CINXE.COM
Collider constraints on electroweakinos in the presence of a light gravitino | The European Physical Journal C
<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="robots" content="max-image-preview:large"> <meta name="access" content="Yes"> <meta name="360-site-verification" content="1268d79b5e96aecf3ff2a7dac04ad990" /> <title>Collider constraints on electroweakinos in the presence of a light gravitino | The European Physical Journal C</title> <meta name="twitter:site" content="@SpringerLink"/> <meta name="twitter:card" content="summary_large_image"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="Collider constraints on electroweakinos in the presence of a light gravitino"/> <meta name="twitter:description" content="The European Physical Journal C - Using the GAMBIT global fitting framework, we constrain the MSSM with an eV-scale gravitino as the lightest supersymmetric particle, and the six electroweakinos..."/> <meta name="twitter:image" content="https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig1_HTML.png"/> <meta name="journal_id" content="10052"/> <meta name="dc.title" content="Collider constraints on electroweakinos in the presence of a light gravitino"/> <meta name="dc.source" content="The European Physical Journal C 2023 83:6"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="Springer"/> <meta name="dc.date" content="2023-06-10"/> <meta name="dc.type" content="OriginalPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2023 The Author(s)"/> <meta name="dc.rights" content="2023 The Author(s)"/> <meta name="dc.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="dc.description" content="Using the GAMBIT global fitting framework, we constrain the MSSM with an eV-scale gravitino as the lightest supersymmetric particle, and the six electroweakinos (neutralinos and charginos) as the only other light new states. We combine 15 ATLAS and 12 CMS searches at 13&nbsp;TeV, along with a large collection of ATLAS and CMS measurements of Standard Model signatures. This model, which we refer to as the $${{\tilde{G}}}$$ -EWMSSM, exhibits quite varied collider phenomenology due to its many permitted electroweakino production processes and decay modes. Characteristic $${{\tilde{G}}}$$ -EWMSSM signal events have two or more Standard Model bosons and missing energy due to the escaping gravitinos. While much of the $${{\tilde{G}}}$$ -EWMSSM parameter space is excluded, we find several viable parameter regions that predict phenomenologically rich scenarios with multiple neutralinos and charginos within the kinematic reach of the LHC during Run 3, or the High Luminosity LHC. In particular, we identify scenarios with Higgsino-dominated electroweakinos as light as 140&nbsp;GeV that are consistent with our combined set of collider searches and measurements. The full set of $${{\tilde{G}}}$$ -EWMSSM parameter samples and GAMBIT input files generated for this work is available via Zenodo."/> <meta name="prism.issn" content="1434-6052"/> <meta name="prism.publicationName" content="The European Physical Journal C"/> <meta name="prism.publicationDate" content="2023-06-10"/> <meta name="prism.volume" content="83"/> <meta name="prism.number" content="6"/> <meta name="prism.section" content="OriginalPaper"/> <meta name="prism.startingPage" content="1"/> <meta name="prism.endingPage" content="36"/> <meta name="prism.copyright" content="2023 The Author(s)"/> <meta name="prism.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="prism.url" content="https://link.springer.com/article/10.1140/epjc/s10052-023-11574-z"/> <meta name="prism.doi" content="doi:10.1140/epjc/s10052-023-11574-z"/> <meta name="citation_pdf_url" content="https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11574-z.pdf"/> <meta name="citation_fulltext_html_url" content="https://link.springer.com/article/10.1140/epjc/s10052-023-11574-z"/> <meta name="citation_journal_title" content="The European Physical Journal C"/> <meta name="citation_journal_abbrev" content="Eur. Phys. J. C"/> <meta name="citation_publisher" content="Springer Berlin Heidelberg"/> <meta name="citation_issn" content="1434-6052"/> <meta name="citation_title" content="Collider constraints on electroweakinos in the presence of a light gravitino"/> <meta name="citation_volume" content="83"/> <meta name="citation_issue" content="6"/> <meta name="citation_publication_date" content="2023/06"/> <meta name="citation_online_date" content="2023/06/10"/> <meta name="citation_firstpage" content="1"/> <meta name="citation_lastpage" content="36"/> <meta name="citation_article_type" content="Regular Article - Theoretical Physics "/> <meta name="citation_fulltext_world_readable" content=""/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1140/epjc/s10052-023-11574-z"/> <meta name="DOI" content="10.1140/epjc/s10052-023-11574-z"/> <meta name="size" content="1269535"/> <meta name="citation_doi" content="10.1140/epjc/s10052-023-11574-z"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1140/epjc/s10052-023-11574-z&api_key="/> <meta name="description" content="Using the GAMBIT global fitting framework, we constrain the MSSM with an eV-scale gravitino as the lightest supersymmetric particle, and the six electrowea"/> <meta name="dc.creator" content="Ananyev, Viktor"/> <meta name="dc.creator" content="Balázs, Csaba"/> <meta name="dc.creator" content="Beniwal, Ankit"/> <meta name="dc.creator" content="Braseth, Lasse Lorentz"/> <meta name="dc.creator" content="Buckley, Andy"/> <meta name="dc.creator" content="Butterworth, Jonathan"/> <meta name="dc.creator" content="Chang, Christopher"/> <meta name="dc.creator" content="Danninger, Matthias"/> <meta name="dc.creator" content="Fowlie, Andrew"/> <meta name="dc.creator" content="Gonzalo, Tomás E."/> <meta name="dc.creator" content="Kvellestad, Anders"/> <meta name="dc.creator" content="Mahmoudi, Farvah"/> <meta name="dc.creator" content="Martinez, Gregory D."/> <meta name="dc.creator" content="Prim, Markus T."/> <meta name="dc.creator" content="Procter, Tomasz"/> <meta name="dc.creator" content="Raklev, Are"/> <meta name="dc.creator" content="Scott, Pat"/> <meta name="dc.creator" content="Stöcker, Patrick"/> <meta name="dc.creator" content="Van den Abeele, Jeriek"/> <meta name="dc.creator" content="White, Martin"/> <meta name="dc.creator" content="Zhang, Yang"/> <meta name="dc.subject" content="Elementary Particles, Quantum Field Theory"/> <meta name="dc.subject" content="Nuclear Physics, Heavy Ions, Hadrons"/> <meta name="dc.subject" content="Quantum Field Theories, String Theory"/> <meta name="dc.subject" content="Measurement Science and Instrumentation"/> <meta name="dc.subject" content="Astronomy, Astrophysics and Cosmology"/> <meta name="dc.subject" content="Nuclear Energy"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rep.; citation_title=Supersymmetry, supergravity and particle physics; citation_author=HP Nilles; citation_volume=110; citation_publication_date=1984; citation_pages=1-162; citation_id=CR1"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rep.; citation_title=The search for supersymmetry: probing physics beyond the standard model; citation_author=HE Haber, GL Kane; citation_volume=117; citation_publication_date=1985; citation_pages=75-263; citation_id=CR2"/> <meta name="citation_reference" content="citation_journal_title=Adv. Ser. Direct High Energy Phys.; citation_title=A supersymmetry primer; citation_author=SP Martin; citation_volume=18; citation_publication_date=1998; citation_pages=1-98; citation_id=CR3"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rep.; citation_title=The soft supersymmetry breaking Lagrangian: theory and applications; citation_author=DJH Chung, LL Everett; citation_volume=407; citation_publication_date=2005; citation_pages=1-203; citation_id=CR4"/> <meta name="citation_reference" content="citation_journal_title=Ann. Rev. Nucl. Part. Sci.; citation_title=Naturalness and the status of supersymmetry; citation_author=JL Feng; citation_volume=63; citation_publication_date=2013; citation_pages=351-382; citation_id=CR5"/> <meta name="citation_reference" content="citation_journal_title=JHEP; citation_title=A Markov chain Monte Carlo analysis of CMSSM; citation_author=R Ruiz de Austri, R Trotta, L Roszkowski; citation_volume=5; citation_publication_date=2006; citation_pages=2; citation_id=CR6"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Bayesian implications of current LHC and XENON100 search limits for the constrained MSSM; citation_author=A Fowlie, A Kalinowski, M Kazana, L Roszkowski, YLS Tsai; citation_volume=85; citation_publication_date=2012; citation_pages=075012; citation_id=CR7"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=The CMSSM favoring new territories: the impact of new LHC limits and a 125 GeV Higgs; citation_author=A Fowlie, M Kazana; citation_volume=86; citation_publication_date=2012; citation_pages=075010; citation_id=CR8"/> <meta name="citation_reference" content="citation_journal_title=JHEP; citation_title=Constrained supersymmetry after two years of LHC data: a global view with Fittino; citation_author=P Bechtle, T Bringmann; citation_volume=6; citation_publication_date=2012; citation_pages=98; citation_id=CR9"/> <meta name="citation_reference" content="P. Bechtle, J.E. Camargo-Molina et al., Killing the cMSSM softly. Eur. Phys. J. C 76, 96 (2016). arXiv:1508.05951 "/> <meta name="citation_reference" content="citation_journal_title=Eur. Phys. J. C; citation_title=The CMSSM and NUHM1 after LHC Run 1; citation_author=O Buchmueller; citation_volume=74; citation_publication_date=2014; citation_pages=2922; citation_id=CR11"/> <meta name="citation_reference" content="citation_journal_title=Eur. Phys. J. C; citation_title=Frequentist analysis of the parameter space of minimal supergravity; citation_author=O Buchmueller, R Cavanaugh; citation_volume=71; citation_publication_date=2011; citation_pages=1583; citation_id=CR12"/> <meta name="citation_reference" content="E. Bagnaschi et al., Likelihood analysis of the pMSSM11 in light of LHC 13-TeV data. Eur. Phys. J. C 78, 256 (2018). arXiv:1710.11091 "/> <meta name="citation_reference" content="J.C. Costa et al., Likelihood analysis of the sub-GUT MSSM in light of LHC 13-TeV data. Eur. Phys. J. C 78, 158 (2018). arXiv:1711.00458 "/> <meta name="citation_reference" content="GAMBIT Collaboration,P. Athron, C. Balázs, et al., Global fits of GUT-scale SUSY models with GAMBIT. Eur. Phys. J. C 77, 824 (2017). arXiv:1705.07935 "/> <meta name="citation_reference" content="GAMBIT Collaboration, P. Athron, C. Balázs, et al., A global fit of the MSSM with GAMBIT. Eur. Phys. J. C 77, 879 (2017). arXiv:1705.07917 "/> <meta name="citation_reference" content="GAMBIT Collaboration, P. Athron et al., Combined collider constraints on neutralinos and charginos. Eur. Phys. J. C 79, 395 (2019). arXiv:1809.02097 "/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Generalized super-gauge symmetry as a new framework for unified gauge theories; citation_author=P Nath, R Arnowitt; citation_volume=56; citation_publication_date=1975; citation_pages=177-180; citation_id=CR18"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Consistent supergravity; citation_author=SD Deser, B Zumino; citation_volume=62; citation_publication_date=1976; citation_pages=335-337; citation_id=CR19"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Properties of supergravity theory; citation_author=DZ Freedman, P Nieuwenhuizen; citation_volume=14; citation_publication_date=1976; citation_pages=912; citation_id=CR20"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Superfield densities and action principle in curved superspace; citation_author=R Arnowitt, P Nath, B Zumino; citation_volume=56; citation_publication_date=1975; citation_pages=81-84; citation_id=CR21"/> <meta name="citation_reference" content="citation_journal_title=JETP Lett.; citation_title=Gauge fields on superspaces with different holonomy groups; citation_author=VP Akulov, DV Volkov, VA Soroka; citation_volume=22; citation_publication_date=1975; citation_pages=187-188; citation_id=CR22"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Superspace formulation of supergravity; citation_author=J Wess, B Zumino; citation_volume=66; citation_publication_date=1977; citation_pages=361-364; citation_id=CR23"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Supersymmetry and Kahler manifolds; citation_author=B Zumino; citation_volume=87; citation_publication_date=1979; citation_pages=203; citation_id=CR24"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Minimal auxiliary fields for supergravity; citation_author=KS Stelle, PC West; citation_volume=74; citation_publication_date=1978; citation_pages=330-332; citation_id=CR25"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Tensor calculus for the vector multiplet coupled to supergravity; citation_author=KS Stelle, PC West; citation_volume=77; citation_publication_date=1978; citation_pages=376; citation_id=CR26"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=Matter couplings in supergravity theory; citation_author=S Ferrara, F Gliozzi, J Scherk, P Nieuwenhuizen; citation_volume=117; citation_publication_date=1976; citation_pages=333; citation_id=CR27"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. Lett.; citation_title=Broken supersymmetry and supergravity; citation_author=S Deser, B Zumino; citation_volume=38; citation_publication_date=1977; citation_pages=1433-1436; citation_id=CR28"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Super-Higgs effect in supergravity with general scalar interactions; citation_author=E Cremmer, B Julia; citation_volume=79; citation_publication_date=1978; citation_pages=231-234; citation_id=CR29"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=Spontaneous symmetry breaking and Higgs effect in supergravity without cosmological constant; citation_author=E Cremmer, B Julia; citation_volume=147; citation_publication_date=1979; citation_pages=105; citation_id=CR30"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. Lett.; citation_title=Locally supersymmetric grand unification; citation_author=AH Chamseddine, RL Arnowitt, P Nath; citation_volume=49; citation_publication_date=1982; citation_pages=970; citation_id=CR31"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Gauge models with spontaneously broken local supersymmetry; citation_author=R Barbieri, S Ferrara, CA Savoy; citation_volume=119; citation_publication_date=1982; citation_pages=343; citation_id=CR32"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Locally supersymmetric SU(5) grand unification; citation_author=LE Ibanez; citation_volume=118; citation_publication_date=1982; citation_pages=73-78; citation_id=CR33"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Supergravity as the messenger of supersymmetry breaking; citation_author=LJ Hall, JD Lykken, S Weinberg; citation_volume=27; citation_publication_date=1983; citation_pages=2359-2378; citation_id=CR34"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Grand unification in simple supergravity; citation_author=JR Ellis, DV Nanopoulos, K Tamvakis; citation_volume=121; citation_publication_date=1983; citation_pages=123-129; citation_id=CR35"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=Minimal low-energy supergravity; citation_author=L Alvarez-Gaume, J Polchinski, MB Wise; citation_volume=221; citation_publication_date=1983; citation_pages=495; citation_id=CR36"/> <meta name="citation_reference" content="citation_journal_title=Adv. Ser. Direct High Energy Phys.; citation_title=Soft supersymmetry breaking terms from supergravity and superstring models; citation_author=A Brignole, LE Ibanez, C Munoz; citation_volume=18; citation_publication_date=1998; citation_pages=125-148; citation_id=CR37"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=A phenomenological model of particle physics based on supersymmetry; citation_author=M Dine, W Fischler; citation_volume=110; citation_publication_date=1982; citation_pages=227-231; citation_id=CR38"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=Supersymmetric technicolor; citation_author=M Dine, W Fischler, M Srednicki; citation_volume=189; citation_publication_date=1981; citation_pages=575-593; citation_id=CR39"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=Supercolor; citation_author=S Dimopoulos, S Raby; citation_volume=192; citation_publication_date=1981; citation_pages=353-368; citation_id=CR40"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=Low-energy supersymmetry; citation_author=L Alvarez-Gaume, M Claudson, MB Wise; citation_volume=207; citation_publication_date=1982; citation_pages=96; citation_id=CR41"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Supersymmetric extension of the SU(3) x SU(2) x U(1) model; citation_author=CR Nappi, BA Ovrut; citation_volume=113; citation_publication_date=1982; citation_pages=175-179; citation_id=CR42"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Dynamical supersymmetry breaking at low-energies; citation_author=M Dine, AE Nelson; citation_volume=48; citation_publication_date=1993; citation_pages=1277-1287; citation_id=CR43"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Low-energy dynamical supersymmetry breaking simplified; citation_author=M Dine, AE Nelson, Y Shirman; citation_volume=51; citation_publication_date=1995; citation_pages=1362-1370; citation_id=CR44"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=New tools for low-energy dynamical supersymmetry breaking; citation_author=M Dine, AE Nelson, Y Nir, Y Shirman; citation_volume=53; citation_publication_date=1996; citation_pages=2658-2669; citation_id=CR45"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B Proc. Suppl.; citation_title=Gauge mediated supersymmetry breaking: introduction, review and update; citation_author=CF Kolda; citation_volume=62; citation_publication_date=1998; citation_pages=266-275; citation_id=CR46"/> <meta name="citation_reference" content="citation_journal_title=JHEP; citation_title=Supersymmetry with a chargino NLSP and gravitino LSP; citation_author=GD Kribs, A Martin, TS Roy; citation_volume=01; citation_publication_date=2009; citation_pages=023; citation_id=CR47"/> <meta name="citation_reference" content="citation_journal_title=JHEP; citation_title=Long lived charginos in natural SUSY?; citation_author=NE Bomark, A Kvellestad, S Lola, P Osland, AR Raklev; citation_volume=05; citation_publication_date=2014; citation_pages=007; citation_id=CR48"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Mixing between gravitational and weak interactions through the massive gravitino; citation_author=P Fayet; citation_volume=70; citation_publication_date=1977; citation_pages=461-464; citation_id=CR49"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Weak interactions of a light gravitino: a lower limit on the gravitino mass from the decay psi gravitino anti-photino; citation_author=P Fayet; citation_volume=84; citation_publication_date=1979; citation_pages=421-426; citation_id=CR50"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Search for supersymmetry with a light gravitino at the Fermilab Tevatron and CERN LEP colliders; citation_author=S Ambrosanio, GL Kane, GD Kribs, SP Martin, S Mrenna; citation_volume=54; citation_publication_date=1996; citation_pages=5395-5411; citation_id=CR51"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. Lett.; citation_title=Experimental signatures of low-energy gauge mediated supersymmetry breaking; citation_author=S Dimopoulos, M Dine, S Raby, SD Thomas; citation_volume=76; citation_publication_date=1996; citation_pages=3494-3497; citation_id=CR52"/> <meta name="citation_reference" content="F. Maltoni, A. Martini, K. Mawatari, B. Oexl, Signals of a superlight gravitino at the LHC. JHEP 04, 021 (2015). arXiv:1502.01637 "/> <meta name="citation_reference" content="A. Brignole, F. Feruglio, M.L. Mangano, F. Zwirner, Signals of a superlight gravitino at hadron colliders when the other superparticles are heavy. Nucl. Phys. B 526, 136–152 (1998). arXiv:hep-ph/9801329 . [Erratum: Nucl. Phys. B 582, 759–761 (2000)]"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Lower