CINXE.COM

Search results for: authoring tool

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: authoring tool</title> <meta name="description" content="Search results for: authoring tool"> <meta name="keywords" content="authoring tool"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="authoring tool" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="authoring tool"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4978</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: authoring tool</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4978</span> Heuristic Evaluation of Children’s Authoring Tool for Game Making</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laili%20Farhana%20Md%20Ibharim">Laili Farhana Md Ibharim</a>, <a href="https://publications.waset.org/abstracts/search?q=Maizatul%20Hayati%20Mohamad%20Yatim"> Maizatul Hayati Mohamad Yatim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this study is to evaluate the heuristic inspection of children’s authoring tools to develop games. The researcher has selected 15 authoring tools for making games specifically for educational purposes. Nine students from Diploma of Game Design and Development course and four lecturers from the computing department involved in this evaluation. A set of usability heuristic checklist used as a guideline for the students and lecturers to observe and test the authoring tools selected. The study found that there are just a few authoring tools that fulfill most of the heuristic requirement and suitable to apply to children. In this evaluation, only six out of fifteen authoring tools have passed above than five elements in the heuristic inspection checklist. The researcher identified that in order to develop a usable authoring tool developer has to emphasis children acceptance and interaction of the authoring tool. Furthermore, the authoring tool can be a tool to enhance their mental development especially in creativity and skill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=authoring%20tool" title="authoring tool">authoring tool</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20making" title=" game making"> game making</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic" title=" heuristic"> heuristic</a> </p> <a href="https://publications.waset.org/abstracts/1364/heuristic-evaluation-of-childrens-authoring-tool-for-game-making" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4977</span> Virtual Science Hub: An Open Source Platform to Enrich Science Teaching</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enrique%20Barra">Enrique Barra</a>, <a href="https://publications.waset.org/abstracts/search?q=Aldo%20Gordillo"> Aldo Gordillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Quemada"> Juan Quemada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the Virtual Science Hub platform. It is an open source platform that combines a social network, an e-learning authoring tool, a video conference service and a learning object repository for science teaching enrichment. These four main functionalities fit very well together. The platform was released in April 2012 and since then it has not stopped growing. Finally we present the results of the surveys conducted and the statistics gathered to validate this approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-learning" title="e-learning">e-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=platform" title=" platform"> platform</a>, <a href="https://publications.waset.org/abstracts/search?q=authoring%20tool" title=" authoring tool"> authoring tool</a>, <a href="https://publications.waset.org/abstracts/search?q=science%20teaching" title=" science teaching"> science teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20sciences" title=" educational sciences"> educational sciences</a> </p> <a href="https://publications.waset.org/abstracts/2692/virtual-science-hub-an-open-source-platform-to-enrich-science-teaching" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4976</span> Analysis of Digitized Stories Authored by a Struggling Grade 1 Reader</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daphne%20Dean%20C.%20Arenos">Daphne Dean C. Arenos</a>, <a href="https://publications.waset.org/abstracts/search?q=Glorificacion%20L.%20Quinopez"> Glorificacion L. Quinopez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study has been conducted to describe the digitized stories authored by a Grade 1 pupil struggling in reading. The main goal was to find out the effect of authoring digital stories on the reading skill of a grade 1 pupil in terms of vocabulary and sequencing skills. To be able to explicate the data collected, a case study approach has been chosen. This case study focused on a 6 years old Filipino child born and raised in Spain and has just transferred to a private school a year ago. The pupil’s struggles in reading, as well as her experiences with digitized stories, were further described. The findings revealed that authoring digital stories facilitate the reading progress of a struggling pupil. The presence of literary elements in the pupil’s stories built her vocabulary and sequencing skills. Hence, authoring digital stories serve as an appropriate and effective scaffold for struggling readers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=literary%20elements" title="literary elements">literary elements</a>, <a href="https://publications.waset.org/abstracts/search?q=reading%20skill" title=" reading skill"> reading skill</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffold" title=" scaffold"> scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing%20skill" title=" sequencing skill"> sequencing skill</a>, <a href="https://publications.waset.org/abstracts/search?q=vocabulary" title=" vocabulary"> vocabulary</a> </p> <a href="https://publications.waset.org/abstracts/124820/analysis-of-digitized-stories-authored-by-a-struggling-grade-1-reader" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4975</span> Use of Smartwatches for the Emotional Self-Regulation of Individuals with Autism Spectrum Disorder (ASD)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20C.%20Torrado">Juan C. Torrado</a>, <a href="https://publications.waset.org/abstracts/search?q=Javier%20Gomez"> Javier Gomez</a>, <a href="https://publications.waset.org/abstracts/search?q=Guadalupe%20Montero"> Guadalupe Montero</a>, <a href="https://publications.waset.org/abstracts/search?q=German%20Montoro"> German Montoro</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Dolores%20Villalba"> M. Dolores Villalba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most challenging aspects of the executive dysfunction of people with Autism Spectrum Disorders is the behavior control. This is related to a deficit in their ability to regulate, recognize and manage their own emotions. Some researchers have developed applications for tablets and smartphones to practice strategies of relaxation and emotion recognition. However, they cannot be applied to the very moment of temper outbursts, anger episodes or anxiety, since they require to carry the device, start the application and be helped by caretakers. Also, some of these systems are developed for either obsolete technologies (old versions of tablet devices, PDAs, outdated operative systems of smartphones) or specific devices (self-developed or proprietary ones) that create differentiation between the users and the rest of the individuals in their context. For this project we selected smartwatches. Focusing on emergent technologies ensures a wide lifespan of the developed products, because the derived