CINXE.COM

Search results for: Finite Element

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Finite Element</title> <meta name="description" content="Search results for: Finite Element"> <meta name="keywords" content="Finite Element"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Finite Element" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Finite Element"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3807</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Finite Element</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3807</span> The Finite Element Method for Nonlinear Fredholm Integral Equation of the Second Kind</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melusi%20Khumalo">Melusi Khumalo</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastacia%20Dlamini"> Anastacia Dlamini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider a numerical solution for nonlinear Fredholm integral equations of the second kind. We work with uniform mesh and use the Lagrange polynomials together with the Galerkin finite element method, where the weight function is chosen in such a way that it takes the form of the approximate solution but with arbitrary coefficients. We implement the finite element method to the nonlinear Fredholm integral equations of the second kind. We consider the error analysis of the method. Furthermore, we look at a specific example to illustrate the implementation of the finite element method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20approach" title=" Galerkin approach"> Galerkin approach</a>, <a href="https://publications.waset.org/abstracts/search?q=Fredholm%20integral%20equations" title=" Fredholm integral equations"> Fredholm integral equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20integral%20equations" title=" nonlinear integral equations"> nonlinear integral equations</a> </p> <a href="https://publications.waset.org/abstracts/140832/the-finite-element-method-for-nonlinear-fredholm-integral-equation-of-the-second-kind" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3806</span> Modeling Thin Shell Structures by a New Flat Shell Finite Element</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djamal%20Hamadi">Djamal Hamadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Ayoub"> Ashraf Ayoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Ounis%20Abdelhafid"> Ounis Abdelhafid</a>, <a href="https://publications.waset.org/abstracts/search?q=Chebili%20Rachid"> Chebili Rachid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new computationally-efficient rectangular flat shell finite element named 'ACM_RSBEC' is presented. The formulated element is obtained by superposition of a new rectangular membrane element 'RSBEC' based on the strain approach and the well known plate bending element 'ACM'. This element can be used for the analysis of thin shell structures, no matter how the geometrical shape might be. Tests on standard problems have been examined. The convergence of the new formulated element is also compared to other types of quadrilateral shell elements. The presented shell element ‘ACM_RSBEC’ has been demonstrated to be effective and useful in analysing thin shell structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20shell%20element" title=" flat shell element"> flat shell element</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20based%20approach" title=" strain based approach"> strain based approach</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20condensation" title=" static condensation"> static condensation</a> </p> <a href="https://publications.waset.org/abstracts/3307/modeling-thin-shell-structures-by-a-new-flat-shell-finite-element" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3805</span> Computation of Stress Intensity Factor Using Extended Finite Element Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoudi%20Noureddine">Mahmoudi Noureddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouregba%20Rachid"> Bouregba Rachid </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the stress intensity factors of a slant-cracked plate of AISI 304 stainless steel, have been calculated using extended finite element method and finite element method (FEM) in ABAQUS software, the results were compared with theoretical values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factors" title="stress intensity factors">stress intensity factors</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20finite%20element%20method" title=" extended finite element method"> extended finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=abaqus" title=" abaqus"> abaqus</a> </p> <a href="https://publications.waset.org/abstracts/22230/computation-of-stress-intensity-factor-using-extended-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">618</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3804</span> Finite Element Method as a Solution Procedure for Problems in Tissue Biomechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Momoh%20Omeiza%20Sheidu">Momoh Omeiza Sheidu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finite element method as a method of providing solutions to problems in computational bio mechanics provides a framework for modeling the function of tissues that integrates structurally from cell to organ system and functionally across the physiological processes that affect tissue mechanics or are regulated by mechanical forces. In this paper, we present an integrative finite element strategy for solution to problems in tissue bio mechanics as a case study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=biomechanics" title=" biomechanics"> biomechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20biomechanics" title=" computational biomechanics"> computational biomechanics</a> </p> <a href="https://publications.waset.org/abstracts/19233/finite-element-method-as-a-solution-procedure-for-problems-in-tissue-biomechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3803</span> Relevancy Measures of Errors in Displacements of Finite Elements Analysis Results</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Bolkhir">A. B. Bolkhir</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Elshafie"> A. Elshafie</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20K.