CINXE.COM
Search results for: adsorbents
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: adsorbents</title> <meta name="description" content="Search results for: adsorbents"> <meta name="keywords" content="adsorbents"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="adsorbents" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="adsorbents"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 128</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: adsorbents</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Biosorption of Heavy Metals by Low Cost Adsorbents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azam%20Tabatabaee">Azam Tabatabaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Fereshteh%20Dastgoshadeh"> Fereshteh Dastgoshadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Akram%20Tabatabaee"> Akram Tabatabaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the use of by-products as adsorbents for removing heavy metals from aqueous effluent solutions. Products of almond skin, walnut shell, saw dust, rice bran and egg shell were evaluated as metal ion adsorbents in aqueous solutions. A comparative study was done with commercial adsorbents like ion exchange resins and activated carbon too. Batch experiments were investigated to determine the affinity of all of biomasses for, Cd(ΙΙ), Cr(ΙΙΙ), Ni(ΙΙ), and Pb(ΙΙ) metal ions at pH 5. The rate of metal ion removal in the synthetic wastewater by the biomass was evaluated by measuring final concentration of synthetic wastewater. At a concentration of metal ion (50 mg/L), egg shell adsorbed high levels (98.6 – 99.7%) of Pb(ΙΙ) and Cr(ΙΙΙ) and walnut shell adsorbed high levels (35.3 – 65.4%) of Ni(ΙΙ) and Cd(ΙΙ). In this study, it has been shown that by-products were excellent adsorbents for removal of toxic ions from wastewater with efficiency comparable to commercially available adsorbents, but at a reduced cost. Also statistical studies using Independent Sample t Test and ANOVA Oneway for statistical comparison between various elements adsorption showed that there isn’t a significant difference in some elements adsorption percentage by by-products and commercial adsorbents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorbents" title="adsorbents">adsorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=commercial%20adsorbents" title=" commercial adsorbents"> commercial adsorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=by-products" title=" by-products"> by-products</a> </p> <a href="https://publications.waset.org/abstracts/12428/biosorption-of-heavy-metals-by-low-cost-adsorbents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Prediction of Binding Free Energies for Dyes Removal Using Computational Chemistry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Chanajaree">R. Chanajaree</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Luanwiset"> D. Luanwiset</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Pongpratea"> K. Pongpratea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dye removal is an environmental concern because the textile industries have been increasing by world population and industrialization. Adsorption is the technique to find adsorbents to remove dyes from wastewater. This method is low-cost and effective for dye removal. This work tries to develop effective adsorbents using the computational approach because it will be able to predict the possibility of the adsorbents for specific dyes in terms of binding free energies. The computational approach is faster and cheaper than the experimental approach in case of finding the best adsorbents. All starting structures of dyes and adsorbents are optimized by quantum calculation. The complexes between dyes and adsorbents are generated by the docking method. The obtained binding free energies from docking are compared to binding free energies from the experimental data. The calculated energies can be ranked as same as the experimental results. In addition, this work also shows the possible orientation of the complexes. This work used two experimental groups of the complexes of the dyes and adsorbents. In the first group, there are chitosan (adsorbent) and two dyes (reactive red (RR) and direct sun yellow (DY)). In the second group, there are poly(1,2-epoxy-3-phenoxy) propane (PEPP), which is the adsorbent, and 2 dyes of bromocresol green (BCG) and alizarin yellow (AY). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dyes%20removal" title="dyes removal">dyes removal</a>, <a href="https://publications.waset.org/abstracts/search?q=binding%20free%20energies" title=" binding free energies"> binding free energies</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20calculation" title=" quantum calculation"> quantum calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a> </p> <a href="https://publications.waset.org/abstracts/115037/prediction-of-binding-free-energies-for-dyes-removal-using-computational-chemistry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Mixed Natural Adsorbents and Oxides for Oil Remediation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cesar%20Maximo%20Oliva%20Gonz%C3%A1lez">Cesar Maximo Oliva González</a>, <a href="https://publications.waset.org/abstracts/search?q=Javier%20Acevedo%20Cortez"> Javier Acevedo Cortez</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Kharisov"> Boris Kharisov</a>, <a href="https://publications.waset.org/abstracts/search?q=Thelma%20Serrano%20Quezada"> Thelma Serrano Quezada </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance of the crude oil refining process is due to the demand for petroleum products such as gasoline, kerosene, asphalt, etc., which are used in daily activities and have a high impact on the global economy. In the processes of oil obtaining and refining, it is common to find problems such as spills on seabed and high energy consumption in processing. In order to quickly and efficiently attack these problems, the use of adsorbents has taken on great importance due to its ease of implementation, as well as the possibility of their regeneration to be reused. In this work, the use of two types of adsorbents is proposed: the first is a natural adsorbent such as aloe vera or nopal, which were lyophilized and hydrophobized to achieve a selectivity in oil adsorption in oil / water mixtures. The second is a mixed iron/nickel oxide, which is specially designed to adsorb the asphaltenes in the heavy fractions of the oil; in addition, this type of adsorbents presents catalytic properties that manage to decompose the heavier fractions of the petroleum in light hydrocarbons, descending thus the energy required for the oil refining process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title="nanomaterials">nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spills" title=" oil spills"> oil spills</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation" title=" remediation"> remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20adsorbents" title=" natural adsorbents"> natural adsorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20oxides" title=" mixed oxides"> mixed oxides</a> </p> <a href="https://publications.waset.org/abstracts/72269/mixed-natural-adsorbents-and-oxides-for-oil-remediation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Removal of Heavy Metals from Aqueous Solutions by Low-Cost Materials: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Nazari">I. Nazari</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Shaabani"> B. Shaabani</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Abaasifar"> P. Abaasifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In small quantities certain heavy metals are nutritionally essential for a healthy life. The heavy metals linked most often to human poisoning are lead, mercury, arsenic, and cadmium. Other heavy metals including copper, zinc and chromium are actually required by the body in small quantity but can also be toxic in large doses. Nowadays, we have contamination to this heavy metals in some untreated industrial waste waters and even in several populated cities drinking waters around the world. The contamination of ground and underground water sources to heavy metals can be concentrated and travel up to food chain by drinking water and agricultural products. In recent years, the need for safe and economical methods for removal of heavy metals from contaminated water has necessitated research interest towards the finding low-cost alternatives. Bio-adsorbents have emerged as low-cost and efficient materials for the removal of heavy metals from waste and ground waters. The bio-adsorbents have an affinity for heavy metals ions to form metal complexes or chelates due to having functional groups including carboxyl, hydroxyl, imidazole, and etc. The objective of this study is to review researches in less expensive adsorbents and their utilization possibilities for various low-cost bio-adsorbents such as coffee beans, rice husk, and saw dust for the removal of heavy metals from contaminated waters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pollution" title=" water pollution"> water pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-adsorbents" title=" bio-adsorbents"> bio-adsorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20cost%20adsorbents" title=" low cost adsorbents"> low cost adsorbents</a> </p> <a href="https://publications.waset.org/abstracts/30744/removal-of-heavy-metals-from-aqueous-solutions-by-low-cost-materials-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Cobalt Ions Adsorption by Quartz and Illite and Calcite from Waste Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saad%20A.