limit on the mass of a light gravitino from e+ e- annihilation experiments; citation_author=P Fayet; citation_volume=175; citation_publication_date=1986; citation_pages=471-477; citation_id=CR55"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Unusual decays in supersymmetry with a superlight gravitino; citation_author=DA Dicus, S Nandi, J Woodside; citation_volume=43; citation_publication_date=1991; citation_pages=2951-2955; citation_id=CR56"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Detecting a light gravitino at linear collider to probe the SUSY breaking scale; citation_author=DR Stump, M Wiest, CP Yuan; citation_volume=54; citation_publication_date=1996; citation_pages=1936-1943; citation_id=CR57"/> <meta name="citation_reference" content="A. Brignole, F. Feruglio, F. Zwirner, Signals of a superlight gravitino at $$e^+ e^-$$ colliders when the other superparticles are heavy. Nucl. Phys. B 516, 13–28 (1998). arXiv:hep-ph/9711516 . [Erratum: Nucl. Phys. B 555, 653–655 (1999)]"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Single photon signals at LEP in supersymmetric models with a light gravitino; citation_author=JL Lopez, DV Nanopoulos, A Zichichi; citation_volume=55; citation_publication_date=1997; citation_pages=5813-5825; citation_id=CR59"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Analysis of LEP constraints on supersymmetric models with a light gravitino; citation_author=JR Ellis, JL Lopez, DV Nanopoulos; citation_volume=394; citation_publication_date=1997; citation_pages=354-358; citation_id=CR60"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Signals for gauge mediated supersymmetry breaking models at the CERN LEP-2 collider; citation_author=S Ambrosanio, GD Kribs, SP Martin; citation_volume=56; citation_publication_date=1997; citation_pages=1761-1777; citation_id=CR61"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Collider signals of a superlight gravitino; citation_author=DA Dicus, S Nandi, J Woodside; citation_volume=41; citation_publication_date=1990; citation_pages=2347; citation_id=CR62"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Implications of low-energy supersymmetry breaking at the Tevatron; citation_author=S Dimopoulos, SD Thomas, JD Wells; citation_volume=54; citation_publication_date=1996; citation_pages=3283-3288; citation_id=CR63"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Higgs and boson signatures of supersymmetry; citation_author=KT Matchev, SD Thomas; citation_volume=62; citation_publication_date=2000; citation_pages=077702; citation_id=CR64"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=The reach of Tevatron upgrades in gauge mediated supersymmetry breaking models; citation_author=H Baer, PG Mercadante, X Tata, Y-L Wang; citation_volume=60; citation_publication_date=1999; citation_pages=055001; citation_id=CR65"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B Proc. Suppl.; citation_title=Phenomenological implications of low-energy supersymmetry breaking; citation_author=S Dimopoulos, M Dine, S Raby, SD Thomas, JD Wells; citation_volume=52; citation_publication_date=1997; citation_pages=38-42; citation_id=CR66"/> <meta name="citation_reference" content="SUSY Working Group, R.L. Culbertson et al., Low scale and gauge mediated supersymmetry breaking at the Fermilab Tevatron Run II. arXiv:hep-ph/0008070 "/> <meta name="citation_reference" content="citation_journal_title=JHEP; citation_title=Prompt decays of general neutralino NLSPs at the Tevatron; citation_author=P Meade, M Reece, D Shih; citation_volume=05; citation_publication_date=2010; citation_pages=105; citation_id=CR68"/> <meta name="citation_reference" content="J.S. Kim, M.E. Krauss, V. Martin-Lozano, Probing the electroweakino sector of general gauge mediation at the LHC. Phys. Lett. B 783, 150–157 (2018). arXiv:1705.06497 "/> <meta name="citation_reference" content="J.S. Kim, S. Pokorski, K. Rolbiecki, K. Sakurai, Gravitino vs neutralino LSP at the LHC. JHEP 09, 082 (2019). arXiv:1905.05648 "/> <meta name="citation_reference" content="J. Dutta, P. Konar, S. Mondal, B. Mukhopadhyaya, S.K. Rai, Search for a compressed supersymmetric spectrum with a light Gravitino. JHEP 09, 026 (2017). arXiv:1704.04617 "/> <meta name="citation_reference" content="X. Lu, S. Shirai, Low-scale gauge mediation after LHC Run 2. Phys. Lett. B 784, 237–247 (2018). arXiv:1712.02359 "/> <meta name="citation_reference" content="Y. Gu, M. Khlopov, L. Wu, J.M. Yang, B. Zhu, Light gravitino dark matter: LHC searches and the Hubble tension. Phys. Rev. D 102, 115005 (2020). arXiv:2006.09906 "/> <meta name="citation_reference" content="A. Arbey, M. Battaglia, L. Covi, J. Hasenkamp, F. Mahmoudi, LHC constraints on gravitino dark matter. Phys. Rev. D 92, 115008 (2015). arXiv:1505.04595 "/> <meta name="citation_reference" content="citation_journal_title=JHEP; citation_title=Exploring supersymmetric model with very light gravitino at the LHC; citation_author=M Asano, T Ito, S Matsumoto, T Moroi; citation_volume=03; citation_publication_date=2012; citation_pages=011; citation_id=CR75"/> <meta name="citation_reference" content="citation_journal_title=JHEP; citation_title=Gravitino dark matter in the CMSSM and implications for leptogenesis and the LHC; citation_author=L Roszkowski, R Ruiz de Austri, K-Y Choi; citation_volume=08; citation_publication_date=2005; citation_pages=080; citation_id=CR76"/> <meta name="citation_reference" content="citation_journal_title=Eur. Phys. J. C; citation_title=The new Look pMSSM with neutralino and gravitino LSPs; citation_author=MW Cahill-Rowley, JL Hewett, S Hoeche, A Ismail, TG Rizzo; citation_volume=72; citation_publication_date=2012; citation_pages=2156; citation_id=CR77"/> <meta name="citation_reference" content="GAMBIT Collaboration, P. Athron, C. Balázs, et al., GAMBIT: the global and modular beyond-the-standard-model inference tool. Eur. Phys. J. C 77, 784 (2017). arXiv:1705.07908 . Addendum in [79]"/> <meta name="citation_reference" content="GAMBIT Collaboration, P. Athron, C. Balázs, et al., GAMBIT: the global and modular beyond-the-standard-model inference tool. Addendum for GAMBIT 1.1: Mathematica backends, SUSYHD interface and updated likelihoods. Eur. Phys. J. C 78, 98 (2018). arXiv:1705.07908 . Addendum to [78]"/> <meta name="citation_reference" content="J.M. Butterworth, D. Grellscheid, M. Krämer, B. Sarrazin, D. Yallup, Constraining new physics with collider measurements of Standard Model signatures. JHEP 03, 078 (2017). arXiv:1606.05296 "/> <meta name="citation_reference" content="A. Buckley et al., Testing new physics models with global comparisons to collider measurements: the Contur toolkit. SciPost Phys. Core 4, 013 (2021). arXiv:2102.04377 "/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Cosmological gravitino problem in gauge mediated supersymmetry breaking models; citation_author=T Asaka, K Hamaguchi, K Suzuki; citation_volume=490; citation_publication_date=2000; citation_pages=136-146; citation_id=CR82"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Supergravity with a gravitino LSP; citation_author=JL Feng, S Su, F Takayama; citation_volume=70; citation_publication_date=2004; citation_pages=075019; citation_id=CR83"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Gravitino dark matter in the CMSSM; citation_author=JR Ellis, KA Olive, Y Santoso, VC Spanos; citation_volume=588; citation_publication_date=2004; citation_pages=7-16; citation_id=CR84"/> <meta name="citation_reference" content="citation_journal_title=JCAP; citation_title=Gravitino dark matter and cosmological constraints; citation_author=FD Steffen; citation_volume=09; citation_publication_date=2006; citation_pages=001; citation_id=CR85"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. Lett.; citation_title=Supersymmetry, cosmology and new TeV physics; citation_author=H Pagels, JR Primack; citation_volume=48; citation_publication_date=1982; citation_pages=223; citation_id=CR86"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Is it easy to save the gravitino?; citation_author=MY Khlopov, AD Linde; citation_volume=138; citation_publication_date=1984; citation_pages=265-268; citation_id=CR87"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Cosmological gravitino regeneration and decay; citation_author=JR Ellis, JE Kim, DV Nanopoulos; citation_volume=145; citation_publication_date=1984; citation_pages=181-186; citation_id=CR88"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest; citation_author=M Viel, J Lesgourgues, MG Haehnelt, S Matarrese, A Riotto; citation_volume=71; citation_publication_date=2005; citation_pages=063534; citation_id=CR89"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Cosmological constraints on the light stable gravitino; citation_author=T Moroi, H Murayama, M Yamaguchi; citation_volume=303; citation_publication_date=1993; citation_pages=289-294; citation_id=CR90"/> <meta name="citation_reference" content="citation_journal_title=New J. Phys.; citation_title=Big bang nucleosynthesis and particle dark matter; citation_author=K Jedamzik, M Pospelov; citation_volume=11; citation_publication_date=2009; citation_pages=105028; citation_id=CR91"/> <meta name="citation_reference" content="CDF, T. Aaltonen et al., High-precision measurement of the W boson mass with the CDF II detector. Science 376, 170–176 (2022)"/> <meta name="citation_reference" content="Particle Data Group, R.L. Workman, Review of particle physics. PTEP 2022, 083C01 (2022)"/> <meta name="citation_reference" content="citation_journal_title=JHEP; citation_title=Precise prediction for M(W) in the MSSM; citation_author=S Heinemeyer, W Hollik, D Stöckinger, AM Weber, G Weiglein; citation_volume=08; citation_publication_date=2006; citation_pages=052; citation_id=CR94"/> <meta name="citation_reference" content="E. Bagnaschi, M. Chakraborti, S. Heinemeyer, I. Saha, G. Weiglein, Interdependence of the new “MUON G-2” result and the W-boson mass. Eur. Phys. J. C 82, 474 (2022). arXiv:2203.15710 "/> <meta name="citation_reference" content="J.M. Yang, Y. Zhang, Low energy SUSY confronted with new measurements of W-boson mass and muon g-2. Sci. Bull. 67, 1430–1436 (2022). arXiv:2204.04202 "/> <meta name="citation_reference" content="LHCb, R. Aaij et al., Measurement of the W boson mass, JHEP 01, 036 (2022). arXiv:2109.01113 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Combined search for supersymmetry with photons in proton-proton collisions at $$\sqrt{s}=$$ 13 TeV. Phys. Lett. B 801, 135183 (2020). arXiv:1907.00857 "/> <meta name="citation_reference" content="citation_journal_title=JHEP; citation_title=Gravitino dark matter and general neutralino NLSP; citation_author=L Covi, J Hasenkamp, S Pokorski, J Roberts; citation_volume=11; citation_publication_date=2009; citation_pages=003; citation_id=CR99"/> <meta name="citation_reference" content="J. Hasenkamp, General neutralino NLSP with gravitino dark matter vs. big bang nucleosynthesis. Diploma thesis (2009)"/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum in $$pp$$ collisions at $$\sqrt{s}$$ = 13 TeV with the ATLAS detector. Phys. Rev. D 104, 112010 (2021). arXiv:2108.07586 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 $$\text{fb}^{-1}$$ of $$\sqrt{s}$$ =13 TeV $$pp$$ collision data with the ATLAS detector. JHEP 02, 143 (2021). arXiv:2010.14293 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Search for a scalar partner of the top quark in the jets plus missing transverse momentum final state at $$\sqrt{s}$$ =13 TeV with the ATLAS detector. JHEP 12, 085 (2017). arXiv:1709.04183 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Search for top-squark pair production in final states with one lepton, jets, and missing transverse momentum using 36 $$\text{ fb}^{-1}$$ of $$ \sqrt{s}=13 $$ TeV pp collision data with the ATLAS detector. JHEP 06, 108 (2018). arXiv:1711.11520 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Search for new phenomena in events with two opposite-charge leptons, jets and missing transverse momentum in pp collisions at $$\sqrt{{\rm s}} $$ = 13 TeV with the ATLAS detector. JHEP 04, 165 (2021). arXiv:2102.01444 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Search for top squarks in events with a Higgs or $$Z$$ boson using 139 $$\text{ fb}^{-1}$$ of $$pp$$ collision data at $$\sqrt{s}=13$$ TeV with the ATLAS detector. Eur. Phys. J. C 80, 1080 (2020). arXiv:2006.05880 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in $$\sqrt{s}=13$$ TeV $$pp$$ collisions using the ATLAS detector. Eur. Phys. J. C 80, 123 (2020). arXiv:1908.08215 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Search for supersymmetry in events with $$b$$ -tagged jets and missing transverse momentum in $$pp$$ collisions at $$\sqrt{s}=13$$ TeV with the ATLAS detector. JHEP 11, 195 (2017). arXiv:1708.09266 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Search for pair production of higgsinos in final states with at least three $$b$$ -tagged jets in $$\sqrt{s} = 13$$ TeV $$pp$$ collisions using the ATLAS detector. Phys. Rev. D 98, 092002 (2018). arXiv:1806.04030 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Search for chargino-neutralino pair production in final states with three leptons and missing transverse momentum in $$\sqrt{s} = 13$$  TeV pp collisions with the ATLAS detector. Eur. Phys. J. C 81, 1118 (2021). arXiv:2106.01676 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Search for supersymmetry in events with four or more charged leptons in 139 $$\text{ fb}^{-1}$$ of $$\sqrt{s} $$ = 13 TeV pp collisions with the ATLAS detector. JHEP 07, 167 (2021). arXiv:2103.11684 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Search for squarks and gluinos in final states with same-sign leptons and jets using 139 $$\text{ fb}^{-1}$$ of data collected with the ATLAS detector. JHEP 06, 046 (2020). arXiv:1909.08457 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Search for new phenomena in final states with photons, jets and missing transverse momentum in $$pp$$ collisions at $$\sqrt{s} = 13$$ TeV with the ATLAS detector"/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV $$pp$$ collisions with the ATLAS detector. Phys. Rev. D 97, 092006 (2018). arXiv:1802.03158 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Search for exotic decays of the Higgs boson to at least one photon and missing transverse momentum using 79.8 $$\text{ fb}^{-1}$$ of proton–proton collisions collected at $$\sqrt{s}=13$$ TeV with the ATLAS detector"/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum. JHEP 10, 244 (2019). arXiv:1908.04722 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Search for electroweak production of charginos and neutralinos in WH events in proton-proton collisions at $$ \sqrt{s}=13 $$ TeV. JHEP 11, 029 (2017). arXiv:1706.09933 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Search for top squark pair production in pp collisions at $$ \sqrt{s}=13 $$ TeV using single lepton events. JHEP 10, 019 (2017). arXiv:1706.04402 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Search for top squarks and dark matter particles in opposite-charge dilepton final states at $$\sqrt{s}=$$ 13 TeV. Phys. Rev. D 97, 032009 (2018). arXiv:1711.00752 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Search for new physics in events with two soft oppositely charged leptons and missing transverse momentum in proton-proton collisions at $$\sqrt{s}=$$ 13 TeV. Phys. Lett. B 782, 440–467 (2018). arXiv:1801.01846 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Search for supersymmetry in final states with two oppositely charged same-flavor leptons and missing transverse momentum in proton-proton collisions at $$\sqrt{s} =$$ 13 TeV. JHEP 04, 123 (2021). arXiv:2012.08600 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Searches for pair production of charginos and top squarks in final states with two oppositely charged leptons in proton-proton collisions at $$\sqrt{s}=$$ 13 TeV. JHEP 11, 079 (2018). arXiv:1807.07799 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Search for physics beyond the standard model in events with jets and two same-sign or at least three charged leptons in proton-proton collisions at $$\sqrt{s}=$$ 13 TeV. Eur. Phys. J. C 80, 752 (2020). arXiv:2001.10086 "/> <meta name="citation_reference" content="CMS, A. Tumasyan et al., Search for electroweak production of charginos and neutralinos in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV. JHEP 04, 147 (2022). arXiv:2106.14246 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Search for gauge-mediated supersymmetry in events with at least one photon and missing transverse momentum in pp collisions at $$\sqrt{s} = $$ 13 TeV. Phys. Lett. B 780, 118–143 (2018). arXiv:1711.08008 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Search for supersymmetry in final states with photons and missing transverse momentum in proton-proton collisions at 13 TeV. JHEP 06, 143 (2019). arXiv:1903.07070 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Search for supersymmetry in events with a photon, a lepton, and missing transverse momentum in proton-proton collisions at $$\sqrt{s} =$$ 13 TeV. JHEP 01, 154 (2019). [ arXiv:1812.04066 ]"/> <meta name="citation_reference" content="CMS Collaboration, Simplified likelihood for the re-interpretation of public CMS results. CMS-NOTE-2017-001 (2017)"/> <meta name="citation_reference" content="citation_journal_title=JHEP; citation_title=The simplified likelihood framework; citation_author=A Buckley, M Citron; citation_volume=04; citation_publication_date=2019; citation_pages=064; citation_id=CR129"/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Reproducing searches for new physics with the ATLAS experiment through publication of full statistical likelihoods"/> <meta name="citation_reference" content="J.Y. Araz, A. Buckley et. al., Strength in numbers: optimal and scalable combination of LHC new-physics searches. arXiv:2209.00025 "/> <meta name="citation_reference" content="GAMBIT, P. Athron et al., Thermal WIMPs and the scale of new physics: global fits of Dirac dark matter effective field theories. Eur. Phys. J. C 81, 992 (2021). arXiv:2106.02056 "/> <meta name="citation_reference" content="C. Chang, P. Scott et al., Global fits of simplified models for dark matter with GAMBIT I. Scalar and fermionic models with s-channel vector mediators. arXiv:2209.13266 "/> <meta name="citation_reference" content="C. Bierlich et al., Robust independent validation of experiment and theory: rivet version 3. SciPost Phys. 8, 026 (2020). arXiv:1912.05451 "/> <meta name="citation_reference" content="CMS, V. Khachatryan et al., Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV. Phys. Rev. D 95, 092001 (2017). arXiv:1610.04191 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Measurement of the cross section for isolated-photon plus jet production in $$pp$$ collisions at $$\sqrt{s}=13$$ TeV using the ATLAS detector. Phys. Lett. B 780, 578–602 (2018). arXiv:1801.00112 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at $$\sqrt{s} =$$ 13 TeV. Phys. Rev. D 97, 112003 (2018). arXiv:1803.08856 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Charged-particle distributions in $$\sqrt{s}$$ = 13 TeV pp interactions measured with the ATLAS detector at the LHC. Phys. Lett. B 758, 67–88 (2016). arXiv:1602.01633 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum in $$pp$$ collisions at $$\sqrt{{\bf s}}=13 $$ TeV using the ATLAS detector. Eur. Phys. J. C 77, 765 (2017). arXiv:1707.03263 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Measurements of inclusive and differential fiducial cross-sections of $$t{\bar{t}}\gamma $$ production in leptonic final states at $$\sqrt{s}=13~\text{ TeV }$$ in ATLAS. Eur. Phys. J. C 79, 382 (2019). arXiv:1812.01697 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Measurement of the $$t{\bar{t}}$$ production cross-section and lepton differential distributions in $$e\mu $$ dilepton events from $$pp$$ collisions at $$\sqrt{s}=13\,\text{ TeV }$$ with the ATLAS detector. Eur. Phys. J. C 80, 528 (2020). arXiv:1910.08819 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Measurements