CINXE.COM
Crystallographic point group - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Crystallographic point group - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"d5075c6f-840d-4d83-b263-49cf66c94580","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Crystallographic_point_group","wgTitle":"Crystallographic point group","wgCurRevisionId":1222777822,"wgRevisionId":1222777822,"wgArticleId":663786,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Symmetry","Crystallography","Discrete groups"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Crystallographic_point_group","wgRelevantArticleId":663786,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia", "wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1066315","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader", "ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Crystallographic point group - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Crystallographic_point_group"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Crystallographic_point_group&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Crystallographic_point_group"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Crystallographic_point_group rootpage-Crystallographic_point_group skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Crystallographic+point+group" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Crystallographic+point+group" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Crystallographic+point+group" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Crystallographic+point+group" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Notation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Notation</span> </div> </a> <button aria-controls="toc-Notation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Notation subsection</span> </button> <ul id="toc-Notation-sublist" class="vector-toc-list"> <li id="toc-Schoenflies_notation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Schoenflies_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Schoenflies notation</span> </div> </a> <ul id="toc-Schoenflies_notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hermann–Mauguin_notation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hermann–Mauguin_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Hermann–Mauguin notation</span> </div> </a> <ul id="toc-Hermann–Mauguin_notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_correspondence_between_different_notations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_correspondence_between_different_notations"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>The correspondence between different notations</span> </div> </a> <ul id="toc-The_correspondence_between_different_notations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Isomorphisms" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Isomorphisms"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Isomorphisms</span> </div> </a> <ul id="toc-Isomorphisms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Deriving_the_crystallographic_point_group_(crystal_class)_from_the_space_group" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Deriving_the_crystallographic_point_group_(crystal_class)_from_the_space_group"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Deriving the crystallographic point group (crystal class) from the space group</span> </div> </a> <ul id="toc-Deriving_the_crystallographic_point_group_(crystal_class)_from_the_space_group-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Crystallographic point group</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 11 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-11" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">11 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B2%B0%EC%A0%95%ED%95%99%EC%A0%81_%EC%A0%90%EA%B5%B0" title="결정학적 점군 – Korean" lang="ko" hreflang="ko" data-title="결정학적 점군" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Kristalni_sustavi" title="Kristalni sustavi – Croatian" lang="hr" hreflang="hr" data-title="Kristalni sustavi" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Classe_di_simmetria" title="Classe di simmetria – Italian" lang="it" hreflang="it" data-title="Classe di simmetria" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%B5%90%E6%99%B6%E7%82%B9%E7%BE%A4" title="結晶点群 – Japanese" lang="ja" hreflang="ja" data-title="結晶点群" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Krystallklasse" title="Krystallklasse – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Krystallklasse" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Klasa_krystalograficzna" title="Klasa krystalograficzna – Polish" lang="pl" hreflang="pl" data-title="Klasa krystalograficzna" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Clas%C4%83_cristalografic%C4%83" title="Clasă cristalografică – Romanian" lang="ro" hreflang="ro" data-title="Clasă cristalografică" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D1%80%D0%B8%D1%81%D1%82%D0%B0%D0%BB%D0%BB%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D1%82%D0%BE%D1%87%D0%B5%D1%87%D0%BD%D0%B0%D1%8F_%D0%B3%D1%80%D1%83%D0%BF%D0%BF%D0%B0_%D1%81%D0%B8%D0%BC%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%B8" title="Кристаллографическая точечная группа симметрии – Russian" lang="ru" hreflang="ru" data-title="Кристаллографическая точечная группа симметрии" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Kristalografska_to%C4%8Dkovna_skupina" title="Kristalografska točkovna skupina – Slovenian" lang="sl" hreflang="sl" data-title="Kristalografska točkovna skupina" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D1%80%D0%B8%D1%81%D1%82%D0%B0%D0%BB%D1%96%D1%87%D0%BD%D0%B8%D0%B9_%D0%BA%D0%BB%D0%B0%D1%81" title="Кристалічний клас – Ukrainian" lang="uk" hreflang="uk" data-title="Кристалічний клас" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%99%B6%E4%BD%93%E5%AD%A6%E7%82%B9%E7%BE%A4" title="晶体学点群 – Chinese" lang="zh" hreflang="zh" data-title="晶体学点群" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1066315#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Crystallographic_point_group" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Crystallographic_point_group" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Crystallographic_point_group"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Crystallographic_point_group&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Crystallographic_point_group&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Crystallographic_point_group"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Crystallographic_point_group&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Crystallographic_point_group&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Crystallographic_point_group" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Crystallographic_point_group" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Crystallographic_point_group&oldid=1222777822" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Crystallographic_point_group&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Crystallographic_point_group&id=1222777822&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCrystallographic_point_group"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCrystallographic_point_group"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Crystallographic_point_group&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Crystallographic_point_group&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1066315" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Classification system for crystals</div> <p>In <a href="/wiki/Crystallography" title="Crystallography">crystallography</a>, a <b>crystallographic point group</b> is a <a href="/wiki/Point_groups_in_three_dimensions" title="Point groups in three dimensions">three dimensional point group</a> whose symmetry operations are compatible with a three dimensional crystallographic <a href="/wiki/Lattice_(group)" title="Lattice (group)">lattice</a>. According to the <a href="/wiki/Crystallographic_restriction_theorem" title="Crystallographic restriction theorem">crystallographic restriction</a> it may only contain one-, two-, three-, four- and sixfold rotations or rotoinversions. This reduces the number of crystallographic