%20Aljlil">Saad A. Aljlil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adsorption of cobalt ions on quartz and illite and calcite from waste water was investigated. The effect of pH on the adsorption of cobalt ions was studied. The maximum capacities of cobalt ions of the three adsorbents increase with increasing cobalt solution temperature. The maximum capacities were (4.66) mg/g for quartz, (3.94) mg/g for illite, and (3.44) mg/g for calcite. The enthalpy, Gibbs free energy, and entropy for adsorption of cobalt ions on the three adsorbents were calculated. It was found that the adsorption process of the cobalt ions of the adsorbent was an endothermic process. consequently increasing the temperature causes the increase of the cobalt ions adsorption of the adsorbents. Therefore, the adsorption process is preferred at high temperature levels. The equilibrium adsorption data were correlated using Langmuir model, Freundlich model. The experimental data of cobalt ions of the adsorbents correlated well with Freundlich model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=Langmuir" title=" Langmuir"> Langmuir</a>, <a href="https://publications.waset.org/abstracts/search?q=Freundlich" title=" Freundlich"> Freundlich</a>, <a href="https://publications.waset.org/abstracts/search?q=quartz" title=" quartz"> quartz</a>, <a href="https://publications.waset.org/abstracts/search?q=illite" title=" illite"> illite</a>, <a href="https://publications.waset.org/abstracts/search?q=calcite" title=" calcite"> calcite</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/25552/cobalt-ions-adsorption-by-quartz-and-illite-and-calcite-from-waste-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Methyl Red Dye Adsorption On PMMA/GO and PMMA/GO-Fe3O4 Nanocomposites: Equilibrium Isotherm Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Rajabi">Mostafa Rajabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazem%20Mahanpoor"> Kazem Mahanpoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performances of the methyl red (MR) dye adsorption on poly(methyl methacrylate)/graphene oxide (PMMA/GO) and poly(methyl methacrylate)/graphene oxide-Fe3O4 (PMMA/GO-Fe3O4) nanocomposites as adsorbents were investigated. Our results showed that for adsorption of MR dye on PMMA/GO-Fe3O4 and PMMA/GO nanocomposites, 80 minutes, 298 K, and pH 2 were the best contact time, temperature and pH value for process, respectively, because the optimum adsorption of the MR dye with both nanocomposite adsorbents were observed in these values of the parameters. The equilibrium study results showed that PMMA/GO-Fe3O4 and PMMA/GO were suitable adsorbents for MR dye removing and were best in agreement with the Langmuir isotherm model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20methacrylate" title=" methyl methacrylate"> methyl methacrylate</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20red" title=" methyl red"> methyl red</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20magnetic%20Fe3O4" title=" nano magnetic Fe3O4"> nano magnetic Fe3O4</a> </p> <a href="https://publications.waset.org/abstracts/140772/methyl-red-dye-adsorption-on-pmmago-and-pmmago-fe3o4-nanocomposites-equilibrium-isotherm-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> BTEX Removal from Water: A Comparative Analysis of Efficiency of Low Cost Adsorbents and Granular Activated Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juliet%20Okoli">Juliet Okoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The removal of BTEX (Benzene, toluene, Ethylbenzene and p-Xylene) from water by orange peel and eggshell compared to GAC were investigated. The influence of various factors such as contact time, dosage and pH on BTEX removal by virgin orange peel and egg shell were accessed using the batch adsorption set-up. These were also compared to that of GAC which serves as a benchmark for this study. Further modification (preparation of Activated carbon) of these virgin low-cost adsorbents was also carried out. The batch adsorption result showed that the optimum contact time, dosage and pH for BTEX removal by virgin LCAs were 180 minutes, 0.5g and 7 and that of GAC was 30mintues, 0.2g and 7. The maximum adsorption capacity for total BTEX showed by orange peel and egg shell were 42mg/g and 59mg/g respectively while that of GAC was 864mg/g. The adsorbent preference for adsorbate were in order of X>E>T>B. A comparison of batch and column set-up showed that the batch set-up was more efficient than the column set-up. The isotherm data for the virgin LCA and GAC prove to fit the Freundlich isotherm better than the Langmuir model, which produced n values >1 in case of GAC and n< 1 in case of virgin LCAs; indicating a more appropriate adsorption of BTEX onto the GAC. The adsorption kinetics for the three studied adsorbents were described well by the pseudo-second order, suggesting chemisorption as the rate limiting step. This was further confirmed by desorption study, as low levels of BTEX (<10%) were recovered from the spent adsorbents especially for GAC (<3%). Further activation of the LCAs which was compared to the virgin LCAs, revealed that the virgin LCAs had minor higher adsorption capacity than the activated LCAs. Economic analysis revealed that the total cost required to clean-up 9,600m3 of BTEX contaminated water using LCA was just 2.8% lesser than GAC, a difference which could be considered negligible. However, this area still requires a more detailed cost-benefit analysis, and if similar conclusions are reached; a low-cost adsorbent, easy to obtain are still promising adsorbents for BTEX removal from aqueous solution; however, the GAC are still more superior to these materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=BTEX%20removal" title=" BTEX removal"> BTEX removal</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20cost%20adsorbents" title=" low cost adsorbents"> low cost adsorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/46087/btex-removal-from-water-a-comparative-analysis-of-efficiency-of-low-cost-adsorbents-and-granular-activated-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Assessment of Adsorption Properties of Neem Leaves Wastes for the Removal of Congo Red and Methyl Orange</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20B.%20Ibrahim">Muhammad B. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20S.%20Sulaiman"> Muhammad S. Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadiq%20Sani"> Sadiq Sani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neem leaves were studied as plant wastes derived adsorbents for detoxification of Congo Red (CR) and Methyl Orange (MO) from aqueous solutions using batch adsorption technique. The objectives involved determining the effects of the basic adsorption parameters are namely, agitation time, adsorbent dosage, adsorbents particle size, adsorbate loading concentrations and initial pH, on the adsorption process as well as characterizing the adsorbents by determining their physicochemical properties, functional groups responsible for the adsorption process using Fourier Transform Infrared (FTIR) spectroscopy and surface morphology using scanning electron microscopy (SEM) coupled with energy dispersion X – ray spectroscopy (EDS). The adsorption behaviours of the materials were tested against Langmuir, Freundlich, etc. isotherm models. Percent adsorption increased with increase in agitation time (5 – 240 minutes), adsorbent dosage (100-500mg), initial concentration (100-300mg/L), and with decrease in particle size (≥75μm to ≤300μm) of the adsorbents. Both processes are dye pH-dependent, increasing or decreasing percent adsorption in acidic (2-6) or alkaline (8-12) range over the studied pH (2-12) range. From the experimental data the Langmuir’s separation factor (RL) suggests unfavourable adsorption for all processes, Freundlich constant (nF) indicates unfavourable process for CR and MO adsorption; while the mean free energy of adsorption <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=congo%20red" title=" congo red"> congo red</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20orange" title=" methyl orange"> methyl orange</a>, <a href="https://publications.waset.org/abstracts/search?q=neem%20leave" title=" neem leave"> neem leave</a> </p> <a href="https://publications.waset.org/abstracts/39887/assessment-of-adsorption-properties-of-neem-leaves-wastes-for-the-removal-of-congo-red-and-methyl-orange" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Adsorption of Iodine from Aqueous Solution on Modified Silica Gel with Cyclodextrin Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raied">Raied</a>, <a href="https://publications.waset.org/abstracts/search?q=Badr%20Al-Fulaiti"> Badr Al-Fulaiti</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20I.