CINXE.COM
Search results for: carbon nanofiber
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: carbon nanofiber</title> <meta name="description" content="Search results for: carbon nanofiber"> <meta name="keywords" content="carbon nanofiber"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="carbon nanofiber" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="carbon nanofiber"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3162</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: carbon nanofiber</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3132</span> Investigation of the Effect of Phosphorous on the Flame Retardant Polyacrylonitrile Nanofiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Y%C4%B1lmaz">Mustafa Yılmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Akar"> Ahmet Akar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesrin%20K%C3%B6ken"> Nesrin Köken</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilg%C3%BCn%20K%C4%B1z%C4%B1lcan"> Nilgün Kızılcan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Commercially available poly(acrylonitrile-co-vinyl acetate) P(AN-VA) or poly(acrylonitrile-co-methyl acrylate) P(AN-MA) are not satisfactory to meet the demand in flame and fire-resistance. In this work, vinylphosphonic acid is used during polymerization of acrylonitrile, vinyl acetate, methacrylic acid to produce fire-retardant polymers. These phosphorus containing polymers are successfully spun in the form of nanofibers. Properties such as water absorption of polymers are also determined and compared with commercial polymers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flame%20retardant" title="flame retardant">flame retardant</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiber" title=" nanofiber"> nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylonitrile" title=" polyacrylonitrile"> polyacrylonitrile</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorous%20compound" title=" phosphorous compound"> phosphorous compound</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a> </p> <a href="https://publications.waset.org/abstracts/101411/investigation-of-the-effect-of-phosphorous-on-the-flame-retardant-polyacrylonitrile-nanofiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3131</span> Carbon Credits in Voluntary Carbon Markets: A Proposal for Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Mohammadirad">Saeed Mohammadirad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the first commitment period of the Kyoto Protocol, many developed countries were forced to restrict carbon emissions. Although Iran was one of the countries of Kyoto protocol, due to some special conditions, it was not required to restrict its carbon emissions. Flexible mechanisms were developed to assist countries responsible for reducing their carbon emissions, and regulated carbon markets were introduced. Carbon credits which are provided by organizations in countries with no responsibility to restrict their carbon emissions are traded in voluntary markets. This study focuses on how to measure and report the carbon allowances and carbon credits from accounting view point under both regulated and voluntary markets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20credits" title="carbon credits">carbon credits</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20markets" title=" carbon markets"> carbon markets</a>, <a href="https://publications.waset.org/abstracts/search?q=accounting" title=" accounting"> accounting</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20mechanisms" title=" flexible mechanisms"> flexible mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/29797/carbon-credits-in-voluntary-carbon-markets-a-proposal-for-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3130</span> Carbon Nanotubes and Novel Applications for Textile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezgi%20Ismar">Ezgi Ismar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotubes (CNTs) are different from other allotropes of carbon, such as graphite, diamond and fullerene. Replacement of metals in flexible textiles has an advantage. Particularly in the last decade, both their electrical and mechanical properties have become an area of interest for Li-ion battery applications where the conductivity has a major importance. While carbon nanotubes are conductive, they are also less in weight compared to convectional conductive materials. Carbon nanotubes can be used inside the fiber so they can offer to create 3-D structures. In this review, you can find some examples of how carbon nanotubes adapted to textile products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20textiles" title=" conductive textiles"> conductive textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotextiles" title=" nanotextiles"> nanotextiles</a> </p> <a href="https://publications.waset.org/abstracts/33980/carbon-nanotubes-and-novel-applications-for-textile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3129</span> Preparation Non-Woven Nanofiber Structures for Uniform and Rapid Drug Releasing Applications Using an Electrospinning Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cho-Liang%20Chung">Cho-Liang Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uniform and rapid drug release are important for trauma dressing application. Low glass transition polymer system and non-woven nanofiber structures as the designs conduct rapid-release characteristics. In this study, polyvinylpyrrolidone, polysulfone, and polystyrene were dissolved in dimethylformamide to form precursor solution. These solutions were blended with vitamin C to form the electrospinning solutions. The non-woven nanofibers structures were successfully prepared using an electrospinning process. The following instruments were used to analyze the characteristics of non-woven nanofibers structures: Atomic force microscopy (AFM), Field Emission Scanning Electron Microscope (FE-SEM), and X-ray Diffraction (XRD). The AFM was used to scan the nanofibers. 3D Graphics were applied to explore the surface morphology of nanofibers. FE-SEM was used to explore the morphology of non-woven structures. XRD was used to identify crystal structures in the non-woven structures. The evolution of morphology of non-woven structures was changed dramatically in different durations, because of the moisture absorption and decreasing glass transition temperature; the non-woven nanofiber structures can be applied to uniform and rapid drug release for trauma dressing application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title="nanofibers">nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=non-woven" title=" non-woven"> non-woven</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning%20process" title=" electrospinning process"> electrospinning process</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20drug%20releasing" title=" rapid drug releasing"> rapid drug releasing</a> </p> <a href="https://publications.waset.org/abstracts/95209/preparation-non-woven-nanofiber-structures-for-uniform-and-rapid-drug-releasing-applications-using-an-electrospinning-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3128</span> Biodegradable Self-Supporting Nanofiber Membranes Prepared by Centrifugal Spinning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milos%20Beran">Milos Beran</a>, <a href="https://publications.waset.org/abstracts/search?q=Josef%20Drahorad"> Josef Drahorad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ondrej%20Vltavsky"> Ondrej Vltavsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Fronek"> Martin Fronek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Sova"> Jiri Sova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While most nanofibers are produced using electrospinning, this technique suffers from several drawbacks, such as the requirement for specialized equipment, high electrical potential, and electrically conductive targets. Consequently, recent years have seen the