CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;26 of 26 results for author: <span class="mathjax">Zhdanovich, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Zhdanovich%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhdanovich, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhdanovich%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhdanovich, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11985">arXiv:2408.11985</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11985">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Flat Band Generation through Interlayer Geometric Frustration in Intercalated Transition Metal Dichalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yawen Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+R">Ren He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Peng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">Sergey Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">Matteo Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorovikov%2C+S">Sergey Gorovikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">Marta Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+G">Guo-Xing Miao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11985v1-abstract-short" style="display: inline;"> Electronic flat bands can lead to rich many-body quantum phases by quenching the electron&#39;s kinetic energy and enhancing many-body correlation. The reduced bandwidth can be realized by either destructive quantum interference in frustrated lattices, or by generating heavy band folding with avoided band crossing in Moire superlattices. Here we propose a general approach to introduce flat bands into&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11985v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11985v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11985v1-abstract-full" style="display: none;"> Electronic flat bands can lead to rich many-body quantum phases by quenching the electron&#39;s kinetic energy and enhancing many-body correlation. The reduced bandwidth can be realized by either destructive quantum interference in frustrated lattices, or by generating heavy band folding with avoided band crossing in Moire superlattices. Here we propose a general approach to introduce flat bands into widely studied transition metal dichalcogenide (TMD) materials by dilute intercalation, featuring both destructive interference and band folding. A flat band with vanishing dispersion is observed by angle-resolved photoemission spectroscopy (ARPES) over the entire momentum space in intercalated Mn1/4TaS2. Polarization dependent ARPES measurements combined with symmetry analysis reveal the orbital characters of the flat bands. Supercell tight-binding simulations suggest that such flat bands arise from destructive interference between Mn and Ta wave functions on the S hopping pathways and are ubiquitous in a range of TMD families as well as in different intercalation configurations. Our findings establish a new material platform to manipulate flat band structures and explore their corresponding emergent correlated properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11985v1-abstract-full').style.display = 'none'; document.getElementById('2408.11985v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08798">arXiv:2407.08798</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.08798">pdf</a>, <a href="https://arxiv.org/format/2407.08798">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electronically-driven switching of topology in LaSbTe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bannies%2C+J">J. Bannies</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">M. Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kung%2C+H+-">H. -H. Kung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Godin%2C+S">S. Godin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simonson%2C+J+W">J. W. Simonson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oudah%2C+M">M. Oudah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">M. Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorovikov%2C+S">S. Gorovikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">S. Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elfimov%2C+I+S">I. S. Elfimov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aronson%2C+M+C">M. C. Aronson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08798v1-abstract-short" style="display: inline;"> In the past two decades, various classes of topological materials have been discovered, spanning topological insulators, semimetals, and metals. While the observation and understanding of the topology of a material has been a primary focus so far, the precise and easy control of topology in a single material remains largely unexplored. Here, we demonstrate full experimental control over the topolo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08798v1-abstract-full').style.display = 'inline'; document.getElementById('2407.08798v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08798v1-abstract-full" style="display: none;"> In the past two decades, various classes of topological materials have been discovered, spanning topological insulators, semimetals, and metals. While the observation and understanding of the topology of a material has been a primary focus so far, the precise and easy control of topology in a single material remains largely unexplored. Here, we demonstrate full experimental control over the topological Dirac nodal loop in the square-net material LaSb$_\mathrm{x}$Te$_\mathrm{2-x}$ by chemical substitution and electron doping. Using angle-resolved photoemission spectroscopy (ARPES), we show that changing the antimony concentration x from 0.9 to 1.0 in the bulk opens a gap as large as 400 meV in the nodal loop. Our symmetry analysis based on single-crystal X-ray diffraction and a minimal tight binding model establishes that the breaking of \textit{n} glide symmetry in the square-net layer is responsible for the opening of the gap. Remarkably, we can also realize this topological phase transition \textit{in situ} on the surface of LaSb$_\mathrm{x}$Te$_\mathrm{2-x}$ by chemical gating using potassium deposition, which enables the reversible switching of the topology from gapped to gapless nodal loop. The underlying control parameter for the structural and topological transition in the bulk and on the surface is the electron concentration. It opens a pathway towards applications in devices based on switching topology by electrostatic gating. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08798v1-abstract-full').style.display = 'none'; document.getElementById('2407.08798v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10053">arXiv:2404.10053</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.10053">pdf</a>, <a href="https://arxiv.org/format/2404.10053">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Two-stage growth for highly ordered epitaxial C$_{60}$ films on Au(111) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tully%2C+A+B">Alexandra B. Tully</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greenwood%2C+R">Rysa Greenwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+M">MengXing Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+V">Vanessa King</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%A5rsell%2C+E">Erik M氓rsell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Y">Yuran Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Golias%2C+E">Evangelos Golias</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mills%2C+A+K">Arthur K. Mills</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Castro%2C+G+L">Giorgio Levy de Castro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">Matteo Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Menezes%2C+D">Darius Menezes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J">Jiabin Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">Sergey Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+D+J">David J. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burke%2C+S+A">Sarah A. Burke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10053v1-abstract-short" style="display: inline;"> As an organic semiconductor and a prototypical acceptor molecule in organic photovoltaics, C$_{60}$ has broad relevance to the world of organic thin film electronics. Although highly uniform C$_{60}$ thin films are necessary to conduct spectroscopic analysis of the electronic structure of these C$_{60}$-based materials, reported C$_{60}$ films show a relatively low degree of order beyond a monolay&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10053v1-abstract-full').style.display = 'inline'; document.getElementById('2404.10053v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10053v1-abstract-full" style="display: none;"> As an organic semiconductor and a prototypical acceptor molecule in organic photovoltaics, C$_{60}$ has broad relevance to the world of organic thin film electronics. Although highly uniform C$_{60}$ thin films are necessary to conduct spectroscopic analysis of the electronic structure of these C$_{60}$-based materials, reported C$_{60}$ films show a relatively low degree of order beyond a monolayer. Here, we develop a generalizable two-stage growth technique that consistently produces single-domain C$_{60}$ films of controllable thicknesses, using Au(111) as an epitaxially well-matched substrate. We characterize the films using low-energy electron diffraction, low-energy electron microscopy, scanning tunneling microscopy, and angle-resolved photoemission spectroscopy (ARPES). We report highly oriented epitaxial film growth of C$_{60}$/Au(111) from 1 monolayer (ML) up to 20 ML films. The high-quality of the C$_{60}$ thin films enables the direct observation of the electronic dispersion of the HOMO and HOMO-1 bands via ARPES without need for small spot sizes. Our results indicate a path for the growth of organic films on metallic substrates with long-range ordering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10053v1-abstract-full').style.display = 'none'; document.getElementById('2404.10053v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05378">arXiv:2312.05378</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.05378">pdf</a>, <a href="https://arxiv.org/format/2312.05378">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Kink in cuprates: the role of the low-energy density of states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Razzoli%2C+E">E. Razzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">F. Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">M. Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+M+X">M. X. Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">M. Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">E. H. da Silva Neto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorovikov%2C+S">S. Gorovikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+R+D">R. D. Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneeloch%2C+J">J. Schneeloch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">S. Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mills%2C+A+K">A. K. Mills</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">G. Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+D+J">D. J. