CINXE.COM

ideal in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> ideal in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> ideal </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/8890/#Item_6" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#definitions'>Definitions</a></li> <ul> <li><a href='#in_rings_and_other_rigs'>In rings (and other rigs)</a></li> <li><a href='#in_lattices_and_other_prosets'>In lattices (and other prosets)</a></li> <li><a href='#in_both_at_once'>In both at once</a></li> <li><a href='#in_monoids'>In monoids</a></li> <li><a href='#in_categories'>In categories</a></li> <li><a href='#in_additive_categories'>In additive categories</a></li> </ul> <li><a href='#kinds_of_ideals'>Kinds of ideals</a></li> <li><a href='#related_concepts'>Related concepts</a></li> </ul> </div> <h2 id="definitions">Definitions</h2> <p>Ideals show up both in <a class="existingWikiWord" href="/nlab/show/ring">ring</a> theory and in <a class="existingWikiWord" href="/nlab/show/lattice">lattice</a> theory. We recall both of these below and look at some slight generalizations.</p> <h3 id="in_rings_and_other_rigs">In rings (and other rigs)</h3> <p>A <strong>left ideal</strong> in a <a class="existingWikiWord" href="/nlab/show/ring">ring</a> (or even <a class="existingWikiWord" href="/nlab/show/rig">rig</a>) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/subset">subset</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> of (the underlying set of) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> such that:</p> <ul> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">0 \in I</annotation></semantics></math>;</li> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x + y \in I</annotation></semantics></math> whenever <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x, y \in I</annotation></semantics></math>;</li> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x y \in I</annotation></semantics></math> whenever <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">y \in I</annotation></semantics></math>, regardless of whether <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x \in I</annotation></semantics></math>.</li> </ul> <p>A <strong>right ideal</strong> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is a subset <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> such that:</p> <ul> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">0 \in I</annotation></semantics></math>;</li> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x + y \in I</annotation></semantics></math> whenever <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x, y \in I</annotation></semantics></math>;</li> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x y \in I</annotation></semantics></math> whenever <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x \in I</annotation></semantics></math>.</li> </ul> <p>A <strong>two-sided ideal</strong> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is a subset <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> that is both a left and right ideal; that is:</p> <ul> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">0 \in I</annotation></semantics></math>;</li> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x + y \in I</annotation></semantics></math> whenever <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x \in I</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">y \in I</annotation></semantics></math>;</li> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x y \in I</annotation></semantics></math> whenever <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x \in I</annotation></semantics></math> or <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">y \in I</annotation></semantics></math>.</li> </ul> <p>This generalises to:</p> <ul> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mn>1</mn></msub><mo>+</mo><mi>⋯</mi><mo>+</mo><msub><mi>x</mi> <mi>n</mi></msub><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x_1 + \cdots + x_n \in I</annotation></semantics></math> whenever <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mi>k</mi></msub><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x_k \in I</annotation></semantics></math> for every <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>;</li> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mn>1</mn></msub><mi>⋯</mi><msub><mi>x</mi> <mi>n</mi></msub><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x_1 \cdots x_n \in I</annotation></semantics></math> whenever <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mi>k</mi></msub><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x_k \in I</annotation></semantics></math> for some <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>.</li> </ul> <p>Notice that all three kinds of ideal are equivalent for a commutative ring.</p> <div class="num_remark"> <h6 id="remarks">Remarks</h6> <ul> <li>A left ideal in a ring <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> may be equivalently defined as an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-submodule of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, viewing the latter as a left <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/module">module</a>.