CINXE.COM

Search results for: columnar dryer

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: columnar dryer</title> <meta name="description" content="Search results for: columnar dryer"> <meta name="keywords" content="columnar dryer"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="columnar dryer" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="columnar dryer"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 140</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: columnar dryer</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> Empirical Research to Improve Performances of Paddy Columnar Dryer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duong%20Thi%20Hong">Duong Thi Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Van%20Hung"> Nguyen Van Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Gummert"> Martin Gummert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Good practices of mechanical drying can reduce losses of grain quality. Recently, with demands of higher capacity for paddy drying in the Mekong River Delta of Vietnam, columnar dryers have been introduced rapidly in this area. To improve the technology, this study was conducted to investigate and optimize the parameters for drying Jasmine paddy using an empirical cross-flow columnar dryer. The optimum parameters were resulted in air flow rate and drying temperature that are 1-1.5 m³ s-¹ t-¹ of paddy and 40-42°C, respectively. The investigation also addressed a solution of reversing drying air to achieve the uniformity of grain temperature and quality. Results of this study should be significant for developments of grain drying, contributing to reduce post harvest losses <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paddy%20drying" title="paddy drying">paddy drying</a>, <a href="https://publications.waset.org/abstracts/search?q=columnar%20dryer" title=" columnar dryer"> columnar dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20flow%20rate" title=" air flow rate"> air flow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20temperature" title=" drying temperature"> drying temperature</a> </p> <a href="https://publications.waset.org/abstracts/51851/empirical-research-to-improve-performances-of-paddy-columnar-dryer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> Experimental Study of Solar Drying of Verbena in Different Dryers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilham%20Ihoume">Ilham Ihoume</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Tadili"> Rachid Tadili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nora%20Arbaoui"> Nora Arbaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most crucial ways to combat food insecurity is to minimize crop losses; food drying is one of the most organic, efficient, low-cost, and energy-saving food preservation methods. In this regard, we undertake in this study an experimental evaluation and analysis of the thermal performance of different natural convection drying systems: a solar greenhouse dryer, an indirect solar dryer with a single compartment, and a solar dryer with two compartments. These systems have been implemented at the Solar Energy and Environment Laboratory of Mohammed V University (Morocco). The objective of this work is to study the feasibility of converting a solar greenhouse into a solar dryer for use during the summer. On the other hand, to study the thermal performances of this greenhouse dryer by comparing it with other solar dryers. The experimental study showed that the drying of verbena leaves took 6 hours in the indirect dryer 1, 3 hours in the indirect dryer, and 2 and 4 hours in the greenhouse dryer, but the amortization period of the solar greenhouse dryer is lower than the other two solar dryers. The results of this study provide key information on the implementation and performance of these systems for drying food of great global interest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indirect%20solar%20dryer" title="indirect solar dryer">indirect solar dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20greenhouse" title=" agricultural greenhouse"> agricultural greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20energy" title=" green energy"> green energy</a> </p> <a href="https://publications.waset.org/abstracts/161376/experimental-study-of-solar-drying-of-verbena-in-different-dryers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Experimental Study of Solar Drying of Verbena in Three Types of Solar Dryers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Llham%20Lhoume">Llham Lhoume</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Tadili"> Rachid Tadili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nora%20Arbaoui"> Nora Arbaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most crucial ways to combat food insecurity is to minimize crop losses, food drying is one of the most organic, effective, low-cost and energy-efficient food preservation methods. In this regard, we undertake in this study an experimental evaluation and analysis of the thermal performance of different natural convection drying systems: a solar greenhouse dryer, an indirect solar dryer with a single compartment and a solar dryer with two compartments. These systems have been implemented at the Solar Energy and Environment Laboratory of Mohammed V University (Morocco). The objective of this work is to study the feasibility of converting a solar greenhouse into a solar dryer for use during the summer. On the other hand, to study the thermal performances of this greenhouse dryer by comparing it with other solar dryers. The experimental study showed that the drying of verbena leaves took 6 hours in the indirect dryer 1, 3 hours in the indirect dryer, 2 and 4 hours in the greenhouse dryer, but the amortization period of the solar greenhouse dryer is lower than the other two solar dryers. The results of this study provide key information on the implementation and performance of these systems for drying a food of great global interest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnologie" title=" biotechnologie"> biotechnologie</a> </p> <a href="https://publications.waset.org/abstracts/167461/experimental-study-of-solar-drying-of-verbena-in-three-types-of-solar-dryers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Thermal Analysis of Vertical Kiln Dryer for Drying Sunflower Seeds in the Oil Mill “Banat” Ad, Nova Crnja</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandar%20Dedi%C4%87">Aleksandar Dedić</a>, <a href="https://publications.waset.org/abstracts/search?q=Du%C5%A1ko%20Salemovi%C4%87"> Duško Salemović</a>, <a href="https://publications.waset.org/abstracts/search?q=Matilda%20Lazi%C4%87"> Matilda Lazić</a>, <a href="https://publications.waset.org/abstracts/search?q=Dragan%20Halas"> Dragan Halas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the paper was the thermal balance control of vertical kiln dryer indirect type (VSU-36) for drying sunflower seed, produced by "Cer" - Cacak, capacity 39 [t/h]. The balance control was executed because the dryer was damaged by NATO bombing in 1999, and it was planned for its reconstruction. The structural and geometric characteristics of the dryer were known, and it was necessary to determine the parameters of wet air as a drying agent and the sunflower seeds. The thermal balance control was the basis for the replacement of damaged parts of the dryer during its reconstruction. After that, it was necessary to perform the subsequent calculation of strength. The accuracy of strength had a large influence on the cost-effectiveness and safety of a single drying chamber. Also, the work provides guidelines for the regimes of drying grain crops with an explanation of the specificity of drying sunflowers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sunflower%20seeds" title="sunflower seeds">sunflower seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=regimes%20of%20drying" title=" regimes of drying"> regimes of drying</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20kiln%20dryer" title=" vertical kiln dryer"> vertical kiln dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a> </p> <a href="https://publications.waset.org/abstracts/176793/thermal-analysis-of-vertical-kiln-dryer-for-drying-sunflower-seeds-in-the-oil-mill-banat-ad-nova-crnja" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Production of Banana Milk Powder Using Spray and Freeze Dryer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Noor%20Suzila%20Maqsood-Ul-Haque">Siti Noor Suzila Maqsood-Ul-Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=Ummi%20Kalthum%20Ibrahim"> Ummi Kalthum Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Norekanadirah%20Abdul%20Rahman"> Norekanadirah Abdul Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Banana are rich in vitamins, potassium and carbohydrate.The objective for this research work is to produce banana milk powder that can help children that suffers from constipation. Two types of the most common dryers used for this purpose are the spray and freeze dryer. The effects of the type of dryers, pump feed speed in the spray dryer and the ratio proportion of the banana milk powder were investigated in the study. The result indicate that increasing proportion ratio of the banana milk powder produce lower yield of the powder.From the result it is also concluded that speed 2 is more suitable in the production of the banana milk powder since the value of the moisture content is lower. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freeze%20dryer" title="freeze dryer">freeze dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20dryer" title=" spray dryer"> spray dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title=" moisture content"> moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution" title=" dissolution"> dissolution</a>, <a href="https://publications.waset.org/abstracts/search?q=banana" title=" banana"> banana</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a> </p> <a href="https://publications.waset.org/abstracts/23240/production-of-banana-milk-powder-using-spray-and-freeze-dryer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Simulation of Direct Solar Dryer with ANSYS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boukhris%20Lahouari">Boukhris Lahouari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulation of solar dryers with ANSYS has revolutionized the way in which drying processes are optimized and analyzed in various industries. This advanced software allows engineers and researchers to simulate the behavior of a solar dryer under different conditions, helping to improve efficiency and reduce energy consumption. This work presents a numerical study of a direct solar dryer, which uses radiation and natural convection to dry agricultural products. The simulations were made in order to determine the dynamic and thermal fields under the influence of the variation in the size of the inlet and outlet opening. The conservation equations based on the standard k-ε turbulence model are solved by the finite volume method using the ANSYS-Fluent commercial code. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20dryer" title="solar dryer">solar dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20radiation" title=" solar radiation"> solar radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a> </p> <a href="https://publications.waset.org/abstracts/191155/simulation-of-direct-solar-dryer-with-ansys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Vegetables and Fruits Solar Tunnel Dryer for Small-Scale Farmers in Kassala</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sami%20Mohamed%20Sharif">Sami Mohamed Sharif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study focuses on the design and construction of a solar tunnel dryer intended for small-scale farmers in Kassala, Sudan. To determine the appropriate dimensions of the dryer, the heat and mass balance equations are used, taking into account factors such as the target agricultural product, climate conditions, solar irradiance, and desired drying time. In Kassala, a dryer with a width of 88 cm, length of 600 cm, and height of 25 cm has been built, capable of drying up to 40 kg of vegetables or fruits. The dryer is divided into two chambers of different lengths. The air passing through is heated to the desired drying temperature in a separate heating chamber that is 200 cm long. From there, the heated air enters the drying chamber, which is 400 cm long. In this section, the agricultural product is placed on a slightly elevated net. The tunnel dryer was constructed using materials from the local market. The paper also examines the solar irradiance in Kassala, finding an average of 23.6 MJ/m2/day, with a maximum of 26.6 MJ/m2/day in April and a minimum of 20.2 MJ/m2/day in December. A DC fan powered by a 160Wp solar panel is utilized to circulate air within the tunnel. By connecting the fan and three 12V, 60W bulbs in series, four different speeds can be achieved using a speed controller. Temperature and relative humidity measurements were taken hourly over three days, from 10:00 a.m. to 3:00 p.m. The results demonstrate the promising technology and sizing techniques of solar tunnel dryers, which can significantly increase the temperature within the tunnel by more than 90%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tunnel%20dryer" title="tunnel dryer">tunnel dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20drying" title=" solar drying"> solar drying</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title=" moisture content"> moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=fruits%20drying%20modeling" title=" fruits drying modeling"> fruits drying modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20sun%20drying" title=" open sun drying"> open sun drying</a> </p> <a href="https://publications.waset.org/abstracts/181573/vegetables-and-fruits-solar-tunnel-dryer-for-small-scale-farmers-in-kassala" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Drying of Agro-Industrial Wastes Using a Cabinet Type Solar Dryer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Metidji">N. Metidji</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Badaoui"> O. Badaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Djebli"> A. Djebli</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Bendjebbas"> H. Bendjebbas</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sellami"> R. Sellami </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The agro-industry is considered as one of the most waste producing industrial fields as a result of food processing. Upgrading and reuse of these wastes as animal or poultry food seems to be a promising alternative. Combined with the use of clean energy resources, the recovery process would contribute more to the environment protection. It is in this framework that a new solar dryer has been designed in the Unit of Solar Equipment Development. Direct solar drying has, also, many advantages compared to natural sun drying. In fact, the first does not cause product degradation as it is protected by the drying chamber from direct sun, insects and exterior environment. The aim of this work is to study the drying kinetics of waste, generated during the processing of pepper, by using a direct natural convection solar dryer at 35◦C and 55◦C. The rate of moisture removal from the product to be dried has been found to be directly related to temperature, humidity and flow rate. The characterization of these parameters has allowed the determination of the appropriate drying time for this product namely peppers waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20dryer" title=" solar dryer"> solar dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conversion" title=" energy conversion"> energy conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=pepper%20drying" title=" pepper drying"> pepper drying</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection%20solar%20dryer" title=" forced convection solar dryer"> forced convection solar dryer</a> </p> <a href="https://publications.waset.org/abstracts/14627/drying-of-agro-industrial-wastes-using-a-cabinet-type-solar-dryer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Drying of Agro-Industrial Wastes Using an Indirect Solar Dryer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Metidji">N. Metidji</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kasbadji%20Merzouk"> N. Kasbadji Merzouk</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Badaoui"> O. Badaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sellami"> R. Sellami</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Djebli"> A. Djebli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Agro-industry is considered as one of the most waste producing industrial fields as a result of food processing. Upgrading and reuse of these wastes as animal or poultry food seems to be a promising alternative. Combined with the use of clean energy resources, the recovery process would contribute more to the environment protection. It is in this framework that a new solar dryer has been designed in the Unit of Solar