point groups to 32 (from an infinity of general point groups). These 32 groups are one-and-the-same as the 32 types of morphological (external) crystalline symmetries derived in 1830 by <a href="/wiki/Johann_F._C._Hessel" title="Johann F. C. Hessel">Johann Friedrich Christian Hessel</a> from a consideration of observed crystal forms. </p><p>In the classification of crystals, to each <a href="/wiki/Space_group" title="Space group">space group</a> is associated a crystallographic point group by "forgetting" the translational components of the symmetry operations. That is, by turning screw rotations into rotations, glide reflections into reflections and moving all symmetry elements into the origin. Each crystallographic point group defines the <b>(geometric) crystal class</b> of the crystal. </p><p>The point group of a crystal determines, among other things, the directional variation of physical properties that arise from its structure, including <a href="/wiki/Crystal_optics" title="Crystal optics">optical properties</a> such as <a href="/wiki/Birefringence" title="Birefringence">birefringency</a>, or electro-optical features such as the <a href="/wiki/Pockels_effect" title="Pockels effect">Pockels effect</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Notation">Notation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Crystallographic_point_group&action=edit&section=1" title="Edit section: Notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The point groups are named according to their component symmetries. There are several standard notations used by crystallographers, <a href="/wiki/Mineralogist" class="mw-redirect" title="Mineralogist">mineralogists</a>, and <a href="/wiki/Physicists" class="mw-redirect" title="Physicists">physicists</a>. </p><p>For the correspondence of the two systems below, see <b><a href="/wiki/Crystal_system" title="Crystal system">crystal system</a></b>. </p> <div class="mw-heading mw-heading3"><h3 id="Schoenflies_notation">Schoenflies notation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Crystallographic_point_group&action=edit&section=2" title="Edit section: Schoenflies notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Schoenflies_notation" title="Schoenflies notation">Schoenflies notation</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Point_groups_in_three_dimensions" title="Point groups in three dimensions">Point groups in three dimensions</a></div> <p>In <a href="/wiki/Arthur_Moritz_Schoenflies" title="Arthur Moritz Schoenflies">Schoenflies</a> notation, point groups are denoted by a letter symbol with a subscript. The symbols used in crystallography mean the following: </p> <ul><li><i>C<sub>n</sub></i> (for <a href="/wiki/Cyclic_group" title="Cyclic group">cyclic</a>) indicates that the group has an <i>n</i>-fold rotation axis. <i>C<sub>nh</sub></i> is <i>C<sub>n</sub></i> with the addition of a mirror (reflection) plane perpendicular to the <a href="/wiki/Axis_of_rotation" class="mw-redirect" title="Axis of rotation">axis of rotation</a>. <i>C<sub>nv</sub></i> is <i>C<sub>n</sub></i> with the addition of n mirror planes parallel to the axis of rotation.</li> <li><i>S<sub>2n</sub></i> (for <i>Spiegel</i>, German for <a href="/wiki/Mirror" title="Mirror">mirror</a>) denotes a group with only a <i>2n</i>-fold <a href="/wiki/Improper_rotation" title="Improper rotation">rotation-reflection axis</a>.</li> <li><i>D<sub>n</sub></i> (for <a href="/wiki/Dihedral_group" title="Dihedral group">dihedral</a>, or two-sided) indicates that the group has an <i>n</i>-fold rotation axis plus <i>n</i> twofold axes perpendicular to that axis. <i>D<sub>nh</sub></i> has, in addition, a mirror plane perpendicular to the <i>n</i>-fold axis. <i>D<sub>nd</sub></i> has, in addition to the elements of <i>D<sub>n</sub></i>, mirror planes parallel to the <i>n</i>-fold axis.</li> <li>The letter <i>T</i> (for <a href="/wiki/Tetrahedron" title="Tetrahedron">tetrahedron</a>) indicates that the group has the symmetry of a tetrahedron. <i>T<sub>d</sub></i> includes <a href="/wiki/Improper_rotation" title="Improper rotation">improper rotation</a> operations, <i>T</i> excludes improper rotation operations, and <i>T<sub>h</sub></i> is <i>T</i> with the addition of an inversion.</li> <li>The letter <i>O</i> (for <a href="/wiki/Octahedron" title="Octahedron">octahedron</a>) indicates that the group has the symmetry of an octahedron, with (<i>O<sub>h</sub></i>) or without (<i>O</i>) improper operations (those that change handedness).</li></ul> <p>Due to the <a href="/wiki/Crystallographic_restriction_theorem" title="Crystallographic restriction theorem">crystallographic restriction theorem</a>, <i>n</i> = 1, 2, 3, 4, or 6 in 2- or 3-dimensional space. </p> <table class="wikitable"> <tbody><tr> <th>n </th> <th>1 </th> <th>2 </th> <th>3 </th> <th>4 </th> <th>6 </th></tr> <tr> <td><i>C<sub>n</sub></i> </td> <td><i>C<sub>1</sub></i> </td> <td><i>C<sub>2</sub></i> </td> <td><i>C<sub>3</sub></i> </td> <td><i>C<sub>4</sub></i> </td> <td><i>C<sub>6</sub></i> </td></tr> <tr> <td><i>C<sub>nv</sub></i> </td> <td><i>C<sub>1v</sub></i>=<i>C<sub>1h</sub></i> </td> <td><i>C<sub>2v</sub></i> </td> <td><i>C<sub>3v</sub></i> </td> <td><i>C<sub>4v</sub></i> </td> <td><i>C<sub>6v</sub></i> </td></tr> <tr> <td><i>C<sub>nh</sub></i> </td> <td><i>C<sub>1h</sub></i> </td> <td><i>C<sub>2h</sub></i> </td> <td><i>C<sub>3h</sub></i> </td> <td><i>C<sub>4h</sub></i> </td> <td><i>C<sub>6h</sub></i> </td></tr> <tr> <td><i>D<sub>n</sub></i> </td> <td><i>D<sub>1</sub></i>=<i>C<sub>2</sub></i> </td> <td><i>D<sub>2</sub></i> </td> <td><i>D<sub>3</sub></i> </td> <td><i>D<sub>4</sub></i> </td> <td><i>D<sub>6</sub></i> </td></tr> <tr> <td><i>D<sub>nh</sub></i> </td> <td><i>D<sub>1h</sub></i>=<i>C<sub>2v</sub></i> </td> <td><i>D<sub>2h</sub></i> </td> <td><i>D<sub>3h</sub></i> </td> <td><i>D<sub>4h</sub></i> </td> <td><i>D<sub>6h</sub></i> </td></tr> <tr> <td><i>D<sub>nd</sub></i> </td> <td><i>D<sub>1d</sub></i>=<i>C<sub>2h</sub></i> </td> <td><i>D<sub>2d</sub></i> </td> <td><i>D<sub>3d</sub></i> </td> <td style="background:silver"><i>D<sub>4d</sub></i> </td> <td style="background:silver"><i>D<sub>6d</sub></i> </td></tr> <tr> <td><i>S<sub>2n</sub></i> </td> <td><i>S<sub>2</sub></i> </td> <td><i>S<sub>4</sub></i> </td> <td><i>S<sub>6</sub></i> </td> <td style="background:silver"><i>S<sub>8</sub></i> </td> <td style="background:silver"><i>S<sub>12</sub></i> </td></tr></tbody></table> <p><i>D<sub>4d</sub></i> and <i>D<sub>6d</sub></i> are actually forbidden because they contain <a href="/wiki/Improper_rotation" title="Improper rotation">improper rotations</a> with n=8 and 12 respectively. The 27 point groups in the table plus <i>T</i>, <i>T<sub>d</sub></i>, <i>T<sub>h</sub></i>, <i>O</i> and <i>O<sub>h</sub></i> constitute 32 crystallographic point groups. </p> <div class="mw-heading mw-heading3"><h3 id="Hermann–Mauguin_notation"><span id="Hermann.E2.80.93Mauguin_notation"></span>Hermann–Mauguin notation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Crystallographic_point_group&action=edit&section=3" title="Edit section: Hermann–Mauguin notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Hermann%E2%80%93Mauguin_notation" title="Hermann–Mauguin notation">Hermann–Mauguin notation</a></div> <p>An abbreviated form of the <a href="/wiki/Hermann%E2%80%93Mauguin_notation" title="Hermann–Mauguin notation">Hermann–Mauguin notation</a> commonly used for <a href="/wiki/Space_group" title="Space group">space groups</a> also serves to describe crystallographic point groups. Group names are </p> <table class="wikitable"> <tbody><tr> <th>Crystal family </th> <th>Crystal system </th> <th colspan="7">Group names </th></tr> <tr> <th colspan="2"><a href="/wiki/Cubic_crystal_system" title="Cubic crystal system">Cubic</a> </th> <td>23</td> <td>m<span style="text-decoration:overline;">3</span></td> <td></td> <td>432</td> <td><span style="text-decoration:overline;">4</span>3m</td> <td>m<span style="text-decoration:overline;">3</span>m</td> <td> </td></tr> <tr> <th rowspan="2"><a href="/wiki/Hexagonal_crystal_family" title="Hexagonal crystal family">Hexagonal</a> </th> <th>Hexagonal </th> <td>6</td> <td><span style="text-decoration:overline;">6</span></td> <td><sup>6</sup>⁄<sub>m</sub></td> <td>622</td> <td>6mm</td> <td><span