of differential cross-sections in four-lepton events in 13 TeV proton-proton collisions with the ATLAS detector. JHEP 07, 005 (2021). arXiv:2103.01918 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Charged-particle distributions at low transverse momentum in $$\sqrt{s} = 13$$ TeV $$pp$$ interactions measured with the ATLAS detector at the LHC. Eur. Phys. J. C 76, 502 (2016). arXiv:1606.01133 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Measurement of associated production of a W boson and a charm quark in proton-proton collisions at $$\sqrt{s} =$$ 13 TeV. Eur. Phys. J. C 79, 269 (2019). arXiv:1811.10021 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Properties of jet fragmentation using charged particles measured with the ATLAS detector in $$pp$$ collisions at $$\sqrt{s}=13$$ TeV. Phys. Rev. D 100, 052011 (2019). arXiv:1906.09254 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Measurements of angular distance and momentum ratio distributions in three-jet and $${\text{ Z }}$$ + two-jet final states in $${\text{ p }}{\text{ p }}$$ collisions. Eur. Phys. J. C 81, 852 (2021). arXiv:2102.08816 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Measurements of top-quark pair differential cross-sections in the lepton+jets channel in $$pp$$ collisions at $$\sqrt{s}=13$$ TeV using the ATLAS detector. JHEP 11, 191 (2017). arXiv:1708.00727 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at $$ \sqrt{s}=13 $$ TeV. JHEP 11, 113 (2018). arXiv:1807.05974 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Measurements of $$t{\bar{t}}$$ differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in $$pp$$ collisions at $$\sqrt{s}=13\,$$ TeV using the ATLAS detector. Phys. Rev. D 98, 012003 (2018). arXiv:1801.02052 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Searches for scalar leptoquarks and differential cross-section measurements in dilepton-dijet events in proton-proton collisions at a centre-of-mass energy of $$\sqrt{s}$$ = 13 TeV with the ATLAS experiment. Eur. Phys. J. C 79, 733 (2019). arXiv:1902.00377 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Measurement of differential cross sections for Z boson production in association with jets in proton-proton collisions at $$\sqrt{s} =$$ 13 TeV. Eur. Phys. J. C 78, 965 (2018). arXiv:1804.05252 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Measurement of jet-substructure observables in top quark, $$W$$ boson and light jet production in proton-proton collisions at $$\sqrt{s}=13$$ TeV with the ATLAS detector. JHEP 08, 033 (2019). arXiv:1903.02942 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Measurements of the production cross section of a $$Z$$ boson in association with jets in pp collisions at $$\sqrt{s} = 13$$ TeV with the ATLAS detector. Eur. Phys. J. C 77, 361 (2017). arXiv:1702.05725 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Measurements of differential Z boson production cross sections in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV. JHEP 12, 061 (2019). arXiv:1909.04133 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Measurement of the transverse momentum distribution of Drell-Yan lepton pairs in proton-proton collisions at $$\sqrt{s}=13$$ TeV with the ATLAS detector. Eur. Phys. J. C 80, 616 (2020). arXiv:1912.02844 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Measurements of differential cross sections of top quark pair production in association with jets in $${pp}$$ collisions at $$\sqrt{s}=13$$ TeV using the ATLAS detector. JHEP 10, 159 (2018). arXiv:1802.06572 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Measurements of the production cross-section for a $$Z$$ boson in association with $$b$$ -jets in proton-proton collisions at $$\sqrt{s} = 13$$ TeV with the ATLAS detector. JHEP 07, 044 (2020). arXiv:2003.11960 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Differential cross-section measurements for the electroweak production of dijets in association with a $$Z$$ boson in proton-proton collisions at ATLAS. Eur. Phys. J. C 81, 163 (2021). arXiv:2006.15458 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Measurement of the soft-drop jet mass in pp collisions at $$\sqrt{s} = 13$$ TeV with the ATLAS detector. Phys. Rev. Lett. 121, 092001 (2018). arXiv:1711.08341 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Measurement of the four-lepton invariant mass spectrum in 13 TeV proton-proton collisions with the ATLAS detector. JHEP 04, 048 (2019). arXiv:1902.05892 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Observation of electroweak production of a same-sign $$W$$ boson pair in association with two jets in $$pp$$ collisions at $$\sqrt{s}=13$$ TeV with the ATLAS detector. Phys. Rev. Lett. 123, 161801 (2019). arXiv:1906.03203 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Measurements of differential cross sections of top quark pair production as a function of kinematic event variables in proton-proton collisions at $$ \sqrt{s}=13 $$ TeV. JHEP 06, 002 (2018). arXiv:1803.03991 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Measurements of $$W^+W^-+\ge 1~$$ jet production cross-sections in $$pp$$ collisions at $$\sqrt{s}=13~$$ TeV with the ATLAS detector. JHEP 06, 003 (2021). arXiv:2103.10319 "/> <meta name="citation_reference" content="CMS, A. Tumasyan et al., Measurement of double-parton scattering in inclusive production of four jets with low transverse momentum in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV. JHEP 01, 177 (2022). arXiv:2109.13822 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Measurements of top-quark pair differential and double-differential cross-sections in the $$\ell $$ +jets channel with $$pp$$ collisions at $$\sqrt{s}=13$$ TeV using the ATLAS detector. Eur. Phys. J. C 79, 1028 (2019). arXiv:1908.07305 . [Erratum: Eur. Phys. J. C 80, 1092 (2020)]"/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Measurement of fiducial and differential $$W^+W^-$$ production cross-sections at $$\sqrt{s}=13$$ TeV with the ATLAS detector. Eur. Phys. J. C 79, 884 (2019). arXiv:1905.04242 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Measurements of inclusive and differential fiducial cross-sections of $$ t{\overline{t}} $$ production with additional heavy-flavour jets in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV with the ATLAS detector. JHEP 04, 046 (2019). arXiv:1811.12113 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Measurement of the differential Drell-Yan cross section in proton-proton collisions at $$ \sqrt{{\rm s}} $$ = 13 TeV. JHEP 12, 059 (2019). arXiv:1812.10529 "/> <meta name="citation_reference" content="LHCb, R. Aaij et al., Measurement of forward top pair production in the dilepton channel in $$pp$$ collisions at $$\sqrt{s}=13$$ TeV. JHEP 08, 174 (2018). arXiv:1803.05188 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Measurements of top-quark pair single- and double-differential cross-sections in the all-hadronic channel in $$pp$$ collisions at $$\sqrt{s}=13~{\rm TeV}$$ using the ATLAS detector. JHEP 01, 033 (2021). arXiv:2006.09274 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Measurement of the production cross section of pairs of isolated photons in $$pp$$ collisions at 13 TeV with the ATLAS detector. JHEP 11, 169 (2021). arXiv:2107.09330 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Measurement of hadronic event shapes in high- $$\text{ p}_{{T}}$$ multijet final states at $$ \sqrt{s} $$ = 13 TeV with the ATLAS detector. JHEP 01, 188 (2021). arXiv:2007.12600 "/> <meta name="citation_reference" content="CMS, V. Khachatryan et al., Measurement of the double-differential inclusive jet cross section in proton-proton collisions at $$\sqrt{s} = 13\,\text{ TeV } $$ . Eur. Phys. J. C 76, 451 (2016). arXiv:1605.04436 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks in $$pp$$ collisions at $$\sqrt{s} = 13$$ TeV. Phys. Rev. Lett. 124, 202001 (2020). arXiv:1911.03800 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., $$ZZ \rightarrow \ell ^{+}\ell ^{-}\ell ^{\prime +}\ell ^{\prime -}$$ cross-section measurements and search for anomalous triple gauge couplings in 13 TeV $$pp$$ collisions with the ATLAS detector. Phys. Rev. D 97, 032005 (2018). arXiv:1709.07703 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., $$\text{ W}^{+}\text{ W}^{-}$$ boson pair production in proton-proton collisions at $$\sqrt{s} = 13\, \text{ TeV }$$ . Phys. Rev. D 102, 092001 (2020). arXiv:2009.00119 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Measurement of differential cross sections and charge ratios for t-channel single top quark production in proton-proton collisions at $$\sqrt{s}=13\,\text{ Te }\text{ V }$$ . Eur. Phys. J. C 80, 370 (2020). arXiv:1907.08330 "/> <meta name="citation_reference" content="CMS, A.M. Sirunyan et al., Measurement of the $${\rm t}{\bar{t}}{\rm b}{\bar{b}} $$ production cross section in the all-jet final state in pp collisions at $$\sqrt{s} =$$ 13 TeV. Phys. Lett. B 803, 135285 (2020). arXiv:1909.05306 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Measurement of inclusive jet and dijet cross-sections in proton-proton collisions at $$\sqrt{s}=13$$ TeV with the ATLAS detector. JHEP 05, 195 (2018). arXiv:1711.02692 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector. Phys. Rev. Lett. 124, 222002 (2020). arXiv:2004.03540 "/> <meta name="citation_reference" content="ATLAS, G. Aad et al., Measurement of the $$Z(\rightarrow \ell ^+\ell ^-)\gamma $$ production cross-section in $$pp$$ collisions at $$\sqrt{s} =13$$ TeV with the ATLAS detector. JHEP 03, 054 (2020). arXiv:1911.04813 "/> <meta name="citation_reference" content="ATLAS, M. Aaboud et al., Measurement of the $$ Z\gamma \rightarrow \nu {\overline{\nu }}\gamma $$ production cross section in pp collisions at $$ \sqrt{s}=13 $$ TeV with the ATLAS detector and limits on anomalous triple gauge-boson couplings. JHEP 12, 010 (2018). arXiv:1810.04995 "/> <meta name="citation_reference" content="GAMBIT Collider Workgroup, C. Balázs, A. Buckley, et al., ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods. Eur. Phys. J. C 77, 795 (2017). arXiv:1705.07919 "/> <meta name="citation_reference" content="L3, P. Achard et al., Single photon and multiphoton events with missing energy in $$e^{+} e^{-}$$ collisions at LEP. Phys. Lett. B 587, 16–32 (2004). arXiv:hep-ex/0402002 "/> <meta name="citation_reference" content="S. Bloor, T.E. Gonzalo et al., The GAMBIT universal model machine: from Lagrangians to likelihoods. arXiv:2107.00030 "/> <meta name="citation_reference" content="GAMBIT Models Workgroup, P. Athron, C. Balázs, et al., SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables. Eur. Phys. J. C 78, 22 (2018). arXiv:1705.07936 "/> <meta name="citation_reference" content="GAMBIT Scanner Workgroup, G.D. Martinez, J. McKay, et al., Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module. Eur. Phys. J. C 77, 761 (2017). arXiv:1705.07959 "/> <meta name="citation_reference" content="citation_journal_title=Comput. Phys. Comm.; citation_title=FlexibleSUSY—a spectrum generator generator for supersymmetric models; citation_author=P Athron, J-H Park, D Stöckinger, A Voigt; citation_volume=190; citation_publication_date=2015; citation_pages=139-172; citation_id=CR188"/> <meta name="citation_reference" content="P. Athron, M. Bach, et al., FlexibleSUSY 2.0: extensions to investigate the phenomenology of SUSY and non-SUSY models. Comput. Phys. Comm. 230, 145–217 (2018). arXiv:1710.03760 "/> <meta name="citation_reference" content="F. Staub, SARAH. arXiv:0806.0538 "/> <meta name="citation_reference" content="citation_journal_title=Comput. Phys. Commun.; citation_title=Automatic calculation of supersymmetric renormalization group equations and self energies; citation_author=F Staub; citation_volume=182; citation_publication_date=2011; citation_pages=808-833; citation_id=CR191"/> <meta name="citation_reference" content="citation_journal_title=Comput. Phys. Commun.; citation_title=SOFTSUSY: a program for calculating supersymmetric spectra; citation_author=BC Allanach; citation_volume=143; citation_publication_date=2002; citation_pages=305-331; citation_id=CR192"/> <meta name="citation_reference" content="citation_journal_title=Comput. Phys. Commun.; citation_title=Next-to-minimal SOFTSUSY; citation_author=BC Allanach, P Athron, LC Tunstall, A Voigt, AG Williams; citation_volume=185; citation_publication_date=2014; citation_pages=2322-2339; citation_id=CR193"/> <meta name="citation_reference" content="citation_journal_title=Acta Phys. Polon.; citation_title=Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-Hdecay-InTerface); citation_author=A Djouadi, MM Mühlleitner, M Spira; citation_volume=38; citation_publication_date=2007; citation_pages=635-644; citation_id=CR194"/> <meta name="citation_reference" content="citation_journal_title=Comput. Phys. Commun.; citation_title=SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM; citation_author=M Muhlleitner, A Djouadi, Y Mambrini; citation_volume=168; citation_publication_date=2005; citation_pages=46-70; citation_id=CR195"/> <meta name="citation_reference" content="citation_journal_title=Comput. Phys. Commun.; citation_title=HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension; citation_author=A Djouadi, J Kalinowski, M Spira; citation_volume=108; citation_publication_date=1998; citation_pages=56-74; citation_id=CR196"/> <meta name="citation_reference" content="T. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). arXiv:hep-ph/0603175 "/> <meta name="citation_reference" content="T. Sjostrand, S. Ask, et al., An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159–177 (2015). arXiv:1410.3012 "/> <meta name="citation_reference" content="J. Fiaschi, M. Klasen, Neutralino-chargino pair production at NLO+NLL with resummation-improved parton density functions for LHC Run II. Phys. Rev. D 98, 055014 (2018). arXiv:1805.11322 "/> <meta name="citation_reference" content="K. Cranmer et al., Publishing statistical models: Getting the most out of particle physics experiments. SciPost Phys. 12, 037 (2022). arXiv:2109.04981 "/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans. Evolut. Comput.; citation_title=Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems; citation_author=J Brest, S Greiner, B Boskovic, M Mernik, V Zumer; citation_volume=10; citation_publication_date=2006; citation_pages=646-657; citation_id=CR201"/> <meta name="citation_reference" content="GAMBIT Collaboration, Supplementary data: collider constraints on electroweakinos in the presence of a light gravitino (2023). https://zenodo.org/record/7704832 "/> <meta name="citation_reference" content="citation_journal_title=Eur. Phys. J. Plus; citation_title=Pippi-painless parsing, post-processing and plotting of posterior and likelihood samples; citation_author=P Scott; citation_volume=127; citation_publication_date=2012; citation_pages=138; citation_id=CR203"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Super-razor and searches for sleptons and charginos at the LHC; citation_author=MR Buckley, JD Lykken, C Rogan, M Spiropulu; citation_volume=89; citation_publication_date=2014; citation_pages=055020; citation_id=CR204"/> <meta name="citation_reference" content="GAMBIT Flavour Workgroup, F.U. Bernlochner, M. Chrząszcz, et al., FlavBit: a GAMBIT module for computing flavour observables and likelihoods. Eur. Phys. J. C 77, 786 (2017). arXiv:1705.07933 "/> <meta name="citation_reference" content="citation_journal_title=Comput. Phys. Commun.; citation_title=Rivet user manual; citation_author=A Buckley, J Butterworth; citation_volume=184; citation_publication_date=2013; citation_pages=2803-2819; citation_id=CR206"/> <meta name="citation_author" content="Ananyev, Viktor"/> <meta name="citation_author_institution" content="Department of Physics, University of Oslo, Oslo, Norway"/> <meta name="citation_author" content="Balázs, Csaba"/> <meta name="citation_author_institution" content="School of Physics and Astronomy, Monash University, Melbourne, Australia"/> <meta name="citation_author" content="Beniwal, Ankit"/> <meta name="citation_author_institution" content="Department of Physics, Theoretical Particle Physics and Cosmology (TPPC), King’s College London, London, UK"/> <meta name="citation_author" content="Braseth, Lasse Lorentz"/> <meta name="citation_author_institution" content="Department of Physics, University of Oslo, Oslo, Norway"/> <meta name="citation_author" content="Buckley, Andy"/> <meta name="citation_author_institution" content="SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, UK"/> <meta name="citation_author" content="Butterworth, Jonathan"/> <meta name="citation_author_institution" content="Department of Physics and Astronomy, University College London, London, UK"/> <meta name="citation_author" content="Chang, Christopher"/> <meta name="citation_author_institution" content="School of Mathematics and Physics, The University of Queensland, Brisbane, Australia"/> <meta name="citation_author" content="Danninger, Matthias"/> <meta name="citation_author_institution" content="Department of Physics, Simon Fraser University, Burnaby, Canada"/> <meta name="citation_author" content="Fowlie, Andrew"/> <meta name="citation_author_institution" content="Department of Physics, School of Mathematics and Physics, Xi’an Jiaotong-Liverpool University, Suzhou, People’s Republic of China"/> <meta name="citation_author" content="Gonzalo, Tomás E."/> <meta name="citation_author_email" content="tomas.gonzalo@kit.edu"/> <meta name="citation_author_institution" content="Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany"/> <meta name="citation_author" content="Kvellestad, Anders"/> <meta name="citation_author_email" content="anders.kvellestad@fys.uio.no"/> <meta name="citation_author_institution" content="Department of Physics, University of Oslo, Oslo, Norway"/> <meta name="citation_author" content="Mahmoudi, Farvah"/> <meta name="citation_author_institution" content="Institut de Physique des 2 Infinis de Lyon, Univ Lyon, Univ Lyon 1, CNRS/IN2P3, Villeurbanne, France"/> <meta name="citation_author_institution" content="Theoretical Physics Department, CERN, Geneva 23, Switzerland"/> <meta name="citation_author" content="Martinez, Gregory D."/> <meta name="citation_author_institution" content="Physics and Astronomy Department, University of California, Los Angeles, USA"/> <meta name="citation_author" content="Prim, Markus T."/> <meta name="citation_author_institution" content="Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn, Bonn, Germany"/> <meta name="citation_author" content="Procter, Tomasz"/> <meta name="citation_author_institution" content="SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, UK"/> <meta name="citation_author" content="Raklev, Are"/> <meta name="citation_author_institution" content="Department of Physics, University of Oslo, Oslo, Norway"/> <meta name="citation_author" content="Scott, Pat"/> <meta name="citation_author_institution" content="Quantum Brilliance Pty Ltd, The Australian National University, Acton, Australia"/> <meta name="citation_author" content="Stöcker, Patrick"/> <meta name="citation_author_institution" content="Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, Aachen, Germany"/> <meta name="citation_author" content="Van den Abeele, Jeriek"/> <meta name="citation_author_institution" content="Department of Physics, University of Oslo, Oslo, Norway"/> <meta name="citation_author_institution" content="Telenor Research, Fornebu, Norway"/> <meta name="citation_author" content="White, Martin"/> <meta name="citation_author_institution" content="Department of Physics, ARC Centre of Excellence for Dark Matter Particle Physics & CSSM, University of Adelaide, Adelaide, Australia"/> <meta name="citation_author" content="Zhang, Yang"/> <meta name="citation_author_institution" content="School of Physics, Zhengzhou University, Zhengzhou, China"/> <meta name="citation_author_institution" content="CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China"/> <meta name="format-detection" content="telephone=no"/> <meta name="citation_cover_date" content="2023/06/01"/> <meta property="og:url" content="https://link.springer.com/article/10.1140/epjc/s10052-023-11574-z"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="SpringerLink"/> <meta property="og:title" content="Collider constraints on electroweakinos in the presence of a light gravitino - The European Physical Journal C"/> <meta property="og:description" content="Using the GAMBIT global fitting framework, we constrain the MSSM with an eV-scale gravitino as the lightest supersymmetric particle, and the six electroweakinos (neutralinos and charginos) as the only other light new states. We combine 15 ATLAS and 12 CMS searches at 13 TeV, along with a large collection of ATLAS and CMS measurements of Standard Model signatures. This model, which we refer to as the $${{\tilde{G}}}$$ G ~ -EWMSSM, exhibits quite varied collider phenomenology due to its many permitted electroweakino production processes and decay modes. Characteristic $${{\tilde{G}}}$$ G ~ -EWMSSM signal events have two or more Standard Model bosons and missing energy due to the escaping gravitinos. While much of the $${{\tilde{G}}}$$ G ~ -EWMSSM parameter space is excluded, we find several viable parameter regions that predict phenomenologically rich scenarios with multiple neutralinos and charginos within the kinematic reach of the LHC during Run 3, or the High Luminosity LHC. In particular, we identify scenarios with Higgsino-dominated electroweakinos as light as 140 GeV that are consistent with our combined set of collider searches and measurements. The full set of $${{\tilde{G}}}$$ G ~ -EWMSSM parameter samples and GAMBIT input files generated for this work is available via Zenodo."