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giannetti%2C+C">C. Giannetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05378v1-abstract-short" style="display: inline;"> The 40-70 meV band-structure renormalization (so-called kink) in high-temperature cuprate superconductors - which has been mainly interpreted in terms of electron-boson coupling - is observed to be strongly suppressed both above the superconducting transition temperature and under optical excitation. We employ equilibrium and time- and angle-resolved photoemission spectroscopy, in combination with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05378v1-abstract-full').style.display = 'inline'; document.getElementById('2312.05378v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05378v1-abstract-full" style="display: none;"> The 40-70 meV band-structure renormalization (so-called kink) in high-temperature cuprate superconductors - which has been mainly interpreted in terms of electron-boson coupling - is observed to be strongly suppressed both above the superconducting transition temperature and under optical excitation. We employ equilibrium and time- and angle-resolved photoemission spectroscopy, in combination with Migdal-Eliashberg simulations, to investigate the suppression of the near-nodal kink in Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$. We show that the $\sim$30$\%$ decrease of the kink strength across the superconducting-to-normal-state phase transition can be entirely accounted for by the filling of the superconducting gap, without additional consideration of temperature-dependent electron-boson coupling. Our findings demonstrate that consideration of changes in the density of states is essential to quantitatively account for the band structure renormalization effects in cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05378v1-abstract-full').style.display = 'none'; document.getElementById('2312.05378v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04524">arXiv:2309.04524</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.04524">pdf</a>, <a href="https://arxiv.org/format/2309.04524">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> A versatile laser-based apparatus for time-resolved ARPES with micro-scale spatial resolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dufresne%2C+S+K+Y">Sydney K. Y. Dufresne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">Sergey Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">Matteo Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guislain%2C+B+G">Bradley G. Guislain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">Marta Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kung%2C+S">Sean Kung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">Giorgio Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mills%2C+A+K">Arthur K. Mills</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">Fabio Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+D+J">David J. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04524v1-abstract-short" style="display: inline;"> We present the development of a versatile apparatus for a 6.2 eV laser-based time and angle-resolved photoemission spectroscopy with micrometer spatial resolution (time-resolved $渭$-ARPES). With a combination of tunable spatial resolution down to $\sim$11 $渭$m, high energy resolution ($\sim$11 meV), near-transform-limited temporal resolution ($\sim$280 fs), and tunable 1.55 eV pump fluence up to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04524v1-abstract-full').style.display = 'inline'; document.getElementById('2309.04524v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04524v1-abstract-full" style="display: none;"> We present the development of a versatile apparatus for a 6.2 eV laser-based time and angle-resolved photoemission spectroscopy with micrometer spatial resolution (time-resolved $渭$-ARPES). With a combination of tunable spatial resolution down to $\sim$11 $渭$m, high energy resolution ($\sim$11 meV), near-transform-limited temporal resolution ($\sim$280 fs), and tunable 1.55 eV pump fluence up to $\sim$3 mJ/cm$^2$, this time-resolved $渭$-ARPES system enables the measurement of ultrafast electron dynamics in exfoliated and inhomogeneous materials. We demonstrate the performance of our system by correlating the spectral broadening of the topological surface state of Bi$_2$Se$_3$ with the spatial dimension of the probe pulse, as well as resolving the spatial inhomogeneity contribution to the observed spectral broadening. Finally, after in-situ exfoliation, we performed time-resolved $渭$-ARPES on a $\sim$30 $渭$m few-layer-thick flake of transition metal dichalcogenide WTe$_2$, thus demonstrating the ability to access ultrafast electron dynamics with momentum resolution on micro-exfoliated and twisted materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04524v1-abstract-full').style.display = 'none'; document.getElementById('2309.04524v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.05803">arXiv:2308.05803</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.05803">pdf</a>, <a href="https://arxiv.org/format/2308.05803">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-024-02629-3">10.1038/s41567-024-02629-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nature of the current-induced insulator-to-metal transition in Ca$_2$RuO$_4$ as revealed by transport-ARPES </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Suen%2C+C+T">Cissy T Suen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markovi%C4%87%2C+I">Igor Markovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">Marta Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinsdorf%2C+N">Niclas Heinsdorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">Sergey Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+N">Na-Hyun Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmid%2C+M">Michael Schmid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hansmann%2C+P">Philipp Hansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Puphal%2C+P">Pascal Puphal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%BCrsich%2C+K">Katrin F眉rsich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zimmerman%2C+V">Valentin Zimmerman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smit%2C+S">Steef Smit</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Au-Yeung%2C+C">Christine Au-Yeung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zwartsenberg%2C+B">Berend Zwartsenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krautloher%2C+M">Maximilian Krautloher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elfimov%2C+I+S">Ilya S Elfimov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koch%2C+R">Roland Koch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorovikov%2C+S">Sergey Gorovikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franz%2C+M">Marcel Franz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">Bernhard Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.05803v3-abstract-short" style="display: inline;"> The Mott insulator Ca$_2$RuO$_4$ exhibits a rare insulator-to-metal transition (IMT) induced by DC current. While structural changes associated with this transition have been tracked by neutron diffraction, Raman scattering, and x-ray spectroscopy, work on elucidating the response of the electronic degrees of freedom is still in progress. Here we unveil the current-induced modifications of the ele&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05803v3-abstract-full').style.display = 'inline'; document.getElementById('2308.05803v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.05803v3-abstract-full" style="display: none;"> The Mott insulator Ca$_2$RuO$_4$ exhibits a rare insulator-to-metal transition (IMT) induced by DC current. While structural changes associated with this transition have been tracked by neutron diffraction, Raman scattering, and x-ray spectroscopy, work on elucidating the response of the electronic degrees of freedom is still in progress. Here we unveil the current-induced modifications of the electronic states of Ca$_2$RuO$_4$ by employing angle-resolved photoemission spectroscopy (ARPES) in conjunction with four-probe transport. Two main effects emerge: a clear reduction of the Mott gap and a modification in the dispersion of the Ru-bands. The changes in dispersion occur exclusively along the $XM$ high-symmetry direction, parallel to the $b$-axis where the greatest in-plane lattice change occurs. These experimental observations, together with dynamical mean-field theory (DMFT) calculations simulated from the current-induced structural distortions, indicate the intimate interplay of lattice and orbital-dependent electronic response in the current-driven IMT. Furthermore, based on a free energy analysis, we demonstrate that the current-induced phase, albeit thermodynamically equivalent, is electronically distinct from the high-temperature zero-current metallic phase. Our results provide insight into the elusive nature of the current-induced IMT of Ca$_2$RuO$_4$ and advance the challenging, yet powerful, technique of transport-ARPES. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05803v3-abstract-full').style.display = 'none'; document.getElementById('2308.05803v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.01686">arXiv:2306.01686</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.01686">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-023-00592-5">10.1038/s41535-023-00592-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic Stripe Patterns Near the Fermi Level of Tetragonal Fe(Se,S) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+M">M. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scott%2C+K">K. Scott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boyle%2C+T+J">T. J. Boyle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Byland%2C+J+K">J. K. Byland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%B6tzel%2C+S">S. B枚tzel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Z. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Day%2C+R+P">R. P. Day</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">S. Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorovikov%2C+S">S. Gorovikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pedersen%2C+T+M">T. M. Pedersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klavins%2C+P">P. Klavins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eremin%2C+I+M">I. M. Eremin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gozar%2C+A">A. Gozar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taufour%2C+V">V. Taufour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">E. H. da Silva Neto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.01686v2-abstract-short" style="display: inline;"> FeSe$_{1-x}$S$_x$ remains one of the most enigmatic systems of Fe-based superconductors. While much is known about the orthorhombic parent compound, FeSe, the tetragonal samples, FeSe$_{1-x}$S$_x$ with x&gt;0.17, remain relatively unexplored. Here, we provide an in-depth investigation of the electronic states of tetragonal FeSe$_{0.81}$S$_{0.19}$, using scanning tunneling microscopy and spectroscopy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01686v2-abstract-full').style.display = 'inline'; document.getElementById('2306.01686v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.01686v2-abstract-full" style="display: none;"> FeSe$_{1-x}$S$_x$ remains one of the most enigmatic systems of Fe-based superconductors. While much is known about the orthorhombic parent compound, FeSe, the tetragonal samples, FeSe$_{1-x}$S$_x$ with x&gt;0.17, remain relatively unexplored. Here, we provide an in-depth investigation of the electronic states of tetragonal FeSe$_{0.81}$S$_{0.19}$, using scanning tunneling microscopy and spectroscopy (STM/S) measurements, supported by angle-resolved photoemission spectroscopy (ARPES) and theoretical modeling. We demonstrate that by analyzing modulations of the local density of states (LDOS) near and away from Fe vacancy defects separately, we can identify quasiparticle interference (QPI) signals originating from multiple regions of the Brillouin zone, including the bands at the M and A points. We also observe that QPI signals coexist with a much stronger LDOS modulation for states near the Fermi level whose period is independent of energy. Our measurements further reveal that this strong pattern appears in the STS measurements as short range stripe patterns that are locally two-fold symmetric. Since these stripe patterns coexist with four-fold symmetric QPI around Fe-vacancies, the origin of their local two-fold symmetry must be distinct from that of nematic states in orthorhombic samples. To further understand these stripe patterns, we explore several aspects related to them, such as the role of S and Fe vacancy defects, and whether they can be explained by QPI. We consider the possibility that the observed stripe patterns may represent incipient charge order correlations, similar to those observed in the cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01686v2-abstract-full').style.display = 'none'; document.getElementById('2306.01686v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.08829">arXiv:2305.08829</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.08829">pdf</a>, <a href="https://arxiv.org/format/2305.08829">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.chemmater.3c01564">10.1021/acs.chemmater.3c01564 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comparative Electronic Structures of the Chiral Helimagnets Cr1/3NbS2 and Cr1/3TaS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+L+S">Lilia S. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gonzalez%2C+O">Oscar Gonzalez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Kejun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">Matteo Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorovikov%2C+S">Sergey Gorovikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryu%2C+S+H">Sae Hee Ryu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fender%2C+S+S">Shannon S. Fender</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">Marta Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+N+H">Na Hyun Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">Sergey Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Husremovic%2C+S">Samra Husremovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Erodici%2C+M+P">Matthew P. Erodici</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mollazadeh%2C+C">Cameron Mollazadeh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ping%2C+Y">Yuan Ping</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bediako%2C+D+K">D. Kwabena Bediako</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.08829v2-abstract-short" style="display: inline;"> Magnetic materials with noncollinear spin textures are promising for spintronic applications. To realize practical devices, control over the length and energy scales of such spin textures is imperative. The chiral helimagnets Cr1/3NbS2 and Cr1/3TaS2 exhibit analogous magnetic phase diagrams with different real-space periodicities and field dependence, positioning them as model systems for studying&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08829v2-abstract-full').style.display = 'inline'; document.getElementById('2305.08829v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.08829v2-abstract-full" style="display: none;"> Magnetic materials with noncollinear spin textures are promising for spintronic applications. To realize practical devices, control over the length and energy scales of such spin textures is imperative. The chiral helimagnets Cr1/3NbS2 and Cr1/3TaS2 exhibit analogous magnetic phase diagrams with different real-space periodicities and field dependence, positioning them as model systems for studying the relative strengths of the microscopic mechanisms giving rise to exotic spin textures. Here, we carry out a comparative study of the electronic structures of Cr1/3NbS2 and Cr1/3TaS2 using angle-resolved photoemission spectroscopy and density functional theory. We show that bands in Cr1/3TaS2 are more dispersive than their counterparts in Cr1/3NbS2 and connect this result to bonding and orbital overlap in these materials. We also unambiguously distinguish exchange splitting from surface termination effects by studying the dependence of their photoemission spectra on polarization, temperature, and beam size. We find strong evidence that hybridization between intercalant and host lattice electronic states mediates the magnetic exchange interactions in these materials, suggesting that band engineering is a route toward tuning their spin textures. Overall, these results underscore how the modular nature of intercalated transition metal dichalcogenides translates variation in composition and electronic structure to complex magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08829v2-abstract-full').style.display = 'none'; document.getElementById('2305.08829v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 18 figures, 5 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chemistry of Materials, 2023, 35, 7239-7251 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.14339">arXiv:2205.14339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.14339">pdf</a>, <a href="https://arxiv.org/format/2205.14339">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spectral Evidence for Unidirectional Charge Density Wave in Detwinned BaNi$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yucheng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klemm%2C+M">Mason Klemm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+J+S">Ji Seop Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yaofeng Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+B">Bing-Hua Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorovikov%2C+S">Sergey Gorovikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pedersen%2C+T">Tor Pedersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">Matteo Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">Sergey Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denlinger%2C+J">Jonathan Denlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+R+G">Rob G. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birgeneau%2C+R+J">Robert J. Birgeneau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+D+J">David J. Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+P">Pengcheng Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+M">Ming Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.14339v1-abstract-short" style="display: inline;"> The emergence of unconventional superconductivity in proximity to intertwined electronic orders is especially relevant in the case of iron-based superconductors. Such order consists of an electronic nematic order and a spin density wave in these systems. BaNi$_2$As$_2$, like its well-known iron-based analog BaFe$_2$As$_2$, also hosts a symmetry-breaking structural transition that is coupled to a u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.14339v1-abstract-full').style.display = 'inline'; document.getElementById('2205.14339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.14339v1-abstract-full" style="display: none;"> The emergence of unconventional superconductivity in proximity to intertwined electronic orders is especially relevant in the case of iron-based superconductors. Such order consists of an electronic nematic order and a spin density wave in these systems. BaNi$_2$As$_2$, like its well-known iron-based analog BaFe$_2$As$_2$, also hosts a symmetry-breaking structural transition that is coupled to a unidirectional charge density wave (CDW), providing a novel platform to study intertwined orders. Here, through a systematic angle-resolved photoemission spectroscopy study combined with a detwinning $B_1g$ uniaxial strain, we identify distinct spectral evidence of band evolution due to the structural transition as well as CDW-induced band folding. In contrast to the nematicity and spin density wave in BaFe$_2$As$_2$, the structural and CDW order parameters in BaNi$_2$As$_2$ are observed to be strongly coupled and do not separate in the presence of uniaxial strain. Our measurements point to a likely lattice origin of the CDW in BaNi$_2$As$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.14339v1-abstract-full').style.display = 'none'; document.getElementById('2205.14339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.10999">arXiv:2204.10999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.10999">pdf</a>, <a href="https://arxiv.org/format/2204.10999">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abm5180">10.1126/sciadv.abm5180 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Triggering a global density wave instability in graphene via local symmetry-breaking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+A+C">Amy C. Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nigge%2C+P">Pascal Nigge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Link%2C+S">Stefan Link</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">Giorgio Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">Matteo Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spandar%2C+P+L">Parsa L. Spandar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matth%C3%A9%2C+T">Tiffany Matth茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">Sergey Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Starke%2C+U">Ulrich Starke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guti%C3%A9rrez%2C+C">Christopher Guti茅rrez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.10999v1-abstract-short" style="display: inline;"> Two-dimensional quantum materials offer a robust platform for investigating the emergence of symmetry-broken ordered phases owing to the high tuneability of their electronic properties. For instance, the ability to create new electronic band structures in graphene through moir茅 superlattices from stacked and twisted structures has led to the discovery of several correlated and topological phases.