style="text-decoration:overline;">6</span>m2</td> <td>6/mmm </td></tr> <tr> <th>Trigonal </th> <td>3</td> <td><span style="text-decoration:overline;">3</span></td> <td></td> <td>32</td> <td>3m</td> <td><span style="text-decoration:overline;">3</span>m</td> <td> </td></tr> <tr> <th colspan="2"><a href="/wiki/Tetragonal_crystal_system" title="Tetragonal crystal system">Tetragonal</a> </th> <td>4</td> <td><span style="text-decoration:overline;">4</span></td> <td><sup>4</sup>⁄<sub>m</sub></td> <td>422</td> <td>4mm</td> <td><span style="text-decoration:overline;">4</span>2m</td> <td>4/mmm </td></tr> <tr> <th colspan="2"><a href="/wiki/Orthorhombic_crystal_system" title="Orthorhombic crystal system">Orthorhombic</a> </th> <td></td> <td></td> <td></td> <td>222</td> <td></td> <td>mm2</td> <td>mmm </td></tr> <tr> <th colspan="2"><a href="/wiki/Monoclinic_crystal_system" title="Monoclinic crystal system">Monoclinic</a> </th> <td>2</td> <td></td> <td><sup>2</sup>⁄<sub>m</sub></td> <td></td> <td>m</td> <td></td> <td> </td></tr> <tr> <th colspan="2"><a href="/wiki/Triclinic_crystal_system" title="Triclinic crystal system">Triclinic</a> </th> <td>1</td> <td><span style="text-decoration:overline;">1</span></td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr></tbody></table> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading3"><h3 id="The_correspondence_between_different_notations">The correspondence between different notations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Crystallographic_point_group&action=edit&section=4" title="Edit section: The correspondence between different notations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable"> <tbody><tr> <th rowspan="2">Crystal family </th> <th rowspan="2"><a href="/wiki/Crystal_system" title="Crystal system">Crystal system</a> </th> <th colspan="2"><a href="/wiki/Hermann-Mauguin_notation" class="mw-redirect" title="Hermann-Mauguin notation">Hermann-Mauguin</a> </th> <th rowspan="2">Shubnikov<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </th> <th rowspan="2"><a href="/wiki/Schoenflies_notation" title="Schoenflies notation">Schoenflies</a> </th> <th rowspan="2"><a href="/wiki/Orbifold_notation" title="Orbifold notation">Orbifold</a> </th> <th rowspan="2"><a href="/wiki/Coxeter_notation" title="Coxeter notation">Coxeter</a> </th> <th rowspan="2">Order </th></tr> <tr align="center"> <th>(full) </th> <th>(short) </th></tr> <tr align="center"> <th rowspan="2" colspan="2"><a href="/wiki/Triclinic_crystal_system" title="Triclinic crystal system">Triclinic</a> </th> <td>1</td> <td>1</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b98c9e64d6aa790731df88a02cc0d018cce78b87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle 1\ }"></span></td> <td><i>C<sub>1</sub></i></td> <td>11</td> <td>[ ]<sup>+</sup></td> <td>1 </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">1</span></td> <td><span style="text-decoration:overline;">1</span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>2</mn> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8d43d94d26b8440864ad05ab9ec1e0f887c0b8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.676ex;" alt="{\displaystyle {\tilde {2}}}"></span></td> <td><i>C<sub>i</sub> = S<sub>2</sub></i></td> <td>×</td> <td>[2<sup>+</sup>,2<sup>+</sup>]</td> <td>2 </td></tr> <tr align="center"> <th rowspan="3" colspan="2"><a href="/wiki/Monoclinic_crystal_system" title="Monoclinic crystal system">Monoclinic</a> </th> <td>2</td> <td>2</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/109498ca78d5a57ae4967b4f25d9b6e986a58528" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle 2\ }"></span></td> <td><i>C<sub>2</sub></i></td> <td>22</td> <td>[2]<sup>+</sup></td> <td>2 </td></tr> <tr align="center"> <td>m</td> <td>m</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0f753d46b8449abfe4aab6f5f1058188e46492f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.621ex; height:1.676ex;" alt="{\displaystyle m\ }"></span></td> <td><i>C<sub>s</sub> = C<sub>1h</sub></i></td> <td>*</td> <td>[ ]</td> <td>2 </td></tr> <tr align="center"> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2}{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mi>m</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2}{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f30ced983c01568491f53af2982d59fbff053092" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.279ex; height:3.343ex;" alt="{\displaystyle {\tfrac {2}{m}}}"></span></td> <td>2/m</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2:m\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>:</mo> <mi>m</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2:m\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a3a12cf01b2f84549b5458d21e72c71465094af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.721ex; height:2.176ex;" alt="{\displaystyle 2:m\ }"></span></td> <td><i>C<sub>2h</sub></i></td> <td>2*</td> <td>[2,2<sup>+</sup>]</td> <td>4 </td></tr> <tr align="center"> <th rowspan="3" colspan="2"><a href="/wiki/Orthorhombic_crystal_system" title="Orthorhombic crystal system">Orthorhombic</a> </th> <td>222</td> <td>222</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2:2\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>:</mo> <mn>2</mn> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2:2\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/742f1db191cb8c146865c1f5f2010e02c0233fbc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.843ex; height:2.176ex;" alt="{\displaystyle 2:2\ }"></span></td> <td><i>D<sub>2</sub> = V</i></td> <td>222</td> <td>[2,2]<sup>+</sup></td> <td>4 </td></tr> <tr align="center"> <td>mm2</td> <td>mm2</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\cdot m\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mi>m</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\cdot m\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd2b84ebf0a3699f511547ccb211cb8b207649b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.463ex; height:2.176ex;" alt="{\displaystyle 2\cdot m\ }"></span></td> <td><i>C<sub>2v</sub></i></td> <td>*22</td> <td>[2]</td> <td>4 </td></tr> <tr align="center"> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mi>m</mi> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mi>m</mi> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mi>m</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d955ae7c54db2cc8ee3829103f444ade2552824b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.837ex; height:3.343ex;" alt="{\displaystyle {\tfrac {2}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}}"></span></td> <td>mmm</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\cdot 2:m\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>:</mo> <mi>m</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\cdot 2:m\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/004e1661af14b3ff25303ca1eacaa0bfc1b9f148" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.44ex; height:2.176ex;" alt="{\displaystyle m\cdot 2:m\ }"></span></td> <td><i>D<sub>2h</sub></i> = <i>V<sub>h</sub></i></td> <td>*222</td> <td>[2,2]</td> <td>8 </td></tr> <tr align="center"> <th rowspan="7" colspan="2"><a href="/wiki/Tetragonal_crystal_system" title="Tetragonal crystal system">Tetragonal</a> </th> <td>4</td> <td>4</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f313d09bc2ad8b592f1e7a19bd7cb0fe64565efb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle 4\ }"></span></td> <td><i>C<sub>4</sub></i></td> <td>44</td> <td>[4]<sup>+</sup></td> <td>4 </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">4</span></td> <td><span style="text-decoration:overline;">4</span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>4</mn> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {4}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/528cb1c9ad6c97341e2d2e064cf441ca22279f15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.676ex;" alt="{\displaystyle {\tilde {4}}}"></span> </td> <td><i>S<sub>4</sub></i></td> <td>2×</td> <td>[2<sup>+</sup>,4<sup>+</sup>]</td> <td>4 </td></tr> <tr align="center"> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {4}{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>4</mn> <mi>m</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {4}{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3c594b208ea7ba95f8d6eece9dd9a81f476811c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.279ex; height:3.343ex;" alt="{\displaystyle {\tfrac {4}{m}}}"></span></td> <td>4/m</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4:m\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mo>:</mo> <mi>m</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4:m\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca4396edf37c081dec11c40528840a9e93141e67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.721ex; height:2.176ex;" alt="{\displaystyle 4:m\ }"></span></td> <td><i>C<sub>4h</sub></i></td> <td>4*</td> <td>[2,4<sup>+</sup>]</td> <td>8 </td></tr> <tr align="center"> <td>422</td> <td>422</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4:2\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mo>:</mo> <mn>2</mn> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4:2\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84a0d8b4bea2a7af614278ab17d75a9b5905f7dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.843ex; height:2.176ex;" alt="{\displaystyle 4:2\ }"></span></td> <td><i>D<sub>4</sub></i></td> <td>422</td> <td>[4,2]<sup>+</sup></td> <td>8 </td></tr> <tr align="center"> <td>4mm</td> <td>4mm</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4\cdot m\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mi>m</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4\cdot m\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80cc616cad61e60d9fff6eaf869d40aa666157ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.463ex; height:2.176ex;" alt="{\displaystyle 4\cdot m\ }"></span></td> <td><i>C<sub>4v</sub></i></td> <td>*44</td> <td>[4]</td> <td>8 </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">4</span>2m</td> <td><span style="text-decoration:overline;">4</span>2m</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {4}}\cdot m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>4</mn> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>⋅<!-- ⋅ --></mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {4}}\cdot m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e4c8316d4f1241d6a18b0a4e4f0e7c812b05986" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.882ex; height:2.676ex;" alt="{\displaystyle {\tilde {4}}\cdot m}"></span></td> <td><i>D<sub>2d</sub></i> = <i>V<sub>d</sub></i></td> <td>2*2</td> <td>[2<sup>+</sup>,4]</td> <td>8 </td></tr> <tr align="center"> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {4}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>4</mn> <mi>m</mi> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mi>m</mi> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mi>m</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {4}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ec8b5c1ca032047a4ac1d108525e3deef4c2927" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.837ex; height:3.343ex;" alt="{\displaystyle {\tfrac {4}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}}"></span></td> <td>4/mmm</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\cdot 4:m\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>:</mo> <mi>m</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\cdot 4:m\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37dc4f02a6f75bd94611ee219e86905f982e69e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.44ex; height:2.176ex;" alt="{\displaystyle m\cdot 4:m\ }"></span></td> <td><i>D<sub>4h</sub></i></td> <td>*422</td> <td>[4,2]</td> <td>16 </td></tr> <tr align="center"> <th rowspan="12"><a href="/wiki/Hexagonal_crystal_family" title="Hexagonal crystal family">Hexagonal</a> </th> <th rowspan="5">Trigonal </th> <td>3</td> <td>3</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/291adf564ec953470f6e085a47913556c596f264" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle 3\ }"></span></td> <td><i>C<sub>3</sub></i></td> <td>33</td> <td>[3]<sup>+</sup></td> <td>3 </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">3</span></td> <td><span style="text-decoration:overline;">3</span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {6}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>6</mn> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {6}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0a6cf3f545337ea158e24e81a75df91462b5003" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.676ex;" alt="{\displaystyle {\tilde {6}}}"></span></td> <td><i>C<sub>3i</sub> = S<sub>6</sub></i></td> <td>3×</td> <td>[2<sup>+</sup>,6<sup>+</sup>]</td> <td>6 </td></tr> <tr align="center"> <td>32</td> <td>32</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3:2\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>:</mo> <mn>2</mn> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3:2\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/044f84c3373dbe4f600de6205a1a5d2844c0fe8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.843ex; height:2.176ex;" alt="{\displaystyle 3:2\ }"></span></td> <td><i>D<sub>3</sub></i></td> <td>322</td> <td>[3,2]<sup>+</sup></td> <td>6 </td></tr> <tr align="center"> <td>3m</td> <td>3m</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3\cdot m\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mi>m</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3\cdot m\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ddaa0fb5fe4a597cb6cf1a0eeef1ad018a1dfd1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.463ex; height:2.176ex;" alt="{\displaystyle 3\cdot m\ }"></span></td> <td><i>C<sub>3v</sub></i></td> <td>*33</td> <td>[3]</td> <td>6 </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">3</span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2}{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mi>m</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2}{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f30ced983c01568491f53af2982d59fbff053092" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.279ex; height:3.343ex;" alt="{\displaystyle {\tfrac {2}{m}}}"></span></td> <td><span style="text-decoration:overline;">3</span>m</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {6}}\cdot m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>6</mn> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>⋅<!-- ⋅ --></mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {6}}\cdot m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f91dae018e90d7e625a76128aa9289e720111e23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.882ex; height:2.676ex;" alt="{\displaystyle {\tilde {6}}\cdot m}"></span></td> <td><i>D<sub>3d</sub></i></td> <td>2*3</td> <td>[2<sup>+</sup>,6]</td> <td>12 </td></tr> <tr align="center"> <th rowspan="7">Hexagonal </th> <td>6</td> <td>6</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b62e16f30d22a094402fb958a7080144f6aa10c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle 6\ }"></span></td> <td><i>C<sub>6</sub></i></td> <td>66</td> <td>[6]<sup>+</sup></td> <td>6 </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">6</span></td> <td><span style="text-decoration:overline;">6</span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3:m\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>:</mo> <mi>m</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3:m\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90088bdee66f6dd1a50fc958f32816a7fb944cf2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.721ex; height:2.176ex;" alt="{\displaystyle 3:m\ }"></span></td> <td><i>C<sub>3h</sub></i></td> <td>3*</td> <td>[2,3<sup>+</sup>]</td> <td>6 </td></tr> <tr align="center"> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {6}{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>6</mn> <mi>m</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {6}{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/783ebdf4ab903d3669591d3243c51093ce3bff13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.279ex; height:3.343ex;" alt="{\displaystyle {\tfrac {6}{m}}}"></span></td> <td>6/m</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6:m\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <mo>:</mo> <mi>m</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6:m\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46438eea665eab0658e3a1032a1b463e939c36d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.721ex; height:2.176ex;" alt="{\displaystyle 