrations of Nano-silica are surveyed on the bonding strength of the adhesive scarf joints. The nanoparticles are added in two different concentrations, to an epoxy-based two-component structural adhesive, Araldite 2011, to survey the influences of the nanoparticle weight percentage on the failure load of the joints compared to that of the joints manufactured by the neat adhesive. The effects of being exposure to a moist ambience on the joint strength are also investigated for the joints produced of both neat and modified adhesives. For this purpose, an ageing process was carried out on the joints of both neat and improved kinds with variable immersion periods (20, 40 and 60 days). All the specimens were tested under a quasi-static tensile loading of 2 mm/min speed so as to find the quantities of the failure loads. Outcomes indicate that the failure loads of the joints with modified adhesives are measurably higher than that of the joint with neat adhesive, even while being put for a while under a moist condition. Another result points out that humidity lessens the bonding strength of all the joints of both types as the exposure time increases, which can be attributed to the change in the failure mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bonding%20strength" title="bonding strength">bonding strength</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity" title=" humidity"> humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-silica" title=" nano-silica"> nano-silica</a>, <a href="https://publications.waset.org/abstracts/search?q=scarf%20joint" title=" scarf joint"> scarf joint</a> </p> <a href="https://publications.waset.org/abstracts/115145/bonding-strength-of-adhesive-scarf-joints-improved-by-nano-silica-subjected-to-humidity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Determination of Resistance to Freezing of Bonded Façade Joint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Ne%C4%8Dasov%C3%A1">B. Nečasová</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Li%C5%A1ka"> P. Liška</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20%C5%A0lanhof"> J. Šlanhof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Verification of vented wooden façade system with bonded joints is presented in this paper. The potential of bonded joints is studied and described in more detail. The paper presents the results of an experimental and theoretical research about the effects of freeze cycling on the bonded joint. For the purpose of tests spruce timber profiles were chosen for the load bearing substructure. Planks from wooden plastic composite and Siberian larch are representing facade cladding. Two types of industrial polyurethane adhesives intended for structural bonding were selected. The article is focused on the preparation as well as on the subsequent curing and conditioning of test samples. All test samples were subjected to 15 cycles that represents sudden temperature changes, i.e. immersion in a water bath at (293.15 ± 3) K for 6 hours and subsequent freezing to (253.15 ± 2) K for 18 hours. Furthermore, the retention of bond strength between substructure and cladding was tested and strength in shear was determined under tensile stress. Research data indicate that little, if any, damage to the bond results from freezing cycles. Additionally, the suitability of selected group of adhesives in combination with timber substructure was confirmed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive%20system" title="adhesive system">adhesive system</a>, <a href="https://publications.waset.org/abstracts/search?q=bonded%20joints" title=" bonded joints"> bonded joints</a>, <a href="https://publications.waset.org/abstracts/search?q=wooden%20lightweight%20fa%C3%A7ade" title=" wooden lightweight façade"> wooden lightweight façade</a>, <a href="https://publications.waset.org/abstracts/search?q=timber%20substructure" title=" timber substructure"> timber substructure</a> </p> <a href="https://publications.waset.org/abstracts/24206/determination-of-resistance-to-freezing-of-bonded-facade-joint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Test Procedures for Assessing the Peel Strength and Cleavage Resistance of Adhesively Bonded Joints with Elastic Adhesives under Detrimental Service Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Barlang">Johannes Barlang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adhesive bonding plays a pivotal role in various industrial applications, ranging from automotive manufacturing to aerospace engineering. The peel strength of adhesives, a critical parameter reflecting the ability of an adhesive to withstand external forces, is crucial for ensuring the integrity and durability of bonded joints. This study provides a synopsis of the methodologies, influencing factors, and significance of peel testing in the evaluation of adhesive performance. Peel testing involves the measurement of the force required to separate two bonded substrates under controlled conditions. This study systematically reviews the different testing techniques commonly applied in peel testing, including the widely used 180-degree peel test and the T-peel test. Emphasis is placed on the importance of selecting an appropriate testing method based on the specific characteristics of the adhesive and the application requirements. The influencing factors on peel strength are multifaceted, encompassing adhesive properties, substrate characteristics, environmental conditions, and test parameters. Through an in-depth analysis, this study explores how