%20El-Shafey"> E. I. El-Shafey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cyclodextrin (CD) derivatives (αCD, βCD, ϒCD and hp-βCD) were successfully immobilized on silica gel surface via epichlorohydrin as a cross linker. The ratio of silica to CD was optimized in preliminary experiments based on best performance of iodine adsorption capacity. Selected adsorbents with ratios of silica to CD derivatives, in this study, include Si-αCD (3:2), Si-βCD (4:1), Si-ϒCD (4:1) and Si-hp-βCD (4:1). The adsorption of iodine (I2/KI) solution was investigated in terms of initial pH, contact time, iodine concentration and temperature. No significant variations was noticed for iodine adsorption at different pH values, thus, initial pH 6 was selected for further studies. Equilibrium adsorption was reached faster on Si-hp-βCD than other adsorbents with kinetic adsorption data fitting well pseudo second order model. Activation energy (Ea) was found to be in the range of 12.7 - 23.4 kJ/mol. Equilibrium adsorption data were found to fit well the Langmuir adsorption model with lower uptake as temperature rises. Iodine uptake follows the order: Si-hp-βCD (714 mg/g) >Si-αCD (625 mg/g) >Si-βCD (555.6 mg/g)> Si-ϒCD (435 mg/g). Thermodynamic study showed that iodine adsorption is exothermic and spontaneous. Adsorbents reuse exhibited excellent performance for iodine adsorption with a decrease in iodine uptake of ~ 2- 4 % in the third adsorption cycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=iodine" title=" iodine"> iodine</a>, <a href="https://publications.waset.org/abstracts/search?q=silica" title=" silica"> silica</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclodextrin" title=" cyclodextrin"> cyclodextrin</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=epichlorohydrin" title=" epichlorohydrin"> epichlorohydrin</a> </p> <a href="https://publications.waset.org/abstracts/144749/adsorption-of-iodine-from-aqueous-solution-on-modified-silica-gel-with-cyclodextrin-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> The Statistical Significant of Adsorbents for Effective Zn(II) Ions Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiurski%20S.%20Jelena">Kiurski S. Jelena</a>, <a href="https://publications.waset.org/abstracts/search?q=Oros%20B.%20Ivana"> Oros B. Ivana</a>, <a href="https://publications.waset.org/abstracts/search?q=Keci%C4%87%20S.%20Vesna"> Kecić S. Vesna</a>, <a href="https://publications.waset.org/abstracts/search?q=Kova%C4%8Devi%C4%87%20M.%20Ilija"> Kovačević M. Ilija</a>, <a href="https://publications.waset.org/abstracts/search?q=Aksentijevi%C4%87%20M.%20Sne%C5%BEana"> Aksentijević M. Snežana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption efficiency of various adsorbents for the removal of Zn(II) ions from the waste printing developer was studied in laboratory batch mode. The maximum adsorption efficiency of 94.1% was achieved with unfired clay pellets size (d≈15 mm). The obtained values of adsorption efficiency was subjected to the independent samples t-test in order to investigate the statistically significant differences of the investigated adsorbents for the effective removal of Zn(II) ions from the waste printing developer. The most statistically significant differences of adsorption efficiencies for Zn(II) ions removal were obtained between unfired clay pellets size (d≈15 mm) and activated carbon (|t|= 6.909), natural zeolite (|t|= 10.380), mixture of activated carbon and natural zeolite (|t|= 9.865), bentonite (|t|= 6.159), fired clay (|t|= 6.641), fired clay pellets size (d≈5 mm) (|t|= 6.678), fired clay pellets size (d≈8 mm) (|t|= 3.422), respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adsorption%20efficiency" title="Adsorption efficiency">Adsorption efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorbent" title=" adsorbent"> adsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20ion." title=" zinc ion."> zinc ion.</a> </p> <a href="https://publications.waset.org/abstracts/12529/the-statistical-significant-of-adsorbents-for-effective-znii-ions-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Removal of Polycyclic Aromatic Hydrocarbons Present in Tyre Pyrolytic Oil Using Low Cost Natural Adsorbents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Budhwani">Neha Budhwani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycyclic aromatic hydrocarbons (PAHs) are formed during the pyrolysis of scrap tyres to produce tyre pyrolytic oil (TPO). Due to carcinogenic, mutagenic, and toxic properties PAHs are priority pollutants. Hence it is essential to remove PAHs from TPO before utilising TPO as a petroleum fuel alternative (to run the engine). Agricultural wastes have promising future to be utilized as biosorbent due to their cost effectiveness, abundant availability, high biosorption capacity and renewability. Various low cost adsorbents were prepared from natural sources. Uptake of PAHs present in tyre pyrolytic oil was investigated using various low-cost adsor¬bents of natural origin including sawdust (shiham), coconut fiber, neem bark, chitin, activated charcol. Adsorption experiments of different PAHs viz. naphthalene, acenaphthalene, biphenyl and anthracene have been carried out at ambient temperature (25°C) and at pH 7. It was observed that for any given PAH, the adsorption capacity increases with the lignin content. Freundlich constant kf and 1/n have been evaluated and it was found that the adsorption isotherms of PAHs were in agreement with a Freundlich model, while the uptake capacity of PAHs followed the order: activated charcoal> saw dust (shisham) > coconut fiber > chitin. The partition coefficients in acetone-water, and the adsorption constants at equilibrium, could be linearly correlated with octanol–water partition coefficients. It is observed that natural adsorbents are good alternative for PAHs removal. Sawdust of Dalbergia sissoo, a by-product of sawmills was found to be a promising adsorbent for the removal of PAHs present in TPO. It is observed that adsorbents studied were comparable to those of some conventional adsorbents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20adsorbent" title="natural adsorbent">natural adsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a>, <a href="https://publications.waset.org/abstracts/search?q=TPO" title=" TPO"> TPO</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20fiber" title=" coconut fiber"> coconut fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20powder%20%28shisham%29" title=" wood powder (shisham)"> wood powder (shisham)</a>, <a href="https://publications.waset.org/abstracts/search?q=naphthalene" title=" naphthalene"> naphthalene</a>, <a href="https://publications.waset.org/abstracts/search?q=acenaphthene" title=" acenaphthene"> acenaphthene</a>, <a href="https://publications.waset.org/abstracts/search?q=biphenyl%20and%20anthracene" title=" biphenyl and anthracene"> biphenyl and anthracene</a> </p> <a href="https://publications.waset.org/abstracts/21729/removal-of-polycyclic-aromatic-hydrocarbons-present-in-tyre-pyrolytic-oil-using-low-cost-natural-adsorbents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Synthesis of High-Pressure Performance Adsorbent from Coconut Shells Polyetheretherketone for Methane Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umar%20Hayatu%20Sidik">Umar Hayatu Sidik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of liquid base petroleum fuel (petrol and diesel) for transportation fuel causes emissions of greenhouse gases (GHGs), while natural gas (NG) reduces the emissions of greenhouse gases (GHGs). At present, compression and liquefaction are the most matured technology used for transportation system. For transportation use, compression requires high pressure (200–300 bar) while liquefaction is impractical. A relatively low pressure of 30-40 bar is achievable by adsorbed natural gas (ANG) to store nearly compressed natural gas (CNG). In this study, adsorbents for high-pressure adsorption of methane (CH4) was prepared from coconut shells and polyetheretherketone (PEEK) using potassium hydroxide (KOH) and microwave-assisted activation. Design expert software version 7.1.6 was used for optimization and prediction of preparation conditions of the adsorbents for CH₄ adsorption. Effects of microwave power, activation time and quantity of PEEK on the adsorbents performance toward CH₄ adsorption was investigated. The adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric (TG) and derivative thermogravimetric (DTG) and scanning electron microscopy (SEM). The ideal CH4 adsorption capacities of adsorbents were determined using volumetric method at pressures of 5, 17, and 35 bar at an ambient temperature and 5 oC respectively. Isotherm and kinetics models were used to validate the experimental results. The optimum preparation conditions were found to be 15 wt% amount of PEEK, 3 minutes activation time and 300 W microwave power. The highest CH4 uptake of 9.7045 mmol CH4 adsorbed/g adsorbent was recorded by M33P15 (300 W of microwave power, 3 min activation time and 15 wt% amount of PEEK) among the sorbents at an ambient temperature and 35 bar. The CH4 equilibrium data is well correlated with Sips, Toth, Freundlich and Langmuir. Isotherms revealed that the Sips isotherm has the best fit, while the kinetics studies revealed that the pseudo-second-order kinetic model best describes the adsorption process. In all scenarios studied, a decrease in temperature led to an increase in adsorption of both gases. The adsorbent (M33P15) maintained its stability even after seven adsorption/desorption