CINXE.COM

Search results for: charge fee

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: charge fee</title> <meta name="description" content="Search results for: charge fee"> <meta name="keywords" content="charge fee"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="charge fee" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="charge fee"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 913</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: charge fee</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">913</span> Behaviour of an RC Circuit near Extreme Point</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tribhuvan%20N.%20Soorya">Tribhuvan N. Soorya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Charging and discharging of a capacitor through a resistor can be shown as exponential curve. Theoretically, it takes infinite time to fully charge or discharge a capacitor. The flow of charge is due to electrons having finite and fixed value of charge. If we carefully examine the charging and discharging process after several time constants, the points on q vs t graph become discrete and curve become discontinuous. Moreover for all practical purposes capacitor with charge (q0-e) can be taken as fully charged, as it introduces an error less than one part per million. Similar is the case for discharge of a capacitor, where the capacitor with the last electron (charge e) can be taken as fully discharged. With this, we can estimate the finite value of time for fully charging and discharging a capacitor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charging" title="charging">charging</a>, <a href="https://publications.waset.org/abstracts/search?q=discharging" title=" discharging"> discharging</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20Circuit" title=" RC Circuit"> RC Circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitor" title=" capacitor"> capacitor</a> </p> <a href="https://publications.waset.org/abstracts/28590/behaviour-of-an-rc-circuit-near-extreme-point" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">912</span> New Technique of Estimation of Charge Carrier Density of Nanomaterials from Thermionic Emission Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dilip%20K.%20De">Dilip K. De</a>, <a href="https://publications.waset.org/abstracts/search?q=Olukunle%20C.%20Olawole"> Olukunle C. Olawole</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20S.%20Joel"> Emmanuel S. Joel</a>, <a href="https://publications.waset.org/abstracts/search?q=Moses%20Emetere"> Moses Emetere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A good number of electronic properties such as electrical and thermal conductivities depend on charge carrier densities of nanomaterials. By controlling the charge carrier densities during the fabrication (or growth) processes, the physical properties can be tuned. In this paper, we discuss a new technique of estimating the charge carrier densities of nanomaterials from the thermionic emission data using the newly modified Richardson-Dushman equation. We find that the technique yields excellent results for graphene and carbon nanotube. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20carrier%20density" title="charge carrier density">charge carrier density</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20materials" title=" nano materials"> nano materials</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20technique" title=" new technique"> new technique</a>, <a href="https://publications.waset.org/abstracts/search?q=thermionic%20emission" title=" thermionic emission"> thermionic emission</a> </p> <a href="https://publications.waset.org/abstracts/42562/new-technique-of-estimation-of-charge-carrier-density-of-nanomaterials-from-thermionic-emission-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">911</span> Effective Charge Coupling in Low Dimensional Doped Quantum Antiferromagnets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suraka%20Bhattacharjee">Suraka Bhattacharjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjan%20Chaudhury"> Ranjan Chaudhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction between the charge degrees of freedom for itinerant antiferromagnets is investigated in terms of generalized charge stiffness constant corresponding to nearest neighbour t-J model and t1-t2-t3-J model. The low dimensional hole doped antiferromagnets are the well known systems that can be described by the t-J-like models. Accordingly, we have used these models to investigate the fermionic pairing possibilities and the coupling between the itinerant charge degrees of freedom. A detailed comparison between spin and charge couplings highlights that the charge and spin couplings show very similar behaviour in the over-doped region, whereas, they show completely different trends in the lower doping regimes. Moreover, a qualitative equivalence between generalized charge stiffness and effective Coulomb interaction is also established based on the comparisons with other theoretical and experimental results. Thus it is obvious that the enhanced possibility of fermionic pairing is inherent in the reduction of Coulomb repulsion with increase in doping concentration. However, the increased possibility can not give rise to pairing without the presence of any other pair producing mechanism outside the t-J model. Therefore, one can conclude that the t-J-like models themselves solely are not capable of producing conventional momentum-based superconducting pairing on their own. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20charge%20stiffness%20constant" title="generalized charge stiffness constant">generalized charge stiffness constant</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20coupling" title=" charge coupling"> charge coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20Coulomb%20interaction" title=" effective Coulomb interaction"> effective Coulomb interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=t-J-like%20models" title=" t-J-like models"> t-J-like models</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum-space%20pairing" title=" momentum-space pairing"> momentum-space pairing</a> </p> <a href="https://publications.waset.org/abstracts/111537/effective-charge-coupling-in-low-dimensional-doped-quantum-antiferromagnets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">910</span> X-Ray and DFT Electrostatics Parameters Determination of a Coumarin Derivative Compound C17H13NO3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Megrous">Y. Megrous</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chouaih"> A. Chouaih</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hamzaoui"> F. Hamzaoui </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crystal structure of 4-Methyl-7-(salicylideneamino)coumarin C17H13NO3has been determined using X-ray diffraction to establish the configuration and stereochemistry of the molecule. This crystal is characterized by its nolinear activity. The molecular electron charge density distribution of the title compound is described accurately using the multipolar model of Hansen and Coppens. The net atomic charge and the molecular dipole moment in-crystal have been determined in order to understand the nature of inter-and intramolecular charge transfer. The study present the thermal motion and the structural analysis obtained from the least-square refinement on F2,this study has also allowed us to determine the electrostatic potential and therefore locate the electropositive part and the electronegative part in molecular scale of the title compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20charge%20density" title="electron charge density">electron charge density</a>, <a href="https://publications.waset.org/abstracts/search?q=net%20atomic%20charge" title=" net atomic charge"> net atomic charge</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dipole%20moment" title=" molecular dipole moment"> molecular dipole moment</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a> </p> <a href="https://publications.waset.org/abstracts/24669/x-ray-and-dft-electrostatics-parameters-determination-of-a-coumarin-derivative-compound-c17h13no3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">909</span> Simulations of High-Intensity, Thermionic Electron Guns for Electron Beam Thermal Processing Including Effects of Space Charge