factors such as adhesive formulation, surface preparation, temperature, and peel rate can significantly impact the peel strength of adhesively bonded joints. Understanding these factors is essential for optimizing adhesive selection and application processes in real-world scenarios. Furthermore, the study highlights the role of peel testing in quality control and assurance, aiding manufacturers in maintaining consistent adhesive performance and ensuring the reliability of bonded structures. The correlation between peel strength and long-term durability is discussed, shedding light on the predictive capabilities of peel testing in assessing the service life of adhesive bonds. In conclusion, this study underscores the significance of peel testing as a fundamental tool for characterizing adhesive performance. By delving into testing methodologies, influencing factors, and practical implications, this study contributes to the broader understanding of adhesive behavior and fosters advancements in adhesive technology across diverse industrial sectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesively%20bonded%20joints" title="adhesively bonded joints">adhesively bonded joints</a>, <a href="https://publications.waset.org/abstracts/search?q=cleavage%20resistance" title=" cleavage resistance"> cleavage resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20adhesives" title=" elastic adhesives"> elastic adhesives</a>, <a href="https://publications.waset.org/abstracts/search?q=peel%20strength" title=" peel strength"> peel strength</a> </p> <a href="https://publications.waset.org/abstracts/178935/test-procedures-for-assessing-the-peel-strength-and-cleavage-resistance-of-adhesively-bonded-joints-with-elastic-adhesives-under-detrimental-service-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> The Three-dimensional Response of Mussel Plaque Anchoring to Wet Substrates under Directional Tensions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingwei%20Hou">Yingwei Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Liu"> Tao Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Pang"> Yong Pang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper explored the three-dimensional deformation of mussel plaques anchor to wet polydimethylsiloxane (PDMS) substrates under tension stress with different angles. Mussel plaques exhibiting natural adhesive structures, have attracted significant attention for their remarkable adhesion properties. Understanding their behavior under mechanical stress, particularly in a three-dimensional context, holds immense relevance for biomimetic material design and bio-inspired adhesive development. This study employed a novel approach to investigate the 3D deformation of the PDMS substrates anchored by mussel plaques subjected to controlled tension. Utilizing our customized stereo digital image correlation technique and mechanical mechanics analyses, we found the distributions of the displacement and resultant force on the substrate became concentrated under the plaque. Adhesion and sucking mechanisms were analyzed for the mussel plaque-substrate system under tension until detachment. The experimental findings were compared with a developed model using finite element analysis and the results provide new insights into mussels’ attachment mechanism. This research not only contributes to the fundamental understanding of biological adhesion but also holds promising implications for the design of innovative adhesive materials with applications in fields such as medical adhesives, underwater technologies, and industrial bonding. The comprehensive exploration of mussel plaque behavior in three dimensions is important for advancements in biomimicry and materials science, fostering the development of adhesives that emulate nature's efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion%20mechanism" title="adhesion mechanism">adhesion mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=mytilus%20edulis" title=" mytilus edulis"> mytilus edulis</a>, <a href="https://publications.waset.org/abstracts/search?q=mussel%20plaque" title=" mussel plaque"> mussel plaque</a>, <a href="https://publications.waset.org/abstracts/search?q=stereo%20digital%20image%20correlation" title=" stereo digital image correlation"> stereo digital image correlation</a> </p> <a href="https://publications.waset.org/abstracts/182739/the-three-dimensional-response-of-mussel-plaque-anchoring-to-wet-substrates-under-directional-tensions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Lightweight Materials for Building Finishing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarka%20Keprdova">Sarka Keprdova</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikol%20Zizkova"> Nikol Zizkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the presentation of results which were obtained as a part of the project FR-TI 3/742: “System of Lightweight Materials for Finishing of Buildings with Waste Raw Materials”. Attention was paid to the lightweighting of polymer-modified mortars applicable as adhesives, screeds and repair mortars. In terms of repair mortars, they were ones intended for the sanitation of aerated concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additives" title="additives">additives</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20aggregates" title=" light aggregates"> light aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20materials" title=" lightweight materials"> lightweight materials</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20mortars" title=" lightweight