CINXE.COM

Feature engineering - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Feature engineering - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"e495bcec-a21c-48cf-b39c-c73c7418f28e","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Feature_engineering","wgTitle":"Feature engineering","wgCurRevisionId":1254881418,"wgRevisionId":1254881418,"wgArticleId":46207323,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: location missing publisher","Articles with short description","Short description is different from Wikidata","Wikipedia articles in need of updating from February 2024","All Wikipedia articles in need of updating","All articles with unsourced statements","Articles with unsourced statements from January 2020","Machine learning","Data analysis"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName": "Feature_engineering","wgRelevantArticleId":46207323,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q22245680","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList", "mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher", "ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Feature engineering - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Feature_engineering"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Feature_engineering&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Feature_engineering"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Feature_engineering rootpage-Feature_engineering skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Feature+engineering" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Feature+engineering" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Feature+engineering" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Feature+engineering" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Clustering" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Clustering"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Clustering</span> </div> </a> <ul id="toc-Clustering-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Predictive_modelling" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Predictive_modelling"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Predictive modelling</span> </div> </a> <ul id="toc-Predictive_modelling-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Automation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Automation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Automation</span> </div> </a> <button aria-controls="toc-Automation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Automation subsection</span> </button> <ul id="toc-Automation-sublist" class="vector-toc-list"> <li id="toc-Multi-relational_decision_tree_learning_(MRDTL)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Multi-relational_decision_tree_learning_(MRDTL)"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Multi-relational decision tree learning (MRDTL)</span> </div> </a> <ul id="toc-Multi-relational_decision_tree_learning_(MRDTL)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Open-source_implementations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Open-source_implementations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Open-source implementations</span> </div> </a> <ul id="toc-Open-source_implementations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Deep_feature_synthesis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Deep_feature_synthesis"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Deep feature synthesis</span> </div> </a> <ul id="toc-Deep_feature_synthesis-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Feature_stores" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Feature_stores"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Feature stores</span> </div> </a> <ul id="toc-Feature_stores-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Alternatives" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Alternatives"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Alternatives</span> </div> </a> <ul id="toc-Alternatives-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Feature engineering</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 13 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-13" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">13 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%87%D9%86%D8%AF%D8%B3%D8%A9_%D8%A7%D9%84%D8%AE%D8%B5%D8%A7%D8%A6%D8%B5" title="هندسة الخصائص – Arabic" lang="ar" hreflang="ar" data-title="هندسة الخصائص" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9A%D0%B0%D0%BD%D1%81%D1%82%D1%80%D1%83%D1%8F%D0%B2%D0%B0%D0%BD%D0%BD%D0%B5_%D0%BF%D1%80%D1%8B%D0%BA%D0%BC%D0%B5%D1%82" title="Канструяванне прыкмет – Belarusian" lang="be" hreflang="be" data-title="Канструяванне прыкмет" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Enginyeria_de_caracter%C3%ADstiques" title="Enginyeria de característiques – Catalan" lang="ca" hreflang="ca" data-title="Enginyeria de característiques" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Creaci%C3%B3n_de_atributos" title="Creación de atributos – Spanish" lang="es" hreflang="es" data-title="Creación de atributos" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D9%87%D9%86%D8%AF%D8%B3%DB%8C_%D9%88%DB%8C%DA%98%DA%AF%DB%8C" title="مهندسی ویژگی – Persian" lang="fa" hreflang="fa" data-title="مهندسی ویژگی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Ing%C3%A9nierie_des_caract%C3%A9ristiques" title="Ingénierie des caractéristiques – French" lang="fr" hreflang="fr" data-title="Ingénierie des caractéristiques" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%8A%B9%EC%A7%95_%EA%B3%B5%ED%95%99" title="특징 공학 – Korean" lang="ko" hreflang="ko" data-title="특징 공학" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%A0%D7%93%D7%A1%D7%AA_%D7%9E%D7%90%D7%A4%D7%99%D7%99%D7%A0%D7%99%D7%9D" title="הנדסת מאפיינים – Hebrew" lang="he" hreflang="he" data-title="הנדסת מאפיינים" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Engenharia_de_caracter%C3%ADsticas" title="Engenharia de características – Portuguese" lang="pt" hreflang="pt" data-title="Engenharia de características" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D1%81%D1%82%D1%80%D1%83%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BF%D1%80%D0%B8%D0%B7%D0%BD%D0%B0%D0%BA%D0%BE%D0%B2" title="Конструирование признаков – Russian" lang="ru" hreflang="ru" data-title="Конструирование признаков" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A7%E0%B8%B4%E0%B8%A8%E0%B8%A7%E0%B8%81%E0%B8%A3%E0%B8%A3%E0%B8%A1%E0%B8%84%E0%B9%88%E0%B8%B2%E0%B9%81%E0%B8%97%E0%B8%99%E0%B8%A5%E0%B8%B1%E0%B8%81%E0%B8%A9%E0%B8%93%E0%B8%B0" title="วิศวกรรมค่าแทนลักษณะ – Thai" lang="th" hreflang="th" data-title="วิศวกรรมค่าแทนลักษณะ" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D1%81%D1%82%D1%80%D1%83%D1%8E%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F_%D0%BE%D0%B7%D0%BD%D0%B0%D0%BA" title="Конструювання ознак – Ukrainian" lang="uk" hreflang="uk" data-title="Конструювання ознак" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%89%B9%E5%BE%81%E5%B7%A5%E7%A8%8B" title="特征工程 – Chinese" lang="zh" hreflang="zh" data-title="特征工程" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q22245680#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Feature_engineering" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Feature_engineering" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Feature_engineering"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Feature_engineering&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Feature_engineering&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Feature_engineering"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Feature_engineering&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Feature_engineering&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Feature_engineering" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Feature_engineering" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Feature_engineering&amp;oldid=1254881418" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Feature_engineering&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Feature_engineering&amp;id=1254881418&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFeature_engineering"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFeature_engineering"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Feature_engineering&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Feature_engineering&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q22245680" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Extracting features from raw data for machine learning</div> <style data-mw-deduplicate="TemplateStyles:r1244144826">.mw-parser-output .machine-learning-list-title{background-color:#ddddff}html.skin-theme-clientpref-night .mw-parser-output .machine-learning-list-title{background-color:#222}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .machine-learning-list-title{background-color:#222}}</style> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r886047488">.mw-parser-output .nobold{font-weight:normal}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><table class="sidebar sidebar-collapse nomobile nowraplinks"><tbody><tr><td class="sidebar-pretitle">Part of a series on</td></tr><tr><th class="sidebar-title-with-pretitle"><a href="/wiki/Machine_learning" title="Machine learning">Machine learning</a><br />and <a href="/wiki/Data_mining" title="Data mining">data mining</a></th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)">Paradigms</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Supervised_learning" title="Supervised learning">Supervised learning</a></li> <li><a href="/wiki/Unsupervised_learning" title="Unsupervised learning">Unsupervised learning</a></li> <li><a href="/wiki/Semi-supervised_learning" class="mw-redirect" title="Semi-supervised learning">Semi-supervised