CINXE.COM
Velocity - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Velocity - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"15691289-64e1-4a6e-bfa2-0b086e56343d","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Velocity","wgTitle":"Velocity","wgCurRevisionId":1241913199,"wgRevisionId":1241913199,"wgArticleId":20491903,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Wikipedia indefinitely semi-protected pages","Commons category link from Wikidata","Velocity","Motion (physics)","Kinematics","Temporal rates"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Velocity","wgRelevantArticleId":20491903,"wgIsProbablyEditable":false,"wgRelevantPageIsProbablyEditable":false,"wgRestrictionEdit":["autoconfirmed"], "wgRestrictionMove":["autoconfirmed"],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q11465","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.math.popup","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg/1200px-US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="800"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg/800px-US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="533"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg/640px-US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="427"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Velocity - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Velocity"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Velocity"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject page-Velocity rootpage-Velocity skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Velocity" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Velocity" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Velocity" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Velocity" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <button aria-controls="toc-Definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition subsection</span> </button> <ul id="toc-Definition-sublist" class="vector-toc-list"> <li id="toc-Average_velocity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Average_velocity"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Average velocity</span> </div> </a> <ul id="toc-Average_velocity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Instantaneous_velocity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Instantaneous_velocity"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Instantaneous velocity</span> </div> </a> <ul id="toc-Instantaneous_velocity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Difference_between_speed_and_velocity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Difference_between_speed_and_velocity"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Difference between speed and velocity</span> </div> </a> <ul id="toc-Difference_between_speed_and_velocity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Units" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Units"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Units</span> </div> </a> <ul id="toc-Units-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Equation_of_motion" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Equation_of_motion"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Equation of motion</span> </div> </a> <button aria-controls="toc-Equation_of_motion-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Equation of motion subsection</span> </button> <ul id="toc-Equation_of_motion-sublist" class="vector-toc-list"> <li id="toc-Average_velocity_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Average_velocity_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Average velocity</span> </div> </a> <ul id="toc-Average_velocity_2-sublist" class="vector-toc-list"> <li id="toc-Special_cases" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Special_cases"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.1</span> <span>Special cases</span> </div> </a> <ul id="toc-Special_cases-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Relationship_to_acceleration" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relationship_to_acceleration"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Relationship to acceleration</span> </div> </a> <ul id="toc-Relationship_to_acceleration-sublist" class="vector-toc-list"> <li id="toc-Constant_acceleration" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Constant_acceleration"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1</span> <span>Constant acceleration</span> </div> </a> <ul id="toc-Constant_acceleration-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Quantities_that_are_dependent_on_velocity" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Quantities_that_are_dependent_on_velocity"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Quantities that are dependent on velocity</span> </div> </a> <button aria-controls="toc-Quantities_that_are_dependent_on_velocity-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Quantities that are dependent on velocity subsection</span> </button> <ul id="toc-Quantities_that_are_dependent_on_velocity-sublist" class="vector-toc-list"> <li id="toc-Momentum" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Momentum"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Momentum</span> </div> </a> <ul id="toc-Momentum-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kinetic_energy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Kinetic_energy"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Kinetic energy</span> </div> </a> <ul id="toc-Kinetic_energy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Drag_(fluid_resistance)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Drag_(fluid_resistance)"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Drag (fluid resistance)</span> </div> </a> <ul id="toc-Drag_(fluid_resistance)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Escape_velocity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Escape_velocity"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Escape velocity</span> </div> </a> <ul id="toc-Escape_velocity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_Lorentz_factor_of_special_relativity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_Lorentz_factor_of_special_relativity"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>The Lorentz factor of special relativity</span> </div> </a> <ul id="toc-The_Lorentz_factor_of_special_relativity-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Relative_velocity" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relative_velocity"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Relative velocity</span> </div> </a> <button aria-controls="toc-Relative_velocity-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Relative velocity subsection</span> </button> <ul id="toc-Relative_velocity-sublist" class="vector-toc-list"> <li id="toc-Scalar_velocities" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Scalar_velocities"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Scalar velocities</span> </div> </a> <ul id="toc-Scalar_velocities-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Coordinate_systems" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Coordinate_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Coordinate systems</span> </div> </a> <button aria-controls="toc-Coordinate_systems-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Coordinate systems subsection</span> </button> <ul id="toc-Coordinate_systems-sublist" class="vector-toc-list"> <li id="toc-Cartesian_coordinates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cartesian_coordinates"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Cartesian coordinates</span> </div> </a> <ul id="toc-Cartesian_coordinates-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Polar_coordinates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Polar_coordinates"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Polar coordinates</span> </div> </a> <ul id="toc-Polar_coordinates-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Velocity</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 130 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-130" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">130 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Snelheid" title="Snelheid – Afrikaans" lang="af" hreflang="af" data-title="Snelheid" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Geschwindigkeit" title="Geschwindigkeit – Alemannic" lang="gsw" hreflang="gsw" data-title="Geschwindigkeit" data-language-autonym="Alemannisch" data-language-local-name="Alemannic" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8D%8D%E1%8C%A5%E1%8A%90%E1%89%B5" title="ፍጥነት – Amharic" lang="am" hreflang="am" data-title="ፍጥነት" data-language-autonym="አማርኛ" data-language-local-name="Amharic" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-smn mw-list-item"><a href="https://smn.wikipedia.org/wiki/Li%C3%A4htu" title="Liähtu – Inari Sami" lang="smn" hreflang="smn" data-title="Liähtu" data-language-autonym="Anarâškielâ" data-language-local-name="Inari Sami" class="interlanguage-link-target"><span>Anarâškielâ</span></a></li><li class="interlanguage-link interwiki-anp mw-list-item"><a href="https://anp.wikipedia.org/wiki/%E0%A4%B5%E0%A5%87%E0%A4%97" title="वेग – Angika" lang="anp" hreflang="anp" data-title="वेग" data-language-autonym="अंगिका" data-language-local-name="Angika" class="interlanguage-link-target"><span>अंगिका</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B3%D8%B1%D8%B9%D8%A9_%D9%85%D8%AA%D8%AC%D9%87%D8%A9" title="سرعة متجهة – Arabic" lang="ar" hreflang="ar" data-title="سرعة متجهة" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Velocidat" title="Velocidat – Aragonese" lang="an" hreflang="an" data-title="Velocidat" data-language-autonym="Aragonés" data-language-local-name="Aragonese" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%AC%E0%A7%87%E0%A6%97" title="বেগ – Assamese" lang="as" hreflang="as" data-title="বেগ" data-language-autonym="অসমীয়া" data-language-local-name="Assamese" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Velocid%C3%A1" title="Velocidá – Asturian" lang="ast" hreflang="ast" data-title="Velocidá" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%DB%8C%D8%A4%D9%86%D8%A6%DB%8C%D9%84%DB%8C_%D8%B3%D9%88%D8%B1%D8%B9%D8%AA" title="یؤنئیلی سورعت – South Azerbaijani" lang="azb" hreflang="azb" data-title="یؤنئیلی سورعت" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%97%E0%A6%A4%E0%A6%BF%E0%A6%AC%E0%A7%87%E0%A6%97" title="গতিবেগ – Bangla" lang="bn" hreflang="bn" data-title="গতিবেগ" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Sok-t%C5%8D%CD%98" title="Sok-tō͘ – Minnan" lang="nan" hreflang="nan" data-title="Sok-tō͘" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%A2%D0%B8%D2%99%D0%BB%D0%B5%D0%BA" title="Тиҙлек – Bashkir" lang="ba" hreflang="ba" data-title="Тиҙлек" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A1%D0%BA%D0%BE%D1%80%D0%B0%D1%81%D1%86%D1%8C" title="Скорасць – Belarusian" lang="be" hreflang="be" data-title="Скорасць" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A5%D1%83%D1%82%D0%BA%D0%B0%D1%81%D1%8C%D1%86%D1%8C" title="Хуткасьць – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Хуткасьць" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%B5%E0%A5%87%E0%A4%97" title="वेग – Bhojpuri" lang="bh" hreflang="bh" data-title="वेग" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Belosidad" title="Belosidad – Central Bikol" lang="bcl" hreflang="bcl" data-title="Belosidad" data-language-autonym="Bikol Central" data-language-local-name="Central Bikol" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A1%D0%BA%D0%BE%D1%80%D0%BE%D1%81%D1%82" title="Скорост – Bulgarian" lang="bg" hreflang="bg" data-title="Скорост" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bar mw-list-item"><a href="https://bar.wikipedia.org/wiki/Gschwindigkeit" title="Gschwindigkeit – Bavarian" lang="bar" hreflang="bar" data-title="Gschwindigkeit" data-language-autonym="Boarisch" data-language-local-name="Bavarian" class="interlanguage-link-target"><span>Boarisch</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Brzina" title="Brzina – Bosnian" lang="bs" hreflang="bs" data-title="Brzina" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%A5%D1%83%D1%80%D0%B4%D0%B0%D0%BD" title="Хурдан – Russia Buriat" lang="bxr" hreflang="bxr" data-title="Хурдан" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Velocitat" title="Velocitat – Catalan" lang="ca" hreflang="ca" data-title="Velocitat" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A5%C4%83%D0%B2%C4%83%D1%80%D1%82%D0%BB%C4%83%D1%85" title="Хăвăртлăх – Chuvash" lang="cv" hreflang="cv" data-title="Хăвăртлăх" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-ceb mw-list-item"><a href="https://ceb.wikipedia.org/wiki/Tulin_(pisika)" title="Tulin (pisika) – Cebuano" lang="ceb" hreflang="ceb" data-title="Tulin (pisika)" data-language-autonym="Cebuano" data-language-local-name="Cebuano" class="interlanguage-link-target"><span>Cebuano</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Rychlost" title="Rychlost – Czech" lang="cs" hreflang="cs" data-title="Rychlost" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Muchacha" title="Muchacha – Shona" lang="sn" hreflang="sn" data-title="Muchacha" data-language-autonym="ChiShona" data-language-local-name="Shona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Cyflymder" title="Cyflymder – Welsh" lang="cy" hreflang="cy" data-title="Cyflymder" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Hastighed" title="Hastighed – Danish" lang="da" hreflang="da" data-title="Hastighed" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Geschwindigkeit" title="Geschwindigkeit – German" lang="de" hreflang="de" data-title="Geschwindigkeit" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Kiirus" title="Kiirus – Estonian" lang="et" hreflang="et" data-title="Kiirus" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A4%CE%B1%CF%87%CF%8D%CF%84%CE%B7%CF%84%CE%B1" title="Ταχύτητα – Greek" lang="el" hreflang="el" data-title="Ταχύτητα" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-myv mw-list-item"><a href="https://myv.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BB%D0%B5%D0%B2%D0%BA%D1%81" title="Молевкс – Erzya" lang="myv" hreflang="myv" data-title="Молевкс" data-language-autonym="Эрзянь" data-language-local-name="Erzya" class="interlanguage-link-target"><span>Эрзянь</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Velocidad" title="Velocidad – Spanish" lang="es" hreflang="es" data-title="Velocidad" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Vektora_rapido" title="Vektora rapido – Esperanto" lang="eo" hreflang="eo" data-title="Vektora rapido" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-ext mw-list-item"><a href="https://ext.wikipedia.org/wiki/Velocid%C3%A1" title="Velocidá – Extremaduran" lang="ext" hreflang="ext" data-title="Velocidá" data-language-autonym="Estremeñu" data-language-local-name="Extremaduran" class="interlanguage-link-target"><span>Estremeñu</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Abiadura" title="Abiadura – Basque" lang="eu" hreflang="eu" data-title="Abiadura" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B3%D8%B1%D8%B9%D8%AA_%D8%A8%D8%B1%D8%AF%D8%A7%D8%B1%DB%8C" title="سرعت برداری – Persian" lang="fa" hreflang="fa" data-title="سرعت برداری" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Raftaar" title="Raftaar – Fiji Hindi" lang="hif" hreflang="hif" data-title="Raftaar" data-language-autonym="Fiji Hindi" data-language-local-name="Fiji Hindi" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Vecteur_vitesse" title="Vecteur vitesse – French" lang="fr" hreflang="fr" data-title="Vecteur vitesse" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-fy mw-list-item"><a href="https://fy.wikipedia.org/wiki/Faasje" title="Faasje – Western Frisian" lang="fy" hreflang="fy" data-title="Faasje" data-language-autonym="Frysk" data-language-local-name="Western Frisian" class="interlanguage-link-target"><span>Frysk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Treoluas" title="Treoluas – Irish" lang="ga" hreflang="ga" data-title="Treoluas" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gv mw-list-item"><a href="https://gv.wikipedia.org/wiki/Bieauid-jeerit" title="Bieauid-jeerit – Manx" lang="gv" hreflang="gv" data-title="Bieauid-jeerit" data-language-autonym="Gaelg" data-language-local-name="Manx" class="interlanguage-link-target"><span>Gaelg</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Velocidade" title="Velocidade – Galician" lang="gl" hreflang="gl" data-title="Velocidade" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%86%8D%EB%8F%84" title="속도 – Korean" lang="ko" hreflang="ko" data-title="속도" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B1%D6%80%D5%A1%D5%A3%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Արագություն – Armenian" lang="hy" hreflang="hy" data-title="Արագություն" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B5%E0%A5%87%E0%A4%97" title="वेग – Hindi" lang="hi" hreflang="hi" data-title="वेग" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Brzina" title="Brzina – Croatian" lang="hr" hreflang="hr" data-title="Brzina" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Kecepatan" title="Kecepatan – Indonesian" lang="id" hreflang="id" data-title="Kecepatan" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Velocitate" title="Velocitate – Interlingua" lang="ia" hreflang="ia" data-title="Velocitate" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-ie mw-list-item"><a href="https://ie.wikipedia.org/wiki/Velocit%C3%A1" title="Velocitá – Interlingue" lang="ie" hreflang="ie" data-title="Velocitá" data-language-autonym="Interlingue" data-language-local-name="Interlingue" class="interlanguage-link-target"><span>Interlingue</span></a></li><li class="interlanguage-link interwiki-xh mw-list-item"><a href="https://xh.wikipedia.org/wiki/I-velocity" title="I-velocity – Xhosa" lang="xh" hreflang="xh" data-title="I-velocity" data-language-autonym="IsiXhosa" data-language-local-name="Xhosa" class="interlanguage-link-target"><span>IsiXhosa</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Hra%C3%B0i" title="Hraði – Icelandic" lang="is" hreflang="is" data-title="Hraði" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Velocit%C3%A0" title="Velocità – Italian" lang="it" hreflang="it" data-title="Velocità" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%94%D7%99%D7%A8%D7%95%D7%AA" title="מהירות – Hebrew" lang="he" hreflang="he" data-title="מהירות" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-jv mw-list-item"><a href="https://jv.wikipedia.org/wiki/Kacepetan" title="Kacepetan – Javanese" lang="jv" hreflang="jv" data-title="Kacepetan" data-language-autonym="Jawa" data-language-local-name="Javanese" class="interlanguage-link-target"><span>Jawa</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%B5%E0%B3%87%E0%B2%97" title="ವೇಗ – Kannada" lang="kn" hreflang="kn" data-title="ವೇಗ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A1%E1%83%98%E1%83%A9%E1%83%A5%E1%83%90%E1%83%A0%E1%83%94" title="სიჩქარე – Georgian" lang="ka" hreflang="ka" data-title="სიჩქარე" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-ks mw-list-item"><a href="https://ks.wikipedia.org/wiki/%D9%88%DB%8C%D9%96%DA%AF" title="ویٖگ – Kashmiri" lang="ks" hreflang="ks" data-title="ویٖگ" data-language-autonym="कॉशुर / کٲشُر" data-language-local-name="Kashmiri" class="interlanguage-link-target"><span>कॉशुर / کٲشُر</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%96%D1%8B%D0%BB%D0%B4%D0%B0%D0%BC%D0%B4%D1%8B%D2%9B" title="Жылдамдық – Kazakh" lang="kk" hreflang="kk" data-title="Жылдамдық" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-kw mw-list-item"><a href="https://kw.wikipedia.org/wiki/Uskitter" title="Uskitter – Cornish" lang="kw" hreflang="kw" data-title="Uskitter" data-language-autonym="Kernowek" data-language-local-name="Cornish" class="interlanguage-link-target"><span>Kernowek</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Kasimwelekeo" title="Kasimwelekeo – Swahili" lang="sw" hreflang="sw" data-title="Kasimwelekeo" data-language-autonym="Kiswahili" data-language-local-name="Swahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Velosite" title="Velosite – Haitian Creole" lang="ht" hreflang="ht" data-title="Velosite" data-language-autonym="Kreyòl ayisyen" data-language-local-name="Haitian Creole" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Velocitas" title="Velocitas – Latin" lang="la" hreflang="la" data-title="Velocitas" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/%C4%80trums" title="Ātrums – Latvian" lang="lv" hreflang="lv" data-title="Ātrums" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Vektorinis_greitis" title="Vektorinis greitis – Lithuanian" lang="lt" hreflang="lt" data-title="Vektorinis greitis" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Snelheid" title="Snelheid – Limburgish" lang="li" hreflang="li" data-title="Snelheid" data-language-autonym="Limburgs" data-language-local-name="Limburgish" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lfn mw-list-item"><a href="https://lfn.wikipedia.org/wiki/Rapidia_vetoral" title="Rapidia vetoral – Lingua Franca Nova" lang="lfn" hreflang="lfn" data-title="Rapidia vetoral" data-language-autonym="Lingua Franca Nova" data-language-local-name="Lingua Franca Nova" class="interlanguage-link-target"><span>Lingua Franca Nova</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Velocitaa" title="Velocitaa – Lombard" lang="lmo" hreflang="lmo" data-title="Velocitaa" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Sebess%C3%A9g" title="Sebesség – Hungarian" lang="hu" hreflang="hu" data-title="Sebesség" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%91%D1%80%D0%B7%D0%B8%D0%BD%D0%B0" title="Брзина – Macedonian" lang="mk" hreflang="mk" data-title="Брзина" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Hafainganam-pandeha" title="Hafainganam-pandeha – Malagasy" lang="mg" hreflang="mg" data-title="Hafainganam-pandeha" data-language-autonym="Malagasy" data-language-local-name="Malagasy" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%AA%E0%B5%8D%E0%B4%B0%E0%B4%B5%E0%B5%87%E0%B4%97%E0%B4%82" title="പ്രവേഗം – Malayalam" lang="ml" hreflang="ml" data-title="പ്രവേഗം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B5%E0%A5%87%E0%A4%97" title="वेग – Marathi" lang="mr" hreflang="mr" data-title="वेग" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Halaju" title="Halaju – Malay" lang="ms" hreflang="ms" data-title="Halaju" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-min mw-list-item"><a href="https://min.wikipedia.org/wiki/Laju" title="Laju – Minangkabau" lang="min" hreflang="min" data-title="Laju" data-language-autonym="Minangkabau" data-language-local-name="Minangkabau" class="interlanguage-link-target"><span>Minangkabau</span></a></li><li class="interlanguage-link interwiki-cdo mw-list-item"><a href="https://cdo.wikipedia.org/wiki/S%C3%B3k-d%C3%B4" title="Sók-dô – Mindong" lang="cdo" hreflang="cdo" data-title="Sók-dô" data-language-autonym="閩東語 / Mìng-dĕ̤ng-ngṳ̄" data-language-local-name="Mindong" class="interlanguage-link-target"><span>閩東語 / Mìng-dĕ̤ng-ngṳ̄</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%A5%D1%83%D1%80%D0%B4" title="Хурд – Mongolian" lang="mn" hreflang="mn" data-title="Хурд" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%A1%E1%80%9C%E1%80%BB%E1%80%84%E1%80%BA" title="အလျင် – Burmese" lang="my" hreflang="my" data-title="အလျင်" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burmese" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Snelheid" title="Snelheid – Dutch" lang="nl" hreflang="nl" data-title="Snelheid" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%97%E0%A4%A4%E0%A4%BF" title="गति – Nepali" lang="ne" hreflang="ne" data-title="गति" data-language-autonym="नेपाली" data-language-local-name="Nepali" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E9%80%9F%E5%BA%A6" title="速度 – Japanese" lang="ja" hreflang="ja" data-title="速度" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ce mw-list-item"><a href="https://ce.wikipedia.org/wiki/%D0%A1%D0%B8%D1%85%D0%B0%D0%BB%D0%BB%D0%B0" title="Сихалла – Chechen" lang="ce" hreflang="ce" data-title="Сихалла" data-language-autonym="Нохчийн" data-language-local-name="Chechen" class="interlanguage-link-target"><span>Нохчийн</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Faard" title="Faard – Northern Frisian" lang="frr" hreflang="frr" data-title="Faard" data-language-autonym="Nordfriisk" data-language-local-name="Northern Frisian" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Hastighet" title="Hastighet – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Hastighet" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Hastigheit" title="Hastigheit – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Hastigheit" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Velocitat" title="Velocitat – Occitan" lang="oc" hreflang="oc" data-title="Velocitat" data-language-autonym="Occitan" data-language-local-name="Occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Ariitii" title="Ariitii – Oromo" lang="om" hreflang="om" data-title="Ariitii" data-language-autonym="Oromoo" data-language-local-name="Oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Tezlik" title="Tezlik – Uzbek" lang="uz" hreflang="uz" data-title="Tezlik" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B5%E0%A9%87%E0%A8%97" title="ਵੇਗ – Punjabi" lang="pa" hreflang="pa" data-title="ਵੇਗ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D9%88%D9%84%D8%A7%D8%B3%D9%B9%DB%8C" title="ولاسٹی – Western Punjabi" lang="pnb" hreflang="pnb" data-title="ولاسٹی" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%9B%E1%9F%92%E1%9E%94%E1%9E%BF%E1%9E%93" title="ល្បឿន – Khmer" lang="km" hreflang="km" data-title="ល្បឿន" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="Khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Andi" title="Andi – Piedmontese" lang="pms" hreflang="pms" data-title="Andi" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Snelligkeid" title="Snelligkeid – Low German" lang="nds" hreflang="nds" data-title="Snelligkeid" data-language-autonym="Plattdüütsch" data-language-local-name="Low German" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Pr%C4%99dko%C5%9B%C4%87" title="Prędkość – Polish" lang="pl" hreflang="pl" data-title="Prędkość" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Velocidade" title="Velocidade – Portuguese" lang="pt" hreflang="pt" data-title="Velocidade" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Vitez%C4%83" title="Viteză – Romanian" lang="ro" hreflang="ro" data-title="Viteză" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/Utqa_kay" title="Utqa kay – Quechua" lang="qu" hreflang="qu" data-title="Utqa kay" data-language-autonym="Runa Simi" data-language-local-name="Quechua" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-rue mw-list-item"><a href="https://rue.wikipedia.org/wiki/%D0%A8%D0%B2%D1%8B%D0%B4%D0%BA%D0%BE%D1%81%D1%82%D1%8C" title="Швыдкость – Rusyn" lang="rue" hreflang="rue" data-title="Швыдкость" data-language-autonym="Русиньскый" data-language-local-name="Rusyn" class="interlanguage-link-target"><span>Русиньскый</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BA%D0%BE%D1%80%D0%BE%D1%81%D1%82%D1%8C" title="Скорость – Russian" lang="ru" hreflang="ru" data-title="Скорость" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sc badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://sc.wikipedia.org/wiki/Velotzidade" title="Velotzidade – Sardinian" lang="sc" hreflang="sc" data-title="Velotzidade" data-language-autonym="Sardu" data-language-local-name="Sardinian" class="interlanguage-link-target"><span>Sardu</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Shpejt%C3%ABsia_(fizik%C3%AB)" title="Shpejtësia (fizikë) – Albanian" lang="sq" hreflang="sq" data-title="Shpejtësia (fizikë)" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%B4%E0%B7%8A%E2%80%8D%E0%B6%BB%E0%B7%80%E0%B7%9A%E0%B6%9C%E0%B6%BA" title="ප්රවේගය – Sinhala" lang="si" hreflang="si" data-title="ප්රවේගය" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Velocity" title="Velocity – Simple English" lang="en-simple" hreflang="en-simple" data-title="Velocity" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sd mw-list-item"><a href="https://sd.wikipedia.org/wiki/%D9%88%D9%8A%D9%84%D8%A7%D8%B3%D9%BD%D9%8A" title="ويلاسٽي – Sindhi" lang="sd" hreflang="sd" data-title="ويلاسٽي" data-language-autonym="سنڌي" data-language-local-name="Sindhi" class="interlanguage-link-target"><span>سنڌي</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/R%C3%BDchlos%C5%A5_(fyzik%C3%A1lna_veli%C4%8Dina)" title="Rýchlosť (fyzikálna veličina) – Slovak" lang="sk" hreflang="sk" data-title="Rýchlosť (fyzikálna veličina)" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Hitrost" title="Hitrost – Slovenian" lang="sl" hreflang="sl" data-title="Hitrost" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%AE%DB%8E%D8%B1%D8%A7%DB%8C%DB%8C_(%D9%81%DB%8C%D8%B2%DB%8C%DA%A9)" title="خێرایی (فیزیک) – Central Kurdish" lang="ckb" hreflang="ckb" data-title="خێرایی (فیزیک)" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%91%D1%80%D0%B7%D0%B8%D0%BD%D0%B0" title="Брзина – Serbian" lang="sr" hreflang="sr" data-title="Брзина" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Brzina" title="Brzina – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Brzina" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Nopeus" title="Nopeus – Finnish" lang="fi" hreflang="fi" data-title="Nopeus" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Hastighet" title="Hastighet – Swedish" lang="sv" hreflang="sv" data-title="Hastighet" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Tulin" title="Tulin – Tagalog" lang="tl" hreflang="tl" data-title="Tulin" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A4%E0%AE%BF%E0%AE%9A%E0%AF%88%E0%AE%B5%E0%AF%87%E0%AE%95%E0%AE%AE%E0%AF%8D" title="திசைவேகம் – Tamil" lang="ta" hreflang="ta" data-title="திசைவேகம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-kab mw-list-item"><a href="https://kab.wikipedia.org/wiki/Arured_amaway" title="Arured amaway – Kabyle" lang="kab" hreflang="kab" data-title="Arured amaway" data-language-autonym="Taqbaylit" data-language-local-name="Kabyle" class="interlanguage-link-target"><span>Taqbaylit</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%A2%D0%B8%D0%B7%D0%BB%D0%B5%D0%BA" title="Тизлек – Tatar" lang="tt" hreflang="tt" data-title="Тизлек" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%B5%E0%B1%87%E0%B0%97%E0%B0%82" title="వేగం – Telugu" lang="te" hreflang="te" data-title="వేగం" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%84%E0%B8%A7%E0%B8%B2%E0%B8%A1%E0%B9%80%E0%B8%A3%E0%B9%87%E0%B8%A7" title="ความเร็ว – Thai" lang="th" hreflang="th" data-title="ความเร็ว" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%A1%D1%83%D1%80%D1%8A%D0%B0%D1%82" title="Суръат – Tajik" lang="tg" hreflang="tg" data-title="Суръат" data-language-autonym="Тоҷикӣ" data-language-local-name="Tajik" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/H%C4%B1z" title="Hız – Turkish" lang="tr" hreflang="tr" data-title="Hız" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A8%D0%B2%D0%B8%D0%B4%D0%BA%D1%96%D1%81%D1%82%D1%8C" title="Швидкість – Ukrainian" lang="uk" hreflang="uk" data-title="Швидкість" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%88%D9%84%D8%A7%D8%B3%D9%B9%DB%8C" title="ولاسٹی – Urdu" lang="ur" hreflang="ur" data-title="ولاسٹی" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vep mw-list-item"><a href="https://vep.wikipedia.org/wiki/Piguz" title="Piguz – Veps" lang="vep" hreflang="vep" data-title="Piguz" data-language-autonym="Vepsän kel’" data-language-local-name="Veps" class="interlanguage-link-target"><span>Vepsän kel’</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/V%E1%BA%ADn_t%E1%BB%91c" title="Vận tốc – Vietnamese" lang="vi" hreflang="vi" data-title="Vận tốc" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Kib%C3%B5husvektor" title="Kibõhusvektor – Võro" lang="vro" hreflang="vro" data-title="Kibõhusvektor" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E9%80%9F%E5%BA%A6" title="速度 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="速度" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Belosidad" title="Belosidad – Waray" lang="war" hreflang="war" data-title="Belosidad" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E9%80%9F%E5%BA%A6" title="速度 – Wu" lang="wuu" hreflang="wuu" data-title="速度" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%92%D7%99%D7%9B%D7%A7%D7%99%D7%99%D7%98" title="גיכקייט – Yiddish" lang="yi" hreflang="yi" data-title="גיכקייט" data-language-autonym="ייִדיש" data-language-local-name="Yiddish" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%80%9F%E5%BA%A6" title="速度 – Cantonese" lang="yue" hreflang="yue" data-title="速度" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%80%9F%E5%BA%A6" title="速度 – Chinese" lang="zh" hreflang="zh" data-title="速度" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11465#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Velocity" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Velocity" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Velocity"><span>Read</span></a></li><li id="ca-viewsource" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Velocity&action=edit" title="This page is protected. You can view its source [e]" accesskey="e"><span>View source</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Velocity&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Velocity"><span>Read</span></a></li><li id="ca-more-viewsource" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Velocity&action=edit"><span>View source</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Velocity&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Velocity" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Velocity" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Velocity&oldid=1241913199" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Velocity&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Velocity&id=1241913199&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FVelocity"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FVelocity"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Velocity&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Velocity&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Velocity" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11465" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-pp-default" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:Protection_policy#semi" title="This article is semi-protected."