increasing emergence of novel strategies in generating nanofibers in a larger scale and higher throughput manner. The centrifugal spinning is simple, cheap and highly productive technology for nanofiber production. In principle, the drawing of solution filament into nanofibers using centrifugal spinning is achieved through the controlled manipulation of centrifugal force, viscoelasticity, and mass transfer characteristics of the spinning solutions. Engineering efforts of researches of the Food research institute Prague and the Czech Technical University in the field the centrifugal nozzleless spinning led to introduction of a pilot plant demonstrator NANOCENT. The main advantages of the demonstrator are lower investment cost - thanks to simpler construction compared to widely used electrospinning equipments, higher production speed, new application possibilities and easy maintenance. The centrifugal nozzleless spinning is especially suitable to produce submicron fibers from polymeric solutions in highly volatile solvents, such as chloroform, DCM, THF, or acetone. To date, submicron fibers have been prepared from PS, PUR and biodegradable polyesters, such as PHB, PLA, PCL, or PBS. The products are in form of 3D structures or nanofiber membranes. Unique self-supporting nanofiber membranes were prepared from the biodegradable polyesters in different mixtures. The nanofiber membranes have been tested for different applications. Filtration efficiencies for water solutions and aerosols in air were evaluated. Different active inserts were added to the solutions before the spinning process, such as inorganic nanoparticles, organic precursors of metal oxides, antimicrobial and wound healing compounds or photocatalytic phthalocyanines. Sintering can be subsequently carried out to remove the polymeric material and transfer the organic precursors to metal oxides, such as Si02, or photocatalytic Zn02 and Ti02, to obtain inorganic nanofibers. Electrospinning is more suitable technology to produce membranes for the filtration applications than the centrifugal nozzleless spinning, because of the formation of more homogenous nanofiber layers and fibers with smaller diameters. The self-supporting nanofiber membranes prepared from the biodegradable polyesters are especially suitable for medical applications, such as wound or burn healing dressings or tissue engineering scaffolds. This work was supported by the research grants TH03020466 of the Technology Agency of the Czech Republic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymeric%20nanofibers" title="polymeric nanofibers">polymeric nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=self-supporting%20nanofiber%20membranes" title=" self-supporting nanofiber membranes"> self-supporting nanofiber membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20polyesters" title=" biodegradable polyesters"> biodegradable polyesters</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20inserts" title=" active inserts"> active inserts</a> </p> <a href="https://publications.waset.org/abstracts/86889/biodegradable-self-supporting-nanofiber-membranes-prepared-by-centrifugal-spinning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3127</span> Improved Mechanical Properties and Osteogenesis in Electrospun Poly L-Lactic Ultrafine Nanofiber Scaffolds Incorporated with Graphene Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weili%20Shao">Weili Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20Wang"> Qian Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianxin%20He"> Jianxin He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the applications of graphene oxide in fabricating scaffolds for bone tissue engineering have been received extensive concern. In this work, poly l-lactic/graphene oxide composite nanofibers were successfully fabricated by electrospinning. The morphology structure, porosity and mechanical properties of the composite nanofibers were characterized using different techniques. And mouse mesenchymal stem cells were cultured on the composite nanofiber scaffolds to assess their suitability for bone tissue engineering. The results indicated that the composite nanofiber scaffolds had finer fiber diameter and higher porosity as compared with pure poly l-lactic nanofibers. Furthermore, incorporation of graphene oxide into the poly l-lactic nanofibers increased protein adsorptivity, boosted the Young’s modulus and tensile strength by nearly 4.2-fold and 3.5-fold, respectively, and significantly enhanced adhesion, proliferation, and osteogenesis in mouse mesenchymal stem cells. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poly%20l-lactic" title="poly l-lactic">poly l-lactic</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=osteogenesis" title=" osteogenesis"> osteogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20engineering" title=" bone tissue engineering"> bone tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/67896/improved-mechanical-properties-and-osteogenesis-in-electrospun-poly-l-lactic-ultrafine-nanofiber-scaffolds-incorporated-with-graphene-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3126</span> High Density Polyethylene Biocomposites Reinforced with Hydroxyapatite Nanorods and Carbon Nanofibers for Joint Replacements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chengzhu%20Liao">Chengzhu Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianbo%20Zhang"> Jianbo Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiou%20Wang"> Haiou Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Ming"> Jing Ming</a>, <a href="https://publications.waset.org/abstracts/search?q=Huili%20Li"> Huili Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanyan%20Li"> Yanyan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua%20Cheng"> Hua Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Sie%20Chin%20Tjong"> Sie Chin Tjong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since Bonfield’s group’s pioneer work, there has been growing interest amongst the materials scientists, biomedical engineers and surgeons in the use of novel biomaterials for the treatment of bone defects and injuries. This study focuses on the fabrication, mechanical characterization and biocompatibility evaluation of high density polyethylene (HDPE) reinforced with hydroxyapatite nanorods (HANR) and carbon nanofibers (CNF). HANRs of 20 wt% and CNFs of 0.5-2 wt% were incorporated into HDPE to form biocomposites using traditional melt-compounding and injection molding techniques. The mechanical measurements show that CNF additions greatly improve the tensile strength and Young’s modulus of HDPE and HDPE-20% nHA composites. Meanwhile, the nHA and CNF fillers were found to be effective to improve dimensional and thermal stability of HDPE. The results of osteoblast cell cultivation and dimethyl thiazolyl diphenyl thiazolyl tetrazolium (MTT) tests showed that the HDPE/ CNF-nHA nanocomposites are biocompatible. Such HDPE/ CNF-nHA hybrids are found to be potential biomaterials for making orthopedic joint/bone replacements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title="biocompatibility">biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title=" biocomposite"> biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanofiber" title=" carbon nanofiber"> carbon nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20density%20polyethylene" title=" high density polyethylene"> high density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a> </p> <a href="https://publications.waset.org/abstracts/61223/high-density-polyethylene-biocomposites-reinforced-with-hydroxyapatite-nanorods-and-carbon-nanofibers-for-joint-replacements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3125</span> Influence of Nitrogen Doping on the Catalytic Activity of Ni-Incorporated Carbon Nanofibers for Alkaline Direct Methanol Fuel Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20H.%20El-Newehy">Mohamed H. El-Newehy</a>, <a href="https://publications.waset.org/abstracts/search?q=Badr%20M.