6:m\ }"></span></td> <td><i>C<sub>6h</sub></i></td> <td>6*</td> <td>[2,6<sup>+</sup>]</td> <td>12 </td></tr> <tr align="center"> <td>622</td> <td>622</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6:2\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <mo>:</mo> <mn>2</mn> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6:2\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a1c6e5b2372afbdb1437c3add6143fa3abf06f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.843ex; height:2.176ex;" alt="{\displaystyle 6:2\ }"></span></td> <td><i>D<sub>6</sub></i></td> <td>622</td> <td>[6,2]<sup>+</sup></td> <td>12 </td></tr> <tr align="center"> <td>6mm</td> <td>6mm</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6\cdot m\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <mi>m</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6\cdot m\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a67abeed8267261dc298c9ea7d5c094876d43020" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.463ex; height:2.176ex;" alt="{\displaystyle 6\cdot m\ }"></span></td> <td><i>C<sub>6v</sub></i></td> <td>*66</td> <td>[6]</td> <td>12 </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">6</span>m2</td> <td><span style="text-decoration:overline;">6</span>m2</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\cdot 3:m\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>:</mo> <mi>m</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\cdot 3:m\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09fd0f81cab6360594116a898c8a92c9546e1a24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.44ex; height:2.176ex;" alt="{\displaystyle m\cdot 3:m\ }"></span></td> <td><i>D<sub>3h</sub></i></td> <td>*322</td> <td>[3,2]</td> <td>12 </td></tr> <tr align="center"> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {6}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>6</mn> <mi>m</mi> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mi>m</mi> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mi>m</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {6}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34761ec14c764078c0c432c0842bba500ffe59fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.837ex; height:3.343ex;" alt="{\displaystyle {\tfrac {6}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}}"></span></td> <td>6/mmm</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\cdot 6:m\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>:</mo> <mi>m</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\cdot 6:m\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d251c8c432c8c021e41154e8e65092c5d364472" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.44ex; height:2.176ex;" alt="{\displaystyle m\cdot 6:m\ }"></span></td> <td><i>D<sub>6h</sub></i></td> <td>*622</td> <td>[6,2]</td> <td>24 </td></tr> <tr align="center"> <th rowspan="5" colspan="2"><a href="/wiki/Cubic_crystal_system" title="Cubic crystal system">Cubic</a> </th> <td>23</td> <td>23</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3/2\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3/2\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8860b88d493d7f92125f7dc653681ba2187d2ae8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.068ex; height:2.843ex;" alt="{\displaystyle 3/2\ }"></span></td> <td><i>T</i></td> <td>332</td> <td>[3,3]<sup>+</sup></td> <td>12 </td></tr> <tr align="center"> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2}{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mi>m</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2}{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f30ced983c01568491f53af2982d59fbff053092" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.279ex; height:3.343ex;" alt="{\displaystyle {\tfrac {2}{m}}}"></span><span style="text-decoration:overline;">3</span></td> <td>m<span style="text-decoration:overline;">3</span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {6}}/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>6</mn> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {6}}/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b91da8d5274e27595c60f002b8f7c8c8b0749b6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:3.176ex;" alt="{\displaystyle {\tilde {6}}/2}"></span></td> <td><i>T<sub>h</sub></i></td> <td>3*2</td> <td>[3<sup>+</sup>,4]</td> <td>24 </td></tr> <tr align="center"> <td>432</td> <td>432</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3/4\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3/4\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e77531ca3bbc7d89cff24ff3800b27b3d2f52ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.068ex; height:2.843ex;" alt="{\displaystyle 3/4\ }"></span></td> <td><i>O</i></td> <td>432</td> <td>[4,3]<sup>+</sup></td> <td>24 </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">4</span>3m</td> <td><span style="text-decoration:overline;">4</span>3m</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3/{\tilde {4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>4</mn> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3/{\tilde {4}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b595534794430094a973b8428ced7a09fc456f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:3.176ex;" alt="{\displaystyle 3/{\tilde {4}}}"></span></td> <td><i>T<sub>d</sub></i></td> <td>*332</td> <td>[3,3]</td> <td>24 </td></tr> <tr align="center"> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {4}{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>4</mn> <mi>m</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {4}{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3c594b208ea7ba95f8d6eece9dd9a81f476811c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.279ex; height:3.343ex;" alt="{\displaystyle {\tfrac {4}{m}}}"></span><span style="text-decoration:overline;">3</span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2}{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mi>m</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2}{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f30ced983c01568491f53af2982d59fbff053092" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.279ex; height:3.343ex;" alt="{\displaystyle {\tfrac {2}{m}}}"></span></td> <td>m<span style="text-decoration:overline;">3</span>m</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {6}}/4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>6</mn> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {6}}/4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2877a9393558921f3a4e2500f124579fafc6fdbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:3.176ex;" alt="{\displaystyle {\tilde {6}}/4}"></span></td> <td><i>O<sub>h</sub></i></td> <td>*432</td> <td>[4,3]</td> <td>48 </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Isomorphisms">Isomorphisms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Crystallographic_point_group&action=edit&section=5" title="Edit section: Isomorphisms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Crystal_structure#Crystal_systems" title="Crystal structure">Crystal structure § Crystal systems</a></div> <p>Many of the crystallographic point groups share the same internal structure. For example, the point groups <span style="text-decoration:overline;">1</span>, 2, and m contain different geometric symmetry operations, (inversion, rotation, and reflection, respectively) but all share the structure of the <a href="/wiki/Cyclic_group" title="Cyclic group">cyclic group</a> C<sub>2</sub>. All <a href="/wiki/Group_isomorphism" title="Group isomorphism">isomorphic</a> groups are of the same <a href="/wiki/Order_(group_theory)" title="Order (group theory)">order</a>, but not all groups of the same order are isomorphic. The point groups which are isomorphic are shown in the following table:<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <table class="wikitable"> <tbody><tr> <th><a href="/wiki/Hermann-Mauguin_notation" class="mw-redirect" title="Hermann-Mauguin notation">Hermann-Mauguin</a> </th> <th><a href="/wiki/Schoenflies_notation" title="Schoenflies notation">Schoenflies</a> </th> <th><a href="/wiki/Order_(group_theory)" title="Order (group theory)">Order</a> </th> <th colspan="2"><a href="/wiki/List_of_small_groups" title="List of small groups">Abstract