</li> <li>A right ideal in a ring <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> may be equivalently defined as an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-submodule of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, viewing the latter as a right <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/module">module</a>.</li> <li>A two-sided ideal in a ring <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> may be equivalently defined as a sub-bimodule of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, viewing the latter as an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/bimodule">bimodule</a>.</li> <li>The collection of all two-sided ideals in a ring <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> form a <a class="existingWikiWord" href="/nlab/show/concrete+category">concrete category</a>, see <a class="existingWikiWord" href="/nlab/show/category+of+two-sided+ideals+in+a+ring">category of two-sided ideals in a ring</a></li> <li>The preceding remarks apply to rigs as well.</li> <li>Considering the category of rings as a Barr-exact category, there is a natural bijection between <a class="existingWikiWord" href="/nlab/show/congruence">congruence relations</a> on a ring <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> (internal to the category of rings) and two-sided ideals of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>; this associates to each ideal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> the relation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo>∼</mo> <mi>I</mi></msub></mrow><annotation encoding="application/x-tex">\sim_I</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><msub><mo>∼</mo> <mi>I</mi></msub><mi>y</mi></mrow><annotation encoding="application/x-tex">x \sim_I y</annotation></semantics></math> means <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>−</mo><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x - y \in I</annotation></semantics></math>. This observation does not apply to the category of rigs.</li> </ul> </div> <p>This definition also makes sense for <a class="existingWikiWord" href="/nlab/show/nonassociative+rings">nonassociative rings</a> (or rigs), with the left/right/two-sided coincidence in the commutative case.</p> <p>In the case of a <a class="existingWikiWord" href="/nlab/show/nonunital+ring">nonunital ring</a> (or rig), if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is being thought of as a <a class="existingWikiWord" href="/nlab/show/module">module</a> over some other ring <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math>, then it won't immediately follow that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/submodule">submodule</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math>, and so one usually includes that requirement as well:</p> <ul> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mi>x</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">a x \in I</annotation></semantics></math> whenever <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>K</mi></mrow><annotation encoding="application/x-tex">a \in K</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x \in I</annotation></semantics></math></li> </ul> <p>in the case of left-modules, and similarly in the case of right modules or <a class="existingWikiWord" href="/nlab/show/bimodules">bimodules</a>. (Technically, this should be distinguished in the terminology, say by calling <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> an <strong>ideal of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></strong> or the like.) In particular, a (real or complex) <a class="existingWikiWord" href="/nlab/show/Lie+ideal">Lie ideal</a> of a <a class="existingWikiWord" href="/nlab/show/Lie+algebra">Lie algebra</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is an ideal of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> over the real or complex field <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math>.</p> <h3 id="in_lattices_and_other_prosets">In lattices (and other prosets)</h3> <p>An <strong>ideal</strong> in a <a class="existingWikiWord" href="/nlab/show/lattice">lattice</a> (or even <a class="existingWikiWord" href="/nlab/show/preorder">proset</a>) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/subset">subset</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> of (the underlying set of) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> such that:</p> <ul> <li>There is an element of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> (so that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/inhabited+set">inhabited</a>);</li> <li>if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x, y \in I</annotation></semantics></math>, then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>≤</mo><mi>z</mi></mrow><annotation encoding="application/x-tex">x, y \leq z</annotation></semantics></math> for some <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>z</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">z \in I</annotation></semantics></math>;</li> <li>if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x \in I</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi><mo>≤</mo><mi>x</mi></mrow><annotation encoding="application/x-tex">y \leq x</annotation></semantics></math>, then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">y \in I</annotation></semantics></math> too.