learning</a></li> <li><a href="/wiki/Self-supervised_learning" title="Self-supervised learning">Self-supervised learning</a></li> <li><a href="/wiki/Reinforcement_learning" title="Reinforcement learning">Reinforcement learning</a></li> <li><a href="/wiki/Meta-learning_(computer_science)" title="Meta-learning (computer science)">Meta-learning</a></li> <li><a href="/wiki/Online_machine_learning" title="Online machine learning">Online learning</a></li> <li><a href="/wiki/Batch_learning" class="mw-redirect" title="Batch learning">Batch learning</a></li> <li><a href="/wiki/Curriculum_learning" title="Curriculum learning">Curriculum learning</a></li> <li><a href="/wiki/Rule-based_machine_learning" title="Rule-based machine learning">Rule-based learning</a></li> <li><a href="/wiki/Neuro-symbolic_AI" title="Neuro-symbolic AI">Neuro-symbolic AI</a></li> <li><a href="/wiki/Neuromorphic_engineering" class="mw-redirect" title="Neuromorphic engineering">Neuromorphic engineering</a></li> <li><a href="/wiki/Quantum_machine_learning" title="Quantum machine learning">Quantum machine learning</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)">Problems</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Statistical_classification" title="Statistical classification">Classification</a></li> <li><a href="/wiki/Generative_model" title="Generative model">Generative modeling</a></li> <li><a href="/wiki/Regression_analysis" title="Regression analysis">Regression</a></li> <li><a href="/wiki/Cluster_analysis" title="Cluster analysis">Clustering</a></li> <li><a href="/wiki/Dimensionality_reduction" title="Dimensionality reduction">Dimensionality reduction</a></li> <li><a href="/wiki/Density_estimation" title="Density estimation">Density estimation</a></li> <li><a href="/wiki/Anomaly_detection" title="Anomaly detection">Anomaly detection</a></li> <li><a href="/wiki/Data_cleaning" class="mw-redirect" title="Data cleaning">Data cleaning</a></li> <li><a href="/wiki/Automated_machine_learning" title="Automated machine learning">AutoML</a></li> <li><a href="/wiki/Association_rule_learning" title="Association rule learning">Association rules</a></li> <li><a href="/wiki/Semantic_analysis_(machine_learning)" title="Semantic analysis (machine learning)">Semantic analysis</a></li> <li><a href="/wiki/Structured_prediction" title="Structured prediction">Structured prediction</a></li> <li><a class="mw-selflink selflink">Feature engineering</a></li> <li><a href="/wiki/Feature_learning" title="Feature learning">Feature learning</a></li> <li><a href="/wiki/Learning_to_rank" title="Learning to rank">Learning to rank</a></li> <li><a href="/wiki/Grammar_induction" title="Grammar induction">Grammar induction</a></li> <li><a href="/wiki/Ontology_learning" title="Ontology learning">Ontology learning</a></li> <li><a href="/wiki/Multimodal_learning" title="Multimodal learning">Multimodal learning</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)"><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Supervised_learning" title="Supervised learning">Supervised learning</a><br /><span class="nobold"><span style="font-size:85%;">(<b><a href="/wiki/Statistical_classification" title="Statistical classification">classification</a></b>&#160;&#8226;&#32;<b><a href="/wiki/Regression_analysis" title="Regression analysis">regression</a></b>)</span></span> </div></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Apprenticeship_learning" title="Apprenticeship learning">Apprenticeship learning</a></li> <li><a href="/wiki/Decision_tree_learning" title="Decision tree learning">Decision trees</a></li> <li><a href="/wiki/Ensemble_learning" title="Ensemble learning">Ensembles</a> <ul><li><a href="/wiki/Bootstrap_aggregating" title="Bootstrap aggregating">Bagging</a></li> <li><a href="/wiki/Boosting_(machine_learning)" title="Boosting (machine learning)">Boosting</a></li> <li><a href="/wiki/Random_forest" title="Random forest">Random forest</a></li></ul></li> <li><a href="/wiki/K-nearest_neighbors_algorithm" title="K-nearest neighbors algorithm"><i>k</i>-NN</a></li> <li><a href="/wiki/Linear_regression" title="Linear regression">Linear regression</a></li> <li><a href="/wiki/Naive_Bayes_classifier" title="Naive Bayes classifier">Naive Bayes</a></li> <li><a href="/wiki/Artificial_neural_network" class="mw-redirect" title="Artificial neural network">Artificial neural networks</a></li> <li><a href="/wiki/Logistic_regression" title="Logistic regression">Logistic regression</a></li> <li><a href="/wiki/Perceptron" title="Perceptron">Perceptron</a></li> <li><a href="/wiki/Relevance_vector_machine" title="Relevance vector machine">Relevance vector machine (RVM)</a></li> <li><a href="/wiki/Support_vector_machine" title="Support vector machine">Support vector machine (SVM)</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)"><a href="/wiki/Cluster_analysis" title="Cluster analysis">Clustering</a></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/BIRCH" title="BIRCH">BIRCH</a></li> <li><a href="/wiki/CURE_algorithm" title="CURE algorithm">CURE</a></li> <li><a href="/wiki/Hierarchical_clustering" title="Hierarchical clustering">Hierarchical</a></li> <li><a href="/wiki/K-means_clustering" title="K-means clustering"><i>k</i>-means</a></li> <li><a href="/wiki/Fuzzy_clustering" title="Fuzzy clustering">Fuzzy</a></li> <li><a href="/wiki/Expectation%E2%80%93maximization_algorithm" title="Expectation–maximization algorithm">Expectation–maximization (EM)</a></li> <li><br /><a href="/wiki/DBSCAN" title="DBSCAN">DBSCAN</a></li> <li><a href="/wiki/OPTICS_algorithm" title="OPTICS algorithm">OPTICS</a></li> <li><a href="/wiki/Mean_shift" title="Mean shift">Mean shift</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)"><a href="/wiki/Dimensionality_reduction" title="Dimensionality reduction">Dimensionality reduction</a></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Factor_analysis" title="Factor analysis">Factor analysis</a></li> <li><a href="/wiki/Canonical_correlation" title="Canonical correlation">CCA</a></li> <li><a href="/wiki/Independent_component_analysis" title="Independent component analysis">ICA</a></li> <li><a href="/wiki/Linear_discriminant_analysis" title="Linear discriminant analysis">LDA</a></li> <li><a href="/wiki/Non-negative_matrix_factorization" title="Non-negative matrix factorization">NMF</a></li> <li><a href="/wiki/Principal_component_analysis" title="Principal component analysis">PCA</a></li> <li><a href="/wiki/Proper_generalized_decomposition" title="Proper generalized decomposition">PGD</a></li> <li><a href="/wiki/T-distributed_stochastic_neighbor_embedding" title="T-distributed stochastic neighbor embedding">t-SNE</a></li> <li><a href="/wiki/Sparse_dictionary_learning" title="Sparse dictionary learning">SDL</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)"><a href="/wiki/Structured_prediction" title="Structured prediction">Structured prediction</a></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Graphical_model" title="Graphical model">Graphical models</a> <ul><li><a href="/wiki/Bayesian_network" title="Bayesian network">Bayes net</a></li> <li><a href="/wiki/Conditional_random_field" title="Conditional random field">Conditional random field</a></li> <li><a href="/wiki/Hidden_Markov_model" title="Hidden Markov model">Hidden Markov</a></li></ul></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)"><a href="/wiki/Anomaly_detection" title="Anomaly detection">Anomaly detection</a></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Random_sample_consensus" title="Random sample consensus">RANSAC</a></li> <li><a href="/wiki/K-nearest_neighbors_algorithm" title="K-nearest neighbors algorithm"><i>k</i>-NN</a></li> <li><a href="/wiki/Local_outlier_factor" title="Local outlier factor">Local outlier factor</a></li> <li><a href="/wiki/Isolation_forest" title="Isolation forest">Isolation forest</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)"><a href="/wiki/Artificial_neural_network" class="mw-redirect" title="Artificial neural network">Artificial neural network</a></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Autoencoder" title="Autoencoder">Autoencoder</a></li> <li><a href="/wiki/Deep_learning" title="Deep learning">Deep learning</a></li> <li><a href="/wiki/Feedforward_neural_network" title="Feedforward neural network">Feedforward neural network</a></li> <li><a href="/wiki/Recurrent_neural_network" title="Recurrent neural network">Recurrent neural network</a> <ul><li><a href="/wiki/Long_short-term_memory" title="Long short-term memory">LSTM</a></li> <li><a href="/wiki/Gated_recurrent_unit" title="Gated recurrent unit">GRU</a></li> <li><a href="/wiki/Echo_state_network" title="Echo state network">ESN</a></li> <li><a href="/wiki/Reservoir_computing" title="Reservoir computing">reservoir computing</a></li></ul></li> <li><a href="/wiki/Boltzmann_machine" title="Boltzmann machine">Boltzmann machine</a> <ul><li><a href="/wiki/Restricted_Boltzmann_machine" title="Restricted Boltzmann machine">Restricted</a></li></ul></li> <li><a href="/wiki/Generative_adversarial_network" title="Generative adversarial network">GAN</a></li> <li><a href="/wiki/Diffusion_model" title="Diffusion model">Diffusion model</a></li> <li><a href="/wiki/Self-organizing_map" title="Self-organizing map">SOM</a></li> <li><a href="/wiki/Convolutional_neural_network" title="Convolutional neural network">Convolutional neural network</a> <ul><li><a href="/wiki/U-Net" title="U-Net">U-Net</a></li> <li><a href="/wiki/LeNet" title="LeNet">LeNet</a></li> <li><a href="/wiki/AlexNet" title="AlexNet">AlexNet</a></li> <li><a href="/wiki/DeepDream" title="DeepDream">DeepDream</a></li></ul></li> <li><a href="/wiki/Neural_radiance_field" title="Neural radiance field">Neural radiance field</a></li> <li><a href="/wiki/Transformer_(machine_learning_model)" class="mw-redirect" title="Transformer (machine learning model)">Transformer</a> <ul><li><a