products are intended to be available in the same moment the very technology gets popularized, not later. We also focused our research in commercial versions of smartwatches, since this way differentiation is easily avoided, so the users’ abandonment rate lowers. We have developed a smartwatch system along with a smartphone authoring tool to display self-regulation strategies. These micro-prompting strategies are conformed of pictograms, animations and temporizers, and they are designed by means of the authoring tool: When both devices synchronize their data, the smartwatch holds the self-regulation strategies, which are triggered when the smartwatch sensors detect a remarkable rise of heart rate and movement. The system is being currently tested in an educational center of people with ASD of Madrid, Spain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assistive%20technologies" title="assistive technologies">assistive technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=emotion%20regulation" title=" emotion regulation"> emotion regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=human-computer%20interaction" title=" human-computer interaction"> human-computer interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=smartwatches" title=" smartwatches"> smartwatches</a> </p> <a href="https://publications.waset.org/abstracts/59523/use-of-smartwatches-for-the-emotional-self-regulation-of-individuals-with-autism-spectrum-disorder-asd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4974</span> Information Exchange Process Analysis between Authoring Design Tools and Lighting Simulation Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rudan%20Xue">Rudan Xue</a>, <a href="https://publications.waset.org/abstracts/search?q=Annika%20Moscati"> Annika Moscati</a>, <a href="https://publications.waset.org/abstracts/search?q=Rehel%20Zeleke%20Kebede"> Rehel Zeleke Kebede</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Johansson"> Peter Johansson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Successful buildings’ simulation and analysis inevitably require information exchange between multiple building information modeling (BIM) software. The BIM infor-mation exchange based on IFC is widely used. However, Industry Foundation Classifi-cation (IFC) files are not always reliable and information can get lost when using dif-ferent software for modeling and simulations. In this research, interviews with lighting simulation experts and a case study provided by a company producing lighting devices have been the research methods used to identify the necessary steps and data for suc-cessful information exchange between lighting simulation tools and authoring design tools. Model creation, information exchange, and model simulation have been identi-fied as key aspects for the success of information exchange. The paper concludes with recommendations for improved information exchange and more reliable simulations that take all the needed parameters into consideration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BIM" title="BIM">BIM</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20exchange" title=" data exchange"> data exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=interoperability%20issues" title=" interoperability issues"> interoperability issues</a>, <a href="https://publications.waset.org/abstracts/search?q=lighting%20simulations" title=" lighting simulations"> lighting simulations</a> </p> <a href="https://publications.waset.org/abstracts/134407/information-exchange-process-analysis-between-authoring-design-tools-and-lighting-simulation-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4973</span> A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Douglas%20A.%20Menezes">Douglas A. Menezes</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20D.%20Nunes"> Isabel D. Nunes</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulrich%20Schiel"> Ulrich Schiel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=educational%20data%20visualization" title="educational data visualization">educational data visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=high-level%20petri%20nets" title=" high-level petri nets"> high-level petri nets</a>, <a href="https://publications.waset.org/abstracts/search?q=instructional%20design" title=" instructional design"> instructional design</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20analytics" title=" learning analytics"> learning analytics</a> </p> <a href="https://publications.waset.org/abstracts/69260/a-formal-approach-for-instructional-design-integrated-with-data-visualization-for-learning-analytics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4972</span> Authoring Tactile Gestures: Case Study for Emotion Stimulation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Lentini">Rodrigo Lentini</a>, <a href="https://publications.waset.org/abstracts/search?q=Beatrice%20Ionascu"> Beatrice Ionascu</a>, <a href="https://publications.waset.org/abstracts/search?q=Friederike%20A.%20Eyssel"> Friederike A. Eyssel</a>, <a href="https://publications.waset.org/abstracts/search?q=Scandar%20Copti"> Scandar Copti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Eid"> Mohamad Eid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The haptic modality has brought a new dimension to human computer interaction by engaging the human sense of touch. However, designing appropriate haptic stimuli, and in particular tactile stimuli, for various applications is still challenging. To tackle this issue, we present an intuitive system that facilitates the authoring of tactile gestures for various applications. The system transforms a hand gesture into a tactile gesture that can be rendering using a home-made haptic jacket. A case study is presented to demonstrate the ability of the system to develop tactile gestures that are recognizable by human subjects. Four tactile gestures are identified and tested to intensify the following four emotional responses: high valence &ndash; high arousal, high valence &ndash; low arousal, low valence &ndash; high arousal, and low valence &ndash; low arousal. A usability study with 20 participants demonstrated high correlation between the selected tactile gestures and the intended emotional reaction. Results from this study can be used in a wide spectrum of applications ranging from gaming to interpersonal communication and multimodal simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tactile%20stimulation" title="tactile stimulation">tactile stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=tactile%20gesture" title=" tactile gesture"> tactile gesture</a>, <a href="https://publications.waset.org/abstracts/search?q=emotion%20reactions" title=" emotion reactions"> emotion reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=arousal" title=" arousal"> arousal</a>, <a href="https://publications.waset.org/abstracts/search?q=valence" title=" valence"> valence</a> </p> <a href="https://publications.waset.org/abstracts/52327/authoring-tactile-gestures-case-study-for-emotion-stimulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4971</span> Development of AUTOSAR Software Components of MDPS System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Woo%20Kim">Jae-Woo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung-Joong%20Lee"> Kyung-Joong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Sik%20Ahn"> Hyun-Sik Ahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the development of a Motor-Driven Power Steering (MDPS) system using Automotive Open System Architecture (AUTOSAR) methodology. The MDPS system is a new