</li> </ul> <p>We can make this look more algebraic if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> is a (bounded) join-<a class="existingWikiWord" href="/nlab/show/semilattice">semilattice</a>:</p> <ul> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊥</mo><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">\bot \in I</annotation></semantics></math>;</li> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∨</mo><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x \vee y \in I</annotation></semantics></math> if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x, y \in I</annotation></semantics></math>;</li> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">y \in I</annotation></semantics></math> whenever <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∨</mo><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x \vee y \in I</annotation></semantics></math>.</li> </ul> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> is indeed a lattice, then we can make this look just like the ring version:</p> <ul> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊥</mo><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">\bot \in I</annotation></semantics></math>;</li> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∨</mo><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x \vee y \in I</annotation></semantics></math> whenever <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x, y \in I</annotation></semantics></math>;</li> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∧</mo><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x \wedge y \in I</annotation></semantics></math> whenever <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x \in I</annotation></semantics></math>.</li> </ul> <p>The concept of ideal is dual to that of <a class="existingWikiWord" href="/nlab/show/filter">filter</a>. A subset of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> that satisfies the first two of the three axioms for an ideal in a proset is precisely a <a class="existingWikiWord" href="/nlab/show/direction">directed subset</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math>; notice that this is weaker than being a sub-join-semilattice even if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> is a lattice.</p> <h3 id="in_both_at_once">In both at once</h3> <p>There are some common situations where these two kinds of ideal might seem to clash but fortunately do not:</p> <ul> <li> <p>A <a class="existingWikiWord" href="/nlab/show/distributive+lattice">distributive lattice</a> is both a lattice and a commutative rig; the two concepts of ideal are the same, as can be seen by comparing the definition for rigs to the last definition for lattices.</p> </li> <li> <p>A <a class="existingWikiWord" href="/nlab/show/Boolean+algebra">Boolean algebra</a> is a both a distributive lattice and a <a class="existingWikiWord" href="/nlab/show/Boolean+ring">Boolean ring</a>; again, the two concepts of ideal are the same (partly because the multiplication operators are the same, although there is still some checking to do regarding closure under addition).</p> </li> </ul> <p>On the other hand, every poset is a poset in an <a class="existingWikiWord" href="/nlab/show/opposite+poset">opposite</a> way, and this does <em>not</em> give the same concept of ideal; an ideal in one is a <a class="existingWikiWord" href="/nlab/show/filter">filter</a> in the opposite one. We are lucky that the convention for interpreting a Boolean ring as a lattice goes in the correct direction, or the two notions of ideal in a Boolean algebra would not match; or perhaps it is not a matter of luck, but the convention for which way to define ideals in a lattice was chosen precisely to match the conventions for Boolean algebras!</p> <h3 id="in_monoids">In monoids</h3> <p>There is a notion of ideal in a <a class="existingWikiWord" href="/nlab/show/monoid">monoid</a> (or even <a class="existingWikiWord" href="/nlab/show/semigroup">semigroup</a>), or more generally in a <a class="existingWikiWord" href="/nlab/show/monoid+object">monoid object</a> in any <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>, which generalises the notion of ideal in a ri(n)g or in a (semi)lattice. That is, if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/Ab">Ab</a>, then a monoid in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/ring">ring</a>; if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/Ab+Mon">Ab Mon</a>, then a monoid in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/rig">rig</a>; and a <a class="existingWikiWord" href="/nlab/show/semilattice">semilattice</a> is a commutative idempotent monoid in <a class="existingWikiWord" href="/nlab/show/Set">Set</a>. A left (right) ideal in a monoid (or semigroup) is a subset closed under multiplications with arbitrary elements in the semigroup from the left (right). See <a class="existingWikiWord" href="/nlab/show/ideal+in+a+monoid">ideal in a monoid</a>.</p> <p>This generalizes all of the above notions of ideal <em>except</em> for ideals in prosets that are not (possibly unbounded) join-semilattices.</p> <h3 id="in_categories">In categories</h3> <p>More generally still, passing from monoids to their many-object version and from prosets to their many-morphism version, a right ideal or <em><a class="existingWikiWord" href="/nlab/show/sieve">sieve</a></em> in a <a class="existingWikiWord" href="/nlab/show/category">category</a> is a subcategory closed under precomposition with morphisms from the entire category, and a cosieve or left ideal is the dual notion closed under postcompositions with morphisms in the entire category. See <a class="existingWikiWord" href="/nlab/show/sieve">sieve</a>.