href="/wiki/Vision_transformer" title="Vision transformer">Vision</a></li></ul></li> <li><a href="/wiki/Mamba_(deep_learning_architecture)" title="Mamba (deep learning architecture)">Mamba</a></li> <li><a href="/wiki/Spiking_neural_network" title="Spiking neural network">Spiking neural network</a></li> <li><a href="/wiki/Memtransistor" title="Memtransistor">Memtransistor</a></li> <li><a href="/wiki/Electrochemical_RAM" title="Electrochemical RAM">Electrochemical RAM</a> (ECRAM)</li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)"><a href="/wiki/Reinforcement_learning" title="Reinforcement learning">Reinforcement learning</a></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Q-learning" title="Q-learning">Q-learning</a></li> <li><a href="/wiki/State%E2%80%93action%E2%80%93reward%E2%80%93state%E2%80%93action" title="State–action–reward–state–action">SARSA</a></li> <li><a href="/wiki/Temporal_difference_learning" title="Temporal difference learning">Temporal difference (TD)</a></li> <li><a href="/wiki/Multi-agent_reinforcement_learning" title="Multi-agent reinforcement learning">Multi-agent</a> <ul><li><a href="/wiki/Self-play_(reinforcement_learning_technique)" class="mw-redirect" title="Self-play (reinforcement learning technique)">Self-play</a></li></ul></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)">Learning with humans</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Active_learning_(machine_learning)" title="Active learning (machine learning)">Active learning</a></li> <li><a href="/wiki/Crowdsourcing" title="Crowdsourcing">Crowdsourcing</a></li> <li><a href="/wiki/Human-in-the-loop" title="Human-in-the-loop">Human-in-the-loop</a></li> <li><a href="/wiki/Reinforcement_learning_from_human_feedback" title="Reinforcement learning from human feedback">RLHF</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)">Model diagnostics</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Coefficient_of_determination" title="Coefficient of determination">Coefficient of determination</a></li> <li><a href="/wiki/Confusion_matrix" title="Confusion matrix">Confusion matrix</a></li> <li><a href="/wiki/Learning_curve_(machine_learning)" title="Learning curve (machine learning)">Learning curve</a></li> <li><a href="/wiki/Receiver_operating_characteristic" title="Receiver operating characteristic">ROC curve</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)">Mathematical foundations</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Kernel_machines" class="mw-redirect" title="Kernel machines">Kernel machines</a></li> <li><a href="/wiki/Bias%E2%80%93variance_tradeoff" title="Bias–variance tradeoff">Bias–variance tradeoff</a></li> <li><a href="/wiki/Computational_learning_theory" title="Computational learning theory">Computational learning theory</a></li> <li><a href="/wiki/Empirical_risk_minimization" title="Empirical risk minimization">Empirical risk minimization</a></li> <li><a href="/wiki/Occam_learning" title="Occam learning">Occam learning</a></li> <li><a href="/wiki/Probably_approximately_correct_learning" title="Probably approximately correct learning">PAC learning</a></li> <li><a href="/wiki/Statistical_learning_theory" title="Statistical learning theory">Statistical learning</a></li> <li><a href="/wiki/Vapnik%E2%80%93Chervonenkis_theory" title="Vapnik–Chervonenkis theory">VC theory</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)">Journals and conferences</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/ECML_PKDD" title="ECML PKDD">ECML PKDD</a></li> <li><a href="/wiki/Conference_on_Neural_Information_Processing_Systems" title="Conference on Neural Information Processing Systems">NeurIPS</a></li> <li><a href="/wiki/International_Conference_on_Machine_Learning" title="International Conference on Machine Learning">ICML</a></li> <li><a href="/wiki/International_Conference_on_Learning_Representations" title="International Conference on Learning Representations">ICLR</a></li> <li><a href="/wiki/International_Joint_Conference_on_Artificial_Intelligence" title="International Joint Conference on Artificial Intelligence">IJCAI</a></li> <li><a href="/wiki/Machine_Learning_(journal)" title="Machine Learning (journal)">ML</a></li> <li><a href="/wiki/Journal_of_Machine_Learning_Research" title="Journal of Machine Learning Research">JMLR</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)">Related articles</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Glossary_of_artificial_intelligence" title="Glossary of artificial intelligence">Glossary of artificial intelligence</a></li> <li><a href="/wiki/List_of_datasets_for_machine-learning_research" title="List of datasets for machine-learning research">List of datasets for machine-learning research</a> <ul><li><a href="/wiki/List_of_datasets_in_computer_vision_and_image_processing" title="List of datasets in computer vision and image processing">List of datasets in computer vision and image processing</a></li></ul></li> <li><a href="/wiki/Outline_of_machine_learning" title="Outline of machine learning">Outline of machine learning</a></li></ul></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Machine_learning" title="Template:Machine learning"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Machine_learning" title="Template talk:Machine learning"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Machine_learning" title="Special:EditPage/Template:Machine learning"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table><style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Update plainlinks metadata ambox ambox-content ambox-Update" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/Ambox_current_red_Americas.svg/42px-Ambox_current_red_Americas.svg.png" decoding="async" width="42" height="34" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/Ambox_current_red_Americas.svg/63px-Ambox_current_red_Americas.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/53/Ambox_current_red_Americas.svg/84px-Ambox_current_red_Americas.svg.png 2x" data-file-width="360" data-file-height="290" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article needs to be <b>updated</b>.<span class="hide-when-compact"> Please help update this article to reflect recent events or newly available information.</span> <span class="date-container"><i>(<span class="date">February 2024</span>)</i></span></div></td></tr></tbody></table> <p><b>Feature engineering</b> is a preprocessing step in <a href="/wiki/Supervised_machine_learning" class="mw-redirect" title="Supervised machine learning">supervised machine learning</a> and <a href="/wiki/Statistical_modeling" class="mw-redirect" title="Statistical modeling">statistical modeling</a><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> which transforms raw data into a more effective set of inputs. Each input comprises several attributes, known as features. By providing models with relevant information, feature engineering significantly enhances their predictive accuracy and decision-making capability.<sup id="cite_ref-auto1_2-0" class="reference"><a href="#cite_note-auto1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>Beyond machine learning, the principles of feature engineering are applied in various scientific fields, including physics. For example, physicists construct <a href="/wiki/Dimensionless_quantity" title="Dimensionless quantity">dimensionless numbers</a> such as the <a href="/wiki/Reynolds_number" title="Reynolds number">Reynolds number</a> in <a href="/wiki/Fluid_dynamics" title="Fluid dynamics">fluid dynamics</a>, the <a href="/wiki/Nusselt_number" title="Nusselt number">Nusselt number</a> in <a href="/wiki/Heat_transfer" title="Heat transfer">heat transfer</a>, and the <a href="/wiki/Archimedes_number" title="Archimedes number">Archimedes number</a> in <a href="/wiki/Sedimentation" title="Sedimentation">sedimentation</a>. They also develop first approximations of solutions, such as analytical solutions for the <a href="/wiki/Strength_of_materials" title="Strength of materials">strength of materials</a> in mechanics.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Clustering">Clustering</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Feature_engineering&amp;action=edit&amp;section=1" title="Edit section: Clustering"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One of the applications of feature engineering has been clustering of feature-objects or sample-objects in a dataset. Especially, feature engineering based on <a href="/wiki/Matrix_decomposition" title="Matrix decomposition">matrix decomposition</a> has been extensively used for data clustering under non-negativity constraints on the feature coefficients. These include <i>Non-Negative Matrix Factorization</i> (NMF),<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> <i>Non-Negative Matrix-Tri Factorization</i> (NMTF),<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> <i>Non-Negative Tensor Decomposition/Factorization</i> (NTF/NTD),<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> etc. The non-negativity constraints on coefficients of the feature vectors mined by the above-stated algorithms yields a part-based representation, and different factor matrices exhibit natural clustering properties. Several extensions of the above-stated feature engineering methods have been reported in literature, including <i>orthogonality-constrained factorization</i> for hard clustering, and <i>manifold learning</i> to overcome inherent issues with these algorithms. </p><p>Other classes of feature engineering algorithms include leveraging a common hidden structure across multiple inter-related datasets to obtain a consensus (common) clustering scheme. An example is <i>Multi-view Classification based on Consensus Matrix Decomposition</i> (MCMD),<sup id="cite_ref-auto1_2-1" class="reference"><a href="#cite_note-auto1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> which mines a common clustering scheme across multiple datasets. MCMD is designed to output two types of class labels (scale-variant and scale-invariant clustering), and: </p> <ul><li>is <a href="/wiki/Robustness_(computer_science)" title="Robustness (computer science)">computationally robust</a> to missing information,</li> <li>can obtain shape- and scale-based outliers,</li> <li>and can handle high-dimensional data effectively.