Compensation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Hinrichs">O. Hinrichs</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Franz"> H. Franz</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Reiter"> G. Reiter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electron guns have a key function in a series of thermal processes, like EB (electron beam) melting, evaporation or welding. These techniques need a high-intensity continuous electron beam that defocuses itself due to high space charge forces. A proper beam transport throughout the magnetic focusing system can be ensured by a space charge compensation via residual gas ions. The different pressure stages in the EB gun cause various degrees of compensation. A numerical model was installed to simulate realistic charge distributions within the beam by using CST-Particle Studio code. We will present current status of beam dynamic simulations. This contribution will focus on the creation of space charge ions and their influence on beam and gun components. Furthermore, the beam transport in the gun will be shown for different beam parameters. The electron source allows to produce beams with currents of 3 A to 15 A and energies of 40 keV to 45 keV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam%20dynamic%20simulation" title="beam dynamic simulation">beam dynamic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20charge%20compensation" title=" space charge compensation"> space charge compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermionic%20electron%20source" title=" thermionic electron source"> thermionic electron source</a>, <a href="https://publications.waset.org/abstracts/search?q=EB%20melting" title=" EB melting"> EB melting</a>, <a href="https://publications.waset.org/abstracts/search?q=EB%20thermal%20processing" title=" EB thermal processing "> EB thermal processing </a> </p> <a href="https://publications.waset.org/abstracts/106185/simulations-of-high-intensity-thermionic-electron-guns-for-electron-beam-thermal-processing-including-effects-of-space-charge-compensation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">908</span> Prediction of Positive Cloud-to-Ground Lightning Striking Zones for Charged Thundercloud Based on Line Charge Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Das%20Barman">Surajit Das Barman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakibuzzaman%20Shah"> Rakibuzzaman Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Apurv%20Kumar"> Apurv Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bushfire is known as one of the ascendant factors to create pyrocumulus thundercloud that causes the ignition of new fires by pyrocumulonimbus (pyroCb) lightning strikes and creates major losses of lives and property worldwide. A conceptual model-based risk planning would be beneficial to predict the lightning striking zones on the surface of the earth underneath the pyroCb thundercloud. PyroCb thundercloud can generate both positive cloud-to-ground (+CG) and negative cloud-to-ground (-CG) lightning in which +CG tends to ignite more bushfires and cause massive damage to nature and infrastructure. In this paper, a simple line charge structured thundercloud model is constructed in 2-D coordinates using the method of image charge to predict the probable +CG lightning striking zones on the earth’s surface for two conceptual thundercloud charge configurations: titled dipole and conventional tripole structure with excessive lower positive charge regions that lead to producing +CG lightning. The electric potential and surface charge density along the earth’s surface for both structures via continuously adjusting the position and the charge density of their charge regions is investigated. Simulation results for tilted dipole structure confirm the down-shear extension of the upper positive charge region in the direction of the cloud’s forward flank by 4 to 8 km, resulting in negative surface density, and would expect +CG lightning to strike within 7.8 km to 20 km around the earth periphery in the direction of the cloud’s forward flank. On the other hand, the conceptual tripole charge structure with enhanced lower positive charge region develops negative surface charge density on the earth’s surface in the range |x| < 6.5 km beneath the thundercloud and highly favors producing +CG lightning strikes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pyrocumulonimbus" title="pyrocumulonimbus">pyrocumulonimbus</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud-to-ground%20lightning" title=" cloud-to-ground lightning"> cloud-to-ground lightning</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20structure" title=" charge structure"> charge structure</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20charge%20density" title=" surface charge density"> surface charge density</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20flank" title=" forward flank"> forward flank</a> </p> <a href="https://publications.waset.org/abstracts/148259/prediction-of-positive-cloud-to-ground-lightning-striking-zones-for-charged-thundercloud-based-on-line-charge-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">907</span> Kerr Electric-Optic Measurement of Electric Field and Space Charge Distribution in High Voltage Pulsed Transformer Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongda%20Guo">Hongda Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenxia%20Sima"> Wenxia Sima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transformer oil is widely used in power systems because of its excellent insulation properties. The accurate measurement of electric field and space charge distribution in transformer oil under high voltage impulse has important theoretical and practical significance, but still remains challenging to date because of its low Kerr constant. In this study, the continuous electric field and space charge distribution over time between parallel-plate electrodes in high-voltage pulsed transformer oil based on the Kerr effect is directly measured using a linear array photoelectrical detector. Experimental results demonstrate the applicability and reliability of this method. This study provides a feasible approach to further study the space charge effects and breakdown mechanisms in transformer oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title="electric field">electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerr" title=" Kerr"> Kerr</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20charge" title=" space charge"> space charge</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer%20oil" title=" transformer oil"> transformer oil</a> </p> <a href="https://publications.waset.org/abstracts/48379/kerr-electric-optic-measurement-of-electric-field-and-space-charge-distribution-in-high-voltage-pulsed-transformer-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">906</span> Estimation of the State of Charge of the Battery Using EFK and Sliding Mode Observer in MATLAB-Arduino/Labview</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mouna%20Abarkan">Mouna Abarkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelillah%20Byou"> Abdelillah Byou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacer%20M%27Sirdi"> Nacer M&#039;Sirdi</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Hossain%20Abarkan"> El Hossain Abarkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the estimation of the state of charge of the battery using two types of observers. The battery model used is the combination of a voltage source, which is the open circuit battery voltage of a strength corresponding to the connection of resistors and electrolyte and a series of parallel RC circuits representing charge transfer phenomena and diffusion. An adaptive observer applied to this model is proposed, this observer to estimate the battery state of charge of the battery is based on EFK and sliding mode that is known for their robustness and simplicity implementation. The results are validated by simulation under MATLAB/Simulink and implemented in Arduino-LabView. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20of%20the%20battery" title="model of the battery">model of the battery</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20sliding%20mode%20observer" title=" adaptive sliding mode observer"> adaptive sliding mode observer</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20EFK%20observer" title=" the EFK observer"> the EFK observer</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation%20of%20state%20of%20charge" title=" estimation of state of charge"> estimation of state of charge</a>, <a href="https://publications.waset.org/abstracts/search?q=SOC" title=" SOC"> SOC</a>, <a href="https://publications.waset.org/abstracts/search?q=implementation%20in%20Arduino%2FLabView" title=" implementation in Arduino/LabView"> implementation in Arduino/LabView</a> </p> <a href="https://publications.waset.org/abstracts/88834/estimation-of-the-state-of-charge-of-the-battery-using-efk-and-sliding-mode-observer-in-matlab-arduinolabview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">905</span> Independent Control over Surface Charge and Wettability Using Polyelectrolyte Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shanshan%20Guo">Shanshan Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoying%20Zhu"> Xiaoying Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominik%20Ja%C5%84czewski"> Dominik Jańczewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Koon%20Gee%20Neoh"> Koon Gee Neoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface charge and wettability are two prominent physical factors governing cell adhesion and have been extensively studied in the literature. However, a comparison between the two driving forces in terms of their independent and cooperative effects in affecting cell adhesion is rarely explored on a systematic and quantitative level. Herein, we formulate a protocol which allows two-dimensional and independent control over both surface charge and wettability. This protocol enables the unambiguous comparison of the effects of these two properties on cell adhesion. This strategy is implemented by controlling both the relative thickness of polyion layers in the layer-by-layer assembly and the polyion side chain chemical structures. The 2D property matrix spans surface isoelectric point ranging from 5 to 9 and water contact angle from 35º to 70º, with other interferential factors (e.g. roughness) eliminated. The interplay between these two surface variables influences 3T3 fibroblast cell adhesion. The results show that both surface charge and wettability have an effect on its adhesion. The combined effects of positive charge and hydrophilicity led to the highest cell adhesion whereas negative charge and hydrophobicity led to the lowest cell adhesion. Our design strategy can potentially form the basis for studying the distinct behaviors of electrostatic force or wettability driven interfacial phenomena and serving as a reference in future studies assessing cell adhesion to surfaces with known charge and wettability within the property range studied here. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20adhesion" title="cell adhesion">cell adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer" title=" layer-by-layer"> layer-by-layer</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20charge" title=" surface charge"> surface charge</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20wettability" title=" surface wettability"> surface wettability</a> </p> <a href="https://publications.waset.org/abstracts/57245/independent-control-over-surface-charge-and-wettability-using-polyelectrolyte-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">904</span> Effect of pH-Dependent Surface Charge on the Electroosmotic Flow through Nanochannel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Partha%20P.%20Gopmandal">Partha P. Gopmandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Somnath%20Bhattacharyya"> Somnath Bhattacharyya</a>, <a href="https://publications.waset.org/abstracts/search?q=Naren%20Bag"> Naren Bag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we have studied the effect of pH-regulated surface charge on the electroosmotic flow (EOF) through nanochannel filled with binary symmetric electrolyte solution. The channel wall possesses either an acidic or a basic functional group. Going beyond the widely employed Debye-Huckel linearization, we develop a mathematical model based on Nernst-Planck equation for the charged species, Poisson equation for the induced potential, Stokes equation for fluid flow. A finite volume based numerical algorithm is adopted to study the effect of key parameters on the EOF. We have computed the coupled governing equations through the finite volume method and our results found to be in good agreement with the analytical solution obtained from the corresponding linear model based on low surface charge condition or strong electrolyte solution. The influence of the surface charge density, reaction constant of the functional groups, bulk pH, and concentration of the electrolyte solution on the overall flow rate is studied extensively. We find the effect of surface charge diminishes with the increase in electrolyte concentration. In addition for strong electrolyte, the surface charge becomes independent of pH due to complete dissociation of the functional groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroosmosis" title="electroosmosis">electroosmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20group" title=" functional group"> functional group</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20charge" title=" surface charge"> surface charge</a> </p> <a href="https://publications.waset.org/abstracts/63437/effect-of-ph-dependent-surface-charge-on-the-electroosmotic-flow-through-nanochannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">903</span> Reduction of Peak Input Currents during Charge Pump Boosting in Monolithically Integrated High-Voltage Generators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jan%20Doutreloigne">Jan Doutreloigne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes two methods for the reduction of the peak input current during the boosting of Dickson charge pumps. Both methods are implemented in the fully integrated Dickson charge pumps of a high-voltage display driver chip for smart-card applications. Experimental results reveal good correspondence with Spice simulations and show a reduction of the peak input current by a factor of 6 during boosting <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bi-stable%20display%20driver" title="bi-stable display driver">bi-stable display driver</a>, <a href="https://publications.waset.org/abstracts/search?q=Dickson%20charge%20pump" title=" Dickson charge pump"> Dickson charge pump</a>, <a href="https://publications.waset.org/abstracts/search?q=high-voltage%20generator" title=" high-voltage generator"> high-voltage generator</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20current%20reduction" title=" peak current reduction"> peak current reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-pump%20boosting" title=" sub-pump boosting"> sub-pump boosting</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20frequency%20boosting" title=" variable frequency boosting"> variable frequency boosting</a> </p> <a href="https://publications.waset.org/abstracts/34172/reduction-of-peak-input-currents-during-charge-pump-boosting-in-monolithically-integrated-high-voltage-generators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">902</span> Effects of Charge Fluctuating Positive Dust on Linear Dust-Acoustic Waves </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjit%20Kumar%20Paul">Sanjit Kumar Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Mamun"> A. A. Mamun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Amin"> M. R. Amin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Linear propagation of the dust-acoustic wave in a dusty plasma consisting of Boltzmann distributed electrons and ions and mobile charge fluctuating positive dust grains has been investigated by employing the reductive perturbation method. It has been shown that the dust charge fluctuation is a source of dissipation and its responsible for the formation of the dust-acoustic waves in such a dusty plasma. The basic features of such dust-acoustic waves have been identified. It has been proposed to design a new laboratory experiment which will be able to identify the basic features of the dust-acoustic waves predicted in this theoretical investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dust%20acoustic%20waves" title="dust acoustic waves">dust acoustic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=dusty%20plasma" title=" dusty plasma"> dusty plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=Boltzmann%20distributed%20electrons" title=" Boltzmann distributed electrons"> Boltzmann distributed electrons</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20fluctuation" title=" charge fluctuation"> charge fluctuation</a> </p> <a