power steering technology for vehicles and it can enhance driver’s convenience and fuel efficiency. AUTOSAR defines common standards for the implementation of embedded automotive software. Some aspects of safety and timing requirements are analyzed. Through the AUTOSAR methodology, the embedded software becomes more flexible, reusable and maintainable than ever. Hence, we first design software components (SW-C) for MDPS control based on AUTOSAR and implement SW-Cs for MDPS control using authoring tool following AUTOSAR standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AUTOSAR" title="AUTOSAR">AUTOSAR</a>, <a href="https://publications.waset.org/abstracts/search?q=MDPS" title=" MDPS"> MDPS</a>, <a href="https://publications.waset.org/abstracts/search?q=simulink" title=" simulink"> simulink</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20component" title=" software component"> software component</a> </p> <a href="https://publications.waset.org/abstracts/33517/development-of-autosar-software-components-of-mdps-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4970</span> Authoring of Augmented Reality Manuals for Not Physically Available Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vito%20M.%20Manghisi">Vito M. Manghisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Michele%20Gattullo"> Michele Gattullo</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Evangelista"> Alessandro Evangelista</a>, <a href="https://publications.waset.org/abstracts/search?q=Enricoandrea%20Laviola"> Enricoandrea Laviola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we compared two solutions for displaying a demo version of an Augmented Reality (AR) manual when the real product is not available, opting to replace it with its computer-aided design (CAD) model. AR has been proved to be effective in maintenance and assembly operations by many studies in the literature. However, most of them present solutions for existing products, usually converting old, printed manuals into AR manuals. In this case, authoring consists of defining how to convey existing instructions through AR. It is not a simple choice, and demo versions are created to test the design goodness. However, this becomes impossible when the product is not physically available, as for new products. A solution could be creating an entirely virtual environment with the product and the instructions. However, in this way, user interaction is completely different from that in the real application, then it would be hard testing the usability of the AR manual. This work aims to propose and compare two different solutions for the displaying of a demo version of an AR manual to support authoring in case of a product that is not physically available. We used as a case study that of an innovative semi-hermetic compressor that has not yet been produced. The applications were developed for a handheld device, using Unity 3D. The main issue was how to show the compressor and attach instructions on it. In one approach, we used Vuforia natural feature tracking to attach a CAD model of the compressor to a 2D image that is a drawing in scale 1:1 of the top-view of the CAD model. In this way, during the AR manual demonstration, the 3D model of the compressor is displayed on the user's device in place of the real compressor, and all the virtual instructions are attached to it. In the other approach, we first created a support application that shows the CAD model of the compressor on a marker. Then, we registered a video of this application, moving around the marker, obtaining a video that shows the CAD model from every point of view. For the AR manual, we used the Vuforia model target (360° option) to track the CAD model of the compressor, as it was the real compressor. Then, during the demonstration, the video is shown on a fixed large screen, and instructions are displayed attached to it in the AR manual. The first solution presents the main drawback to keeping the printed image with everyone working on the authoring of the AR manual, but allows to show the product in a real scale and interaction during the demonstration is very simple. The second one does not need a printed marker during the demonstration but a screen. Still, the compressor model is resized, and interaction is awkward since the user has to play the video on the screen to rotate the compressor. The two solutions were evaluated together with the company, and the preferred was the first one due to a more natural interaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title="augmented reality">augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20computer%20interaction" title=" human computer interaction"> human computer interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20instructions" title=" operating instructions"> operating instructions</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly" title=" assembly"> assembly</a> </p> <a href="https://publications.waset.org/abstracts/128622/authoring-of-augmented-reality-manuals-for-not-physically-available-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4969</span> A Novel Algorithm for Parsing IFC Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raninder%20Kaur%20Dhillon">Raninder Kaur Dhillon</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayur%20Jethwa"> Mayur Jethwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hardeep%20Singh%20Rai"> Hardeep Singh Rai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Information technology has made a pivotal progress across disparate disciplines, one of which is AEC (Architecture, Engineering and Construction) industry. CAD is a form of computer-aided building modulation that architects, engineers and contractors use to create and view two- and three-dimensional models. The AEC industry also uses building information modeling (BIM), a newer computerized modeling system that can create four-dimensional models; this software can greatly increase productivity in the AEC industry. BIM models generate open source IFC (Industry Foundation Classes) files which aim for interoperability for exchanging information throughout the project lifecycle among various disciplines. The methods developed in previous studies require either an IFC schema or MVD and software applications, such as an IFC model server or a Building Information Modeling (BIM) authoring tool, to extract a partial or complete IFC instance model. This paper proposes an efficient algorithm for extracting a partial and total model from an Industry Foundation Classes (IFC) instance model without an IFC schema or a complete IFC model view definition (MVD). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BIM" title="BIM">BIM</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD" title=" CAD"> CAD</a>, <a href="https://publications.waset.org/abstracts/search?q=IFC" title=" IFC"> IFC</a>, <a href="https://publications.waset.org/abstracts/search?q=MVD" title=" MVD"> MVD</a> </p> <a href="https://publications.waset.org/abstracts/11457/a-novel-algorithm-for-parsing-ifc-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4968</span> The Methodology of Hand-Gesture Based Form Design in Digital Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanghoon%20Shim">Sanghoon Shim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehwan%20Jung"> Jaehwan Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Ah%20Kim"> Sung-Ah Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the digital technology develops, studies on the TUI (Tangible User Interface) that links the physical environment utilizing the human senses with the virtual environment through the computer are actively being conducted. In addition, there has been a tremendous advance in computer design making through the use of computer-aided design techniques, which enable optimized decision-making through comparison with machine learning and parallel comparison of alternatives. However, a complex design that can respond to user requirements or performance can emerge through the intuition of the designer, but it is difficult to actualize the emerged design by the designer's ability alone. Ancillary tools such as Gaudí's Sandbag can be an instrument to reinforce and evolve emerged ideas from designers. With the advent of many commercial tools that support 3D objects, designers' intentions are easily reflected in their designs, but the degree of their reflection reflects their intentions according to the proficiency of design tools. This study embodies the environment in which the form can be implemented by the fingers of the most basic designer in the initial design phase of the complex type building design. Leapmotion is used as a sensor to recognize the hand motions of the designer, and it is converted into digital information to realize an environment that can be linked in real time in virtual reality (VR). In addition, the implemented design can be linked with Rhino™, a 3D authoring tool, and its plug-in Grasshopper™ in real time. As a result, it is possible to design sensibly using TUI, and it can serve as a tool for assisting designer intuition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20environment" title="design environment">design environment</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20modeling" title=" digital modeling"> digital modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20gesture" title=" hand gesture"> hand gesture</a>, <a href="https://publications.waset.org/abstracts/search?q=TUI" title=" TUI"> TUI</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality" title=" virtual reality"> virtual reality</a> </p> <a href="https://publications.waset.org/abstracts/80557/the-methodology-of-hand-gesture-based-form-design-in-digital-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4967</span> Study of Tool Shape during Electrical Discharge Machining of AISI 52100 Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arminder%20Singh%20Walia">Arminder Singh Walia</a>, <a href="https://publications.waset.org/abstracts/search?q=Vineet%20Srivastava"> Vineet Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivek%20Jain"> Vivek Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Electrical Discharge Machining (EDM) operations, the workpiece confers to the shape of the tool. Further, the cost of the tool contributes the maximum effect on total operation cost. Therefore, the shape and profile of the tool become highly significant. Thus, in this work, an attempt has been made to study the effect of process parameters on the shape of the tool. Copper has been used as the tool material for the machining of AISI 52100 die steel. The shape of the tool has been evaluated by determining the difference in out of roundness of tool before and after machining. Statistical model has been developed and significant process parameters have been identified which affect the shape of the tool. Optimum process parameters have been identified which minimizes the shape distortion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discharge%20current" title="discharge current">discharge current</a>, <a href="https://publications.waset.org/abstracts/search?q=flushing%20pressure" title=" flushing pressure"> flushing pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse-on%20time" title=" pulse-on time"> pulse-on time</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse-off%20time" title=" pulse-off time"> pulse-off time</a>, <a href="https://publications.waset.org/abstracts/search?q=out%20of%20roundness" title=" out of roundness"> out of roundness</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20discharge%20machining" title=" electrical discharge machining"> electrical discharge machining</a> </p> <a href="https://publications.waset.org/abstracts/89159/study-of-tool-shape-during-electrical-discharge-machining-of-aisi-52100-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4966</span> Comparative Assessment of MRR, TWR, and Surface Integrity in Rotary and Stationary Tool EDM for Machining AISI D3 Tool Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anand%20Prakash%20Dwivedi">Anand Prakash Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sounak%20Kumar%20Choudhury"> Sounak Kumar Choudhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric Discharge Machining (EDM) is a well-established and one of the most primitive unconventional manufacturing processes, that is used world-wide for the machining of geometrically complex or hard and electrically conductive materials which are extremely difficult to cut by any other conventional machining process. One of the major flaws, over all its advantages, is its very slow Material Removal Rate (MRR). In order to eradicate this slow machining rate, various researchers have proposed various methods like; providing rotational motion to the tool or work-piece or to both, mixing of conducting additives (such as SiC, Cr, Al, graphite etc) powders in the dielectric, providing vibrations to the tool or work-piece or to both etc. Present work is a comparative study of Rotational and Stationary Tool EDM, which deals with providing rotational motion to the copper tool for the machining of AISI D3 Tool Steel and the results have been compared with stationary tool EDM. It has been found that the tool rotation substantially increases the MRR up to 28%. The average surface finish increases around 9-10% by using the rotational tool EDM. The average tool wear increment is observed to be around 19% due to the tool rotation. Apart from this, the present work also focusses on the recast layer analysis, which are being re-deposited on the work-piece surface during the operation. The recast layer thickness is less in case of Rotational EDM and more for Stationary Tool EDM. Moreover, the cracking on the re-casted surface is also more for stationary tool EDM as compared with the rotational EDM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EDM" title="EDM">EDM</a>, <a href="https://publications.waset.org/abstracts/search?q=MRR" title=" MRR"> MRR</a>, <a href="https://publications.waset.org/abstracts/search?q=Ra" title=" Ra"> Ra</a>, <a href="https://publications.waset.org/abstracts/search?q=TWR" title=" TWR"> TWR</a> </p> <a href="https://publications.waset.org/abstracts/26356/comparative-assessment-of-mrr-twr-and-surface-integrity-in-rotary-and-stationary-tool-edm-for-machining-aisi-d3-tool-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4965</span> Using Single Decision Tree to Assess the Impact of Cutting Conditions on Vibration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ghorbani">S. Ghorbani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20I.%20Polushin"> N. I. Polushin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vibration during machining process is crucial since it affects cutting tool, machine, and workpiece leading to a tool wear, tool breakage, and an unacceptable surface roughness. This paper applies a nonparametric statistical method, single decision tree (SDT), to identify factors affecting on vibration in machining process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum alloy, A48-class30 Gray Cast Iron), cutting tool (conventional, cutting tool with holes in toolholder, cutting tool filled up with epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm) were used as input variables, while vibration was the output parameter. It is concluded that workpiece material is the most important parameters for natural frequency followed by cutting tool and overhang. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20condition" title="cutting condition">cutting condition</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=CART%20algorithm" title=" CART algorithm"> CART algorithm</a> </p> <a href="https://publications.waset.org/abstracts/52496/using-single-decision-tree-to-assess-the-impact-of-cutting-conditions-on-vibration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4964</span> Life Prediction of Cutting Tool by the Workpiece Cutting Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noemia%20Gomes%20de%20Mattos%20de%20Mesquita">Noemia Gomes de Mattos de Mesquita</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Eduardo%20Ferreira%20de%20Oliveira"> José Eduardo Ferreira de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Arimatea%20Quaresma%20Ferraz"> Arimatea Quaresma Ferraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stops to exchange cutting tool, to set up again the tool in a turning operation with CNC or to measure the workpiece dimensions have a direct influence on production. The premature removal of the cutting tool results in high cost of machining since the parcel relating to the cost of the cutting tool increases. On the other hand, the late exchange of cutting tool also increases the cost of production because getting parts out of the preset tolerances may require rework for its use when it does not cause bigger problems such as breaking of cutting tools or the loss of the part. Therefore, the right time to exchange the tool should be well defined when wanted to minimize production costs. When the flank wear is the limiting tool life, the time predetermination that a cutting tool must be used for the machining occurs within the limits of tolerance can be done without difficulty. This paper aims to show how the life of the cutting tool can be calculated taking into account the cutting parameters (cutting speed, feed and depth of cut), workpiece material, power of the machine, the dimensional tolerance of the part, the finishing surface, the geometry of the cutting tool and operating conditions of the machine tool, once known the parameters of Taylor algebraic structure. These parameters were raised for the ABNT 1038 steel machined with cutting tools of hard metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machining" title="machining">machining</a>, <a href="https://publications.waset.org/abstracts/search?q=productions" title=" productions"> productions</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20condition" title=" cutting condition"> cutting condition</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a> </p> <a href="https://publications.waset.org/abstracts/9191/life-prediction-of-cutting-tool-by-the-workpiece-cutting-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">634</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4963</span> Tool Damage and Adhesion Effects in Turning and Drilling of Hardened Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chris%20M.%20Taylor">Chris M. Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Cook"> Ian Cook</a>, <a href="https://publications.waset.org/abstracts/search?q=Raul%20Alegre"> Raul Alegre</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Arrazola"> Pedro Arrazola</a>, <a href="https://publications.waset.org/abstracts/search?q=Phil%20Spiers"> Phil Spiers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Noteworthy results have been obtained in the turning and drilling of hardened high-strength steels using tungsten carbide based cutting tools. In a finish turning process, it was seen that surface roughness and tool flank wear followed very different trends against cutting time. The suggested explanation for this behaviour is that the profile cut into the workpiece surface is determined by the tool&rsquo;s cutting edge profile. It is shown that the profile appearing on the cut surface changes rapidly over time, so the profile of the tool cutting edge should also be changing rapidly. Workpiece material adhered onto the cutting tool, which is also known as a built-up edge, is a phenomenon which could explain the observations made. In terms of tool damage modes, workpiece material adhesion is believed to have contributed to tool wear in examples provided from finish turning, thread turning and drilling. Additionally, evidence of tool fracture and tool abrasion were recorded. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turning" title="turning">turning</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion" title=" adhesion"> adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20steels" title=" hard steels"> hard steels</a> </p> <a href="https://publications.waset.org/abstracts/52027/tool-damage-and-adhesion-effects-in-turning-and-drilling-of-hardened-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4962</span> Effect of the Drawbar Force on the Dynamic Characteristics of a Spindle-Tool Holder System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jui-Pui%20Hung">Jui-Pui Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Sheng%20Lai"> Yu-Sheng Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzuo-Liang%20Luo"> Tzuo-Liang Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kung-Da%20Wu"> Kung-Da Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Ji%20Zhan"> Yun-Ji Zhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presented the investigation of the influence of the tool holder interface stiffness on the dynamic characteristics of a spindle tool system. The interface stiffness was produced by drawbar force on the tool holder, which tends to affect the spindle dynamics. In order to assess the influence of interface stiffness on the vibration characteristic of spindle unit, we first created a three dimensional finite element model of a high speed spindle system integrated with tool holder. The key point for the creation of FEM model is the modeling of the rolling interface within the angular contact bearings and the tool holder interface. The former can be simulated by a introducing a series of spring elements between inner and outer rings. The contact stiffness was calculated according to Hertz contact theory and the preload applied on the bearings. The interface stiffness of the tool holder was identified through the experimental measurement and finite element modal analysis. Current results show that the dynamic stiffness was greatly influenced by the tool holder system. In addition, variations of modal damping, static stiffness and dynamic stiffness of the spindle tool system were greatly determined by the interface stiffness of the tool holder which was in turn dependent on the draw bar force applied on the tool holder. Overall, this study demonstrates that identification of the interface characteristics of spindle tool holder is of very importance for the refinement of the spindle tooling system to achieve the optimum machining performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20stiffness" title="dynamic stiffness">dynamic stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=spindle-tool%20holder" title=" spindle-tool holder"> spindle-tool holder</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20stiffness" title=" interface stiffness"> interface stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=drawbar%20force" title=" drawbar force"> drawbar force</a> </p> <a