group</a> </th></tr> <tr align="center"> <td>1</td> <td><i>C<sub>1</sub></i></td> <td>1</td> <td><a href="/wiki/Trivial_group" title="Trivial group">C<sub>1</sub></a></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{1}^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{1}^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d25e00207b473def7c961593ce3cd98dd80a49c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{1}^{1}}"></span> </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">1</span></td> <td><i>C<sub>i</sub> = S<sub>2</sub></i></td> <td>2</td> <td rowspan="3"><a href="/wiki/Cyclic_group" title="Cyclic group">C<sub>2</sub></a></td> <td rowspan="3"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{2}^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{2}^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1174a2e4bde969cc5660ac37e7cf2d449f34c799" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{2}^{1}}"></span> </td></tr> <tr align="center"> <td>2</td> <td><i>C<sub>2</sub></i></td> <td>2 </td></tr> <tr align="center"> <td>m</td> <td><i>C<sub>s</sub> = C<sub>1h</sub></i></td> <td>2 </td></tr> <tr align="center"> <td>3</td> <td><i>C<sub>3</sub></i></td> <td>3</td> <td><a href="/wiki/Cyclic_group" title="Cyclic group">C<sub>3</sub></a></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{3}^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{3}^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db7dc3dc80ca387d2b2f77d680491e28635fda9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{3}^{1}}"></span> </td></tr> <tr align="center"> <td>4</td> <td><i>C<sub>4</sub></i></td> <td>4</td> <td rowspan="2"><a href="/wiki/Cyclic_group" title="Cyclic group">C<sub>4</sub></a></td> <td rowspan="2"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{4}^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{4}^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84e4372d852751c4b2b539bac2478e5989bb895f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{4}^{1}}"></span> </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">4</span></td> <td><i>S<sub>4</sub></i></td> <td>4 </td></tr> <tr align="center"> <td>2/m</td> <td> <i>C<sub>2h</sub></i></td> <td>4</td> <td rowspan="3"><a href="/wiki/Klein_four-group" title="Klein four-group">D<sub>2</sub></a> = C<sub>2</sub> × C<sub>2</sub></td> <td rowspan="3"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{4}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{4}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64b5a38e50035b536bdab5baaf96bf595aa0ca44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{4}^{2}}"></span> </td></tr> <tr align="center"> <td> 222</td> <td><i>D<sub>2</sub> = V</i></td> <td>4 </td></tr> <tr align="center"> <td>mm2</td> <td><i>C<sub>2v</sub></i></td> <td> 4 </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">3</span></td> <td><i>C<sub>3i</sub> = S<sub>6</sub></i></td> <td>6</td> <td rowspan="3"><a href="/wiki/Cyclic_group" title="Cyclic group">C<sub>6</sub></a></td> <td rowspan="3"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{6}^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{6}^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e1c517ac3c9f730675e711487dca38f6fd5df30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{6}^{1}}"></span> </td></tr> <tr align="center"> <td>6</td> <td><i>C<sub>6</sub></i></td> <td>6 </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">6</span></td> <td><i>C<sub>3h</sub></i></td> <td>6 </td></tr> <tr align="center"> <td>32</td> <td><i>D<sub>3</sub></i></td> <td>6</td> <td rowspan="2"><a href="/wiki/Dihedral_group_of_order_6" title="Dihedral group of order 6">D<sub>3</sub></a></td> <td rowspan="2"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{6}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{6}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97b6123d14a431a3408d288a8ab33091bbb88be6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{6}^{2}}"></span> </td></tr> <tr align="center"> <td>3m</td> <td><i>C<sub>3v</sub></i></td> <td>6 </td></tr> <tr align="center"> <td>mmm</td> <td><i>D<sub>2h</sub></i> = <i>V<sub>h</sub></i></td> <td>8</td> <td>D<sub>2</sub> × C<sub>2</sub></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{8}^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{8}^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/308c156140d85eda4c42eab954996bb4a09670aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{8}^{3}}"></span> </td></tr> <tr align="center"> <td> 4/m</td> <td><i>C<sub>4h</sub></i></td> <td>8</td> <td>C<sub>4</sub> × C<sub>2</sub></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{8}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{8}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ada708821539b862c5b8ba0ca3cff6fa41dfee6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{8}^{2}}"></span> </td></tr> <tr align="center"> <td>422</td> <td><i>D<sub>4</sub></i></td> <td>8</td> <td rowspan="3"><a href="/wiki/Dihedral_group_of_order_8" class="mw-redirect" title="Dihedral group of order 8">D<sub>4</sub></a></td> <td rowspan="3"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{8}^{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{8}^{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0fc94ae5b040781d41290e6d336c6c184456947" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{8}^{4}}"></span> </td></tr> <tr align="center"> <td>4mm</td> <td><i>C<sub>4v</sub></i></td> <td>8 </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">4</span>2m</td> <td><i>D<sub>2d</sub></i> = <i>V<sub>d</sub></i></td> <td>8 </td></tr> <tr align="center"> <td>6/m</td> <td><i>C<sub>6h</sub></i></td> <td>12</td> <td>C<sub>6</sub> × C<sub>2</sub></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{12}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{12}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8079425dfa62db8c1807dd37d2e9f0ca33b50832" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.703ex; height:3.176ex;" alt="{\displaystyle G_{12}^{2}}"></span> </td></tr> <tr align="center"> <td>23</td> <td><i>T</i></td> <td>12</td> <td><a href="/wiki/Alternating_group" title="Alternating group">A<sub>4</sub></a></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{12}^{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{12}^{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f72de8565765aa433e8b9545a2568320c557c1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.703ex; height:3.176ex;" alt="{\displaystyle G_{12}^{5}}"></span> </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">3</span>m</td> <td><i>D<sub>3d</sub></i></td> <td>12</td> <td rowspan="4"><a href="/wiki/Dihedral_group" title="Dihedral group">D<sub>6</sub></a></td> <td rowspan="4"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{12}^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{12}^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1ca0f72df0a61c70ca8cd7397c627104a690b51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.703ex; height:3.176ex;" alt="{\displaystyle G_{12}^{3}}"></span> </td></tr> <tr align="center"> <td>622</td> <td><i>D<sub>6</sub></i></td> <td>12 </td></tr> <tr align="center"> <td>6mm</td> <td><i>C<sub>6v</sub></i></td> <td>12 </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">6</span>m2</td> <td><i>D<sub>3h</sub></i></td> <td>12 </td></tr> <tr align="center"> <td>4/mmm</td> <td><i>D<sub>4h</sub></i></td> <td>16</td> <td>D<sub>4</sub> × C<sub>2</sub></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{16}^{9}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>16</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{16}^{9}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e488c8251fb28ce7cc1cbb2aad22e312dcb7b4af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.703ex; height:3.176ex;" alt="{\displaystyle G_{16}^{9}}"></span> </td></tr> <tr align="center"> <td>6/mmm</td> <td><i>D<sub>6h</sub></i></td> <td>24</td> <td>D<sub>6</sub> × C<sub>2</sub></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{24}^{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>24</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{24}^{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3f2d88a193181d4507b9e444282e377c8423046" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.703ex; height:3.176ex;" alt="{\displaystyle