cycles. The findings revealed the potential of coconut shell-PEEK as CH₄ adsorbents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=desorption" title=" desorption"> desorption</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20shells" title=" coconut shells"> coconut shells</a>, <a href="https://publications.waset.org/abstracts/search?q=polyetheretherketone" title=" polyetheretherketone"> polyetheretherketone</a> </p> <a href="https://publications.waset.org/abstracts/176392/synthesis-of-high-pressure-performance-adsorbent-from-coconut-shells-polyetheretherketone-for-methane-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Adsorption of Heavy Metals Using Chemically-Modified Tea Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phillip%20Ahn">Phillip Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Bryan%20Kim"> Bryan Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper is perhaps the most prevalent heavy metal used in the manufacturing industries, from food additives to metal-mechanic factories. Common methodologies to remove copper are expensive and produce undesired by-products. A good decontaminating candidate should be environment-friendly, inexpensive, and capable of eliminating low concentrations of the metal. This work suggests chemically modified spent tea leaves of chamomile, peppermint and green tea in their thiolated, sulfonated and carboxylated forms as candidates for the removal of copper from solutions. Batch experiments were conducted to maximize the adsorption of copper (II) ions. Effects such as acidity, salinity, adsorbent dose, metal concentration, and presence of surfactant were explored. Experimental data show that maximum adsorption is reached at neutral pH. The results indicate that Cu(II) can be removed up to 53%, 22% and 19% with the thiolated, carboxylated and sulfonated adsorbents, respectively. Maximum adsorption of copper on TPM (53%) is achieved with 150 mg and decreases with the presence of salts and surfactants. Conversely, sulfonated and carboxylated adsorbents show better adsorption in the presence of surfactants. Time-dependent experiments show that adsorption is reached in less than 25 min for TCM and 5 min for SCM. Instrumental analyses determined the presence of active functional groups, thermal resistance, and scanning electron microscopy, indicating that both adsorbents are promising materials for the selective recovery and treatment of metal ions from wastewaters. Finally, columns were prepared with these adsorbents to explore their application in scaled-up processes, with very positive results. A long-term goal involves the recycling of the exhausted adsorbent and/or their use in the preparation of biofuels due to changes in materials’ structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20removal" title="heavy metal removal">heavy metal removal</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewaters" title=" wastewaters"> wastewaters</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20remediation" title=" water remediation"> water remediation</a> </p> <a href="https://publications.waset.org/abstracts/41163/adsorption-of-heavy-metals-using-chemically-modified-tea-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Preparation of Biodiesel by Three Step Method Followed Purification by Various Silica Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanchal%20Mewar">Chanchal Mewar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shikha%20Gangil"> Shikha Gangil</a>, <a href="https://publications.waset.org/abstracts/search?q=Yashwant%20%20Parihar"> Yashwant Parihar</a>, <a href="https://publications.waset.org/abstracts/search?q=Virendra%20Dhakar"> Virendra Dhakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharat%20Modhera"> Bharat Modhera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel was prepared from Karanja oil by three step methods: saponification, acidification and esterification. In first step, saponification was done in presence of methanol and KOH or NaOH with Karanja oil. During second step acidification, various acids such as H3PO4, HCl, H2SO4 were used as acid catalyst. In third step, esterification followed by purification was done with various silica sources as Ludox (colloidal silicate) and fumed silica gel. It was found that there was no significant change in density, kinematic viscosity, iodine number, acid value, saponification number, flash point, cloud point, pour point and cetane number after purification by these adsorbents. The objective of this research is the comparison among different adsorbents which were used for the purification of biodiesel. Ludox (colloidal silicate) and fumed silica gel were used as adsorbents for the removal of glycerin from biodiesel and evaluate the effectiveness of biodiesel purity. Furthermore, this study compared the results of distilled water washing also. It was observed that Ludox, fumed silica gel and distilled water produced yield about 93%, 91% and 83% respectively. Highest yield was obtained with Ludox at 100 oC temperature using H3PO4 as acid catalyst and NaOH as base catalyst with methanol, (3:1) alcohol to oil molar ratio in 90 min. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20step%20method" title=" three step method"> three step method</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20sources" title=" silica sources"> silica sources</a> </p> <a href="https://publications.waset.org/abstracts/35335/preparation-of-biodiesel-by-three-step-method-followed-purification-by-various-silica-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Inorganic Anion Removal from Water Using Natural Adsorbents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ortuzar">A. Ortuzar</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Escondrillas"> I. Escondrillas</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Mijangos"> F. Mijangos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a need for new systems that can be attached to drinking water treatment plants and have the required treatment capacity as well as the selectivity regarding components derived from anthropogenic activities. In a context of high volumes of water and low concentration of contaminants, adsorption/interchange processes are appealing since they meet the required features. Iron oxides such as siderite and molysite, which are respectively based on FeCO<sub>3</sub> and FeCl<sub>3</sub>, can be found in nature. In this work, their observed performance, raw or roasted at different temperatures, as adsorbents of some inorganic anions is discussed. Roasted 1:1 FeCO<sub>3</sub>: FeCl<sub>3</sub> mixture was very selective for arsenic and allowed a 100% removal of As from a 10 mg L<sup>-1</sup> As solution. Besides, the 1:1 FeCO<sub>3</sub> and FeCl<sub>3 </sub>mixture roasted at 500 ºC showed good selectivity for, in order of preference, arsenate, bromate, phosphate, fluoride and nitrate anions with distribution coefficients of, respectively, 4200, 2800, 2500 0.4 and 0.03 L g<sup>-1</sup>. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drinking%20water" title="drinking water">drinking water</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20adsorbent%20materials" title=" natural adsorbent materials"> natural adsorbent materials</a>, <a href="https://publications.waset.org/abstracts/search?q=removal" title=" removal"> removal</a>, <a href="https://publications.waset.org/abstracts/search?q=selectivity" title=" selectivity"> selectivity</a> </p> <a href="https://publications.waset.org/abstracts/83059/inorganic-anion-removal-from-water-using-natural-adsorbents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Ammonia Adsorption Properties of Composite Ammonia Carriers Obtained by Supporting Metal Chloride on Porous Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Shen">Cheng Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=LaiHong%20Shen"> LaiHong Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ammonia is an important carrier of hydrogen energy, with the characteristics of high hydrogen content density and no carbon dioxide emission. Ammonia synthesis by the Haber process is the main method for industrial ammonia synthesis, but the conversion rate of ammonia per pass is only about 12%, while the conversion rate of biomass synthesis ammonia is as high as 56%. Therefore, safe and efficient ammonia capture for ammonia synthesis from biomass is an important way to alleviate the energy crisis and solve the energy problem. Metal chloride has a chemical adsorption effect on ammonia, and can be desorbed at high temperature to obtain high-concentration ammonia after combining with ammonia, which has a good development prospect in ammonia capture and separation technology. In this paper, the ammonia adsorption properties of CuCl₂ were measured, and the composite adsorbents were prepared by using silicon and multi-walled carbon nanotubes respectively to support CuCl₂, and the ammonia adsorption properties of the composite adsorbents were studied. The study found that the ammonia adsorption capacity of the three adsorbents decreased with the increase in temperature, so metal chlorides were more suitable for the low-temperature adsorption of ammonia. Silicon and multi-walled carbon nanotubes have an enhanced effect on the ammonia adsorption of CuCl₂. The reason is that the porous material itself has a physical adsorption effect on ammonia, and silicon can play the role of skeleton support in cupric chloride particles, which enhances the pore structure of the adsorbent, thereby alleviating sintering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonia" title="ammonia">ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20properties" title=" adsorption properties"> adsorption properties</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20chloride" title=" metal chloride"> metal chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=MWCNTs" title=" MWCNTs"> MWCNTs</a> </p> <a href="https://publications.waset.org/abstracts/160707/ammonia-adsorption-properties-of-composite-ammonia-carriers-obtained-by-supporting-metal-chloride-on-porous-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Emulsified Oil Removal in Produced Water by Graphite-Based Adsorbents Using Adsorption Coupled with Electrochemical Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zohreh%20Fallah">Zohreh Fallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20P.