CINXE.COM

{"title":"Blockchain Technology Applications in Patient Tracking Systems Regarding Privacy-Preserving Concerns and COVID-19 Pandemic","authors":"Farbod Behnaminia, Saeed Samet","volume":194,"journal":"International Journal of Information and Communication Engineering","pagesStart":144,"pagesEnd":157,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10012975","abstract":"<p>The COVID-19 pandemic has paralyzed many lives until a vaccine has been available, which caused the so-called \"new normal\". COVID-19 is an infectious disease. It can cause significant illness or death in anyone. Governments and health officials tried to impose rules and regulations to avoid and slow down transmission. Therefore, software engineers worldwide developed applications to trace and track patients\u2019 movements and notify others, mainly using Bluetooth. In this way, everyone could be informed whether they came in close contact with someone who has COVID-19 and take proper safety precautions. Because most of the applications use technologies that can potentially reveal the user\u2019s identity and location, researchers have debated privacy preservation and how to improve user privacy during such pandemics. We conducted a comprehensive evaluation of the literature by looking for papers in the relevant field and dividing them into pre- and post-pandemic systems. Additionally, we discussed the many uses of blockchain technology in pandemic control. We found that two major obstacles facing blockchain implementation across many healthcare systems are scalability and privacy. The Polkadot platform is presented, along with a review of its efficacy in tackling current concerns. A more scalable healthcare system is achievable in near future using Polkadot as well as a much more privacy-preserving environment.<\/p>","references":"[1] \u201cCoronavirus disease (COVID-19) EURO.\u201d (Online). Available:\r\nhttps:\/\/www.who.int\/europe\/health-topics\/coronavirus\r\n[2] WHO. (2021) \u201cCoronavirus Disease (COVID-19)\r\n\u2013 World Health Organization\". (Online). Available:\r\nhttps:\/\/www.who.int\/emergencies\/diseases\/novel-coronavirus-2019\r\n[3] \u2014\u2014. (2021) WHO Coronavirus (COVID-19) Dashboard. (Online). \r\nAvailable: https:\/\/covid19.who.int\r\n[4] M. Swan, Blockchain: Blueprint for a new economy. \" O\u2019Reilly Media,\r\nInc.\", 2015.\r\n[5] S. Nakamoto, \u201cBitcoin: A peer-to-peer electronic cash system,\u201d\r\nDecentralized Business Review, p. 21260, 2008.\r\n[6] H. Xu, L. Zhang, O. Onireti, Y. Fang, W. J. Buchanan, and M. A. Imran,\r\n\u201cBeepTrace: blockchain-enabled privacy-preserving contact tracing for\r\nCOVID-19 pandemic and beyond,\u201d IEEE Internet of Things Journal,\r\n2020.\r\n[7] A. Khatoon, \u201cUse of blockchain technology to curb Novel Coronavirus\r\nDisease (COVID-19) transmission,\u201d Available at SSRN 3584226, 2020.\r\n[8] M. A. Cyran, \u201cBlockchain as a Foundation for Sharing Healthcare Data,\u201d\r\nBlockchain in Healthcare Today, Mar. 2018.\r\n[9] T.-T. Kuo, H.-E. Kim, and L. Ohno-Machado, \u201cBlockchain distributed\r\nledger technologies for biomedical and health care applications,\u201d Journal\r\nof the American Medical Informatics Association, vol. 24, no. 6, pp.\r\n1211\u20131220, 2017.\r\n[10] Y. Alabdulkarim, A. Alameer, M. Almukaynizi, and A. Almaslukh,\r\n\u201cSpin: A blockchain-based framework for sharing covid-19 pandemic\r\ninformation across nations,\u201d Applied Sciences, vol. 11, no. 18, p. 8767,\r\n2021.\r\n[11] G. Wood et al., \u201cEthereum: A secure decentralised generalised\r\ntransaction ledger,\u201d Ethereum project yellow paper, vol. 151, no. 2014,\r\npp. 1\u201332, 2014.\r\n[12] L. Fang, G. Karakiulakis, and M. Roth, \u201cAre patients with hypertension\r\nand diabetes mellitus at increased risk for covid-19 infection?\u201d The\r\nlancet respiratory medicine, vol. 8, no. 4, 2020.\r\n[13] S. H. Wong, R. N. Lui, and J. J. Sung, \u201cCovid-19 and the digestive\r\nsystem,\u201d Journal of gastroenterology and hepatology, vol. 35, no. 5, pp.\r\n744\u2013748, 2020.\r\n[14] R. Baldwin and E. Tomiura, \u201cThinking ahead about the trade impact of\r\ncovid-19,\u201d Economics in the Time of COVID-19, vol. 59, 2020.\r\n[15] E. Team, \u201cThe epidemiological characteristics of an outbreak of\r\n2019 novel coronavirus diseases (covid-19)\u2014china, 2020,\u201d China CDC\r\nweekly, vol. 2, no. 8, p. 113, 2020.\r\n[16] H. Chen, J. Guo, C. Wang, F. Luo, X. Yu, W. Zhang, J. Li, D. Zhao,\r\nD. Xu, Q. Gong et al., \u201cClinical characteristics and intrauterine vertical\r\ntransmission potential of covid-19 infection in nine pregnant women:\r\na retrospective review of medical records,\u201d The lancet, vol. 395, no.