/> <meta property="og:image" content="https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig1_HTML.png"/> <meta name="format-detection" content="telephone=no"> <link rel="apple-touch-icon" sizes="180x180" href=/oscar-static/img/favicons/darwin/apple-touch-icon-92e819bf8a.png> <link rel="icon" type="image/png" sizes="192x192" href=/oscar-static/img/favicons/darwin/android-chrome-192x192-6f081ca7e5.png> <link rel="icon" type="image/png" sizes="32x32" href=/oscar-static/img/favicons/darwin/favicon-32x32-1435da3e82.png> <link rel="icon" type="image/png" sizes="16x16" href=/oscar-static/img/favicons/darwin/favicon-16x16-ed57f42bd2.png> <link rel="shortcut icon" data-test="shortcut-icon" href=/oscar-static/img/favicons/darwin/favicon-c6d59aafac.ico> <meta name="theme-color" content="#e6e6e6"> <!-- Please see discussion: https://github.com/springernature/frontend-open-space/issues/316--> <!--TODO: Implement alternative to CTM in here if the discussion concludes we do not continue with CTM as a practice--> <link rel="stylesheet" media="print" href=/oscar-static/app-springerlink/css/print-b8af42253b.css> <style> html{text-size-adjust:100%;line-height:1.15}body{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;margin:0}details,main{display:block}h1{font-size:2em;margin:.67em 0}a{background-color:transparent;color:#025e8d}sub{bottom:-.25em;font-size:75%;line-height:0;position:relative;vertical-align:baseline}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input{font-family:inherit;font-size:100%;line-height:1.15;margin:0;overflow:visible}button{text-transform:none}[type=button],[type=submit],button{-webkit-appearance:button}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}summary{display:list-item}[hidden]{display:none}button{cursor:pointer}svg{height:1rem;width:1rem} </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { body{background:#fff;color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;min-height:100%}a{color:#025e8d;text-decoration:underline;text-decoration-skip-ink:auto}button{cursor:pointer}img{border:0;height:auto;max-width:100%;vertical-align:middle}html{box-sizing:border-box;font-size:100%;height:100%;overflow-y:scroll}h1{font-size:2.25rem}h2{font-size:1.75rem}h1,h2,h4{font-weight:700;line-height:1.2}h4{font-size:1.25rem}body{font-size:1.125rem}*{box-sizing:inherit}p{margin-bottom:2rem;margin-top:0}p:last-of-type{margin-bottom:0}.c-ad{text-align:center}@media only screen and (min-width:480px){.c-ad{padding:8px}}.c-ad--728x90{display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:876px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-ad__label,.c-status-message{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-status-message{align-items:center;box-sizing:border-box;display:flex;position:relative;width:100%}.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #ccc;line-height:1.4;padding:16px}.c-status-message__heading{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.eds-c-header{background-color:#fff;border-bottom:2px solid #01324b;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;line-height:1.5;padding:8px 0 0}.eds-c-header__container{align-items:center;display:flex;flex-wrap:nowrap;gap:8px 16px;justify-content:space-between;margin:0 auto 8px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav{border-top:2px solid #c5e0f4;padding-top:4px;position:relative}.eds-c-header__nav-container{align-items:center;display:flex;flex-wrap:wrap;margin:0 auto 4px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav-container>:not(:last-child){margin-right:32px}.eds-c-header__link-container{align-items:center;display:flex;flex:1 0 auto;gap:8px 16px;justify-content:space-between}.eds-c-header__list{list-style:none;margin:0;padding:0}.eds-c-header__list-item{font-weight:700;margin:0 auto;max-width:1280px;padding:8px}.eds-c-header__list-item:not(:last-child){border-bottom:2px solid #c5e0f4}.eds-c-header__item{color:inherit}@media only screen and (min-width:768px){.eds-c-header__item--menu{display:none;visibility:hidden}.eds-c-header__item--menu:first-child+*{margin-block-start:0}}.eds-c-header__item--inline-links{display:none;visibility:hidden}@media only screen and (min-width:768px){.eds-c-header__item--inline-links{display:flex;gap:16px 16px;visibility:visible}}.eds-c-header__item--divider:before{border-left:2px solid #c5e0f4;content:"";height:calc(100% - 16px);margin-left:-15px;position:absolute;top:8px}.eds-c-header__brand{padding:16px 8px}.eds-c-header__brand a{display:block;line-height:1;text-decoration:none}.eds-c-header__brand img{height:1.5rem;width:auto}.eds-c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.eds-c-header__icon{fill:currentcolor;display:inline-block;font-size:1.5rem;height:1em;transform:translate(0);vertical-align:bottom;width:1em}.eds-c-header__icon+*{margin-left:8px}.eds-c-header__expander{background-color:#f0f7fc}.eds-c-header__search{display:block;padding:24px 0}@media only screen and (min-width:768px){.eds-c-header__search{max-width:70%}}.eds-c-header__search-container{position:relative}.eds-c-header__search-label{color:inherit;display:inline-block;font-weight:700;margin-bottom:8px}.eds-c-header__search-input{background-color:#fff;border:1px solid #000;padding:8px 48px 8px 8px;width:100%}.eds-c-header__search-button{background-color:transparent;border:0;color:inherit;height:100%;padding:0 8px;position:absolute;right:0}.has-tethered.eds-c-header__expander{border-bottom:2px solid #01324b;left:0;margin-top:-2px;top:100%;width:100%;z-index:10}@media only screen and (min-width:768px){.has-tethered.eds-c-header__expander--menu{display:none;visibility:hidden}}.has-tethered .eds-c-header__heading{display:none;visibility:hidden}.has-tethered .eds-c-header__heading:first-child+*{margin-block-start:0}.has-tethered .eds-c-header__search{margin:auto}.eds-c-header__heading{margin:0 auto;max-width:1280px;padding:16px 16px 0}.eds-c-pagination{align-items:center;display:flex;flex-wrap:wrap;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;gap:16px 0;justify-content:center;line-height:1.4;list-style:none;margin:0;padding:32px 0}@media only screen and (min-width:480px){.eds-c-pagination{padding:32px 16px}}.eds-c-pagination__item{margin-right:8px}.eds-c-pagination__item--prev{margin-right:16px}.eds-c-pagination__item--next .eds-c-pagination__link,.eds-c-pagination__item--prev .eds-c-pagination__link{padding:16px 8px}.eds-c-pagination__item--next{margin-left:8px}.eds-c-pagination__item:last-child{margin-right:0}.eds-c-pagination__link{align-items:center;color:#222;cursor:pointer;display:inline-block;font-size:1rem;margin:0;padding:16px 24px;position:relative;text-align:center;transition:all .2s ease 0s}.eds-c-pagination__link:visited{color:#222}.eds-c-pagination__link--disabled{border-color:#555;color:#555;cursor:default}.eds-c-pagination__link--active{background-color:#01324b;background-image:none;border-radius:8px;color:#fff}.eds-c-pagination__link--active:focus,.eds-c-pagination__link--active:hover,.eds-c-pagination__link--active:visited{color:#fff}.eds-c-pagination__link-container{align-items:center;display:flex}.eds-c-pagination__icon{fill:#222;height:1.5rem;width:1.5rem}.eds-c-pagination__icon--disabled{fill:#555}.eds-c-pagination__visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.c-breadcrumbs{color:#333;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs>li{display:inline}svg.c-breadcrumbs__chevron{fill:#333;height:10px;margin:0 .25rem;width:10px}.c-breadcrumbs--contrast,.c-breadcrumbs--contrast .c-breadcrumbs__link{color:#fff}.c-breadcrumbs--contrast svg.c-breadcrumbs__chevron{fill:#fff}@media only screen and (max-width:479px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-skip-link{background:#01324b;bottom:auto;color:#fff;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);width:100%;z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:active,.c-skip-link:hover,.c-skip-link:link,.c-skip-link:visited{color:#fff}.c-skip-link:focus{transform:translateY(0)}.l-with-sidebar{display:flex;flex-wrap:wrap}.l-with-sidebar>*{margin:0}.l-with-sidebar__sidebar{flex-basis:var(--with-sidebar--basis,400px);flex-grow:1}.l-with-sidebar>:not(.l-with-sidebar__sidebar){flex-basis:0px;flex-grow:999;min-width:var(--with-sidebar--min,53%)}.l-with-sidebar>:first-child{padding-right:4rem}@supports (gap:1em){.l-with-sidebar>:first-child{padding-right:0}.l-with-sidebar{gap:var(--with-sidebar--gap,4rem)}}.c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.app-masthead__colour-4{--background-color:#ff9500;--gradient-light:rgba(0,0,0,.5);--gradient-dark:rgba(0,0,0,.8)}.app-masthead{background:var(--background-color,#0070a8);position:relative}.app-masthead:after{background:radial-gradient(circle at top right,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)));bottom:0;content:"";left:0;position:absolute;right:0;top:0}@media only screen and (max-width:479px){.app-masthead:after{background:linear-gradient(225deg,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)))}}.app-masthead__container{color:var(--masthead-color,#fff);margin:0 auto;max-width:1280px;padding:0 16px;position:relative;z-index:1}.u-button{align-items:center;background-color:#01324b;background-image:none;border:4px solid transparent;border-radius:32px;cursor:pointer;display:inline-flex;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700;justify-content:center;line-height:1.3;margin:0;padding:16px 32px;position:relative;transition:all .2s ease 0s;width:auto}.u-button svg,.u-button--contrast svg,.u-button--primary svg,.u-button--secondary svg,.u-button--tertiary svg{fill:currentcolor}.u-button,.u-button:visited{color:#fff}.u-button,.u-button:hover{box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button:hover{border:4px solid #fff}.u-button:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button:focus,.u-button:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--primary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover svg path,.u-button--primary:focus svg path,.u-button--primary:hover svg path,.u-button:focus svg path,.u-button:hover svg path{fill:#01324b}.u-button--primary{background-color:#01324b;background-image:none;border:4px solid transparent;box-shadow:0 0 0 1px #01324b;color:#fff;font-weight:700}.u-button--primary:visited{color:#fff}.u-button--primary:hover{border:4px solid #fff;box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button--primary:focus,.u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.u-button--secondary{background-color:#fff;border:4px solid #fff;color:#01324b;font-weight:700}.u-button--secondary:visited{color:#01324b}.u-button--secondary:hover{border:4px solid #01324b;box-shadow:none}.u-button--secondary:focus,.u-button--secondary:hover{background-color:#01324b;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--secondary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover svg path,.u-button--secondary:focus svg path,.u-button--secondary:hover svg path,.u-button--tertiary:focus svg path,.u-button--tertiary:hover svg path{fill:#fff}.u-button--tertiary{background-color:#ebf1f5;border:4px solid transparent;box-shadow:none;color:#666;font-weight:700}.u-button--tertiary:visited{color:#666}.u-button--tertiary:hover{border:4px solid #01324b;box-shadow:none}.u-button--tertiary:focus,.u-button--tertiary:hover{background-color:#01324b;color:#fff}.u-button--contrast{background-color:transparent;background-image:none;color:#fff;font-weight:400}.u-button--contrast:visited{color:#fff}.u-button--contrast,.u-button--contrast:focus,.u-button--contrast:hover{border:4px solid #fff}.u-button--contrast:focus,.u-button--contrast:hover{background-color:#fff;background-image:none;color:#000}.u-button--contrast:focus svg path,.u-button--contrast:hover svg path{fill:#000}.u-button--disabled,.u-button:disabled{background-color:transparent;background-image:none;border:4px solid #ccc;color:#000;cursor:default;font-weight:400;opacity:.7}.u-button--disabled svg,.u-button:disabled svg{fill:currentcolor}.u-button--disabled:visited,.u-button:disabled:visited{color:#000}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{border:4px solid #ccc;text-decoration:none}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{background-color:transparent;background-image:none;color:#000}.u-button--disabled:focus svg path,.u-button--disabled:hover svg path,.u-button:disabled:focus svg path,.u-button:disabled:hover svg path{fill:#000}.u-button--small,.u-button--xsmall{font-size:.875rem;padding:2px 8px}.u-button--small{padding:8px 16px}.u-button--large{font-size:1.125rem;padding:10px 35px}.u-button--full-width{display:flex;width:100%}.u-button--icon-left svg{margin-right:8px}.u-button--icon-right svg{margin-left:8px}.u-clear-both{clear:both}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-list-reset{list-style:none;margin:0;padding:0}.u-ma-16{margin:16px}.u-mt-0{margin-top:0}.u-mt-24{margin-top:24px}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-32{margin-bottom:32px}.u-button-reset{background-color:transparent;border:0;padding:0}.u-sans-serif{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.u-serif{font-family:Merriweather,serif}h1,h2,h4{-webkit-font-smoothing:antialiased}p{overflow-wrap:break-word;word-break:break-word}.u-h4{font-size:1.25rem;font-weight:700;line-height:1.2}.u-mbs-0{margin-block-start:0!important}.c-article-header{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}@media only screen and (min-width:876px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:767px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#025e8d;border-color:transparent;color:#fff}.c-article-body .c-article-access-provider{padding:8px 16px}.c-article-body .c-article-access-provider,.c-notes{border:1px solid #d5d5d5;border-image:initial;border-left:none;border-right:none;margin:24px 0}.c-article-body .c-article-access-provider__text{color:#555}.c-article-body .c-article-access-provider__text,.c-notes__text{font-size:1rem;margin-bottom:0;padding-bottom:2px;padding-top:2px;text-align:center}.c-article-body .c-article-author-affiliation__address{color:inherit;font-weight:700;margin:0}.c-article-body .c-article-author-affiliation__authors-list{list-style:none;margin:0;padding:0}.c-article-body .c-article-author-affiliation__authors-item{display:inline;margin-left:0}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-code-block{border:1px solid #fff;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;margin-bottom:24px}.c-article-share-box__description{font-size:1rem;margin-bottom:8px}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__additional-info{color:#626262;font-size:.813rem}.c-article-share-box__button{background:#fff;box-sizing:content-box;text-align:center}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#025e8d;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__references-list--numeric{list-style:decimal inside}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{font-size:1rem}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;font-size:1.25rem;font-weight:700;line-height:1.2;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-article-section__figure-caption{display:block;margin-bottom:8px;word-break:break-word}.c-article-section__figure .video,p.app-article-masthead__access--above-download{margin:0 0 16px}.c-article-section__figure-description{font-size:1rem}.c-article-section__figure-description>*{margin-bottom:0}.c-cod{display:block;font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#025e8d;border:1px solid #025e8d;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#025e8d}.save-data .c-article-author-institutional-author__sub-division,.save-data .c-article-equation__number,.save-data .c-article-figure-description,.save-data .c-article-fullwidth-content,.save-data .c-article-main-column,.save-data .c-article-satellite-article-link,.save-data .c-article-satellite-subtitle,.save-data .c-article-table-container,.save-data .c-blockquote__body,.save-data .c-code-block__heading,.save-data .c-reading-companion__figure-title,.save-data .c-reading-companion__reference-citation,.save-data .c-site-messages--nature-briefing-email-variant .serif,.save-data .c-site-messages--nature-briefing-email-variant.serif,.save-data .serif,.save-data .u-serif,.save-data h1,.save-data h2,.save-data h3{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-pdf-download__link{display:flex;flex:1 1 0%;padding:13px 24px}.c-pdf-download__link:hover{text-decoration:none}@media only screen and (min-width:768px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{display:flex;flex-direction:row;gap:16px 16px;margin:0;max-width:100%;padding:16px 0 0}.c-article-body .c-article-recommendations-list__item,.c-book-body .c-article-recommendations-list__item{flex:1 1 0%}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{flex-direction:column}}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-body .c-article-history{margin-top:24px}.app-article-metrics-bar p{margin:0}.app-article-masthead{display:flex;flex-direction:column;gap:16px 16px;padding:16px 0 24px}.app-article-masthead__info{display:flex;flex-direction:column;flex-grow:1}.app-article-masthead__brand{border-top:1px solid hsla(0,0%,100%,.8);display:flex;flex-direction:column;flex-shrink:0;gap:8px 8px;min-height:96px;padding:16px 0 0}.app-article-masthead__brand img{border:1px solid #fff;border-radius:8px;box-shadow:0 4px 15px 0 hsla(0,0%,50%,.25);height:auto;left:0;position:absolute;width:72px}.app-article-masthead__journal-link{display:block;font-size:1.125rem;font-weight:700;margin:0 0 8px;max-width:400px;padding:0 0 0 88px;position:relative}.app-article-masthead__journal-title{-webkit-box-orient:vertical;-webkit-line-clamp:3;display:-webkit-box;overflow:hidden}.app-article-masthead__submission-link{align-items:center;display:flex;font-size:1rem;gap:4px 4px;margin:0 0 0 88px}.app-article-masthead__access{align-items:center;display:flex;flex-wrap:wrap;font-size:.875rem;font-weight:300;gap:4px 4px;margin:0}.app-article-masthead__buttons{display:flex;flex-flow:column wrap;gap:16px 16px}.app-article-masthead__access svg,.app-masthead--pastel .c-pdf-download .u-button--primary svg,.app-masthead--pastel .c-pdf-download .u-button--secondary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary svg{fill:currentcolor}.app-article-masthead a{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary{background-color:#025e8d;background-image:none;border:2px solid transparent;box-shadow:none;color:#fff;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--primary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:visited{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background:0 