%20Yousif"> T. K. Yousif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper highlights the methods of error estimation in finite element analysis (FEA) results. It indicates that the modeling error could be eliminated by performing finite element analysis with successively finer meshes or by extrapolating response predictions from an orderly sequence of relatively low degree of freedom analysis results. In addition, the paper eliminates the round-off error by running the code at a higher precision. The paper provides application in finite element analysis results. It draws a conclusion based on results of application of methods of error estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis%20%28FEA%29" title="finite element analysis (FEA)">finite element analysis (FEA)</a>, <a href="https://publications.waset.org/abstracts/search?q=discretization%20error" title=" discretization error"> discretization error</a>, <a href="https://publications.waset.org/abstracts/search?q=round-off%20error" title=" round-off error"> round-off error</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20refinement" title=" mesh refinement"> mesh refinement</a>, <a href="https://publications.waset.org/abstracts/search?q=richardson%20extrapolation" title=" richardson extrapolation"> richardson extrapolation</a>, <a href="https://publications.waset.org/abstracts/search?q=monotonic%20convergence" title=" monotonic convergence"> monotonic convergence</a> </p> <a href="https://publications.waset.org/abstracts/37639/relevancy-measures-of-errors-in-displacements-of-finite-elements-analysis-results" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3802</span> Finite Element Analysis of RC Frames with Retrofitted Infill Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20%C3%96mer%20Timura%C4%9Fao%C4%9Flu">M. Ömer Timurağaoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Adem%20Do%C4%9Fang%C3%BCn"> Adem Doğangün</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramazan%20Livao%C4%9Flu"> Ramazan Livaoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evaluation of performance of infilled reinforced concrete (RC) frames has been a significant challenge for engineers. The strengthening of infill walls has been an important concern to enhance the behavior of RC infilled frames. The aim of this study is to investigate the behaviour of retrofitted infill walls of RC frames using finite element analysis. For this purpose, a one storey, one bay infilled and strengthened infilled RC frame which have the same geometry and material properties with the frames tested in laboratory are modelled using different analytical approaches. A fibrous material is used to strengthen infill walls and frame. As a consequence, the results of the finite element analysis were evaluated of whether these analytical approaches estimate the behavior or not. To model the infilled and strengthened infilled RC frames, a finite element program ABAQUS is used. Finally, data obtained from the nonlinear finite element analysis is compared with the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title="finite element analysis">finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=infilled%20RC%20frames" title=" infilled RC frames"> infilled RC frames</a>, <a href="https://publications.waset.org/abstracts/search?q=infill%20wall" title=" infill wall"> infill wall</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/9584/finite-element-analysis-of-rc-frames-with-retrofitted-infill-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3801</span> A Study on Finite Element Modelling of Earth Retaining Wall Anchored by Deadman Anchor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Chai">K. S. Chai</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Chan"> S. H. Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the earth retaining wall anchored by discrete deadman anchor to support excavations in sand is modelled and analysed by finite element analysis. A study is conducted to examine how deadman anchorage system helps in reducing the deflection of earth retaining wall. A simplified numerical model is suggested in order to reduce the simulation duration. A comparison between 3-D and 2-D finite element analyses is illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=earth%20retaining%20wall" title=" earth retaining wall"> earth retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=deadman%20anchor" title=" deadman anchor"> deadman anchor</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a> </p> <a href="https://publications.waset.org/abstracts/8554/a-study-on-finite-element-modelling-of-earth-retaining-wall-anchored-by-deadman-anchor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3800</span> A Finite Element Method Simulation for Rocket Motor Material Selection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Kritsana">T. Kritsana</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sawitri"> P. Sawitri</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Teeratas"> P. Teeratas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article aims to study the effect of pressure on rocket motor case by Finite Element Method simulation to select optimal material in rocket motor manufacturing process. In this study, cylindrical tubes with outside diameter of 122 mm and thickness of 3 mm are used for simulation. Defined rocket motor case materials are AISI4130, AISI1026, AISI1045, AL2024 and AL7075. Internal pressure used for the simulation is 22 MPa. The result from Finite Element Method shows that at a pressure of 22 MPa rocket motor case produced by AISI4130, AISI1045 and AL7075 can be used. A comparison of the result between AISI4130, AISI1045 and AL7075 shows that AISI4130 has minimum principal stress and confirm the results of Finite Element Method by the used of calculation method found that, the results from Finite Element Method has good reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rocket%20motor%20case" title="rocket motor case">rocket motor case</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20stress" title=" principal stress"> principal stress</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/12993/a-finite-element-method-simulation-for-rocket-motor-material-selection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3799</span> Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%BD.