</li></ul> <p>Coupled matrix and tensor decompositions are popular in multi-view feature engineering.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Predictive_modelling">Predictive modelling</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Feature_engineering&amp;action=edit&amp;section=2" title="Edit section: Predictive modelling"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Feature engineering in <a href="/wiki/Machine_learning" title="Machine learning">machine learning</a> and <a href="/wiki/Statistical_modeling" class="mw-redirect" title="Statistical modeling">statistical modeling</a> involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like <a href="/wiki/Principal_component_analysis" title="Principal component analysis">Principal Components Analysis</a> (PCA), <a href="/wiki/Independent_component_analysis" title="Independent component analysis">Independent Component Analysis</a> (ICA), and <a href="/wiki/Linear_discriminant_analysis" title="Linear discriminant analysis">Linear Discriminant Analysis</a> (LDA), and selecting the most relevant features for model training based on importance scores and <a href="/wiki/Correlation_matrices" class="mw-redirect" title="Correlation matrices">correlation matrices</a>.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p><p>Features vary in significance.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> Even relatively insignificant features may contribute to a model. <a href="/wiki/Feature_selection" title="Feature selection">Feature selection</a> can reduce the number of features to prevent a model from becoming too specific to the training data set (overfitting).<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p><p>Feature explosion occurs when the number of identified features is too large for effective model estimation or optimization. Common causes include: </p> <ul><li>Feature templates - implementing feature templates instead of coding new features</li> <li>Feature combinations - combinations that cannot be represented by a linear system</li></ul> <p>Feature explosion can be limited via techniques such as: <a href="/wiki/Regularization_(mathematics)" title="Regularization (mathematics)">regularization</a>, <a href="/wiki/Kernel_method" title="Kernel method">kernel methods</a>, and <a href="/wiki/Feature_selection" title="Feature selection">feature selection</a>.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Automation">Automation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Feature_engineering&amp;action=edit&amp;section=3" title="Edit section: Automation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Automation of feature engineering is a research topic that dates back to the 1990s.<sup id="cite_ref-:0_14-0" class="reference"><a href="#cite_note-:0-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> Machine learning software that incorporates <a href="/wiki/Automated_feature_engineering" class="mw-redirect" title="Automated feature engineering">automated feature engineering</a> has been commercially available since 2016.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> Related academic literature can be roughly separated into two types: </p> <ul><li>Multi-relational decision tree learning (MRDTL) uses a supervised algorithm that is similar to a <a href="/wiki/Decision_tree" title="Decision tree">decision tree</a>.</li> <li>Deep Feature Synthesis uses simpler methods.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (January 2020)">citation needed</span></a></i>&#93;</sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Multi-relational_decision_tree_learning_(MRDTL)"><span id="Multi-relational_decision_tree_learning_.28MRDTL.29"></span>Multi-relational decision tree learning (MRDTL)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Feature_engineering&amp;action=edit&amp;section=4" title="Edit section: Multi-relational decision tree learning (MRDTL)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Multi-relational Decision Tree Learning (MRDTL) extends traditional decision tree methods to <a href="/wiki/Relational_database" title="Relational database">relational databases</a>, handling complex data relationships across tables. It innovatively uses selection graphs as <a href="/wiki/Decision_node" class="mw-redirect" title="Decision node">decision nodes</a>, refined systematically until a specific termination criterion is reached.<sup id="cite_ref-:0_14-1" class="reference"><a href="#cite_note-:0-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p><p>Most MRDTL studies base implementations on relational databases, which results in many redundant operations. These redundancies can be reduced by using techniques such as tuple id propagation.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Open-source_implementations">Open-source implementations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Feature_engineering&amp;action=edit&amp;section=5" title="Edit section: Open-source implementations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are a number of open-source libraries and tools that automate feature engineering on relational data and time series: </p> <ul><li><b>featuretools</b> is a <a href="/wiki/Python_(programming_language)" title="Python (programming language)">Python</a> library for transforming time series and relational data into feature matrices for machine learning.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup></li> <li><b>MCMD:</b> An open-source feature engineering algorithm for joint clustering of multiple datasets . <sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-auto1_2-2" class="reference"><a href="#cite_note-auto1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup></li> <li><b>OneBM</b> or One-Button Machine combines feature transformations and feature selection on relational data with feature selection techniques.<sup id="cite_ref-auto2_22-0" class="reference"><a href="#cite_note-auto2-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>[OneBM] helps data scientists reduce data exploration time allowing them to try and error many ideas in short time. On the other hand, it enables non-experts, who are not familiar with data science, to quickly extract value from their data with a little effort, time, and cost.<sup id="cite_ref-auto2_22-1" class="reference"><a href="#cite_note-auto2-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></p></blockquote></li> <li><b>getML community</b> is an open source tool for automated feature engineering on time series and relational data.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-auto_24-0" class="reference"><a href="#cite_note-auto-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> It is implemented in <a href="/wiki/C_(programming_language)" title="C (programming language)">C</a>/<a href="/wiki/C%2B%2B" title="C++">C++</a> with a Python interface.<sup id="cite_ref-auto_24-1" class="reference"><a href="#cite_note-auto-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> It has been shown to be at least 60 times faster than tsflex, tsfresh, tsfel, featuretools or kats.<sup id="cite_ref-auto_24-2" class="reference"><a href="#cite_note-auto-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup></li> <li><b>tsfresh</b> is a Python library for feature extraction on time series data.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> It evaluates the quality of the features using hypothesis testing.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup></li> <li><b>tsflex</b> is an open source Python library for extracting features from time series data.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> Despite being 100% written in Python, it has been shown to be faster and more memory efficient than tsfresh, seglearn or tsfel.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup></li> <li><b>seglearn</b> is an extension for multivariate, sequential time series data to the <a href="/wiki/Scikit-learn" title="Scikit-learn">scikit-learn</a> Python library.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup></li> <li><b>tsfel</b> is a Python package for feature extraction on time series data.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup></li> <li><b>kats</b> is a Python toolkit for analyzing time series data.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Deep_feature_synthesis">Deep feature synthesis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Feature_engineering&amp;action=edit&amp;section=6" title="Edit section: Deep feature synthesis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The deep feature synthesis (DFS) algorithm beat 615 of 906 human teams in a competition.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Feature_stores">Feature stores</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Feature_engineering&amp;action=edit&amp;section=7" title="Edit section: Feature stores"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Feature Store is where the features are stored and organized for the explicit purpose of being used to either train models (by data scientists) or make predictions (by applications that have a trained model). It is a central location where you can either create or update groups of features created from multiple different data sources, or create and update new datasets from those feature groups for training models or for use in applications that do not want to compute the features but just retrieve them when it needs them to make predictions.