0;border:2px solid #025e8d;box-shadow:none;color:#025e8d}.app-masthead--pastel .c-pdf-download .u-button--secondary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary{background:0 0;border:2px solid #025e8d;color:#025e8d;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--secondary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:visited{color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--secondary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover{background-color:#01324b;background-color:#025e8d;border:2px solid transparent;box-shadow:none;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus{background-color:#fff;background-image:none;border:4px solid #fc0;color:#01324b}@media only screen and (min-width:768px){.app-article-masthead{flex-direction:row;gap:64px 64px;padding:24px 0}.app-article-masthead__brand{border:0;padding:0}.app-article-masthead__brand img{height:auto;position:static;width:auto}.app-article-masthead__buttons{align-items:center;flex-direction:row;margin-top:auto}.app-article-masthead__journal-link{display:flex;flex-direction:column;gap:24px 24px;margin:0 0 8px;padding:0}.app-article-masthead__submission-link{margin:0}}@media only screen and (min-width:1024px){.app-article-masthead__brand{flex-basis:400px}}.app-article-masthead .c-article-identifiers{font-size:.875rem;font-weight:300;line-height:1;margin:0 0 8px;overflow:hidden;padding:0}.app-article-masthead .c-article-identifiers--cite-list{margin:0 0 16px}.app-article-masthead .c-article-identifiers *{color:#fff}.app-article-masthead .c-cod{display:none}.app-article-masthead .c-article-identifiers__item{border-left:1px solid #fff;border-right:0;margin:0 17px 8px -9px;padding:0 0 0 8px}.app-article-masthead .c-article-identifiers__item--cite{border-left:0}.app-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;padding:16px 0 0;row-gap:24px}.app-article-metrics-bar__item{padding:0 16px 0 0}.app-article-metrics-bar__count{font-weight:700}.app-article-metrics-bar__label{font-weight:400;padding-left:4px}.app-article-metrics-bar__icon{height:auto;margin-right:4px;margin-top:-4px;width:auto}.app-article-metrics-bar__arrow-icon{margin:4px 0 0 4px}.app-article-metrics-bar a{color:#000}.app-article-metrics-bar .app-article-metrics-bar__item--metrics{padding-right:0}.app-overview-section .c-article-author-list,.app-overview-section__authors{line-height:2}.app-article-metrics-bar{margin-top:8px}.c-book-toc-pagination+.c-book-section__back-to-top{margin-top:0}.c-article-body .c-article-access-provider__text--chapter{color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;padding:20px 0}.c-article-body .c-article-access-provider__text--chapter svg.c-status-message__icon{fill:#003f8d;vertical-align:middle}.c-article-body-section__content--separator{padding-top:40px}.c-pdf-download__link{max-height:44px}.app-article-access .u-button--primary,.app-article-access .u-button--primary:visited{color:#fff}.c-article-sidebar{display:none}@media only screen and (min-width:1024px){.c-article-sidebar{display:block}}.c-cod__form{border-radius:12px}.c-cod__label{font-size:.875rem}.c-cod .c-status-message{align-items:center;justify-content:center;margin-bottom:16px;padding-bottom:16px}@media only screen and (min-width:1024px){.c-cod .c-status-message{align-items:inherit}}.c-cod .c-status-message__icon{margin-top:4px}.c-cod .c-cod__prompt{font-size:1rem;margin-bottom:16px}.c-article-body .app-article-access,.c-book-body .app-article-access{display:block}@media only screen and (min-width:1024px){.c-article-body .app-article-access,.c-book-body .app-article-access{display:none}}.c-article-body .app-card-service{margin-bottom:32px}@media only screen and (min-width:1024px){.c-article-body .app-card-service{display:none}}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary,.c-cod__row .u-button--primary{background-color:#025e8d;border:2px solid #025e8d;box-shadow:none;font-size:1rem;font-weight:700;gap:8px 8px;justify-content:center;line-height:1.5;padding:8px 24px}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary:hover,.c-cod__row .u-button--primary:hover{background-color:#fff;color:#025e8d}.app-article-access .buybox__buy .u-button--secondary:hover{background-color:#025e8d;color:#fff}.buybox__buy .c-notes__text{color:#666;font-size:.875rem;padding:0 16px 8px}.c-cod__input{flex-basis:auto;width:100%}.c-article-title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:2.25rem;font-weight:700;line-height:1.2;margin:12px 0}.c-reading-companion__figure-item figure{margin:0}@media only screen and (min-width:768px){.c-article-title{margin:16px 0}}.app-article-access{border:1px solid #c5e0f4;border-radius:12px}.app-article-access__heading{border-bottom:1px solid #c5e0f4;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1.125rem;font-weight:700;margin:0;padding:16px;text-align:center}.app-article-access .buybox__info svg{vertical-align:middle}.c-article-body .app-article-access p{margin-bottom:0}.app-article-access .buybox__info{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;margin:0}.app-article-access{margin:0 0 32px}@media only screen and (min-width:1024px){.app-article-access{margin:0 0 24px}}.c-status-message{font-size:1rem}.c-article-body{font-size:1.125rem}.c-article-body dl,.c-article-body ol,.c-article-body p,.c-article-body ul{margin-bottom:32px;margin-top:0}.c-article-access-provider__text:last-of-type,.c-article-body .c-notes__text:last-of-type{margin-bottom:0}.c-article-body ol p,.c-article-body ul p{margin-bottom:16px}.c-article-section__figure-caption{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-reading-companion__figure-item{border-top-color:#c5e0f4}.c-reading-companion__sticky{max-width:400px}.c-article-section .c-article-section__figure-description>*{font-size:1rem;margin-bottom:16px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;padding:16px 0}.c-reading-companion__reference-item:first-child{padding-top:0}.c-article-share-box__button,.js .c-article-authors-search__item .c-article-button{background:0 0;border:2px solid #025e8d;border-radius:32px;box-shadow:none;color:#025e8d;font-size:1rem;font-weight:700;line-height:1.5;margin:0;padding:8px 24px;transition:all .2s ease 0s}.c-article-authors-search__item .c-article-button{width:100%}.c-pdf-download .u-button{background-color:#fff;border:2px solid #fff;color:#01324b;justify-content:center}.c-context-bar__container .c-pdf-download .u-button svg,.c-pdf-download .u-button svg{fill:currentcolor}.c-pdf-download .u-button:visited{color:#01324b}.c-pdf-download .u-button:hover{border:4px solid #01324b;box-shadow:none}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background-color:#01324b}.c-pdf-download .u-button:focus svg path,.c-pdf-download .u-button:hover svg path{fill:#fff}.c-context-bar__container .c-pdf-download .u-button{background-image:none;border:2px solid;color:#fff}.c-context-bar__container .c-pdf-download .u-button:visited{color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus{box-shadow:none;outline:0;text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus,.c-context-bar__container .c-pdf-download .u-button:hover{background-color:#fff;background-image:none;color:#01324b}.c-context-bar__container .c-pdf-download .u-button:focus svg path,.c-context-bar__container .c-pdf-download .u-button:hover svg path{fill:#01324b}.c-context-bar__container .c-pdf-download .u-button,.c-pdf-download .u-button{box-shadow:none;font-size:1rem;font-weight:700;line-height:1.5;padding:8px 24px}.c-context-bar__container .c-pdf-download .u-button{background-color:#025e8d}.c-pdf-download .u-button:hover{border:2px solid #fff}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background:0 0;box-shadow:none;color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{border:2px solid #025e8d;box-shadow:none;color:#025e8d}.c-context-bar__container .c-pdf-download .u-button:focus,.c-pdf-download .u-button:focus{border:2px solid #025e8d}.c-article-share-box__button:focus:focus,.c-article__pill-button:focus:focus,.c-context-bar__container .c-pdf-download .u-button:focus:focus,.c-pdf-download .u-button:focus:focus{outline:3px solid #08c;will-change:transform}.c-pdf-download__link .u-icon{padding-top:0}.c-bibliographic-information__column button{margin-bottom:16px}.c-article-body .c-article-author-affiliation__list p,.c-article-body .c-article-author-information__list p,figure{margin:0}.c-article-share-box__button{margin-right:16px}.c-status-message--boxed{border-radius:12px}.c-article-associated-content__collection-title{font-size:1rem}.app-card-service__description,.c-article-body .app-card-service__description{color:#222;margin-bottom:0;margin-top:8px}.app-article-access__subscriptions a,.app-article-access__subscriptions a:visited,.app-book-series-listing__item a,.app-book-series-listing__item a:hover,.app-book-series-listing__item a:visited,.c-article-author-list a,.c-article-author-list a:visited,.c-article-buy-box a,.c-article-buy-box a:visited,.c-article-peer-review a,.c-article-peer-review a:visited,.c-article-satellite-subtitle a,.c-article-satellite-subtitle a:visited,.c-breadcrumbs__link,.c-breadcrumbs__link:hover,.c-breadcrumbs__link:visited{color:#000}.c-article-author-list svg{height:24px;margin:0 0 0 6px;width:24px}.c-article-header{margin-bottom:32px}@media only screen and (min-width:876px){.js .c-ad--conditional{display:block}}.u-lazy-ad-wrapper{background-color:#fff;display:none;min-height:149px}@media only screen and (min-width:876px){.u-lazy-ad-wrapper{display:block}}p.c-ad__label{margin-bottom:4px}.c-ad--728x90{background-color:#fff;border-bottom:2px solid #cedbe0} } </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .eds-c-header__brand img{height:24px;width:203px}.app-article-masthead__journal-link img{height:93px;width:72px}@media only screen and (min-width:769px){.app-article-masthead__journal-link img{height:161px;width:122px}} } </style> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href=/oscar-static/app-springerlink/css/core-darwin-3c86549cfc.css media="print" onload="this.media='all';this.onload=null"> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href="/oscar-static/app-springerlink/css/enhanced-darwin-article-72ba046d97.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <script type="text/javascript"> config = { env: 'live', site: '10052.springer.com', siteWithPath: '10052.springer.com' + window.location.pathname, twitterHashtag: '10052', cmsPrefix: 'https://studio-cms.springernature.com/studio/', figshareScriptUrl: 'https://widgets.figshare.com/static/figshare.js', hasFigshareInvoked: false, publisherBrand: 'Springer', mustardcut: false }; </script> <script> window.dataLayer = [{"GA Key":"UA-26408784-1","DOI":"10.1140/epjc/s10052-023-11574-z","Page":"article","springerJournal":true,"Publishing Model":"Open Access","page":{"attributes":{"environment":"live"}},"Country":"HK","japan":false,"doi":"10.1140-epjc-s10052-023-11574-z","Journal Id":10052,"Journal Title":"The European Physical Journal C","imprint":"Springer","Keywords":"","kwrd":[],"Labs":"Y","ksg":"Krux.segments","kuid":"Krux.uid","Has Body":"Y","Features":[],"Open Access":"Y","hasAccess":"Y","bypassPaywall":"N","user":{"license":{"businessPartnerID":[],"businessPartnerIDString":""}},"Access Type":"open","Bpids":"","Bpnames":"","BPID":["1"],"VG Wort Identifier":"vgzm.415900-10.1140-epjc-s10052-023-11574-z","Full HTML":"Y","Subject Codes":["SCP","SCP23029","SCP23010","SCP19048","SCP31040","SCP22006","SC113000"],"pmc":["P","P23029","P23010","P19048","P31040","P22006","113000"],"session":{"authentication":{"loginStatus":"N"},"attributes":{"edition":"academic"}},"content":{"serial":{"eissn":"1434-6052"},"type":"Article","category":{"pmc":{"primarySubject":"Physics","primarySubjectCode":"P","secondarySubjects":{"1":"Elementary Particles, Quantum Field Theory","2":"Nuclear Physics, Heavy Ions, Hadrons","3":"Quantum Field Theories, String Theory","4":"Measurement Science and Instrumentation","5":"Astronomy, Astrophysics and Cosmology","6":"Nuclear Energy"},"secondarySubjectCodes":{"1":"P23029","2":"P23010","3":"P19048","4":"P31040","5":"P22006","6":"113000"}},"sucode":"SC12","articleType":"Regular Article - Theoretical Physics "},"attributes":{"deliveryPlatform":"oscar"}},"Event Category":"Article"}]; </script> <script data-test="springer-link-article-datalayer"> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ ga4MeasurementId: 'G-B3E4QL2TPR', ga360TrackingId: 'UA-26408784-1', twitterId: 'o47a7', baiduId: 'aef3043f025ccf2305af8a194652d70b', ga4ServerUrl: 'https://collect.springer.com', imprint: 'springerlink', page: { attributes:{ featureFlags: [{ name: 'darwin-orion', active: true }, { name: 'chapter-books-recs', active: true } ], darwinAvailable: true } } }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <script class="js-entry"> if (window.config.mustardcut) { (function(w, d) { window.Component = {}; window.suppressShareButton = true; window.onArticlePage = true; var currentScript = d.currentScript || d.head.querySelector('script.js-entry'); function catchNoModuleSupport() { var scriptEl = d.createElement('script'); return (!('noModule' in scriptEl) && 'onbeforeload' in scriptEl) } var headScripts = [ {'src': '/oscar-static/js/polyfill-es5-bundle-572d4fec60.js', 'async': false} ]; var bodyScripts = [ {'src': '/oscar-static/js/global-article-es5-bundle-dad1690b0d.js', 'async': false, 'module': false}, {'src': '/oscar-static/js/global-article-es6-bundle-e7d03c4cb3.js', 'async': false, 'module': true} ]; function createScript(script) { var scriptEl = d.createElement('script'); scriptEl.src = script.src; scriptEl.async = script.async; if (script.module === true) { scriptEl.type = "module"; if (catchNoModuleSupport()) { scriptEl.src = ''; } } else if (script.module === false) { scriptEl.setAttribute('nomodule', true) } if (script.charset) { scriptEl.setAttribute('charset', script.charset); } return scriptEl; } for (var i = 0; i < headScripts.length; ++i) { var scriptEl = createScript(headScripts[i]); currentScript.parentNode.insertBefore(scriptEl, currentScript.nextSibling); } d.addEventListener('DOMContentLoaded', function() { for (var i = 0; i < bodyScripts.length; ++i) { var scriptEl = createScript(bodyScripts[i]); d.body.appendChild(scriptEl); } }); // Webfont repeat view var config = w.config; if (config && config.publisherBrand && sessionStorage.fontsLoaded === 'true') { d.documentElement.className += ' webfonts-loaded'; } })(window, document); } </script> <script data-src="https://cdn.optimizely.com/js/27195530232.js" data-cc-script="C03"></script> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <script> (function (w, d, t) { function cc() { var h = w.location.hostname; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('springer.com') > -1 && h.indexOf('biomedcentral.com') === -1 && h.indexOf('springeropen.com') === -1) { if (h.indexOf('link-qa.springer.com') > -1 || h.indexOf('test-www.springer.com') > -1) { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('biomedcentral.com') > -1) { if (h.indexOf('biomedcentral.com.qa') > -1) { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springeropen.com') > -1) { if (h.indexOf('springeropen.com.qa') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springernature.com') > -1) { if (h.indexOf('beta-qa.springernature.com') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } } else { e.src = '/oscar-static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window, document, 'script'); </script> <link rel="canonical" href="https://link.springer.com/article/10.1140/epjc/s10052-023-11574-z"/> <script type="application/ld+json">{"mainEntity":{"headline":"Collider constraints on electroweakinos in the presence of a light gravitino","description":"Using the GAMBIT global fitting framework, we constrain the MSSM with an eV-scale gravitino as the lightest supersymmetric particle, and the six electroweakinos (neutralinos and charginos) as the only other light new states. We combine 15 ATLAS and 12 CMS searches at 13 TeV, along with a large collection of ATLAS and CMS measurements of Standard Model signatures. This model, which we refer to as the \n \n \n \n $${{\\tilde{G}}}$$\n \n -EWMSSM, exhibits quite varied collider phenomenology due to its many permitted electroweakino production processes and decay modes. Characteristic \n \n \n \n $${{\\tilde{G}}}$$\n \n -EWMSSM signal events have two or more Standard Model bosons and missing energy due to the escaping gravitinos. While much of the \n \n \n \n $${{\\tilde{G}}}$$\n \n -EWMSSM parameter space is excluded, we find several viable parameter regions that predict phenomenologically rich scenarios with multiple neutralinos and charginos within the kinematic reach of the LHC during Run 3, or the High Luminosity LHC. In particular, we identify scenarios with Higgsino-dominated electroweakinos as light as 140 GeV that are consistent with our combined set of collider searches and measurements. The full set of \n \n \n \n $${{\\tilde{G}}}$$\n \n -EWMSSM parameter samples and GAMBIT input files generated for this work is available via Zenodo.","datePublished":"2023-06-10T00:00:00Z","dateModified":"2023-06-10T00:00:00Z","pageStart":"1","pageEnd":"36","license":"http://creativecommons.org/licenses/by/4.0/","sameAs":"https://doi.org/10.1140/epjc/s10052-023-11574-z","keywords":["Elementary Particles","Quantum Field Theory","Nuclear Physics","Heavy Ions","Hadrons","Quantum Field Theories","String Theory","Measurement Science and Instrumentation","Astronomy","Astrophysics and Cosmology","Nuclear Energy"],"image":["https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig1_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig2_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig3_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig4_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig5_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig6_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig7_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig8_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig9_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig10_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig11_HTML.png"],"isPartOf":{"name":"The European Physical Journal C","issn":["1434-6052"],"volumeNumber":"83","@type":["Periodical","PublicationVolume"]},"publisher":{"name":"Springer Berlin Heidelberg","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Viktor Ananyev","affiliation":[{"name":"University of Oslo","address":{"name":"Department of Physics, University of Oslo, Oslo, Norway","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Csaba Balázs","affiliation":[{"name":"Monash University","address":{"name":"School of Physics and Astronomy, Monash University, Melbourne, Australia","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Ankit Beniwal","affiliation":[{"name":"Theoretical Particle Physics and Cosmology (TPPC), King’s College London","address":{"name":"Department of Physics, Theoretical Particle Physics and Cosmology (TPPC), King’s College London, London, UK","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Lasse Lorentz Braseth","affiliation":[{"name":"University of Oslo","address":{"name":"Department of Physics, University of Oslo, Oslo, Norway","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Andy Buckley","affiliation":[{"name":"University of Glasgow","address":{"name":"SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, UK","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Jonathan Butterworth","affiliation":[{"name":"University College London","address":{"name":"Department of Physics and Astronomy, University College London, London, UK","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Christopher Chang","affiliation":[{"name":"The University of Queensland","address":{"name":"School of Mathematics and Physics, The University of Queensland, Brisbane, Australia","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Matthias Danninger","affiliation":[{"name":"Simon Fraser University","address":{"name":"Department of Physics, Simon Fraser University, Burnaby, Canada","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Andrew