%20Nikoli%C4%87">Ž. Nikolić</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Smoljanovi%C4%87"> H. Smoljanović</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20%C5%BDivalji%C4%87"> N. Živaljić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents numerical model based on finite-discrete element method for analysis of the structural response of dry stone masonry structures under static and dynamic loads. More precisely, each discrete stone block is discretized by finite elements. Material non-linearity including fracture and fragmentation of discrete elements as well as cyclic behavior during dynamic load are considered through contact elements which are implemented within a finite element mesh. The application of the model was conducted on several examples of these structures. The performed analysis shows high accuracy of the numerical results in comparison with the experimental ones and demonstrates the potential of the finite-discrete element method for modelling of the response of dry stone masonry structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dry%20stone%20masonry%20structures" title="dry stone masonry structures">dry stone masonry structures</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20load" title=" dynamic load"> dynamic load</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-discrete%20element%20method" title=" finite-discrete element method"> finite-discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20load" title=" static load"> static load</a> </p> <a href="https://publications.waset.org/abstracts/47740/numerical-modelling-of-dry-stone-masonry-structures-based-on-finite-discrete-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3798</span> A New Computational Package for Using in CFD and Other Problems (Third Edition)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Akhavan%20Khaleghi">Mohammad Reza Akhavan Khaleghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper shows changes done to the Reduced Finite Element Method (RFEM) that its result will be the most powerful numerical method that has been proposed so far (some forms of this method are so powerful that they can approximate the most complex equations simply Laplace equation!). Finite Element Method (FEM) is a powerful numerical method that has been used successfully for the solution of the existing problems in various scientific and engineering fields such as its application in CFD. Many algorithms have been expressed based on FEM, but none have been used in popular CFD software. In this section, full monopoly is according to Finite Volume Method (FVM) due to better efficiency and adaptability with the physics of problems in comparison with FEM. It doesn't seem that FEM could compete with FVM unless it was fundamentally changed. This paper shows those changes and its result will be a powerful method that has much better performance in all subjects in comparison with FVM and another computational method. This method is not to compete with the finite volume method but to replace it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reduced%20finite%20element%20method" title="reduced finite element method">reduced finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20computational%20package" title=" new computational package"> new computational package</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20finite%20element%20formulation" title=" new finite element formulation"> new finite element formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20higher-order%20form" title=" new higher-order form"> new higher-order form</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20isogeometric%20analysis" title=" new isogeometric analysis"> new isogeometric analysis</a> </p> <a href="https://publications.waset.org/abstracts/169466/a-new-computational-package-for-using-in-cfd-and-other-problems-third-edition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3797</span> 3D Finite Element Analysis of Yoke Hybrid Electromagnet </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Fatih%20Ertu%C4%9Frul">Hasan Fatih Ertuğrul</a>, <a href="https://publications.waset.org/abstracts/search?q=Beytullah%20Okur"> Beytullah Okur</a>, <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20%C3%9Cvet"> Huseyin Üvet</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20Erkan"> Kadir Erkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to analyze a 4-pole hybrid magnetic levitation system by using 3D finite element and analytical methods. The magnetostatic analysis of the system is carried out by using ANSYS MAXWELL-3D package. An analytical model is derived by magnetic equivalent circuit (MEC) method. The purpose of magnetostatic analysis is to determine the characteristics of attractive force and rotational torques by the change of air gap clearances, inclination angles and current excitations. The comparison between 3D finite element analysis and analytical results are presented at the rest of the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=yoke%20hybrid%20electromagnet" title="yoke hybrid electromagnet">yoke hybrid electromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20finite%20element%20analysis" title=" 3D finite element analysis"> 3D finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20levitation%20system" title=" magnetic levitation system"> magnetic levitation system</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetostatic%20analysis" title=" magnetostatic analysis"> magnetostatic analysis</a> </p> <a href="https://publications.waset.org/abstracts/11364/3d-finite-element-analysis-of-yoke-hybrid-electromagnet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">727</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3796</span> Forced Vibration of a Planar Curved Beam on Pasternak Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akif%20Kutlu">Akif Kutlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Merve%20Ermis"> Merve Ermis</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihal%20Eratl%C4%B1"> Nihal Eratlı</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20H.%20Omurtag"> Mehmet H. Omurtag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to investigate the forced vibration analysis of a planar curved beam lying on elastic foundation by using the mixed finite element method. The finite element formulation is based on the Timoshenko beam theory. In order to solve the problems in frequency domain, the element matrices of two nodded curvilinear elements are transformed into Laplace space. The results are transformed back to the time domain by the well-known numerical Modified Durbin’s transformation algorithm. First, the presented finite element formulation is verified through the forced vibration analysis of a planar curved Timoshenko beam resting on Winkler foundation and the finite element results are compared with the results available in the literature. Then, the forced vibration analysis of a planar curved beam resting on Winkler-Pasternak foundation is conducted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20beam" title="curved beam">curved beam</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20foundation" title=" elastic foundation"> elastic foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/73716/forced-vibration-of-a-planar-curved-beam-on-pasternak-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3795</span> Crack Width Analysis of Reinforced Concrete Members under Shrinkage Effect by Pseudo-Discrete Crack Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20J.