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </p><p>A feature store includes the ability to store code used to generate features, apply the code to raw data, and serve those features to models upon request. Useful capabilities include feature versioning and policies governing the circumstances under which features can be used.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> </p><p>Feature stores can be standalone software tools or built into machine learning platforms. </p> <div class="mw-heading mw-heading2"><h2 id="Alternatives">Alternatives</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Feature_engineering&amp;action=edit&amp;section=8" title="Edit section: Alternatives"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Feature engineering can be a time-consuming and error-prone process, as it requires domain expertise and often involves trial and error.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Deep_learning" title="Deep learning">Deep learning algorithms</a> may be used to process a large raw dataset without having to resort to feature engineering.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> However, deep learning algorithms still require careful preprocessing and cleaning of the input data.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> In addition, choosing the right architecture, hyperparameters, and optimization algorithm for a deep neural network can be a challenging and iterative process.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Feature_engineering&amp;action=edit&amp;section=9" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Covariate" class="mw-redirect" title="Covariate">Covariate</a></li> <li><a href="/wiki/Data_transformation_(statistics)" title="Data transformation (statistics)">Data transformation</a></li> <li><a href="/wiki/Feature_extraction" class="mw-redirect" title="Feature extraction">Feature extraction</a></li> <li><a href="/wiki/Feature_learning" title="Feature learning">Feature learning</a></li> <li><a href="/wiki/Hashing_trick" class="mw-redirect" title="Hashing trick">Hashing trick</a></li> <li><a href="/wiki/Instrumental_variables_estimation" title="Instrumental variables estimation">Instrumental variables estimation</a></li> <li><a href="/wiki/Kernel_method" title="Kernel method">Kernel method</a></li> <li><a href="/wiki/List_of_datasets_for_machine_learning_research" class="mw-redirect" title="List of datasets for machine learning research">List of datasets for machine learning research</a></li> <li><a href="/wiki/Scale_co-occurrence_matrix" title="Scale co-occurrence matrix">Scale co-occurrence matrix</a></li> <li><a href="/wiki/Space_mapping" title="Space mapping">Space mapping</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Feature_engineering&amp;action=edit&amp;section=10" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFHastieTibshiraniFriedman2009" class="citation book cs1">Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome H. (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=eBSgoAEACAAJ"><i>The Elements of Statistical Learning: Data Mining, Inference, and Prediction</i></a>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-84884-6" title="Special:BookSources/978-0-387-84884-6"><bdi>978-0-387-84884-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Elements+of+Statistical+Learning%3A+Data+Mining%2C+Inference%2C+and+Prediction&amp;rft.pub=Springer&amp;rft.date=2009&amp;rft.isbn=978-0-387-84884-6&amp;rft.aulast=Hastie&amp;rft.aufirst=Trevor&amp;rft.au=Tibshirani%2C+Robert&amp;rft.au=Friedman%2C+Jerome+H.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DeBSgoAEACAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-auto1-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-auto1_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-auto1_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-auto1_2-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSharmaNayakBhaskar2024" class="citation journal cs1">Sharma, Shubham; Nayak, Richi; Bhaskar, Ashish (2024-05-01). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.trc.2024.104607">"Multi-view feature engineering for day-to-day joint clustering of multiple traffic datasets"</a>. <i>Transportation Research Part C: Emerging Technologies</i>. <b>162</b>: 104607. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2024TRPC..16204607S">2024TRPC..16204607S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.trc.2024.104607">10.1016/j.trc.2024.104607</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0968-090X">0968-090X</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Transportation+Research+Part+C%3A+Emerging+Technologies&amp;rft.atitle=Multi-view+feature+engineering+for+day-to-day+joint+clustering+of+multiple+traffic+datasets&amp;rft.volume=162&amp;rft.pages=104607&amp;rft.date=2024-05-01&amp;rft.issn=0968-090X&amp;rft_id=info%3Adoi%2F10.1016%2Fj.trc.2024.104607&amp;rft_id=info%3Abibcode%2F2024TRPC..16204607S&amp;rft.aulast=Sharma&amp;rft.aufirst=Shubham&amp;rft.au=Nayak%2C+Richi&amp;rft.au=Bhaskar%2C+Ashish&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.trc.2024.104607&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShalev-ShwartzBen-David2014" class="citation book cs1">Shalev-Shwartz, Shai; Ben-David, Shai (2014). <i>Understanding Machine Learning: From Theory to Algorithms</i>. Cambridge: Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781107057135" title="Special:BookSources/9781107057135"><bdi>9781107057135</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Understanding+Machine+Learning%3A+From+Theory+to+Algorithms&amp;rft.place=Cambridge&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2014&amp;rft.isbn=9781107057135&amp;rft.aulast=Shalev-Shwartz&amp;rft.aufirst=Shai&amp;rft.au=Ben-David%2C+Shai&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMurphy2022" class="citation book cs1">Murphy, Kevin P. (2022). <i>Probabilistic Machine Learning</i>. Cambridge, Massachusetts: The MIT Press (Copyright 2022 Massachusetts Institute of Technology, this work is subject to a Creative Commons CC-BY-NC-ND license). <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780262046824" title="Special:BookSources/9780262046824"><bdi>9780262046824</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probabilistic+Machine+Learning&amp;rft.place=Cambridge%2C+Massachusetts&amp;rft.pub=The+MIT+Press+%28Copyright+2022+Massachusetts+Institute+of+Technology%2C+this+work+is+subject+to+a+Creative+Commons+CC-BY-NC-ND+license%29&amp;rft.date=2022&amp;rft.isbn=9780262046824&amp;rft.aulast=Murphy&amp;rft.aufirst=Kevin+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMacQueron2021" class="citation report cs1">MacQueron C (2021). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/353947052">SOLID-LIQUID MIXING IN STIRRED TANKS&#160;: Modeling, Validation, Design Optimization and Suspension Quality Prediction</a> (Report). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.13140%2FRG.2.2.11074.84164%2F1">10.13140/RG.2.2.11074.84164/1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=report&amp;rft.btitle=SOLID-LIQUID+MIXING+IN+STIRRED+TANKS+%3A+Modeling%2C+Validation%2C+Design+Optimization+and+Suspension+Quality+Prediction&amp;rft.date=2021&amp;rft_id=info%3Adoi%2F10.13140%2FRG.2.2.11074.84164%2F1&amp;rft.aulast=MacQueron&amp;rft.aufirst=C&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F353947052&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeeSeung1999" class="citation journal cs1">Lee, Daniel D.; Seung, H. Sebastian (1999). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/44565">"Learning the parts of objects by non-negative matrix factorization"</a>. <i>Nature</i>. <b>401</b> (6755): 788–791. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999Natur.401..788L">1999Natur.401..788L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F44565">10.1038/44565</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-4687">1476-4687</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10548103">10548103</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Learning+the+parts+of+objects+by+non-negative+matrix+factorization&amp;rft.volume=401&amp;rft.issue=6755&amp;rft.pages=788-791&amp;rft.date=1999&amp;rft_id=info%3Adoi%2F10.1038%2F44565&amp;rft.issn=1476-4687&amp;rft_id=info%3Apmid%2F10548103&amp;rft_id=info%3Abibcode%2F1999Natur.401..788L&amp;rft.aulast=Lee&amp;rft.aufirst=Daniel+D.&amp;rft.au=Seung%2C+H.+Sebastian&amp;rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2F44565&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangNieHuangDing2011" class="citation book cs1">Wang, Hua; Nie, Feiping; Huang, Heng; Ding, Chris (2011). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1109/icdm.2011.109">"Nonnegative Matrix Tri-factorization Based High-Order Co-clustering and Its Fast Implementation"</a>. <i>2011 IEEE 11th International Conference on Data Mining</i>. IEEE. pp.&#160;774–783. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Ficdm.2011.109">10.1109/icdm.2011.109</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4577-2075-8" title="Special:BookSources/978-1-4577-2075-8"><bdi>978-1-4577-2075-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Nonnegative+Matrix+Tri-factorization+Based+High-Order+Co-clustering+and+Its+Fast+Implementation&amp;rft.btitle=2011+IEEE+11th+International+Conference+on+Data+Mining&amp;rft.pages=774-783&amp;rft.pub=IEEE&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1109%2Ficdm.2011.109&amp;rft.isbn=978-1-4577-2075-8&amp;rft.aulast=Wang&amp;rft.aufirst=Hua&amp;rft.au=Nie%2C+Feiping&amp;rft.au=Huang%2C+Heng&amp;rft.au=Ding%2C+Chris&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1109%2Ficdm.2011.109&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLimComon2009" class="citation arxiv cs1">Lim, Lek-Heng; Comon, Pierre (2009-04-12). "Nonnegative approximations of nonnegative tensors". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0903.4530">0903.4530</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/cs.NA">cs.NA</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Nonnegative+approximations+of+nonnegative+tensors&amp;rft.date=2009-04-12&amp;rft_id=info%3Aarxiv%2F0903.4530&amp;rft.aulast=Lim&amp;rft.aufirst=Lek-Heng&amp;rft.au=Comon%2C+Pierre&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNayakLuong2023" class="citation journal cs1">Nayak, Richi; Luong, Khanh (2023). <a rel="nofollow" class="external text" href="https://doi.org/10.1007/978-3-031-33560-0">"Multi-aspect Learning"</a>. <i>Intelligent Systems Reference Library</i>. <b>242</b>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-031-33560-0">10.1007/978-3-031-33560-0</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-031-33559-4" title="Special:BookSources/978-3-031-33559-4"><bdi>978-3-031-33559-4</bdi></a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1868-4394">1868-4394</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Intelligent+Systems+Reference+Library&amp;rft.atitle=Multi-aspect+Learning&amp;rft.volume=242&amp;rft.date=2023&amp;rft.issn=1868-4394&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-031-33560-0&amp;rft.isbn=978-3-031-33559-4&amp;rft.aulast=Nayak&amp;rft.aufirst=Richi&amp;rft.au=Luong%2C+Khanh&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%2F978-3-031-33560-0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://docs.aws.amazon.com/wellarchitected/latest/machine-learning-lens/feature-engineering.html">"Feature engineering - Machine Learning Lens"</a>. <i>docs.aws.amazon.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-03-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=docs.aws.amazon.com&amp;rft.atitle=Feature+engineering+-+Machine+Learning+Lens&amp;rft_id=https%3A%2F%2Fdocs.aws.amazon.com%2Fwellarchitected%2Flatest%2Fmachine-learning-lens%2Ffeature-engineering.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.cs.princeton.edu/courses/archive/spring10/cos424/slides/18-feat.pdf">"Feature Engineering"</a> <span class="cs1-format">(PDF)</span>. 2010-04-22<span class="reference-accessdate">. Retrieved <span class="nowrap">12 November</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Feature+Engineering&amp;rft.date=2010-04-22&amp;rft_id=http%3A%2F%2Fwww.cs.princeton.edu%2Fcourses%2Farchive%2Fspring10%2Fcos424%2Fslides%2F18-feat.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.cs.berkeley.edu/~jordan/courses/294-fall09/lectures/feature/slides.pdf">"Feature engineering and selection"</a> <span class="cs1-format">(PDF)</span>. Alexandre Bouchard-Côté. October 1, 2009<span class="reference-accessdate">. Retrieved <span class="nowrap">12 November</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Feature+engineering+and+selection&amp;rft.pub=Alexandre+Bouchard-C%C3%B4t%C3%A9&amp;rft.date=2009-10-01&amp;rft_id=http%3A%2F%2Fwww.cs.berkeley.edu%2F~jordan%2Fcourses%2F294-fall09%2Flectures%2Ffeature%2Fslides.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304112056/https://ufal.mff.cuni.cz/~zabokrtsky/courses/npfl104/html/feature_engineering.pdf">"Feature engineering in Machine Learning"</a> <span class="cs1-format">(PDF)</span>. Zdenek Zabokrtsky. Archived from <a rel="nofollow" class="external text" href="https://ufal.mff.cuni.cz/~zabokrtsky/courses/npfl104/html/feature_engineering.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 4 March 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">12 November</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Feature+engineering+in+Machine+Learning&amp;rft.pub=Zdenek+Zabokrtsky&amp;rft_id=https%3A%2F%2Fufal.mff.cuni.cz%2F~zabokrtsky%2Fcourses%2Fnpfl104%2Fhtml%2Ffeature_engineering.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-:0-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnobbeSiebesVan_Der_Wallen1999" class="citation book cs1">Knobbe AJ, Siebes A, Van Der Wallen D (1999). <a rel="nofollow" class="external text" href="https://link.springer.com/content/pdf/10.1007/978-3-540-48247-5_46.pdf">"Multi-relational Decision Tree Induction"</a> <span class="cs1-format">(PDF)</span>. <i>Principles of Data Mining and Knowledge Discovery</i>. Lecture Notes in Computer Science. Vol.&#160;1704. pp.&#160;378–383. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-540-48247-5_46">10.1007/978-3-540-48247-5_46</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-66490-1" title="Special:BookSources/978-3-540-66490-1"><bdi>978-3-540-66490-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Multi-relational+Decision+Tree+Induction&amp;rft.btitle=Principles+of+Data+Mining+and+Knowledge+Discovery&amp;rft.series=Lecture+Notes+in+Computer+Science&amp;rft.pages=378-383&amp;rft.date=1999&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-540-48247-5_46&amp;rft.isbn=978-3-540-66490-1&amp;rft.aulast=Knobbe&amp;rft.aufirst=AJ&amp;rft.au=Siebes%2C+A&amp;rft.au=Van+Der+Wallen%2C+D&amp;rft_id=https%3A%2F%2Flink.springer.com%2Fcontent%2Fpdf%2F10.1007%2F978-3-540-48247-5_46.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://reality.ai/it-is-all-about-the-features/">"Its all about the features"</a>. <i>Reality AI Blog</i>. September 2017.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Reality+AI+Blog&amp;rft.atitle=Its+all+about+the+features&amp;rft.date=2017-09&amp;rft_id=https%3A%2F%2Freality.ai%2Fit-is-all-about-the-features%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYinHanYangYu2004" class="citation book cs1">Yin X, Han J, Yang J, Yu PS (2004). "CrossMine: Efficient classification across multiple database relations". <i>Proceedings. 20th International Conference on Data Engineering</i>. pp.&#160;399–410. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FICDE.2004.1320014">10.1109/ICDE.2004.1320014</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-7695-2065-0" title="Special:BookSources/0-7695-2065-0"><bdi>0-7695-2065-0</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1183403">1183403</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=CrossMine%3A+Efficient+classification+across+multiple+database+relations&amp;rft.btitle=Proceedings.+20th+International+Conference+on+Data+Engineering&amp;rft.pages=399-410&amp;rft.date=2004&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1183403%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FICDE.2004.1320014&amp;rft.isbn=0-7695-2065-0&amp;rft.aulast=Yin&amp;rft.aufirst=X&amp;rft.au=Han%2C+J&amp;rft.au=Yang%2C+J&amp;rft.au=Yu%2C+PS&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrankMoserEster2007" class="citation book cs1">Frank R, Moser F, Ester M (2007). "A Method for Multi-relational Classification Using Single and Multi-feature Aggregation Functions". <i>Knowledge Discovery in Databases: PKDD 2007</i>. Lecture Notes in Computer Science. Vol.&#160;4702. pp.&#160;430–437. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-540-74976-9_43">10.1007/978-3-540-74976-9_43</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-74975-2" title="Special:BookSources/978-3-540-74975-2"><bdi>978-3-540-74975-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=A+Method+for+Multi-relational+Classification+Using+Single+and+Multi-feature+Aggregation+Functions&amp;rft.btitle=Knowledge+Discovery+in+Databases%3A+PKDD+2007&amp;rft.series=Lecture+Notes+in+Computer+Science&amp;rft.pages=430-437&amp;rft.date=2007&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-540-74976-9_43&amp;rft.isbn=978-3-540-74975-2&amp;rft.aulast=Frank&amp;rft.aufirst=R&amp;rft.au=Moser%2C+F&amp;rft.au=Ester%2C+M&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://featuretools.alteryx.com/en/stable/">"What is Featuretools?"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">September 7,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=What+is+Featuretools%3F&amp;rft_id=https%3A%2F%2Ffeaturetools.alteryx.com%2Fen%2Fstable%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.featuretools.com">"Featuretools - An open source python framework for automated feature engineering"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">September 7,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Featuretools+-+An+open+source+python+framework+for+automated+feature+engineering&amp;rft_id=https%3A%2F%2Fwww.featuretools.com&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://github.com/alteryx/featuretools">"github: alteryx/featuretools"</a>. <i><a href="/wiki/GitHub" title="GitHub">GitHub</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">September 7,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=GitHub&amp;rft.atitle=github%3A+alteryx%2Ffeaturetools&amp;rft_id=https%3A%2F%2Fgithub.com%2Falteryx%2Ffeaturetools&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSharma" class="citation cs2">Sharma, Shubham, <a rel="nofollow" class="external text" href="https://github.com/ashishbhaskar/MCMD"><i>mcmd: Multi-view Classification framework based on Consensus Matrix Decomposition developed by Shubham Sharma at QUT</i></a><span class="reference-accessdate">, retrieved <span class="nowrap">2024-04-14</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=mcmd%3A+Multi-view+Classification+framework+based+on+Consensus+Matrix+Decomposition+developed+by+Shubham+Sharma+at+QUT&amp;rft.aulast=Sharma&amp;rft.aufirst=Shubham&amp;rft_id=https%3A%2F%2Fgithub.com%2Fashishbhaskar%2FMCMD&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-auto2-22"><span class="mw-cite-backlink">^ <a href="#cite_ref-auto2_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-auto2_22-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThanh_LamThiebautSinnChen2017" class="citation arxiv cs1">Thanh Lam, Hoang; Thiebaut, Johann-Michael; Sinn, Mathieu; Chen, Bei; Mai, Tiep; Alkan, Oznur (2017-06-01). "One button machine for automating feature engineering in relational databases". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1706.00327">1706.00327</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/cs.DB">cs.DB</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=One+button+machine+for+automating+feature+engineering+in+relational+databases&amp;rft.date=2017-06-01&amp;rft_id=info%3Aarxiv%2F1706.00327&amp;rft.aulast=Thanh+Lam&amp;rft.aufirst=Hoang&amp;rft.au=Thiebaut%2C+Johann-Michael&amp;rft.au=Sinn%2C+Mathieu&amp;rft.au=Chen%2C+Bei&amp;rft.au=Mai%2C+Tiep&amp;rft.au=Alkan%2C+Oznur&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://docs.getml.com/latest/">"getML documentation"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">September 7,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=getML+documentation&amp;rft_id=https%3A%2F%2Fdocs.getml.com%2Flatest%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-auto-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-auto_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-auto_24-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-auto_24-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://github.com/getml/getml-community">"github: getml/getml-community"</a>. <i><a href="/wiki/GitHub" title="GitHub">GitHub</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">September 7,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=GitHub&amp;rft.atitle=github%3A+getml%2Fgetml-community&amp;rft_id=https%3A%2F%2Fgithub.com%2Fgetml%2Fgetml-community&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://tsfresh.readthedocs.io/en/latest">"tsfresh documentation"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">September 7,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=tsfresh+documentation&amp;rft_id=https%3A%2F%2Ftsfresh.readthedocs.io%2Fen%2Flatest&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/324948288">"Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh – A Python package)"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">September 7,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Time+Series+FeatuRe+Extraction+on+basis+of+Scalable+Hypothesis+tests+%28tsfresh+%E2%80%93+A+Python+package%29&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F324948288&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://github.com/predict-idlab/tsflex">"predict-idlab/tsflex"</a>. <i><a href="/wiki/GitHub" title="GitHub">GitHub</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">September 7,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=GitHub&amp;rft.atitle=predict-idlab%2Ftsflex&amp;rft_id=https%3A%2F%2Fgithub.com%2Fpredict-idlab%2Ftsflex&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVan_Der_DoncktVan_Der_DoncktDeprostVan_Hoecke2022" class="citation journal cs1">Van Der Donckt, Jonas; Van Der Donckt, Jeroen; Deprost, Emiel; Van Hoecke, Sofie (2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S2352711021001904">"tsflex: Flexible time series processing &amp; feature extraction"</a>. <i>SoftwareX</i>. <b>17</b>: 100971. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2111.12429">2111.12429</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022SoftX..1700971V">2022SoftX..1700971V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.softx.2021.100971">10.1016/j.softx.2021.100971</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:244527198">244527198</a><span class="reference-accessdate">. Retrieved <span class="nowrap">September 7,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=SoftwareX&amp;rft.atitle=tsflex%3A+Flexible+time+series+processing+%26+feature+extraction&amp;rft.volume=17&amp;rft.pages=100971&amp;rft.date=2022&amp;rft_id=info%3Aarxiv%2F2111.12429&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A244527198%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.softx.2021.100971&amp;rft_id=info%3Abibcode%2F2022SoftX..1700971V&amp;rft.aulast=Van+Der+Donckt&amp;rft.aufirst=Jonas&amp;rft.au=Van+Der+Donckt%2C+Jeroen&amp;rft.au=Deprost%2C+Emiel&amp;rft.au=Van+Hoecke%2C+Sofie&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS2352711021001904&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://dmbee.github.io/seglearn/user_guide.html">"seglearn user guide"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">September 7,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=seglearn+user+guide&amp;rft_id=https%3A%2F%2Fdmbee.github.io%2Fseglearn%2Fuser_guide.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://tsfel.readthedocs.io/en/latest/">"Welcome to TSFEL documentation!"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">September 7,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Welcome+to+TSFEL+documentation%21&amp;rft_id=https%3A%2F%2Ftsfel.readthedocs.io%2Fen%2Flatest%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://github.com/facebookresearch/Kats">"github: facebookresearch/Kats"</a>. <i><a href="/wiki/GitHub" title="GitHub">GitHub</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">September 7,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=GitHub&amp;rft.atitle=github%3A+facebookresearch%2FKats&amp;rft_id=https%3A%2F%2Fgithub.com%2Ffacebookresearch%2FKats&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://news.mit.edu/2015/automating-big-data-analysis-1016">"Automating big-data analysis"</a>. 16 October 2015.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Automating+big-data+analysis&amp;rft.date=2015-10-16&amp;rft_id=https%3A%2F%2Fnews.mit.edu%2F2015%2Fautomating-big-data-analysis-1016&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKanterVeeramachaneni2015" class="citation book cs1">Kanter, James Max; Veeramachaneni, Kalyan (2015). "Deep feature synthesis: Towards automating data science endeavors". <i>2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA)</i>. pp.&#160;1–10. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FDSAA.2015.7344858">10.1109/DSAA.2015.7344858</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4673-8272-4" title="Special:BookSources/978-1-4673-8272-4"><bdi>978-1-4673-8272-4</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:206610380">206610380</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Deep+feature+synthesis%3A+Towards+automating+data+science+endeavors&amp;rft.btitle=2015+IEEE+International+Conference+on+Data+Science+and+Advanced+Analytics+%28DSAA%29&amp;rft.pages=1-10&amp;rft.date=2015&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A206610380%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FDSAA.2015.7344858&amp;rft.isbn=978-1-4673-8272-4&amp;rft.aulast=Kanter&amp;rft.aufirst=James+Max&amp;rft.au=Veeramachaneni%2C+Kalyan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.featurestore.org/what-is-a-feature-store">"What is a feature store"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-04-19</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=What+is+a+feature+store&amp;rft_id=https%3A%2F%2Fwww.featurestore.org%2Fwhat-is-a-feature-store&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://phaseai.com/resources/intro-to-feature-stores">"An Introduction to Feature Stores"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2021-04-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=An+Introduction+to+Feature+Stores&amp;rft_id=https%3A%2F%2Fphaseai.com%2Fresources%2Fintro-to-feature-stores&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.section.io/engineering-education/feature-engineering-in-machine-learning/">"Feature Engineering in Machine Learning"</a>. <i>Engineering Education (EngEd) Program | Section</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2023-03-21</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Engineering+Education+%28EngEd%29+Program+%7C+Section&amp;rft.atitle=Feature+Engineering+in+Machine+Learning&amp;rft_id=https%3A%2F%2Fwww.section.io%2Fengineering-education%2Ffeature-engineering-in-machine-learning%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFexplorium_admin2021" class="citation web cs1">explorium_admin (2021-10-25). <a rel="nofollow" class="external text" href="https://www.explorium.ai/blog/5-reasons-why-feature-engineering-is-challenging/">"5 Reasons Why Feature Engineering is Challenging"</a>. <i>Explorium</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2023-03-21</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Explorium&amp;rft.atitle=5+Reasons+Why+Feature+Engineering+is+Challenging&amp;rft.date=2021-10-25&amp;rft.au=explorium_admin&amp;rft_id=https%3A%2F%2Fwww.explorium.ai%2Fblog%2F5-reasons-why-feature-engineering-is-challenging%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpiegelhalter2019" class="citation book cs1">Spiegelhalter, D. J. (2019). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/1064776283"><i>The art of statistics&#160;: learning from data</i></a>. [London] UK. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-241-39863-0" title="Special:BookSources/978-0-241-39863-0"><bdi>978-0-241-39863-0</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1064776283">1064776283</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+art+of+statistics+%3A+learning+from+data&amp;rft.place=%5BLondon%5D+UK&amp;rft.date=2019&amp;rft_id=info%3Aoclcnum%2F1064776283&amp;rft.isbn=978-0-241-39863-0&amp;rft.aulast=Spiegelhalter&amp;rft.aufirst=D.+J.&amp;rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F1064776283&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSarker2021" class="citation journal cs1">Sarker IH (November 2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372231">"Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions"</a>. <i>SN Computer Science</i>. <b>2</b> (6): 420. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs42979-021-00815-1">10.1007/s42979-021-00815-1</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372231">8372231</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34426802">34426802</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=SN+Computer+Science&amp;rft.atitle=Deep+Learning%3A+A+Comprehensive+Overview+on+Techniques%2C+Taxonomy%2C+Applications+and+Research+Directions&amp;rft.volume=2&amp;rft.issue=6&amp;rft.pages=420&amp;rft.date=2021-11&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8372231%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F34426802&amp;rft_id=info%3Adoi%2F10.1007%2Fs42979-021-00815-1&amp;rft.aulast=Sarker&amp;rft.aufirst=IH&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8372231&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBengio2012" class="citation cs2">Bengio, Yoshua (2012), <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007/978-3-642-35289-8_26">"Practical Recommendations for Gradient-Based Training of Deep Architectures"</a>, <i>Neural Networks: Tricks of the Trade</i>, Lecture Notes in Computer Science, vol.&#160;7700, Berlin, Heidelberg: Springer Berlin Heidelberg, pp.&#160;437–478, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1206.5533">1206.5533</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-35289-8_26">10.1007/978-3-642-35289-8_26</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-642-35288-1" title="Special:BookSources/978-3-642-35288-1"><bdi>978-3-642-35288-1</bdi></a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10808461">10808461</a><span class="reference-accessdate">, retrieved <span class="nowrap">2023-03-21</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Practical+Recommendations+for+Gradient-Based+Training+of+Deep+Architectures&amp;rft.btitle=Neural+Networks%3A+Tricks+of+the+Trade&amp;rft.place=Berlin%2C+Heidelberg&amp;rft.series=Lecture+Notes+in+Computer+Science&amp;rft.pages=437-478&amp;rft.pub=Springer+Berlin+Heidelberg&amp;rft.date=2012&amp;rft_id=info%3Aarxiv%2F1206.5533&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10808461%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-642-35289-8_26&amp;rft.isbn=978-3-642-35288-1&amp;rft.aulast=Bengio&amp;rft.aufirst=Yoshua&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-35289-8_26&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Feature_engineering&amp;action=edit&amp;section=11" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoehmkeGreenwell2019" class="citation book cs1">Boehmke B, Greenwell B (2019). "Feature &amp; Target Engineering". <i>Hands-On Machine Learning with R</i>. Chapman &amp; Hall. pp.&#160;41–75. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-138-49568-5" title="Special:BookSources/978-1-138-49568-5"><bdi>978-1-138-49568-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Feature+%26+Target+Engineering&amp;rft.btitle=Hands-On+Machine+Learning+with+R&amp;rft.pages=41-75&amp;rft.pub=Chapman+%26+Hall&amp;rft.date=2019&amp;rft.isbn=978-1-138-49568-5&amp;rft.aulast=Boehmke&amp;rft.aufirst=B&amp;rft.au=Greenwell%2C+B&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhengCasari2018" class="citation book cs1">Zheng A, Casari A (2018). <i>Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists</i>. O'Reilly. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4919-5324-2" title="Special:BookSources/978-1-4919-5324-2"><bdi>978-1-4919-5324-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Feature+Engineering+for+Machine+Learning%3A+Principles+and+Techniques+for+Data+Scientists&amp;rft.pub=O%27Reilly&amp;rft.date=2018&amp;rft.isbn=978-1-4919-5324-2&amp;rft.aulast=Zheng&amp;rft.aufirst=A&amp;rft.au=Casari%2C+A&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZumelMount2020" class="citation book cs1">Zumel N, Mount (2020). "Data Engineering and Data Shaping". <i>Practical Data Science with R</i> (2nd&#160;ed.). Manning. pp.&#160;113–160. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-61729-587-4" title="Special:BookSources/978-1-61729-587-4"><bdi>978-1-61729-587-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Data+Engineering+and+Data+Shaping&amp;rft.btitle=Practical+Data+Science+with+R&amp;rft.pages=113-160&amp;rft.edition=2nd&amp;rft.pub=Manning&amp;rft.date=2020&amp;rft.isbn=978-1-61729-587-4&amp;rft.aulast=Zumel&amp;rft.aufirst=N&amp;rft.au=Mount&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbououf,_M.Singh,_S.Mizouni,_R.Otrok,_H.2024" class="citation cs2">Abououf, M., Singh, S., Mizouni, R., Otrok, H. (2024), <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016/j.iot.2024.101191"><i>Feature engineering and deep learning-based approach for event detection in Medical Internet of Things (MIoT)</i></a>, Elsevier BV</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Feature+engineering+and+deep+learning-based+approach+for+event+detection+in+Medical+Internet+of+Things+%28MIoT%29&amp;rft.pub=Elsevier+BV&amp;rft.date=2024&amp;rft.au=Abououf%2C+M.&amp;rft.au=Singh%2C+S.&amp;rft.au=Mizouni%2C+R.&amp;rft.au=Otrok%2C+H.&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.iot.2024.101191&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChiccoOnetoTavazzi2022" class="citation journal cs1">Chicco D, Oneto L, Tavazzi E (December 2022). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9754225">"Eleven quick tips for data cleaning and feature engineering"</a>. <i>PLOS Computational Biology</i>. <b>18</b> (12): e1010718. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pcbi.1010718">10.1371/journal.pcbi.1010718</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9754225">9754225</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/36520712">36520712</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:254733288">254733288</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=PLOS+Computational+Biology&amp;rft.atitle=Eleven+quick+tips+for+data+cleaning+and+feature+engineering&amp;rft.volume=18&amp;rft.issue=12&amp;rft.pages=e1010718&amp;rft.date=2022-12&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9754225%23id-name%3DPMC&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A254733288%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F36520712&amp;rft_id=info%3Adoi%2F10.1371%2Fjournal.pcbi.1010718&amp;rft.aulast=Chicco&amp;rft.aufirst=D&amp;rft.au=Oneto%2C+L&amp;rft.au=Tavazzi%2C+E&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9754225&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFeature+engineering" class="Z3988"></span></li></ul> </div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐bs6gz Cached time: 20241122150257 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.015 seconds Real time usage: 1.142 seconds Preprocessor visited node count: 2834/1000000 Post‐expand include size: 122917/2097152 bytes Template argument size: 4867/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 165852/5000000 bytes Lua time usage: 0.667/10.000 seconds Lua memory usage: 6470797/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1021.018 1 -total 47.07% 480.580 1 Template:Reflist 23.36% 238.554 12 Template:Cite_book 19.81% 202.311 1 Template:Machine_learning 18.01% 183.885 1 Template:Sidebar_with_collapsible_lists 12.04% 122.881 7 Template:Main_other 10.60% 108.210 21 Template:Cite_web 10.00% 102.139 1 Template:Short_description 8.47% 86.448 1 Template:Update 7.58% 77.435 1 Template:Ambox --> <!-- Saved in parser cache with key enwiki:pcache:idhash:46207323-0!canonical and timestamp 20241122150257 and revision id 1254881418. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Feature_engineering&amp;oldid=1254881418">https://en.wikipedia.org/w/index.php?title=Feature_engineering&amp;oldid=1254881418</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Machine_learning" title="Category:Machine learning">Machine learning</a></li><li><a href="/wiki/Category:Data_analysis" title="Category:Data analysis">Data analysis</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">CS1 maint: location missing publisher</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_articles_in_need_of_updating_from_February_2024" title="Category:Wikipedia articles in need of updating from February 2024">Wikipedia articles in need of updating from February 2024</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_in_need_of_updating" title="Category:All Wikipedia articles in need of updating">All Wikipedia articles in need of updating</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_January_2020" title="Category:Articles with unsourced statements from January 2020">Articles with unsourced statements from January 2020</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 2 November 2024, at 04:05<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Feature_engineering&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-szrlp","wgBackendResponseTime":195,"wgPageParseReport":{"limitreport":{"cputime":"1.015","walltime":"1.142","ppvisitednodes":{"value":2834,"limit":1000000},"postexpandincludesize":{"value":122917,"limit":2097152},"templateargumentsize":{"value":4867,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":165852,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1021.018 1 -total"," 47.07% 480.580 1 Template:Reflist"," 23.36% 238.554 12 Template:Cite_book"," 19.81% 202.311 1 Template:Machine_learning"," 18.01% 183.885 1 Template:Sidebar_with_collapsible_lists"," 12.04% 122.881 7 Template:Main_other"," 10.60% 108.210 21 Template:Cite_web"," 10.00% 102.139 1 Template:Short_description"," 8.47% 86.448 1 Template:Update"," 7.58% 77.435 1 Template:Ambox"]},"scribunto":{"limitreport-timeusage":{"value":"0.667","limit":"10.000"},"limitreport-memusage":{"value":6470797,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-bs6gz","timestamp":"20241122150257","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Feature engineering","url":"https:\/\/en.wikipedia.org\/wiki\/Feature_engineering","sameAs":"http:\/\/www.wikidata.org\/entity\/Q22245680","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q22245680","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2015-03-23T19:54:42Z","dateModified":"2024-11-02T04:05:07Z","headline":"process that creates features for machine learning by transforming or combining existing features"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10