Fowlie","affiliation":[{"name":"Xi’an Jiaotong-Liverpool University","address":{"name":"Department of Physics, School of Mathematics and Physics, Xi’an Jiaotong-Liverpool University, Suzhou, People’s Republic of China","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Tomás E. Gonzalo","affiliation":[{"name":"Karlsruhe Institute of Technology (KIT)","address":{"name":"Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Anders Kvellestad","url":"http://orcid.org/0000-0002-5267-7705","affiliation":[{"name":"University of Oslo","address":{"name":"Department of Physics, University of Oslo, Oslo, Norway","@type":"PostalAddress"},"@type":"Organization"}],"email":"anders.kvellestad@fys.uio.no","@type":"Person"},{"name":"Farvah Mahmoudi","affiliation":[{"name":"Univ Lyon, Univ Lyon 1, CNRS/IN2P3","address":{"name":"Institut de Physique des 2 Infinis de Lyon, Univ Lyon, Univ Lyon 1, CNRS/IN2P3, Villeurbanne, France","@type":"PostalAddress"},"@type":"Organization"},{"name":"CERN","address":{"name":"Theoretical Physics Department, CERN, Geneva 23, Switzerland","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Gregory D. Martinez","affiliation":[{"name":"University of California","address":{"name":"Physics and Astronomy Department, University of California, Los Angeles, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Markus T. Prim","affiliation":[{"name":"Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn","address":{"name":"Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn, Bonn, Germany","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Tomasz Procter","affiliation":[{"name":"University of Glasgow","address":{"name":"SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, UK","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Are Raklev","affiliation":[{"name":"University of Oslo","address":{"name":"Department of Physics, University of Oslo, Oslo, Norway","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Pat Scott","affiliation":[{"name":"The Australian National University","address":{"name":"Quantum Brilliance Pty Ltd, The Australian National University, Acton, Australia","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Patrick Stöcker","affiliation":[{"name":"RWTH Aachen University","address":{"name":"Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, Aachen, Germany","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Jeriek Van den Abeele","affiliation":[{"name":"University of Oslo","address":{"name":"Department of Physics, University of Oslo, Oslo, Norway","@type":"PostalAddress"},"@type":"Organization"},{"name":"Telenor Research","address":{"name":"Telenor Research, Fornebu, Norway","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Martin White","affiliation":[{"name":"University of Adelaide","address":{"name":"Department of Physics, ARC Centre of Excellence for Dark Matter Particle Physics & CSSM, University of Adelaide, Adelaide, Australia","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Yang Zhang","affiliation":[{"name":"Zhengzhou University","address":{"name":"School of Physics, Zhengzhou University, Zhengzhou, China","@type":"PostalAddress"},"@type":"Organization"},{"name":"Chinese Academy of Sciences","address":{"name":"CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"}],"isAccessibleForFree":true,"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> </head> <body class="" > <!-- Google Tag Manager (noscript) --> <noscript> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <!-- Google Tag Manager (noscript) --> <noscript data-test="gtm-body"> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="u-visually-hidden" aria-hidden="true" data-test="darwin-icons"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><symbol id="icon-eds-i-accesses-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H15a1 1 0 0 1 0-2h4.455a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM8 13c2.052 0 4.66 1.61 6.36 3.4l.124.141c.333.41.516.925.516 1.459 0 .6-.232 1.178-.64 1.599C12.666 21.388 10.054 23 8 23c-2.052 0-4.66-1.61-6.353-3.393A2.31 2.31 0 0 1 1 18c0-.6.232-1.178.64-1.6C3.34 14.61 5.948 13 8 13Zm0 2c-1.369 0-3.552 1.348-4.917 2.785A.31.31 0 0 0 3 18c0 .083.031.161.09.222C4.447 19.652 6.631 21 8 21c1.37 0 3.556-1.35 4.917-2.785A.31.31 0 0 0 13 18a.32.32 0 0 0-.048-.17l-.042-.052C11.553 16.348 9.369 15 8 15Zm0 1a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-altmetric-medium" viewBox="0 0 24 24"><path d="M12 1c5.978 0 10.843 4.77 10.996 10.712l.004.306-.002.022-.002.248C22.843 18.23 17.978 23 12 23 5.925 23 1 18.075 1 12S5.925 1 12 1Zm-1.726 9.246L8.848 12.53a1 1 0 0 1-.718.461L8.003 13l-4.947.014a9.001 9.001 0 0 0 17.887-.001L16.553 13l-2.205 3.53a1 1 0 0 1-1.735-.068l-.05-.11-2.289-6.106ZM12 3a9.001 9.001 0 0 0-8.947 8.013l4.391-.012L9.652 7.47a1 1 0 0 1 1.784.179l2.288 6.104 1.428-2.283a1 1 0 0 1 .722-.462l.129-.008 4.943.012A9.001 9.001 0 0 0 12 3Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-medium" viewBox="0 0 24 24"><path d="m11.852 20.989.058.007L12 21l.075-.003.126-.017.111-.03.111-.044.098-.052.104-.074.082-.073 6-6a1 1 0 0 0-1.414-1.414L13 17.585v-12.2C13 4.075 11.964 3 10.667 3H4a1 1 0 1 0 0 2h6.667c.175 0 .333.164.333.385v12.2l-4.293-4.292a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l6 6c.035.036.073.068.112.097l.11.071.114.054.105.035.118.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-small" viewBox="0 0 16 16"><path d="M1 2a1 1 0 0 0 1 1h5v8.585L3.707 8.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l5 5 .063.059.093.069.081.048.105.048.104.035.105.022.096.01h.136l.122-.018.113-.03.103-.04.1-.053.102-.07.052-.043 5.04-5.037a1 1 0 1 0-1.415-1.414L9 11.583V3a2 2 0 0 0-2-2H2a1 1 0 0 0-1 1Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-medium" viewBox="0 0 24 24"><path d="m11.852 3.011.058-.007L12 3l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 6 6a1 1 0 1 1-1.414 1.414L13 6.415v12.2C13 19.925 11.964 21 10.667 21H4a1 1 0 0 1 0-2h6.667c.175 0 .333-.164.333-.385v-12.2l-4.293 4.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l6-6c.035-.036.073-.068.112-.097l.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-small" viewBox="0 0 16 16"><path d="M1 13.998a1 1 0 0 1 1-1h5V4.413L3.707 7.705a1 1 0 0 1-1.32.084l-.094-.084a1 1 0 0 1 0-1.414l5-5 .063-.059.093-.068.081-.05.105-.047.104-.035.105-.022L7.94 1l.136.001.122.017.113.03.103.04.1.053.102.07.052.043 5.04 5.037a1 1 0 1 1-1.415 1.414L9 4.415v8.583a2 2 0 0 1-2 2H2a1 1 0 0 1-1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-medium" viewBox="0 0 24 24"><path d="M14 3h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L21 4v6a1 1 0 0 1-2 0V6.414l-4.293 4.293a1 1 0 0 1-1.414-1.414L17.584 5H14a1 1 0 0 1-.993-.883L13 4a1 1 0 0 1 1-1ZM4 13a1 1 0 0 1 1 1v3.584l4.293-4.291a1 1 0 1 1 1.414 1.414L6.414 19H10a1 1 0 0 1 .993.883L11 20a1 1 0 0 1-1 1l-6.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.01 1.01 0 0 1-.097-.112l-.071-.11-.054-.114-.035-.105-.025-.118-.007-.058L3 20v-6a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-small" viewBox="0 0 16 16"><path d="m2 15-.082-.004-.119-.016-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.008 1.008 0 0 1-.097-.112l-.071-.11-.031-.062-.034-.081-.024-.076-.025-.118-.007-.058L1 14.02V9a1 1 0 1 1 2 0v2.584l2.793-2.791a1 1 0 1 1 1.414 1.414L4.414 13H7a1 1 0 0 1 .993.883L8 14a1 1 0 0 1-1 1H2ZM14 1l.081.003.12.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.031.062.034.081.024.076.03.148L15 2v5a1 1 0 0 1-2 0V4.414l-2.96 2.96A1 1 0 1 1 8.626 5.96L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1h5Z"/></symbol><symbol id="icon-eds-i-arrow-down-medium" viewBox="0 0 24 24"><path d="m20.707 12.728-7.99 7.98a.996.996 0 0 1-.561.281l-.157.011a.998.998 0 0 1-.788-.384l-7.918-7.908a1 1 0 0 1 1.414-1.416L11 17.576V4a1 1 0 0 1 2 0v13.598l6.293-6.285a1 1 0 0 1 1.32-.082l.095.083a1 1 0 0 1-.001 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-down-small" viewBox="0 0 16 16"><path d="m1.293 8.707 6 6 .063.059.093.069.081.048.105.049.104.034.056.013.118.017L8 15l.076-.003.122-.017.113-.03.085-.032.063-.03.098-.058.06-.043.05-.043 6.04-6.037a1 1 0 0 0-1.414-1.414L9 11.583V2a1 1 0 1 0-2 0v9.585L2.707 7.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-left-medium" viewBox="0 0 24 24"><path d="m11.272 3.293-7.98 7.99a.996.996 0 0 0-.281.561L3 12.001c0 .32.15.605.384.788l7.908 7.918a1 1 0 0 0 1.416-1.414L6.424 13H20a1 1 0 0 0 0-2H6.402l6.285-6.293a1 1 0 0 0 .082-1.32l-.083-.095a1 1 0 0 0-1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-left-small" viewBox="0 0 16 16"><path d="m7.293 1.293-6 6-.059.063-.069.093-.048.081-.049.105-.034.104-.013.056-.017.118L1 8l.003.076.017.122.03.113.032.085.03.063.058.098.043.06.043.05 6.037 6.04a1 1 0 0 0 1.414-1.414L4.417 9H14a1 1 0 0 0 0-2H4.415l4.292-4.293a1 1 0 0 0 .083-1.32l-.083-.094a1 1 0 0 0-1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-right-small" viewBox="0 0 16 16"><path d="m8.707 1.293 6 6 .059.063.069.093.048.081.049.105.034.104.013.056.017.118L15 8l-.003.076-.017.122-.03.113-.032.085-.03.063-.058.098-.043.06-.043.05-6.037 6.04a1 1 0 0 1-1.414-1.414L11.583 9H2a1 1 0 1 1 0-2h9.585L7.293 2.707a1 1 0 0 1-.083-1.32l.083-.094a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-up-medium" viewBox="0 0 24 24"><path d="m3.293 11.272 7.99-7.98a.996.996 0 0 1 .561-.281L12.001 3c.32 0 .605.15.788.384l7.918 7.908a1 1 0 0 1-1.414 1.416L13 6.424V20a1 1 0 0 1-2 0V6.402l-6.293 6.285a1 1 0 0 1-1.32.082l-.095-.083a1 1 0 0 1 .001-1.414Z"/></symbol><symbol id="icon-eds-i-arrow-up-small" viewBox="0 0 16 16"><path d="m1.293 7.293 6-6 .063-.059.093-.069.081-.048.105-.049.104-.034.056-.013.118-.017L8 1l.076.003.122.017.113.03.085.032.063.03.098.058.06.043.05.043 6.04 6.037a1 1 0 0 1-1.414 1.414L9 4.417V14a1 1 0 0 1-2 0V4.415L2.707 8.707a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414Z"/></symbol><symbol id="icon-eds-i-article-medium" viewBox="0 0 24 24"><path d="M8 7a1 1 0 0 0 0 2h4a1 1 0 1 0 0-2H8ZM8 11a1 1 0 1 0 0 2h8a1 1 0 1 0 0-2H8ZM7 16a1 1 0 0 1 1-1h8a1 1 0 1 1 0 2H8a1 1 0 0 1-1-1Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V3.5A2.5 2.5 0 0 0 18.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3H18.5a.5.5 0 0 1 .5.5v16.962c0 .293-.24.538-.546.538H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-book-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v12c0 1.16-.79 2.135-1.86 2.418l-.14.031V21h1a1 1 0 0 1 .993.883L21 22a1 1 0 0 1-1 1H6.5A3.5 3.5 0 0 1 3 19.5v-15A3.5 3.5 0 0 1 6.5 1h12ZM17 18H6.5a1.5 1.5 0 0 0-1.493 1.356L5 19.5A1.5 1.5 0 0 0 6.5 21H17v-3Zm1.5-15h-12A1.5 1.5 0 0 0 5 4.5v11.837l.054-.025a3.481 3.481 0 0 1 1.254-.307L6.5 16h12a.5.5 0 0 0 .492-.41L19 15.5v-12a.5.5 0 0 0-.5-.5ZM15 6a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-book-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M1 3.786C1 2.759 1.857 2 2.82 2H6.18c.964 0 1.82.759 1.82 1.786V4h3.168c.668 0 1.298.364 1.616.938.158-.109.333-.195.523-.252l3.216-.965c.923-.277 1.962.204 2.257 1.187l4.146 13.82c.296.984-.307 1.957-1.23 2.234l-3.217.965c-.923.277-1.962-.203-2.257-1.187L13 10.005v10.21c0 1.04-.878 1.785-1.834 1.785H7.833c-.291 0-.575-.07-.83-.195A1.849 1.849 0 0 1 6.18 22H2.821C1.857 22 1 21.241 1 20.214V3.786ZM3 4v11h3V4H3Zm0 16v-3h3v3H3Zm15.075-.04-.814-2.712 2.874-.862.813 2.712-2.873.862Zm1.485-5.49-2.874.862-2.634-8.782 2.873-.862 2.635 8.782ZM8 20V6h3v14H8Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-calendar-acceptance-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-.534 7.747a1 1 0 0 1 .094 1.412l-4.846 5.538a1 1 0 0 1-1.352.141l-2.77-2.076a1 1 0 0 1 1.2-1.6l2.027 1.519 4.236-4.84a1 1 0 0 1 1.411-.094ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-date-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1ZM8 15a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm-4-4a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-decision-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-2.935 8.246 2.686 2.645c.34.335.34.883 0 1.218l-2.686 2.645a.858.858 0 0 1-1.213-.009.854.854 0 0 1 .009-1.21l1.05-1.035H7.984a.992.992 0 0 1-.984-1c0-.552.44-1 .984-1h5.928l-1.051-1.036a.854.854 0 0 1-.085-1.121l.076-.088a.858.858 0 0 1 1.213-.009ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-impact-factor-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-3.2 6.924a.48.48 0 0 1 .125.544l-1.52 3.283h2.304c.27 0 .491.215.491.483a.477.477 0 0 1-.13.327l-4.18 4.484a.498.498 0 0 1-.69.031.48.48 0 0 1-.125-.544l1.52-3.284H9.291a.487.487 0 0 1-.491-.482c0-.121.047-.238.13-.327l4.18-4.484a.498.498 0 0 1 .69-.031ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-call-papers-medium" viewBox="0 0 24 24"><g><path d="m20.707 2.883-1.414 1.414a1 1 0 0 0 1.414 1.414l1.414-1.414a1 1 0 0 0-1.414-1.414Z"/><path d="M6 16.054c0 2.026 1.052 2.943 3 2.943a1 1 0 1 1 0 2c-2.996 0-5-1.746-5-4.943v-1.227a4.068 4.068 0 0 1-1.83-1.189 4.553 4.553 0 0 1-.87-1.455 4.868 4.868 0 0 1-.3-1.686c0-1.17.417-2.298 1.17-3.14.38-.426.834-.767 1.338-1 .51-.237 1.06-.36 1.617-.36L6.632 6H7l7.932-2.895A2.363 2.363 0 0 1 18 5.36v9.28a2.36 2.36 0 0 1-3.069 2.25l.084.03L7 14.997H6v1.057Zm9.637-11.057a.415.415 0 0 0-.083.008L8 7.638v5.536l7.424 1.786.104.02c.035.01.072.02.109.02.2 0 .363-.16.363-.36V5.36c0-.2-.163-.363-.363-.363Zm-9.638 3h-.874a1.82 1.82 0 0 0-.625.111l-.15.063a2.128 2.128 0 0 0-.689.517c-.42.47-.661 1.123-.661 1.81 0 .34.06.678.176.992.114.308.28.585.485.816.4.447.925.691 1.464.691h.874v-5Z" clip-rule="evenodd"/><path d="M20 8.997h2a1 1 0 1 1 0 2h-2a1 1 0 1 1 0-2ZM20.707 14.293l1.414 1.414a1 1 0 0 1-1.414 1.414l-1.414-1.414a1 1 0 0 1 1.414-1.414Z"/></g></symbol><symbol id="icon-eds-i-card-medium" viewBox="0 0 24 24"><path d="M19.615 2c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23Zm0 2H4.385c-.213 0-.265.034-.317.14A.71.71 0 0 0 4 4.385v15.23c0 .213.034.265.14.317a.71.71 0 0 0 .245.068h15.23c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM17 16a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm0-3a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm-.5-7A1.5 1.5 0 0 1 18 7.5v3a1.5 1.5 0 0 1-1.5 1.5h-9A1.5 1.5 0 0 1 6 10.5v-3A1.5 1.5 0 0 1 7.5 6h9ZM16 8H8v2h8V8Z"/></symbol><symbol id="icon-eds-i-cart-medium" viewBox="0 0 24 24"><path d="M5.76 1a1 1 0 0 1 .994.902L7.155 6h13.34c.18 0 .358.02.532.057l.174.045a2.5 2.5 0 0 1 1.693 3.103l-2.069 7.03c-.36 1.099-1.398 1.823-2.49 1.763H8.65c-1.272.015-2.352-.927-2.546-2.244L4.852 3H2a1 1 0 0 1-.993-.883L1 2a1 1 0 0 1 1-1h3.76Zm2.328 14.51a.555.555 0 0 0 .55.488l9.751.001a.533.533 0 0 0 .527-.357l2.059-7a.5.5 0 0 0-.48-.642H7.351l.737 7.51ZM18 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4ZM8 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-check-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm5.125 4.72a1 1 0 0 1 .156 1.405l-6 7.5a1 1 0 0 1-1.421.143l-3-2.5a1 1 0 0 1 1.28-1.536l2.217 1.846 5.362-6.703a1 1 0 0 1 1.406-.156Z"/></symbol><symbol id="icon-eds-i-check-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm5.125 6.72a1 1 0 0 0-1.406.155l-5.362 6.703-2.217-1.846a1 1 0 1 0-1.28 1.536l3 2.5a1 1 0 0 0 1.42-.143l6-7.5a1 1 0 0 0-.155-1.406Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 24 24"><path d="M3.305 8.28a1 1 0 0 0-.024 1.415l7.495 7.762c.314.345.757.543 1.224.543.467 0 .91-.198 1.204-.522l7.515-7.783a1 1 0 1 0-1.438-1.39L12 15.845l-7.28-7.54A1 1 0 0 0 3.4 8.2l-.096.082Z"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.72 3.305a1 1 0 0 0-1.415-.024l-7.762 7.495A1.655 1.655 0 0 0 6 12c0 .467.198.91.522 1.204l7.783 7.515a1 1 0 1 0 1.39-1.438L8.155 12l7.54-7.28A1 1 0 0 0 15.8 3.4l-.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-left-small" viewBox="0 0 16 16"><path d="M10.722 2.308a1 1 0 0 0-1.414-.03L4.49 6.897a1.491 1.491 0 0 0-.019 2.188l4.838 4.637a1 1 0 1 0 1.384-1.444L6.229 8l4.463-4.278a1 1 0 0 0 .111-1.318l-.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28 3.305a1 1 0 0 1 1.415-.024l7.762 7.495c.345.314.543.757.543 1.224 0 .467-.198.91-.522 1.204l-7.783 7.515a1 1 0 1 1-1.39-1.438L15.845 12l-7.54-7.28A1 1 0 0 1 8.2 3.4l.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 16 16"><path d="M5.278 2.308a1 1 0 0 1 1.414-.03l4.819 4.619a1.491 1.491 0 0 1 .019 2.188l-4.838 4.637a1 1 0 1 1-1.384-1.444L9.771 8 5.308 3.722a1 1 0 0 1-.111-1.318l.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 24 24"><path d="M20.695 15.72a1 1 0 0 0 .024-1.415l-7.495-7.762A1.655 1.655 0 0 0 12 6c-.467 0-.91.198-1.204.522l-7.515 7.783a1 1 0 1 0 1.438 1.39L12 8.155l7.28 7.54a1 1 0 0 0 1.319.106l.096-.082Z"/></symbol><symbol id="icon-eds-i-chevron-up-small" viewBox="0 0 16 16"><path d="M13.692 10.722a1 1 0 0 0 .03-1.414L9.103 4.49a1.491 1.491 0 0 0-2.188-.019L2.278 9.308a1 1 0 0 0 1.444 1.384L8 6.229l4.278 4.463a1 1 0 0 0 1.318.111l.096-.081Z"/></symbol><symbol id="icon-eds-i-citations-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742h-5.843a1 1 0 1 1 0-2h5.843a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM5.483 14.35c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Zm5 0c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Z"/></symbol><symbol id="icon-eds-i-clipboard-check-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-1.909 4.205a1 1 0 0 1 .19 1.401l-5.334 7a1 1 0 0 1-1.344.23l-2.667-1.75a1 1 0 1 1 1.098-1.672l1.887 1.238 4.769-6.258a1 1 0 0 1 1.401-.19ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-clipboard-report-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-2.658 10.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857Zm0-3.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM8.707 7.293 12 10.585l3.293-3.292a1 1 0 0 1 1.414 1.414L13.415 12l3.292 3.293a1 1 0 0 1-1.414 1.414L12 13.415l-3.293 3.292a1 1 0 1 1-1.414-1.414L10.585 12 7.293 8.707a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-cloud-upload-medium" viewBox="0 0 24 24"><path d="m12.852 10.011.028-.004L13 10l.075.003.126.017.086.022.136.052.098.052.104.074.082.073 3 3a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L14 13.416V20a1 1 0 0 1-2 0v-6.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l3-3 .112-.097.11-.071.114-.054.105-.035.118-.025Zm.587-7.962c3.065.362 5.497 2.662 5.992 5.562l.013.085.207.073c2.117.782 3.496 2.845 3.337 5.097l-.022.226c-.297 2.561-2.503 4.491-5.124 4.502a1 1 0 1 1-.009-2c1.619-.007 2.967-1.186 3.147-2.733.179-1.542-.86-2.979-2.487-3.353-.512-.149-.894-.579-.981-1.165-.21-2.237-2-4.035-4.308-4.308-2.31-.273-4.497 1.06-5.25 3.19l-.049.113c-.234.468-.718.756-1.176.743-1.418.057-2.689.857-3.32 2.084a3.668 3.668 0 0 0 .262 3.798c.796 1.136 2.169 1.764 3.583 1.635a1 1 0 1 1 .182 1.992c-2.125.194-4.193-.753-5.403-2.48a5.668 5.668 0 0 1-.403-5.86c.85-1.652 2.449-2.79 4.323-3.092l.287-.039.013-.028c1.207-2.741 4.125-4.404 7.186-4.042Z"/></symbol><symbol id="icon-eds-i-collection-medium" viewBox="0 0 24 24"><path d="M21 7a1 1 0 0 1 1 1v12.5a2.5 2.5 0 0 1-2.5 2.5H8a1 1 0 0 1 0-2h11.5a.5.5 0 0 0 .5-.5V8a1 1 0 0 1 1-1Zm-5.5-5A2.5 2.5 0 0 1 18 4.5v12a2.5 2.5 0 0 1-2.5 2.5h-11A2.5 2.5 0 0 1 2 16.5v-12A2.5 2.5 0 0 1 4.5 2h11Zm0 2h-11a.5.5 0 0 0-.5.5v12a.5.5 0 0 0 .5.5h11a.5.5 0 0 0 .5-.5v-12a.5.5 0 0 0-.5-.5ZM13 13a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6Zm0-3.5a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6ZM13 6a1 1 0 0 1 0 2H7a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-conference-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M4.5 2A2.5 2.5 0 0 0 2 4.5v11A2.5 2.5 0 0 0 4.5 18h2.37l-2.534 2.253a1 1 0 0 0 1.328 1.494L9.88 18H11v3a1 1 0 1 0 2 0v-3h1.12l4.216 3.747a1 1 0 0 0 1.328-1.494L17.13 18h2.37a2.5 2.5 0 0 0 2.5-2.5v-11A2.5 2.5 0 0 0 19.5 2h-15ZM20 6V4.5a.5.5 0 0 0-.5-.5h-15a.5.5 0 0 0-.5.5V6h16ZM4 8v7.5a.5.5 0 0 0 .5.5h15a.5.5 0 0 0 .5-.5V8H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-delivery-medium" viewBox="0 0 24 24"><path d="M8.51 20.598a3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 4.161 19L3.5 19A2.5 2.5 0 0 1 1 16.5v-11A2.5 2.5 0 0 1 3.5 3h10a2.5 2.5 0 0 1 2.45 2.004L16 5h2.527c.976 0 1.855.585 2.27 1.49l2.112 4.62a1 1 0 0 1 .091.416v4.856C23 17.814 21.889 19 20.484 19h-.523a1.01 1.01 0 0 1-.121-.007 2.96 2.96 0 0 1-1.33 1.605 3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 14.161 19H9.838a2.968 2.968 0 0 1-1.327 1.597Zm-2.024-3.462a.955.955 0 0 0-.481.73L5.999 18l.001.022a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0A.97.97 0 0 0 8 17.978a.