%20Thamer"> Badr M. Thamer</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20A.%20M.%20Barakat"> Nasser A. M. Barakat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.Abdelkareem"> Mohammad A.Abdelkareem</a>, <a href="https://publications.waset.org/abstracts/search?q=Salem%20S.%20Al-Deyab"> Salem S. Al-Deyab</a>, <a href="https://publications.waset.org/abstracts/search?q=Hak%20Y.%20Kim"> Hak Y. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the influence of nitrogen doping on the electrocatalytic activity of carbon nanofibers with nickel nanoparticles toward methanol oxidation is introduced. The modified carbon nanofibers have been synthesized from calcination of electrospun nanofiber mats composed of nickel acetate tetrahydrate, poly(vinyl alcohol) and urea in argon atmosphere at 750oC. The utilized physicochemical characterizations indicated that the proposed strategy leads to form carbon nanofibers having nickel nanoparticles and doped by nitrogen. Moreover, due to the high-applied voltage during the electrospinning process, the utilized urea chemically bonds with the polymer matrix, which leads to form nitrogen-doped CNFs after the calcination process. Investigation of the electrocatalytic activity indicated that nitrogen doping NiCNFs strongly enhances the oxidation process of methanol as the current density increases from 52.5 to 198.5 mA/cm2 when the urea content in the original electrospun solution was 4 wt% urea. Moreover, the nanofibrous morphology exhibits distinct impact on the electrocatalytic activity. Also, nitrogen-doping enhanced the stability of the introduced Ni-based electrocatalyst. Overall, the present study introduces effective and simple strategy to modify the electrocatalytic activity of the nickel-based materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol%20electrooxidation" title=" methanol electrooxidation"> methanol electrooxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cells" title=" fuel cells"> fuel cells</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen-doping" title=" nitrogen-doping"> nitrogen-doping</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a> </p> <a href="https://publications.waset.org/abstracts/16999/influence-of-nitrogen-doping-on-the-catalytic-activity-of-ni-incorporated-carbon-nanofibers-for-alkaline-direct-methanol-fuel-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3124</span> UV-Reactive Electrospinning: Preparation, Characterization and Cell Culture Applications of Nanofiber Scaffolds Containing Keratin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duygu%20Y%C3%BCksel%20Deniz">Duygu Yüksel Deniz</a>, <a href="https://publications.waset.org/abstracts/search?q=Memet%20Vezir%20Kahraman"> Memet Vezir Kahraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Serap%20Erdem%20Kuruca"> Serap Erdem Kuruca</a>, <a href="https://publications.waset.org/abstracts/search?q=Mediha%20S%C3%BCleymano%C4%9Flu"> Mediha Süleymanoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our first aim was to synthesize Hydroxy Apatite (HAP) and then modify its surface by adding 4-Vinylbenzene boronic acid (4-VBBA). The characterization was done by FT-IR. By adding Polyvinyl alcohol (PVA) to 4- VBBA-HAP, we obtained a suitable electrospinning solution. PVA solution which was also modified by using alkoxy silanes, in order to prevent the scaffolds from being damaged by aqueous cell medium, was added. Keratin was dissolved and then added into the electrospinning solution. Keratin containing 4-VBBA- HAP/PVA composite was used to fabricate nanofiber scaffolds with the simultaneous UV-reactive electrospinning technique. The structural characterization was done by FT-IR. Thermal gravimetric analysis was also performed by using TGA. The morphological characterization was determined by SEM analyses. Our second aim was to create a scaffold where cells could grow. With this purpose, suitable nanofibers were choosen according to their SEM analysis. Keratin containing nanofibers were seeded with 3T3, ECV and SAOS cells and their cytotoxicity and cell proliferation were investigated by using MTT assay. After cell culturing process morphological characterization was determined by SEM analyses. These scaffolds were designed to be nontoxic biomaterials. Here, a comparision was made between keratin containing 3T3, ECV and SAOS seeded nanofiber scaffolds and the results were presented and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20culture" title="cell culture">cell culture</a>, <a href="https://publications.waset.org/abstracts/search?q=keratin" title=" keratin"> keratin</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title=" nanofibers"> nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-reactive%20electrospinning" title=" UV-reactive electrospinning"> UV-reactive electrospinning</a> </p> <a href="https://publications.waset.org/abstracts/25095/uv-reactive-electrospinning-preparation-characterization-and-cell-culture-applications-of-nanofiber-scaffolds-containing-keratin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3123</span> Conductometric Methanol Microsensor Based on Electrospun PVC-Nickel Phthalocyanine Composite Nanofiber Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Musa">Ibrahim Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=Guy%20Raffin"> Guy Raffin</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Hangouet"> Marie Hangouet</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Zine"> Nadia Zine</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Jaffrezic-Renault"> Nicole Jaffrezic-Renault</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Errachid"> Abdelhamid Errachid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to its application in different domains, such as fuel cell configuration and adulteration of alcoholic beverages, a miniaturized sensor for methanol detection is urgently required. A conductometric microsensor for measuring volatile organic compounds (VOC) was conceived, based on electrospun composite nanofibers of polyvinyl chloride (PVC) doped with nickel phthalocyanine(NiPc) deposited on interdigitated electrodes (IDEs) used transducers. The nanofiber's shape, structure, percent atomic content and thermal properties were studied using analytical techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), respectively. The methanol sensor showed good sensitivity (505µS/cm(v/v) ⁻¹), low LOD (15 ppm), short response time (13 s), and short recovery time (15 s). The sensor was 4 times more sensitive to methanol than to ethanol and 19 times more sensitive to methanol than to acetone. Furthermore, the sensor response was unaffected by the interfering water vapor, making it more suitable for VOC sensing in the presence of humidity. The sensor was applied for conductometric detection of methanol in rubbing alcohol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=conductometric%20sensor" title=" conductometric sensor"> conductometric sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospun" title=" electrospun"> electrospun</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiber" title=" nanofiber"> nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20phthalocyanine" title=" nickel phthalocyanine"> nickel phthalocyanine</a>, <a href="https://publications.waset.org/abstracts/search?q=PVC" title=" PVC"> PVC</a> </p> <a href="https://publications.waset.org/abstracts/191110/conductometric-methanol-microsensor-based-on-electrospun-pvc-nickel-phthalocyanine-composite-nanofiber-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3122</span> Process Optimization of Electrospun Fish Sarcoplasmic Protein Based Nanofibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sena%20Su">Sena Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Ozbek"> Burak Ozbek</a>, <a href="https://publications.waset.org/abstracts/search?q=Yesim%20M.%20Sahin"> Yesim M. Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevil%20Yucel"> Sevil Yucel</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilek%20Kazan"> Dilek Kazan</a>, <a href="https://publications.waset.org/abstracts/search?q=Faik%20N.