</p> <h3 id="in_additive_categories">In additive categories</h3> <p>In ringoids (small additive categories) and additive categories in general, a left/right/2-sided ideal is just the ideal (sieve/cosieve) in the sense of categories which is also closed under group operations in hom groups.</p> <h2 id="kinds_of_ideals">Kinds of ideals</h2> <p>Ideals form <a class="existingWikiWord" href="/nlab/show/complete+lattices">complete lattices</a> where arbitrary meets are given by set-theoretic intersection. In other words, ideals form a <a class="existingWikiWord" href="/nlab/show/Moore+collection">Moore collection</a> of subsets of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is a rig, or of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> is a lattice. This implies we have an ideal <strong>generated</strong> by any <a class="existingWikiWord" href="/nlab/show/subset">subset</a>: the intersection of all ideals containing the subset. A subset <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math> that generates a given ideal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> may be called a <strong><a class="existingWikiWord" href="/nlab/show/subbase">subbase</a></strong> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math>; then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math> is a <strong><a class="existingWikiWord" href="/nlab/show/base">base</a></strong> if every element of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> is a multiple (in a rig) or a predecessor (in an order) of some element of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>. (In particular, every <a class="existingWikiWord" href="/nlab/show/singleton+subset">singleton subset</a> is a base of its generated ideal.) See also <a class="existingWikiWord" href="/nlab/show/filter+base">filter base</a> and dualize for more about bases and subbases of ideals in lattices and other posets.</p> <p>Certain kinds of ideals are often characterized by the roles they play in ideal lattices, or in terms of the Moore <a class="existingWikiWord" href="/nlab/show/closure+operator">closure operator</a>. Some examples follow.</p> <p>The top element of an ideal lattice is called the <em>improper ideal</em>. That is to say, an ideal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> is the improper ideal if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x \in I</annotation></semantics></math> for every <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> (which follows if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">1 \in I</annotation></semantics></math> for the case of rigs, or <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊤</mo><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">\top \in I</annotation></semantics></math> for the case of bounded lattices). An ideal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> is <em>proper</em> if it is not the improper ideal: if there exists an element <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∉</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x \notin I</annotation></semantics></math>. So in a <a class="existingWikiWord" href="/nlab/show/rig">rig</a>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> is proper iff <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn><mo>∉</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">1 \notin I</annotation></semantics></math>; in a (bounded) lattice, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> is proper iff <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊤</mo><mo>∉</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">\top \notin I</annotation></semantics></math>.</p> <p>An ideal is a <strong><a class="existingWikiWord" href="/nlab/show/maximal+ideal">maximal ideal</a></strong> if it is maximal among <em>proper</em> ideals. A maximal ideal in a rig (including in a distributive lattice, but not in every lattice) is necessarily <a class="existingWikiWord" href="/nlab/show/prime+ideal">prime</a>; conversely, a prime ideal in a <a class="existingWikiWord" href="/nlab/show/Boolean+algebra">Boolean algebra</a> is necessarily maximal.</p> <p>An ideal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> is a <strong><a class="existingWikiWord" href="/nlab/show/principal+ideal">principal ideal</a></strong> if it is generated by a singleton. This means there exists an element <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x \in I</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math> is a multiple of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> (in a rig) or <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi><mo>≤</mo><mi>x</mi></mrow><annotation encoding="application/x-tex">y \leq x</annotation></semantics></math> (in an ordered set) whenever <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">y \in I</annotation></semantics></math>; we say that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> is <strong>generated</strong> by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math>. Thus every element <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> generates