><img alt="Page semi-protected" src="//upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/20px-Semi-protection-shackle.svg.png" decoding="async" width="20" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/30px-Semi-protection-shackle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/40px-Semi-protection-shackle.svg.png 2x" data-file-width="512" data-file-height="512" /></a></span></div></div> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Speed and direction of a motion</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about velocity in physics. For other uses, see <a href="/wiki/Velocity_(disambiguation)" class="mw-disambig" title="Velocity (disambiguation)">Velocity (disambiguation)</a>.</div> <p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><table class="infobox"><tbody><tr><th colspan="2" class="infobox-above">Velocity</th></tr><tr><td colspan="2" class="infobox-image"><span typeof="mw:File"><a href="/wiki/File:US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg/260px-US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg" decoding="async" width="260" height="173" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg/390px-US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/40/US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg/520px-US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg 2x" data-file-width="1800" data-file-height="1200" /></a></span><div class="infobox-caption">As a change of direction occurs while the racing cars turn on the curved track, their velocity is not constant even if their speed is.</div></td></tr><tr><th scope="row" class="infobox-label"><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;">Common symbols</div></th><td class="infobox-data"><span class="texhtml"><i>v</i></span>, <span class="texhtml"><b>v</b></span>, <span class="texhtml"><i>v</i></span><span style="position:relative; margin-right:-0.75em; right:0.75em; bottom:0.75em;;"><small>→</small></span>, <span class="texhtml"><i><b>v</b></i></span></td></tr><tr><th scope="row" class="infobox-label"><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;">Other units</div></th><td class="infobox-data"><a href="/wiki/Miles_per_hour" title="Miles per hour">mph</a>, <a href="/wiki/Foot_per_second" title="Foot per second">ft/s</a></td></tr><tr><th scope="row" class="infobox-label">In <a href="/wiki/SI_base_unit" title="SI base unit"><span class="wrap">SI base units</span></a></th><td class="infobox-data"><a href="/wiki/Meter" class="mw-redirect" title="Meter">m</a>/<a href="/wiki/Second" title="Second">s</a></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Dimensional_analysis#Formulation" title="Dimensional analysis">Dimension</a></th><td class="infobox-data"><b>L</b> <b>T</b><sup>−1</sup></td></tr></tbody></table> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks"><tbody><tr><td class="sidebar-pretitle">Part of a series on</td></tr><tr><th class="sidebar-title-with-pretitle" style="padding-left:0.9em;padding-right:0.9em;"><a href="/wiki/Classical_mechanics" title="Classical mechanics">Classical mechanics</a></th></tr><tr><td class="sidebar-image"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textbf {F}}={\frac {d\mathbf {p} }{dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">F</mtext> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textbf {F}}={\frac {d\mathbf {p} }{dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2ad0a6d6780c3abc5247abd82bd8a2249d56ff3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:8.318ex; height:5.509ex;" alt="{\displaystyle {\textbf {F}}={\frac {d\mathbf {p} }{dt}}}"></span><div class="sidebar-caption" style="font-size:90%;padding:0.6em 0;font-style:italic;"><a href="/wiki/Second_law_of_motion" class="mw-redirect" title="Second law of motion">Second law of motion</a></div></td></tr><tr><th class="sidebar-heading" style="font-weight: bold; display:block;margin-bottom:1.0em;"> <div class="hlist"> <ul><li><a href="/wiki/History_of_classical_mechanics" title="History of classical mechanics">History</a></li> <li><a href="/wiki/Timeline_of_classical_mechanics" title="Timeline of classical mechanics">Timeline</a></li> <li><a href="/wiki/List_of_textbooks_on_classical_mechanics_and_quantum_mechanics" title="List of textbooks on classical mechanics and quantum mechanics">Textbooks</a></li></ul> </div></th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="border-bottom: 1px solid black;text-align:center;;color: var(--color-base)">Branches</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0.35em;"><div class="hlist"> <ul><li><a href="/wiki/Applied_mechanics" title="Applied mechanics">Applied</a></li> <li><a href="/wiki/Celestial_mechanics" title="Celestial mechanics">Celestial</a></li> <li><a href="/wiki/Continuum_mechanics" title="Continuum mechanics">Continuum</a></li> <li><a href="/wiki/Analytical_dynamics" class="mw-redirect" title="Analytical dynamics">Dynamics</a></li> <li><a href="/wiki/Classical_field_theory" title="Classical field theory">Field theory</a></li> <li><a href="/wiki/Kinematics" title="Kinematics">Kinematics</a></li> <li><a href="/wiki/Kinetics_(physics)" title="Kinetics (physics)">Kinetics</a></li> <li><a href="/wiki/Statics" title="Statics">Statics</a></li> <li><a href="/wiki/Statistical_mechanics" title="Statistical mechanics">Statistical mechanics</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible"><div class="sidebar-list-title" style="border-bottom: 1px solid black;text-align:center;;color: var(--color-base)">Fundamentals</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0.35em;"><div class="hlist"> <ul><li><a href="/wiki/Acceleration" title="Acceleration">Acceleration</a></li> <li><a href="/wiki/Angular_momentum" title="Angular momentum">Angular momentum</a></li> <li><a href="/wiki/Couple_(mechanics)" title="Couple (mechanics)">Couple</a></li> <li><a href="/wiki/D%27Alembert%27s_principle" title="D'Alembert's principle">D'Alembert's principle</a></li> <li><a href="/wiki/Energy" title="Energy">Energy</a> <ul><li><a href="/wiki/Kinetic_energy#Newtonian_kinetic_energy" title="Kinetic energy">kinetic</a></li> <li><a href="/wiki/Potential_energy" title="Potential energy">potential</a></li></ul></li> <li><a href="/wiki/Force" title="Force">Force</a></li> <li><a href="/wiki/Frame_of_reference" title="Frame of reference">Frame of reference</a></li> <li><a href="/wiki/Inertial_frame_of_reference" title="Inertial frame of reference">Inertial frame of reference</a></li> <li><a href="/wiki/Impulse_(physics)" title="Impulse (physics)">Impulse</a></li> <li><span class="nowrap"><a href="/wiki/Inertia" title="Inertia">Inertia</a> / <a href="/wiki/Moment_of_inertia" title="Moment of inertia">Moment of inertia</a></span></li> <li><a href="/wiki/Mass" title="Mass">Mass</a></li> <li><br /><a href="/wiki/Mechanical_power_(physics)" class="mw-redirect" title="Mechanical power (physics)">Mechanical power</a></li> <li><a href="/wiki/Work_(physics)" title="Work (physics)">Mechanical work</a></li> <li><br /><a href="/wiki/Moment_(physics)" title="Moment (physics)">Moment</a></li> <li><a href="/wiki/Momentum" title="Momentum">Momentum</a></li> <li><a href="/wiki/Space" title="Space">Space</a></li> <li><a href="/wiki/Speed" title="Speed">Speed</a></li> <li><a href="/wiki/Time" title="Time">Time</a></li> <li><a href="/wiki/Torque" title="Torque">Torque</a></li> <li><a class="mw-selflink selflink">Velocity</a></li> <li><a href="/wiki/Virtual_work" title="Virtual work">Virtual work</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="border-bottom: 1px solid black;text-align:center;;color: var(--color-base)">Formulations</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0.35em;"> <ul><li><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><b><a href="/wiki/Newton%27s_laws_of_motion" title="Newton's laws of motion">Newton's laws of motion</a></b></div></li> <li><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><b><a href="/wiki/Analytical_mechanics" title="Analytical mechanics">Analytical mechanics</a></b> <div class="plainlist"><ul><li><a href="/wiki/Lagrangian_mechanics" title="Lagrangian mechanics">Lagrangian mechanics</a></li><li><a href="/wiki/Hamiltonian_mechanics" title="Hamiltonian mechanics">Hamiltonian mechanics</a></li><li><a href="/wiki/Routhian_mechanics" title="Routhian mechanics">Routhian mechanics</a></li><li><a href="/wiki/Hamilton%E2%80%93Jacobi_equation" title="Hamilton–Jacobi equation">Hamilton–Jacobi equation</a></li><li><a href="/wiki/Appell%27s_equation_of_motion" title="Appell's equation of motion">Appell's equation of motion</a></li><li><a href="/wiki/Koopman%E2%80%93von_Neumann_classical_mechanics" title="Koopman–von Neumann classical mechanics">Koopman–von Neumann mechanics</a></li></ul></div></div></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="border-bottom: 1px solid black;text-align:center;;color: var(--color-base)">Core topics</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0.35em;"><div class="hlist"> <ul><li><a href="/wiki/Damping" title="Damping">Damping</a></li> <li><a href="/wiki/Displacement_(geometry)" title="Displacement (geometry)">Displacement</a></li> <li><a href="/wiki/Equations_of_motion" title="Equations of motion">Equations of motion</a></li> <li><a href="/wiki/Euler%27s_laws_of_motion" title="Euler's laws of motion"><span class="wrap">Euler's laws of motion</span></a></li> <li><a href="/wiki/Fictitious_force" title="Fictitious force">Fictitious force</a></li> <li><a href="/wiki/Friction" title="Friction">Friction</a></li> <li><a href="/wiki/Harmonic_oscillator" title="Harmonic oscillator">Harmonic oscillator</a></li></ul> </div> <ul><li><span class="nowrap"><a href="/wiki/Inertial_frame_of_reference" title="Inertial frame of reference">Inertial</a> / <a href="/wiki/Non-inertial_reference_frame" title="Non-inertial reference frame">Non-inertial reference frame</a></span></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Motion" title="Motion">Motion</a> (<a href="/wiki/Linear_motion" title="Linear motion">linear</a>)</li> <li><a href="/wiki/Newton%27s_law_of_universal_gravitation" title="Newton's law of universal gravitation"><span class="wrap">Newton's law of universal gravitation</span></a></li> <li><a href="/wiki/Newton%27s_laws_of_motion" title="Newton's laws of motion">Newton's laws of motion</a></li> <li><a href="/wiki/Relative_velocity" title="Relative velocity">Relative velocity</a></li> <li><a href="/wiki/Rigid_body" title="Rigid body">Rigid body</a> <ul><li><a href="/wiki/Rigid_body_dynamics" title="Rigid body dynamics">dynamics</a></li> <li><a href="/wiki/Euler%27s_equations_(rigid_body_dynamics)" title="Euler's equations (rigid body dynamics)">Euler's equations</a></li></ul></li> <li><a href="/wiki/Simple_harmonic_motion" title="Simple harmonic motion">Simple harmonic motion</a></li> <li><a href="/wiki/Vibration" title="Vibration">Vibration</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="border-bottom: 1px solid black;text-align:center;;color: var(--color-base)"><a href="/wiki/Rotation_around_a_fixed_axis" title="Rotation around a fixed axis">Rotation</a></div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0.35em;"><div class="hlist"> <ul><li><a href="/wiki/Circular_motion" title="Circular motion">Circular motion</a></li> <li><a href="/wiki/Rotating_reference_frame" title="Rotating reference frame">Rotating reference frame</a></li> <li><a href="/wiki/Centripetal_force" title="Centripetal force">Centripetal force</a></li> <li><a href="/wiki/Centrifugal_force" title="Centrifugal force">Centrifugal force</a> <ul><li><a href="/wiki/Reactive_centrifugal_force" title="Reactive centrifugal force">reactive</a></li></ul></li> <li><a href="/wiki/Coriolis_force" title="Coriolis force">Coriolis force</a></li> <li><a href="/wiki/Pendulum_(mechanics)" title="Pendulum (mechanics)">Pendulum</a></li> <li><a href="/wiki/Tangential_speed" title="Tangential speed">Tangential speed</a></li> <li><a href="/wiki/Rotational_frequency" title="Rotational frequency">Rotational frequency</a></li></ul> </div> <ul><li><a href="/wiki/Angular_acceleration" title="Angular acceleration">Angular acceleration</a> / <a href="/wiki/Angular_displacement" title="Angular displacement">displacement</a> / <a href="/wiki/Angular_frequency" title="Angular frequency">frequency</a> / <a href="/wiki/Angular_velocity" title="Angular velocity">velocity</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="border-bottom: 1px solid black;text-align:center;;color: var(--color-base)">Scientists</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0.35em;"><div class="hlist"> <ul><li><a href="/wiki/Johannes_Kepler" title="Johannes Kepler">Kepler</a></li> <li><a href="/wiki/Galileo_Galilei" title="Galileo Galilei">Galileo</a></li> <li><a href="/wiki/Christiaan_Huygens" title="Christiaan Huygens">Huygens</a></li> <li><a href="/wiki/Isaac_Newton" title="Isaac Newton">Newton</a></li> <li><a href="/wiki/Jeremiah_Horrocks" title="Jeremiah Horrocks">Horrocks</a></li> <li><a href="/wiki/Edmond_Halley" title="Edmond Halley">Halley</a></li> <li><a href="/wiki/Pierre_Louis_Maupertuis" title="Pierre Louis Maupertuis">Maupertuis</a></li> <li><a href="/wiki/Daniel_Bernoulli" title="Daniel Bernoulli">Daniel Bernoulli</a></li> <li><a href="/wiki/Johann_Bernoulli" title="Johann Bernoulli">Johann Bernoulli</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Euler</a></li> <li><a href="/wiki/Jean_le_Rond_d%27Alembert" title="Jean le Rond d'Alembert">d'Alembert</a></li> <li><a href="/wiki/Alexis_Clairaut" title="Alexis Clairaut">Clairaut</a></li> <li><a href="/wiki/Joseph-Louis_Lagrange" title="Joseph-Louis Lagrange">Lagrange</a></li> <li><a href="/wiki/Pierre-Simon_Laplace" title="Pierre-Simon Laplace">Laplace</a></li> <li><a href="/wiki/Sim%C3%A9on_Denis_Poisson" title="Siméon Denis Poisson">Poisson</a></li> <li><a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">Hamilton</a></li> <li><a href="/wiki/Carl_Gustav_Jacob_Jacobi" title="Carl Gustav Jacob Jacobi">Jacobi</a></li> <li><a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Cauchy</a></li> <li><a href="/wiki/Edward_Routh" title="Edward Routh">Routh</a></li> <li><a href="/wiki/Joseph_Liouville" title="Joseph Liouville">Liouville</a></li> <li><a href="/wiki/Paul_%C3%89mile_Appell" title="Paul Émile Appell">Appell</a></li> <li><a href="/wiki/Josiah_Willard_Gibbs" title="Josiah Willard Gibbs">Gibbs</a></li> <li><a href="/wiki/Bernard_Koopman" title="Bernard Koopman">Koopman</a></li> <li><a href="/wiki/John_von_Neumann" title="John von Neumann">von Neumann</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-below hlist" style="background-color: transparent; border-color: #A2B8BF"> <ul><li><span class="nowrap"><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/14px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png" decoding="async" width="14" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/21px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/28px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 2x" data-file-width="530" data-file-height="600" /></a></span> </span><a href="/wiki/Portal:Physics" title="Portal:Physics">Physics portal</a></span></li> <li><span class="nowrap"><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Classical_mechanics" title="Category:Classical mechanics">Category</a></span></li></ul></td></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Classical_mechanics" title="Template:Classical mechanics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Classical_mechanics" title="Template talk:Classical mechanics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Classical_mechanics" title="Special:EditPage/Template:Classical mechanics"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p><b>Velocity</b> is the <a href="/wiki/Speed" title="Speed">speed</a> in combination with the direction of <a href="/wiki/Motion" title="Motion">motion</a> of an <a href="/wiki/Physical_object" title="Physical object">object</a>. Velocity is a fundamental concept in <a href="/wiki/Kinematics" title="Kinematics">kinematics</a>, the branch of <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a> that describes the motion of bodies. </p><p>Velocity is a physical <a href="/wiki/Vector_(geometry)" class="mw-redirect" title="Vector (geometry)">vector</a> <a href="/wiki/Physical_quantity" title="Physical quantity">quantity</a>: both magnitude and direction are needed to define it. The <a href="/wiki/Scalar_(physics)" title="Scalar (physics)">scalar</a> <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a> (<a href="/wiki/Magnitude_(mathematics)" title="Magnitude (mathematics)">magnitude</a>) of velocity is called <em>speed</em>, being a coherent derived unit whose quantity is measured in the <a href="/wiki/International_System_of_Units" title="International System of Units">SI</a> (<a href="/wiki/Metric_system" title="Metric system">metric system</a>) as <a href="/wiki/Metres_per_second" class="mw-redirect" title="Metres per second">metres per second</a> (m/s or m⋅s<sup>−1</sup>). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector. If there is a change in speed, direction or both, then the object is said to be undergoing an <i><a href="/wiki/Acceleration" title="Acceleration">acceleration</a></i>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2></div> <div class="mw-heading mw-heading3"><h3 id="Average_velocity">Average velocity</h3></div> <p>The <b>average velocity</b> of an object over a period of time is its <a href="/wiki/Displacement_(geometry)" title="Displacement (geometry)">change in position</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd7783a6d29d2ca4d9f1e0f501c4c6483fc058bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.026ex; height:2.176ex;" alt="{\displaystyle \Delta s}"></span>, divided by the duration of the period, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c28867ecd34e2caed12cf38feadf6a81a7ee542" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.775ex; height:2.176ex;" alt="{\displaystyle \Delta t}"></span>, given mathematically as<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {v}}={\frac {\Delta s}{\Delta t}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>s</mi> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {v}}={\frac {\Delta s}{\Delta t}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f850430d0dfbf91063475e6f7d1fde29b7bc4197" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:8.835ex; height:5.509ex;" alt="{\displaystyle {\bar {v}}={\frac {\Delta s}{\Delta t}}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Instantaneous_velocity">Instantaneous velocity</h3></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Velocity_vs_time_graph.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Velocity_vs_time_graph.svg/266px-Velocity_vs_time_graph.svg.png" decoding="async" width="266" height="270" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Velocity_vs_time_graph.svg/399px-Velocity_vs_time_graph.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Velocity_vs_time_graph.svg/532px-Velocity_vs_time_graph.svg.png 2x" data-file-width="496" data-file-height="504" /></a><figcaption>Example of a velocity vs. time graph, and the relationship between velocity <i><b>v</b></i> on the y-axis, acceleration <i><b>a</b></i> (the three green <a href="/wiki/Tangent" title="Tangent">tangent</a> lines represent the values for acceleration at different points along the curve) and displacement <i><b>s</b></i> (the yellow <a href="/wiki/Area" title="Area">area</a> under the curve.)</figcaption></figure> <p>The <b>instantaneous</b> <b>velocity</b> of an object is the limit average velocity as the time interval approaches zero. At any particular time <span class="texhtml"><i>t</i></span>, it can be calculated as the <a href="/wiki/Derivative" title="Derivative">derivative</a> of the position with respect to time:<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {s}}}{\Delta t}}={\frac {d{\boldsymbol {s}}}{dt}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mrow> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">s</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">s</mi> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {s}}}{\Delta t}}={\frac {d{\boldsymbol {s}}}{dt}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c520da6821aef2c6755d33ae8768522f705bbd4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:20.27ex; height:5.676ex;" alt="{\displaystyle {\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {s}}}{\Delta t}}={\frac {d{\boldsymbol {s}}}{dt}}.}"></span> </p><p>From this derivative equation, in the one-dimensional case it can be seen that the area under a velocity vs. time (<span class="texhtml"><i><b>v</b></i></span> vs. <span class="texhtml"><i>t</i></span> graph) is the displacement, <span class="texhtml"><i><b>s</b></i></span>. In calculus terms, the <a href="/wiki/Integral" title="Integral">integral</a> of the velocity function <span class="texhtml"><i><b>v</b></i>(<i>t</i>)</span> is the displacement function <span class="texhtml"><i><b>s</b></i>(<i>t</i>)</span>. In the figure, this corresponds to the yellow area under the curve. <span class="mwe-math-element" data-qid="Q190291"><a href="/w/index.php?title=Special:MathWikibase&qid=Q190291" style="color:inherit;"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {s}}=\int {\boldsymbol {v}}\ dt.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">s</mi> </mrow> <mo>=</mo> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mtext> </mtext> <mi>d</mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {s}}=\int {\boldsymbol {v}}\ dt.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f162d7c395c914f1ec977aa7e642245db69cff59" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.515ex; height:5.676ex;" alt="{\displaystyle {\boldsymbol {s}}=\int {\boldsymbol {v}}\ dt.}"></a></span> </p><p>Although the concept of an instantaneous velocity might at first seem counter-intuitive, it may be thought of as the velocity that the object would continue to travel at if it stopped accelerating at that moment. </p> <div class="mw-heading mw-heading3"><h3 id="Difference_between_speed_and_velocity">Difference between speed and velocity</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Speed" title="Speed">Speed</a></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Kinematics.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/98/Kinematics.svg/300px-Kinematics.svg.png" decoding="async" width="300" height="181" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/98/Kinematics.svg/450px-Kinematics.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/98/Kinematics.svg/600px-Kinematics.svg.png 2x" data-file-width="524" data-file-height="317" /></a><figcaption>Kinematic quantities of a classical particle: mass <i>m</i>, position <b>r</b>, velocity <b>v</b>, acceleration <b>a</b>.</figcaption></figure> <p>While the terms <i>speed</i> and <i>velocity</i> are often colloquially used interchangeably to connote how fast an object is moving, in scientific terms they are different. Speed, the <a href="/wiki/Scalar_(mathematics)" title="Scalar (mathematics)">scalar</a> magnitude of a velocity vector, denotes only how fast an object is moving, while velocity indicates both an object's speed and direction.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p>To have a <i>constant velocity</i>, an object must have a constant speed in a constant direction. Constant direction constrains the object to motion in a straight path thus, a constant velocity means motion in a straight line at a constant speed. </p><p>For example, a car moving at a constant 20 kilometres per hour in a circular path has a constant speed, but does not have a constant velocity because its direction changes. Hence, the car is considered to be undergoing an acceleration. </p> <div class="mw-heading mw-heading3"><h3 id="Units">Units</h3></div> <p>Since the derivative of the position with respect to time gives the change in position (in <a href="/wiki/Metre" title="Metre">metres</a>) divided by the change in time (in <a href="/wiki/Second" title="Second">seconds</a>), velocity is measured in <a href="/wiki/Metre_per_second" title="Metre per second">metres per second</a> (m/s). </p> <div class="mw-heading mw-heading2"><h2 id="Equation_of_motion">Equation of motion</h2></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Equation_of_motion" class="mw-redirect" title="Equation of motion">Equation of motion</a></div> <div class="mw-heading mw-heading3"><h3 id="Average_velocity_2">Average velocity</h3></div> <p>Velocity is defined as the rate of change of position with respect to time, which may also be referred to as the <i>instantaneous velocity</i> to emphasize the distinction from the average velocity. In some applications the average velocity of an object might be needed, that is to say, the constant velocity that would provide the same resultant displacement as a variable velocity in the same time interval, <span class="texhtml"><b>v</b>(<i>t</i>)</span>, over some time period <span class="texhtml">Δ<i>t</i></span>. Average velocity can be calculated as:<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element" data-qid="Q11465"><a href="/w/index.php?title=Special:MathWikibase&qid=Q11465" style="color:inherit;"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\bar {v}} ={\frac {\Delta \mathbf {x} }{\Delta t}}={\frac {\int _{t_{0}}^{t_{1}}\mathbf {v} (t)dt}{t_{1}-t_{0}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">v</mi> <mo mathvariant="bold" stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>t</mi> </mrow> <mrow> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\bar {v}} ={\frac {\Delta \mathbf {x} }{\Delta t}}={\frac {\int _{t_{0}}^{t_{1}}\mathbf {v} (t)dt}{t_{1}-t_{0}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45ae34e9004440d09fd074cb2726d449fb5d270f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:22.948ex; height:7.009ex;" alt="{\displaystyle \mathbf {\bar {v}} ={\frac {\Delta \mathbf {x} }{\Delta t}}={\frac {\int _{t_{0}}^{t_{1}}\mathbf {v} (t)dt}{t_{1}-t_{0}}}.}"></a></span></dd></dl> <p>The average velocity is always less than or equal to the average speed of an object. This can be seen by realizing that while distance is always strictly increasing, displacement can increase or decrease in magnitude as well as change direction. </p><p>In terms of a displacement-time (<span class="texhtml"><i>x</i></span> vs. <span class="texhtml"><i>t</i></span>) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the <a href="/wiki/Derivative" title="Derivative">slope of the tangent line to the curve at any point</a>, and the average velocity as the slope of the <a href="/wiki/Secant_line" title="Secant line">secant line</a> between two points with <span class="texhtml"><i>t</i></span> coordinates equal to the boundaries of the time period for the average velocity. </p> <div class="mw-heading mw-heading4"><h4 id="Special_cases">Special cases</h4></div> <ul><li>When a particle moves with different uniform speeds <i>v</i><sub>1</sub>, <i>v</i><sub>2</sub>, <i>v</i><sub>3</sub>, ..., <i>v</i><sub><i>n</i></sub> in different time intervals <i>t</i><sub>1</sub>, <i>t</i><sub>2</sub>, <i>t</i><sub>3</sub>, ..., <i>t</i><sub><i>n</i></sub> respectively, then <a href="/wiki/Average_speed" class="mw-redirect" title="Average speed">average speed</a> over the total time of journey is given as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {v}}={v_{1}t_{1}+v_{2}t_{2}+v_{3}t_{3}+\dots +v_{n}t_{n} \over t_{1}+t_{2}+t_{3}+\dots +t_{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {v}}={v_{1}t_{1}+v_{2}t_{2}+v_{3}t_{3}+\dots +v_{n}t_{n} \over t_{1}+t_{2}+t_{3}+\dots +t_{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f2ac44169fda2d73d7a84fb87b76073d10ce3dd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:35.878ex; height:5.509ex;" alt="{\displaystyle {\bar {v}}={v_{1}t_{1}+v_{2}t_{2}+v_{3}t_{3}+\dots +v_{n}t_{n} \over t_{1}+t_{2}+t_{3}+\dots +t_{n}}}"></span></li></ul> <p>If <span class="texhtml"><i>t</i><sub>1</sub> = <i>t</i><sub>2</sub> = <i>t</i><sub>3</sub> = ... = <i>t</i></span>, then average speed is given by the <a href="/wiki/Arithmetic_mean" title="Arithmetic mean">arithmetic mean</a> of the speeds <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {v}}={v_{1}+v_{2}+v_{3}+\dots +v_{n} \over n}={\frac {1}{n}}\sum _{i=1}^{n}{v_{i}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {v}}={v_{1}+v_{2}+v_{3}+\dots +v_{n} \over n}={\frac {1}{n}}\sum _{i=1}^{n}{v_{i}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b5c510d5eb084a170d6b70d161f38a15a4794f8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:39.524ex; height:6.843ex;" alt="{\displaystyle {\bar {v}}={v_{1}+v_{2}+v_{3}+\dots +v_{n} \over n}={\frac {1}{n}}\sum _{i=1}^{n}{v_{i}}}"></span> </p> <ul><li>When a particle moves different distances <i>s</i><sub>1</sub>, <i>s</i><sub>2</sub>, <i>s</i><sub>3</sub>,..., <i>s</i><sub><i>n</i></sub> with speeds <i>v</i><sub>1</sub>, <i>v</i><sub>2</sub>, <i>v</i><sub>3</sub>,..., <i>v</i><sub><i>n</i></sub> respectively, then the average speed of the particle over the total distance is given as<sup id="cite_ref-giba_8-0" class="reference"><a href="#cite_note-giba-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup></li></ul> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {v}}={s_{1}+s_{2}+s_{3}+\dots +s_{n} \over t_{1}+t_{2}+t_{3}+\dots +t_{n}}={{s_{1}+s_{2}+s_{3}+\dots +s_{n}} \over {{s_{1} \over v_{1}}+{s_{2} \over v_{2}}+{s_{3} \over v_{3}}+\dots +{s_{n} \over v_{n}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mfrac> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {v}}={s_{1}+s_{2}+s_{3}+\dots +s_{n} \over t_{1}+t_{2}+t_{3}+\dots +t_{n}}={{s_{1}+s_{2}+s_{3}+\dots +s_{n}} \over {{s_{1} \over v_{1}}+{s_{2} \over v_{2}}+{s_{3} \over v_{3}}+\dots +{s_{n} \over v_{n}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7831e089d1de2b9668771b89e6377a19b995432b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:56.002ex; height:6.676ex;" alt="{\displaystyle {\bar {v}}={s_{1}+s_{2}+s_{3}+\dots +s_{n} \over t_{1}+t_{2}+t_{3}+\dots +t_{n}}={{s_{1}+s_{2}+s_{3}+\dots +s_{n}} \over {{s_{1} \over v_{1}}+{s_{2} \over v_{2}}+{s_{3} \over v_{3}}+\dots +{s_{n} \over v_{n}}}}}"></span> If <span class="texhtml"><i>s</i><sub>1</sub> = <i>s</i><sub>2</sub> = <i>s</i><sub>3</sub> = ... = <i>s</i></span>, then average speed is given by the <a href="/wiki/Harmonic_mean" title="Harmonic mean">harmonic mean</a> of the speeds<sup id="cite_ref-giba_8-1" class="reference"><a href="#cite_note-giba-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {v}}=n\left({1 \over v_{1}}+{1 \over v_{2}}+{1 \over v_{3}}+\dots +{1 \over v_{n}}\right)^{-1}=n\left(\sum _{i=1}^{n}{\frac {1}{v_{i}}}\right)^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>n</mi> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mi>n</mi> <msup> <mrow> <mo>(</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {v}}=n\left({1 \over v_{1}}+{1 \over v_{2}}+{1 \over v_{3}}+\dots +{1 \over v_{n}}\right)^{-1}=n\left(\sum _{i=1}^{n}{\frac {1}{v_{i}}}\right)^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce090c10201d136786a78e23862635769db6a056" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:55.455ex; height:8.009ex;" alt="{\displaystyle {\bar {v}}=n\left({1 \over v_{1}}+{1 \over v_{2}}+{1 \over v_{3}}+\dots +{1 \over v_{n}}\right)^{-1}=n\left(\sum _{i=1}^{n}{\frac {1}{v_{i}}}\right)^{-1}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Relationship_to_acceleration">Relationship to acceleration</h3></div> <p>Although velocity is defined as the rate of change of position, it is often common to start with an expression for an object's <a href="/wiki/Acceleration" title="Acceleration">acceleration</a>. As seen by the three green tangent lines in the figure, an object's instantaneous acceleration at a <a href="/wiki/Point_in_time" class="mw-redirect" title="Point in time">point in time</a> is the <a href="/wiki/Slope" title="Slope">slope</a> of the <a href="/wiki/Tangent" title="Tangent">line tangent</a> to the curve of a <span class="texhtml"><i><b>v</b></i>(<i>t</i>)</span> graph at that point. In other words, instantaneous acceleration is defined as the derivative of velocity with respect to time:<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element" data-qid="Q11376"><a href="/w/index.php?title=Special:MathWikibase&qid=Q11376" style="color:inherit;"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {a}}={\frac {d{\boldsymbol {v}}}{dt}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">a</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {a}}={\frac {d{\boldsymbol {v}}}{dt}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e20f5766521f9cefe67dd72659912f7fe328006" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:8.587ex; height:5.509ex;" alt="{\displaystyle {\boldsymbol {a}}={\frac {d{\boldsymbol {v}}}{dt}}.