%20L.%20Roberts"> Edward P. L. Roberts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the big challenges for produced water treatment is removing oil from water in the form of emulsified droplets which are not easily separated. An attractive approach is adsorption, as it is a simple and effective process. However, adsorbents must be regenerated in order to make the process cost effective. Several sorbents have been tested for treating oily wastewater. However, some issues such as high energy consumption for activated carbon thermal regeneration have been reported. Due to their significant electrical conductivity, Graphite Intercalation Compounds (GIC) were found to be suitable to be regenerated electrochemically. They are non-porous materials with low surface area and fast adsorptive capacity which are useful for removal of low concentration of organics. An innovative adsorption/regeneration process has been developed at the University of Manchester in which adsorption of organics are done by using a patented GIC adsorbent coupled with subsequent electrochemical regeneration. The oxidation of adsorbed organics enables 100% regeneration so that the adsorbent can be reused over multiple adsorption cycles. GIC adsorbents are capable of removing a wide range of organics and pollutants; however, no comparable report is available for removal of emulsified oil in produced water using abovementioned process. In this study the performance of this technology for the removal of emulsified oil in wastewater was evaluated. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for both real produced water and model emulsions. The amount of oil in wastewater was measured by using the toluene extraction/fluorescence analysis before and after adsorption and electrochemical regeneration cycles. It was found that oil in water emulsion could be successfully treated by the treatment process and More than 70% of oil was removed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20regeneration" title=" electrochemical regeneration"> electrochemical regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsified%20oil" title=" emulsified oil"> emulsified oil</a>, <a href="https://publications.waset.org/abstracts/search?q=produced%20water" title=" produced water"> produced water</a> </p> <a href="https://publications.waset.org/abstracts/29358/emulsified-oil-removal-in-produced-water-by-graphite-based-adsorbents-using-adsorption-coupled-with-electrochemical-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Adsorption of Acetone Vapors by SBA-16 and MCM-48 Synthesized from Rice Husk Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanting%20Zeng">Wanting Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsunling%20Bai"> Hsunling Bai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silica was extracted from agriculture waste rice husk ash (RHA) and was used as the silica source for synthesis of RMCM-48 and RSBA-16. An alkali fusion process was utilized to separate silicate supernatant and the sediment effectively. The CTAB/Si and F127/Si molar ratio was employed to control the structure properties of the obtained RMCM-48 and RSBA-16 materials. The N2 adsorption-desorption results showed the micro-mesoporous RSBA-16 possessed high specific surface areas (662-1001 m2/g). All the obtained RSBA-16 materials were applied as the adsorbents for acetone adsorption. And the breakthrough tests clearly revealed that the RSBA-16(0.004) materials could achieve the highest acetone adsorption capacity of 186 mg/g under 1000 ppmv acetone vapor concentration at 25oC, which was also superior to ZSM-5 (71mg/g) and MCM-41 (157mg/g) under same test conditions. This can help to reduce the solid waste and the high adsorption performance of the obtained materials could consider as potential adsorbents for acetone adsorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetone" title="acetone">acetone</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-mesoporous%20material" title=" micro-mesoporous material"> micro-mesoporous material</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash%20%28RHA%29" title=" rice husk ash (RHA)"> rice husk ash (RHA)</a>, <a href="https://publications.waset.org/abstracts/search?q=RSBA-16" title=" RSBA-16"> RSBA-16</a> </p> <a href="https://publications.waset.org/abstracts/20095/adsorption-of-acetone-vapors-by-sba-16-and-mcm-48-synthesized-from-rice-husk-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Salinity Reduction from Saharan Brackish Water by Fluoride Removal on Activated Natural Materials: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amina%20Ramadni">Amina Ramadni</a>, <a href="https://publications.waset.org/abstracts/search?q=Safia%20Taleb"> Safia Taleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20D%C3%A9ratani"> André Dératani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study presents, firstly, to characterize the physicochemical quality of brackish groundwater of the Terminal Complex (TC) from the region of Eloued-souf and to investigate the presence of fluoride, and secondly, to study the comparison of adsorbing power of three materials, such as (activated alumina AA, sodium clay SC and hydroxyapatite HAP) against the groundwater in the region of Eloued-souf. To do this, a sampling campaign over 16 wells and consumer taps was undertaken. The results show that the groundwater can be characterized by very high fluoride content and excessive mineralization that require in some cases, specific treatment before supply. The study of adsorption revealed removal efficiencies fluoride by three adsorbents, maximum adsorption is achieved after 45 minutes at 90%, 83.4% and 73.95%, and with an adsorbed fluoride content of 0.22 mg/L, 0.318 mg/L and 0.52 mg/L for AA, HAP and SC, respectively. The acidity of the medium significantly affects the removal fluoride. Results deducted from the adsorption isotherms also showed that the retention follows the Langmuir model. The adsorption tests by adsorbent materials show that the physicochemical characteristics of brackish water are changed after treatment. The adsorption mechanism is an exchange between the OH<sup>-</sup> ions and fluoride ions. Three materials are proving to be effective adsorbents for fluoride removal that could be developed into a viable technology to help reduce the salinity of the Saharan hyper-fluorinated waters. Finally, a comparison between the results obtained from the different adsorbents allowed us to conclude that the defluoridation by AA is the process of choice for many waters of the region of Eloued-souf, because it was shown to be a very interesting and promising technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluoride%20removal" title="fluoride removal">fluoride removal</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrochemical%20characterization%20of%20groundwater" title=" hydrochemical characterization of groundwater"> hydrochemical characterization of groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20materials" title=" natural materials"> natural materials</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiltration" title=" nanofiltration"> nanofiltration</a> </p> <a href="https://publications.waset.org/abstracts/52585/salinity-reduction-from-saharan-brackish-water-by-fluoride-removal-on-activated-natural-materials-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Ecotoxicological Safety of Wastewater Treated with Lignocellulosic Adsorbents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADsa%20P.