%20Ma">F. J. Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20H.%20Kwan"> A. K. H. Kwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crack caused by shrinkage movement of concrete is a serious problem especially when restraint is provided. It may cause severe serviceability and durability problems. The existing prediction methods for crack width of concrete due to shrinkage movement are mainly numerical methods under simplified circumstances, which do not agree with each other. To get a more unified prediction method applicable to more sophisticated circumstances, finite element crack width analysis for shrinkage effect should be developed. However, no existing finite element analysis can be carried out to predict the crack width of concrete due to shrinkage movement because of unsolved reasons of conventional finite element analysis. In this paper, crack width analysis implemented by finite element analysis is presented with pseudo-discrete crack model, which combines traditional smeared crack model and newly proposed crack queuing algorithm. The proposed pseudo-discrete crack model is capable of simulating separate and single crack without adopting discrete crack element. And the improved finite element analysis can successfully simulate the stress redistribution when concrete is cracked, which is crucial for predicting crack width, crack spacing and crack number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack%20queuing%20algorithm" title="crack queuing algorithm">crack queuing algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width%20analysis" title=" crack width analysis"> crack width analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage%20effect" title=" shrinkage effect"> shrinkage effect</a> </p> <a href="https://publications.waset.org/abstracts/50507/crack-width-analysis-of-reinforced-concrete-members-under-shrinkage-effect-by-pseudo-discrete-crack-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3794</span> Comparison of Finite-Element and IEC Methods for Cable Thermal Analysis under Various Operating Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Baazzim">M. S. Baazzim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Al-Saud"> M. S. Al-Saud</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20El-Kady"> M. A. El-Kady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, steady-state ampacity (current carrying capacity) evaluation of underground power cable system by using analytical and numerical methods for different conditions (depth of cable, spacing between phases, soil thermal resistivity, ambient temperature, wind speed), for two system voltage level were used 132 and 380 kV. The analytical method or traditional method that was used is based on the thermal analysis method developed by Neher-McGrath and further enhanced by International Electrotechnical Commission (IEC) and published in standard IEC 60287. The numerical method that was used is finite element method and it was recourse commercial software based on finite element method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cable%20ampacity" title="cable ampacity">cable ampacity</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20cable" title=" underground cable"> underground cable</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20rating" title=" thermal rating"> thermal rating</a> </p> <a href="https://publications.waset.org/abstracts/6273/comparison-of-finite-element-and-iec-methods-for-cable-thermal-analysis-under-various-operating-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3793</span> A 3D Eight Nodes Brick Finite Element Based on the Strain Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Belounar">L. Belounar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Gerraiche"> K. Gerraiche</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Rebiai"> C. Rebiai</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Benmebarek"> S. Benmebarek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of a new three dimensional brick finite element by the use of the strain based approach for the linear analysis of plate bending behavior. The developed element has the three essential external degrees of freedom (U, V and W) at each of the eight corner nodes. The displacements field of the developed element is based on assumed functions for the various strains satisfying the compatibility and the equilibrium equations. The performance of this element is evaluated on several problems related to thick and thin plate bending in linear analysis. The obtained results show the good performances and accuracy of the present element. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brick%20element" title="brick element">brick element</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20approach" title=" strain approach"> strain approach</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20bending" title=" plate bending"> plate bending</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering" title=" civil engineering "> civil engineering </a> </p> <a href="https://publications.waset.org/abstracts/18774/a-3d-eight-nodes-brick-finite-element-based-on-the-strain-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3792</span> Finite Element Analysis of Rom Silo Subjected to 5000 Tons Monotic Loads at an Anonymous Mine in Zimbabwe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Mushiri">T. Mushiri</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Tengende"> K. Tengende</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Mbohwa"> C. Mbohwa</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Garikayi"> T. Garikayi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces finite element analysis of Run off Mine (ROM) silo subjected to dynamic loading. The proposed procedure is based on the use of theoretical equations to come up with pressure and forces exerted by Platinum Group Metals (PGMs) ore to the silo wall. Finite Element Analysis of the silo involves the use of CAD software (AutoCAD) for3D creation and CAE software (T-FLEX) for the simulation work with an optimization routine to minimize the mass and also ensure structural stiffness and stability. In this research an efficient way to design and analysis of a silo in 3D T-FLEX (CAD) program was created the silo to stay within the constrains and so as to