a unique principal ideal, the set of all left/right/two-sided multiples of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">a x</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mi>b</mi></mrow><annotation encoding="application/x-tex">x b</annotation></semantics></math>, or <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mi>x</mi><mi>b</mi></mrow><annotation encoding="application/x-tex">a x b</annotation></semantics></math> if we are talking about left/right/two-sided ideals in a rig) or the <a class="existingWikiWord" href="/nlab/show/downset">downset</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> (in an an order). Clearly, every ideal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> is a join over all the principal ideals <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>P</mi> <mi>x</mi></msub></mrow><annotation encoding="application/x-tex">P_x</annotation></semantics></math> generated by the elements <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math>.</p> <p>As discussed at <a class="existingWikiWord" href="/nlab/show/ideals+in+a+monoid">ideals in a monoid</a>, there is for two-sided ideals an operation of ideal multiplication, making the ideal lattice a <a class="existingWikiWord" href="/nlab/show/quantale">quantale</a> (cf. <a class="existingWikiWord" href="/nlab/show/Day+convolution">Day convolution</a>). Namely, if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi><mo>,</mo><mi>J</mi></mrow><annotation encoding="application/x-tex">I, J</annotation></semantics></math> are ideals, then their product <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi><mi>J</mi></mrow><annotation encoding="application/x-tex">I J</annotation></semantics></math> is the ideal generated by all products <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mi>y</mi></mrow><annotation encoding="application/x-tex">x y</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>I</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>J</mi></mrow><annotation encoding="application/x-tex">x \in I, y \in J</annotation></semantics></math> in the case of rigs. Similarly, in the case of lattices, we could define <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi><mi>J</mi></mrow><annotation encoding="application/x-tex">I J</annotation></semantics></math> to be the ideal generated by all meets <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∧</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">x \wedge y</annotation></semantics></math> – but in this case the result is the same as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi><mo>∩</mo><mi>J</mi></mrow><annotation encoding="application/x-tex">I \cap J</annotation></semantics></math>. In any case, we say that a proper ideal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math> is <strong><a class="existingWikiWord" href="/nlab/show/prime+ideal">prime</a></strong> if for any ideals <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi><mo>,</mo><mi>J</mi></mrow><annotation encoding="application/x-tex">I, J</annotation></semantics></math>, the condition <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi><mi>J</mi><mo>⊆</mo><mi>P</mi></mrow><annotation encoding="application/x-tex">I J \subseteq P</annotation></semantics></math> implies <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi><mo>⊆</mo><mi>P</mi></mrow><annotation encoding="application/x-tex">I \subseteq P</annotation></semantics></math> or <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>J</mi><mo>⊆</mo><mi>P</mi></mrow><annotation encoding="application/x-tex">J \subseteq P</annotation></semantics></math>. In <a class="existingWikiWord" href="/nlab/show/order+theory">order theory</a>, the term ‘prime ideal’ is usually used for a <em><a class="existingWikiWord" href="/nlab/show/strongly+irreducible+ideal">strongly irreducible ideal</a></em>, since the two are equivalent for prosets.</p> <p>An (left, right, or two-sided) ideal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> is <strong><a class="existingWikiWord" href="/nlab/show/irreducible+ideal">irreducible</a></strong> if it is proper and, whenever it is written as the <a class="existingWikiWord" href="/nlab/show/intersection">intersection</a> of two ideals (of the same kind) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi><mo>=</mo><mi>J</mi><mo>∩</mo><mi>K</mi></mrow><annotation encoding="application/x-tex">I = J \cap K</annotation></semantics></math>, then at least one of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>J</mi></mrow><annotation encoding="application/x-tex">J</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math> equals <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math>. If we replace equality here by containment, then we get something more analogous to the definition of prime ideal, called a <strong><a class="existingWikiWord" href="/nlab/show/strongly+irreducible+ideal">strongly irreducible ideal</a></strong>. (Indeed, for <a class="existingWikiWord" href="/nlab/show/prosets">prosets</a>, prime ideals and strongly irreducible ideals are the same.) In general, prime ideals are strongly irreducible, and strongly irreducible ideals are irreducible, but the converses fail. An ideal is <strong><a class="existingWikiWord" href="/nlab/show/completely+irreducible+ideal">completely irreducible</a></strong> if whenever <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> is an intersection of any (possibly infinite) collection of ideals, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> is equal to at least one of them. (This is <em>not</em> analogous to <a class="existingWikiWord" href="/nlab/show/completely+prime+ideals">completely prime ideals</a>.)