%20Oktar"> Faik N. Oktar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazmi%20Ekren"> Nazmi Ekren</a>, <a href="https://publications.waset.org/abstracts/search?q=Oguzhan%20Gunduz"> Oguzhan Gunduz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, protein, lipid or polysaccharide-based polymers have been used in order to develop biodegradable materials and their chemical nature determines the physical properties of the resulting films. Among these polymers, proteins from different sources have been extensively employed because of their relative abundance, film forming ability, and nutritional qualities. In this study, the biodegradable composite nanofiber films based on fish sarcoplasmic protein (FSP) were prepared via electrospinning technique. Biodegradable polycaprolactone (PCL) was blended with the FSP to obtain hybrid FSP/PCL nanofiber mats with desirable physical properties. Mixture solutions of FSP and PCL were produced at different concentrations and their density, viscosity, electrical conductivity and surface tension were measured. Mechanical properties of electrospun nanofibers were evaluated. Morphology of composite nanofibers was observed using scanning electron microscopy (SEM). Moreover, Fourier transform infrared spectrometer (FTIR) studies were used for analysis chemical composition of composite nanofibers. This study revealed that the FSP based nanofibers have the potential to be used for different applications such as biodegradable packaging, drug delivery, and wound dressing, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edible%20film" title="edible film">edible film</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20sarcoplasmic%20protein" title=" fish sarcoplasmic protein"> fish sarcoplasmic protein</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiber" title=" nanofiber"> nanofiber</a> </p> <a href="https://publications.waset.org/abstracts/68672/process-optimization-of-electrospun-fish-sarcoplasmic-protein-based-nanofibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3121</span> Research on Carbon Fiber Tow Spreading Technique with Multi-Rolls </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soon%20Ok%20Jo">Soon Ok Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Kyu%20Jeung"> Han Kyu Jeung</a>, <a href="https://publications.waset.org/abstracts/search?q=Si%20Woo%20Park"> Si Woo Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the process of consistent expansion of carbon fiber in width (Carbon Fiber Tow Spreading Technique), it can be expected that such process can enhance the production of carbon fiber reinforced composite material and quality of the product. In this research, the method of mechanically expanding carbon fiber and increasing its width was investigated by using various geometric rolls. In addition, experimental type of carbon fiber expansion device was developed and tested using 12K carbon fiber. As a result, the effects of expansion of such fiber under optimized operating conditions and geometric structure of an elliptical roll, were analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title="carbon fiber">carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=tow%20spreading%20fiber" title=" tow spreading fiber"> tow spreading fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-preg" title=" pre-preg"> pre-preg</a>, <a href="https://publications.waset.org/abstracts/search?q=roll%20structure" title=" roll structure"> roll structure</a> </p> <a href="https://publications.waset.org/abstracts/51684/research-on-carbon-fiber-tow-spreading-technique-with-multi-rolls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3120</span> Effect of Needle Diameter on the Morphological Structure of Electrospun n-Bi2O3/Epoxy-PVA Nanofiber Mats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bassam%20M.%20Abunahel">Bassam M. Abunahel</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Zahirah%20Noor%20Azman"> Nurul Zahirah Noor Azman</a>, <a href="https://publications.waset.org/abstracts/search?q=Munirah%20Jamil"> Munirah Jamil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of needle diameter on the morphological structure of electrospun n-Bi<sub>2</sub>O<sub>3</sub>/epoxy-PVA nanofibers has been investigated using three different types of needle diameters. The results were observed and investigated using two techniques of scanning electron microscope (SEM). The first technique is backscattered SEM while the second is secondary electron SEM. The results demonstrate that there is a correlation between the needle diameter and the morphology of electrospun nanofibers. As the internal needle diameter decreases, the average nanofiber diameter decreases and the fibers get thinner and smoother without agglomeration or beads formation. Moreover, with small needle diameter the nanofibrous porosity get larger compared with large needle diameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=needle%20diameter" title="needle diameter">needle diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20diameter" title=" fiber diameter"> fiber diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=agglomeration" title=" agglomeration"> agglomeration</a> </p> <a href="https://publications.waset.org/abstracts/96642/effect-of-needle-diameter-on-the-morphological-structure-of-electrospun-n-bi2o3epoxy-pva-nanofiber-mats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3119</span> The Effect of the Proportion of Carbon on the Corrosion Rate of Carbon-Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulmagid%20A.%20Khattabi">Abdulmagid A. Khattabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Hablous"> Ahmed A. Hablous</a>, <a href="https://publications.waset.org/abstracts/search?q=Mofied%20M.%20Elnemry"> Mofied M. Elnemry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The carbon steel is of one of the most common mineral materials used in engineering and industrial applications in order to have access to the required mechanical properties, especially after the change of carbon ratio, but this may lead to stimulate corrosion. It has been used in models of solids with different carbon ratios such as 0.05% C, 0.2% C, 0.35% C, 0.5% C, and 0.65% C and have been studied using three testing durations which are 4 weeks, 6 weeks, and 8 weeks and among different corrosion environments such as atmosphere, fresh water, and salt water. This research is for the purpose of finding the effect of the carbon content on the corrosion resistance of steels in different corrosion medium by using the weight loss technique as a function of the corrosion resistance. The results that have been obtained through this research shows that a correlation can be made between corrosion rates and steel's carbon content, and the corrosion resistance decreases with the increase in carbon content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=proportion%20of%20carbon%20in%20the%20steel" title="proportion of carbon in the steel">proportion of carbon in the steel</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20rate" title=" corrosion rate"> corrosion rate</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistance%20in%20carbon-steel" title=" corrosion resistance in carbon-steel"> corrosion resistance in carbon-steel</a> </p> <a href="https://publications.waset.org/abstracts/26940/the-effect-of-the-proportion-of-carbon-on-the-corrosion-rate-of-carbon-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3118</span> Framework Development of Carbon Management Software Tool in Sustainable Supply Chain Management of Indian Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarbjit%20Singh">Sarbjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This framework development explored the status of GSCM in manufacturing SMEs and concluded that there was a significant gap w.r.t carbon emissions measurement in the supply chain activities. The measurement of carbon