know the points of failure due dynamic loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20silo" title="reinforced concrete silo">reinforced concrete silo</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=T-FLEX%20software" title=" T-FLEX software"> T-FLEX software</a>, <a href="https://publications.waset.org/abstracts/search?q=AutoCAD" title=" AutoCAD"> AutoCAD</a> </p> <a href="https://publications.waset.org/abstracts/12797/finite-element-analysis-of-rom-silo-subjected-to-5000-tons-monotic-loads-at-an-anonymous-mine-in-zimbabwe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3791</span> Wave Interaction with Defects in Pressurized Composite Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Apalowo">R. K. Apalowo</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Chronopoulos"> D. Chronopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Thierry"> V. Thierry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A wave finite element (WFE) and finite element (FE) based computational method is presented by which the dispersion properties as well as the wave interaction coefficients for one-dimensional structural system can be predicted. The structural system is discretized as a system comprising a number of waveguides connected by a coupling joint. Uniform nodes are ensured at the interfaces of the coupling element with each waveguide. Then, equilibrium and continuity conditions are enforced at the interfaces. Wave propagation properties of each waveguide are calculated using the WFE method and the coupling element is modelled using the FE method. The scattering of waves through the coupling element, on which damage is modelled, is determined by coupling the FE and WFE models. Furthermore, the central aim is to evaluate the effect of pressurization on the wave dispersion and scattering characteristics of the prestressed structural system compared to that which is not prestressed. Numerical case studies are exhibited for two waveguides coupled through a coupling joint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element" title="Finite Element">Finite Element</a>, <a href="https://publications.waset.org/abstracts/search?q=Prestressed%20Structures" title=" Prestressed Structures"> Prestressed Structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Wave%20Finite%20Element" title="Wave Finite Element">Wave Finite Element</a>, <a href="https://publications.waset.org/abstracts/search?q=Wave%20Propagation%20Properties" title=" Wave Propagation Properties"> Wave Propagation Properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Wave%20Scattering%20Coefficients." title=" Wave Scattering Coefficients."> Wave Scattering Coefficients.</a> </p> <a href="https://publications.waset.org/abstracts/58482/wave-interaction-with-defects-in-pressurized-composite-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3790</span> Finite Element Method for Calculating Temperature Field of Main Cable of Suspension Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heng%20Han">Heng Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhilei%20Liang"> Zhilei Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangong%20Zhou"> Xiangong Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the finite element method is used to study the temperature field of the main cable of the suspension bridge, and the calculation method of the average temperature of the cross-section of the main cable suitable for the construction control of the cable system is proposed; By comparing and analyzing the temperature field of the main cable with five diameters, a reasonable diameter limit for calculating the average temperature of the cross section of the main cable by finite element method is proposed. The results show that the maximum error of this method is less than 1℃, which meets the requirements of construction control accuracy; For the main cable with a diameter greater than 400mm, the surface temperature measuring points combined with the finite element method shall be used to calculate the average cross-section temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=suspension%20bridge" title="suspension bridge">suspension bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=main%20cable" title=" main cable"> main cable</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20field" title=" temperature field"> temperature field</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a> </p> <a href="https://publications.waset.org/abstracts/151307/finite-element-method-for-calculating-temperature-field-of-main-cable-of-suspension-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3789</span> Analysis of Plates with Varying Rigidities Using Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karan%20Modi">Karan Modi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar"> Rajesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Katiyar"> Jyoti Katiyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Thusoo"> Shreya Thusoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents Finite Element Method (FEM) for analyzing the internal responses generated in thin rectangular plates with various edge conditions and rigidity conditions. Comparison has been made between the FEM (ANSYS software) results for displacement, stresses and moments generated with and without the consideration of hole in plate and different aspect ratios. In the end comparison for responses in plain and composite square plates has been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=plates" title=" plates"> plates</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20analysis" title=" static analysis"> static analysis</a> </p> <a href="https://publications.waset.org/abstracts/24473/analysis-of-plates-with-varying-rigidities-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3788</span> Design of a Vehicle Door Structure Based on Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tawanda%20Mushiri">Tawanda Mushiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Mbohwa"> Charles Mbohwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of door assembly is very significant for the vehicle design. In the present paper, the finite element method is used in the development processes of the door assembly. The stiffness, strength, modal characteristic, and anti-extrusion of a newly developed passenger vehicle door assembly are calculated and evaluated by several finite element analysis commercial software. The structural problems discovered by FE analysis have been modified and finally achieved the expected door structure performance target of this new vehicle. The issue in focus is to predict the performance of the door assembly by powerful finite element analysis software, and optimize the structure to meet the design targets. It is observed that this method can be used to forecast the performance of vehicle door efficiently when it’s designed. In order to reduce lead time and cost in the product development of vehicles more development will be made virtually. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehicle%20door" title="vehicle door">vehicle door</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20characteristic" title=" modal characteristic"> modal characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-extrusion" title=" anti-extrusion"> anti-extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Method" title=" Finite Element Method"> Finite Element Method</a> </p> <a href="https://publications.waset.org/abstracts/13002/design-of-a-vehicle-door-structure-based-on-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3787</span> A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Apalowo">R. K. Apalowo</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Chronopoulos"> D. Chronopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=layered%20structures" title="layered structures">layered structures</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20ultrasound" title=" nonlinear ultrasound"> nonlinear ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20interaction%20with%20nonlinear%20damage" title=" wave interaction with nonlinear damage"> wave interaction with nonlinear damage</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20finite%20element" title=" wave finite element"> wave finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element "> finite element </a> </p> <a href="https://publications.waset.org/abstracts/109616/a-fe-based-scheme-for-computing-wave-interaction-with-nonlinear-damage-and-generation-of-harmonics-in-layered-composite-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3786</span> Modeling of Complex Structures: Shear Wall with Openings and Stiffened Shells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temami%20Oussama">Temami Oussama</a>, <a href="https://publications.waset.org/abstracts/search?q=Bessais%20Lakhdar"> Bessais Lakhdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamadi%20Djamal"> Hamadi Djamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrahmani%20Sifeddine"> Abderrahmani Sifeddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The analysis of complex structures encourages the engineer to make simplifying assumptions, sometimes attempting the analysis of the whole structure as complex as it is, and it can be done using the finite element method (FEM). In the modeling of complex structures by finite elements, various elements can be used: beam element, membrane element, solid element, plates and shells elements. These elements formulated according to the classical formulation and do not generally share the same nodal degrees of freedom, which complicates the development of a compatible model. The compatibility of the elements with each other is often a difficult problem for modeling complicated structure. This compatibility is necessary to ensure the convergence. To overcome this problem, we have proposed finite elements with a rotational degree of freedom. The study used is based on the strain approach formulation with 2D and 3D formulation with different degrees of freedom at each node. For the comparison and confrontation of results; the finite elements available in ABAQUS/Standard are used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compatibility%20requirement" title="compatibility requirement">compatibility requirement</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20structures" title=" complex structures"> complex structures</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20elements" title=" finite elements"> finite elements</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20approach" title=" strain approach"> strain approach</a> </p> <a href="https://publications.waset.org/abstracts/34144/modeling-of-complex-structures-shear-wall-with-openings-and-stiffened-shells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3785</span> Reliability Estimation of Bridge Structures with Updated Finite Element Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekin%20Ozer">Ekin Ozer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assessment of structural reliability is essential for efficient use of civil infrastructure which is subjected hazardous events. Dynamic analysis of finite element models is a commonly used tool to simulate structural behavior and estimate its performance accordingly. However, theoretical models purely based on preliminary assumptions and design drawings may deviate from the actual behavior of the structure. This study proposes up-to-date reliability estimation procedures which engages actual bridge vibration data modifying finite element models for finite element model updating and performing reliability estimation, accordingly. The proposed method utilizes vibration response measurements of bridge structures to identify modal parameters, then uses these parameters to calibrate finite element models which are originally based on design drawings. The proposed method does not only show that reliability estimation based on updated models differs from the original models, but also infer that non-updated models may overestimate the structural capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20engineering" title="earthquake engineering">earthquake engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20vibrations" title=" engineering vibrations"> engineering vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20estimation" title=" reliability estimation"> reliability estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a> </p> <a href="https://publications.waset.org/abstracts/90837/reliability-estimation-of-bridge-structures-with-updated-finite-element-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3784</span> B Spline Finite Element Method for Drifted Space Fractional Tempered Diffusion Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayan%20Chakraborty">Ayan Chakraborty</a>, <a href="https://publications.waset.org/abstracts/search?q=BV.