href="https://publications.waset.org/abstracts/8380/effects-of-charge-fluctuating-positive-dust-on-linear-dust-acoustic-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">637</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">901</span> Localising Gauss’s Law and the Electric Charge Induction on a Conducting Sphere</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sirapat%20Lookrak">Sirapat Lookrak</a>, <a href="https://publications.waset.org/abstracts/search?q=Anol%20Paisal"> Anol Paisal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space debris has numerous manifestations, including ferro-metalize and non-ferrous. The electric field will induce negative charges to split from positive charges inside the space debris. In this research, we focus only on conducting materials. The assumption is that the electric charge density of a conducting surface is proportional to the electric field on that surface due to Gauss's Law. We are trying to find the induced charge density from an external electric field perpendicular to a conducting spherical surface. An object is a sphere on which the external electric field is not uniform. The electric field is, therefore, considered locally. The localised spherical surface is a tangent plane, so the Gaussian surface is a very small cylinder, and every point on a spherical surface has its own cylinder. The electric field from a circular electrode has been calculated in near-field and far-field approximation and shown Explanation Touchless maneuvering space debris orbit properties. The electric charge density calculation from a near-field and far-field approximation is done. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=near-field%20approximation" title="near-field approximation">near-field approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=far-field%20approximation" title=" far-field approximation"> far-field approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20Gauss%E2%80%99s%20law" title=" localized Gauss’s law"> localized Gauss’s law</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20charge%20density" title=" electric charge density"> electric charge density</a> </p> <a href="https://publications.waset.org/abstracts/150159/localising-gausss-law-and-the-electric-charge-induction-on-a-conducting-sphere" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">900</span> Effect of Viscosity in Void Structure with Interacting Variable Charge Dust Grains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nebbat%20El%20Amine">Nebbat El Amine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The void is a dust free region inside the dust cloud in the plasma. It is found that the dust grain charge variation lead to the extension of the void. Moreover, for bigger dust grains, it is seen that the wave-like structure recedes when charge variation is dealt with. Furthermore, as the grain-grain distance is inversely proportional to density, the grain-grain interaction gets more important for a denser dust population and is to be included in momentum equation. For the result indicate above, the plasma is considered non viscous. But in fact, it’s not always true. Some authors measured experimentally the viscosity of this background and found that the viscosity of dusty plasma increase with background gas pressure. In this paper, we tack account the viscosity of the fluid, and we compare the result with that found in the recent work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=voids" title="voids">voids</a>, <a href="https://publications.waset.org/abstracts/search?q=dusty%20plasmas" title=" dusty plasmas"> dusty plasmas</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20charge" title=" variable charge"> variable charge</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/157586/effect-of-viscosity-in-void-structure-with-interacting-variable-charge-dust-grains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">899</span> Charge Trapping on a Single-wall Carbon Nanotube Thin-film Transistor with Several Electrode Metals for Memory Function Mimicking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ameni%20Mahmoudi">Ameni Mahmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Manel%20Troudi"> Manel Troudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Bondavalli"> Paolo Bondavalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Sghaier"> Nabil Sghaier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the charge storage on thin-film SWCNT transistors was investigated, and C-V hysteresis tests showed that interface charge trapping effects predominate the memory window. Two electrode materials were utilized to demonstrate that selecting the appropriate metal electrode clearly improves the conductivity and, consequently, the SWCNT thin-film’s memory effect. Because their work function is similar to that of thin-film carbon nanotubes, Ti contacts produce higher charge confinement and show greater charge storage than Pd contacts. For Pd-contact CNTFETs and CNTFETs with Ti electrodes, a sizable clockwise hysteresis window was seen in the dual sweep circle with a threshold voltage shift of V11.52V and V9.7V, respectively. The SWCNT thin-film based transistor is expected to have significant trapping and detrapping charges because of the large C-V hysteresis. We have found that the predicted stored charge density for CNTFETs with Ti contacts is approximately 4.01×10-2C.m-2, which is nearly twice as high as the charge density of the device with Pd contacts. We have shown that the amount of trapped charges can be changed by sweeping the range or Vgs rate. We also looked into the variation in the flat band voltage (V FB) vs. time in order to determine the carrier retention period in CNTFETs with Ti and Pd electrodes. The outcome shows that memorizing trapped charges is about 300 seconds, which is a crucial finding for memory function mimicking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20storage" title="charge storage">charge storage</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-film%20SWCNT%20based%20transistors" title=" thin-film SWCNT based transistors"> thin-film SWCNT based transistors</a>, <a href="https://publications.waset.org/abstracts/search?q=C-V%20hysteresis" title=" C-V hysteresis"> C-V hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=memory%20effect" title=" memory effect"> memory effect</a>, <a href="https://publications.waset.org/abstracts/search?q=trapping%20and%20detrapping%20charges" title=" trapping and detrapping charges"> trapping and detrapping charges</a>, <a href="https://publications.waset.org/abstracts/search?q=stored%20charge%20density" title=" stored charge density"> stored charge density</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20carrier%20retention%20time" title=" the carrier retention time"> the carrier retention time</a> </p> <a href="https://publications.waset.org/abstracts/159141/charge-trapping-on-a-single-wall-carbon-nanotube-thin-film-transistor-with-several-electrode-metals-for-memory-function-mimicking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">898</span> Electrospray Deposition Technique of Dye Molecules in the Vacuum </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouf%20Alharbi">Nouf Alharbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrospray deposition technique became an important method that enables fragile, nonvolatile molecules to be deposited in situ in high vacuum environments. Furthermore, it is considered one of the ways to close the gap between basic surface science and molecular engineering, which represents a gradual change in the range of scientist research. Also, this paper talked about one of the most important techniques that have been developed and aimed for helping to further develop and characterize the electrospray by providing data collected using an image charge detection instrument. Image charge detection mass spectrometry (CDMS) is used to measure speed and charge distributions of the molecular ions. As well as, some data has been included using SIMION simulation to simulate the energies and masses of the molecular ions through the system in order to refine the mass-selection process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge" title="charge">charge</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition" title=" deposition"> deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospray" title=" electrospray"> electrospray</a>, <a href="https://publications.waset.org/abstracts/search?q=image" title=" image"> image</a>, <a href="https://publications.waset.org/abstracts/search?q=ions" title=" ions"> ions</a>, <a href="https://publications.waset.org/abstracts/search?q=molecules" title=" molecules"> molecules</a>, <a href="https://publications.waset.org/abstracts/search?q=SIMION" title=" SIMION"> SIMION</a> </p> <a href="https://publications.waset.org/abstracts/134621/electrospray-deposition-technique-of-dye-molecules-in-the-vacuum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">897</span> Modeling of Bipolar Charge Transport through Nanocomposite Films for Energy Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meng%20H.