%20Cruz-Lopes">Luísa P. Cruz-Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=Artur%20Figueirinha"> Artur Figueirinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Br%C3%A1s"> Isabel Brás</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Esteves"> Bruno Esteves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Portugal is an important wine and olive oil producer, activities which generate a high quantity of residues commonly called grape stalks and olive cake, respectively. In this work grape stalks and olive cake were used as lignocellulosic adsorbents for wastewater containing lead treatment. To attain a better knowledge of the factors that could influence the quality of the treated wastewater, a chemical characterization of the materials used in the treatment was done. To access the ecotoxicological safety of the treated wastewater, several tests were performed. The results of the toxicity test show that the samples leachate has a mild effect on the living models tested. The tests performed in lemna and bacteria were the most sensible to toxicity effects of the samples. The results obtained in this work evidenced the importance of use of simple and fast toxicity tests to predict impacts in the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title="chemical composition">chemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20residues" title=" lignocellulosic residues"> lignocellulosic residues</a>, <a href="https://publications.waset.org/abstracts/search?q=ecotoxicological%20safety" title=" ecotoxicological safety"> ecotoxicological safety</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/7640/ecotoxicological-safety-of-wastewater-treated-with-lignocellulosic-adsorbents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Column Studies on Chromium(VI) Adsorption onto Kala Jamun (Syzygium cumini L.) Seed Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumi%20Deka">Sumi Deka</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Gopal%20Bhattacharyya"> Krishna Gopal Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper evaluate the industrial use of Kala Jamun (Syzygiumcumini L.) Seed powder (KSP) for the continuous adsorption of Cr(VI) in a column adsorption process. Adsorption of Cr(VI) onto Kala jamun (Syzygiumcumini L.) Seed Powder have been examined with the variation of (a) bed depth of the adsorbents, (b) flow rate of the adsorbents and (c) Cr(VI) concentration. The results showed that both the adsorption and the regeneration of the Cr(VI) onto Kala Jamun (Syzygiumcumini L.) seed Powder (KSP) can effectively occur in the column mode of adsorption. On increasing the bed depth, the adsorption of Cr(VI) onto KSP increases whereas on increasing the flow rate and the Cr(VI) concentration of KSP adsorption decreases. The results of the column studies were also fitted to Bed Depth Service Time (BDST) model. The BDST model was appropriate for designing the column for industrial purpose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bed-depth-service-time" title="bed-depth-service-time">bed-depth-service-time</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20adsorption" title=" continuous adsorption"> continuous adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=Cr%28VI%29" title=" Cr(VI)"> Cr(VI)</a>, <a href="https://publications.waset.org/abstracts/search?q=KSP" title=" KSP"> KSP</a> </p> <a href="https://publications.waset.org/abstracts/65219/column-studies-on-chromiumvi-adsorption-onto-kala-jamun-syzygium-cumini-l-seed-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Design and Synthesis of Copper-Zeolite Composite for Antimicrobial Activity and Heavy Metal Removal From Waste Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feleke%20Terefe%20Fanta">Feleke Terefe Fanta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The existence of heavy metals and coliform bacteria contaminants in aquatic system of Akaki river basin, a sub city of Addis Ababa, Ethiopia has become a public concern as human population increases and land development continues. Hence, it is the right time to design treatment technologies that can handle multiple pollutants. Results: In this study, we prepared a synthetic zeolites and copper doped zeolite composite adsorbents as cost effective and simple approach to simultaneously remove heavy metals and total coliforms from wastewater of Akaki river. The synthesized copper–zeolite X composite was obtained by ion exchange method of copper ions into zeolites frameworks. Iodine test, XRD, FTIR and autosorb IQ automated gas sorption analyzer were used to characterize the adsorbents. The mean concentrations of Cd, Cr, and Pb in untreated sample were 0.795, 0.654 and 0.7025 mg/L respectively. These concentrations decreased to Cd (0.005 mg/L), Cr (0.052 mg/L) and Pb (bellow detection limit, BDL) for sample treated with bare zeolite X while a further decrease in concentration of Cd (0.005 mg/L), Cr (BDL) and Pb (BDL) was observed for the sample treated with copper–zeolite composite. Zeolite X and copper-modified zeolite X showed complete elimination of total coliforms after 90 and 50 min contact time respectively. Conclusion: The results obtained in this study showed high antimicrobial disinfection and heavy metal removal efficiencies of the synthesized adsorbents. Furthermore, these sorbents are efficient in significantly reducing physical parameters such as electrical conductivity, turbidity, BOD and COD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WASTE%20WATER" title="WASTE WATER">WASTE WATER</a>, <a href="https://publications.waset.org/abstracts/search?q=COPPER%20DOPED%20ZEOITE%20X" title=" COPPER DOPED ZEOITE X"> COPPER DOPED ZEOITE X</a>, <a href="https://publications.waset.org/abstracts/search?q=ADSORPITION" title=" ADSORPITION"> ADSORPITION</a>, <a href="https://publications.waset.org/abstracts/search?q=HEAVY%20METAL" title=" HEAVY METAL"> HEAVY METAL</a>, <a href="https://publications.waset.org/abstracts/search?q=DISINFECTION" title=" DISINFECTION"> DISINFECTION</a>, <a href="https://publications.waset.org/abstracts/search?q=AKAKI%20RIVER" title=" AKAKI RIVER"> AKAKI RIVER</a> </p> <a href="https://publications.waset.org/abstracts/179364/design-and-synthesis-of-copper-zeolite-composite-for-antimicrobial-activity-and-heavy-metal-removal-from-waste-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Comparative Study of Sorption of Cr Ions and Dye Bezaktiv Yellow HE-4G with the Use of Adsorbents Natural Mixture of Olive Stone and Date Pits from Aqueous Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Aksas">H. Aksas</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Babaci"> H. Babaci</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Louhab"> K. Louhab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a comparative study of the adsorption of Chromium and dyes, onto mixture biosorbents, olive stones and date pits at different percentage was investigated in aqueous solution. The study of various parameters: Effect of contact time, pH, temperature and initial concentration shows that these materials possess a high affinity for the adsorption of chromium for the adsorption of dye bezaktiv yellow HE-4G. To deepen the comparative study of the adsorption of chromium and dye with the use of different blends of olive stones and date pits, the following models are studied: Langmuir, Freundlich isotherms and Dubinin- Radushkvich (D-R) were used as the adsorption equilibrium data model. Langmuir isotherm model was the most suitable for the adsorption of the dye bezaktiv HE-4G and the D-R model is most suitable for adsorption Chrome. The pseudo-first-order model, pseudo-second order and intraparticle diffusion were used to describe the adsorption kinetics. The apparent activation energy was found to be less than 8KJ/mol, which is characteristic of a controlled chemical reaction for the adsorption of two materials. t was noticed that adsorption of chromium and dye BEZAKTIV HE-YELLOW 4G follows the kinetics of the pseudo second order. The study of the effect of temperature was quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy and entropy changes. The resulting thermodynamic parameters indicate the endothermic nature of the adsorption of Cr (VI) ions and the dye Bezaktiv HE-4G. But these materials are very good adsorbents, as they represent a low cost. in addition, it has been noticed that the greater the quantity of olive stone in the mixture increases, the adsorption ability of the dye or chromium increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium%20ions" title="chromium ions">chromium ions</a>, <a href="https://publications.waset.org/abstracts/search?q=anions%20dye" title=" anions dye"> anions dye</a>, <a href="https://publications.waset.org/abstracts/search?q=sorption" title=" sorption"> sorption</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20adsorbents" title=" mixed adsorbents"> mixed adsorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20stone" title=" olive stone"> olive stone</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20pits" title=" date pits"> date pits</a> </p> <a href="https://publications.waset.org/abstracts/43941/comparative-study-of-sorption-of-cr-ions-and-dye-bezaktiv-yellow-he-4g-with-the-use-of-adsorbents-natural-mixture-of-olive-stone-and-date-pits-from-aqueous-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Acceleration of Adsorption Kinetics by Coupling Alternating Current with Adsorption Process onto Several Adsorbents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kesraoui">A. Kesraoui</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Seffen"> M. Seffen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Applications of adsorption onto activated carbon for water treatment are well known. The process has been demonstrated to be widely effective for removing dissolved organic substances from wastewaters, but this treatment has a major drawback is the high operating cost. The main goal of our research work is to improve the retention capacity of Tunisian biomass for the depollution of industrial wastewater and retention of pollutants considered