%20Rathish%20Kumar"> BV. Rathish Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Off-late many models in viscoelasticity, signal processing or anomalous diffusion equations are formulated in fractional calculus. Tempered fractional calculus is the generalization of fractional calculus and in the last few years several important partial differential equations occurring in the different field of science have been reconsidered in this term like diffusion wave equations, Schr$\ddot{o}$dinger equation and so on. In the present paper, a time-dependent tempered fractional diffusion equation of order $\gamma \in (0,1)$ with forcing function is considered. Existence, uniqueness, stability, and regularity of the solution has been proved. Crank-Nicolson discretization is used in the time direction. B spline finite element approximation is implemented. Generally, B-splines basis are useful for representing the geometry of a finite element model, interfacing a finite element analysis program. By utilizing this technique a priori space-time estimate in finite element analysis has been derived and we proved that the convergent order is $\mathcal{O}(h²+T²)$ where $h$ is the space step size and $T$ is the time. A couple of numerical examples have been presented to confirm the accuracy of theoretical results. Finally, we conclude that the studied method is useful for solving tempered fractional diffusion equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B-spline%20finite%20element" title="B-spline finite element">B-spline finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20estimates" title=" error estimates"> error estimates</a>, <a href="https://publications.waset.org/abstracts/search?q=Gronwall%27s%20lemma" title=" Gronwall&#039;s lemma"> Gronwall&#039;s lemma</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=tempered%20fractional" title=" tempered fractional"> tempered fractional</a> </p> <a href="https://publications.waset.org/abstracts/99835/b-spline-finite-element-method-for-drifted-space-fractional-tempered-diffusion-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3783</span> Thermophysical Properties and Kinetic Study of Dioscorea bulbifera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Chinagorom%20Nwadike">Emmanuel Chinagorom Nwadike</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Tagbo%20Nwabanne"> Joseph Tagbo Nwabanne</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Ndubuisi%20Abonyi"> Matthew Ndubuisi Abonyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Onyemazu%20Andrew%20Azaka"> Onyemazu Andrew Azaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focused on the modeling of the convective drying of aerial yam using finite element methods. The thermo-gravimetric analyzer was used to determine the thermal stability of the sample. An aerial yam sample of size 30 x 20 x 4 mm was cut with a mold designed for the purpose and dried in a convective dryer set at 4m/s fan speed and temperatures of 68.58 and 60.56°C. The volume shrinkage of the resultant dried sample was determined by immersing the sample in a toluene solution. The finite element analysis was done with PDE tools in Matlab 2015. Seven kinetic models were employed to model the drying process. The result obtained revealed three regions in the thermogravimetric analysis (TGA) profile of aerial yam. The maximum thermal degradation rates of the sample occurred at 432.7°C. The effective thermal diffusivity of the sample increased as the temperature increased from 60.56°C to 68.58°C. The finite element prediction of moisture content of aerial yam at an air temperature of 68.58°C and 60.56°C shows R² of 0.9663 and 0.9155, respectively. There was a good agreement between the finite element predicted moisture content and the measured moisture content, which is indicative of a highly reliable finite element model developed. The result also shows that the best kinetic model for the aerial yam under the given drying conditions was the Logarithmic model with a correlation coefficient of 0.9991. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerial%20yam" title="aerial yam">aerial yam</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=convective" title=" convective"> convective</a>, <a href="https://publications.waset.org/abstracts/search?q=effective" title=" effective"> effective</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusivity" title=" diffusivity"> diffusivity</a> </p> <a href="https://publications.waset.org/abstracts/148796/thermophysical-properties-and-kinetic-study-of-dioscorea-bulbifera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3782</span> Prediction and Reduction of Cracking Issue in Precision Forging of Engine Valves Using Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xi%20Yang">Xi Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bulent%20Chavdar"> Bulent Chavdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Vonseggern"> Alan Vonseggern</a>, <a href="https://publications.waset.org/abstracts/search?q=Taylan%20Altan"> Taylan Altan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fracture in hot precision forging of engine valves was investigated in this paper. The entire valve forging procedure was described and the possible cause of the fracture was proposed. Finite Element simulation was conducted for the forging process, with commercial Finite Element code DEFORMTM. The effects of material properties, the effect of strain rate and temperature were considered in the FE simulation. Two fracture criteria were discussed and compared, based on the accuracy and reliability of the FE simulation results. The selected criterion predicted the fracture location and shows the trend of damage increasing with good accuracy, which matches the experimental observation. Additional modification of the punch shapes was proposed to further reduce the tendency of fracture in forging. Finite Element comparison shows a great potential of such application in the mass production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hotforging" title="hotforging">hotforging</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20valve" title=" engine valve"> engine valve</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=tooling" title=" tooling"> tooling</a> </p> <a href="https://publications.waset.org/abstracts/23033/prediction-and-reduction-of-cracking-issue-in-precision-forging-of-engine-valves-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3781</span> Finite Element Analysis of Reinforced Structural Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mintesinot%20Teshome%20Mengsha">Mintesinot Teshome Mengsha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete structural walls are provided in structures to decrease horizontal displacements under seismic loads. The cyclic lateral load resistance capacity of a structural wall is controlled by two parameters, the strength and the ductility; it is better to have the shear strength somewhat greater than the compression to prevent