%20Lean">Meng H. Lean</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Ping%20L.%20Chu"> Wei-Ping L. Chu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of ferroelectric nanofiller size, shape, loading, and polarization, on bipolar charge injection, transport, and recombination through amorphous and semicrystalline polymers are studied. A 3D particle-in-cell model extends the classical electrical double layer representation to treat ferroelectric nanoparticles. Metal-polymer charge injection assumes Schottky emission and Fowler-Nordheim tunneling, migration through field-dependent Poole-Frenkel mobility, and recombination with Monte Carlo selection based on collision probability. A boundary integral equation method is used for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit. Trajectories for charge that make it through the film are curvilinear paths that meander through the interspaces. Results indicate that charge transport behavior depends on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and lowest level of charge trapping in the interaction zone. Simulation prediction of a size range of 80 to 100 nm to minimize attachment and maximize conduction is validated by theory. Attached charge fractions go from 2.2% to 97% as nanofiller size is decreased from 150 nm to 60 nm. Computed conductivity of 0.4 x 1014 S/cm is in agreement with published data for plastics. Charge attachment is increased with spheroids due to the increase in surface area, and especially so for oblate spheroids showing the influence of larger cross-sections. Charge attachment to nanofillers and nanocrystallites increase with vol.% loading or degree of crystallinity, and saturate at about 40 vol.%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofillers" title=" nanofillers"> nanofillers</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20double%20layer" title=" electrical double layer"> electrical double layer</a>, <a href="https://publications.waset.org/abstracts/search?q=bipolar%20charge%20transport" title=" bipolar charge transport"> bipolar charge transport</a> </p> <a href="https://publications.waset.org/abstracts/31221/modeling-of-bipolar-charge-transport-through-nanocomposite-films-for-energy-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">896</span> Ultra-Fast pH-Gradient Ion Exchange Chromatography for the Separation of Monoclonal Antibody Charge Variants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20van%20Ling">Robert van Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Schwahn"> Alexander Schwahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanhua%20Lin"> Shanhua Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Cook"> Ken Cook</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Steiner"> Frank Steiner</a>, <a href="https://publications.waset.org/abstracts/search?q=Rowan%20Moore"> Rowan Moore</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauro%20de%20Pra"> Mauro de Pra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Demonstration of fast high resolution charge variant analysis for monoclonal antibody (mAb) therapeutics within 5 minutes. Methods: Three commercially available mAbs were used for all experiments. The charge variants of therapeutic mAbs (Bevacizumab, Cetuximab, Infliximab, and Trastuzumab) are analyzed on a strong cation exchange column with a linear pH gradient separation method. The linear gradient from pH 5.6 to pH 10.2 is generated over time by running a linear pump gradient from 100% Thermo Scientific™ CX-1 pH Gradient Buffer A (pH 5.6) to 100% CX-1 pH Gradient Buffer B (pH 10.2), using the Thermo Scientific™ Vanquish™ UHPLC system. Results: The pH gradient method is generally applicable to monoclonal antibody charge variant analysis. In conjunction with state-of-the-art column and UHPLC technology, ultra fast high-resolution separations are consistently achieved in under 5 minutes for all mAbs analyzed. Conclusion: The linear pH gradient method is a platform method for mAb charge variant analysis. The linear pH gradient method can be easily optimized to improve separations and shorten cycle times. Ultra-fast charge variant separation is facilitated with UHPLC that complements, and in some instances outperforms CE approaches in terms of both resolution and throughput. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20variants" title="charge variants">charge variants</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange%20chromatography" title=" ion exchange chromatography"> ion exchange chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=monoclonal%20antibody" title=" monoclonal antibody"> monoclonal antibody</a>, <a href="https://publications.waset.org/abstracts/search?q=UHPLC" title=" UHPLC"> UHPLC</a> </p> <a href="https://publications.waset.org/abstracts/63884/ultra-fast-ph-gradient-ion-exchange-chromatography-for-the-separation-of-monoclonal-antibody-charge-variants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">895</span> Charge Transport in Biological Molecules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20L.%20Albuquerque">E. L. Albuquerque</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20L.%20Fulco"> U. L. Fulco</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20S.%20Ourique"> G. S. Ourique</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The focus of this work is on the numerical investigation of the charge transport properties of the de novo-designed alpha3 polypeptide, as well as in its variants, all of them probed by gene engineering. The theoretical framework makes use of a tight-binding model Hamiltonian, together with ab-initio calculations within quantum chemistry simulation. The alpha3 polypeptide is a 21-residue with three repeats of the seven-residue amino acid sequence Leu-Glu-Thr-Leu-Ala-Lys-Ala, forming an alpha–helical bundle structure. Its variants are obtained by Ala→Gln substitution at the e (5th) and g (7th) position, respectively, of the alpha3 polypeptide amino acid sequence. Using transmission electron microscopy and atomic force microscopy, it was observed that the alpha3 polypeptide and one of its variant do have the ability to form fibrous assemblies, while the other does not. Our main aim is to investigate whether or not the biased alpha3 polypeptide and its variants can be also identified by quantum charge transport measurements through current-voltage (IxV) curves as a pattern to characterize their fibrous assemblies. It was observed that each peptide has a characteristic current pattern, which may be distinguished by charge transport measurements, suggesting that it might be a useful tool for the development of biosensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20transport%20properties" title="charge transport properties">charge transport properties</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20transmittance" title=" electronic transmittance"> electronic transmittance</a>, <a href="https://publications.waset.org/abstracts/search?q=current-voltage%20characteristics" title=" current-voltage characteristics"> current-voltage characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20sensor" title=" biological sensor"> biological sensor</a> </p> <a href="https://publications.waset.org/abstracts/46650/charge-transport-in-biological-molecules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">665</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">894</span> Hypothesis about the Origin of the Lighting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igor%20Kuzminov">Igor Kuzminov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Till now, the nature of lightning is not established. A hypothesis of the origin of lightning is proposed. The lightning charge is formed by electromagnetic induction. The role of the conductor is performed by the air mass of the cloud. This conductor moves in the Earth's magnetic field. The upper and lower edges of the cloud are the plates of the capacitor. Lightning is a special case of electromagnetic processes in an atmosphere. The category of lightning occurs in the process of accumulation of a charge. The process of accumulation goes constantly, but the charge is not fixed. Naturally, the hypothesis demands the carrying out of additional experiments and official acknowledgement. As the proof of a hypothesis can serve that the maximal lighting activity in an equatorial zone where cosφ it is close to 1. An experiment conducted privately showed that there is a potential difference in the atmosphere at different levels. The probability of applied value development of power installation is great. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20induction" title="electromagnetic induction">electromagnetic induction</a>, <a href="https://publications.waset.org/abstracts/search?q=Earth%27s%20magnetic%20field" title=" Earth&#039;s magnetic field"> Earth&#039;s magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=plates%20of%20the%20capacitors" title=" plates of the capacitors"> plates of the capacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20accumulation" title=" charge accumulation"> charge accumulation</a> </p> <a href="https://publications.waset.org/abstracts/168478/hypothesis-about-the-origin-of-the-lighting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">893</span> Polarization of Glass with Positive and Negative Charge Carriers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valentina%20V.%20Zhurikhina">Valentina V. Zhurikhina</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihail%20I.%20Petrov"> Mihail I. Petrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20A.%20Rtischeva"> Alexandra A. Rtischeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Dussauze"> Mark Dussauze</a>, <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Cardinal"> Thierry Cardinal</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20A.%20Lipovskii"> Andrey A. Lipovskii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polarization of glass, often referred to as thermal poling, is a well-known method to modify the glass physical and chemical properties, that manifest themselves in loosing central symmetry of the medium, glass structure and refractive index modification. The usage of the poling for second optical harmonic generation, fabrication of optical waveguides and electrooptic modulators was also reported. Nevertheless, the detailed description of the poling of glasses, containing multiple charge carriers is still under discussion. In particular, the role of possible migration of electrons in the space charge formation usually remains out of the question. In this work, we performed the numerical simulation of thermal poling of a silicate glass, containing Na, K, Mg, and Ca. We took into consideration the contribution of electrons in the polarization process. The possible explanation of migration of electrons can be the break of non-bridging oxygen bonds. It was found, that the modeled depth of the space charge region is about 10 times higher if the migration of the negative charges is taken under consideration. The simulated profiles of cations, participating in the polarization process, are in a good agreement with the experimental data, obtained by glow discharge spectroscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20poling" title="glass poling">glass poling</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20transport" title=" charge transport"> charge transport</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration%20profiles" title=" concentration profiles"> concentration profiles</a> </p> <a href="https://publications.waset.org/abstracts/67507/polarization-of-glass-with-positive-and-negative-charge-carriers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">892</span> Characterization of Particle Charge from Aerosol Generation Process: Impact on Infrared Signatures and Material Reactivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erin%20M.%20Durke">Erin M. Durke</a>, <a href="https://publications.waset.org/abstracts/search?q=Monica%20L.%20McEntee"> Monica L. McEntee</a>, <a href="https://publications.waset.org/abstracts/search?q=Meilu%20He"> Meilu He</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Dhaniyala"> Suresh Dhaniyala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerosols are one of the most important and significant surfaces in the atmosphere. They can influence weather, absorption, and reflection of light, and reactivity of atmospheric constituents. A notable feature of aerosol particles is the presence of a surface charge, a characteristic imparted via the aerosolization process. The existence of charge can complicate the interrogation of aerosol particles, so many researchers remove or neutralize aerosol particles before characterization. However, the charge is present in real-world samples, and likely has an effect on the physical and chemical properties of an aerosolized material. In our studies, we aerosolized different materials in an attempt to characterize the charge imparted via the aerosolization process and determine what impact it has on the aerosolized materials’ properties. The metal oxides, TiO₂ and SiO₂, were aerosolized expulsively and then characterized, using several different techniques, in an effort to determine the surface charge imparted upon the particles via the aerosolization process. Particle charge distribution measurements were conducted via the employment of a custom scanning mobility particle sizer. The results of the charge distribution measurements indicated that expulsive generation of 0.2 µm SiO₂ particles produced aerosols with upwards of 30+ charges on the surface of the particle. Determination of the degree of surface charging led to the use of non-traditional techniques to explore the impact of additional surface charge on the overall reactivity of the metal oxides, specifically TiO₂. TiO₂ was aerosolized, again expulsively, onto a gold-coated tungsten mesh, which was then evaluated with transmission infrared spectroscopy in an ultra-high vacuum environment. The TiO₂ aerosols were exposed to O₂, H₂, and CO, respectively. Exposure to O₂ resulted in a decrease in the overall baseline of the aerosol spectrum, suggesting O₂ removed some of the surface charge imparted during aerosolization. Upon exposure to H₂, there was no observable rise in the baseline of the IR spectrum, as is typically seen for TiO₂, due to the population of electrons into the shallow trapped states and subsequent promotion of the electrons into the conduction band. This result suggests that the additional charge imparted via aerosolization fills the trapped states, therefore no rise is seen upon exposure to H₂. Dosing the TiO₂ aerosols with CO showed no adsorption of CO on the surface, even at lower temperatures (~100 K), indicating the additional charge on the aerosol surface prevents the CO molecules from adsorbing to the TiO₂ surface. The results observed during exposure suggest that the additional charge imparted via aerosolization impacts the interaction with each probe gas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosols" title="aerosols">aerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=charge" title=" charge"> charge</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity" title=" reactivity"> reactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared" title=" infrared"> infrared</a> </p> <a href="https://publications.waset.org/abstracts/110108/characterization-of-particle-charge-from-aerosol-generation-process-impact-on-infrared-signatures-and-material-reactivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">891</span> Mechanism of Charge Transport in the Interface of CsSnI₃-FASnI₃ Perovskite Based Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Mozhgan%20Seyed-Talebi">Seyedeh Mozhgan Seyed-Talebi</a>, <a href="https://publications.waset.org/abstracts/search?q=Weng-Kent%20Chan"> Weng-Kent Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsin-Yi%20Tiffany%20Chen"> Hsin-Yi Tiffany Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead-free perovskite photovoltaic (PV) technology employing non-toxic tin halide perovskite absorbers is pivotal for advancing perovskite solar cell (PSC) commercialization. Despite challenges posed by perovskite sensitivity to oxygen and humidity, our study utilizes DFT calculations using VASP and NanoDCAL software and SCAPS-1D simulations to elucidate the charge transport mechanism at the interface of CsSnI₃-FASnI₃ heterojunction. Results reveal how inherent electric fields facilitate efficient carrier transport, reducing recombination losses. We predict optimized power conversion efficiencies (PCEs) and highlight the potential of CsSnI3-FASnI3 heterojunctions for cost-effective and efficient charge transport layer-free (CTLF) photovoltaic devices. Our study provides insights into the future direction of recognizing more efficient, nontoxic heterojunction perovskite devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20transport%20layer%20free" title="charge transport layer free">charge transport layer free</a>, <a href="https://publications.waset.org/abstracts/search?q=CsSnI%E2%82%83-FASnI%E2%82%83%20heterojunction" title=" CsSnI₃-FASnI₃ heterojunction"> CsSnI₃-FASnI₃ heterojunction</a>, <a href="https://publications.waset.org/abstracts/search?q=lead-free%20perovskite%20solar%20cell" title=" lead-free perovskite solar cell"> lead-free perovskite solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=tin%20halide%20perovskite." title=" tin halide perovskite."