toxic. The biosorption process is based on the retention of molecules and ions onto a solid surface composed of biological materials. The evaluation of the potential use of these materials is important to propose as an alternative to the adsorption process generally expensive, used to remove organic compounds. Indeed, these materials are very abundant in nature and are low cost. Certainly, the biosorption process is effective to remove the pollutants, but it presents a slow kinetics. The improvement of the biosorption rates is a challenge to make this process competitive with respect to oxidation and adsorption onto lignocellulosic fibers. In this context, the alternating current appears as a new alternative, original and a very interesting phenomenon in the acceleration of chemical reactions. Our main goal is to increase the retention acceleration of dyes (indigo carmine, methylene blue) and phenol by using a new alternative: alternating current. The adsorption experiments have been performed in a batch reactor by adding some of the adsorbents in 150 mL of pollutants solution with the desired concentration and pH. The electrical part of the mounting comprises a current source which delivers an alternating current voltage of 2 to 15 V. It is connected to a voltmeter that allows us to read the voltage. In a 150 mL capacity cell, we plunged two zinc electrodes and the distance between two Zinc electrodes has been 4 cm. Thanks to alternating current, we have succeeded to improve the performance of activated carbon by increasing the speed of the indigo carmine adsorption process and reducing the treatment time. On the other hand, we have studied the influence of the alternating current on the biosorption rate of methylene blue onto Luffa cylindrica fibers and the hybrid material (Luffa cylindrica-ZnO). The results showed that the alternating current accelerated the biosorption rate of methylene blue onto the Luffa cylindrica and the Luffa cylindrica-ZnO hybrid material and increased the adsorbed amount of methylene blue on both adsorbents. In order to improve the removal of phenol, we performed the coupling between the alternating current and the biosorption onto two adsorbents: Luffa cylindrica and the hybrid material (Luffa cylindrica-ZnO). In fact, the alternating current has succeeded to improve the performance of adsorbents by increasing the speed of the adsorption process and the adsorption capacity and reduce the processing time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=alternating%20current" title=" alternating current"> alternating current</a>, <a href="https://publications.waset.org/abstracts/search?q=dyes" title=" dyes"> dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/103163/acceleration-of-adsorption-kinetics-by-coupling-alternating-current-with-adsorption-process-onto-several-adsorbents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Biosorption of Methylene Blue and Acid Red-88 from Wastewater by Using Cypress Cones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Onur%20Yel">Onur Yel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study represents the removal of harmful dye substances from wastewaters by using waste and cheap adsorbents. Rapid population growth and industrialization occasion anthropogenic pollution which gives irreversible damage to the environment. One of the ways in which water pollution occurs is caused by the release of the dyestuffs in the textile industry. The release of dyestuffs to the environment directly damages the living creatures that have acquired water habitat. Especially, wastewater cannot be used for nutritional purposes. In addition, some adsorbents have mutagenic and/or carcinogenic effects. By blocking photosynthesis, it hinders the inhibition of photosynthetic bacteria in the water, which damages the ecological balance and also causes the formation of malodorous compounds. Moreover, the lack of oxygen can pose a serious danger to the lives of other living organisms that need oxygen. In recent years, some physical and chemical methods are preferred for the removal of dyestuffs. However, the utilization of these methods is expensive. For this reason, the availability of new and cheap adsorbents becomes the more significant issue. In this study, an investigation of various variables on the removal of Methylene Blue and Acid Red-88 dyestuffs from wastewaters by the usage of pulverized cypress cones has been carried out. Thus, various masses of absorbent (0.1-0.25-0.5-1-2-4-5 grams) are used in 50, 100, 150, 200, 300 ppm concentrations of Methylene Blue and Acid Red-88 dyestuffs’ solutions, and with a variety of the interaction time (0.25-0.5-1-2-4-5 hours). The mixtures were centrifuged and the absorbance of the filtrates was measured on a UV spectrophotometer to determine their remaining concentrations. In the study, the highest removal ratio of Acid Red-88 dyestuff was found to be 81% at 200 ppm of dyestuff with 2 grams of adsorbent at 300 minutes. For Methylene Blue experiments, the removal percentage was found as 98% where 2 grams of adsorbent is used in 200 ppm dyestuff solution at 120 minutes of interaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20red-88" title="acid red-88">acid red-88</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=cypress%20cones" title=" cypress cones"> cypress cones</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pollution" title=" water pollution"> water pollution</a> </p> <a href="https://publications.waset.org/abstracts/93987/biosorption-of-methylene-blue-and-acid-red-88-from-wastewater-by-using-cypress-cones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Batch and Dynamic Investigations on Magnesium Separation by Ion Exchange Adsorption: Performance and Cost Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20H.%20Sorour">Mohamed H. Sorour</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayam%20F.%20Shaalan"> Hayam F. Shaalan</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20A.%20Hani"> Heba A. Hani</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20S.%20Sayed"> Eman S. Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ion exchange adsorption has a long standing history of success for seawater softening and selective ion removal from saline sources. Strong, weak and mixed types ion exchange systems could be designed and optimized for target separation. In this paper, different types of adsorbents comprising zeolite 13X and kaolin, in addition to, poly acrylate/zeolite (AZ), poly acrylate/kaolin (AK) and stand-alone poly acrylate (A) hydrogel types were prepared via microwave (M) and ultrasonic (U) irradiation techniques. They were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The developed adsorbents were evaluated on bench scale level and based on assessment results, a composite bed has been formulated for performance evaluation in pilot scale column investigations. Owing to the hydrogel nature of the partially crosslinked poly acrylate, the developed adsorbents manifested a swelling capacity of about 50 g/g. The pilot trials have been carried out using magnesium enriched Red Seawater to simulate Red Seawater desalination brine. Batch studies indicated varying uptake efficiencies, where Mg adsorption decreases according to the following prepared hydrogel types AU>AM>AKM>AKU>AZM>AZU, being 108, 107, 78, 69, 66 and 63 mg/g, respectively. Composite bed adsorbent tested in the up-flow mode column studies indicated good performance for Mg uptake. For an operating cycle of 12 h, the maximum uptake during the loading cycle approached 92.5-100 mg/g, which is comparable to the performance of some commercial resins. Different regenerants have been explored to maximize regeneration and minimize the quantity of regenerants including 15% NaCl, 0.1 M HCl and sodium carbonate. Best results were obtained by acidified sodium chloride solution. In conclusion, developed cation exchange adsorbents comprising clay or zeolite support indicated adequate performance for Mg recovery under saline environment. Column design operated at the up-flow mode (approaching expanded bed) is appropriate for such type of separation. Preliminary cost indicators for Mg recovery via ion exchange have been developed and analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=batch%20and%20dynamic%20magnesium%20separation" title="batch and dynamic magnesium separation">batch and dynamic magnesium separation</a>, <a href="https://publications.waset.org/abstracts/search?q=seawater" title=" seawater"> seawater</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylate%20hydrogel" title=" polyacrylate hydrogel"> polyacrylate hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20evaluation" title=" cost evaluation"> cost evaluation</a> </p> <a href="https://publications.waset.org/abstracts/99622/batch-and-dynamic-investigations-on-magnesium-separation-by-ion-exchange-adsorption-performance-and-cost-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Comparative Isotherms Studies on Adsorptive Removal of Methyl Orange from Wastewater by Watermelon Rinds and Neem-Tree Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadiq%20Sani">Sadiq Sani</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20B.%20Ibrahim"> Muhammad B. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Watermelon rinds powder (WRP) and neem-tree leaves powder (NLP) were used as adsorbents for equilibrium adsorption isotherms studies for detoxification of methyl orange dye (MO) from simulated wastewater. The applicability of the process to various isotherm models was tested. All isotherms from the experimental data showed excellent linear reliability (R2: 0.9487-0.9992) but adsorptions onto WRP were more reliable (R2: 0.9724-0.9992) than onto NLP (R2: 0.9487-0.9989) except for Temkin’s Isotherm where reliability was better onto NLP (R2: 0.9937) than onto WRP (R2: 0.9935). Dubinin-Radushkevich’s monolayer adsorption capacities for both WRP and NLP (qD: 20.72 mg/g, 23.09 mg/g) were better than Langmuir’s (qm: 18.62 mg/g, 21.23 mg/g) with both capacities higher for adsorption onto NLP (qD: 23.09 mg/g; qm: 21.23 mg/g) than onto WRP (qD: 20.72 mg/g; qm: 18.62 mg/g). While values for Langmuir’s separation factor (RL) for both adsorbents suggested unfavourable adsorption processes (RL: -0.0461, -0.0250), Freundlich constant (nF) indicated favourable process onto both WRP (nF: 3.78) and NLP (nF: 5.47). Adsorption onto NLP had higher Dubinin-Radushkevich’s mean free energy of adsorption (E: 0.13 kJ/mol) than WRP (E: 0.08 kJ/mol) and Temkin’s heat of adsorption (bT) was better onto NLP (bT: -0.54 kJ/mol) than onto WRP (bT: -0.95 kJ/mol) all of which suggested physical adsorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption%20isotherms" title="adsorption isotherms">adsorption isotherms</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20orange" title=" methyl orange"> methyl orange</a>, <a href="https://publications.waset.org/abstracts/search?q=neem%20leaves" title=" neem leaves"> neem leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=watermelon%20rinds" title=" watermelon rinds"> watermelon rinds</a> </p> <a href="https://publications.waset.org/abstracts/51688/comparative-isotherms-studies-on-adsorptive-removal-of-methyl-orange-from-wastewater-by-watermelon-rinds-and-neem-tree-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Effect of Acid Activation of Vermiculite on Its Carbon Dioxide Adsorption Behaviors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Wal">Katarzyna Wal</a>, <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20Stawi%C5%84ski"> Wojciech Stawiński</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Rutkowski"> Piotr Rutkowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The scientific community is paying more and more attention to the problem of air pollution. Carbon dioxide is classified as one of the most harmful gases. Its emissions are generated during fossil fuel burning, waste management, and combustion and are responsible for global warming. Clay minerals constitute a group of promising materials for the role of adsorbents. They are composed of two types of phyllosilicate sheets: tetrahedral and octahedral, which form 1:1 or 2:1 structures. Vermiculite is one of their best-known representative, which can be used as an adsorbent from water and gaseous phase. The aim of the presented work was carbon dioxide adsorption on vermiculite. Acid-activated samples (W_NO3_x) were prepared by acid treatment with different concentrations of nitric acid (1, 2, 3, 4 mol L⁻¹). Vermiculite was subjected to modification in order to increase its porosity and adsorption properties. The prepared adsorbents were characterized using the BET-specific surface area analysis, thermogravimetry (TG), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Applied modifications significantly increase the specific surface area from 78,21 m² g⁻¹ for the unmodified sample (W_REF) to 536 m² g-1 for W_NO3_4. Obtained results showed that acid treatment tunes the material’s functional properties by increasing the contact surface and generating more active sites in its structure. The adsorption performance in terms carbon dioxide adsorption capacities follows the order of W_REF (25.91 mg g⁻¹) < W_NO3_1 (38.54 mg g⁻¹) < W_NO3_2 (44.03 mg g⁻¹) W_NO3_4 (67.51 mg g⁻¹) < W_NO3_3 (70.48 mg g⁻¹). Acid activation significantly improved the carbon dioxide adsorption properties of modified samples compared to raw material. These results demonstrate that vermiculite-based samples have the potential to be used as effective CO₂ adsorbents. Furthermore, acid treatment is a promising technique for improving the adsorption properties of clay minerals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorbent" title=" adsorbent"> adsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20minerals" title=" clay minerals"> clay minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title=" air pollution"> air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/142946/effect-of-acid-activation-of-vermiculite-on-its-carbon-dioxide-adsorption-behaviors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> A Greener Approach for the Recovery of Proteins from Meat Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jesus%20Hernandez">Jesus Hernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Zead%20Elzoeiry"> Zead Elzoeiry</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20S.%20Islam"> Md. S. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Abel%20E.%20Navarro"> Abel E. Navarro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption of bovine serum albumin (BSA) and human hemoglobin (Hb) on naturally-occurring adsorbents was studied to evaluate the potential recovery of proteins from meat industry residues. Spent peppermint tea (PM), powdered purple corn cob (PC), natural clay (NC) and chemically-modified clay (MC) were investigated to elucidate the effects of pH, adsorbent dose, initial protein concentration, presence of salts and heavy metals. Equilibrium data were fitted according to isotherm models, reporting a maximum adsorption capacity at pH 8 of 318 and 344 mg BSA/g of PM and NC, respectively. Moreover, Hb displayed maximum adsorption capacity at pH 5 of 125 and 143 mg/g of PM and PC, respectively. Hofmeister salt effect was only observed for PM/Hb system. Salts tend to decrease protein adsorption, and the presence of Cu(II) ions had negligible impacts on the adsorption onto NC and PC. Desorption experiments confirmed that more than 85% of both proteins can be recovered with diluted acids and bases. SEM, EDX, and TGA analyses demonstrated that the adsorbents have favorable morphological and mechanical properties. The long-term goal of this study aims to recover soluble proteins from industrial wastewaters to produce animal food or any protein-based product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=albumin" title=" albumin"> albumin</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=hemoglobin" title=" hemoglobin"> hemoglobin</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20peppermint%20leaf" title=" spent peppermint leaf"> spent peppermint leaf</a> </p> <a href="https://publications.waset.org/abstracts/113481/a-greener-approach-for-the-recovery-of-proteins-from-meat-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Pb and NI Removal from Aqueous Environment by Green Synthesized Iron Nanoparticles Using Fruit Cucumis Melo and Leaves of Ficus Virens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amandeep%20Kaur">Amandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangeeta%20Sharma"> Sangeeta Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Keeping in view the serious entanglement of heavy metals ( Pb+2 and Ni+2) ions in an aqueous environment, a rapid search for efficient adsorbents for the adsorption of heavy metals has become highly desirable. In this quest, green synthesized Fe np’s have gathered attention because of their excellent adsorption capability of heavy metals from aqueous solution. This research report aims at the fabrication of Fe np’s using the fruit Cucumis melo and leaves of Ficus virens via a biogenic synthesis route. Further, synthesized CM-Fe-np’s and FV-Fe-np’s have been tested as potential bio-adsorbents for the removal of Pb+2 and Ni+2 by carrying out adsorption batch experiments. The influence of myriad parameters like initial concentration of Pb/Ni (5,10,15,20,25 mg/L), contact time (10 to 200 min.), adsorbent dosage (0.5, 0.10, 0.15 mg/L), shaking speed (120 to 350 rpm) and pH value (6,7,8,9) has been investigated. The maximum removal with CM-Fe-np’s and FV-Fe-np’s has been achieved at pH 7, metal conc. 5 mg/L, dosage 0.9 g/L, shaking speed 200 rpm and reaction contact time 200 min during the adsorption experiment. The results obtained are found to be in accordance with Freundlich and Langmuir's adsorption models; consequently, they could be highly applicable to the wastewater treatment plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=biogenic%20synthesis" title=" biogenic synthesis"> biogenic synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a> </p> <a href="https://publications.waset.org/abstracts/159301/pb-and-ni-removal-from-aqueous-environment-by-green-synthesized-iron-nanoparticles-using-fruit-cucumis-melo-and-leaves-of-ficus-virens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adsorbents&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adsorbents&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adsorbents&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adsorbents&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adsorbents&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>