}"></a></span> </p><p>From there, velocity is expressed as the area under an <span class="texhtml"><i><b>a</b></i>(<i>t</i>)</span> acceleration vs. time graph. As above, this is done using the concept of the integral: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {v}}=\int {\boldsymbol {a}}\ dt.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mo>=</mo> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">a</mi> </mrow> <mtext> </mtext> <mi>d</mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {v}}=\int {\boldsymbol {a}}\ dt.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc962bfefbe3815ab44a4bc515d647f517fd4ade" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.752ex; height:5.676ex;" alt="{\displaystyle {\boldsymbol {v}}=\int {\boldsymbol {a}}\ dt.}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Constant_acceleration">Constant acceleration</h4></div> <p>In the special case of constant acceleration, velocity can be studied using the <a href="/wiki/Equations_of_motion" title="Equations of motion">suvat equations</a>. By considering <b>a</b> as being equal to some arbitrary constant vector, this shows <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {v}}={\boldsymbol {u}}+{\boldsymbol {a}}t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">a</mi> </mrow> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {v}}={\boldsymbol {u}}+{\boldsymbol {a}}t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2383bac190384019d8ac941667388c264b0020f5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.151ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {v}}={\boldsymbol {u}}+{\boldsymbol {a}}t}"></span> with <span class="texhtml"><i><b>v</b></i></span> as the velocity at time <span class="texhtml"><i>t</i></span> and <span class="texhtml"><i><b>u</b></i></span> as the velocity at time <span class="texhtml"><i>t</i> = 0</span>. By combining this equation with the suvat equation <span class="texhtml"><i><b>x</b></i> = <i><b>u</b>t</i> + <i><b>a</b>t</i><sup>2</sup>/2</span>, it is possible to relate the displacement and the average velocity by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {x}}={\frac {({\boldsymbol {u}}+{\boldsymbol {v}})}{2}}t={\boldsymbol {\bar {v}}}t.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mi>t</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">v</mi> <mo mathvariant="bold" stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {x}}={\frac {({\boldsymbol {u}}+{\boldsymbol {v}})}{2}}t={\boldsymbol {\bar {v}}}t.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ff9936117cce56447f1ab8f8282c43dbb5b9651" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.852ex; height:5.676ex;" alt="{\displaystyle {\boldsymbol {x}}={\frac {({\boldsymbol {u}}+{\boldsymbol {v}})}{2}}t={\boldsymbol {\bar {v}}}t.}"></span> It is also possible to derive an expression for the velocity independent of time, known as the <a href="/wiki/Torricelli_equation" class="mw-redirect" title="Torricelli equation">Torricelli equation</a>, as follows: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v^{2}={\boldsymbol {v}}\cdot {\boldsymbol {v}}=({\boldsymbol {u}}+{\boldsymbol {a}}t)\cdot ({\boldsymbol {u}}+{\boldsymbol {a}}t)=u^{2}+2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">a</mi> </mrow> <mi>t</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">a</mi> </mrow> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>t</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">a</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v^{2}={\boldsymbol {v}}\cdot {\boldsymbol {v}}=({\boldsymbol {u}}+{\boldsymbol {a}}t)\cdot ({\boldsymbol {u}}+{\boldsymbol {a}}t)=u^{2}+2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfd7fa70b4698fcd8c12da6ac493c4adc86cfa5d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:55.346ex; height:3.176ex;" alt="{\displaystyle v^{2}={\boldsymbol {v}}\cdot {\boldsymbol {v}}=({\boldsymbol {u}}+{\boldsymbol {a}}t)\cdot ({\boldsymbol {u}}+{\boldsymbol {a}}t)=u^{2}+2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2{\boldsymbol {a}})\cdot {\boldsymbol {x}}=(2{\boldsymbol {a}})\cdot ({\boldsymbol {u}}t+{\tfrac {1}{2}}{\boldsymbol {a}}t^{2})=2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}=v^{2}-u^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">a</mi> </mrow> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">a</mi> </mrow> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> <mi>t</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">a</mi> </mrow> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mi>t</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">a</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2{\boldsymbol {a}})\cdot {\boldsymbol {x}}=(2{\boldsymbol {a}})\cdot ({\boldsymbol {u}}t+{\tfrac {1}{2}}{\boldsymbol {a}}t^{2})=2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}=v^{2}-u^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8712f1af8299e0d02cca662ff168d9b6ec5e6c58" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:58.136ex; height:3.509ex;" alt="{\displaystyle (2{\boldsymbol {a}})\cdot {\boldsymbol {x}}=(2{\boldsymbol {a}})\cdot ({\boldsymbol {u}}t+{\tfrac {1}{2}}{\boldsymbol {a}}t^{2})=2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}=v^{2}-u^{2}}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \therefore v^{2}=u^{2}+2({\boldsymbol {a}}\cdot {\boldsymbol {x}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∴<!-- ∴ --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">a</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \therefore v^{2}=u^{2}+2({\boldsymbol {a}}\cdot {\boldsymbol {x}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37f317b20013b07b6684279ee04df6df143feb43" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.354ex; height:3.176ex;" alt="{\displaystyle \therefore v^{2}=u^{2}+2({\boldsymbol {a}}\cdot {\boldsymbol {x}})}"></span> where <span class="texhtml"><i>v</i> = |<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i><b>v</b></i></span>|</span> etc. </p><p>The above equations are valid for both <a href="/wiki/Newtonian_mechanics" class="mw-redirect" title="Newtonian mechanics">Newtonian mechanics</a> and <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a>. Where Newtonian mechanics and special relativity differ is in how different observers would describe the same situation. In particular, in Newtonian mechanics, all observers agree on the value of t and the transformation rules for position create a situation in which all non-accelerating observers would describe the acceleration of an object with the same values. Neither is true for special relativity. In other words, only relative velocity can be calculated. </p> <div class="mw-heading mw-heading2"><h2 id="Quantities_that_are_dependent_on_velocity">Quantities that are dependent on velocity</h2></div> <div class="mw-heading mw-heading3"><h3 id="Momentum">Momentum</h3></div> <p>In classical mechanics, <a href="/wiki/Newton%27s_laws_of_motion" title="Newton's laws of motion">Newton's second law</a> defines <a href="/wiki/Momentum" title="Momentum">momentum</a>, p, as a vector that is the product of an object's mass and velocity, given mathematically as<span class="mwe-math-element" data-qid="Q41273"><a href="/w/index.php?title=Special:MathWikibase&qid=Q41273" style="color:inherit;"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {p}}=m{\boldsymbol {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">p</mi> </mrow> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {p}}=m{\boldsymbol {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0403efd1c19022e2a513bdedf3dd28c2bfac6529" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.052ex; width:7.906ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {p}}=m{\boldsymbol {v}}}"></a></span>where <i>m</i> is the mass of the object. </p> <div class="mw-heading mw-heading3"><h3 id="Kinetic_energy">Kinetic energy</h3></div> <p>The <a href="/wiki/Kinetic_energy" title="Kinetic energy">kinetic energy</a> of a moving object is dependent on its velocity and is given by the equation<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><span class="mwe-math-element" data-qid="Q46276"><a href="/w/index.php?title=Special:MathWikibase&qid=Q46276" style="color:inherit;"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\text{k}}={\tfrac {1}{2}}mv^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>k</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>m</mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{\text{k}}={\tfrac {1}{2}}mv^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82c6f8ceda1650271df82f27287811c32c629a68" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:11.794ex; height:3.509ex;" alt="{\displaystyle E_{\text{k}}={\tfrac {1}{2}}mv^{2}}"></a></span>where <i>E</i><sub>k</sub> is the kinetic energy. Kinetic energy is a scalar quantity as it depends on the square of the velocity. </p> <div class="mw-heading mw-heading3"><h3 id="Drag_(fluid_resistance)"><span id="Drag_.28fluid_resistance.29"></span>Drag (fluid resistance)</h3></div> <p>In <a href="/wiki/Fluid_dynamics" title="Fluid dynamics">fluid dynamics</a>, <a href="/wiki/Drag_(physics)" title="Drag (physics)">drag</a> is a force acting opposite to the relative motion of any object moving with respect to a surrounding fluid. The drag force, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{D}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{D}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac0e98e9397b14b2f9399967a0c2154fa2c14d69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.088ex; height:2.509ex;" alt="{\displaystyle F_{D}}"></span>, is dependent on the square of velocity and is given as<span class="mwe-math-element" data-qid="Q9300786"><a href="/w/index.php?title=Special:MathWikibase&qid=Q9300786" style="color:inherit;"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{D}\,=\,{\tfrac {1}{2}}\,\rho \,v^{2}\,C_{D}\,A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mspace width="thinmathspace" /> <mi>ρ<!-- ρ --></mi> <mspace width="thinmathspace" /> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{D}\,=\,{\tfrac {1}{2}}\,\rho \,v^{2}\,C_{D}\,A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b3bf12f95f6d0174755a9248ba34e638cf90310" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:18.548ex; height:3.509ex;" alt="{\displaystyle F_{D}\,=\,{\tfrac {1}{2}}\,\rho \,v^{2}\,C_{D}\,A}"></a></span>where </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ρ<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> is the <a href="/wiki/Density" title="Density">density</a> of the fluid,<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> is the speed of the object relative to the fluid,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> is the <a href="/wiki/Cross_section_(geometry)" title="Cross section (geometry)">cross sectional area</a>, and</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{D}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{D}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b0d15598a7c5085c97643aeaa00dcaa98a23975" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.255ex; height:2.509ex;" alt="{\displaystyle C_{D}}"></span> is the <a href="/wiki/Drag_coefficient" title="Drag coefficient">drag coefficient</a> – a <a href="/wiki/Dimensionless_number" class="mw-redirect" title="Dimensionless number">dimensionless number</a>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Escape_velocity">Escape velocity</h3></div> <p><a href="/wiki/Escape_velocity" title="Escape velocity">Escape velocity</a> is the minimum speed a ballistic object needs to escape from a massive body such as Earth. It represents the kinetic energy that, when added to the object's <a href="/wiki/Gravitational_energy" title="Gravitational energy">gravitational potential energy</a> (which is always negative), is equal to zero. The general formula for the escape velocity of an object at a distance <i>r</i> from the center of a planet with mass <i>M</i> is<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{\text{e}}={\sqrt {\frac {2GM}{r}}}={\sqrt {2gr}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>e</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mn>2</mn> <mi>G</mi> <mi>M</mi> </mrow> <mi>r</mi> </mfrac> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>g</mi> <mi>r</mi> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{\text{e}}={\sqrt {\frac {2GM}{r}}}={\sqrt {2gr}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf5f7091703c75b27b9e16afc50a423826172dc2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.176ex; height:6.343ex;" alt="{\displaystyle v_{\text{e}}={\sqrt {\frac {2GM}{r}}}={\sqrt {2gr}},}"></span>where <i>G</i> is the <a href="/wiki/Gravitational_constant" title="Gravitational constant">gravitational constant</a> and <i>g</i> is the <a href="/wiki/Gravitational_acceleration" title="Gravitational acceleration">gravitational acceleration</a>. The escape velocity from Earth's surface is about 11 200 m/s, and is irrespective of the direction of the object. This makes "escape velocity" somewhat of a misnomer, as the more correct term would be "escape speed": any object attaining a velocity of that magnitude, irrespective of atmosphere, will leave the vicinity of the base body as long as it does not intersect with something in its path. </p> <div class="mw-heading mw-heading3"><h3 id="The_Lorentz_factor_of_special_relativity">The Lorentz factor of special relativity</h3></div> <p>In <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a>, the dimensionless <a href="/wiki/Lorentz_factor" title="Lorentz factor">Lorentz factor</a> appears frequently, and is given by<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><span class="mwe-math-element" data-qid="Q599404"><a href="/w/index.php?title=Special:MathWikibase&qid=Q599404" style="color:inherit;"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma ={\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma ={\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abacf009fa4db767f015172584c8fc89e7725745" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:13.989ex; height:8.009ex;" alt="{\displaystyle \gamma ={\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}"></a></span>where γ is the Lorentz factor and <i>c</i> is the speed of light. </p> <div class="mw-heading mw-heading2"><h2 id="Relative_velocity">Relative velocity</h2></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Relative_velocity" title="Relative velocity">Relative velocity</a></div> <p><i>Relative velocity</i> is a measurement of velocity between two objects as determined in a single coordinate system. Relative velocity is fundamental in both classical and modern physics, since many systems in physics deal with the relative motion of two or more particles. </p><p>Consider an object A moving with velocity <a href="/wiki/Vector_(geometry)" class="mw-redirect" title="Vector (geometry)">vector</a> <i><b>v</b></i> and an object B with velocity vector <i><b>w</b></i>; these <i>absolute velocities</i> are typically expressed in the same <a href="/wiki/Inertial_reference_frame" class="mw-redirect" title="Inertial reference frame">inertial reference frame</a>. Then, the velocity of object A <em>relative to</em> object B is defined as the difference of the two velocity vectors: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {v}}_{A{\text{ relative to }}B}={\boldsymbol {v}}-{\boldsymbol {w}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> relative to </mtext> </mrow> <mi>B</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">w</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {v}}_{A{\text{ relative to }}B}={\boldsymbol {v}}-{\boldsymbol {w}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/689fc010646bee4f8e33d494e8cfc14aa48f23aa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.771ex; height:2.343ex;" alt="{\displaystyle {\boldsymbol {v}}_{A{\text{ relative to }}B}={\boldsymbol {v}}-{\boldsymbol {w}}}"></span> Similarly, the relative velocity of object B moving with velocity <i><b>w</b></i>, relative to object A moving with velocity <i><b>v</b></i> is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {v}}_{B{\text{ relative to }}A}={\boldsymbol {w}}-{\boldsymbol {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> relative to </mtext> </mrow> <mi>A</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">w</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {v}}_{B{\text{ relative to }}A}={\boldsymbol {w}}-{\boldsymbol {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbcc6df6ba3093f9c27e09c9ecfb127b9a9c0181" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.771ex; height:2.343ex;" alt="{\displaystyle {\boldsymbol {v}}_{B{\text{ relative to }}A}={\boldsymbol {w}}-{\boldsymbol {v}}}"></span> Usually, the inertial frame chosen is that in which the latter of the two mentioned objects is in rest. </p><p>In Newtonian mechanics, the relative velocity is independent of the chosen inertial reference frame. This is not the case anymore with <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a> in which velocities depend on the choice of reference frame. </p> <div class="mw-heading mw-heading3"><h3 id="Scalar_velocities">Scalar velocities</h3></div> <p>In the one-dimensional case,<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> the velocities are scalars and the equation is either: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{\text{rel}}=v-(-w),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rel</mtext> </mrow> </msub> <mo>=</mo> <mi>v</mi> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{\text{rel}}=v-(-w),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab97e20572220b7ae089e956816bbe16838f5d07" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.187ex; height:2.843ex;" alt="{\displaystyle v_{\text{rel}}=v-(-w),}"></span> if the two objects are moving in opposite directions, or: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{\text{rel}}=v-(+w),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rel</mtext> </mrow> </msub> <mo>=</mo> <mi>v</mi> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mo>+</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{\text{rel}}=v-(+w),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0e2e942a347349b1681fe0d6a1be0369cd46e9f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.187ex; height:2.843ex;" alt="{\displaystyle v_{\text{rel}}=v-(+w),}"></span> if the two objects are moving in the same direction. </p> <div class="mw-heading mw-heading2"><h2 id="Coordinate_systems">Coordinate systems</h2></div> <div class="mw-heading mw-heading3"><h3 id="Cartesian_coordinates">Cartesian coordinates</h3></div> <p>In multi-dimensional <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">Cartesian coordinate systems</a>, velocity is broken up into components that correspond with each dimensional axis of the coordinate system. In a two-dimensional system, where there is an x-axis and a y-axis, corresponding velocity components are defined as<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{x}=dx/dt,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mi>d</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{x}=dx/dt,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/990b69861d1b471ed75032030271307365579906" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.809ex; height:2.843ex;" alt="{\displaystyle v_{x}=dx/dt,}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{y}=dy/dt.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mi>d</mi> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{y}=dy/dt.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a8911e12ac0214e6a182fb56fda12e69b90745" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.512ex; height:3.009ex;" alt="{\displaystyle v_{y}=dy/dt.}"></span> </p><p>The two-dimensional velocity vector is then defined as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textbf {v}}=<v_{x},v_{y}>}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">v</mtext> </mrow> </mrow> <mo>=<</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textbf {v}}=<v_{x},v_{y}>}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11382280e308298929d18b353c78797992ee3193" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.282ex; height:2.509ex;" alt="{\displaystyle {\textbf {v}}=<v_{x},v_{y}>}"></span>. The magnitude of this vector represents speed and is found by the <a href="/wiki/Euclidean_distance" title="Euclidean distance">distance formula</a> as </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |v|={\sqrt {v_{x}^{2}+v_{y}^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |v|={\sqrt {v_{x}^{2}+v_{y}^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8095dda9427f5fdf1977726389ed2f1792d45443" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:15.813ex; height:4.843ex;" alt="{\displaystyle |v|={\sqrt {v_{x}^{2}+v_{y}^{2}}}.}"></span> </p><p>In three-dimensional systems where there is an additional z-axis, the corresponding velocity component is defined as </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{z}=dz/dt.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mi>d</mi> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{z}=dz/dt.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e10c44d48a38e2e95b16b0cf9035474922d461bb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.397ex; height:2.843ex;" alt="{\displaystyle v_{z}=dz/dt.}"></span> </p><p>The three-dimensional velocity vector is defined as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textbf {v}}=<v_{x},v_{y},v_{z}>}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">v</mtext> </mrow> </mrow> <mo>=<</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textbf {v}}=<v_{x},v_{y},v_{z}>}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3929b09cbcc5c3826393f3ec9c326113715e2e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.445ex; height:2.509ex;" alt="{\displaystyle {\textbf {v}}=<v_{x},v_{y},v_{z}>}"></span> with its magnitude also representing speed and being determined by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |v|={\sqrt {v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |v|={\sqrt {v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce505695e75f8d9433d3ae3f75ce220d1253ae6e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.835ex; height:4.843ex;" alt="{\displaystyle |v|={\sqrt {v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}}.}"></span> </p><p>While some textbooks use subscript notation to define Cartesian components of velocity, others use <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span> for the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>-, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>-axes respectively.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Polar_coordinates">Polar coordinates</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Circular_motion#In_polar_coordinates" title="Circular motion">Circular_motion § In_polar_coordinates</a>; and <a href="/wiki/Radial,_transverse,_normal" class="mw-redirect" title="Radial, transverse, normal">Radial, transverse, normal</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Radial_and_tangential.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/81/Radial_and_tangential.svg/180px-Radial_and_tangential.svg.png" decoding="async" width="180" height="360" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/81/Radial_and_tangential.svg/270px-Radial_and_tangential.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/81/Radial_and_tangential.svg/360px-Radial_and_tangential.svg.png 2x" data-file-width="200" data-file-height="400" /></a><figcaption>Representation of radial and tangential components of velocity at different moments of linear motion with constant velocity of the object around an observer O (it corresponds, for example, to the passage of a car on a straight street around a pedestrian standing on the sidewalk). The radial component can be observed due to the <a href="/wiki/Doppler_effect" title="Doppler effect">Doppler effect</a>, the tangential component causes visible changes of the position of the object.</figcaption></figure> <p>In <a href="/wiki/Polar_coordinate_system" title="Polar coordinate system">polar coordinates</a>, a two-dimensional velocity is described by a <i><a href="/wiki/Radial_velocity" title="Radial velocity">radial velocity</a></i>, defined as the component of velocity away from or toward the origin, and a <i>transverse velocity</i>, perpendicular to the radial one.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> Both arise from <a href="/wiki/Angular_velocity" title="Angular velocity">angular velocity</a>, which is the rate of rotation about the origin (with positive quantities representing counter-clockwise rotation and negative quantities representing clockwise rotation, in a right-handed coordinate system). </p><p>The radial and traverse velocities can be derived from the Cartesian velocity and displacement vectors by decomposing the velocity vector into radial and transverse components. The <a href="/wiki/Transversality_(mathematics)" title="Transversality (mathematics)">transverse</a> velocity is the component of velocity along a circle centered at the origin. <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {v}}={\boldsymbol {v}}_{T}+{\boldsymbol {v}}_{R}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {v}}={\boldsymbol {v}}_{T}+{\boldsymbol {v}}_{R}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db5135b2eec7c55ccca8ee11c24c925548f3b7d5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.762ex; height:2.343ex;" alt="{\displaystyle {\boldsymbol {v}}={\boldsymbol {v}}_{T}+{\boldsymbol {v}}_{R}}"></span> where </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {v}}_{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {v}}_{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43c40e468c9cb22f80dec9b4d32e7be3e30596cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.707ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {v}}_{T}}"></span> is the transverse velocity</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {v}}_{R}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {v}}_{R}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddd6bf6e6f2f67300cc226ed6be4f0e26c6b2f86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.798ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {v}}_{R}}"></span> is the radial velocity.</li></ul> <p>The <i>radial speed</i> (or magnitude of the radial velocity) is the <a href="/wiki/Dot_product" title="Dot product">dot product</a> of the velocity vector and the unit vector in the radial direction. <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{R}={\frac {{\boldsymbol {v}}\cdot {\boldsymbol {r}}}{\left|{\boldsymbol {r}}\right|}}={\boldsymbol {v}}\cdot {\hat {\boldsymbol {r}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">r</mi> </mrow> </mrow> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">r</mi> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">r</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{R}={\frac {{\boldsymbol {v}}\cdot {\boldsymbol {r}}}{\left|{\boldsymbol {r}}\right|}}={\boldsymbol {v}}\cdot {\hat {\boldsymbol {r}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80fb6b950e94f3ff2837e532047a2f9773ac06ef" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.209ex; height:5.509ex;" alt="{\displaystyle v_{R}={\frac {{\boldsymbol {v}}\cdot {\boldsymbol {r}}}{\left|{\boldsymbol {r}}\right|}}={\boldsymbol {v}}\cdot {\hat {\boldsymbol {r}}}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6a5e169814762d75ef0dd3a3d0bc99b4a5a06e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {r}}}"></span> is position and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\boldsymbol {r}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">r</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\boldsymbol {r}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c458bca4da5e11f38bc2199b9a6dde50e43d0918" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.345ex; height:2.343ex;" alt="{\displaystyle {\hat {\boldsymbol {r}}}}"></span> is the radial direction. </p><p>The transverse speed (or magnitude of the transverse velocity) is the magnitude of the <a href="/wiki/Cross_product" title="Cross product">cross product</a> of the unit vector in the radial direction and the velocity vector. It is also the dot product of velocity and transverse direction, or the product of the <a href="/wiki/Angular_speed" class="mw-redirect" title="Angular speed">angular speed</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> and the radius (the magnitude of the position). <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{T}={\frac {|{\boldsymbol {r}}\times {\boldsymbol {v}}|}{|{\boldsymbol {r}}|}}={\boldsymbol {v}}\cdot {\hat {\boldsymbol {t}}}=\omega |{\boldsymbol {r}}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">r</mi> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">t</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{T}={\frac {|{\boldsymbol {r}}\times {\boldsymbol {v}}|}{|{\boldsymbol {r}}|}}={\boldsymbol {v}}\cdot {\hat {\boldsymbol {t}}}=\omega |{\boldsymbol {r}}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee965e67e15e37459eb2b374f49017d4771c6540" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:27.682ex; height:6.509ex;" alt="{\displaystyle v_{T}={\frac {|{\boldsymbol {r}}\times {\boldsymbol {v}}|}{|{\boldsymbol {r}}|}}={\boldsymbol {v}}\cdot {\hat {\boldsymbol {t}}}=\omega |{\boldsymbol {r}}|}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega ={\frac {|{\boldsymbol {r}}\times {\boldsymbol {v}}|}{|{\boldsymbol {r}}|^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">r</mi> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">r</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega ={\frac {|{\boldsymbol {r}}\times {\boldsymbol {v}}|}{|{\boldsymbol {r}}|^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdfa7e988c3d9a919762eed73902a00717ca2627" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:12.709ex; height:6.843ex;" alt="{\displaystyle \omega ={\frac {|{\boldsymbol {r}}\times {\boldsymbol {v}}|}{|{\boldsymbol {r}}|^{2}}}.}"></span> </p><p><a href="/wiki/Angular_momentum" title="Angular momentum">Angular momentum</a> in scalar form is the mass times the distance to the origin times the transverse velocity, or equivalently, the mass times the distance squared times the angular speed. The sign convention for angular momentum is the same as that for angular velocity. <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=mrv_{T}=mr^{2}\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mi>m</mi> <mi>r</mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> <mo>=</mo> <mi>m</mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=mrv_{T}=mr^{2}\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/240389e39df12f106643f870682e7ea86929326e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.975ex; height:3.009ex;" alt="{\displaystyle L=mrv_{T}=mr^{2}\omega }"></span> where </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> is mass</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=|{\boldsymbol {r}}|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=|{\boldsymbol {r}}|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2793c314e3d4c0ecd89d4c18ecb53ed970aea6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.317ex; height:2.843ex;" alt="{\displaystyle r=|{\boldsymbol {r}}|.}"></span></li></ul> <p>The expression <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mr^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle mr^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddd9d0ea2911509b014b72a7b536acb7376cb455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.143ex; height:2.676ex;" alt="{\displaystyle mr^{2}}"></span> is known as <a href="/wiki/Moment_of_inertia" title="Moment of inertia">moment of inertia</a>. If forces are in the radial direction only with an inverse square dependence, as in the case of a gravitational <a href="/wiki/Orbit" title="Orbit">orbit</a>, angular momentum is constant, and transverse speed is inversely proportional to the distance, angular speed is inversely proportional to the distance squared, and the rate at which area is swept out is constant. These relations are known as <a href="/wiki/Kepler%27s_laws_of_planetary_motion" title="Kepler's laws of planetary motion">Kepler's laws of planetary motion</a>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 30em;"> <ul><li><a href="/wiki/Four-velocity" title="Four-velocity">Four-velocity</a> (relativistic version of velocity for <a href="/wiki/Minkowski_spacetime" class="mw-redirect" title="Minkowski spacetime">Minkowski spacetime</a>)</li> <li><a href="/wiki/Group_velocity" title="Group velocity">Group velocity</a></li> <li><a href="/wiki/Hypervelocity" title="Hypervelocity">Hypervelocity</a></li> <li><a href="/wiki/Phase_velocity" title="Phase velocity">Phase velocity</a></li> <li><a href="/wiki/Proper_velocity" title="Proper velocity">Proper velocity</a> (in relativity, using traveler time instead of observer time)</li> <li><a href="/wiki/Rapidity" title="Rapidity">Rapidity</a> (a version of velocity additive at relativistic speeds)</li> <li><a href="/wiki/Terminal_velocity" title="Terminal velocity">Terminal velocity</a></li> <li><a href="/wiki/Velocity_field" class="mw-redirect" title="Velocity field">Velocity field</a></li> <li><a href="/wiki/Velocity_vs._time_graph" class="mw-redirect" title="Velocity vs. time graph">Velocity vs. time graph</a></li></ul></div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2></div> <ul><li>Robert Resnick and Jearl Walker, <i>Fundamentals of Physics</i>, Wiley; 7 Sub edition (June 16, 2004). <style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-23231-9" title="Special:BookSources/0-471-23231-9">0-471-23231-9</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.feynmanlectures.caltech.edu/I_08.html">"The Feynman Lectures on Physics Vol. I Ch. 8: Motion"</a>. <i>www.feynmanlectures.caltech.