Equipments Development. Indirect solar drying has, also, many advantages compared to natural sun drying. In fact, the first does not cause product degradation as it is protected by the drying chamber from direct sun, insects and exterior environment. The aim of this work is to study the drying kinetics of waste, generated during the processing of orange to make fruit juice, by using an indirect forced convection solar dryer at 50 °C and 60 °C, the rate of moisture removal from the product to be dried has been found to be directly related to temperature, humidity and flow rate. The characterization of these parameters has allowed the determination of the appropriate drying time for this product namely orange waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20dryer" title=" solar dryer"> solar dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conversion" title=" energy conversion"> energy conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=orange%20drying" title=" orange drying"> orange drying</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection%20solar%20dryer" title=" forced convection solar dryer"> forced convection solar dryer</a> </p> <a href="https://publications.waset.org/abstracts/5221/drying-of-agro-industrial-wastes-using-an-indirect-solar-dryer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Alternative Animal Feed Additive Obtain with Different Drying Methods from Carrot Unsuitable for Human Consumption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabia%20G%C3%B6%C3%A7men">Rabia Göçmen</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCl%C5%9Fah%20Kanbur"> Gülşah Kanbur</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinan%20Sefa%20Parlat"> Sinan Sefa Parlat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to determine that carrot powder obtain by different drying methods (oven and vacuum-freeze dryer) of carrot unfit for human consumption that whether feed additives in animal nutrition or not. Carrots randomly divided 2 groups. First group was dried by using oven, second group was by using vacuum freeze dryer methods. Dried carrot prepared from fresh carrot was analysed nutrient matter (energy, crude protein, crude oil, crude ash, beta carotene, mineral concentration and colour). The differences between groups in terms of energy, crude protein, ash, Ca and Mg was not significant (P> 0,05). Crude oil, P, beta carotene content and colour values (L, a, b) with vacuum-freeze dryer group was greater than oven group (P<0,05). Consequently, carrot powder obtained by drying the vacuum-freeze dryer method can be used as a source of carotene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carrot" title="carrot">carrot</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20freeze%20dryer" title=" vacuum freeze dryer"> vacuum freeze dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=oven" title=" oven"> oven</a>, <a href="https://publications.waset.org/abstracts/search?q=beta%20carotene" title=" beta carotene"> beta carotene</a> </p> <a href="https://publications.waset.org/abstracts/28419/alternative-animal-feed-additive-obtain-with-different-drying-methods-from-carrot-unsuitable-for-human-consumption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Performance Optimization of Low-Cost Solar Dryer Using Modified PI Controller </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kondareddy">Rajesh Kondareddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakash%20Kumar%20Nayak"> Prakash Kumar Nayak</a>, <a href="https://publications.waset.org/abstracts/search?q=Maunash%20Das"> Maunash Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Vrinatri%20Velentina%20Boro"> Vrinatri Velentina Boro </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, there is a huge global concern for sustainable development which would include minimizing the consumption of non-renewable energies without affecting the basic global economy. Solar drying is one of the important processes used for extending the shelf life of agricultural products. The performance of a low cost automated solar dryer fitted with cascade control scheme and modified PI controller for drying chilli was investigated. The dryer was composed of designed solar collector (air heater) fitted with cylindrical pipes to improve the air velocity and a solar drying chamber containing rack of two cheese cloth (net) trays both being integrated together. The air allowed in through air inlet is heated up in the solar collector and channelled through the drying chamber where it is utilized in drying (removing the moisture content from the food substance or agricultural produce loaded). Here, to maintain the temperature in the heating chambers and to improve performance, a modified PI (Proportional–Integral) controller was used due its simplicity and robustness. Drying time for drying chilli from the initial moisture content of 88.5% (wb) to 7.3% (wb) was estimated to be 14 hours in solar dryer whereas 32 h was observed in the open sun drying. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20control" title="cascade control">cascade control</a>, <a href="https://publications.waset.org/abstracts/search?q=chilli" title=" chilli"> chilli</a>, <a href="https://publications.waset.org/abstracts/search?q=PI%20controller" title=" PI controller"> PI controller</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20dryer" title=" solar dryer"> solar dryer</a> </p> <a href="https://publications.waset.org/abstracts/45003/performance-optimization-of-low-cost-solar-dryer-using-modified-pi-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Thermal Analysis of Photovoltaic Integrated Greenhouse Solar Dryer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Tiwari">Sumit Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Tripathi"> Rohit Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Tiwari"> G. N. Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present study focused on the utilization of solar energy by the help of photovoltaic greenhouse solar dryer under forced mode. A single slope photovoltaic greenhouse solar dryer has been proposed and thermal modelling has been developed. Various parameters have been calculated by thermal modelling such as greenhouse room temperature, cell temperature, crop temperature and air temperature at exit of greenhouse. Further cell efficiency, thermal efficiency, and overall thermal efficiency have been calculated for a typical day of May and November. It was found that system can generate equivalent thermal energy up to 7.65 kW and 6.66 kW per day for clear day of May and November respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristics%20curve" title="characteristics curve">characteristics curve</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20modelling" title=" thermal modelling"> thermal modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20efficiency" title=" thermal efficiency"> thermal efficiency</a> </p> <a href="https://publications.waset.org/abstracts/36866/thermal-analysis-of-photovoltaic-integrated-greenhouse-solar-dryer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Effect of Heat Treatment on Columnar Grain Growth and Goss Texture on Surface in Grain-Oriented Electrical Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jungkyun%20Na">Jungkyun Na</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaesang%20Lee"> Jaesang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Mo%20Koo"> Yang Mo Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study to find a replacement for expensive secondary recrystallization in GO electrical steel production, effect of heat treatment on the formation of columnar grain and Goss texture is investigated. The composition of the sample is Fe-2.0Si-0.2C. This process involves repeating of cold rolling and decarburization as a replacement for secondary recrystallization. By cold-rolling shear band is made and Goss grain grows from shear band by decarburization. By doing another cold rolling, some Goss texture is newly formed from the shear band, and some Goss texture is retained in microbands. To determine whether additional heat treatment with H2 atmosphere is needed on decarburization process for growth of Goss texture, comparing between decarburization and heat treatment with H2 atmosphere is performed. Also, to find optimum condition for heat treatment, heat treatment with various time and temperature is performed. It was found that increase in the number of cold rolling and heat treatment increases Goss texture. Both high Goss texture and good columnar structure is achieved at 900℃, and this