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0Zm10 0a.955.955 0 0 0-.481.73l-.005.156a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0a.97.97 0 0 0 .486-.886.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0ZM21 12h-5v3.17a3.038 3.038 0 0 1 2.51.232 2.993 2.993 0 0 1 1.277 1.45l.058.155.058-.005.581-.002c.27 0 .516-.263.516-.618V12Zm-7.5-7h-10a.5.5 0 0 0-.5.5v11a.5.5 0 0 0 .5.5h.662a2.964 2.964 0 0 1 1.155-1.491l.172-.107a3.037 3.037 0 0 1 3.022 0A2.987 2.987 0 0 1 9.843 17H13.5a.5.5 0 0 0 .5-.5v-11a.5.5 0 0 0-.5-.5Zm5.027 2H16v3h4.203l-1.224-2.677a.532.532 0 0 0-.375-.316L18.527 7Z"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 24 24"><path d="M22 18.5a3.5 3.5 0 0 1-3.5 3.5h-13A3.5 3.5 0 0 1 2 18.5V18a1 1 0 0 1 2 0v.5A1.5 1.5 0 0 0 5.5 20h13a1.5 1.5 0 0 0 1.5-1.5V18a1 1 0 0 1 2 0v.5Zm-3.293-7.793-6 6-.063.059-.093.069-.081.048-.105.049-.104.034-.056.013-.118.017L12 17l-.076-.003-.122-.017-.113-.03-.085-.032-.063-.03-.098-.058-.06-.043-.05-.043-6.04-6.037a1 1 0 0 1 1.414-1.414l4.294 4.29L11 3a1 1 0 0 1 2 0l.001 10.585 4.292-4.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414Z"/></symbol><symbol id="icon-eds-i-edit-medium" viewBox="0 0 24 24"><path d="M17.149 2a2.38 2.38 0 0 1 1.699.711l2.446 2.46a2.384 2.384 0 0 1 .005 3.38L10.01 19.906a1 1 0 0 1-.434.257l-6.3 1.8a1 1 0 0 1-1.237-1.237l1.8-6.3a1 1 0 0 1 .257-.434L15.443 2.718A2.385 2.385 0 0 1 17.15 2Zm-3.874 5.689-7.586 7.536-1.234 4.319 4.318-1.234 7.54-7.582-3.038-3.039ZM17.149 4a.395.395 0 0 0-.286.126L14.695 6.28l3.029 3.029 2.162-2.173a.384.384 0 0 0 .106-.197L20 6.864c0-.103-.04-.2-.119-.278l-2.457-2.47A.385.385 0 0 0 17.149 4Z"/></symbol><symbol id="icon-eds-i-education-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M12.41 2.088a1 1 0 0 0-.82 0l-10 4.5a1 1 0 0 0 0 1.824L3 9.047v7.124A3.001 3.001 0 0 0 4 22a3 3 0 0 0 1-5.83V9.948l1 .45V14.5a1 1 0 0 0 .087.408L7 14.5c-.913.408-.912.41-.912.41l.001.003.003.006.007.015a1.988 1.988 0 0 0 .083.16c.054.097.131.225.236.373.21.297.53.68.993 1.057C8.351 17.292 9.824 18 12 18c2.176 0 3.65-.707 4.589-1.476.463-.378.783-.76.993-1.057a4.162 4.162 0 0 0 .319-.533l.007-.015.003-.006v-.003h.002s0-.002-.913-.41l.913.408A1 1 0 0 0 18 14.5v-4.103l4.41-1.985a1 1 0 0 0 0-1.824l-10-4.5ZM16 11.297l-3.59 1.615a1 1 0 0 1-.82 0L8 11.297v2.94a3.388 3.388 0 0 0 .677.739C9.267 15.457 10.294 16 12 16s2.734-.543 3.323-1.024a3.388 3.388 0 0 0 .677-.739v-2.94ZM4.437 7.5 12 4.097 19.563 7.5 12 10.903 4.437 7.5ZM3 19a1 1 0 1 1 2 0 1 1 0 0 1-2 0Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-error-diamond-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008Zm0 2a.646.646 0 0 0-.38.123l-.093.08-8.34 8.34a.646.646 0 0 0-.18.355L3 12c0 .171.068.336.19.457l8.353 8.354a.646.646 0 0 0 .914 0l8.354-8.354a.646.646 0 0 0-.001-.914l-8.351-8.354A.646.646 0 0 0 12.002 3ZM12 14.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-error-filled-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008ZM12 14.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-eds-i-external-link-medium" viewBox="0 0 24 24"><path d="M9 2a1 1 0 1 1 0 2H4.6c-.371 0-.6.209-.6.5v15c0 .291.229.5.6.5h14.8c.371 0 .6-.209.6-.5V15a1 1 0 0 1 2 0v4.5c0 1.438-1.162 2.5-2.6 2.5H4.6C3.162 22 2 20.938 2 19.5v-15C2 3.062 3.162 2 4.6 2H9Zm6 0h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L22 3v6a1 1 0 0 1-2 0V5.414l-6.693 6.693a1 1 0 0 1-1.414-1.414L18.584 4H15a1 1 0 0 1-.993-.883L14 3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-external-link-small" viewBox="0 0 16 16"><path d="M5 1a1 1 0 1 1 0 2l-2-.001V13L13 13v-2a1 1 0 0 1 2 0v2c0 1.15-.93 2-2.067 2H3.067C1.93 15 1 14.15 1 13V3c0-1.15.93-2 2.067-2H5Zm4 0h5l.075.003.126.017.111.03.111.044.098.052.096.067.09.08.044.047.073.093.051.083.054.113.035.105.03.148L15 2v5a1 1 0 0 1-2 0V4.414L9.107 8.307a1 1 0 0 1-1.414-1.414L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-download-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM12 7a1 1 0 0 1 1 1v6.585l2.293-2.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-4 4a1.008 1.008 0 0 1-.112.097l-.11.071-.114.054-.105.035-.149.03L12 18l-.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08-4-4a1 1 0 0 1 1.414-1.414L11 14.585V8a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-report-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H5.545c-.674 0-1.32-.267-1.798-.742A2.535 2.535 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .142.057.278.158.379.102.102.242.159.387.159h12.91a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.915L14.085 3ZM16 17a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-3a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-4.793-6.207L13 9.585l1.793-1.792a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-2.5 2.5a1 1 0 0 1-1.414 0L10.5 9.915l-1.793 1.792a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l2.5-2.5a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-file-text-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM16 15a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-4a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-5-4a1 1 0 0 1 0 2H8a1 1 0 1 1 0-2h3Z"/></symbol><symbol id="icon-eds-i-file-upload-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3Zm-2.233 4.011.058-.007L12 7l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 4 4a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L13 10.415V17a1 1 0 0 1-2 0v-6.585l-2.293 2.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l4-4 .112-.097.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-filter-medium" viewBox="0 0 24 24"><path d="M21 2a1 1 0 0 1 .82 1.573L15 13.314V18a1 1 0 0 1-.31.724l-.09.076-4 3A1 1 0 0 1 9 21v-7.684L2.18 3.573a1 1 0 0 1 .707-1.567L3 2h18Zm-1.921 2H4.92l5.9 8.427a1 1 0 0 1 .172.45L11 13v6l2-1.5V13a1 1 0 0 1 .117-.469l.064-.104L19.079 4Z"/></symbol><symbol id="icon-eds-i-funding-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M23 8A7 7 0 1 0 9 8a7 7 0 0 0 14 0ZM9.006 12.225A4.07 4.07 0 0 0 6.12 11.02H2a.979.979 0 1 0 0 1.958h4.12c.558 0 1.094.222 1.489.617l2.207 2.288c.27.27.27.687.012.944a.656.656 0 0 1-.928 0L7.744 15.67a.98.98 0 0 0-1.386 1.384l1.157 1.158c.535.536 1.244.791 1.946.765l.041.002h6.922c.874 0 1.597.748 1.597 1.688 0 .203-.146.354-.309.354H7.755c-.487 0-.96-.178-1.339-.504L2.64 17.259a.979.979 0 0 0-1.28 1.482L5.137 22c.733.631 1.66.979 2.618.979h9.957c1.26 0 2.267-1.043 2.267-2.312 0-2.006-1.584-3.646-3.555-3.646h-4.529a2.617 2.617 0 0 0-.681-2.509l-2.208-2.287ZM16 3a5 5 0 1 0 0 10 5 5 0 0 0 0-10Zm.979 3.5a.979.979 0 1 0-1.958 0v3a.979.979 0 1 0 1.958 0v-3Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-hashtag-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM9.52 18.189a1 1 0 1 1-1.964-.378l.437-2.274H6a1 1 0 1 1 0-2h2.378l.592-3.076H6a1 1 0 0 1 0-2h3.354l.51-2.65a1 1 0 1 1 1.964.378l-.437 2.272h3.04l.51-2.65a1 1 0 1 1 1.964.378l-.438 2.272H18a1 1 0 0 1 0 2h-1.917l-.592 3.076H18a1 1 0 0 1 0 2h-2.893l-.51 2.652a1 1 0 1 1-1.964-.378l.437-2.274h-3.04l-.51 2.652Zm.895-4.652h3.04l.591-3.076h-3.04l-.591 3.076Z"/></symbol><symbol id="icon-eds-i-home-medium" viewBox="0 0 24 24"><path d="M5 22a1 1 0 0 1-1-1v-8.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l10-10a1 1 0 0 1 1.414 0l10 10a1 1 0 0 1-1.414 1.414L20 12.415V21a1 1 0 0 1-1 1H5Zm7-17.585-6 5.999V20h5v-4a1 1 0 0 1 2 0v4h5v-9.585l-6-6Z"/></symbol><symbol id="icon-eds-i-image-medium" viewBox="0 0 24 24"><path d="M19.615 2A2.385 2.385 0 0 1 22 4.385v15.23A2.385 2.385 0 0 1 19.615 22H4.385A2.385 2.385 0 0 1 2 19.615V4.385A2.385 2.385 0 0 1 4.385 2h15.23Zm0 2H4.385A.385.385 0 0 0 4 4.385v15.23c0 .213.172.385.385.385h1.244l10.228-8.76a1 1 0 0 1 1.254-.037L20 13.392V4.385A.385.385 0 0 0 19.615 4Zm-3.07 9.283L8.703 20h10.912a.385.385 0 0 0 .385-.385v-3.713l-3.455-2.619ZM9.5 6a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-impact-factor-medium" viewBox="0 0 24 24"><path d="M16.49 2.672c.74.694.986 1.765.632 2.712l-.04.1-1.549 3.54h1.477a2.496 2.496 0 0 1 2.485 2.34l.005.163c0 .618-.23 1.21-.642 1.675l-7.147 7.961a2.48 2.48 0 0 1-3.554.165 2.512 2.512 0 0 1-.633-2.712l.042-.103L9.108 15H7.46c-1.393 0-2.379-1.11-2.455-2.369L5 12.473c0-.593.142-1.145.628-1.692l7.307-7.944a2.48 2.48 0 0 1 3.555-.165ZM14.43 4.164l-7.33 7.97c-.083.093-.101.214-.101.34 0 .277.19.526.46.526h4.163l.097-.009c.015 0 .03.003.046.009.181.078.264.32.186.5l-2.554 5.817a.512.512 0 0 0 .127.552.48.48 0 0 0 .69-.033l7.155-7.97a.513.513 0 0 0 .13-.34.497.497 0 0 0-.49-.502h-3.988a.355.355 0 0 1-.328-.497l2.555-5.844a.512.512 0 0 0-.127-.552.48.48 0 0 0-.69.033Z"/></symbol><symbol id="icon-eds-i-info-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 7a1 1 0 0 1 1 1v5h1.5a1 1 0 0 1 0 2h-5a1 1 0 0 1 0-2H11v-4h-.5a1 1 0 0 1-.993-.883L9.5 11a1 1 0 0 1 1-1H12Zm0-4.5a1.5 1.5 0 0 1 .144 2.993L12 8.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 9h-1.5a1 1 0 0 0-1 1l.007.117A1 1 0 0 0 10.5 12h.5v4H9.5a1 1 0 0 0 0 2h5a1 1 0 0 0 0-2H13v-5a1 1 0 0 0-1-1Zm0-4.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 5.5Z"/></symbol><symbol id="icon-eds-i-journal-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v14a2.5 2.5 0 0 1-2.5 2.5h-13a.5.5 0 1 0 0 1H20a1 1 0 0 1 0 2H5.5A2.5 2.5 0 0 1 3 20.5v-17A2.5 2.5 0 0 1 5.5 1h13ZM7 3H5.5a.5.5 0 0 0-.5.5v14.549l.016-.002c.104-.02.211-.035.32-.042L5.5 18H7V3Zm11.5 0H9v15h9.5a.5.5 0 0 0 .5-.5v-14a.5.5 0 0 0-.5-.5ZM16 5a1 1 0 0 1 1 1v4a1 1 0 0 1-1 1h-5a1 1 0 0 1-1-1V6a1 1 0 0 1 1-1h5Zm-1 2h-3v2h3V7Z"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="M20.462 3C21.875 3 23 4.184 23 5.619v12.762C23 19.816 21.875 21 20.462 21H3.538C2.125 21 1 19.816 1 18.381V5.619C1 4.184 2.125 3 3.538 3h16.924ZM21 8.158l-7.378 6.258a2.549 2.549 0 0 1-3.253-.008L3 8.16v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619V8.158ZM20.462 5H3.538c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516Z"/></symbol><symbol id="icon-eds-i-mail-send-medium" viewBox="0 0 24 24"><path d="M20.444 5a2.562 2.562 0 0 1 2.548 2.37l.007.078.001.123v7.858A2.564 2.564 0 0 1 20.444 18H9.556A2.564 2.564 0 0 1 7 15.429l.001-7.977.007-.082A2.561 2.561 0 0 1 9.556 5h10.888ZM21 9.331l-5.46 3.51a1 1 0 0 1-1.08 0L9 9.332v6.097c0 .317.251.571.556.571h10.888a.564.564 0 0 0 .556-.571V9.33ZM20.444 7H9.556a.543.543 0 0 0-.32.105l5.763 3.706 5.766-3.706a.543.543 0 0 0-.32-.105ZM4.308 5a1 1 0 1 1 0 2H2a1 1 0 1 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Z"/></symbol><symbol id="icon-eds-i-mentions-medium" viewBox="0 0 24 24"><path d="m9.452 1.293 5.92 5.92 2.92-2.92a1 1 0 0 1 1.415 1.414l-2.92 2.92 5.92 5.92a1 1 0 0 1 0 1.415 10.371 10.371 0 0 1-10.378 2.584l.652 3.258A1 1 0 0 1 12 23H2a1 1 0 0 1-.874-1.486l4.789-8.62C4.194 9.074 4.9 4.43 8.038 1.292a1 1 0 0 1 1.414 0Zm-2.355 13.59L3.699 21h7.081l-.689-3.442a10.392 10.392 0 0 1-2.775-2.396l-.22-.28Zm1.69-11.427-.07.09a8.374 8.374 0 0 0 11.737 11.737l.089-.071L8.787 3.456Z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-metrics-medium" viewBox="0 0 24 24"><path d="M3 22a1 1 0 0 1-1-1V3a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v7h4V8a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v13a1 1 0 0 1-.883.993L21 22H3Zm17-2V9h-4v11h4Zm-6-8h-4v8h4v-8ZM8 4H4v16h4V4Z"/></symbol><symbol id="icon-eds-i-news-medium" viewBox="0 0 24 24"><path d="M17.384 3c.975 0 1.77.787 1.77 1.762v13.333c0 .462.354.846.815.899l.107.006.109-.006a.915.915 0 0 0 .809-.794l.006-.105V8.19a1 1 0 0 1 2 0v9.905A2.914 2.914 0 0 1 20.077 21H3.538a2.547 2.547 0 0 1-1.644-.601l-.147-.135A2.516 2.516 0 0 1 1 18.476V4.762C1 3.787 1.794 3 2.77 3h14.614Zm-.231 2H3v13.476c0 .11.035.216.1.304l.054.063c.101.1.24.157.384.157l13.761-.001-.026-.078a2.88 2.88 0 0 1-.115-.655l-.004-.17L17.153 5ZM14 15.021a.979.979 0 1 1 0 1.958H6a.979.979 0 1 1 0-1.958h8Zm0-8c.54 0 .979.438.979.979v4c0 .54-.438.979-.979.979H6A.979.979 0 0 1 5.021 12V8c0-.54.438-.979.979-.979h8Zm-.98 1.958H6.979v2.041h6.041V8.979Z"/></symbol><symbol id="icon-eds-i-newsletter-medium" viewBox="0 0 24 24"><path d="M21 10a1 1 0 0 1 1 1v9.5a2.5 2.5 0 0 1-2.5 2.5h-15A2.5 2.5 0 0 1 2 20.5V11a1 1 0 0 1 2 0v.439l8 4.888 8-4.889V11a1 1 0 0 1 1-1Zm-1 3.783-7.479 4.57a1 1 0 0 1-1.042 0l-7.48-4.57V20.5a.5.5 0 0 0 .501.5h15a.5.5 0 0 0 .5-.5v-6.717ZM15 9a1 1 0 0 1 0 2H9a1 1 0 0 1 0-2h6Zm2.5-8A2.5 2.5 0 0 1 20 3.5V9a1 1 0 0 1-2 0V3.5a.5.5 0 0 0-.5-.5h-11a.5.5 0 0 0-.5.5V9a1 1 0 1 1-2 0V3.5A2.5 2.5 0 0 1 6.5 1h11ZM15 5a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-notifcation-medium" viewBox="0 0 24 24"><path d="M14 20a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM3 18l-.133-.007c-1.156-.124-1.156-1.862 0-1.986l.3-.012C4.32 15.923 5 15.107 5 14V9.5C5 5.368 8.014 2 12 2s7 3.368 7 7.5V14c0 1.107.68 1.923 1.832 1.995l.301.012c1.156.124 1.156 1.862 0 1.986L21 18H3Zm9-14C9.17 4 7 6.426 7 9.5V14c0 .671-.146 1.303-.416 1.858L6.51 16h10.979l-.073-.142a4.192 4.192 0 0 1-.412-1.658L17 14V9.5C17 6.426 14.83 4 12 4Z"/></symbol><symbol id="icon-eds-i-publish-medium" viewBox="0 0 24 24"><g><path d="M16.296 1.291A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V13a1 1 0 1 0 2 0V3.538l.007-.087A.543.543 0 0 1 5.545 3h9.633L20 7.8v12.662a.534.534 0 0 1-.158.379.548.548 0 0 1-.387.159H11a1 1 0 1 0 0 2h8.455c.674 0 1.32-.267 1.798-.742A2.534 2.534 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385Z"/><path d="M10.762 16.647a1 1 0 0 0-1.525-1.294l-4.472 5.271-2.153-1.665a1 1 0 1 0-1.224 1.582l2.91 2.25a1 1 0 0 0 1.374-.144l5.09-6ZM16 10a1 1 0 1 1 0 2H8a1 1 0 1 1 0-2h8ZM12 7a1 1 0 0 0-1-1H8a1 1 0 1 0 0 2h3a1 1 0 0 0 1-1Z"/></g></symbol><symbol id="icon-eds-i-refresh-medium" viewBox="0 0 24 24"><g><path d="M7.831 5.636H6.032A8.76 8.76 0 0 1 9 3.631 8.549 8.549 0 0 1 12.232 3c.603 0 1.192.063 1.76.182C17.979 4.017 21 7.632 21 12a1 1 0 1 0 2 0c0-5.296-3.674-9.746-8.591-10.776A10.61 10.61 0 0 0 5 3.851V2.805a1 1 0 0 0-.987-1H4a1 1 0 0 0-1 1v3.831a1 1 0 0 0 1 1h3.831a1 1 0 0 0 .013-2h-.013ZM17.968 18.364c-1.59 1.632-3.784 2.636-6.2 2.636C6.948 21 3 16.993 3 12a1 1 0 1 0-2 0c0 6.053 4.799 11 10.768 11 2.788 0 5.324-1.082 7.232-2.85v1.045a1 1 0 1 0 2 0v-3.831a1 1 0 0 0-1-1h-3.831a1 1 0 0 0 0 2h1.799Z"/></g></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-settings-medium" viewBox="0 0 24 24"><path d="M11.382 1h1.24a2.508 2.508 0 0 1 2.334 1.63l.523 1.378 1.59.933 1.444-.224c.954-.132 1.89.3 2.422 1.101l.095.155.598 1.066a2.56 2.56 0 0 1-.195 2.848l-.894 1.161v1.896l.92 1.163c.6.768.707 1.812.295 2.674l-.09.17-.606 1.08a2.504 2.504 0 0 1-2.531 1.25l-1.428-.223-1.589.932-.523 1.378a2.512 2.512 0 0 1-2.155 1.625L12.65 23h-1.27a2.508 2.508 0 0 1-2.334-1.63l-.524-1.379-1.59-.933-1.443.225c-.954.132-1.89-.3-2.422-1.101l-.095-.155-.598-1.066a2.56 2.56 0 0 1 .195-2.847l.891-1.161v-1.898l-.919-1.162a2.562 2.562 0 0 1-.295-2.674l.09-.17.606-1.08a2.504 2.504 0 0 1 2.531-1.25l1.43.223 1.618-.938.524-1.375.07-.167A2.507 2.507 0 0 1 11.382 1Zm.003 2a.509.509 0 0 0-.47.338l-.65 1.71a1 1 0 0 1-.434.51L7.6 6.85a1 1 0 0 1-.655.123l-1.762-.275a.497.497 0 0 0-.498.252l-.61 1.088a.562.562 0 0 0 .04.619l1.13 1.43a1 1 0 0 1 .216.62v2.585a1 1 0 0 1-.207.61L4.15 15.339a.568.568 0 0 0-.036.634l.601 1.072a.494.494 0 0 0 .484.26l1.78-.278a1 1 0 0 1 .66.126l2.2 1.292a1 1 0 0 1 .43.507l.648 1.71a.508.508 0 0 0 .467.338h1.263a.51.51 0 0 0 .47-.34l.65-1.708a1 1 0 0 1 .428-.507l2.201-1.292a1 1 0 0 1 .66-.126l1.763.275a.497.497 0 0 0 .498-.252l.61-1.088a.562.562 0 0 0-.04-.619l-1.13-1.43a1 1 0 0 1-.216-.62v-2.585a1 1 0 0 1 .207-.61l1.105-1.437a.568.568 0 0 0 .037-.634l-.601-1.072a.494.494 0 0 0-.484-.26l-1.78.278a1 1 0 0 1-.66-.126l-2.2-1.292a1 1 0 0 1-.43-.507l-.649-1.71A.508.508 0 0 0 12.62 3h-1.234ZM12 8a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-shipping-medium" viewBox="0 0 24 24"><path d="M16.515 2c1.406 0 2.706.728 3.352 1.902l2.02 3.635.02.042.036.089.031.105.012.058.01.073.004.075v11.577c0 .64-.244 1.255-.683 1.713a2.356 2.356 0 0 1-1.701.731H4.386a2.356 2.356 0 0 1-1.702-.731 2.476 2.476 0 0 1-.683-1.713V7.948c.01-.217.083-.43.22-.6L4.2 3.905C4.833 2.755 6.089 2.032 7.486 2h9.029ZM20 9H4v10.556a.49.49 0 0 0 .075.26l.053.07a.356.356 0 0 0 .257.114h15.23c.094 0 .186-.04.258-.115a.477.477 0 0 0 .127-.33V9Zm-2 7.5a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM16.514 4H13v3h6.3l-1.183-2.13c-.288-.522-.908-.87-1.603-.87ZM11 3.999H7.51c-.679.017-1.277.36-1.566.887L4.728 7H11V3.999Z"/></symbol><symbol id="icon-eds-i-step-guide-medium" viewBox="0 0 24 24"><path d="M11.394 9.447a1 1 0 1 0-1.788-.894l-.88 1.759-.019-.02a1 1 0 1 0-1.414 1.415l1 1a1 1 0 0 0 1.601-.26l1.5-3ZM12 11a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM12 17a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM10.947 14.105a1 1 0 0 1 .447 1.342l-1.5 3a1 1 0 0 1-1.601.26l-1-1a1 1 0 1 1 1.414-1.414l.02.019.879-1.76a1 1 0 0 1 1.341-.447Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V7.5a1 1 0 0 0-.293-.707l-5.5-5.5A1 1 0 0 0 14.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3h8.54L19 7.914v12.547c0 .294-.24.539-.546.539H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-submission-medium" viewBox="0 0 24 24"><g><path d="M5 3.538C5 3.245 5.24 3 5.545 3h9.633L20 7.8v12.662a.535.535 0 0 1-.158.379.549.549 0 0 1-.387.159H6a1 1 0 0 1-1-1v-2.5a1 1 0 1 0-2 0V20a3 3 0 0 0 3 3h13.455c.673 0 1.32-.266 1.798-.742A2.535 2.535 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V7a1 1 0 0 0 2 0V3.538Z"/><path d="m13.707 13.707-4 4a1 1 0 0 1-1.414 0l-.083-.094a1 1 0 0 1 .083-1.32L10.585 14 2 14a1 1 0 1 1 0-2l8.583.001-2.29-2.294a1 1 0 0 1 1.414-1.414l4.037 4.04.043.05.043.06.059.098.03.063.031.085.03.113.017.122L14 13l-.004.087-.017.118-.013.056-.034.104-.049.105-.048.081-.07.093-.058.063Z"/></g></symbol><symbol id="icon-eds-i-table-1-medium" viewBox="0 0 24 24"><path d="M4.385 22a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385ZM4 19.615c0 .213.034.265.14.317a.71.71 0 0 0 .245.068H8v-4H4v3.615ZM20 16H10v4h9.615c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V16Zm0-2v-4H10v4h10ZM4 14h4v-4H4v4ZM19.615 4H10v4h10V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM8 4H4.385l-.082.002c-.146.01-.19.047-.235.138A.71.71 0 0 0 4 4.385V8h4V4Z"/></symbol><symbol id="icon-eds-i-table-2-medium" viewBox="0 0 24 24"><path d="M4.384 22A2.384 2.384 0 0 1 2 19.616V4.384A2.384 2.384 0 0 1 4.384 2h15.232A2.384 2.384 0 0 1 22 4.384v15.232A2.384 2.384 0 0 1 19.616 22H4.384ZM10 15H4v4.616c0 .212.172.384.384.384H10v-5Zm5 0h-3v5h3v-5Zm5 0h-3v5h2.616a.384.384 0 0 0 .384-.384V15ZM10 9H4v4h6V9Zm5 0h-3v4h3V9Zm5 0h-3v4h3V9Zm-.384-5H4.384A.384.384 0 0 0 4 4.384V7h16V4.384A.384.384 0 0 0 19.616 4Z"/></symbol><symbol id="icon-eds-i-tag-medium" viewBox="0 0 24 24"><path d="m12.621 1.998.127.004L20.496 2a1.5 1.5 0 0 1 1.497 1.355L22 3.5l-.005 7.669c.038.456-.133.905-.447 1.206l-9.02 9.018a2.075 2.075 0 0 1-2.932 0l-6.99-6.99a2.075 2.075 0 0 1 .001-2.933L11.61 2.47c.246-.258.573-.418.881-.46l.131-.011Zm.286 2-8.885 8.886a.075.075 0 0 0 0 .106l6.987 6.988c.03.03.077.03.106 0l8.883-8.883L19.999 4l-7.092-.002ZM16 6.5a1.5 1.5 0 0 1 .144 2.993L16 9.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-trash-medium" viewBox="0 0 24 24"><path d="M12 1c2.717 0 4.913 2.232 4.997 5H21a1 1 0 0 1 0 2h-1v12.5c0 1.389-1.152 2.5-2.556 2.5H6.556C5.152 23 4 21.889 4 20.5V8H3a1 1 0 1 1 0-2h4.003l.001-.051C7.114 3.205 9.3 1 12 1Zm6 7H6v12.5c0 .238.19.448.454.492l.102.008h10.888c.315 0 .556-.232.556-.5V8Zm-4 3a1 1 0 0 1 1 1v6.005a1 1 0 0 1-2 0V12a1 1 0 0 1 1-1Zm-4 0a1 1 0 0 1 1 1v6a1 1 0 0 1-2 0v-6a1 1 0 0 1 1-1Zm2-8c-1.595 0-2.914 1.32-2.996 3h5.991v-.02C14.903 4.31 13.589 3 12 3Z"/></symbol><symbol id="icon-eds-i-user-account-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 16c-1.806 0-3.52.994-4.664 2.698A8.947 8.947 0 0 0 12 21a8.958 8.958 0 0 0 4.664-1.301C15.52 17.994 13.806 17 12 17Zm0-14a9 9 0 0 0-6.25 15.476C7.253 16.304 9.54 15 12 15s4.747 1.304 6.25 3.475A9 9 0 0 0 12 3Zm0 3a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-user-add-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a1 1 0 0 1 1 1v3h3a1 1 0 0 1 0 2h-3v3a1 1 0 0 1-2 0v-3h-3a1 1 0 0 1 0-2h3v-3a1 1 0 0 1 1-1Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Z"/></symbol><symbol id="icon-eds-i-user-assign-medium" viewBox="0 0 24 24"><path d="M16.226 13.298a1 1 0 0 1 1.414-.01l.084.093a1 1 0 0 1-.073 1.32L15.39 17H22a1 1 0 0 1 0 2h-6.611l2.262 2.298a1 1 0 0 1-1.425 1.404l-3.939-4a1 1 0 0 1 0-1.404l3.94-4Zm-3.771-.449a1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 10.5 20a1 1 0 0 1 .993.883L11.