mortars"> lightweight mortars</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer-modified%20mortars" title=" polymer-modified mortars"> polymer-modified mortars</a> </p> <a href="https://publications.waset.org/abstracts/18439/lightweight-materials-for-building-finishing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> The Effect of the Adhesive Ductility on Bond Characteristics of CFRP/Steel Double Strap Joints Subjected to Dynamic Tensile Loadings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haider%20Al-Zubaidy">Haider Al-Zubaidy</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao-Ling%20Zhao"> Xiao-Ling Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Riadh%20Al-Mahaidi"> Riadh Al-Mahaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the technique adhesively-bonded fibre reinforced polymer (FRP) composites has found its way into civil engineering applications and it has attracted a widespread attention as a viable alternative strategy for the retrofitting of civil infrastructure such as bridges and buildings. When adopting this method, adhesive has a significant role and controls the general performance and degree of enhancement of the strengthened and/or upgraded structures. This is because the ultimate member strength is highly affected by the failure mode which is considerably dependent on the utilised adhesive. This paper concerns with experimental investigations on the effect of the adhesive used on the bond between CFRP patch and steel plate under medium impact tensile loading. Experiment were conducted using double strap joints and these samples were prepared using two different types of adhesives, Araldite 420 and MBrace saturant. Drop mass rig was used to carry out dynamic tests at impact speeds of 3.35, 4.43 and m/s while quasi-static tests were implemented at 2mm/min using Instrone machine. In this test program, ultimate load-carrying capacity and failure modes were examined for all loading speeds. For both static and dynamic tests, the adhesive type has a significant effect on ultimate joint strength. It was found that the double strap joints prepared using Araldite 420 showed higher strength than those prepared utilising MBrace saturant adhesive. Failure mechanism for joints prepared using Araldite 420 is completely different from those samples prepared utilising MBrace saturant. CFRP failure is the most common failure pattern for joints with Araldite 420, whereas the dominant failure for joints with MBrace saturant adhesive is adhesive failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP%2Fsteel%20double%20strap%20joints" title="CFRP/steel double strap joints">CFRP/steel double strap joints</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesives%20of%20different%20ductility" title=" adhesives of different ductility"> adhesives of different ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20tensile%20loading" title=" dynamic tensile loading"> dynamic tensile loading</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20between%20CFRP%20and%20steel" title=" bond between CFRP and steel"> bond between CFRP and steel</a> </p> <a href="https://publications.waset.org/abstracts/40632/the-effect-of-the-adhesive-ductility-on-bond-characteristics-of-cfrpsteel-double-strap-joints-subjected-to-dynamic-tensile-loadings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Synthesis of Microencapsulated Phase Change Material for Adhesives with Thermoregulating Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christin%20Koch">Christin Koch</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Winkel"> Andreas Winkel</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Kahlmeyer"> Martin Kahlmeyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20B%C3%B6hm"> Stefan Böhm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to environmental regulations on greenhouse gas emissions and the depletion of fossil fuels, there is an increasing interest in electric vehicles.To maximize their driving range, batteries with high storage capacities are needed. In most electric cars, rechargeable lithium-ion batteries are used because of their high energy density. However, it has to be taken into account that these batteries generate a large amount of heat during the charge and discharge processes. This leads to a decrease in a lifetime and damage to the battery cells when the temperature exceeds the defined operating range. To ensure an efficient performance of the battery cells, reliable thermal management is required. Currently, the cooling is achieved by heat sinks (e.g., cooling plates) bonded to the battery cells with a thermally conductive adhesive (TCA) that directs the heat away from the components. Especially when large amounts of heat have to be dissipated spontaneously due to peak loads, the principle of heat conduction is not sufficient, so attention must be paid to the mechanism of heat storage. An efficient method to store thermal energy is the use of phase change materials (PCM). Through an isothermal phase change, PCM can briefly absorb or release thermal energy at a constant temperature. If the phase change takes place in the transition from solid to liquid, heat is stored during melting and is released to the ambient during the freezing process upon cooling. The presented work displays the great potential of thermally conductive adhesives filled with microencapsulated PCM to limit peak temperatures in battery systems. The encapsulation of the PCM avoids the effects of aging (e.g., migration) and