temperature is within a+r phase region. Heat treatment at a temperature higher than a+r phase region caused carbon diffusion and this made layer with Goss grain decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20steel" title="electrical steel">electrical steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Goss%20texture" title=" Goss texture"> Goss texture</a>, <a href="https://publications.waset.org/abstracts/search?q=columnar%20structure" title=" columnar structure"> columnar structure</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20grain%20growth" title=" normal grain growth"> normal grain growth</a> </p> <a href="https://publications.waset.org/abstracts/74896/effect-of-heat-treatment-on-columnar-grain-growth-and-goss-texture-on-surface-in-grain-oriented-electrical-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Performance and Nutritional Evaluation of Moringa Leaves Dried in a Solar-Assisted Heat Pump Dryer Integrated with Thermal Energy Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ald%C3%A9%20Belgard%20Tchicaya%20Loemba">Aldé Belgard Tchicaya Loemba</a>, <a href="https://publications.waset.org/abstracts/search?q=Baraka%20Kichonge"> Baraka Kichonge</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Kivevele"> Thomas Kivevele</a>, <a href="https://publications.waset.org/abstracts/search?q=Juma%20Rajabu%20Selemani"> Juma Rajabu Selemani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plants used for medicinal purposes are extremely perishable, owing to moisture-enhanced enzymatic and microorganism activity, climate change, and improper handling and storage. Experiments have shown that drying the medicinal plant without affecting the active nutrients and controlling the moisture content as much as possible can extend its shelf life. Different traditional and modern drying techniques for preserving medicinal plants have been developed, with some still being improved in Sub-Saharan Africa. However, many of these methods fail to address the most common issues encountered when drying medicinal plants, such as nutrient loss, long drying times, and a limited capacity to dry during the evening or cloudy hours. Heat pump drying is an alternate drying method that results in no nutritional loss. Furthermore, combining a heat pump dryer with a solar energy storage system appears to be a viable option for all-weather drying without affecting the nutritional values of dried products. In this study, a solar-assisted heat pump dryer integrated with thermal energy storage is developed for drying moringa leaves. The study also discusses the performance analysis of the developed dryer as well as the proximate analysis of the dried moringa leaves. All experiments were conducted from 11 a.m. to 4 p.m. to assess the dryer's performance in “daytime mode”. Experiment results show that the drying time was significantly reduced, and the dryer demonstrated high performance in preserving all of the nutrients. In 5 hours of the drying process, the moisture content was reduced from 75.7 to 3.3%. The average COP value was 3.36, confirming the dryer's low energy consumption. The findings also revealed that after drying, the content of protein, carbohydrates, fats, fiber, and ash greatly increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20pump%20dryer" title="heat pump dryer">heat pump dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=moringa%20leaves" title=" moringa leaves"> moringa leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate%20analysis" title=" proximate analysis"> proximate analysis</a> </p> <a href="https://publications.waset.org/abstracts/157882/performance-and-nutritional-evaluation-of-moringa-leaves-dried-in-a-solar-assisted-heat-pump-dryer-integrated-with-thermal-energy-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Influence of Flight Design on Discharging Profiles of Granular Material in Rotary Dryer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Benhsine">I. Benhsine</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hellou"> M. Hellou</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Lomin%C3%A9"> F. Lominé</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Roques"> Y. Roques</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the manufacture of fertilizer, it is necessary to add water for granulation purposes. The water content is then removed or reduced using rotary dryers. They are commonly used to dry wet granular materials and they are usually fitted with lifting flights. The transport of granular materials occurs when particles cascade from the lifting flights and fall into the air stream. Each cascade consists of a lifting and a falling cycle. Lifting flights are thus of great importance for the transport of granular materials along the dryer. They also enhance the contact between solid particles and the air stream. Optimization of the drying process needs an understanding of the behavior of granular materials inside a rotary dryer. Different approaches exist to study the movement of granular materials inside the dryer. Most common of them are based on empirical formulations or on study the movement of the bulk material. In the present work, we are interested in the behavior of each particle in the cross section of the dryer using Discrete Element Method (DEM) to understand. In this paper, we focus on studying the hold-up, the cascade patterns, the falling time and the falling length of the particles leaving the flights. We will be using two segment flights. Three different profiles are used: a straight flight (180° between both segments), an angled flight (with an angle of 150°), and a right-angled flight (90°). The profile of the flight affects significantly the movement of the particles in the dryer. Changing the flight angle changes the flight capacity which leads to different discharging profile of the flight, thus affecting the hold-up in the flight. When the angle of the flight is reduced, the range of the discharge angle increases leading to a more uniformed cascade pattern in time. The falling length and the falling time of the particles also increase up to a maximum value then they start decreasing. Moreover, the results show an increase in the falling length and the falling time up to 70% and 50%, respectively, when using a right-angled flight instead of a straight one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title="discrete element method">discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20materials" title=" granular materials"> granular materials</a>, <a href="https://publications.waset.org/abstracts/search?q=lifting%20flight" title=" lifting flight"> lifting flight</a>, <a href="https://publications.waset.org/abstracts/search?q=rotary%20dryer" title=" rotary dryer"> rotary dryer</a> </p> <a href="https://publications.waset.org/abstracts/41027/influence-of-flight-design-on-discharging-profiles-of-granular-material-in-rotary-dryer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Optimizing Water Consumption of a Washer-Dryer Which Contains Water Condensation Technology under a Constraint of Energy Consumption and Drying Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aysegul%20Sarac">Aysegul Sarac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Washer-dryers are the machines which can either wash the laundries or can dry them. In other words, we can define a washer-dryer as a washing machine and a dryer in one machine. Washing machines are characterized by the loading capacity, cabinet depth and spin speed. Dryers are characterized by the drying technology. On the other hand, energy efficiency, water consumption, and noise levels are main characteristics that influence customer decisions to buy washers. Water condensation technology is the most common drying technology existing in the washer-dryer market. Water condensation technology uses water to dry the laundry inside the machine. Thus, in this type of the drying technology water consumption is at high levels comparing other technologies. Water condensation technology sprays cold water in the drum to condense the humidity of hot weather in order to dry the laundry inside. Thus, water consumption influences the drying performance. The scope of this study is to optimize water consumption during drying process under a constraint of energy consumption and drying performance. We are using 6-Sigma methodology to find the optimum water consumption by comparing drying performances of different drying algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=6-Sigma%20methodology" title=" 6-Sigma methodology"> 6-Sigma methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=washer-dryers" title=" washer-dryers"> washer-dryers</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20condensation%20technology" title=" water condensation technology"> water condensation technology</a> </p> <a href="https://publications.waset.org/abstracts/46334/optimizing-water-consumption-of-a-washer-dryer-which-contains-water-condensation-technology-under-a-constraint-of-energy-consumption-and-drying-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Structural and Electrochemical Characterization of Columnar-Structured Mn-Doped Bi26Mo10O69-d Electrolytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20V.