G_{24}^{5}}"></span> </td></tr> <tr align="center"> <td>m<span style="text-decoration:overline;">3</span></td> <td><i>T<sub>h</sub></i></td> <td>24</td> <td>A<sub>4</sub> × C<sub>2</sub></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{24}^{10}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>24</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{24}^{10}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b87c5da95e094a54481b431de7a060a671010453" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.703ex; height:3.176ex;" alt="{\displaystyle G_{24}^{10}}"></span> </td></tr> <tr align="center"> <td>432</td> <td><i>O</i>  </td> <td>24</td> <td rowspan="2"><a href="/wiki/Symmetric_group" title="Symmetric group">S<sub>4</sub></a></td> <td rowspan="2"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{24}^{7}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>24</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{24}^{7}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/deda8b880ce0e1f24bcdfa9186169e117859585d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.703ex; height:3.176ex;" alt="{\displaystyle G_{24}^{7}}"></span> </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">4</span>3m</td> <td><i>T<sub>d</sub></i></td> <td>24 </td></tr> <tr align="center"> <td>m<span style="text-decoration:overline;">3</span>m</td> <td><i>O<sub>h</sub></i></td> <td>48</td> <td>S<sub>4</sub> × C<sub>2</sub></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{48}^{7}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>48</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{48}^{7}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db2001552d2fb44e9c1dc1e71e46328ebf37028c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.703ex; height:3.176ex;" alt="{\displaystyle G_{48}^{7}}"></span> </td></tr></tbody></table> <p>This table makes use of <a href="/wiki/Cyclic_group" title="Cyclic group">cyclic groups</a> (C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub>, C<sub>4</sub>, C<sub>6</sub>), <a href="/wiki/Dihedral_group" title="Dihedral group">dihedral groups</a> (D<sub>2</sub>, D<sub>3</sub>, D<sub>4</sub>, D<sub>6</sub>), one of the <a href="/wiki/Alternating_group" title="Alternating group">alternating groups</a> (A<sub>4</sub>), and one of the <a href="/wiki/Symmetric_group" title="Symmetric group">symmetric groups</a> (S<sub>4</sub>). Here the symbol " × " indicates a <a href="/wiki/Direct_product_of_groups" title="Direct product of groups">direct product</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Deriving_the_crystallographic_point_group_(crystal_class)_from_the_space_group"><span id="Deriving_the_crystallographic_point_group_.28crystal_class.29_from_the_space_group"></span>Deriving the crystallographic point group (crystal class) from the space group</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Crystallographic_point_group&action=edit&section=6" title="Edit section: Deriving the crystallographic point group (crystal class) from the space group"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ol><li>Leave out the <a href="/wiki/Bravais_lattice" title="Bravais lattice">Bravais lattice</a> type.</li> <li>Convert all symmetry elements with translational components into their respective symmetry elements without translation symmetry. (Glide planes are converted into simple mirror planes; screw axes are converted into simple axes of rotation.)</li> <li>Axes of rotation, <a href="/wiki/Improper_rotation" title="Improper rotation">rotoinversion</a> axes, and mirror planes remain unchanged.</li></ol> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Crystallographic_point_group&action=edit&section=7" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Molecular_symmetry" title="Molecular symmetry">Molecular symmetry</a></li> <li><a href="/wiki/Point_group" title="Point group">Point group</a></li> <li><a href="/wiki/Space_group" title="Space group">Space group</a></li> <li><a href="/wiki/Point_groups_in_three_dimensions" title="Point groups in three dimensions">Point groups in three dimensions</a></li> <li><a href="/wiki/Crystal_system" title="Crystal system">Crystal system</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Crystallographic_point_group&action=edit&section=8" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://archive.today/20130704042455/http://it.iucr.org/Ab/ch12o1v0001/sec12o1o3/">"(International Tables) Abstract"</a>. Archived from <a rel="nofollow" class="external text" href="http://it.iucr.org/Ab/ch12o1v0001/sec12o1o3/">the original</a> on 2013-07-04<span class="reference-accessdate">. Retrieved <span class="nowrap">2011-11-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=%28International+Tables%29+Abstract&rft_id=http%3A%2F%2Fit.iucr.org%2FAb%2Fch12o1v0001%2Fsec12o1o3%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACrystallographic+point+group" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNovak1995" class="citation journal cs1">Novak, I (1995-07-18). "Molecular isomorphism". <i>European Journal of Physics</i>. <b>16</b> (4). IOP Publishing: 151–153. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995EJPh...16..151N">1995EJPh...16..151N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0143-0807%2F16%2F4%2F001">10.1088/0143-0807/16/4/001</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0143-0807">0143-0807</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250887121">250887121</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=European+Journal+of+Physics&rft.atitle=Molecular+isomorphism&rft.volume=16&rft.issue=4&rft.pages=151-153&rft.date=1995-07-18&rft_id=info%3Adoi%2F10.1088%2F0143-0807%2F16%2F4%2F001&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250887121%23id-name%3DS2CID&rft.issn=0143-0807&rft_id=info%3Abibcode%2F1995EJPh...16..151N&rft.aulast=Novak&rft.aufirst=I&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACrystallographic+point+group" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Crystallographic_point_group&action=edit&section=9" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://archive.today/20130704033345/http://it.iucr.org/Ab/ch12o1v0001/">Point-group symbols in International Tables for Crystallography (2006). Vol. A, ch. 12.1, pp. 818-820</a></li> <li><a rel="nofollow" class="external text" href="https://archive.today/20130704032551/http://it.iucr.org/Ab/ch10o1v0001/table10o1o2o4/">Names and symbols of the 32 crystal classes in International Tables for Crystallography (2006). Vol. A, ch. 10.1, p. 794</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20120204104121/http://newton.ex.ac.uk/research/qsystems/people/goss/symmetry/Solids.html">Pictorial overview of the 32 groups</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Crystal_systems" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Crystal_systems" title="Template:Crystal systems"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/w/index.php?title=Template_talk:Crystal_systems&action=edit&redlink=1" class="new" title="Template talk:Crystal systems (page does not exist)"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Crystal_systems" title="Special:EditPage/Template:Crystal systems"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Crystal_systems" style="font-size:114%;margin:0 4em"><a href="/wiki/Crystal_system" title="Crystal system">Crystal systems</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/Bravais_lattice" title="Bravais lattice">Bravais lattice</a></li> <li><a class="mw-selflink selflink">Crystallographic point group</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Seven 3D systems</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Triclinic_crystal_system" title="Triclinic crystal system">triclinic</a> (anorthic) <span typeof="mw:File"><a href="/wiki/File:Triclinic.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/17/Triclinic.svg/30px-Triclinic.svg.png" decoding="async" width="30" height="35" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/17/Triclinic.svg/45px-Triclinic.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/17/Triclinic.svg/60px-Triclinic.svg.png 2x" data-file-width="129" data-file-height="149" /></a></span></li> <li><a href="/wiki/Monoclinic_crystal_system" title="Monoclinic crystal system">monoclinic</a> <span typeof="mw:File"><a href="/wiki/File:Monoclinic.