chemical reactions between the PCM and the adhesive matrix components. In this study, microencapsulation has been carried out by in situ polymerization. The microencapsulated PCM was characterized by FT-IR spectroscopy, and the thermal properties were measured by DSC and laser flash method. The mechanical properties, electrical and thermal conductivity, and adhesive toughness of the TCA/PCM composite were also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20material" title="phase change material">phase change material</a>, <a href="https://publications.waset.org/abstracts/search?q=microencapsulation" title=" microencapsulation"> microencapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesive%20bonding" title=" adhesive bonding"> adhesive bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20management" title=" thermal management"> thermal management</a> </p> <a href="https://publications.waset.org/abstracts/144063/synthesis-of-microencapsulated-phase-change-material-for-adhesives-with-thermoregulating-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Optical Assessment of Marginal Sealing Performance around Restorations Using Swept-Source Optical Coherence Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rima%20Zakzouk">Rima Zakzouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasushi%20Shimada"> Yasushi Shimada</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasunori%20Sumi"> Yasunori Sumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Junji%20Tagami"> Junji Tagami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and purpose: The resin composite has become the main material for the restorations of caries in recent years due to aesthetic characteristics, especially with the development of the adhesive techniques. The quality of adhesion to tooth structures is depending on an exchange process between inorganic tooth material and synthetic resin and a micromechanical retention promoted by resin infiltration in partially demineralized dentin. Optical coherence tomography (OCT) is a noninvasive diagnostic method for obtaining cross-sectional images that produce high-resolution of the biological tissue at the micron scale. The aim of this study was to evaluate the gap formation at adhesive/tooth interface of two-step self-etch adhesives that are preceded with or without phosphoric acid pre-etching in different regions of teeth using SS-OCT. Materials and methods: Round tapered cavities (2×2 mm) were prepared in cervical part of bovine incisors teeth and divided into 2 groups (n=10): first group self-etch adhesive (Clearfil SE Bond) was applied for SE group and second group treated with acid etching before applying the self-etch adhesive for PA group. Subsequently, both groups were restored with Estelite Flow Quick Flowable Composite Resin and observed under OCT. Following 5000 thermal cycles, the same section was obtained again for each cavity using OCT at 1310-nm wavelength. Scanning was repeated after two months to monitor the gap progress. Then the gap length was measured using image analysis software, and the statistics analysis were done between both groups using SPSS software. After that, the cavities were sectioned and observed under Confocal Laser Scanning Microscope (CLSM) to confirm the result of OCT. Results: Gaps formed at the bottom of the cavity was longer than the gap formed at the margin and dento-enamel junction in both groups. On the other hand, pre-etching treatment led to damage the DEJ regions creating longer gap. After 2 months the results showed almost progress in the gap length significantly at the bottom regions in both groups. In conclusions, phosphoric acid etching treatment did not reduce the gap lrngth in most regions of the cavity. Significance: The bottom region of tooth was more exposed to gap formation than margin and DEJ regions, The DEJ damaged with phosphoric acid treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20coherence%20tomography" title="optical coherence tomography">optical coherence tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=self-etch%20adhesives" title=" self-etch adhesives"> self-etch adhesives</a>, <a href="https://publications.waset.org/abstracts/search?q=bottom" title=" bottom"> bottom</a>, <a href="https://publications.waset.org/abstracts/search?q=dento%20enamel%20junction" title=" dento enamel junction"> dento enamel junction</a> </p> <a href="https://publications.waset.org/abstracts/82390/optical-assessment-of-marginal-sealing-performance-around-restorations-using-swept-source-optical-coherence-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> A Framework for Incorporating Non-Linear Degradation of Conductive Adhesive in Environmental Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kedar%20Hardikar">Kedar Hardikar</a>, <a href="https://publications.waset.org/abstracts/search?q=Joe%20Varghese"> Joe Varghese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conductive adhesives have found wide-ranging applications in electronics industry ranging from fixing a defective conductor on printed circuit board (PCB) attaching an electronic component in an assembly to protecting electronics components by the formation of “Faraday Cage.” The reliability requirements for the conductive adhesive vary widely depending on the application and expected product lifetime. While the conductive adhesive is required to maintain the structural integrity, the electrical performance of the associated sub-assembly can be affected by the degradation of conductive adhesive. The