href="https://publications.waset.org/abstracts/10212/effect-of-the-drawbar-force-on-the-dynamic-characteristics-of-a-spindle-tool-holder-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4961</span> Cutting Tool-Life Test of Ceramic Insert for Engine Sleeve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adam%20Jan%C3%A1sek">Adam Janásek</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Pag%C3%A1%C4%8D"> Marek Pagáč</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article is looking for an experimental determination of tool life tests for ceramic cutting inserts. Mentioned experimental determination should provide an added information about cutting process. The mechanism of tool wear, cutting temperature in machining, quality machined surface and machining process itself is the information, which are important for whole manufacturing process. Mainly, the roughness plays very important role in determining how a real object will interact with its environment. The main aim was to determine the number of machined inserts, tool life and micro-geometry, as well. On the basis of previous tests the tool-wear was measured at constant cutting parameter which is more typical for high volume manufacturing processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic" title="ceramic">ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=insert" title=" insert"> insert</a>, <a href="https://publications.waset.org/abstracts/search?q=machining" title=" machining"> machining</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=tool-life" title=" tool-life"> tool-life</a>, <a href="https://publications.waset.org/abstracts/search?q=tool-wear" title=" tool-wear"> tool-wear</a> </p> <a href="https://publications.waset.org/abstracts/13898/cutting-tool-life-test-of-ceramic-insert-for-engine-sleeve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4960</span> Simulation of Particle Damping in Boring Tool Using Combined Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Chockalingam">S. Chockalingam</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Natarajan"> U. Natarajan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20Santhoshsarang"> D. M. Santhoshsarang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particle damping is a promising vibration attenuating technique in boring tool than other type of damping with minimal effect on the strength, rigidity and stiffness ratio of the machine tool structure. Due to the cantilever nature of boring tool holder in operations, it suffers chatter when the slenderness ratio of the tool gets increased. In this study, Copper-Stainless steel (SS) particles were packed inside the boring tool which acts as a damper. Damper suppresses chatter generated during machining and also improves the machining efficiency of the tool with better slenderness ratio. In the first approach of particle damping, combined Cu-SS particles were packed inside the vibrating tool, whereas Copper and Stainless steel particles were selected separately and packed inside another tool and their effectiveness was analysed in this simulation. This study reveals that the efficiency of finite element simulation of the boring tools when equipped with particles such as copper, stainless steel and a combination of both. In this study, the newly modified boring tool holder with particle damping was simulated using ANSYS12.0 with and without particles. The aim of this study is to enhance the structural rigidity through particle damping thus avoiding the occurrence of resonance in the boring tool during machining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boring%20bar" title="boring bar">boring bar</a>, <a href="https://publications.waset.org/abstracts/search?q=copper-stainless%20steel" title=" copper-stainless steel"> copper-stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=chatter" title=" chatter"> chatter</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20damping" title=" particle damping"> particle damping</a> </p> <a href="https://publications.waset.org/abstracts/28966/simulation-of-particle-damping-in-boring-tool-using-combined-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4959</span> Designing a Tool for Software Maintenance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Ngah">Amir Ngah</a>, <a href="https://publications.waset.org/abstracts/search?q=Masita%20Abdul%20Jalil"> Masita Abdul Jalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Zailani%20Abdullah"> Zailani Abdullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of software maintenance is to maintain the software system in accordance with advancement in software and hardware technology. One of the early works on software maintenance is to extract information at higher level of abstraction. In this paper, we present the process of how to design an information extraction tool for software maintenance. The tool can extract the basic information from old program such as about variables, based classes, derived classes, objects of classes, and functions. The tool have two main part; the lexical analyzer module that can read the input file character by character, and the searching module which is user can get the basic information from existing program. We implemented this tool for a patterned sub-C++ language as an input file. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction%20tool" title="extraction tool">extraction tool</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20maintenance" title=" software maintenance"> software maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20engineering" title=" reverse engineering"> reverse engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=C%2B%2B" title=" C++"> C++</a> </p> <a href="https://publications.waset.org/abstracts/21880/designing-a-tool-for-software-maintenance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4958</span> A Neural Network System for Predicting the Hardness of Titanium Aluminum Nitrite (TiAlN) Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20M.%20Elmabrouk">Omar M. Elmabrouk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cutting tool, in the high-speed machining process, is consistently dealing with high localized stress at the tool tip, tip temperature exceeds 800°C and the chip slides along the rake face. These conditions are affecting the tool wear, the cutting tool performances, the quality of the produced parts and the tool life. Therefore, a thin film coating on the cutting tool should be considered to improve the tool surface properties while maintaining its bulks properties. One of the general coating processes in applying thin film for hard coating purpose is PVD magnetron sputtering. In this paper, the prediction of the effects of PVD magnetron sputtering coating process parameters, sputter power in the range of (4.81-7.19 kW), bias voltage in the range of (50.00-300.00 Volts) and substrate temperature in the range of (281.08-600.00 °C), were studied using artificial neural network (ANN). The results were compared with previously published results using RSM model. It was found that the ANN is more accurate in prediction of tool hardness, and hence, it will not only improve the tool life of the tool but also significantly enhances the efficiency of the machining processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20aluminium%20nitrate%20coating" title=" titanium aluminium nitrate coating"> titanium aluminium nitrate coating</a> </p> <a href="https://publications.waset.org/abstracts/33962/a-neural-network-system-for-predicting-the-hardness-of-titanium-aluminum-nitrite-tialn-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4957</span> Study