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10999v1-abstract-full').style.display = 'inline'; document.getElementById('2204.10999v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.10999v1-abstract-full" style="display: none;"> Two-dimensional quantum materials offer a robust platform for investigating the emergence of symmetry-broken ordered phases owing to the high tuneability of their electronic properties. For instance, the ability to create new electronic band structures in graphene through moir茅 superlattices from stacked and twisted structures has led to the discovery of several correlated and topological phases. Here we report an alternative method to induce an incipient symmetry-broken phase in graphene at the millimetre scale. We show that an extremely dilute concentration ($&lt;\!0.3\% $) of surface adatoms can self-assemble and trigger the collapse of the graphene atomic lattice into a distinct Kekul茅 bond density wave phase, whereby the carbon C-C bond symmetry is broken globally. Using complementary momentum-resolved techniques such as angle-resolved photoemission spectroscopy (ARPES) and low-energy electron diffraction (LEED), we directly probe the presence of this density wave phase and confirm the opening of an energy gap at the Dirac point. We further show that this Kekul茅 density wave phase occurs for various Fermi surface sizes and shapes, suggesting that this lattice instability is driven by strong electron-lattice interactions. Our results demonstrate that dilute concentrations of self-assembled adsorbed atoms offer an attractive alternative route towards designing novel quantum phases in two-dimensional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10999v1-abstract-full').style.display = 'none'; document.getElementById('2204.10999v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances, 8, eabm5180 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.02667">arXiv:2201.02667</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.02667">pdf</a>, <a href="https://arxiv.org/format/2201.02667">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-022-00805-6">10.1038/s42005-022-00805-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlation-Driven Electronic Reconstruction in FeTe$_{1-x}$Se$_x$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jianwei Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhijun Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jian-Xin Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+J+S">Ji Seop Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Q">Qianni Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Meng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H">Han Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+T">Tong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denlinger%2C+J+D">Jonathan D. Denlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">Matteo Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pedersen%2C+T+M">Tor M. Pedersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorovikov%2C+S">Sergey Gorovikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">Sergey Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+P">Pengcheng Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+J">Jiun-Haw Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+Q">Qimiao Si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birgeneau%2C+R+J">Robert J. Birgeneau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+M">Ming Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.02667v1-abstract-short" style="display: inline;"> Electronic correlation is of fundamental importance to high temperature superconductivity. While the low energy electronic states in cuprates are dominantly affected by correlation effects across the phase diagram, observation of correlation-driven changes in fermiology amongst the iron-based superconductors remains rare. Here we present experimental evidence for a correlation-driven reconstructio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02667v1-abstract-full').style.display = 'inline'; document.getElementById('2201.02667v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.02667v1-abstract-full" style="display: none;"> Electronic correlation is of fundamental importance to high temperature superconductivity. While the low energy electronic states in cuprates are dominantly affected by correlation effects across the phase diagram, observation of correlation-driven changes in fermiology amongst the iron-based superconductors remains rare. Here we present experimental evidence for a correlation-driven reconstruction of the Fermi surface tuned independently by two orthogonal axes of temperature and Se/Te ratio in the iron chalcogenide family FeTe$_{1-x}$Se$_x$. We demonstrate that this reconstruction is driven by the de-hybridization of a strongly renormalized $d_{xy}$ orbital with the remaining itinerant iron 3$d$ orbitals in the emergence of an orbital-selective Mott phase. Our observations are further supported by our theoretical calculations to be salient spectroscopic signatures of such a non-thermal evolution from a strongly correlated metallic phase into an orbital-selective Mott phase in $d_{xy}$ as Se concentration is reduced. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02667v1-abstract-full').style.display = 'none'; document.getElementById('2201.02667v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 figures, accepted version to appear in Communications Physics. arXiv admin note: text overlap with arXiv:2010.13913</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Phys 5, 29 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06298">arXiv:2112.06298</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.06298">pdf</a>, <a href="https://arxiv.org/format/2112.06298">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.L121106">10.1103/PhysRevB.106.L121106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unveiling the underlying interactions in Ta2NiSe5 from photo-induced lifetime change </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Golez%2C+D">Denis Golez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dufresne%2C+S+K+Y">Sydney K. Y. Dufresne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Min-Jae Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">Fabio Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+H">Hao Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murakami%2C+Y">Yuta Murakami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">Giorgio Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mills%2C+A+K">Arthur K. Mills</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">Sergey Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isobe%2C+M">Masahiko Isobe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">Hidenori Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaiser%2C+S">Stefan Kaiser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Werner%2C+P">Philipp Werner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+D+J">David J. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">Antoine Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Millis%2C+A+J">Andrew J. Millis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06298v1-abstract-short" style="display: inline;"> We present a generic procedure for quantifying the interplay of electronic and lattice degrees of freedom in photo-doped insulators through a comparative analysis of theoretical many-body simulations and time- and angle-resolved photoemission spectroscopy (TR-ARPES) of the transient response of the candidate excitonic insulator Ta2NiSe5. Our analysis demonstrates that the electron-electron interac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06298v1-abstract-full').style.display = 'inline'; document.getElementById('2112.06298v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06298v1-abstract-full" style="display: none;"> We present a generic procedure for quantifying the interplay of electronic and lattice degrees of freedom in photo-doped insulators through a comparative analysis of theoretical many-body simulations and time- and angle-resolved photoemission spectroscopy (TR-ARPES) of the transient response of the candidate excitonic insulator Ta2NiSe5. Our analysis demonstrates that the electron-electron interactions dominate the electron-phonon ones. In particular, a detailed analysis of the TRARPES spectrum enables a clear separation of the dominant broadening (electronic lifetime) effects from the much smaller bandgap renormalization. Theoretical calculations show that the observed strong spectral broadening arises from the electronic scattering of the photo-excited particle-hole pairs and cannot be accounted for in a model in which electron-phonon interactions are dominant. We demonstrate that the magnitude of the weaker subdominant bandgap renormalization sensitively depends on the distance from the semiconductor/semimetal transition in the high-temperature state, which could explain apparent contradictions between various TR-ARPES experiments. The analysis presented here indicates that electron-electron interactions play a vital role (although not necessarily the sole one) in stabilizing the insulating state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06298v1-abstract-full').style.display = 'none'; document.getElementById('2112.06298v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.13276">arXiv:2109.13276</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.13276">pdf</a>, <a href="https://arxiv.org/format/2109.13276">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.155142">10.1103/PhysRevB.105.155142 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Three-Dimensional Electronic Structure of LiFeAs: Strong-coupling Superconductivity and Topology in the Iron Pnictides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Day%2C+R+P">Ryan P. Day</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+M">MengXing Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zingl%2C+M">Manuel Zingl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zwartsenberg%2C+B">Berend Zwartsenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">Matteo Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">Giorgio Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+D">Doug Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dosanjh%2C+P">Pinder Dosanjh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pedersen%2C+T+M">Tor M. Pedersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorovikov%2C+S">Sergey Gorovikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">Shun Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">Walter N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">Douglas A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">Sergey Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elfimov%2C+I+S">Ilya S. Elfimov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.13276v1-abstract-short" style="display: inline;"> Amongst the iron-based superconductors, LiFeAs is unrivalled in the simplicity of its crystal structure and phase diagram. However, our understanding of this canonical compound suffers from conflict between mutually incompatible descriptions of the material&#39;s electronic structure, as derived from contradictory interpretations of the photoemission record. Here, we explore the challenge of interpret&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.13276v1-abstract-full').style.display = 'inline'; document.getElementById('2109.13276v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.13276v1-abstract-full" style="display: none;"> Amongst the iron-based superconductors, LiFeAs is unrivalled in the simplicity of its crystal structure and phase diagram. However, our understanding of this canonical compound suffers from conflict between mutually incompatible descriptions of the material&#39;s electronic structure, as derived from contradictory interpretations of the photoemission record. Here, we explore the challenge of interpretation in such experiments. By combining comprehensive photon energy- and polarization- dependent angle-resolved photoemission spectroscopy (ARPES) measurements with numerical simulations, we establish the providence of several contradictions in the present understanding of this and related materials. We identify a confluence of