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-01-05</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.feynmanlectures.caltech.edu&rft.atitle=The+Feynman+Lectures+on+Physics+Vol.+I+Ch.+8%3A+Motion&rft_id=https%3A%2F%2Fwww.feynmanlectures.caltech.edu%2FI_08.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVelocity" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_HallidayRobert_ResnickJearl_Walker2021" class="citation book cs1">David Halliday; Robert Resnick; Jearl Walker (2021). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=s5dDEAAAQBAJ"><i>Fundamentals of Physics, Extended</i></a> (12th ed.). John Wiley & Sons. p. 71. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-119-77351-1" title="Special:BookSources/978-1-119-77351-1"><bdi>978-1-119-77351-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamentals+of+Physics%2C+Extended&rft.pages=71&rft.edition=12th&rft.pub=John+Wiley+%26+Sons&rft.date=2021&rft.isbn=978-1-119-77351-1&rft.au=David+Halliday&rft.au=Robert+Resnick&rft.au=Jearl+Walker&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Ds5dDEAAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVelocity" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=s5dDEAAAQBAJ&pg=PA71">Extract of page 71</a></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRichard_P._OlenickTom_M._ApostolDavid_L._Goodstein2008" class="citation book cs1">Richard P. Olenick; Tom M. Apostol; David L. Goodstein (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=xMWwTpn53KsC"><i>The Mechanical Universe: Introduction to Mechanics and Heat</i></a> (illustrated, reprinted ed.). Cambridge University Press. p. 84. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-71592-8" title="Special:BookSources/978-0-521-71592-8"><bdi>978-0-521-71592-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Mechanical+Universe%3A+Introduction+to+Mechanics+and+Heat&rft.pages=84&rft.edition=illustrated%2C+reprinted&rft.pub=Cambridge+University+Press&rft.date=2008&rft.isbn=978-0-521-71592-8&rft.au=Richard+P.+Olenick&rft.au=Tom+M.+Apostol&rft.au=David+L.+Goodstein&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DxMWwTpn53KsC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVelocity" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=xMWwTpn53KsC&pg=PA84">Extract of page 84</a></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMichael_J._Cardamone2007" class="citation book cs1">Michael J. Cardamone (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=LRsCK8nVueIC"><i>Fundamental Concepts of Physics</i></a>. Universal-Publishers. p. 5. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-59942-433-0" title="Special:BookSources/978-1-59942-433-0"><bdi>978-1-59942-433-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamental+Concepts+of+Physics&rft.pages=5&rft.pub=Universal-Publishers&rft.date=2007&rft.isbn=978-1-59942-433-0&rft.au=Michael+J.+Cardamone&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DLRsCK8nVueIC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVelocity" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=LRsCK8nVueIC&pg=PA5">Extract of page 5</a></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJerry_D._WilsonAnthony_J._BuffaBo_Lou2022" class="citation book cs1">Jerry D. Wilson; Anthony J. Buffa; Bo Lou (2022). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=pJ9hEAAAQBAJ"><i>College Physics Essentials, Eighth Edition (Two-Volume Set)</i></a> (illustrated ed.). CRC Press. p. 40. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-351-12991-6" title="Special:BookSources/978-1-351-12991-6"><bdi>978-1-351-12991-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=College+Physics+Essentials%2C+Eighth+Edition+%28Two-Volume+Set%29&rft.pages=40&rft.edition=illustrated&rft.pub=CRC+Press&rft.date=2022&rft.isbn=978-1-351-12991-6&rft.au=Jerry+D.+Wilson&rft.au=Anthony+J.+Buffa&rft.au=Bo+Lou&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DpJ9hEAAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVelocity" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=pJ9hEAAAQBAJ&pg=PA40">Extract of page 40</a></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_HallidayRobert_ResnickJearl_Walker2021" class="citation book cs1">David Halliday; Robert Resnick; Jearl Walker (2021). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=s5dDEAAAQBAJ"><i>Fundamentals of Physics, Extended</i></a> (12th ed.). John Wiley & Sons. p. 70. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-119-77351-1" title="Special:BookSources/978-1-119-77351-1"><bdi>978-1-119-77351-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamentals+of+Physics%2C+Extended&rft.pages=70&rft.edition=12th&rft.pub=John+Wiley+%26+Sons&rft.date=2021&rft.isbn=978-1-119-77351-1&rft.au=David+Halliday&rft.au=Robert+Resnick&rft.au=Jearl+Walker&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Ds5dDEAAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVelocity" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=s5dDEAAAQBAJ&pg=PA70">Extract of page 70</a></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAdrian_Banner2007" class="citation book cs1">Adrian Banner (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OrumDwAAQBAJ"><i>The Calculus Lifesaver: All the Tools You Need to Excel at Calculus</i></a> (illustrated ed.). Princeton University Press. p. 350. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-691-13088-0" title="Special:BookSources/978-0-691-13088-0"><bdi>978-0-691-13088-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Calculus+Lifesaver%3A+All+the+Tools+You+Need+to+Excel+at+Calculus&rft.pages=350&rft.edition=illustrated&rft.pub=Princeton+University+Press&rft.date=2007&rft.isbn=978-0-691-13088-0&rft.au=Adrian+Banner&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOrumDwAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVelocity" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OrumDwAAQBAJ&pg=PA350">Extract of page 350</a></span> </li> <li id="cite_note-giba-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-giba_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-giba_8-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGiri_&_Bannerjee2002" class="citation book cs1">Giri & Bannerjee (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jmg_oXMGsugC"><i>Statistical Tools and Technique</i></a>. Academic Publishers. p. 4. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-81-87504-39-9" title="Special:BookSources/978-81-87504-39-9"><bdi>978-81-87504-39-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Statistical+Tools+and+Technique&rft.pages=4&rft.pub=Academic+Publishers&rft.date=2002&rft.isbn=978-81-87504-39-9&rft.au=Giri+%26+Bannerjee&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Djmg_oXMGsugC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVelocity" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jmg_oXMGsugC&pg=SA4">Extract of page 4</a></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBekir_Karaoglu2020" class="citation book cs1">Bekir Karaoglu (2020). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1ZHTDwAAQBAJ"><i>Classical Physics: A Two-Semester Coursebook</i></a>. Springer Nature. p. 41. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-030-38456-2" title="Special:BookSources/978-3-030-38456-2"><bdi>978-3-030-38456-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Classical+Physics%3A+A+Two-Semester+Coursebook&rft.pages=41&rft.pub=Springer+Nature&rft.date=2020&rft.isbn=978-3-030-38456-2&rft.au=Bekir+Karaoglu&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D1ZHTDwAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVelocity" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1ZHTDwAAQBAJ&pg=PA41">Extract of page 41</a></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_HallidayRobert_ResnickJearl_Walker2010" class="citation book cs1">David Halliday; Robert Resnick; Jearl Walker (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=aO-Xrlje7hMC"><i>Fundamentals of Physics, Chapters 33-37</i></a>. John Wiley & Sons. p. 1080. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-470-54794-6" title="Special:BookSources/978-0-470-54794-6"><bdi>978-0-470-54794-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamentals+of+Physics%2C+Chapters+33-37&rft.pages=1080&rft.pub=John+Wiley+%26+Sons&rft.date=2010&rft.isbn=978-0-470-54794-6&rft.au=David+Halliday&rft.au=Robert+Resnick&rft.au=Jearl+Walker&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DaO-Xrlje7hMC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVelocity" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=aO-Xrlje7hMC&pg=PA1080">Extract of page 1080</a></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">For <a href="/wiki/Atmosphere_of_Earth" title="Atmosphere of Earth">Earth's atmosphere</a>, the air density can be found using the <a href="/wiki/Barometric_formula" title="Barometric formula">barometric formula</a>. It is 1.293 kg/m<sup>3</sup> at 0 °C and 1 <a href="/wiki/Atmosphere_(unit)" class="mw-redirect" title="Atmosphere (unit)">atmosphere</a>.</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJim_Breithaupt2000" class="citation book cs1">Jim Breithaupt (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=r8I1gyNNKnoC"><i>New Understanding Physics for Advanced Level</i></a> (illustrated ed.). Nelson Thornes. p. 231. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7487-4314-8" title="Special:BookSources/978-0-7487-4314-8"><bdi>978-0-7487-4314-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=New+Understanding+Physics+for+Advanced+Level&rft.pages=231&rft.edition=illustrated&rft.pub=Nelson+Thornes&rft.date=2000&rft.isbn=978-0-7487-4314-8&rft.au=Jim+Breithaupt&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dr8I1gyNNKnoC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVelocity" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=r8I1gyNNKnoC&pg=PA231">Extract of page 231</a></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEckehard_W_Mielke2022" class="citation book cs1">Eckehard W Mielke (2022). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=HN5kEAAAQBAJ"><i>Modern Aspects Of Relativity</i></a>. World Scientific. p. 98. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-12-4406-3" title="Special:BookSources/978-981-12-4406-3"><bdi>978-981-12-4406-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Modern+Aspects+Of+Relativity&rft.pages=98&rft.pub=World+Scientific&rft.date=2022&rft.isbn=978-981-12-4406-3&rft.au=Eckehard+W+Mielke&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DHN5kEAAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVelocity" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=HN5kEAAAQBAJ&pg=PA98">Extract of page 98</a></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.saburchill.com/physics/chapters/0083.html">Basic principle</a></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.feynmanlectures.caltech.edu/I_09.html">"The Feynman Lectures on Physics Vol. I Ch. 9: Newton's Laws of Dynamics"</a>. <i>www.feynmanlectures.caltech.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-01-04</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.feynmanlectures.caltech.edu&rft.atitle=The+Feynman+Lectures+on+Physics+Vol.+I+Ch.+9%3A+Newton%27s+Laws+of+Dynamics&rft_id=https%3A%2F%2Fwww.feynmanlectures.caltech.edu%2FI_09.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVelocity" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text">White, F. M. (2008). <i>Fluid mechanics</i>. The McGraw Hill Companies,.</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFE._GrahamAidan_BurrowsBrian_Gaulter2002" class="citation book cs1">E. Graham; Aidan Burrows; Brian Gaulter (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Zovge9bERh8C"><i>Mechanics, Volume 6</i></a> (illustrated ed.). Heinemann. p. 77. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-435-51311-5" title="Special:BookSources/978-0-435-51311-5"><bdi>978-0-435-51311-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mechanics%2C+Volume+6&rft.pages=77&rft.edition=illustrated&rft.pub=Heinemann&rft.date=2002&rft.isbn=978-0-435-51311-5&rft.au=E.+Graham&rft.au=Aidan+Burrows&rft.au=Brian+Gaulter&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZovge9bERh8C&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVelocity" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Zovge9bERh8C&pg=PA77">Extract of page 77</a></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnup_GoelH._J._Sawant2021" class="citation book cs1">Anup Goel; H. J. Sawant (2021). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=UjcfEAAAQBAJ"><i>Engineering Mechanics</i></a>. Technical Publications. p. 8. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-93-332-2190-0" title="Special:BookSources/978-93-332-2190-0"><bdi>978-93-332-2190-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Engineering+Mechanics&rft.pages=8&rft.pub=Technical+Publications&rft.date=2021&rft.isbn=978-93-332-2190-0&rft.au=Anup+Goel&rft.au=H.+J.+Sawant&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DUjcfEAAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVelocity" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=UjcfEAAAQBAJ&pg=RA8">Extract of page 8</a></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Velocity" class="extiw" title="commons:Category:Velocity">Velocity</a></span>.