on Dynamic Stiffness Matching and Optimization Design Method of a Machine Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%20Xi">Lu Xi</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Pan"> Li Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen%20Mengmeng"> Wen Mengmeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stiffness of each component has different influences on the stiffness of the machine tool. Taking the five-axis gantry machining center as an example, we made the modal analysis of the machine tool, followed by raising and lowering the stiffness of the pillar, slide plate, beam, ram and saddle so as to study the stiffness matching among these components on the standard of whether the stiffness of the modified machine tool changes more than 50% relative to the stiffness of the original machine tool. The structural optimization of the machine tool can be realized by changing the stiffness of the components whose stiffness is mismatched. For example, the stiffness of the beam is mismatching. The natural frequencies of the first six orders of the beam increased by 7.70%, 0.38%, 6.82%, 7.96%, 18.72% and 23.13%, with the weight increased by 28Kg, leading to the natural frequencies of several orders which had a great influence on the dynamic performance of the whole machine increased by 1.44%, 0.43%, 0.065%, which verified the correctness of the optimization method based on stiffness matching proposed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20tool" title="machine tool">machine tool</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness%20matching" title=" stiffness matching"> stiffness matching</a> </p> <a href="https://publications.waset.org/abstracts/169087/study-on-dynamic-stiffness-matching-and-optimization-design-method-of-a-machine-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4956</span> Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20T.%20Hayajneh">Mohammed T. Hayajneh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al<sub>2</sub>O<sub>3</sub> particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy" title=" fuzzy"> fuzzy</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20life" title=" tool life"> tool life</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/42835/prediction-of-cutting-tool-life-in-drilling-of-reinforced-aluminum-alloy-composite-using-a-fuzzy-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4955</span> Tool for Determining the Similarity between Two Web Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doru%20Anastasiu%20Popescu">Doru Anastasiu Popescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Raducanu%20Dragos%20Ionut"> Raducanu Dragos Ionut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the presentation of a tool which measures the similarity between two websites is made. The websites are compound only from webpages created with HTML. The tool uses three ways of calculating the similarity between two websites based on certain results already published. The first way compares all the webpages within a website, the second way compares a webpage with all the pages within the second website and the third way compares two webpages. Java programming language and technologies such as spring, Jsoup, log4j were used for the implementation of the tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Java" title="Java">Java</a>, <a href="https://publications.waset.org/abstracts/search?q=Jsoup" title=" Jsoup"> Jsoup</a>, <a href="https://publications.waset.org/abstracts/search?q=HTM" title=" HTM"> HTM</a>, <a href="https://publications.waset.org/abstracts/search?q=spring" title=" spring"> spring</a> </p> <a href="https://publications.waset.org/abstracts/48293/tool-for-determining-the-similarity-between-two-web-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4954</span> Optimization of Process Parameters for Rotary Electro Discharge Machining Using EN31 Tool Steel: Present and Future Scope </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Goutam%20Dubey">Goutam Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Varun%20Dutta"> Varun Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, rotary-electro discharge machining of EN31 tool steel has been carried out using a pure copper electrode. Various response variables such as Material Removal Rate (MRR), Tool Wear Rate (TWR), and Machining Rate (MR) have been studied against the selected process variables. The selected process variables were peak current (I), voltage (V), duty cycle, and electrode rotation (N). EN31 Tool Steel is hardened, high carbon steel which increases its hardness and reduces its machinability. Reduced machinability means it not economical to use conventional methods to machine EN31 Tool Steel. So, non-conventional methods play an important role in machining of such materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20discharge%20machining" title="electric discharge machining">electric discharge machining</a>, <a href="https://publications.waset.org/abstracts/search?q=EDM" title=" EDM"> EDM</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20steel" title=" tool steel"> tool steel</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear%20rate" title=" tool wear rate"> tool wear rate</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20techniques" title=" optimization techniques"> optimization techniques</a> </p> <a href="https://publications.waset.org/abstracts/88859/optimization-of-process-parameters-for-rotary-electro-discharge-machining-using-en31-tool-steel-present-and-future-scope" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4953</span> Development of a Green Star Certification Tool for Existing Buildings in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouwer%20Kleynhans">Bouwer Kleynhans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The built environment is responsible for about 40% of the world’s energy consumption and generates one third of global carbon dioxide emissions. The Green Building Council of South Africa’s (GBCSA) current rating tools are all for new buildings. By far the largest portion of buildings exist stock and therefore the need to develop a certification tool for existing buildings. Direct energy measurement comprises 27% of the total available points in this tool. The aim of this paper is to describe the development process of a green star certification tool for existing buildings in South Africa with specific emphasis on the energy measurement criteria. Successful implementation of this tool within the property market will ensure a reduced carbon footprint of buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=certification%20tool" title="certification tool">certification tool</a>, <a href="https://publications.waset.org/abstracts/search?q=development%20process" title=" development process"> development process</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20buildings" title=" green buildings"> green buildings</a> </p> <a href="https://publications.waset.org/abstracts/9572/development-of-a-green-star-certification-tool-for-existing-buildings-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4952</span> Intelligent Tooling Embedded Sensors for Monitoring the Wear of Cutting Tools in Turning Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatim%20Laalej">Hatim Laalej</a>, <a href="https://publications.waset.org/abstracts/search?q=Jon%20Stammers"> Jon Stammers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In machining, monitoring of tool wear is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Currently, the task of monitoring the wear on the