degradation of the adhesive is dependent upon the highly varied use case. The conventional approach to assess the reliability of the sub-assembly involves subjecting it to the standard environmental test conditions such as high-temperature high humidity, thermal cycling, high-temperature exposure to name a few. In order to enable projection of test data and observed failures to predict field performance, systematic development of an acceleration factor between the test conditions and field conditions is crucial. Common acceleration factor models such as Arrhenius model are based on rate kinetics and typically rely on an assumption of linear degradation in time for a given condition and test duration. The application of interest in this work involves conductive adhesive used in an electronic circuit of a capacitive sensor. The degradation of conductive adhesive in high temperature and humidity environment is quantified by the capacitance values. Under such conditions, the use of established models such as Hallberg-Peck model or Eyring Model to predict time to failure in the field typically relies on linear degradation rate. In this particular case, it is seen that the degradation is nonlinear in time and exhibits a square root t dependence. It is also shown that for the mechanism of interest, the presence of moisture is essential, and the dominant mechanism driving the degradation is the diffusion of moisture. In this work, a framework is developed to incorporate nonlinear degradation of the conductive adhesive for the development of an acceleration factor. This method can be extended to applications where nonlinearity in degradation rate can be adequately characterized in tests. It is shown that depending on the expected product lifetime, the use of conventional linear degradation approach can overestimate or underestimate the field performance. This work provides guidelines for suitability of linear degradation approximation for such varied applications <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductive%20adhesives" title="conductive adhesives">conductive adhesives</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20degradation" title=" nonlinear degradation"> nonlinear degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=physics%20of%20failure" title=" physics of failure"> physics of failure</a>, <a href="https://publications.waset.org/abstracts/search?q=acceleration%20factor%20model." title=" acceleration factor model. "> acceleration factor model. </a> </p> <a href="https://publications.waset.org/abstracts/106867/a-framework-for-incorporating-non-linear-degradation-of-conductive-adhesive-in-environmental-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Design of Composite Joints from Carbon Fibre for Automotive Parts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Hemath%20Kumar">G. Hemath Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mohit"> H. Mohit</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Karthick"> K. Karthick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important issues in the composite technology is the repairing of parts of aircraft structures which is manufactured from composite materials. In such applications and also for joining various composite parts together, they are fastened together either using adhesives or mechanical fasteners. The tensile strength of these joints was carried out using Universal Testing Machine (UTM). A parametric study was also conducted to compare the performance of the hybrid joint with varying adherent thickness, adhesive thickness and overlap length. The composition of the material is combination of epoxy resin and carbon fibre under the method of reinforcement. To utilize the full potential of composite materials as structural elements, the strength and stress distribution of these joints must be understood. The study of tensile strength in the members involved under various design conditions and various joints were took place. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title="carbon fiber">carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP%20composite" title=" FRP composite"> FRP composite</a>, <a href="https://publications.waset.org/abstracts/search?q=MMC" title=" MMC"> MMC</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive" title=" automotive"> automotive</a> </p> <a href="https://publications.waset.org/abstracts/10217/design-of-composite-joints-from-carbon-fibre-for-automotive-parts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Analyzing the Efficiency of Several Gum Extraction Tapping Systems for Wood Apple Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20K.%20D%20Weerasekara">K. M. K. D Weerasekara</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20K.%20M%20Rathnayake"> R. M. K. M Rathnayake</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20U.%20Halwatura"> R. U. Halwatura</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Y.%20Jayasinghe"> G. Y. Jayasinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood apple (Limonia acidissima L.) trees are native to Sri Lanka and India. Wood apple gum is widely used in the food, coating, and pharmaceutical industries. Wood apple gum was a major component in ancient Sri Lankan coating technology as well. It is also used as a suspending agent in liquid syrups and food ingredients such as sauces, emulsifiers, and stabilizers. Industrial applications include adhesives for labeling and packaging, as well as paint binder. It is also used in the production of paper and cosmetics. Extraction of wood apple gum is an important step in ensuring maximum benefits for various uses. It is apparent that an abundance of untapped potential lies in wood apple gum if people are able to mass produce them. Hence, the current study uses a two-factor factorial design with two major variables and four replications to investigate the best gum-extracting tapping system for Wood apple gum. This study's findings will be useful to Wood apple cultivators, researchers, and gum-based industries alike. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wood%20apple%20gum" title="wood apple gum">wood apple gum</a>, <a href="https://publications.waset.org/abstracts/search?q=limonia%20acidissima%20l." title=" limonia acidissima l."> limonia acidissima l.</a>, <a href="https://publications.waset.org/abstracts/search?q=tapping" title=" tapping"> tapping</a>, <a href="https://publications.waset.org/abstracts/search?q=tapping%20cuts" title=" tapping cuts"> tapping cuts</a> </p> <a href="https://publications.waset.org/abstracts/174725/analyzing-the-efficiency-of-several-gum-extraction-tapping-systems-for-wood-apple-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> New Approach to Encapsulated Clay/Wax Nanocomposites Inside Polystyrene Particles via Minemulstion Polymerization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagi%20Greesh">Nagi Greesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study highlights a new method to obtain multiphase composites particles containing hydrophobic (wax) and inorganic (clay) compounds. Multiphase polystyrene-clay-wax nanocomposites were successfully synthesized. Styrene monomer were polymerized in the presence of different wax-clay nanocomposites concentrations in miniemulsion. Wax-clay nanocomposites were firstly obtained through ultrasonic mixing at a temperature above the melting point of the wax at different clay loadings. The obtained wax-clay nanocomposites were then used as filler in the preparation of polystyrene-wax-clay nanocomposites via miniemulsion polymerization. The particles morphology of PS/wax-clay nanocomposites latexes was mainly determined by Transmission Electron Microscopy ( TEM) , core/shell morphology was clearly observed, with the encapsulation of most wax-clay nanocomposites inside the PS particles. On the other hand, the morphology of the PS/wax-clay nanocomposites (after film formation) ranged from exfoliated to intercalated structures, depending on the percentage of wax-clay nanocomposites loading. This strategy will allow the preparation materials with tailored properties for specific applications such as paint coatings and adhesives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer-wax" title="polymer-wax">polymer-wax</a>, <a href="https://publications.waset.org/abstracts/search?q=paraffin%20wax" title=" paraffin wax"> paraffin wax</a>, <a href="https://publications.waset.org/abstracts/search?q=miniemulsion" title=" miniemulsion"> miniemulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=core%2Fshell" title=" core/shell"> core/shell</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/169298/new-approach-to-encapsulated-claywax-nanocomposites-inside-polystyrene-particles-via-minemulstion-polymerization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Testing of the Decreasing Bond Strength of Polyvinyl Acetate Adhesive by Low Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Bo%C5%A1ka">Pavel Boška</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Bomba"> Jan Bomba</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%C3%A1%C5%A1%20Ber%C3%A1nek"> Tomáš Beránek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Proch%C3%A1zka"> Jiří Procházka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When using wood products bonded by polyvinyl acetate, glues such as windows are the most limiting element of degradation of the glued joint due to weather changes. In addition to moisture and high temperatures, the joint may damage the low temperature below freezing point, where dimensional changes in the material and distortion of the adhesive film occur. During the experiments, the joints were exposed to several degrees of sub-zero temperatures from 0 °C to -40 °C and then to compare how the decreasing temperature affects the strength of the joint. The experiment was performed on wood beech samples (Fagus sylvatica), bonded with PVAc with D3 resistance and the shear strength of bond was measured. The glued and treated samples were tested on a laboratory testing machine, recording the strength of the joint. The statistical results have given us information that the strength of the joint gradually decreases with decreasing temperature, but a noticeable and statistically significant change is achieved only at very low temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesives" title="adhesives">adhesives</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20strength" title=" bond strength"> bond strength</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20temperatures" title=" low temperatures"> low temperatures</a>, <a href="https://publications.waset.org/abstracts/search?q=polyvinyl%20acetate" title=" polyvinyl acetate"> polyvinyl acetate</a> </p> <a href="https://publications.waset.org/abstracts/73545/testing-of-the-decreasing-bond-strength-of-polyvinyl-acetate-adhesive-by-low-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fiber-modified%20adhesives&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fiber-modified%20adhesives&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>