emissions within supply chains is important green initiative toward its reduction. The majority of the SMEs were facing the problem to quantify the green house gas emissions in its supply chain & to make it a low carbon supply chain or GSCM. Thus, the carbon management initiatives were amalgamated with the supply chain activities in order to measure and reduce the carbon emissions, confirming the GHG protocol scopes. Henceforth, it covers the development of carbon management software (CMS) tool to quantify carbon emissions for effective carbon management. This tool is cheap and easy to use for the industries for the management of their carbon emissions within the supply chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=w.r.t%20carbon%20emissions" title="w.r.t carbon emissions">w.r.t carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20management%20software" title=" carbon management software"> carbon management software</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=Indian%20Industry" title=" Indian Industry"> Indian Industry</a> </p> <a href="https://publications.waset.org/abstracts/3784/framework-development-of-carbon-management-software-tool-in-sustainable-supply-chain-management-of-indian-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3117</span> An Inorganic Nanofiber/Polymeric Microfiber Network Membrane for High-Performance Oil/Water Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhaoyang%20Liu">Zhaoyang Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been highly desired to develop a high-performance membrane for separating oil/water emulsions with the combined features of high water flux, high oil separation efficiency, and high mechanical stability. Here, we demonstrated a design for high-performance membranes constructed with ultra-long titanate nanofibers (over 30 µm in length)/cellulose microfibers. An integrated network membrane was achieved with these ultra-long nano/microfibers, contrast to the non-integrated membrane constructed with carbon nanotubes (5 µm in length)/cellulose microfibers. The morphological properties of the prepared membranes were characterized by A FEI Quanta 400 (Hillsboro, OR, United States) environmental scanning electron microscope (ESEM). The hydrophilicity, underwater oleophobicity and oil adhesion property of the membranes were examined using an advanced goniometer (Rame-hart model 500, Succasunna, NJ, USA). More specifically, the hydrophilicity of membranes was investigated by analyzing the spreading process of water into membranes. A filtration device (Nalgene 300-4050, Rochester, NY, USA) with an effective membrane area of 11.3 cm² was used for evaluating the separation properties of the fabricated membranes. The prepared oil-in-water emulsions were poured into the filtration device. The separation process was driven under vacuum with a constant pressure of 5 kPa. The filtrate was collected, and the oil content in water was detected by a Shimadzu total organic carbon (TOC) analyzer (Nakagyo-ku, Kyoto, Japan) to examine the separation efficiency. Water flux (J) of the membrane was calculated by measuring the time needed to collect some volume of permeate. This network membrane demonstrated good mechanical flexibility and robustness, which are critical for practical applications. This network membrane also showed high separation efficiency (99.9%) for oil/water emulsions with oil droplet size down to 3 µm, and meanwhile, has high water permeation flux (6.8 × 10³ L m⁻² h⁻¹ bar⁻¹) at low operation pressure. The high water flux is attributed to the interconnected scaffold-like structure throughout the whole membrane, while the high oil separation efficiency is attributed to the nanofiber-made nanoporous selective layer. Moreover, the economic materials and low-cost fabrication process of this membrane indicate its great potential for large-scale industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane" title="membrane">membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20nanofibers" title=" inorganic nanofibers"> inorganic nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%2Fwater%20separation" title=" oil/water separation"> oil/water separation</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsions" title=" emulsions"> emulsions</a> </p> <a href="https://publications.waset.org/abstracts/79392/an-inorganic-nanofiberpolymeric-microfiber-network-membrane-for-high-performance-oilwater-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3116</span> The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Zhiyuan">Liu Zhiyuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Zongdi"> Sun Zongdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the BP neural network model is established to predict the carbon trading price and carbon trading volume in Shanghai City. First of all, we find the data of carbon trading price and carbon trading volume in Shanghai City from September 30, 2015 to December 23, 2016. The carbon trading price and trading volume data were processed to get the average value of each 5, 10, 20, 30, and 60 carbon trading price and trading volume. Then, these data are used as input of BP neural network model. Finally, after the training of BP neural network, the prediction values of Shanghai carbon trading price and trading volume are obtained, and the model is tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carbon%20trading%20price" title="Carbon trading price">Carbon trading price</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20trading%20volume" title=" carbon trading volume"> carbon trading volume</a>, <a href="https://publications.waset.org/abstracts/search?q=BP%20neural%20network%20model" title=" BP neural network model"> BP neural network model</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanghai%20City" title=" Shanghai City"> Shanghai City</a> </p> <a href="https://publications.waset.org/abstracts/69753/the-carbon-trading-price-and-trading-volume-forecast-in-shanghai-city-by-bp-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3115</span> Produced Gas Conversion of Microwave Carbon Receptor Reforming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Nam%20Chun">Young Nam Chun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mun%20Sup%20Lim"> Mun Sup Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon dioxide and methane, the major components of biomass pyrolysis/gasification gas and biogas, top the list of substances that cause climate change, but they are also among the most important renewable energy sources in modern society. The purpose of this study is to convert carbon dioxide and methane into high-quality energy using char and commercial activated carbon obtained from biomass pyrolysis as a microwave receptor. The methane reforming process produces hydrogen and carbon. This carbon is deposited in the pores of the microwave receptor and lowers catalytic activity, thereby reducing the methane conversion rate. The deposited carbon was removed by carbon gasification due to the supply of carbon dioxide, which solved the problem of microwave receptor inactivity. In particular, the conversion rate remained stable at over 90% when the ratio of carbon dioxide to methane was 1:1. When the reforming results of carbon dioxide and methane were compared after fabricating nickel and iron catalysts using commercial activated carbon as a carrier, the conversion rate was higher in the iron catalyst than in the nickel catalyst and when no catalyst was used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave" title="microwave">microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20reforming" title=" gas reforming"> gas reforming</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas" title=" greenhouse gas"> greenhouse gas</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20receptor" title=" microwave receptor"> microwave receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a> </p> <a