> tin halide perovskite.</a>, <a href="https://publications.waset.org/abstracts/search?q=Charge%20transport%20layer%20free" title=" Charge transport layer free"> Charge transport layer free</a> </p> <a href="https://publications.waset.org/abstracts/186055/mechanism-of-charge-transport-in-the-interface-of-cssni3-fasni3-perovskite-based-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">890</span> Modulating Photoelectrochemical Water-Splitting Activity by Charge-Storage Capacity of Electrocatalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yawen%20Dai">Yawen Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Cheng"> Ping Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Ru%20Gong"> Jian Ru Gong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoelctrochemical (PEC) water splitting using semiconductors (SCs) provides a convenient way to convert sustainable but intermittent solar energy into clean hydrogen energy, and it has been regarded as one of most promising technology to solve the energy crisis and environmental pollution in modern society. However, the record energy conversion efficiency of a PEC cell (~3%) is still far lower than the commercialization requirement (~10%). The sluggish kinetics of oxygen evolution reaction (OER) half reaction on photoanodes is a significant limiting factor of the PEC device efficiency, and electrocatalysts (ECs) are always deposited on SCs to accelerate the hole injection for OER. However, an active EC cannot guarantee enhanced PEC performance, since the newly emerged SC-EC interface complicates the interfacial charge behavior. Herein, α-Fe2O3 photoanodes coated with Co3O4 and CoO ECs are taken as the model system to glean fundamental understanding on the EC-dependent interfacial charge behavior. Intensity modulated photocurrent spectroscopy and electrochemical impedance spectroscopy were used to investigate the competition between interfacial charge transfer and recombination, which was found to be dominated by the charge storage capacities of ECs. The combined results indicate that both ECs can store holes and increase the hole density on photoanode surface. It is like a double-edged sword that benefit the multi-hole participated OER, as well as aggravate the SC-EC interfacial charge recombination due to the Coulomb attraction, thus leading to a nonmonotonic PEC performance variation trend with the increasing surface hole density. Co3O4 has low hole storage capacity which brings limited interfacial charge recombination, and thus the increased surface holes can be efficiently utilized for OER to generate enhanced photocurrent. In contrast, CoO has overlarge hole storage capacity that causes severe interfacial charge recombination, which hinders hole transfer to electrolyte for OER. Therefore, the PEC performance of α-Fe2O3 is improved by Co3O4 but decreased by CoO despite the similar electrocatalytic activity of the two ECs. First-principle calculation was conducted to further reveal how the charge storage capacity depends on the EC’s intrinsic property, demonstrating that the larger hole storage capacity of CoO than that of Co3O4 is determined by their Co valence states and original Fermi levels. This study raises up a new strategy to manipulate interfacial charge behavior and the resultant PEC performance by the charge storage capacity of ECs, providing insightful guidance for the interface design in PEC devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20storage%20capacity" title="charge storage capacity">charge storage capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalyst" title=" electrocatalyst"> electrocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20charge%20behavior" title=" interfacial charge behavior"> interfacial charge behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=photoelectrochemistry" title=" photoelectrochemistry"> photoelectrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=water-splitting" title=" water-splitting"> water-splitting</a> </p> <a href="https://publications.waset.org/abstracts/117739/modulating-photoelectrochemical-water-splitting-activity-by-charge-storage-capacity-of-electrocatalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">889</span> Theoretical and Experimental Electrostatic Potential around the M-Nitrophenol Compound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Drissi%20Mokhtaria">Drissi Mokhtaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Chouaih%20Abdelkader"> Chouaih Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Fodil%20Hamzaoui"> Fodil Hamzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our work is about a comparison of experimental and theoretical results of the electron charge density distribution and the electrostatic potential around the M-Nitrophenol Molecule (m-NPH) kwon for its interesting physical characteristics. The molecular experimental results have been obtained from a high-resolution X-ray diffraction study. Theoretical investigations were performed under the Gaussian program using the Density Functional Theory at B3LYP level of theory at 6-31G*. The multipolar model of Hansen and Coppens was used for the experimental electron charge density distribution around the molecule, while we used the DFT methods for the theoretical calculations. The electron charge density obtained in both methods allowed us to find out the different molecular properties such us the electrostatic potential and the dipole moment which were finally subject to a comparison leading to an outcome of a good matching results obtained in both methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20charge%20density" title="electron charge density">electron charge density</a>, <a href="https://publications.waset.org/abstracts/search?q=m-nitrophenol" title=" m-nitrophenol"> m-nitrophenol</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optical%20compound" title=" nonlinear optical compound"> nonlinear optical compound</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20potential" title=" electrostatic potential"> electrostatic potential</a>, <a href="https://publications.waset.org/abstracts/search?q=optimized%20geometric" title=" optimized geometric"> optimized geometric</a> </p> <a href="https://publications.waset.org/abstracts/3123/theoretical-and-experimental-electrostatic-potential-around-the-m-nitrophenol-compound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">888</span> Barrier Lowering in Contacts between Graphene and Semiconductor Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhipeng%20Dong">Zhipeng Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Guo"> Jing Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene-semiconductor contacts have been extensively studied recently, both as a stand-alone diode device for potential applications in photodetectors and solar cells, and as a building block to vertical transistors. Graphene is a two-dimensional nanomaterial with vanishing density-of-states at the Dirac point, which differs from conventional metal. In this work, image-charge-induced barrier lowering (BL) in graphene-semiconductor contacts is studied and compared to that in metal Schottky contacts. The results show that despite of being a semimetal with vanishing density-of-states at the Dirac point, the image-charge-induced BL is significant. The BL value can be over 50% of that of metal contacts even in an intrinsic graphene contacted to an organic semiconductor, and