%20Morozova">Maria V. Morozova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoya%20A.%20Mikhaylovskaya"> Zoya A. Mikhaylovskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20S.%20Buyanova"> Elena S. Buyanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20A.%20Petrova"> Sofia A. Petrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ksenia%20V.%20Arishina"> Ksenia V. Arishina</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20G.%20Zaharov"> Robert G. Zaharov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is devoted to the investigation of two series of doped bismuth molybdates: Bi₂₆-₂ₓMn₂ₓMo₁₀O₆₉-d and Bi₂₆Mo₁₀-₂yMn₂yO₆₉-d. Complex oxides were synthesized by conventional solid state technology and by co-precipitation method. The products were identified by powder diffraction. The powders and ceramic samples were examined by means of densitometry, laser diffraction, and electron microscopic methods. Porosity of the ceramic materials was estimated using the hydrostatic method. The electrical conductivity measurements were carried out using impedance spectroscopy method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bismuth%20molybdate" title="bismuth molybdate">bismuth molybdate</a>, <a href="https://publications.waset.org/abstracts/search?q=columnar%20structures" title=" columnar structures"> columnar structures</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20spectroscopy" title=" impedance spectroscopy"> impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20ionic%20conductors" title=" oxygen ionic conductors"> oxygen ionic conductors</a> </p> <a href="https://publications.waset.org/abstracts/38423/structural-and-electrochemical-characterization-of-columnar-structured-mn-doped-bi26mo10o69-d-electrolytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> The Construction Technology of Dryer Silo Materials to Grains Made from Webbing Bamboo: A Drying Technology Solutions to Empowerment Farmers in Yogyakarta, Indonesia </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nursigit%20%20Bintoro">Nursigit Bintoro</a>, <a href="https://publications.waset.org/abstracts/search?q=Abadi%20Barus"> Abadi Barus</a>, <a href="https://publications.waset.org/abstracts/search?q=Catur%20Setyo%20Dedi%20%20Pamungkas"> Catur Setyo Dedi Pamungkas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indonesia is an agrarian country have almost population work as farmers. One of the popular agriculture commodity in Indonesia is paddy and corn. Production of paddy and corn are increased, but not balanced to the development of appropriate technology to farmers. Methods of drying applied with farmers still using sunshine. Drying by this method has some drawbacks, such as differences moisture content of corn grains, time used to dry around 3 days, and less quality of the products obtained. Beside it, the method of drying by using sunshine can’t do when the rainy season arrives. On this season the product obtained has less quality. One solution to the above problems is to create a dryer with simple technology. That technology is made silo dryer from webbing bamboo and wood. This technology is applicable to be applied to farmers' groups as well as the creation technology is quite cheap. The experiment material used in this research will be obtained from the corn grains. The equipment used are woven bamboo with a height of 3 meters and have capacity of up to 900 kgs as a silo, gas, burner, blower, bucket elevators, thermocouple, Arduino microcontroller 2560. This tools automatically records all the data of temperature and relative humidity. During on drying, each 30 minutes take 9 sample for measuring moisture content with moisture meter. By using this technology, farmers can save time, energy, and cost to the drying their agriculture product. In addition, by using this technology have good quality moisture content of grains and have a longer shelf life because the temperature when the heating process is controlled. Therefore, this technology is applicable to be applied to the public because the materials used to make the dryer easier to find, cheaper, and manufacture of the dryer made simple with good quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grains" title="grains">grains</a>, <a href="https://publications.waset.org/abstracts/search?q=dryer" title=" dryer"> dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title=" moisture content"> moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=appropriate%20technology" title=" appropriate technology"> appropriate technology</a> </p> <a href="https://publications.waset.org/abstracts/63217/the-construction-technology-of-dryer-silo-materials-to-grains-made-from-webbing-bamboo-a-drying-technology-solutions-to-empowerment-farmers-in-yogyakarta-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> Design and Evaluation of a Fully-Automated Fluidized Bed Dryer for Complete Drying of Paddy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20J.%20Pontawe">R. J. Pontawe</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20C.%20Martinez"> R. C. Martinez</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20T.%20Asuncion"> N. T. Asuncion</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Villacorte"> R. V. Villacorte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drying of high moisture paddy remains a major problem in the Philippines, especially during inclement weather condition. To alleviate the problem, mechanical dryers were used like a flat bed and recirculating batch-type dryers. However, drying to 14% (wet basis) final moisture content is long which takes 10-12 hours and tedious which is not the ideal for handling high moisture paddy. Fully-automated pilot-scale fluidized bed drying system with 500 kilograms per hour capacity was evaluated using a high moisture paddy. The developed fluidized bed dryer was evaluated using four drying temperatures and two variations in fluidization time at a constant airflow, static pressure and tempering period. Complete drying of paddy with ≥28% (w.b.) initial MC was attained after 2 passes of fluidized-bed drying at 2 minutes exposure to 70 °C drying temperature and 4.9 m/s superficial air velocity, followed by 60 min ambient air tempering period (30 min without ventilation and 30 min with air ventilation) for a total drying time of 2.07 h. Around 82% from normal mechanical drying time was saved at 70 °C drying temperature. The drying cost was calculated to be P0.63 per kilogram of wet paddy. Specific heat energy consumption was only 2.84 MJ/kg of water removed. The Head Rice Yield recovery of the dried paddy passed the Philippine Agricultural Engineering Standards. Sensory evaluation showed that the color and taste of the samples dried in the fluidized bed dryer were comparable to air dried paddy. The optimum drying parameters of using fluidized bed dryer is 70 oC drying temperature at 2 min fluidization time, 4.9 m/s superficial air velocity, 10.16 cm grain depth and 60 min ambient air tempering period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drying" title="drying">drying</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed%20dryer" title=" fluidized bed dryer"> fluidized bed dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=head%20rice%20yield" title=" head rice yield"> head rice yield</a>, <a href="https://publications.waset.org/abstracts/search?q=paddy" title=" paddy"> paddy</a> </p> <a href="https://publications.waset.org/abstracts/38340/design-and-evaluation-of-a-fully-automated-fluidized-bed-dryer-for-complete-drying-of-paddy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Development of Solar Poly House Tunnel Dryer (STD) for Medicinal Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Shahi">N. C. Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Anupama%20Singh"> Anupama Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Kate"> E. Kate</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drying is practiced to enhance the storage life, to minimize losses during storage, and to reduce transportation costs of agricultural products. Drying processes range from open sun drying to industrial drying. In most of the developing countries, use of fossil fuels for drying of agricultural products has not been practically feasible due to unaffordable costs to majority of the farmers. On the other hand, traditional open sun drying practiced on a large scale in the rural areas of the developing countries suffers from high product losses due to inadequate drying, fungal growth, encroachment of insects, birds and rodents, etc. To overcome these problems a middle technology dryer having low cost need to be developed for farmers. In case of mechanical dryers, the heated air is the main driving force for removal of moisture. The air is heated either electrically or by burning wood, coal, natural gas etc. using heaters. But, all these common sources have finite supplies. The lifetime is estimated to range from 15 years for a natural gas to nearly 250 years for coal. So, mankind must turn towards its safe and reliable utilization and may have undesirable side effects. The mechanical drying involves higher cost of drying and open sun drying deteriorates the quality. The solar tunnel dryer is one of promising option for drying various agricultural and agro-industrial products on large scale. The advantage of Solar tunnel dryer is its relatively cheaper cost of construction and operation. Although many solar dryers have been developed, still there is a scope of modification in them. Therefore, an attempt was made to develop Solar tunnel dryer and test its performance using highly perishable commodity i.e. leafy vegetables (spinach). The effect of air velocity, loading density and shade net on performance parameters namely, collector efficiency, drying efficiency, overall efficiency of dryer and specific heat energy consumption were also studied. Thus, the need for an intermediate level technology was realized and an effort was made to develop a small scale Solar Tunnel Dryer . A dryer consisted of base frame, semi cylindrical drying chamber, solar collector and absorber, air distribution system with chimney and auxiliary heating system, and wheels for its mobility were the main functional components. Drying of fenugreek was carried out to analyze the performance of the dryer. The Solar Tunnel Dryer temperature was maintained using the auxiliary heating system. The ambient temperature was in the range of 12-33oC. The relative humidity was found inside and outside the Solar Tunnel Dryer in the range of 21-75% and 35-79%, respectively. The solar radiation was recorded in the range of 350-780W/m2 during the experimental period. Studies revealed that total drying time was in range of 230 to 420 min. The drying time in Solar Tunnel Dryer was considerably reduced by 67% as compared to sun drying. The collector efficiency, drying efficiency, overall efficiency and specific heat consumption were determined and were found to be in the range of 50.06- 38.71%, 15.53-24.72%, 4.25 to 13.34% and 1897.54-3241.36 kJ/kg, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=overall%20efficiency" title="overall efficiency">overall efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20tunnel%20dryer" title=" solar tunnel dryer"> solar tunnel dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20heat%20consumption" title=" specific heat consumption"> specific heat consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=sun%20drying" title=" sun drying"> sun drying</a> </p> <a href="https://publications.waset.org/abstracts/35430/development-of-solar-poly-house-tunnel-dryer-std-for-medicinal-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Flexible Technologies of Granulated Complex Fertilizers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrey%20M.%20Norov">Andrey M. Norov</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20A.%20Pagaleshkin"> Denis A. Pagaleshkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20S.%20Fedotov"> Pavel S. Fedotov</a>, <a href="https://publications.waset.org/abstracts/search?q=Viacheslav%20M.%20Kolpakov"> Viacheslav M. Kolpakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantin%20G.%20Gorbovskiy"> Konstantin G. Gorbovskiy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article focuses on the latest research and developments (R&amp;D) aimed at the development of plants for production of complex phosphorus-containing fertilizers which are in line with the principles of the best available techniques (BAT). The advantages of the implemented technical solutions are given. The paper describes developed options of flexible technologies for schemes with DGD (drum granulator dryer) and for schemes with AG-DD (ammoniator-granulator and dryer drum). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammoniator-granulator%20drier%20drum" title="ammoniator-granulator drier drum">ammoniator-granulator drier drum</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus-containing%20fertilizer%20technology" title=" phosphorus-containing fertilizer technology"> phosphorus-containing fertilizer technology</a>, <a href="https://publications.waset.org/abstracts/search?q=PK" title=" PK"> PK</a>, <a href="https://publications.waset.org/abstracts/search?q=PKS%20and%20NPKS-fertilizers" title=" PKS and NPKS-fertilizers"> PKS and NPKS-fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=WPA" title=" WPA"> WPA</a> </p> <a href="https://publications.waset.org/abstracts/104184/flexible-technologies-of-granulated-complex-fertilizers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Growth and Some Physiological Properties of Three Selected Species of Bifidobacteria in Admixture of Soy Milk and Goat Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Zahran">Ahmed Zahran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bifidobacterium breve ATCC 15700, Bifidobacterium adolescents ATCC 15704 and Bifidobacterium longum ATCC 15707 were tested for their growth, acid production, bile tolerance, antibiotic resistance and adherence to columnar epithelial cells of the small intestine of goat. The growth of all studied species was determined in the MRSL medium. B.longum 15707 was the most active species in comparison with the other two species; it was also more resistant to bile acids. The adhesion of the studied species to the columnar epithelial cells was studied. All the studied species showed some degree of adhesion; however, B.longum adhered more than the other two species. This species was resistant to four types of antibiotics and was sensitive to chloramphenicol 30 µg. The activity of Bifidobacterium species in soymilk was evaluated by measuring the development of titratalle acidity. B.longum 15707 was the most active species in terms of growth and activity of soymilk. So, soymilk containing bifidobacteria could be added to goat milk to produce acceptable functional soy yogurt, using the ratio of (1:4) soy milk to goat milk. This product could be of unique health benefits, especially in the case of high cholesterol levels and replenishment of intestinal flora after antibiotic therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bifidobacteria%20physiological%20properties" title="bifidobacteria physiological properties">bifidobacteria physiological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=soy%20milk" title=" soy milk"> soy milk</a>, <a href="https://publications.waset.org/abstracts/search?q=goat%20milk" title=" goat milk"> goat milk</a>, <a href="https://publications.waset.org/abstracts/search?q=attachment%20epithelial%20cells" title=" attachment epithelial cells"> attachment epithelial cells</a>, <a href="https://publications.waset.org/abstracts/search?q=columnar%20tissues" title=" columnar tissues"> columnar tissues</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic%20food" title=" probiotic food"> probiotic food</a> </p> <a href="https://publications.waset.org/abstracts/168851/growth-and-some-physiological-properties-of-three-selected-species-of-bifidobacteria-in-admixture-of-soy-milk-and-goat-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Performance of Photovoltaic Thermal Greenhouse Dryer in Composite Climate of India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Tiwari">G. N. Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyam"> Shyam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photovoltaic thermal (PVT) roof type greenhouse dryer installed above the wind tower of SODHA BERS COMPLEX, Varanasi has been analyzed for all types of weather conditions. The product to be dried has been kept at three different trays. The upper tray receives energy from the PV cover while the bottom tray receives thermal energy from the hot air of the wind tower. The annual energy estimation has been done for the all types of weather condition of composite climate of northern India. It has been found that maximum energy saving is observed for c type of weather condition whereas minimum energy saving is observed for a type of weather condition. The energy saving on overall thermal energy basis and exergy basis are 1206.8 kWh and 360 kWh respectively for c type of weather condition. The energy saving from all types of weather condition are found to be 3175.3 kWh and 957.6 kWh on overall thermal energy and overall exergy basis respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exergy" title="exergy">exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse" title=" greenhouse"> greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20thermal" title=" photovoltaic thermal"> photovoltaic thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20dryer" title=" solar dryer"> solar dryer</a> </p> <a href="https://publications.waset.org/abstracts/36908/performance-of-photovoltaic-thermal-greenhouse-dryer-in-composite-climate-of-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Post-Hatching Development of the Cloacal Bursa in Chicken</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatimah%20A.%20Alhomaid">Fatimah A. Alhomaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A total of 40 one day-old LSL chicks (Lohman Selected Loghorn) were used in this study. In 20 days-old chicks, the bursa was formed of mucosa, musculosa and serosa. Its lamina propria was lymphoid in nature. After hatching, the bursa continued to grow and became fully developed at the 30th day post- hatching. It appeared as a blind sac. Its lumen was occupied by 12-13 mucosal folds. Each fold was lined by tall columnar or pseudo- stratified columnar epithelium. Its core was made of lamina propria infiltrated by a large number of lymphoid follicles. Most follicles possessed an outer corona surrounding a germinal center. At the age of 6 weeks physiological regression of the bursa was observed. The lymphoid follicles were decreased in size, the lymphocytes were depleted and the interfollicular stroma became obvious, thicker and more fibrous. Fibrosis of the lymphoid follicles was frequently seen in some sections at the age of 30 weeks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bursa%20of%20fabricius" title="Bursa of fabricius">Bursa of fabricius</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphocytes" title=" lymphocytes"> lymphocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=cloacal%20Bursa" title=" cloacal Bursa"> cloacal Bursa</a> </p> <a href="https://publications.waset.org/abstracts/28732/post-hatching-development-of-the-cloacal-bursa-in-chicken" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Effects of Spray Dryer Atomizer Speed on Casein Micelle Size in Whole Fat Milk Powder and Physicochemical Properties of White Cheese</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Goli">Mohammad Goli</a>, <a href="https://publications.waset.org/abstracts/search?q=Akram%20Sharifi"> Akram Sharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Yousefi%20Jozdani"> Mohammad Yousefi Jozdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ali%20Mortazavi"> Seyed Ali Mortazavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An industrial spray dryer was used, and the effects of atomizer speed on the physicochemical properties of milk powder, the textural and sensory characteristics of white cheese made from this milk powder, were evaluated. For this purpose, whole milk was converted into powder by using three different speeds (10,000, 11,000, and 12,000 rpm). Results showed that with increasing atomizer speed in the spray dryer, the average size of casein micelle is significantly decreased (p < 0.05), whereas no significant effect is observed on the chemical properties of milk powder. White cheese characteristics indicated that with increasing atomizer speed, texture parameters, such as hardness, mastication, and gumminess, were significantly reduced (p < 0.05). Sensory evaluation also revealed that cheese samples prepared with dried milk produced at 12,000 rpm were highly accepted by panelists. Overall, the findings suggested that 12,000 rpm is the optimal atomizer speed for milk powder production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spray%20drying" title="spray drying">spray drying</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20technology" title=" powder technology"> powder technology</a>, <a href="https://publications.waset.org/abstracts/search?q=atomizer%20speed" title="atomizer speed">atomizer speed</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20cheese%20physical%20properties" title=" white cheese physical properties"> white cheese physical properties</a> </p> <a href="https://publications.waset.org/abstracts/40474/effects-of-spray-dryer-atomizer-speed-on-casein-micelle-size-in-whole-fat-milk-powder-and-physicochemical-properties-of-white-cheese" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Soil Arching Effect in Columnar Embankments: A Numerical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riya%20Roy">Riya Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Anjana%20Bhasi"> Anjana Bhasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Column-supported embankments provide a practical and efficient solution for construction on soft soil due to the low cost and short construction times. In the recent years, geosynthetic have been used in combination with column systems to support embankments. The load transfer mechanism in these systems is a combination of soil arching effect, which occurs between columns and membrane effect of the geosynthetic. This paper aims at the study of soil arching effect on columnar embankments using finite element software, ABAQUS. An axisymmetric finite element model is generated and using this model, parametric studies are carried out. Thus the effects of various factors such as height of embankment fill, elastic modulus of pile and tensile stiffness of geosynthetic, on soil arching have been studied. The development of negative skin friction along the pile-soil interface have also been studied and the results obtained from this study are compared with the current design methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title="ABAQUS">ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=geosynthetic" title=" geosynthetic"> geosynthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20skin%20friction" title=" negative skin friction"> negative skin friction</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20arching" title=" soil arching"> soil arching</a> </p> <a href="https://publications.waset.org/abstracts/67744/soil-arching-effect-in-columnar-embankments-a-numerical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> The Effects of Drying Technology on Rehydration Time and Quality of Mung Bean Vermicelli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20Tien">N. P. Tien</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Songsermpong"> S. Songsermpong</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Quan"> T. H. Quan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mung bean vermicelli is a popular food in Asian countries and is made from mung bean starch. The preparation process involves several steps, including drying, which affects the structure and quality of the vermicelli. This study aims to examine the effects of different drying technologies on the rehydration time and quality of mung bean vermicelli. Three drying technologies, namely hot air drying, microwave continuous drying, and microwave vacuum drying, were used for the drying process. The vermicelli strands were dried at 45°C for 12h in a hot air dryer, at 70 Hz of conveyor belt speed inverter in a microwave continuous dryer, and at 30 W.g⁻¹ of microwave power density in a microwave vacuum dryer. The results showed that mung bean vermicelli dried using hot air drying had the longest rehydration time of 12.69 minutes. On the other hand, vermicelli dried through microwave continuous drying and microwave vacuum drying had shorter rehydration times of 2.79 minutes and 2.14 minutes, respectively. Microwave vacuum drying also resulted in larger porosity, higher water absorption, and cooking loss. The tensile strength and elasticity of vermicelli dried using hot air drying were higher compared to microwave drying technologies. The sensory evaluation did not reveal significant differences in most attributes among the vermicelli treatments. Overall, microwave drying technology proved to be effective in reducing rehydration time and producing good-quality mung bean vermicelli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mung%20bean%20vermicelli" title="mung bean vermicelli">mung bean vermicelli</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20air" title=" hot air"> hot air</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20continuous" title=" microwave continuous"> microwave continuous</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20vacuum" title=" microwave vacuum"> microwave vacuum</a> </p> <a href="https://publications.waset.org/abstracts/170532/the-effects-of-drying-technology-on-rehydration-time-and-quality-of-mung-bean-vermicelli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Effect of Drying Condition on the Wheat Germ Stability Using Fluidized-Bed Dryer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Hung">J. M. Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Chan"> J. S. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Kuo"> M. I. Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Chan"> D. S. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20P.%20Lu"> C. P. Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wheat germ is a by-product obtained from wheat milling and it contains highly concentrated nutrients. Due to highly lipase and lipoxygenase activities, wheat germ products can easily turn into rancid flavor and cause a short life. The objective of this study is to control moisture content and retard lipid hydrolysis by fluidized-bed drying. The raw wheat germ of 2 kg was dried with a vertical batch fluidized bed with the following varying conditions, inlet air temperature of 50, 80 and 120°C, inlet air velocity of 3.62 m/s. The experiment was designed to obtain a final product at around 40°C with water activity of 0.3 ± 0.1. Changes in the moisture content, water activity, enzyme activity of dried wheat germ during storage were measured. Results showed the fluidized-bed drying was found to reduce moisture content, water activity and lipase activity of raw wheat germ. After drying wheat germ, moisture content and water activity were between 5.8% to 7.2% and 0.28 to 0.40 respectively during 12 weeks of storage. The variation range of water activity indicated to retard lipid oxidation. All drying treatments displayed inactivation of lipase, except for drying condition of 50°C which showed relative high enzyme activity. During storage, lipase activity increased slowly during the first 6 weeks of storage and reached a plateau for another 6 weeks. As a result, using a fluidized-bed dryer was found to be effective drying technique in improving storage stability of wheat germ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat%20germ" title="wheat germ">wheat germ</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized-bed%20dryer" title=" fluidized-bed dryer"> fluidized-bed dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=lipase" title=" lipase"> lipase</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/54931/effect-of-drying-condition-on-the-wheat-germ-stability-using-fluidized-bed-dryer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Thermo-Ecological Assessment of a ‎Hybrid ‎‎Solar ‎Greenhouse Dryer for Grape Drying ‎</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilham%20Ihoume">Ilham Ihoume</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Tadili"> Rachid Tadili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nora%20Arbaoui"> Nora Arbaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of solar energy in agricultural applications has gained significant at‎tention ‎‎in recent years as a sustainable and environmentally friendly alternative to ‎‎conventional energy sources. In particular, solar drying of crops has ‎been identified ‎‎as an effective method to preserve agricultural produce while ‎minimizing energy ‎‎consumption and reducing carbon emissions. In this context, the present study ‎‎aims to evaluate the thermo-economic and ecological ‎performance of a solar-electric hybrid greenhouse dryer designed for grape ‎drying. The proposed system ‎‎integrates solar collectors, an electric heater, ‎and a greenhouse structure to create a ‎‎controlled and energy-efficient environment for grape drying. The thermo-economic assessment involves the ‎analysis of the thermal performance, energy ‎‎consumption, and cost-effectiveness of the solar-electric hybrid greenhouse dryer. ‎‎On the other ‎hand, the ecological assessment focuses on the environmental impact ‎‎of the ‎system in terms of carbon emissions and sustainability. The findings of this ‎‎‎study are expected to contribute to the development of sustainable agricultural ‎‎practices and the promotion of renewable energy technologies in the ‎context of ‎‎food production. Moreover, the results may serve as a basis for the ‎design and ‎‎optimization of similar solar drying systems for other crops and ‎regions.‎ <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20%E2%80%8E%E2%80%8Eanalysis%E2%80%8E" title=" energy ‎‎analysis‎"> energy ‎‎analysis‎</a> </p> <a href="https://publications.waset.org/abstracts/184473/thermo-ecological-assessment-of-a-hybrid-solar-greenhouse-dryer-for-grape-drying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Development of a Passive Solar Tomato Dryer with Movable Heat Storage System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacob%20T.%20Liberty">Jacob T. Liberty</a>, <a href="https://publications.waset.org/abstracts/search?q=Wilfred%20I.%20Okonkwo"> Wilfred I. Okonkwo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study designed and constructed a post-harvest passive solar tomato dryer of dimension 176 x 152 x 54cm for drying tomato. Quality of the dried crop was evaluated and compared with the fresh ones. The solar dryer consist of solar collector (air heater), 110 x 61 x 10 x 10cm, the drying chamber, 102 x54cm, removal heat storage unit, 40 x 35 x 13cm and drying trays, 43 x 42cm. The physicochemical properties of this crop were evaluated before and after drying. Physicochemical properties evaluated includes moisture, protein, fat, fibre, ash, carbohydrate and vitamin C, contents. The fresh, open and solar dried samples were analysed for their proximate composition using the recommended method of AOAC. Also, statistical analysis of the data was conducted using analysis of variance (ANOVA) using completely Randomize Design (CRD) and means were separated by Duncan’s New Multiple Range test (DNMRT). Proximate analysis showed that solar dried tomato had significantly (P < 0.05) higher protein, fibre, ash, carbohydrate and vitamin C except for the fat content that was significantly (P < 0.05) higher for all the open sun dried samples than the solar dried and fresh product. The nutrient which is highly affected by sun drying is vitamin C. Result indicates that moisture loss in solar dried tomato was faster and lower than the open dried samples and as such makes the solar dried products of lesser tendency to mould and bacterial growth. Also, the open sun dried samples had to be carried into the sheltered place each time it rained. The solar dried produce is of high quality. Further processing of the dried crops will involve packaging for commercial purposes. This will also help in making these agricultural product available in a relatively cheap price in off season and also avert micronutrient deficiencies in diet especially among the low-income groups in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tomato" title="tomato">tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20solar%20dryer" title=" passive solar dryer"> passive solar dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20properties" title=" physicochemical properties"> physicochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20heat%20storage" title=" removal heat storage"> removal heat storage</a> </p> <a href="https://publications.waset.org/abstracts/48399/development-of-a-passive-solar-tomato-dryer-with-movable-heat-storage-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=columnar%20dryer&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=columnar%20dryer&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=columnar%20dryer&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=columnar%20dryer&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=columnar%20dryer&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10