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="http://www.jaredzone.info/2015/08/velocity-and-acceleration.html">Velocity and Acceleration</a></li> <li><a rel="nofollow" class="external text" href="http://www.scs.cmu.edu/~rapidproto/mechanisms/chpt1.html">Introduction to Mechanisms</a> (<a href="/wiki/Carnegie_Mellon_University" title="Carnegie Mellon University">Carnegie Mellon University</a>)</li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Kinematics" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Kinematics" title="Template:Kinematics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Kinematics" title="Template talk:Kinematics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Kinematics" title="Special:EditPage/Template:Kinematics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Kinematics" style="font-size:114%;margin:0 4em"><a href="/wiki/Kinematics" title="Kinematics">Kinematics</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>← <a href="/wiki/Integral" title="Integral">Integrate</a> … <a href="/wiki/Derivative" title="Derivative">Differentiate</a> →</li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Absement" title="Absement">Absement</a></li> <li><a href="/wiki/Displacement_(geometry)" title="Displacement (geometry)">Displacement</a> (<a href="/wiki/Distance" title="Distance">Distance</a>)</li> <li><a class="mw-selflink selflink">Velocity</a> (<a href="/wiki/Speed" title="Speed">Speed</a>)</li> <li><a href="/wiki/Acceleration" title="Acceleration">Acceleration</a></li> <li><a href="/wiki/Jerk_(physics)" title="Jerk (physics)">Jerk</a></li> <li><a href="/wiki/Fourth,_fifth,_and_sixth_derivatives_of_position" title="Fourth, fifth, and sixth derivatives of position">Higher derivatives</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Classical_mechanics_SI_units" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Classical_mechanics_SI_units" title="Template:Classical mechanics SI units"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Classical_mechanics_SI_units" title="Template talk:Classical mechanics SI units"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Classical_mechanics_SI_units" title="Special:EditPage/Template:Classical mechanics SI units"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Classical_mechanics_SI_units" style="font-size:114%;margin:0 4em"><a href="/wiki/Classical_mechanics" title="Classical mechanics">Classical mechanics</a> <a href="/wiki/International_System_of_Units" title="International System of Units">SI units</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0;"><table class="wikitable" style="text-align:center;line-height:0.9;border-collapse:collapse;margin:auto;border:none;background:none;"> <tbody><tr> <td colspan="4" style="border:none;backgound:none; font-weight:bold;">Linear/translational quantities</td> <td rowspan="12" style="border:none;backgound:none;"></td> <td colspan="4" style="border:none;backgound:none; font-weight:bold;">Angular/rotational quantities</td> </tr> <tr> <th style="font-weight:normal;font-size:80%;">Dimensions</th> <th style="font-weight:normal;">1</th> <th style="font-weight:normal;">L</th> <th style="font-weight:normal;">L<sup>2</sup></th> <th style="font-weight:normal;font-size:80%;">Dimensions</th> <th style="font-weight:normal;">1</th> <th style="font-weight:normal;"><span class="texhtml"><i>θ</i></span></th> <th style="font-weight:normal;"><span class="texhtml"><i>θ</i></span><sup>2</sup></th> </tr> <tr> <th style="font-weight:normal;">T</th> <td><a href="/wiki/Time" title="Time">time</a>: <span class="texhtml"><i>t</i></span><br /><a href="/wiki/Second" title="Second">s</a></td> <td><a href="/wiki/Absement" title="Absement">absement</a>: <span class="texhtml"><b>A</b></span><br /><a href="/wiki/Meter_second" class="mw-redirect" title="Meter second">m s</a></td> <td></td> <th style="font-weight:normal;">T</th> <td><a href="/wiki/Time" title="Time">time</a>: <span class="texhtml"><i>t</i></span><br /><a href="/wiki/Second" title="Second">s</a></td> <td></td> <td></td> </tr> <tr> <th style="font-weight:normal;">1</th> <td></td> <td><a href="/wiki/Distance" title="Distance">distance</a>: <span class="texhtml"><i>d</i></span>, <span class="nowrap"><a href="/wiki/Position_(vector)" class="mw-redirect" title="Position (vector)">position</a>: <span class="texhtml"><b>r</b></span>, <span class="texhtml"><b>s</b></span>, <span class="texhtml"><b>x</b></span></span>, <a href="/wiki/Displacement_(vector)" class="mw-redirect" title="Displacement (vector)">displacement</a><br /><a href="/wiki/Metre" title="Metre">m</a></td> <td><a href="/wiki/Area" title="Area">area</a>: <span class="texhtml"><i>A</i></span><br /><a href="/wiki/Square_metre" title="Square metre">m<sup>2</sup></a></td> <th style="font-weight:normal;">1</th> <td></td> <td><a href="/wiki/Angle" title="Angle">angle</a>: <span class="texhtml"><i>θ</i></span>, <a href="/wiki/Angular_displacement" title="Angular displacement">angular displacement</a>: <span class="texhtml"><i><b>θ</b></i></span><br /><a href="/wiki/Radian" title="Radian">rad</a></td> <td><span class="nowrap"><a href="/wiki/Solid_angle" title="Solid angle">solid angle</a>: <span class="texhtml">Ω</span><br /><a href="/wiki/Steradian" title="Steradian">rad<sup>2</sup>, sr</a></span></td> </tr> <tr> <th style="font-weight:normal;">T<sup>−1</sup></th> <td><span class="nowrap"><a href="/wiki/Frequency" title="Frequency">frequency</a>: <span class="texhtml"><i>f</i></span></span><br /><a href="/wiki/Inverse_second" title="Inverse second">s<sup>−1</sup></a>, <a href="/wiki/Hertz" title="Hertz">Hz</a></td> <td><a href="/wiki/Speed" title="Speed">speed</a>: <span class="texhtml"><i>v</i></span>, <a class="mw-selflink selflink">velocity</a>: <span class="texhtml"><b>v</b></span><br /><a href="/wiki/Metre_per_second" title="Metre per second">m s<sup>−1</sup></a></td> <td><a href="/wiki/Kinematic_viscosity" class="mw-redirect" title="Kinematic viscosity">kinematic viscosity</a>: <span class="texhtml"><i>ν</i></span>,<br /><a href="/wiki/Specific_angular_momentum" title="Specific angular momentum">specific angular momentum</a>: <span class="texhtml"><b>h</b></span><br />m<sup>2</sup> s<sup>−1</sup></td> <th style="font-weight:normal;">T<sup>−1</sup></th> <td><span class="nowrap"><a href="/wiki/Frequency" title="Frequency">frequency</a>: <span class="texhtml"><i>f</i></span></span>, <span class="nowrap"><a href="/wiki/Rotational_speed" class="mw-redirect" title="Rotational speed">rotational speed</a>: <span class="texhtml"><i>n</i></span></span>, <span class="nowrap"><a href="/wiki/Rotational_velocity" class="mw-redirect" title="Rotational velocity">rotational velocity</a>: <span class="texhtml"><i><b>n</b></i></span></span><br /><a href="/wiki/Inverse_second" title="Inverse second">s<sup>−1</sup></a>, <a href="/wiki/Hertz" title="Hertz">Hz</a></td> <td><a href="/wiki/Angular_speed" class="mw-redirect" title="Angular speed">angular speed</a>: <span class="texhtml"><i>ω</i></span>, <a href="/wiki/Angular_velocity" title="Angular velocity">angular velocity</a>: <span class="texhtml"><i><b>ω</b></i></span><br /><a href="/wiki/Radian_per_second" title="Radian per second">rad<span style="letter-spacing:0.1em"> </span>s<sup>−1</sup></a></td> <td></td> </tr> <tr> <th style="font-weight:normal;">T<sup>−2</sup></th> <td></td> <td><a href="/wiki/Acceleration" title="Acceleration">acceleration</a>: <span class="texhtml"><b>a</b></span><br /><a href="/wiki/Metre_per_second_squared" title="Metre per second squared">m s<sup>−2</sup></a></td> <td></td> <th style="font-weight:normal;">T<sup>−2</sup></th> <td><span class="nowrap"><a href="/wiki/Rotational_acceleration" class="mw-redirect" title="Rotational acceleration">rotational acceleration</a></span><br /><a href="/wiki/Inverse_square_second" class="mw-redirect" title="Inverse square second">s<sup>−2</sup></a></td> <td><a href="/wiki/Angular_acceleration" title="Angular acceleration">angular acceleration</a>: <span class="texhtml"><i><b>α</b></i></span><br /><a href="/wiki/Radian_per_second_squared" class="mw-redirect" title="Radian per second squared">rad<span style="letter-spacing:0.1em"> </span>s<sup>−2</sup></a></td> <td></td> </tr> <tr> <th style="font-weight:normal;">T<sup>−3</sup></th> <td></td> <td><a href="/wiki/Jerk_(physics)" title="Jerk (physics)">jerk</a>: <span class="texhtml"><b>j</b></span><br />m s<sup>−3</sup></td> <td></td> <th style="font-weight:normal;">T<sup>−3</sup></th> <td></td> <td><a href="/wiki/Jerk_(physics)#Jerk_in_rotation" title="Jerk (physics)">angular jerk</a>: <span class="texhtml"><i><b>ζ</b></i></span><br />rad<span style="letter-spacing:0.1em"> </span>s<sup>−3</sup></td> <td></td> </tr> <tr style="border-top: 3px double #a2a9b1;"> <th style="font-weight:normal;">M</th> <td><a href="/wiki/Mass" title="Mass">mass</a>: <span class="texhtml"><i>m</i></span><br /><a href="/wiki/Kilogram" title="Kilogram">kg</a></td> <td>weighted position: <span class="texhtml"><i>M</i> ⟨<i>x</i>⟩ = ∑ <i>m</i> <i>x</i></span> </td> <td></td> <th style="font-weight:normal;">ML<sup>2</sup></th> <td><a href="/wiki/Moment_of_inertia" title="Moment of inertia">moment of inertia</a>: <span class="texhtml"><i>I</i></span><br /><a href="/wiki/Kilogram_square_metre" class="mw-redirect" title="Kilogram square metre">kg<span style="letter-spacing:0.1em"> </span>m<sup>2</sup></a></td> <td></td> <td></td> </tr> <tr> <th style="font-weight:normal;">MT<sup>−1</sup></th> <td><a href="/wiki/Mass_flow_rate" title="Mass flow rate">Mass flow rate</a>: <span class="texhtml"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>m</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad59b9876301e8fb75b9ddbf08de594b87251d3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:2.176ex;" alt="{\displaystyle {\dot {m}}}"></span></span><br /><a href="/wiki/Kilogram_per_second" class="mw-redirect" title="Kilogram per second">kg<span style="letter-spacing:0.1em"> </span>s<sup>−1</sup></a></td> <td><a href="/wiki/Momentum" title="Momentum">momentum</a>: <span class="texhtml"><b>p</b></span>, <a href="/wiki/Impulse_(physics)" title="Impulse (physics)">impulse</a>: <span class="texhtml"><b>J</b></span><br /><a href="/wiki/Kilogram_metre_per_second" class="mw-redirect" title="Kilogram metre per second">kg<span style="letter-spacing:0.1em"> </span>m s<sup>−1</sup></a>, <a href="/wiki/Newton_second" class="mw-redirect" title="Newton second">N s</a></td> <td><a href="/wiki/Action_(physics)" title="Action (physics)">action</a>: <span class="texhtml">𝒮</span>, <a href="/wiki/Absement#Applications" title="Absement">actergy</a>: <span class="texhtml">ℵ</span><br /><a href="/wiki/Kilogram_square_metre_per_second" class="mw-redirect" title="Kilogram square metre per second">kg<span style="letter-spacing:0.1em"> </span>m<sup>2</sup> s<sup>−1</sup></a>, <a href="/wiki/Joule-second" title="Joule-second">J s</a></td> <th style="font-weight:normal;">ML<sup>2</sup>T<sup>−1</sup></th> <td></td> <td><a href="/wiki/Angular_momentum" title="Angular momentum">angular momentum</a>: <span class="texhtml"><b>L</b></span>, <a href="/wiki/List_of_equations_in_classical_mechanics#Derived_dynamic_quantities" title="List of equations in classical mechanics">angular impulse</a>: <span class="texhtml">Δ<b>L</b></span><br /><a href="/wiki/Kilogram_square_metre_per_second" class="mw-redirect" title="Kilogram square metre per second">kg<span style="letter-spacing:0.1em"> </span>m<sup>2</sup> s<sup>−1</sup></a></td> <td><a href="/wiki/Action_(physics)" title="Action (physics)">action</a>: <span class="texhtml">𝒮</span>, <a href="/wiki/Absement#Applications" title="Absement">actergy</a>: <span class="texhtml">ℵ</span><br /><a href="/wiki/Kilogram_square_metre_per_second" class="mw-redirect" title="Kilogram square metre per second">kg<span style="letter-spacing:0.1em"> </span>m<sup>2</sup> s<sup>−1</sup></a>, <a href="/wiki/Joule-second" title="Joule-second">J s</a></td> </tr> <tr> <th style="font-weight:normal;">MT<sup>−2</sup></th> <td></td> <td><a href="/wiki/Force" title="Force">force</a>: <span class="texhtml"><b>F</b></span>, <a href="/wiki/Weight" title="Weight">weight</a>: <span class="texhtml"><b>F</b><sub>g</sub></span><br /><span style="margin-right:0.1em;">kg </span> m s<sup>−2</sup>, <a href="/wiki/Newton_(unit)" title="Newton (unit)">N</a></td> <td><a href="/wiki/Energy" title="Energy">energy</a>: <span class="texhtml"><i>E</i></span>, <a href="/wiki/Work_(physics)" title="Work (physics)">work</a>: <span class="texhtml"><i>W</i></span>, <a href="/wiki/Lagrangian_mechanics" title="Lagrangian mechanics">Lagrangian</a>: <span class="texhtml"><i>L</i></span><br /><span style="margin-right:0.1em;">kg</span> m<sup>2</sup> s<sup>−2</sup>, <a href="/wiki/Joule" title="Joule">J</a></td> <th style="font-weight:normal;">ML<sup>2</sup>T<sup>−2</sup></th> <td></td> <td><a href="/wiki/Torque" title="Torque">torque</a>: <span class="texhtml"><i><b>τ</b></i></span>, <a href="/wiki/Torque#Terminology" title="Torque">moment</a>: <span class="texhtml"><b>M</b></span><br /><span style="margin-right:0.1em;">kg</span> m<sup>2</sup> s<sup>−2</sup>, <a href="/wiki/Newton-metre" title="Newton-metre">N m</a></td> <td><a href="/wiki/Energy" title="Energy">energy</a>: <span class="texhtml"><i>E</i></span>, <a href="/wiki/Work_(physics)" title="Work (physics)">work</a>: <span class="texhtml"><i>W</i></span>, <a href="/wiki/Lagrangian_mechanics" title="Lagrangian mechanics">Lagrangian</a>: <span class="texhtml"><i>L</i></span><br /><span style="margin-right:0.1em;">kg</span> m<sup>2</sup> s<sup>−2</sup>, <a href="/wiki/Joule" title="Joule">J</a></td> </tr> <tr> <th style="font-weight:normal;">MT<sup>−3</sup></th> <td></td> <td><a href="/wiki/Yank_(physics)" class="mw-redirect" title="Yank (physics)">yank</a>: <span class="texhtml"><b>Y</b></span><br /><span style="margin-right:0.1em;">kg</span> m s<sup>−3</sup>, N s<sup>−1</sup></td> <td><a href="/wiki/Power_(physics)" title="Power (physics)">power</a>: <span class="texhtml"><i>P</i></span><br /><span style="margin-right:0.1em;">kg</span> m<sup>2</sup> s<sup>−3</sup>, <a href="/wiki/Watt" title="Watt">W</a></td> <th style="font-weight:normal;">ML<sup>2</sup>T<sup>−3</sup></th> <td></td> <td><a href="/wiki/Rotatum" class="mw-redirect" title="Rotatum">rotatum</a>: <span class="texhtml"><b>P</b></span><br /><span style="margin-right:0.1em;">kg</span> m<sup>2</sup> s<sup>−3</sup>, N m s<sup>−1</sup></td> <td><a href="/wiki/Power_(physics)" title="Power (physics)">power</a>: <span class="texhtml"><i>P</i></span><br /><span style="margin-right:0.1em;">kg</span> m<sup>2 </sup>s<sup>−3</sup>, <a href="/wiki/Watt" title="Watt">W</a></td> </tr> </tbody></table></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q11465#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4020574-5">Germany</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Speed"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85126486">United States</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Vitesse"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119762787">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Vitesse"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119762787">BnF data</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="rychlost"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph872791&CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007565830505171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐hchr7 Cached time: 20241122143543 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.725 seconds Real time usage: 1.020 seconds Preprocessor visited node count: 6600/1000000 Post‐expand include size: 119631/2097152 bytes Template argument size: 12545/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 10/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 129426/5000000 bytes Lua time usage: 0.371/10.000 seconds Lua memory usage: 7772906/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 742.401 1 -total 18.07% 134.154 1 Template:Reflist 14.74% 109.437 1 Template:Classical_mechanics 14.41% 106.960 1 Template:Sidebar_with_collapsible_lists 12.20% 90.547 1 Template:Commons_category 11.45% 84.979 1 Template:Sister_project 11.22% 83.299 1 Template:Side_box 10.26% 76.167 2 Template:Navbox 9.53% 70.716 1 Template:Short_description 9.09% 67.494 78 Template:Math --> <!-- Saved in parser cache with key enwiki:pcache:idhash:20491903-0!canonical and timestamp 20241122143543 and revision id 1241913199. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Velocity&oldid=1241913199">https://en.wikipedia.org/w/index.php?title=Velocity&oldid=1241913199</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Velocity" title="Category:Velocity">Velocity</a></li><li><a href="/wiki/Category:Motion_(physics)" title="Category:Motion (physics)">Motion (physics)</a></li><li><a href="/wiki/Category:Kinematics" title="Category:Kinematics">Kinematics</a></li><li><a href="/wiki/Category:Temporal_rates" title="Category:Temporal rates">Temporal rates</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_indefinitely_semi-protected_pages" title="Category:Wikipedia indefinitely semi-protected pages">Wikipedia indefinitely semi-protected pages</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 23 August 2024, at 21:24<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Velocity&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-9vzgv","wgBackendResponseTime":167,"wgPageParseReport":{"limitreport":{"cputime":"0.725","walltime":"1.020","ppvisitednodes":{"value":6600,"limit":1000000},"postexpandincludesize":{"value":119631,"limit":2097152},"templateargumentsize":{"value":12545,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":10,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":129426,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 742.401 1 -total"," 18.07% 134.154 1 Template:Reflist"," 14.74% 109.437 1 Template:Classical_mechanics"," 14.41% 106.960 1 Template:Sidebar_with_collapsible_lists"," 12.20% 90.547 1 Template:Commons_category"," 11.45% 84.979 1 Template:Sister_project"," 11.22% 83.299 1 Template:Side_box"," 10.26% 76.167 2 Template:Navbox"," 9.53% 70.716 1 Template:Short_description"," 9.09% 67.494 78 Template:Math"]},"scribunto":{"limitreport-timeusage":{"value":"0.371","limit":"10.000"},"limitreport-memusage":{"value":7772906,"limit":52428800},"limitreport-logs":"table#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-hchr7","timestamp":"20241122143543","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Velocity","url":"https:\/\/en.wikipedia.org\/wiki\/Velocity","sameAs":"http:\/\/www.wikidata.org\/entity\/Q11465","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q11465","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-09-06T23:35:35Z","dateModified":"2024-08-23T21:24:01Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/4\/40\/US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg","headline":"rate of change of the position of an object as a function of time, and the direction of that change"}</script> </body> </html>