it increases as the graphene doping increases. The dependences of the BL on the electric field and semiconductor dielectric constant are examined, and an empirical expression for estimating the image-charge-induced BL in graphene-semiconductor contacts is provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20materials" title=" semiconductor materials"> semiconductor materials</a>, <a href="https://publications.waset.org/abstracts/search?q=schottky%20barrier" title=" schottky barrier"> schottky barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20charge" title=" image charge"> image charge</a>, <a href="https://publications.waset.org/abstracts/search?q=contacts" title=" contacts "> contacts </a> </p> <a href="https://publications.waset.org/abstracts/69844/barrier-lowering-in-contacts-between-graphene-and-semiconductor-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">887</span> Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aneta%20Obloukov%C3%A1">Aneta Oblouková</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20V%C3%ADtkov%C3%A1"> Eva Vítková</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in the years 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research was obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in the years 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for the years 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in the years 2019-2021 were also calculated using a chosen method -a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Czech%20Republic" title="Czech Republic">Czech Republic</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20trend%20estimation" title=" linear trend estimation"> linear trend estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=price%20prediction" title=" price prediction"> price prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20and%20sewerage%20charge%20rate" title=" water and sewerage charge rate"> water and sewerage charge rate</a> </p> <a href="https://publications.waset.org/abstracts/157359/validation-of-the-linear-trend-estimation-technique-for-prediction-of-average-water-and-sewerage-charge-rate-prices-in-the-czech-republic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">886</span> Enhancing the Efficiency of Organic Solar Cells Using Metallic Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sankara%20Rao%20Gollu">Sankara Rao Gollu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramakant%20Sharma"> Ramakant Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Srinivas"> G. Srinivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Souvik%20Kundu"> Souvik Kundu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipti%20Gupta"> Dipti Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, bulk heterojunction organic solar cells (BHJ OSCs) based on polymer–fullerene attracted a large research attention due to their numerous advantages such as light weight, easy processability, eco-friendly, low-cost, and capability for large area roll-to-roll manufacturing. BHJ OSCs usually suffer from insufficient light absorption due to restriction on keeping thin ( < 150 nm) photoactive layer because of small exciton diffusion length ( ~ 10 nm) and low charge carrier mobilities. It is thus highly desirable that light absorption as well as charge transport properties are enhanced by alternative methods so as to improve the device efficiency. In this work, therefore, we have focused on the strategy of incorporating metallic nanostructures in the active layer or charge transport layer to enhance the absorption and improve the charge transport. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20solar%20cell" title="organic solar cell">organic solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20heterojunction" title=" bulk heterojunction"> bulk heterojunction</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer-fullerene" title=" polymer-fullerene"> polymer-fullerene</a> </p> <a href="https://publications.waset.org/abstracts/43900/enhancing-the-efficiency-of-organic-solar-cells-using-metallic-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">885</span> Ab-Initio Study of Native Defects in SnO Under Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Albar">A. Albar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20B.%20Granato"> D. B. Granato</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Schwingenschlogl"> U. Schwingenschlogl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tin monoxide (SnO) has promising properties to be applied as a p-type semiconductor in transparent electronics. To this end, it is necessary to understand the behavior of defects in order to control them. We use density functional theory to study native defects of SnO under tensile and compressive strain. We show that Sn vacancies are more stable under tension and less stable under compression, irrespectively of the charge state. In contrast, O vacancies behave differently for different charge. It turns out that the most stable defect under compression is the +1 charged O vacancy in a Sn-rich environment and the charge neutral O interstitial in an O-rich environment. Therefore, compression can be used to transform SnO from an n-type into un-doped semiconductor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=native%20defects" title="native defects">native defects</a>, <a href="https://publications.waset.org/abstracts/search?q=ab-initio" title=" ab-initio"> ab-initio</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20defect" title=" point defect"> point defect</a>, <a href="https://publications.waset.org/abstracts/search?q=tension" title=" tension"> tension</a>, <a href="https://publications.waset.org/abstracts/search?q=compression" title=" compression"> compression</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a> </p> <a href="https://publications.waset.org/abstracts/1948/ab-initio-study-of-native-defects-in-sno-under-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">884</span> Influence of Raw Material Composition on Microstructure and Mechanical Properties of Nodular Cast Iron </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alan%20Va%C5%A1ko">Alan Vaško</a>, <a href="https://publications.waset.org/abstracts/search?q=Juraj%20Belan"> Juraj Belan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lenka%20Hurtalov%C3%A1"> Lenka Hurtalová</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Tillov%C3%A1"> Eva Tillová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to evaluate the influence of raw material composition on the microstructure, mechanical and fatigue properties and micromechanisms of failure of nodular cast iron. In order to evaluate the influence of charge composition, the structural analysis, mechanical and fatigue tests and micro fractographic analysis were carried out on specimens of ten melts with different charge compositions. The basic charge of individual melts was formed by a different ratio of pig iron and steel scrap and by different additive for regulation of chemical composition (silicon carbide or ferrosilicon). The results show differences in mechanical and fatigue properties, which are connected with the microstructure. SiC additive positively influences microstructure. Consequently, mechanical and fatigue properties of nodular cast iron are improved, especially in the melts with the higher ratio of steel scrap in the charge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nodular%20cast%20iron" title="nodular cast iron">nodular cast iron</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/20276/influence-of-raw-material-composition-on-microstructure-and-mechanical-properties-of-nodular-cast-iron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charge%20fee&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charge%20fee&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charge%20fee&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charge%20fee&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charge%20fee&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charge%20fee&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charge%20fee&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charge%20fee&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charge%20fee&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charge%20fee&amp;page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charge%20fee&amp;page=31">31</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charge%20fee&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10