surface-related issues which have precluded unambiguous identification of both the number and dimensionality of the Fermi surface sheets. Ultimately, we arrive at a scenario which supports indications of topologically non-trivial states, while also being incompatible with superconductivity as a spin-fluctuation driven Fermi surface instability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.13276v1-abstract-full').style.display = 'none'; document.getElementById('2109.13276v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Phys. Rev. B 105, 155142 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.09971">arXiv:2109.09971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.09971">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-36787-4">10.1038/s41467-023-36787-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fano interference of the Higgs mode in cuprate high-Tc superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+H">Hao Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">Sergey Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z+X">Zi Xiao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schwarz%2C+L">Lukas Schwarz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+T">Tao Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+L">Liwen Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haenel%2C+R">Rafael Haenel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Min-Jae Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shabestari%2C+P">Parmida Shabestari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phuong%2C+H+L">Hoang Le Phuong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Honasoge%2C+K">Kedar Honasoge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dawson%2C+R+D">Robert David Dawson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Putzky%2C+D">Daniel Putzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+G">Gideok Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Puviani%2C+M">Matteo Puviani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Min Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Awari%2C+N">Nilesh Awari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ponomaryov%2C+A+N">Alexey N. Ponomaryov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ilyakov%2C+I">Igor Ilyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bluschke%2C+M">Martin Bluschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">Fabio Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">Marta Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">Sergey Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+M">Mengxing Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christiani%2C+G">Georg Christiani</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.09971v2-abstract-short" style="display: inline;"> Despite decades of search for the pairing boson in cuprate high-Tc superconductors, its identity still remains debated to date. For this reason, spectroscopic signatures of electron-boson interactions in cuprates have always been a center of attention. For example, the kinks in the quasiparticle dispersion observed by angle-resolved photoemission spectroscopy (ARPES) studies have motivated a decad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09971v2-abstract-full').style.display = 'inline'; document.getElementById('2109.09971v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.09971v2-abstract-full" style="display: none;"> Despite decades of search for the pairing boson in cuprate high-Tc superconductors, its identity still remains debated to date. For this reason, spectroscopic signatures of electron-boson interactions in cuprates have always been a center of attention. For example, the kinks in the quasiparticle dispersion observed by angle-resolved photoemission spectroscopy (ARPES) studies have motivated a decade-long investigation of electron-phonon as well as electron-paramagnon interactions in cuprates. On the other hand, the overlap between the charge-order correlations and the pseudogap in the cuprate phase diagram has also generated discussions about the potential link between them. In the present study, we provide a fresh perspective on these intertwined interactions using the novel approach of Higgs spectroscopy, i.e. an investigation of the amplitude oscillations of the superconducting order parameter driven by a terahertz radiation. Uniquely for cuprates, we observe a Fano interference of its dynamically driven Higgs mode with another collective mode, which we reveal to be charge density wave fluctuations from an extensive doping- and magnetic field-dependent study. This finding is further corroborated by a mean field model in which we describe the microscopic mechanism underlying the interaction between the two orders. Our work demonstrates Higgs spectroscopy as a novel and powerful technique for investigating intertwined orders and microscopic processes in unconventional superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09971v2-abstract-full').style.display = 'none'; document.getElementById('2109.09971v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications volume 14, Article number: 1343 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.09320">arXiv:2105.09320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.09320">pdf</a>, <a href="https://arxiv.org/format/2105.09320">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-30742-5">10.1038/s41467-022-30742-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical manipulation of Rashba-split 2-Dimensional Electron Gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">M. Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">F. Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kung%2C+H+-">H. -H. Kung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+M+X">M. X. Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dufresne%2C+S+K+Y">S. K. Y. Dufresne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Currie%2C+A">A. Currie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">G. Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">S. Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mills%2C+A+K">A. K. Mills</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+D+J">D. J. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+J+L">J. L. Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iversen%2C+B+B">B. B. Iversen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hofmann%2C+P">Ph. Hofmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.09320v2-abstract-short" style="display: inline;"> In spintronic devices, the two main approaches to actively control the electrons&#39; spin degree of freedom involve either static magnetic or electric fields. An alternative avenue relies on the application of optical fields to generate spin currents, which promises to bolster spin-device performance allowing for significantly faster and more efficient spin logic. To date, research has mainly focused&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09320v2-abstract-full').style.display = 'inline'; document.getElementById('2105.09320v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.09320v2-abstract-full" style="display: none;"> In spintronic devices, the two main approaches to actively control the electrons&#39; spin degree of freedom involve either static magnetic or electric fields. An alternative avenue relies on the application of optical fields to generate spin currents, which promises to bolster spin-device performance allowing for significantly faster and more efficient spin logic. To date, research has mainly focused on the optical injection of spin currents through the photogalvanic effect, and little is known about the direct optical control of the intrinsic spin splitting. Here, to explore the all-optical manipulation of a material&#39;s spin properties, we consider the Rashba effect at a semiconductor interface. The Rashba effect has long been a staple in the field of spintronics owing to its superior tunability, which allows the observation of fully spin-dependent phenomena, such as the spin-Hall effect, spin-charge conversion, and spin-torque in semiconductor devices. In this work, by means of time and angle-resolved photoemission spectroscopy (TR-ARPES), we demonstrate that an ultrafast optical excitation can be used to manipulate the Rashba-induced spin splitting of a two-dimensional electron gas (2DEG) engineered at the surface of the topological insulator Bi$_{2}$Se$_{3}$. We establish that light-induced photovoltage and charge carrier redistribution -- which in concert modulate the spin-orbit coupling strength on a sub-picosecond timescale -- can offer an unprecedented platform for achieving all optically-driven THz spin logic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09320v2-abstract-full').style.display = 'none'; document.getElementById('2105.09320v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 13, 3096 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.03447">arXiv:2010.03447</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.03447">pdf</a>, <a href="https://arxiv.org/format/2010.03447">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Physical properties and electronic structure of single-crystal KCo$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Campbell%2C+D+J">D. J. Campbell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilfong%2C+B">B. Wilfong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zic%2C+M+P">M. P. Zic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">G. Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+M+X">M. X. Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pedersen%2C+T+M">T. M. Pedersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorovikov%2C+S">S. Gorovikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zavalij%2C+P+Y">P. Y. Zavalij</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">S. Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodriguez%2C+E+E">E. E. Rodriguez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paglione%2C+J">J. Paglione</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.03447v2-abstract-short" style="display: inline;"> We present a method for producing high quality KCo2As2 crystals, stable in air and suitable for a variety of measurements. X-ray diffraction, magnetic susceptibility, electrical transport and heat capacity measurements confirm the high quality and an absence of long range magnetic order down to at least 2 K. Residual resistivity values approaching 0.25 $渭惟$~cm are representative of the high qualit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.03447v2-abstract-full').style.display = 'inline'; document.getElementById('2010.03447v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.03447v2-abstract-full" style="display: none;"> We present a method for producing high quality KCo2As2 crystals, stable in air and suitable for a variety of measurements. X-ray diffraction, magnetic susceptibility, electrical transport and heat capacity measurements confirm the high quality and an absence of long range magnetic order down to at least 2 K. Residual resistivity values approaching 0.25 $渭惟$~cm are representative of the high quality and low impurity content, and a Sommerfeld coefficient $纬$ = 7.3 mJ/mol K$^2$ signifies weaker correlations than the Fe-based counterparts. Together with Hall effect measurements, angle-resolved photoemission experiments reveal a Fermi surface consisting of electron pockets at the center and corner of the Brillouin zone, in line with theoretical predictions and in contrast to the mixed carrier types of other pnictides with the ThCr2Si2 structure. A large, linear magnetoresistance of 200\% at 14~T, together with an observed linear and hyperbolic, rather than parabolic, band dispersions are unusual characteristics of this metallic compound and may indicate more complex underlying behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.03447v2-abstract-full').style.display = 'none'; document.getElementById('2010.03447v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.05058">arXiv:2009.05058</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.05058">pdf</a>, <a href="https://arxiv.org/format/2009.05058">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.155109">10.1103/PhysRevB.103.155109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ubiquitous suppression of the nodal coherent spectral weight in Bi-based cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">M. Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">F. Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Razzoli%2C+E">E. Razzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">M. Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+M+X">M. X. Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dufresne%2C+S">S. Dufresne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pedersen%2C+T+M">T. M. Pedersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorovikov%2C+S">S. Gorovikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gonzalez%2C+S">S. Gonzalez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Santo%2C+G">G. Di Santo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petaccia%2C+L">L. Petaccia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+D">D. Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dosanjh%2C+P">P. Dosanjh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoshida%2C+Y">Y. Yoshida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">H. Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+R+D">R. D. Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneeloch%2C+J">J. Schneeloch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mills%2C+A+K">A. K. Mills</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">S. Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">G. Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+D+J">D. J. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.05058v1-abstract-short" style="display: inline;"> High-temperature superconducting cuprates exhibit an intriguing phenomenology for the low-energy elementary excitations. In particular, an unconventional temperature dependence of the coherent spectral weight (CSW) has been observed in the superconducting phase by angle-resolved photoemission spectroscopy (ARPES), both at the antinode where the d-wave paring gap is maximum, as well as along the ga&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05058v1-abstract-full').style.display = 'inline'; document.getElementById('2009.05058v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.05058v1-abstract-full" style="display: none;"> High-temperature superconducting cuprates exhibit an intriguing phenomenology for the low-energy elementary excitations. In particular, an unconventional temperature dependence of the coherent spectral weight (CSW) has been observed in the superconducting phase by angle-resolved photoemission spectroscopy (ARPES), both at the antinode where the d-wave paring gap is maximum, as well as along the gapless nodal direction. Here, we combine equilibrium and time-resolved ARPES to track the temperature dependent meltdown of the nodal CSW in Bi-based cuprates with unprecedented sensitivity. We find the nodal suppression of CSW upon increasing temperature to be ubiquitous across single- and double-layer Bi cuprates, and uncorrelated to superconducting and pseudogap onset temperatures. We quantitatively model both the lineshape of the nodal spectral features and the anomalous suppression of CSW within the Fermi-Liquid framework, establishing the key role played by the normal state electrodynamics in the description of nodal quasiparticles in superconducting cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05058v1-abstract-full').style.display = 'none'; document.getElementById('2009.05058v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures; Supplementary Materials available upon request</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 155109 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.05057">arXiv:2009.05057</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.05057">pdf</a>, <a href="https://arxiv.org/format/2009.05057">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.184307">10.1103/PhysRevB.102.184307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Establishing non-thermal regimes in pump-probe electron-relaxation dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+M">MengXing Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">Fabio Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mills%2C+A+K">Arthur K. Mills</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">Matteo Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Day%2C+R+P">Ryan P. Day</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zwartsenberg%2C+B">Berend Zwartsenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">Giorgio Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">Sergey Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kemper%2C+A+F">Alexander F. Kemper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+D+J">David J. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.05057v1-abstract-short" style="display: inline;"> Time- and angle-resolved photoemission spectroscopy (TR-ARPES) accesses the electronic structure of solids under optical excitation, and is a powerful technique for studying the coupling between electrons and collective modes. One approach to infer electron-boson coupling is through the relaxation dynamics of optically-excited electrons, and the characteristic timescales of energy redistribution.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05057v1-abstract-full').style.display = 'inline'; document.getElementById('2009.05057v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.05057v1-abstract-full" style="display: none;"> Time- and angle-resolved photoemission spectroscopy (TR-ARPES) accesses the electronic structure of solids under optical excitation, and is a powerful technique for studying the coupling between electrons and collective modes. One approach to infer electron-boson coupling is through the relaxation dynamics of optically-excited electrons, and the characteristic timescales of energy redistribution. A common description of electron relaxation dynamics is through the effective electronic temperature. Such a description requires that thermodynamic quantities are well-defined, an assumption that is generally violated at early delays. Additionally, precise estimation of the non-thermal window -- within which effective temperature models may not be applied -- is challenging. We perform TR-ARPES on graphite and show that Boltzmann rate equations can be used to calculate the time-dependent electronic occupation function, and reproduce experimental features given by non-thermal electron occupation. Using this model, we define a quantitative measure of non-thermal electron occupation and use it to define distinct phases of electron relaxation in the fluence-delay phase space. More generally, this approach can be used to inform the non-thermal-to-thermal crossover in pump-probe experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05057v1-abstract-full').style.display = 'none'; document.getElementById('2009.05057v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 102, 184307, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.05997">arXiv:1902.05997</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.05997">pdf</a>, <a href="https://arxiv.org/format/1902.05997">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5090507">10.1063/1.5090507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cavity-enhanced high harmonic generation for XUV time-resolved ARPES </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mills%2C+A+K">A. K. Mills</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">S. Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+M+X">M. X. Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">F. Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Razzoli%2C+E">E. Razzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">M. Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheyerman%2C+A">A. Sheyerman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hammond%2C+T+J">T. J. Hammond</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%BCss%2C+V">V. S眉ss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+D+J">D. J. Jones</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.05997v1-abstract-short" style="display: inline;"> With its direct correspondence to electronic structure, angle-resolved photoemission spectroscopy (ARPES) is a ubiquitous tool for the study of solids. When extended to the temporal domain, time-resolved (TR)-ARPES offers the potential to move beyond equilibrium properties, exploring both the unoccupied electronic structure as well as its dynamical response under ultrafast perturbation. Historical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05997v1-abstract-full').style.display = 'inline'; document.getElementById('1902.05997v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.05997v1-abstract-full" style="display: none;"> With its direct correspondence to electronic structure, angle-resolved photoemission spectroscopy (ARPES) is a ubiquitous tool for the study of solids. When extended to the temporal domain, time-resolved (TR)-ARPES offers the potential to move beyond equilibrium properties, exploring both the unoccupied electronic structure as well as its dynamical response under ultrafast perturbation. Historically, ultrafast extreme ultraviolet (XUV) sources employing high-order harmonic generation (HHG) have required compromises that make it challenging to achieve a high energy resolution - which is highly desirable for many TR-ARPES studies - while producing high photon energies and a high photon flux. We address this challenge by performing HHG inside a femtosecond enhancement cavity (fsEC), realizing a practical source for TR-ARPES that achieves a flux of over 10$^{11}$ photons/s delivered to the sample, operates over a range of 8-40 eV with a repetition rate of 60 MHz. This source enables TR-ARPES studies with a temporal and energy resolution of 190 fs and 22 meV, respectively. To characterize the system, we perform ARPES measurements of polycrystalline Au and MoTe$_2$, as well as TR-ARPES studies on graphite. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05997v1-abstract-full').style.display = 'none'; document.getElementById('1902.05997v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Review of Scientific Instruments 90, 083001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.05572">arXiv:1902.05572</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.05572">pdf</a>, <a href="https://arxiv.org/format/1902.05572">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aaw1662">10.1126/science.aaw1662 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct determination of mode-projected electron-phonon coupling in the time-domain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+M">MengXing Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mills%2C+A+K">Arthur K. Mills</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">Fabio Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">Matteo Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nosarzewski%2C+B">Benjamin Nosarzewski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Day%2C+R+P">Ryan P. Day</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Razzoli%2C+E">Elia Razzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheyerman%2C+A">Alexander Sheyerman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">Giorgio Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">Sergey Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kemper%2C+A+F">Alexander F. Kemper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+D+J">David J. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.05572v3-abstract-short" style="display: inline;"> Ultrafast spectroscopies have become an important tool for elucidating the microscopic description and dynamical properties of quantum materials. In particular, by tracking the dynamics of non-thermal electrons, a material&#39;s dominant scattering processes -- and thus the many-body interactions between electrons and collective excitations -- can be revealed. Here we present a new method for extracti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05572v3-abstract-full').style.display = 'inline'; document.getElementById('1902.05572v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.05572v3-abstract-full" style="display: none;"> Ultrafast spectroscopies have become an important tool for elucidating the microscopic description and dynamical properties of quantum materials. In particular, by tracking the dynamics of non-thermal electrons, a material&#39;s dominant scattering processes -- and thus the many-body interactions between electrons and collective excitations -- can be revealed. Here we present a new method for extracting the electron-phonon coupling strength in the time domain, by means of time and angle-resolved photoemission spectroscopy (TR-ARPES). This method is demonstrated in graphite, where we investigate the dynamics of photo-injected electrons at the K point, detecting quantized energy-loss processes that correspond to the emission of strongly-coupled optical phonons. We show that the observed characteristic timescale for spectral-weight-transfer mediated by phonon-scattering processes allows for the direct quantitative extraction of electron-phonon matrix elements, for specific modes, and with unprecedented sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05572v3-abstract-full').style.display = 'none'; document.getElementById('1902.05572v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 366, 1231 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.00514">arXiv:1902.00514</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.00514">pdf</a>, <a href="https://arxiv.org/format/1902.00514">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.aaw5593">10.1126/sciadv.aaw5593 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Room temperature strain-induced Landau levels in graphene on a wafer-scale platform </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nigge%2C+P">P. Nigge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+A+C">A. C. Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lantagne-Hurtubise%2C+%C3%89">脡. Lantagne-Hurtubise</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%A5rsell%2C+E">E. M氓rsell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Link%2C+S">S. Link</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tom%2C+G">G. Tom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">M. Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">M. Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">S. Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">G. Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Starke%2C+U">U. Starke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guti%C3%A9rrez%2C+C">C. Guti茅rrez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D">D. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burke%2C+S+A">S. A. Burke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franz%2C+M">M. Franz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.00514v2-abstract-short" style="display: inline;"> Graphene is a powerful playground for studying a plethora of quantum phenomena. One of the remarkable properties of graphene arises when it is strained in particular geometries and the electrons behave as if they were under the influence of a magnetic field. Previously, these strain-induced pseudomagnetic fields have been explored on the nano- and micrometer-scale using scanning probe and transpor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.00514v2-abstract-full').style.display = 'inline'; document.getElementById('1902.00514v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.00514v2-abstract-full" style="display: none;"> Graphene is a powerful playground for studying a plethora of quantum phenomena. One of the remarkable properties of graphene arises when it is strained in particular geometries and the electrons behave as if they were under the influence of a magnetic field. Previously, these strain-induced pseudomagnetic fields have been explored on the nano- and micrometer-scale using scanning probe and transport measurements. Heteroepitaxial strain, in contrast, is a wafer-scale engineering method. Here, we show that pseudomagnetic fields can be generated in graphene through wafer-scale epitaxial growth. Shallow triangular nanoprisms in the SiC substrate generate strain-induced uniform fields of 41 T. This enables the observation of strain-induced Landau levels at room temperature, as detected by angle-resolved photoemission spectroscopy, and confirmed by model calculations and scanning tunneling microscopy measurements. Our work demonstrates the feasibility of exploiting strain-induced quantum phases in two-dimensional Dirac materials on a wafer-scale platform, opening the field to new applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.00514v2-abstract-full').style.display = 'none'; document.getElementById('1902.00514v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version as published in Science Advances</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 5, eaaw5593 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.07583">arXiv:1812.07583</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.07583">pdf</a>, <a href="https://arxiv.org/format/1812.07583">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-020-0208-6">10.1038/s41535-020-0208-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of pseudogap from short-range spin-correlations in electron doped cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">F. Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">M. Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Razzoli%2C+E">E. Razzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Day%2C+R+P">R. P. Day</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">M. Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zwartsenberg%2C+B">B. Zwartsenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nigge%2C+P">P. Nigge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">E. H. da Silva Neto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Erb%2C+A">A. Erb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">S. Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mills%2C+A+K">A. K. Mills</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">G. Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giannetti%2C+C">C. Giannetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+D+J">D. J. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.07583v2-abstract-short" style="display: inline;"> Electron interactions are pivotal for defining the electronic structure of quantum materials. In particular, the strong electron Coulomb repulsion is considered the keystone for describing the emergence of exotic and/or ordered phases of quantum matter as disparate as high-temperature superconductivity and charge- or magnetic-order. However, a comprehensive understanding of fundamental electronic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.07583v2-abstract-full').style.display = 'inline'; document.getElementById('1812.07583v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.07583v2-abstract-full" style="display: none;"> Electron interactions are pivotal for defining the electronic structure of quantum materials. In particular, the strong electron Coulomb repulsion is considered the keystone for describing the emergence of exotic and/or ordered phases of quantum matter as disparate as high-temperature superconductivity and charge- or magnetic-order. However, a comprehensive understanding of fundamental electronic properties of quantum materials is often complicated by the appearance of an enigmatic partial suppression of low-energy electronic states, known as the pseudogap. Here we take advantage of ultrafast angle-resolved photoemission spectroscopy to unveil the temperature evolution of the low-energy density of states in the electron-doped cuprate Nd$_{\text{2-x}}$Ce$_{\text{x}}$CuO$_{\text{4}}$, an emblematic system where the pseudogap intertwines with magnetic degrees of freedom. By photoexciting the electronic system across the pseudogap onset temperature T*, we report the direct relation between the momentum-resolved pseudogap spectral features and the spin-correlation length with an unprecedented sensitivity. This transient approach, corroborated by mean field model calculations, allows us to establish the pseudogap in electron-doped cuprates as a precursor to the incipient antiferromagnetic order even when long-range antiferromagnetic correlations are not established, as in the case of optimal doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.07583v2-abstract-full').style.display = 'none'; document.getElementById('1812.07583v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 5, 6 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.06571">arXiv:1810.06571</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.06571">pdf</a>, <a href="https://arxiv.org/format/1810.06571">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ab6eb1">10.1088/1367-2630/ab6eb1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Role of matrix elements in the time-resolved photoemission signal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">F. Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bugini%2C+D">D. Bugini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">M. Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">M. Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Day%2C+R+P">R. P. Day</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Razzoli%2C+E">E. Razzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zwartsenberg%2C+B">B. Zwartsenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">E. H. da Silva Neto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conte%2C+S+d">S. dal Conte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kushwaha%2C+S+K">S. K. Kushwaha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cava%2C+R+J">R. J. Cava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">S. Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mills%2C+A+K">A. K. Mills</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">G. Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carpene%2C+E">E. Carpene</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dallera%2C+C">C. Dallera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giannetti%2C+C">C. Giannetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+D+J">D. J. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cerullo%2C+G">G. Cerullo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.06571v1-abstract-short" style="display: inline;"> Time- and angle-resolved photoemission spectroscopy accesses the ultrafast evolution of quasiparticles and many-body interactions in solid-state systems. However, the momentum- and energy-resolved transient photoemission intensity may not be unambiguously related to the intrinsic relaxation dynamics of photoexcited electrons. In fact, interpretation of the time-dependent photoemission signal can b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.06571v1-abstract-full').style.display = 'inline'; document.getElementById('1810.06571v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.06571v1-abstract-full" style="display: none;"> Time- and angle-resolved photoemission spectroscopy accesses the ultrafast evolution of quasiparticles and many-body interactions in solid-state systems. However, the momentum- and energy-resolved transient photoemission intensity may not be unambiguously related to the intrinsic relaxation dynamics of photoexcited electrons. In fact, interpretation of the time-dependent photoemission signal can be affected by the transient evolution of both the one-electron removal spectral function as well as the photoemission dipole matrix elements. Here we investigate the topological insulator Bi$_{1.1}$Sb$_{0.9}$Te$_2$S to demonstrate, by means of a careful probe-polarization study, the transient contribution of matrix elements to the time-resolved photoemission signal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.06571v1-abstract-full').style.display = 'none'; document.getElementById('1810.06571v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 22 023031 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.02305">arXiv:1707.02305</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.02305">pdf</a>, <a href="https://arxiv.org/format/1707.02305">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-018-0045-1">10.1038/s41563-018-0045-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">F. Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">E. H. da Silva Neto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Razzoli%2C+E">E. Razzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">M. Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peli%2C+S">S. Peli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Day%2C+R+P">R. P. Day</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">M. Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zwartsenberg%2C+B">B. Zwartsenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nigge%2C+P">P. Nigge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+R+D">R. D. Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneeloch%2C+J">J. Schneeloch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">S. Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mills%2C+A+K">A. K. Mills</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">G. Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+D+J">D. J. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giannetti%2C+C">C. Giannetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.02305v2-abstract-short" style="display: inline;"> The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically-gated oxide interfaces, ultracold Fermi atoms, and cuprate supe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02305v2-abstract-full').style.display = 'inline'; document.getElementById('1707.02305v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.02305v2-abstract-full" style="display: none;"> The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically-gated oxide interfaces, ultracold Fermi atoms, and cuprate superconductors, which are characterized by an intrinsically small phase-stiffness, are paradigmatic examples where these tools are having a dramatic impact. Here we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02305v2-abstract-full').style.display = 'none'; document.getElementById('1707.02305v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 9 figures, Main Text and Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.05925">arXiv:1508.05925</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.05925">pdf</a>, <a href="https://arxiv.org/format/1508.05925">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.1510435112">10.1073/pnas.1510435112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for superconductivity in Li-decorated monolayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ludbrook%2C+B">Bart Ludbrook</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">Giorgio Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nigge%2C+P">Pascal Nigge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">Marta Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dvorak%2C+D">David Dvorak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veenstra%2C+C">Christian Veenstra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">Sergey Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+D">Douglas Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dosanjh%2C+P">Pinder Dosanjh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stra%C3%9Fer%2C+C">Carola Stra脽er</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stohr%2C+A">Alexander Stohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forti%2C+S">Stiven Forti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ast%2C+C">Christian Ast</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Starke%2C+U">Ulrich Starke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.05925v2-abstract-short" style="display: inline;"> Monolayer graphene exhibits many spectacular electronic properties, with superconductivity being arguably the most notable exception. It was theoretically proposed that superconductivity might be induced by enhancing the electron-phonon coupling through the decoration of graphene with an alkali adatom superlattice [Profeta et al. Nat. Phys. 8, 131-134 (2012)]. While experiments have indeed demonst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05925v2-abstract-full').style.display = 'inline'; document.getElementById('1508.05925v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.05925v2-abstract-full" style="display: none;"> Monolayer graphene exhibits many spectacular electronic properties, with superconductivity being arguably the most notable exception. It was theoretically proposed that superconductivity might be induced by enhancing the electron-phonon coupling through the decoration of graphene with an alkali adatom superlattice [Profeta et al. Nat. Phys. 8, 131-134 (2012)]. While experiments have indeed demonstrated an adatom-induced enhancement of the electron-phonon coupling, superconductivity has never been observed. Using angle-resolved photoemission spectroscopy (ARPES) we show that lithium deposited on graphene at low temperature strongly modifies the phonon density of states, leading to an enhancement of the electron-phonon coupling of up to $位\!\simeq\!0.58$. On part of the graphene-derived $蟺^*$-band Fermi surface, we then observe the opening of a $螖\!\simeq\!0.9$ meV temperature-dependent pairing gap. This result suggests for the first time, to our knowledge, that Li-decorated monolayer graphene is indeed superconducting with $T_c\!\simeq\!5.9 K$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05925v2-abstract-full').style.display = 'none'; document.getElementById('1508.05925v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted. A high-resolution version with supplementary material can be found at http://qmlab.ubc.ca/ARPES/PUBLICATIONS/Articles/Graphene_Li.pdf</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS 112, 11795 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.1224">arXiv:1401.1224</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.1224">pdf</a>, <a href="https://arxiv.org/format/1401.1224">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.076802">10.1103/PhysRevLett.112.076802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photoelectron spin-polarization-control in the topological insulator Bi2Se3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z+-">Z. -H. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veenstra%2C+C+N">C. N. Veenstra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">S. Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M+P">M. P. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okuda%2C+T">T. Okuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miyamoto%2C+K">K. Miyamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+S+-">S. -Y. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Namatame%2C+H">H. Namatame</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+M">M. Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elfimov%2C+I+S">I. S. Elfimov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.1224v2-abstract-short" style="display: inline;"> We study the manipulation of the photoelectron spin-polarization in Bi$_2$Se$_3$ by spin- and angle-resolved photoemission spectroscopy. General rules are established that enable controlling the spin-polarization of photoemitted electrons via light polarization, sample orientation, and photon energy. We demonstrate the $\pm$100% reversal of a single component of the measured spin-polarization vect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.1224v2-abstract-full').style.display = 'inline'; document.getElementById('1401.1224v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.1224v2-abstract-full" style="display: none;"> We study the manipulation of the photoelectron spin-polarization in Bi$_2$Se$_3$ by spin- and angle-resolved photoemission spectroscopy. General rules are established that enable controlling the spin-polarization of photoemitted electrons via light polarization, sample orientation, and photon energy. We demonstrate the $\pm$100% reversal of a single component of the measured spin-polarization vector upon the rotation of light polarization, as well as a full three-dimensional manipulation by varying experimental configuration and photon energy. While a material-specific density-functional theory analysis is needed for the quantitative description, a minimal two-atomic-layer model qualitatively accounts for the spin response based on the interplay of optical selection rules, photoelectron interference, and topological surface-state complex structure. It follows that photoelectron spin-polarization control is generically achievable in systems with a layer-dependent, entangled spin-orbital texture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.1224v2-abstract-full').style.display = 'none'; document.getElementById('1401.1224v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures. A high-resolution version with supplementary material can be found at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/BiSe_spin_ARPES.pdf</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112, 076802 (2014) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10