cutting tool is carried out by the operator who performs manual inspections of the cutting tool, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from loss of productivity. The cutting tool consumable costs may also be higher than necessary when tools are changed before the end of their useful life. Furthermore, damage can be caused to the workpiece when tools are not changed soon enough leading to a significant increase in the costs of manufacturing. The present study is concerned with the development of break sensor printed on the flank surface of poly-crystalline diamond (PCD) cutting to perform on-line condition monitoring of the cutting tool used to machine Titanium Ti-6al-4v bar. The results clearly show that there is a strong correlation between the break sensor measurements and the amount of wear in the cutting tool. These findings are significant in that they help the user/operator of the machine tool to determine the condition of the cutting tool without the need of performing manual inspection, thereby reducing the manufacturing costs such as the machine down time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machining" title="machining">machining</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear" title=" tool wear"> tool wear</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/77528/intelligent-tooling-embedded-sensors-for-monitoring-the-wear-of-cutting-tools-in-turning-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4951</span> Ginger Washer Tool Using Pedal to Increase the Quality of Herbal Medicine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Finda%20A.%20Mahardika">Finda A. Mahardika</a>, <a href="https://publications.waset.org/abstracts/search?q=Niken%20Aristyawati"> Niken Aristyawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Retno%20W.%20Damayanti"> Retno W. Damayanti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improvement technology needed to increase productivity of home industry that make herbal medicine is ginger washer tool. To solve this case, the writers develop existing technologies to create a tool that serves as a wash of ginger. This washer uses pedal tools to help the brush washer move. This tool is expected to produce ginger with good quality. In addition, this tool is also expected to be able to save time as well as water used when conducting the process of leaching. This tool is based on the size of the anthropometri people of Indonesia for the results of an ergonomic. The activities carried out by conducting a study of theory, experiment based on existing theories and make modifications based on the results obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ginger" title="ginger">ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger%20washer" title=" ginger washer"> ginger washer</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a>, <a href="https://publications.waset.org/abstracts/search?q=pedal" title=" pedal"> pedal</a> </p> <a href="https://publications.waset.org/abstracts/44972/ginger-washer-tool-using-pedal-to-increase-the-quality-of-herbal-medicine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4950</span> Experimental Studies on the Effect of Rake Angle on Turning Ti-6Al-4V with TiAlN Coated Carbides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyanarayana%20Kosaraju">Satyanarayana Kosaraju</a>, <a href="https://publications.waset.org/abstracts/search?q=Venu%20Gopal%20Anne"> Venu Gopal Anne</a>, <a href="https://publications.waset.org/abstracts/search?q=Sateesh%20Nagari"> Sateesh Nagari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of cutting speed, feedrate and rake angle in tool geometry on cutting forces and temperature generated on the tool tip in turning were investigated. The data used for the investigation derived from experiments conducted on precision lathe according to the full factorial design to observe the effect of each factor level on the process performance. During the tests, depth of cut were kept constant and each test was conducted with a sharp coated tool insert. Ti-6Al-4V was used as the workpiece material. The effects of cutting parameters and tool geometry on cutting forces and tool tip temperature were analyzed. The main cutting force was observed to have a decreasing trend and temperature found to be increasing trend as the rake angle increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20force" title="cutting force">cutting force</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20tip%20temperature" title=" tool tip temperature"> tool tip temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=rake%20angle" title=" rake angle"> rake angle</a>, <a href="https://publications.waset.org/abstracts/search?q=machining" title=" machining"> machining</a> </p> <a href="https://publications.waset.org/abstracts/37425/experimental-studies-on-the-effect-of-rake-angle-on-turning-ti-6al-4v-with-tialn-coated-carbides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4949</span> An Investigation of Machinability of Inconel 718 in EDM Using Different Cryogenic Treated Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Joshi">Pradeep Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Dhiman"> Prashant Dhiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiv%20Dayal%20Dhakad"> Shiv Dayal Dhakad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inconel 718 is a family if Nickel-Chromium based Superalloy; it has very high oxidation and corrosion resistance. Inconel 718 is widely being used in aerospace, engine, turbine etc. due to its high mechanical strength and creep resistance. Being widely used, its machining should be easy but in real its machining is very difficult, especially by using traditional machining methods. It becomes easy to machine only by using non Traditional machining such as EDM. During EDM machining there is wear of both tool and workpiece, the tool wear is undesired because it changes tool shape, geometry. To reduce the tool wear rate (TWR) cryogenic treatment is performed on tool before the machining operation. The machining performances of the process are to be evaluated in terms of MRR, TWR which are functions of Discharge current, Pulse on-time, Pulse Off-time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EDM" title="EDM">EDM</a>, <a href="https://publications.waset.org/abstracts/search?q=cyrogenic" title=" cyrogenic"> cyrogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=TWR" title=" TWR"> TWR</a>, <a href="https://publications.waset.org/abstracts/search?q=MRR" title=" MRR"> MRR</a> </p> <a href="https://publications.waset.org/abstracts/21773/an-investigation-of-machinability-of-inconel-718-in-edm-using-different-cryogenic-treated-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=authoring%20tool&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=authoring%20tool&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=authoring%20tool&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=authoring%20tool&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=authoring%20tool&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=authoring%20tool&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=authoring%20tool&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=authoring%20tool&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=authoring%20tool&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=authoring%20tool&amp;page=165">165</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=authoring%20tool&amp;page=166">166</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=authoring%20tool&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10