shear failure, which is brittle, sudden and of serious consequence. Due to architectural and functional reasons, small openings are provided in this important structural part. The main objective of this study is to investigate the finite element of RC structural walls with small openings subjected to cyclic load using the finite element approach. The experimental results in terms of load capacity, failure mode, crack pattern, flexural strength, shear strength, and deformation capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title="ABAQUS">ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20openings" title=" small openings"> small openings</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20structural%20walls" title=" reinforced concrete structural walls"> reinforced concrete structural walls</a> </p> <a href="https://publications.waset.org/abstracts/186309/finite-element-analysis-of-reinforced-structural-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3780</span> On the Cyclic Property of Groups of Prime Order</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Yi%20Wu">Ying Yi Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of finite groups is a central topic in algebraic structures, and one of the most fundamental questions in this field is the classification of finite groups up to isomorphism. In this paper, we investigate the cyclic property of groups of prime order, which is a crucial result in the classification of finite abelian groups. We prove the following statement: If p is a prime, then every group G of order p is cyclic. Our proof utilizes the properties of group actions and the class equation, which provide a powerful tool for studying the structure of finite groups. In particular, we first show that any non-identity element of G generates a cyclic subgroup of G. Then, we establish the existence of an element of order p, which implies that G is generated by a single element. Finally, we demonstrate that any two generators of G are conjugate, which shows that G is a cyclic group. Our result has significant implications in the classification of finite groups, as it implies that any group of prime order is isomorphic to the cyclic group of the same order. Moreover, it provides a useful tool for understanding the structure of more complicated finite groups, as any finite abelian group can be decomposed into a direct product of cyclic groups. Our proof technique can also be extended to other areas of group theory, such as the classification of finite p-groups, where p is a prime. Therefore, our work has implications beyond the specific result we prove and can contribute to further research in algebraic structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=group%20theory" title="group theory">group theory</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20groups" title=" finite groups"> finite groups</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20groups" title=" cyclic groups"> cyclic groups</a>, <a href="https://publications.waset.org/abstracts/search?q=prime%20order" title=" prime order"> prime order</a>, <a href="https://publications.waset.org/abstracts/search?q=classification." title=" classification."> classification.</a> </p> <a href="https://publications.waset.org/abstracts/163778/on-the-cyclic-property-of-groups-of-prime-order" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3779</span> Thermal Effect on Wave Interaction in Composite Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Apalowo">R. K. Apalowo</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Chronopoulos"> D. Chronopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Thierry"> V. Thierry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20dependency" title=" temperature dependency"> temperature dependency</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20dispersion%20characteristics" title=" wave dispersion characteristics"> wave dispersion characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20finite%20element" title=" wave finite element"> wave finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20scattering%20properties" title=" wave scattering properties"> wave scattering properties</a> </p> <a href="https://publications.waset.org/abstracts/58484/thermal-effect-on-wave-interaction-in-composite-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3778</span> Optimization of Element Type for FE Model and Verification of Analyses with Physical Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Tufekci">Mustafa Tufekci</a>, <a href="https://publications.waset.org/abstracts/search?q=Caner%20Guven"> Caner Guven</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Automotive Industry, sliding door systems that are also used as body closures, are safety members. Extreme product tests are realized to prevent failures in a design process, but these tests realized experimentally result in high costs. Finite element analysis is an effective tool used for the design process. These analyses are used before production of a prototype for validation of design according to customer requirement. In result of this, the substantial amount of time and cost is saved. Finite element model is created for geometries that are designed in 3D CAD programs. Different element types as bar, shell and solid, can be used for creating mesh model. The cheaper model can be created by the selection of element type, but combination of element type that was used in model, number and geometry of element and degrees of freedom affects the analysis result. Sliding door system is a good example which used these methods for this study. Structural analysis was realized for sliding door mechanism by using FE models. As well, physical tests that have same boundary conditions with FE models were realized. Comparison study for these element types, were done regarding test and analyses results then the optimum combination was achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title="finite element analysis">finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20door%20mechanism" title=" sliding door mechanism"> sliding door mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=element%20type" title=" element type"> element type</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a> </p> <a href="https://publications.waset.org/abstracts/35425/optimization-of-element-type-for-fe-model-and-verification-of-analyses-with-physical-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element&amp;page=126">126</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element&amp;page=127">127</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10