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f4/Monoclinic.svg/30px-Monoclinic.svg.png" decoding="async" width="30" height="38" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f4/Monoclinic.svg/45px-Monoclinic.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f4/Monoclinic.svg/60px-Monoclinic.svg.png 2x" data-file-width="114" data-file-height="143" /></a></span></li> <li><a href="/wiki/Orthorhombic_crystal_system" title="Orthorhombic crystal system">orthorhombic</a> <span typeof="mw:File"><a href="/wiki/File:Orthorhombic.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Orthorhombic.svg/30px-Orthorhombic.svg.png" decoding="async" width="30" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Orthorhombic.svg/45px-Orthorhombic.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Orthorhombic.svg/60px-Orthorhombic.svg.png 2x" data-file-width="108" data-file-height="142" /></a></span></li> <li><a href="/wiki/Tetragonal_crystal_system" title="Tetragonal crystal system">tetragonal</a> <span typeof="mw:File"><a href="/wiki/File:Tetragonal.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Tetragonal.svg/30px-Tetragonal.svg.png" decoding="async" width="30" height="46" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Tetragonal.svg/45px-Tetragonal.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Tetragonal.svg/60px-Tetragonal.svg.png 2x" data-file-width="108" data-file-height="165" /></a></span></li> <li><a href="/wiki/Hexagonal_crystal_family" title="Hexagonal crystal family">trigonal & hexagonal</a> <span typeof="mw:File"><a href="/wiki/File:Rhombohedral.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/03/Rhombohedral.svg/30px-Rhombohedral.svg.png" decoding="async" width="30" height="30" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/03/Rhombohedral.svg/45px-Rhombohedral.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/03/Rhombohedral.svg/60px-Rhombohedral.svg.png 2x" data-file-width="139" data-file-height="141" /></a></span><span typeof="mw:File"><a href="/wiki/File:Hexagonal_lattice.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Hexagonal_lattice.svg/30px-Hexagonal_lattice.svg.png" decoding="async" width="30" height="35" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Hexagonal_lattice.svg/45px-Hexagonal_lattice.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Hexagonal_lattice.svg/60px-Hexagonal_lattice.svg.png 2x" data-file-width="160" data-file-height="186" /></a></span></li> <li><a href="/wiki/Cubic_crystal_system" title="Cubic crystal system">cubic</a> (isometric) <span typeof="mw:File"><a href="/wiki/File:Cubic.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Cubic.svg/30px-Cubic.svg.png" decoding="async" width="30" height="35" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Cubic.svg/45px-Cubic.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/55/Cubic.svg/60px-Cubic.svg.png 2x" data-file-width="109" data-file-height="127" /></a></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Four 2D systems</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Oblique_lattice" title="Oblique lattice">oblique</a> <span typeof="mw:File"><a href="/wiki/File:2d_mp.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/2d_mp.svg/30px-2d_mp.svg.png" decoding="async" width="30" height="36" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/2d_mp.svg/45px-2d_mp.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c2/2d_mp.svg/60px-2d_mp.svg.png 2x" data-file-width="140" data-file-height="170" /></a></span></li> <li><a href="/wiki/Rectangular_lattice" title="Rectangular lattice">rectangular</a> <span typeof="mw:File"><a href="/wiki/File:2d_op_rectangular.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/2d_op_rectangular.svg/30px-2d_op_rectangular.svg.png" decoding="async" width="30" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/2d_op_rectangular.svg/45px-2d_op_rectangular.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ee/2d_op_rectangular.svg/60px-2d_op_rectangular.svg.png 2x" data-file-width="210" data-file-height="170" /></a></span></li> <li><a href="/wiki/Square_lattice" title="Square lattice">square</a> <span typeof="mw:File"><a href="/wiki/File:2d_tp.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f7/2d_tp.svg/30px-2d_tp.svg.png" decoding="async" width="30" height="30" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f7/2d_tp.svg/45px-2d_tp.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f7/2d_tp.svg/60px-2d_tp.svg.png 2x" data-file-width="170" data-file-height="170" /></a></span></li> <li><a href="/wiki/Hexagonal_lattice" title="Hexagonal lattice">hexagonal</a> <span typeof="mw:File"><a href="/wiki/File:2d_hp.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/2d_hp.svg/30px-2d_hp.svg.png" decoding="async" width="30" height="29" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/2d_hp.svg/45px-2d_hp.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0a/2d_hp.svg/60px-2d_hp.svg.png 2x" data-file-width="290" data-file-height="280" /></a></span></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐wfqfk Cached time: 20241122141359 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.590 seconds Real time usage: 0.809 seconds Preprocessor visited node count: 1237/1000000 Post‐expand include size: 14829/2097152 bytes Template argument size: 463/2097152 bytes Highest expansion depth: 8/100 Expensive parser function count: 5/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 19262/5000000 bytes Lua time usage: 0.335/10.000 seconds Lua memory usage: 3528090/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 526.376 1 -total 28.70% 151.064 1 Template:Cite_web 28.49% 149.961 1 Template:Crystal_systems 27.59% 145.232 1 Template:Navbox 27.44% 144.448 1 Template:Short_description 12.46% 65.595 2 Template:Pagetype 11.77% 61.945 2 Template:Main_other 11.16% 58.730 1 Template:SDcat 6.15% 32.355 2 Template:Main 2.41% 12.671 1 Template:Cite_journal --> <!-- Saved in parser cache with key enwiki:pcache:idhash:663786-0!canonical and timestamp 20241122141359 and revision id 1222777822. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Crystallographic_point_group&oldid=1222777822">https://en.wikipedia.org/w/index.php?title=Crystallographic_point_group&oldid=1222777822</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Symmetry" title="Category:Symmetry">Symmetry</a></li><li><a href="/wiki/Category:Crystallography" title="Category:Crystallography">Crystallography</a></li><li><a href="/wiki/Category:Discrete_groups" title="Category:Discrete groups">Discrete groups</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 7 May 2024, at 21:10<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Crystallographic_point_group&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-h9gxb","wgBackendResponseTime":149,"wgPageParseReport":{"limitreport":{"cputime":"0.590","walltime":"0.809","ppvisitednodes":{"value":1237,"limit":1000000},"postexpandincludesize":{"value":14829,"limit":2097152},"templateargumentsize":{"value":463,"limit":2097152},"expansiondepth":{"value":8,"limit":100},"expensivefunctioncount":{"value":5,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":19262,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 526.376 1 -total"," 28.70% 151.064 1 Template:Cite_web"," 28.49% 149.961 1 Template:Crystal_systems"," 27.59% 145.232 1 Template:Navbox"," 27.44% 144.448 1 Template:Short_description"," 12.46% 65.595 2 Template:Pagetype"," 11.77% 61.945 2 Template:Main_other"," 11.16% 58.730 1 Template:SDcat"," 6.15% 32.355 2 Template:Main"," 2.41% 12.671 1 Template:Cite_journal"]},"scribunto":{"limitreport-timeusage":{"value":"0.335","limit":"10.000"},"limitreport-memusage":{"value":3528090,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-wfqfk","timestamp":"20241122141359","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Crystallographic point group","url":"https:\/\/en.wikipedia.org\/wiki\/Crystallographic_point_group","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1066315","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1066315","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-05-18T20:34:56Z","dateModified":"2024-05-07T21:10:16Z","headline":"classification system for crystals"}</script> </body> </html>