</p> <p>An ideal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> is a <strong>nil ideal</strong> if for every <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x\in I</annotation></semantics></math>, there is an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">n\in \mathbb{N}</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>x</mi> <mi>n</mi></msup><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">x^n=0</annotation></semantics></math>. That is, every element of the ideal is nilpotent. If on the other hand, there is an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">n\in \mathbb{N}</annotation></semantics></math>, such that for every <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">x\in I</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>x</mi> <mi>n</mi></msup><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">x^n=0</annotation></semantics></math>, the ideal is called <strong>nilpotent</strong>.</p> <div class="num_prop"> <h6 id="proposition">Proposition</h6> <p>A maximal ideal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math> is prime.</p> </div> <div class="proof"> <h6 id="proof">Proof</h6> <p>Because the ideal lattice is a <a class="existingWikiWord" href="/nlab/show/quantale">quantale</a>, multiplication of ideals distributes over ideal joins. Suppose <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi><mi>J</mi><mo>⊆</mo><mi>M</mi></mrow><annotation encoding="application/x-tex">I J \subseteq M</annotation></semantics></math> for two ideals <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi><mo>,</mo><mi>J</mi></mrow><annotation encoding="application/x-tex">I, J</annotation></semantics></math>. If neither is contained in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math>, then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi><mo>∨</mo><mi>M</mi><mo>=</mo><mo>⊤</mo><mo>=</mo><mi>J</mi><mo>∨</mo><mi>M</mi></mrow><annotation encoding="application/x-tex">I \vee M = \top = J \vee M</annotation></semantics></math> (the improper ideal) since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math> is maximal. Then</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo>⊤</mo><mo>=</mo><mo>⊤</mo><mo>⋅</mo><mo>⊤</mo><mo>=</mo><mo stretchy="false">(</mo><mi>I</mi><mo>∨</mo><mi>M</mi><mo stretchy="false">)</mo><mo>⋅</mo><mo stretchy="false">(</mo><mi>J</mi><mo>∨</mo><mi>M</mi><mo stretchy="false">)</mo><mo>=</mo><mi>I</mi><mi>J</mi><mo>∨</mo><mi>M</mi><mi>J</mi><mo>∨</mo><mi>I</mi><mi>M</mi><mo>∨</mo><mi>M</mi><mi>M</mi></mrow><annotation encoding="application/x-tex">\top = \top \cdot \top = (I \vee M) \cdot (J \vee M) = I J \vee M J \vee I M \vee M M</annotation></semantics></math></div> <p>where all four summands are contained in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math> (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi><mi>J</mi><mo>⊆</mo><mi>M</mi></mrow><annotation encoding="application/x-tex">I J \subseteq M</annotation></semantics></math> by supposition, and the other containments hold since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math> is an ideal). Thus their join is contained in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math>, so we have proved <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊤</mo><mo>⊆</mo><mi>M</mi></mrow><annotation encoding="application/x-tex">\top \subseteq M</annotation></semantics></math>, contradiction.</p> </div> <p>That every ideal is contained in a prime ideal is a <a class="existingWikiWord" href="/nlab/show/prime+ideal+theorem">prime ideal theorem</a>; that every ideal is contained in a maximal ideal is a <a class="existingWikiWord" href="/nlab/show/maximal+ideal+theorem">maximal ideal theorem</a>.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+ideal">differential ideal</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/germ-determined+ideal">germ-determined ideal</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ideal+in+a+monoid">ideal in a monoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/filter+of+a+ring">filter of a ring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/modular+ideal">modular ideal</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ideal+predicate">ideal predicate</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/anti-ideal">anti-ideal</a></p> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on October 1, 2024 at 19:40:16. See the <a href="/nlab/history/ideal" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/ideal" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/8890/#Item_6">Discuss</a><span class="backintime"><a href="/nlab/revision/ideal/40" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/ideal" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/ideal" accesskey="S" class="navlink" id="history" rel="nofollow">History (40 revisions)</a> <a href="/nlab/show/ideal/cite" style="color: black">Cite</a> <a href="/nlab/print/ideal" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/ideal" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10