href="https://publications.waset.org/abstracts/77831/produced-gas-conversion-of-microwave-carbon-receptor-reforming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3114</span> The Carbon Emission Seesaw Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Elomri">Adel Elomri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The notion of carbon footprinting is ever more widespread as companies are becoming increasingly aware that tackling carbon emissions and being seen to do so is a key issue to face governments, customers and other stakeholders’ pressures towards delivering environmentally friendly services and activities. In this contest, many firms are taking self-initiatives to reduce their own carbon emissions while some other are constrained to obey to different regulations/policies (e.g. carbon tax or carbon Cap) designed by higher authorities targeting a low-carbon environment. Using buyer-vendor framework, this paper provides some insights on how effective are these self-initiatives and regulatory policies when only concerning firms at the individual level and not the whole supply chain they are part of. We show that when firms individually engage in reducing their direct carbon emissions either under self-initiatives or regulatory policy, an opposite expected outcome resulting in a higher global supply chain emission can occur. This effect is referred to as the carbon seesaw effect. Moreover, we show that coordinating or centralizing the supply chain -contrary to what one may think at first- is not often the appropriate solution to get rid of this effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions" title="carbon emissions">carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20coordination" title=" supply chain coordination"> supply chain coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=EOQ" title=" EOQ"> EOQ</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20operations" title=" sustainable operations"> sustainable operations</a> </p> <a href="https://publications.waset.org/abstracts/50285/the-carbon-emission-seesaw-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3113</span> Synthesis and Characterization of Green Coke-Derived Activated Carbon by KOH Activation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard">Richard</a>, <a href="https://publications.waset.org/abstracts/search?q=Iyan%20Subiyanto"> Iyan Subiyanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Chairul%20Hudaya"> Chairul Hudaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activated carbon has been playing a significant role for many applications, especially in energy storage devices. However, commercially activated carbons generally require complicated processes and high production costs. Therefore, in this study, an activated carbon originating from green coke waste, that is economically affordable will be used as a carbon source. To synthesize activated carbon, KOH as an activator was employed with variation of C:KOH in ratio of 1:2, 1:3, 1:4, and 1:5, respectively, with an activation temperature of 700°C. The characterizations of activated carbon are obtained from Scanning Electron Microscopy, Energy Dispersive X-Ray, Raman Spectroscopy, and Brunauer-Emmett-Teller. The optimal activated carbon sample with specific surface area of 2,024 m²/g with high carbon content ( > 80%) supported by the high porosity carbon image obtained by SEM was prepared at C:KOH ratio of 1:4. The result shows that the synthesized activated carbon would be an ideal choice for energy storage device applications. Therefore, this study is expected to reduce the costs of activated carbon production by expanding the utilization of petroleum waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20material" title=" energy storage material"> energy storage material</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20coke" title=" green coke"> green coke</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20surface%20area" title=" specific surface area"> specific surface area</a> </p> <a href="https://publications.waset.org/abstracts/126533/synthesis-and-characterization-of-green-coke-derived-activated-carbon-by-koh-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3112</span> Efficiency of Modified Granular Activated Carbon Coupled with Membrane Bioreactor for Trace Organic Contaminants Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mousaab%20Alrhmoun">Mousaab Alrhmoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Magali%20Casellas"> Magali Casellas</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Baudu"> Michel Baudu</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Dagot"> Christophe Dagot </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study is to improve removal of trace organic contaminants dissolved in activated sludge by the process of filtration with membrane bioreactor combined with modified activated carbon, for a maximum removal of organic compounds characterized by low molecular weight. Special treatment was conducted in laboratory on activated carbon. Tow reaction parameters: The pH of aqueous middle and the type of granular activated carbon were very important to improve the removal and to motivate the electrostatic Interactions of organic compounds with modified activated carbon in addition to physical adsorption, ligand exchange or complexation on the surface activated carbon. The results indicate that modified activated carbon has a strong impact in removal 21 of organic contaminants and in percentage of 100% of the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20micropolluants" title=" organic micropolluants"> organic micropolluants</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title=" membrane bioreactor"> membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a> </p> <a href="https://publications.waset.org/abstracts/3910/efficiency-of-modified-granular-activated-carbon-coupled-with-membrane-bioreactor-for-trace-organic-contaminants-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3111</span> Investigation of the Catalytic Role of Surfactants on Carbon Dioxide Hydrate Formation in Sediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Heidaryan">Ehsan Heidaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas hydrate sediments are ice like permafrost in deep see and oceans. Methane production in sequestration process and reducing atmospheric carbon dioxide, a main source of greenhouse gas, has been accentuated recently. One focus is capture, separation, and sequestration of industrial carbon dioxide. As a hydrate former, carbon dioxide forms hydrates at moderate temperatures and pressures. This phenomenon could be utilized to capture and separate carbon dioxide from flue gases, and also has the potential to sequester carbon dioxide in the deep seabeds. This research investigated the effect of synthetic surfactants on carbon dioxide hydrate formation, catalysis and consequently, methane production from hydrate permafrosts in sediments. It investigated the sequestration potential of carbon dioxide hydrates in ocean sediments. Also, the catalytic effect of biosurfactants in these processes was investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title="carbon dioxide">carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrate" title=" hydrate"> hydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=sequestration" title=" sequestration"> sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a> </p> <a href="https://publications.waset.org/abstracts/24778/investigation-of-the-catalytic-role-of-surfactants-on-carbon-dioxide-hydrate-formation-in-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3110</span> Ultradrawing and Ultimate Pensile Properties of Ultra-High Molecular Weight Polyethylene Nanocomposite Fibers Filled with Cellulose Nanofibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhong-Dan%20Tu">Zhong-Dan Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang-Xi%20Fan"> Wang-Xi Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Chen%20Huang"> Yi-Chen Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jen-Taut%20Yeh"> Jen-Taut Yeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Novel ultrahigh molecular weight polyethylene (UHMWPE)/cellulose nanofiber (CNF) (F100CNFy) and UHMWPE/modified cellulose nanofiber (MCNF) (F100MCNFxy) as-prepared nanocomposite fibers were prepared by spinning F100CNFy and F100MCNFxy gel solutions, respectively. Cellulose nanofibers were successfully prepared by proper acid treatment of cotton fibers using sulfuric acid solutions. The best prepared CNF is with specific surface areas around 120 m2/g and a nanofiber diameter of 20 nm. Modified cellulose nanofiber was prepared by grafting maleic anhydride grafted polyethylene (PE-g-MAH) onto cellulose nanofibers. The achievable draw ratio (Dra) values of each F100MCNFxy as-prepared fiber series specimens approached a maximal value as their MCNF contents reached the optimal value at 0.05 phr. In which, the maximum Dra value obtained for F100MCNFx0.05 as-prepared fiber specimen prepared at the optimal MCNF content reached another maximum value as the weight ratio of PE-g-MAH to CNF approach an optimal value at 6. Similar to those found for the achievable drawing properties of the as-prepared fibers, the orientation factor, tensile strength (σ f) and initial modulus (E) values of drawn F100MCNF6y fiber series specimens with a fixed draw ratio reach a maximal value as their MCNF contents approach the optimal value, wherein the σ f and E values of the drawn F100MCNFxy fiber specimens are significantly higher than those of the drawn F100 fiber specimens and corresponding drawn F100CNFy fiber specimens prepared at the same draw ratios and CNF contents but without modification. To understand the interesting ultradrawing, thermal, orientation and tensile properties of F100CNFy and F100MCNFxy fiber specimens, Fourier transform infra-red, specific surface areas, and transmission electron microcopic analyses of the original and modified CNF nanofillers were performed in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultradrawing" title="ultradrawing">ultradrawing</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20nanofibers" title=" cellulose nanofibers"> cellulose nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrahigh%20molecular%20weight%20polyethylene" title=" ultrahigh molecular weight polyethylene"> ultrahigh molecular weight polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite%20fibers" title=" nanocomposite fibers"> nanocomposite fibers</a> </p> <a href="https://publications.waset.org/abstracts/43129/ultradrawing-and-ultimate-pensile-properties-of-ultra-high-molecular-weight-polyethylene-nanocomposite-fibers-filled-with-cellulose-nanofibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3109</span> Statistically Significant Differences of Carbon Dioxide and Carbon Monoxide Emission in Photocopying Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiurski%20S.%20Jelena">Kiurski S. Jelena</a>, <a href="https://publications.waset.org/abstracts/search?q=Keci%C4%87%20S.%20Vesna"> Kecić S. Vesna</a>, <a href="https://publications.waset.org/abstracts/search?q=Oros%20B.%20Ivana"> Oros B. Ivana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental results confirmed the temporal variation of carbon dioxide and carbon monoxide concentration during the working shift of the photocopying process in a small photocopying shop in Novi Sad, Serbia. The statistically significant differences of target gases were examined with two-way analysis of variance without replication followed by Scheffe's <em>post hoc</em> test. The existence of statistically significant differences was obtained for carbon monoxide emission which is pointed out with <em>F</em>-values (12.37 and 31.88) greater than <em>F<sub>crit</sub></em> (6.94) in contrary to carbon dioxide emission (<em>F</em>-values of 1.23 and 3.12 were less than <em>F<sub>crit</sub></em>). Scheffe's <em>post hoc</em> test indicated that sampling point A (near the photocopier machine) and second time interval contribute the most on carbon monoxide emission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis%20of%20variance" title="analysis of variance">analysis of variance</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20monoxide" title=" carbon monoxide"> carbon monoxide</a>, <a href="https://publications.waset.org/abstracts/search?q=photocopying%20indoor" title=" photocopying indoor"> photocopying indoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Scheffe%27s%20test" title=" Scheffe's test"> Scheffe's test</a> </p> <a href="https://publications.waset.org/abstracts/42549/statistically-significant-differences-of-carbon-dioxide-and-carbon-monoxide-emission-in-photocopying-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3108</span> A Brief Exploration on the Green Urban Design for Carbon Neutrality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaoyuan%20Wang">Gaoyuan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tian%20Chen">Tian Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> China’s emission peak and carbon neutrality strategies lead to the transformation of development patterns and call for new green urban design thinking. This paper begins by revealing the evolution of green urban design thinking during the periods of carbon enlightenment, carbon dependency, and carbon decoupling from the perspective of the energy transition. Combined with the current energy situation, national strengths, and technological trends, the emergence of green urban design towards carbon neutrality becomes inevitable. Based on the preliminary analysis of its connotation, the characteristics of the new type of green urban design are generalized as low-carbon orientation, carbon-related objects, carbon-reduction means, and carbon-control patterns. Its theory is briefly clarified in terms of the human-earth synergism, quality-energy interconnection, and form-flow interpromotion. Then, its mechanism is analyzed combined with the core tasks of carbon neutrality, and the scope of design issues is defined, including carbon flow mapping, carbon source regulation, carbon sink construction, and carbon emission management. Finally, a multi-scale spatial response system is proposed across the region, city, cluster, and neighborhood level. The discussion aims to provide support for the innovation of green urban design theories and methods in the context of peak neutrality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20neutrality" title="carbon neutrality">carbon neutrality</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20urban%20design" title=" green urban design"> green urban design</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transition" title=" energy transition"> energy transition</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20exploration" title=" theoretical exploration"> theoretical exploration</a> </p> <a href="https://publications.waset.org/abstracts/140514/a-brief-exploration-on-the-green-urban-design-for-carbon-neutrality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3107</span> Acidity and Aridity: Soil Carbon Storage and Myeloablation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tom%20Spears">Tom Spears</a>, <a href="https://publications.waset.org/abstracts/search?q=Zotique%20Laframboise"> Zotique Laframboise</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil inorganic carbon is the most common form of carbon in arid and semiarid regions, and has a very long turnover time. However, little is known about dissolved inorganic carbon storage and its turnover time in these soils. With 81 arid soil samples taken from 6 profiles in the Nepean Desert, Canada, we investigated the soil inorganic carbon (SIC) and the soil dissolved inorganic carbon (SDIC) in whole profiles of saline and alkaline soils by analyzing their contents and ages with radiocarbon dating. The results showed that there is considerable SDIC content in SIC, and the variations of SDIC and SIC contents in the saline soil profile were much larger than that in the alkaline profile. We investigated the possible implications for tectonic platelet activity but identified none. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20storage" title=" carbon storage"> carbon storage</a>, <a href="https://publications.waset.org/abstracts/search?q=acidity" title=" acidity"> acidity</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20inorganic%20carbon%20%28SIC%29" title=" soil inorganic carbon (SIC)"> soil inorganic carbon (SIC)</a> </p> <a href="https://publications.waset.org/abstracts/15564/acidity-and-aridity-soil-carbon-storage-and-myeloablation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3106</span> Effect of Open Burning on Soil Carbon Stock in Sugarcane Plantation in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wilaiwan%20Sornpoon">Wilaiwan Sornpoon</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A9bastien%20Bonnet"> Sébastien Bonnet</a>, <a href="https://publications.waset.org/abstracts/search?q=Savitri%20Garivait"> Savitri Garivait</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Open burning of sugarcane fields is recognized to have a negative impact on soil by degrading its properties, especially soil organic carbon (SOC) content. Better understating the effect of open burning on soil carbon dynamics is crucial for documenting the carbon sequestration capacity of agricultural soils. In this study, experiments to investigate soil carbon stocks under burned and unburned sugarcane plantation systems in Thailand were conducted. The results showed that cultivation fields without open burning during 5 consecutive years enabled to increase the SOC content at a rate of 1.37 Mg ha-1y-1. Also it was found that sugarcane fields burning led to about 15% reduction of the total carbon stock in the 0-30 cm soil layer. The overall increase in SOC under unburned practice is mainly due to the large input of organic material through the use of sugarcane residues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20organic%20carbon" title="soil organic carbon">soil organic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20inorganic%20carbon" title=" soil inorganic carbon"> soil inorganic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20sequestration" title=" carbon sequestration"> carbon sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20burning" title=" open burning"> open burning</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane" title=" sugarcane"> sugarcane</a> </p> <a href="https://publications.waset.org/abstracts/2506/effect-of-open-burning-on-soil-carbon-stock-in-sugarcane-plantation-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3105</span> Carbon Capture: Growth and Development of Membranes in Gas Sequestration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sreevalli%20Bokka">Sreevalli Bokka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various technologies are emerging to capture or reduce carbon intensity from a gas stream, such as industrial effluent air and atmosphere. Of these technologies, filter membranes are emerging as a key player in carbon sequestering. The key advantages of these membranes are their high surface area and porosity. Fabricating a filter membrane that has high selectivity for carbon sequestration is challenging as material properties and processing parameters affect the membrane properties. In this study, the growth of the filter membranes and the critical material properties that impact carbon sequestration are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membranes" title="membranes">membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=separations" title=" separations"> separations</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20capture" title=" carbon capture"> carbon capture</a> </p> <a href="https://publications.waset.org/abstracts/178891/carbon-capture-growth-and-development-of-membranes-in-gas-sequestration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3104</span> Experimental Study on Hardness and Impact Strength of Polyethylene/Carbon Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armin%20Najipour">Armin Najipour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Fattahi"> A. M. Fattahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research was to investigate the effect of the addition of multi walled carbon nanotubes on the mechanical properties of polyethylene/carbon nanotube nanocomposites. To do so, polyethylene and carbon nanotube were mixed in different weight percentages containing 0, 0.5, 1, and 1.5% carbon nanotube in two screw extruder apparatus by fusion. Then the nanocomposite samples were molded in injection apparatus according to ASTM: D6110 standard. The effects of carbon nanotube addition in 4 different levels and injection pressure in 2 levels on the hardness and impact strength of the nanocomposite samples were investigated. The results showed that the addition of carbon nanotube had a significant effect on improving hardness and impact strength of the nanocomposite samples such that by adding 1% w/w carbon nanotube, the impact strength and hardness of the samples improved to 74% and 46.7% respectively. Also, according to the results, the effect of injection pressure on the results was much less than that of carbon nanotube weight percentage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title=" injection molding"> injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title=" polyethylene"> polyethylene</a> </p> <a href="https://publications.waset.org/abstracts/39189/experimental-study-on-hardness-and-impact-strength-of-polyethylenecarbon-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3103</span> Influence of Shear Deformation on Carbon Onions Stability under High Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20P.%20Evdokimov">D. P. Evdokimov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Kirichenko"> A. N. Kirichenko</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20D.%20Blank"> V. D. Blank</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20N.%20Denisov"> V. N. Denisov</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20A.%20Kulnitskiy"> B. A. Kulnitskiy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study we investigated the stability of polyhedral carbon onions under influence of shear deformation and high pressures above 43 GPa by means of by transmission electron microscopy (TEM) and Raman spectroscopy (RS). It was found that at pressures up to 29 GPa and shear deformations of 40 degrees the onions are stable. At shear deformation applying at pressures above 30 GPa carbon onions collapsed with formation of amorphous carbon. At pressures above 43 GPa diamond-like carbon (DLC) was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20onions" title="carbon onions">carbon onions</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20electron%20spectroscopy" title=" transmission electron spectroscopy"> transmission electron spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/19208/influence-of-shear-deformation-on-carbon-onions-stability-under-high-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20nanofiber&page=1" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20nanofiber&page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20nanofiber&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20nanofiber&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20nanofiber&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20nanofiber&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20nanofiber&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20nanofiber&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20nanofiber&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20nanofiber&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20nanofiber&page=105">105</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20nanofiber&page=106">106</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20nanofiber&page=3" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>