\r\n10226, pp. 809\u2013815, 2020.\r\n[17] D. Wang, B. Hu, C. Hu, F. Zhu, X. Liu, J. Zhang, B. Wang, H. Xiang,\r\nZ. Cheng, Y. Xiong et al., \u201cClinical characteristics of 138 hospitalized\r\npatients with 2019 novel coronavirus\u2013infected pneumonia in wuhan,\r\nchina,\u201d Jama, vol. 323, no. 11, pp. 1061\u20131069, 2020.\r\n[18] V. Chamola, V. Hassija, V. Gupta, and M. Guizani, \u201cA Comprehensive\r\nReview of the COVID-19 Pandemic and the Role of IoT, Drones, AI,\r\nBlockchain, and 5G in Managing its Impact,\u201d IEEE Access, vol. 8, pp.\r\n90 253\u201390 256, 2020.\r\n[19] J. Bay, J. Kek, A. Tan, C. S. Hau, L. Yongquan, J. Tan, and T. A. Quy,\r\n\u201cBluetrace: A privacy-preserving protocol for community-driven contact\r\ntracing across borders,\u201d Government Technology Agency-Singapore,\r\nTech. Rep, 2020.\r\n[20] Apple, \u201cPrivacy-preserving contact tracing - apple and google,\u201d 2020.\r\n(Online). Available: https:\/\/www.apple.com\/covid19\/contacttracing\r\n[21] I. Levy, \u201cThe security behind the nhs contact tracing app,\u201d National\r\nCyber Security Centre, 2020.\r\n[22] P. Mozur, R. Zhong, and A. Krolik, \u201cIn coronavirus fight, china gives\r\ncitizens a color code, with red flags,\u201d The New York Times, vol. 1, 2020.\r\n[23] S. M. Idrees, M. Nowostawski, and R. Jameel, \u201cBlockchain-based digital\r\ncontact tracing apps for COVID-19 pandemic management: Issues,\r\nchallenges, solutions, and future directions,\u201d JMIR Medical Informatics,\r\nvol. 9, no. 2, p. e25245, 2021.\r\n[24] P. Durneva, K. Cousins, and M. Chen, \u201cThe current state of research,\r\nchallenges, and future research directions of blockchain technology in\r\npatient care: Systematic review,\u201d Journal of medical Internet research,\r\nvol. 22, no. 7, 2020.\r\n[25] A. Sharma, S. Bahl, A. K. Bagha, M. Javaid, D. K. Shukla, and\r\nA. Haleem, \u201cBlockchain technology and its applications to combat\r\nCOVID-19 pandemic,\u201d Research on Biomedical Engineering, pp. 1\u20138,\r\n2020.\r\n[26] A. V. Aswin, K. Y. Basil, V. P. Viswan, B. Reji, and B. Kuriakose,\r\n\u201cDesign of AYUSH: A Blockchain-Based Health Record Management\r\nSystem,\u201d in Inventive Communication and Computational Technologies,\r\nG. Ranganathan, J. Chen, and A. Rocha, Eds. Springer Singapore, Jan.\r\n2020, pp. 665\u2013672.\r\n[27] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,\r\nA. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,\r\n\u201cHyperledger fabric: a distributed operating system for permissioned\r\nblockchains,\u201d in Proceedings of the thirteenth EuroSys conference, 2018,\r\npp. 1\u201315.\r\n[28] H.-N. Dai, M. Imran, and N. Haider, \u201cBlockchain-enabled Internet\r\nof Medical Things to Combat COVID-19,\u201d IEEE Internet of Things\r\nMagazine, vol. 3, no. 3, pp. 52\u201357, 2020.\r\n[29] A. Kalla, T. Hewa, R. A. Mishra, M. Ylianttila, and M. Liyanage,\r\n\u201cThe role of blockchain to fight against COVID-19,\u201d IEEE Engineering\r\nManagement Review, vol. 48, no. 3, pp. 85\u201396, 2020.\r\n[30] J. Salmon and G. Myers, \u201cBlockchain and associated legal issues for\r\nemerging markets,\u201d 2019.\r\n[31] G. Yu, X. Wang, K. Yu, W. Ni, J. A. Zhang, and R. P. Liu, \u201cSurvey:\r\nSharding in blockchains,\u201d IEEE Access, vol. 8, pp. 14 155\u201314 181, 2020.\r\n[32] M. Jourenko, K. Kurazumi, M. Larangeira, and K. Tanaka, \u201cSok: A\r\ntaxonomy for layer-2 scalability related protocols for cryptocurrencies.\u201d\r\nIACR Cryptol. ePrint Arch., vol. 2019, p. 352, 2019.\r\n[33] I. Kotilevets, I. Ivanova, I. Romanov, S. Magomedov, V. Nikonov,\r\nand S. Pavelev, \u201cImplementation of directed acyclic graph in\r\nblockchain network to improve security and speed of transactions,\u201d\r\nIFAC-PapersOnLine, vol. 51, no. 30, pp. 693\u2013696, 2018.\r\n[34] J. B. Bernabe, J. L. Canovas, J. L. Hernandez-Ramos, R. T. Moreno,\r\nand A. Skarmeta, \u201cPrivacy-preserving solutions for blockchain: Review\r\nand challenges,\u201d IEEE Access, vol. 7, pp. 164 908\u2013164 940, 2019.\r\n[35] Q. Lin, H. Yan, Z. Huang, W. Chen, J. Shen, and Y. Tang, \u201cAn\r\nid-based linearly homomorphic signature scheme and its application in\r\nblockchain,\u201d IEEE Access, vol. 6, pp. 20 632\u201320 640, 2018.\r\n[36] G. Wood, \u201cPolkadot: Vision For A Heterogeneous Multi-Chain\r\nFramework,\u201d White Paper, vol. 21, 2016.\r\n[37] M. R. Hasan, S. Deng, N. Sultana, and Z. H. Muhammed, \u201cThe\r\napplicability of blockchain technology in healthcare contexts to contain\r\ncovid-19 challenges,\u201d Library Hi Tech, vol. 39, no. 3, pp. 814\u2013833, 2021.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 194, 2023"}