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-block-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM15 18a3 3 0 0 0 4.294 2.707l-4.001-4c-.188.391-.293.83-.293 1.293Zm3-3c-.463 0-.902.105-1.294.293l4.001 4A3 3 0 0 0 18 15Z"/></symbol><symbol id="icon-eds-i-user-check-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm13.647 12.237a1 1 0 0 1 .116 1.41l-5.091 6a1 1 0 0 1-1.375.144l-2.909-2.25a1 1 0 1 1 1.224-1.582l2.153 1.665 4.472-5.271a1 1 0 0 1 1.41-.116Zm-8.139-.977c.22.214.428.44.622.678a1 1 0 1 1-1.548 1.266 6.025 6.025 0 0 0-1.795-1.49.86.86 0 0 1-.163-.048l-.079-.036a5.721 5.721 0 0 0-2.62-.63l-.194.006c-2.76.134-5.022 2.177-5.592 4.864l-.035.175-.035.213c-.03.201-.05.405-.06.61L3.003 20 10 20a1 1 0 0 1 .993.883L11 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876l.005-.223.02-.356.02-.222.03-.248.022-.15c.02-.133.044-.265.071-.397.44-2.178 1.725-4.105 3.595-5.301a7.75 7.75 0 0 1 3.755-1.215l.12-.004a7.908 7.908 0 0 1 5.87 2.252Z"/></symbol><symbol id="icon-eds-i-user-delete-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6ZM4.763 13.227a7.713 7.713 0 0 1 7.692-.378 1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20H11.5a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897Zm11.421 1.543 2.554 2.553 2.555-2.553a1 1 0 0 1 1.414 1.414l-2.554 2.554 2.554 2.555a1 1 0 0 1-1.414 1.414l-2.555-2.554-2.554 2.554a1 1 0 0 1-1.414-1.414l2.553-2.555-2.553-2.554a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-user-edit-medium" viewBox="0 0 24 24"><path d="m19.876 10.77 2.831 2.83a1 1 0 0 1 0 1.415l-7.246 7.246a1 1 0 0 1-.572.284l-3.277.446a1 1 0 0 1-1.125-1.13l.461-3.277a1 1 0 0 1 .283-.567l7.23-7.246a1 1 0 0 1 1.415-.001Zm-7.421 2.08a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 7.5 20a1 1 0 0 1 .993.883L8.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Zm6.715.042-6.29 6.3-.23 1.639 1.633-.222 6.302-6.302-1.415-1.415ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-linked-medium" viewBox="0 0 24 24"><path d="M15.65 6c.31 0 .706.066 1.122.274C17.522 6.65 18 7.366 18 8.35v12.3c0 .31-.066.706-.274 1.122-.375.75-1.092 1.228-2.076 1.228H3.35a2.52 2.52 0 0 1-1.122-.274C1.478 22.35 1 21.634 1 20.65V8.35c0-.31.066-.706.274-1.122C1.65 6.478 2.366 6 3.35 6h12.3Zm0 2-12.376.002c-.134.007-.17.04-.21.12A.672.672 0 0 0 3 8.35v12.3c0 .198.028.24.122.287.09.044.2.063.228.063h.887c.788-2.269 2.814-3.5 5.263-3.5 2.45 0 4.475 1.231 5.263 3.5h.887c.198 0 .24-.028.287-.122.044-.09.063-.2.063-.228V8.35c0-.198-.028-.24-.122-.287A.672.672 0 0 0 15.65 8ZM9.5 19.5c-1.36 0-2.447.51-3.06 1.5h6.12c-.613-.99-1.7-1.5-3.06-1.5ZM20.65 1A2.35 2.35 0 0 1 23 3.348V15.65A2.35 2.35 0 0 1 20.65 18H20a1 1 0 0 1 0-2h.65a.35.35 0 0 0 .35-.35V3.348A.35.35 0 0 0 20.65 3H8.35a.35.35 0 0 0-.35.348V4a1 1 0 1 1-2 0v-.652A2.35 2.35 0 0 1 8.35 1h12.3ZM9.5 10a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-user-multiple-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm6 0a5 5 0 0 1 0 10 1 1 0 0 1-.117-1.993L15 9a3 3 0 0 0 0-6 1 1 0 0 1 0-2ZM9 3a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm8.857 9.545a7.99 7.99 0 0 1 2.651 1.715A8.31 8.31 0 0 1 23 20.134V21a1 1 0 0 1-1 1h-3a1 1 0 0 1 0-2h1.995l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209a5.99 5.99 0 0 0-1.988-1.287 1 1 0 1 1 .732-1.861Zm-3.349 1.715A8.31 8.31 0 0 1 17 20.134V21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.877c.044-4.343 3.387-7.908 7.638-8.115a7.908 7.908 0 0 1 5.87 2.252ZM9.016 14l-.285.006c-3.104.15-5.58 2.718-5.725 5.9L3.004 20h11.991l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209A5.924 5.924 0 0 0 9.3 14.008L9.016 14Z"/></symbol><symbol id="icon-eds-i-user-notify-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm10 18v1a1 1 0 0 1-2 0v-1h-3a1 1 0 0 1 0-2v-2.818C14 13.885 15.777 12 18 12s4 1.885 4 4.182V19a1 1 0 0 1 0 2h-3Zm-6.545-8.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM18 14c-1.091 0-2 .964-2 2.182V19h4v-2.818c0-1.165-.832-2.098-1.859-2.177L18 14Z"/></symbol><symbol id="icon-eds-i-user-remove-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm3.455 9.85a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM22 17a1 1 0 0 1 0 2h-8a1 1 0 0 1 0-2h8Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 11.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 13.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.7194 3.3054C15.3358 2.90809 14.7027 2.89699 14.3054 3.28061L6.54342 10.7757C6.19804 11.09 6 11.5335 6 12C6 12.4665 6.19804 12.91 6.5218 13.204L14.3054 20.7194C14.7027 21.103 15.3358 21.0919 15.7194 20.6946C16.103 20.2973 16.0919 19.6642 15.6946 19.2806L8.155 12L15.6946 4.71939C16.0614 4.36528 16.099 3.79863 15.8009 3.40105L15.7194 3.3054Z"/></symbol><symbol id="icon-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28061 3.3054C8.66423 2.90809 9.29729 2.89699 9.6946 3.28061L17.4566 10.7757C17.802 11.09 18 11.5335 18 12C18 12.4665 17.802 12.91 17.4782 13.204L9.6946 20.7194C9.29729 21.103 8.66423 21.0919 8.28061 20.6946C7.89699 20.2973 7.90809 19.6642 8.3054 19.2806L15.845 12L8.3054 4.71939C7.93865 4.36528 7.90098 3.79863 8.19908 3.40105L8.28061 3.3054Z"/></symbol><symbol id="icon-eds-alerts" viewBox="0 0 32 32"><path d="M28 12.667c.736 0 1.333.597 1.333 1.333v13.333A3.333 3.333 0 0 1 26 30.667H6a3.333 3.333 0 0 1-3.333-3.334V14a1.333 1.333 0 1 1 2.666 0v1.252L16 21.769l10.667-6.518V14c0-.736.597-1.333 1.333-1.333Zm-1.333 5.71-9.972 6.094c-.427.26-.963.26-1.39 0l-9.972-6.094v8.956c0 .368.299.667.667.667h20a.667.667 0 0 0 .667-.667v-8.956ZM19.333 12a1.333 1.333 0 1 1 0 2.667h-6.666a1.333 1.333 0 1 1 0-2.667h6.666Zm4-10.667a3.333 3.333 0 0 1 3.334 3.334v6.666a1.333 1.333 0 1 1-2.667 0V4.667A.667.667 0 0 0 23.333 4H8.667A.667.667 0 0 0 8 4.667v6.666a1.333 1.333 0 1 1-2.667 0V4.667a3.333 3.333 0 0 1 3.334-3.334h14.666Zm-4 5.334a1.333 1.333 0 0 1 0 2.666h-6.666a1.333 1.333 0 1 1 0-2.666h6.666Z"/></symbol><symbol id="icon-eds-arrow-up" viewBox="0 0 24 24"><path fill-rule="evenodd" d="m13.002 7.408 4.88 4.88a.99.99 0 0 0 1.32.08l.09-.08c.39-.39.39-1.03 0-1.42l-6.58-6.58a1.01 1.01 0 0 0-1.42 0l-6.58 6.58a1 1 0 0 0-.09 1.32l.08.1a1 1 0 0 0 1.42-.01l4.88-4.87v11.59a.99.99 0 0 0 .88.99l.12.01c.55 0 1-.45 1-1V7.408z" class="layer"/></symbol><symbol id="icon-eds-checklist" viewBox="0 0 32 32"><path d="M19.2 1.333a3.468 3.468 0 0 1 3.381 2.699L24.667 4C26.515 4 28 5.52 28 7.38v19.906c0 1.86-1.485 3.38-3.333 3.38H7.333c-1.848 0-3.333-1.52-3.333-3.38V7.38C4 5.52 5.485 4 7.333 4h2.093A3.468 3.468 0 0 1 12.8 1.333h6.4ZM9.426 6.667H7.333c-.36 0-.666.312-.666.713v19.906c0 .401.305.714.666.714h17.334c.36 0 .666-.313.666-.714V7.38c0-.4-.305-.713-.646-.714l-2.121.033A3.468 3.468 0 0 1 19.2 9.333h-6.4a3.468 3.468 0 0 1-3.374-2.666Zm12.715 5.606c.586.446.7 1.283.253 1.868l-7.111 9.334a1.333 1.333 0 0 1-1.792.306l-3.556-2.333a1.333 1.333 0 1 1 1.463-2.23l2.517 1.651 6.358-8.344a1.333 1.333 0 0 1 1.868-.252ZM19.2 4h-6.4a.8.8 0 0 0-.8.8v1.067a.8.8 0 0 0 .8.8h6.4a.8.8 0 0 0 .8-.8V4.8a.8.8 0 0 0-.8-.8Z"/></symbol><symbol id="icon-eds-citation" viewBox="0 0 36 36"><path d="M23.25 1.5a1.5 1.5 0 0 1 1.06.44l8.25 8.25a1.5 1.5 0 0 1 .44 1.06v19.5c0 2.105-1.645 3.75-3.75 3.75H18a1.5 1.5 0 0 1 0-3h11.25c.448 0 .75-.302.75-.75V11.873L22.628 4.5H8.31a.811.811 0 0 0-.8.68l-.011.13V16.5a1.5 1.5 0 0 1-3 0V5.31A3.81 3.81 0 0 1 8.31 1.5h14.94ZM8.223 20.358a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878C3.302 28.536 3 27.657 3 26.486c0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Zm7.5 0a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878-.604-.586-.906-1.465-.906-2.636 0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Z"/></symbol><symbol id="icon-eds-i-access-indicator" viewBox="0 0 16 16"><circle cx="4.5" cy="11.5" r="3.5" style="fill:currentColor"/><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702v7.846c0 .505-.197.993-.554 1.354a1.902 1.902 0 0 1-1.355.569H10a1 1 0 1 1 0-2h2V5.64L9.4 3H4Z" clip-rule="evenodd" style="fill:#222"/></symbol><symbol id="icon-eds-i-github-medium" viewBox="0 0 24 24"><path d="M 11.964844 0 C 5.347656 0 0 5.269531 0 11.792969 C 0 17.003906 3.425781 21.417969 8.179688 22.976562 C 8.773438 23.09375 8.992188 22.722656 8.992188 22.410156 C 8.992188 22.136719 8.972656 21.203125 8.972656 20.226562 C 5.644531 20.929688 4.953125 18.820312 4.953125 18.820312 C 4.417969 17.453125 3.625 17.101562 3.625 17.101562 C 2.535156 16.378906 3.703125 16.378906 3.703125 16.378906 C 4.914062 16.457031 5.546875 17.589844 5.546875 17.589844 C 6.617188 19.386719 8.339844 18.878906 9.03125 18.566406 C 9.132812 17.804688 9.449219 17.277344 9.785156 16.984375 C 7.132812 16.710938 4.339844 15.695312 4.339844 11.167969 C 4.339844 9.878906 4.8125 8.824219 5.566406 8.003906 C 5.445312 7.710938 5.03125 6.5 5.683594 4.878906 C 5.683594 4.878906 6.695312 4.566406 8.972656 6.089844 C 9.949219 5.832031 10.953125 5.703125 11.964844 5.699219 C 12.972656 5.699219 14.003906 5.835938 14.957031 6.089844 C 17.234375 4.566406 18.242188 4.878906 18.242188 4.878906 C 18.898438 6.5 18.480469 7.710938 18.363281 8.003906 C 19.136719 8.824219 19.589844 9.878906 19.589844 11.167969 C 19.589844 15.695312 16.796875 16.691406 14.125 16.984375 C 14.558594 17.355469 14.933594 18.058594 14.933594 19.171875 C 14.933594 20.753906 14.914062 22.019531 14.914062 22.410156 C 14.914062 22.722656 15.132812 23.09375 15.726562 22.976562 C 20.480469 21.414062 23.910156 17.003906 23.910156 11.792969 C 23.929688 5.269531 18.558594 0 11.964844 0 Z M 11.964844 0 "/></symbol><symbol id="icon-eds-i-limited-access" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702V6a1 1 0 1 1-2 0v-.36L9.4 3H4ZM3 8a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm10 0a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm-3.5 6a1 1 0 0 1-1 1h-1a1 1 0 1 1 0-2h1a1 1 0 0 1 1 1Zm2.441-1a1 1 0 0 1 2 0c0 .73-.246 1.306-.706 1.664a1.61 1.61 0 0 1-.876.334l-.032.002H11.5a1 1 0 1 1 0-2h.441ZM4 13a1 1 0 0 0-2 0c0 .73.247 1.306.706 1.664a1.609 1.609 0 0 0 .876.334l.032.002H4.5a1 1 0 1 0 0-2H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-subjects-medium" viewBox="0 0 24 24"><g id="icon-subjects-copy" stroke="none" stroke-width="1" fill-rule="evenodd"><path d="M13.3846154,2 C14.7015971,2 15.7692308,3.06762994 15.7692308,4.38461538 L15.7692308,7.15384615 C15.7692308,8.47082629 14.7015955,9.53846154 13.3846154,9.53846154 L13.1038388,9.53925278 C13.2061091,9.85347965 13.3815528,10.1423885 13.6195822,10.3804178 C13.9722182,10.7330539 14.436524,10.9483278 14.9293854,10.9918129 L15.1153846,11 C16.2068332,11 17.2535347,11.433562 18.0254647,12.2054189 C18.6411944,12.8212361 19.0416785,13.6120766 19.1784166,14.4609738 L19.6153846,14.4615385 C20.932386,14.4615385 22,15.5291672 22,16.8461538 L22,19.6153846 C22,20.9323924 20.9323924,22 19.6153846,22 L16.8461538,22 C15.5291672,22 14.4615385,20.932386 14.4615385,19.6153846 L14.4615385,16.8461538 C14.4615385,15.5291737 15.5291737,14.4615385 16.8461538,14.4615385 L17.126925,14.460779 C17.0246537,14.1465537 16.8492179,13.857633 16.6112344,13.6196157 C16.2144418,13.2228606 15.6764136,13 15.1153846,13 C14.0239122,13 12.9771569,12.5664197 12.2053686,11.7946314 C12.1335167,11.7227795 12.0645962,11.6485444 11.9986839,11.5721119 C11.9354038,11.6485444 11.8664833,11.7227795 11.7946314,11.7946314 C11.0228431,12.5664197 9.97608778,13 8.88461538,13 C8.323576,13 7.78552852,13.2228666 7.38881294,13.6195822 C7.15078359,13.8576115 6.97533988,14.1465203 6.8730696,14.4607472 L7.15384615,14.4615385 C8.47082629,14.4615385 9.53846154,15.5291737 9.53846154,16.8461538 L9.53846154,19.6153846 C9.53846154,20.932386 8.47083276,22 7.15384615,22 L4.38461538,22 C3.06762347,22 2,20.9323876 2,19.6153846 L2,16.8461538 C2,15.5291721 3.06762994,14.4615385 4.38461538,14.4615385 L4.8215823,14.4609378 C4.95831893,13.6120029 5.3588057,12.8211623 5.97459937,12.2053686 C6.69125996,11.488708 7.64500941,11.0636656 8.6514968,11.0066017 L8.88461538,11 C9.44565477,11 9.98370225,10.7771334 10.3804178,10.3804178 C10.6184472,10.1423885 10.7938909,9.85347965 10.8961612,9.53925278 L10.6153846,9.53846154 C9.29840448,9.53846154 8.23076923,8.47082629 8.23076923,7.15384615 L8.23076923,4.38461538 C8.23076923,3.06762994 9.29840286,2 10.6153846,2 L13.3846154,2 Z M7.15384615,16.4615385 L4.38461538,16.4615385 C4.17220099,16.4615385 4,16.63374 4,16.8461538 L4,19.6153846 C4,19.8278134 4.17218833,20 4.38461538,20 L7.15384615,20 C7.36626945,20 7.53846154,19.8278103 7.53846154,19.6153846 L7.53846154,16.8461538 C7.53846154,16.6337432 7.36625679,16.4615385 7.15384615,16.4615385 Z M19.6153846,16.4615385 L16.8461538,16.4615385 C16.6337432,16.4615385 16.4615385,16.6337432 16.4615385,16.8461538 L16.4615385,19.6153846 C16.4615385,19.8278103 16.6337306,20 16.8461538,20 L19.6153846,20 C19.8278229,20 20,19.8278229 20,19.6153846 L20,16.8461538 C20,16.6337306 19.8278103,16.4615385 19.6153846,16.4615385 Z M13.3846154,4 L10.6153846,4 C10.4029708,4 10.2307692,4.17220099 10.2307692,4.38461538 L10.2307692,7.15384615 C10.2307692,7.36625679 10.402974,7.53846154 10.6153846,7.53846154 L13.3846154,7.53846154 C13.597026,7.53846154 13.7692308,7.36625679 13.7692308,7.15384615 L13.7692308,4.38461538 C13.7692308,4.17220099 13.5970292,4 13.3846154,4 Z" id="Shape" fill-rule="nonzero"/></g></symbol><symbol id="icon-eds-small-arrow-left" viewBox="0 0 16 17"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M14 8.092H2m0 0L8 2M2 8.092l6 6.035"/></symbol><symbol id="icon-eds-small-arrow-right" viewBox="0 0 16 16"><g fill-rule="evenodd" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2"><path d="M2 8.092h12M8 2l6 6.092M8 14.127l6-6.035"/></g></symbol><symbol id="icon-orcid-logo" viewBox="0 0 40 40"><path fill-rule="evenodd" d="M12.281 10.453c.875 0 1.578-.719 1.578-1.578 0-.86-.703-1.578-1.578-1.578-.875 0-1.578.703-1.578 1.578 0 .86.703 1.578 1.578 1.578Zm-1.203 18.641h2.406V12.359h-2.406v16.735Z"/><path fill-rule="evenodd" d="M17.016 12.36h6.5c6.187 0 8.906 4.421 8.906 8.374 0 4.297-3.36 8.375-8.875 8.375h-6.531V12.36Zm6.234 14.578h-3.828V14.53h3.703c4.688 0 6.828 2.844 6.828 6.203 0 2.063-1.25 6.203-6.703 6.203Z" clip-rule="evenodd"/></symbol></svg> </div> <a class="c-skip-link" href="#main">Skip to main content</a> <header class="eds-c-header" data-eds-c-header> <div class="eds-c-header__container" data-eds-c-header-expander-anchor> <div class="eds-c-header__brand"> <a href="https://link.springer.com" data-test=springerlink-logo data-track="click_imprint_logo" data-track-context="unified header" data-track-action="click logo link" data-track-category="unified header" data-track-label="link" > <img src="/oscar-static/images/darwin/header/img/logo-springer-nature-link-3149409f62.svg" alt="Springer Nature Link"> </a> </div> <a class="c-header__link eds-c-header__link" id="identity-account-widget" href='https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/article/10.1140/epjc/s10052-023-11574-z?'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </div> <nav class="eds-c-header__nav" aria-label="header navigation"> <div class="eds-c-header__nav-container"> <div class="eds-c-header__item eds-c-header__item--menu"> <a href="#eds-c-header-nav" class="eds-c-header__link" data-eds-c-header-expander> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-menu-medium"></use> </svg><span>Menu</span> </a> </div> <div class="eds-c-header__item eds-c-header__item--inline-links"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </div> <div class="eds-c-header__link-container"> <div class="eds-c-header__item eds-c-header__item--divider"> <a href="#eds-c-header-popup-search" class="eds-c-header__link" data-eds-c-header-expander data-eds-c-header-test-search-btn> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg><span>Search</span> </a> </div> <div id="ecommerce-header-cart-icon-link" class="eds-c-header__item ecommerce-cart" style="display:inline-block"> <a class="eds-c-header__link" href="https://order.springer.com/public/cart" style="appearance:none;border:none;background:none;color:inherit;position:relative"> <svg id="eds-i-cart" class="eds-c-header__icon" xmlns="http://www.w3.org/2000/svg" height="24" width="24" viewBox="0 0 24 24" aria-hidden="true" focusable="false"> <path fill="currentColor" fill-rule="nonzero" d="M2 1a1 1 0 0 0 0 2l1.659.001 2.257 12.808a2.599 2.599 0 0 0 2.435 2.185l.167.004 9.976-.001a2.613 2.613 0 0 0 2.61-1.748l.03-.106 1.755-7.82.032-.107a2.546 2.546 0 0 0-.311-1.986l-.108-.157a2.604 2.604 0 0 0-2.197-1.076L6.042 5l-.56-3.17a1 1 0 0 0-.864-.82l-.12-.007L2.001 1ZM20.35 6.996a.63.63 0 0 1 .54.26.55.55 0 0 1 .082.505l-.028.1L19.2 15.63l-.022.05c-.094.177-.282.299-.526.317l-10.145.002a.61.61 0 0 1-.618-.515L6.394 6.999l13.955-.003ZM18 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4ZM8 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"></path> </svg><span>Cart</span><span class="cart-info" style="display:none;position:absolute;top:10px;right:45px;background-color:#C65301;color:#fff;width:18px;height:18px;font-size:11px;border-radius:50%;line-height:17.5px;text-align:center"></span></a> <script>(function () { var exports = {}; if (window.fetch) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.headerWidgetClientInit = void 0; var headerWidgetClientInit = function (getCartInfo) { document.body.addEventListener("updatedCart", function () { updateCartIcon(); }, false); return updateCartIcon(); function updateCartIcon() { return getCartInfo() .then(function (res) { return res.json(); }) .then(refreshCartState) .catch(function (_) { }); } function refreshCartState(json) { var indicator = document.querySelector("#ecommerce-header-cart-icon-link .cart-info"); /* istanbul ignore else */ if (indicator && json.itemCount) { indicator.style.display = 'block'; indicator.textContent = json.itemCount > 9 ? '9+' : json.itemCount.toString(); var moreThanOneItem = json.itemCount > 1; indicator.setAttribute('title', "there ".concat(moreThanOneItem ? "are" : "is", " ").concat(json.itemCount, " item").concat(moreThanOneItem ? "s" : "", " in your cart")); } return json; } }; exports.headerWidgetClientInit = headerWidgetClientInit; headerWidgetClientInit( function () { return window.fetch("https://cart.springer.com/cart-info", { credentials: "include", headers: { Accept: "application/json" } }) } ) }})()</script> </div> </div> </div> </nav> </header> <article lang="en" id="main" class="app-masthead__colour-30"> <section class="app-masthead " aria-label="article masthead"> <div class="app-masthead__container"> <div class="app-article-masthead u-sans-serif js-context-bar-sticky-point-masthead" data-track-component="article" data-test="masthead-component"> <div class="app-article-masthead__info"> <nav aria-label="breadcrumbs" data-test="breadcrumbs"> <ol class="c-breadcrumbs c-breadcrumbs--contrast" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb1"><span itemprop="name">Home</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/journal/10052" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb2"><span itemprop="name">The European Physical Journal C</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <span itemprop="name">Article</span><meta itemprop="position" content="3"> </li> </ol> </nav> <h1 class="c-article-title" data-test="article-title" data-article-title="">Collider constraints on electroweakinos in the presence of a light gravitino</h1> <ul class="c-article-identifiers"> <li class="c-article-identifiers__item" data-test="article-category">Regular Article - Theoretical Physics </li> <li class="c-article-identifiers__item"> <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link" class="u-color-open-access" data-test="open-access">Open access</a> </li> <li class="c-article-identifiers__item"> Published: <time datetime="2023-06-10">10 June 2023</time> </li> </ul> <ul class="c-article-identifiers c-article-identifiers--cite-list"> <li class="c-article-identifiers__item"> <span data-test="journal-volume">Volume 83</span>, article number <span data-test="article-number">493</span>, (<span data-test="article-publication-year">2023</span>) </li> <li class="c-article-identifiers__item c-article-identifiers__item--cite"> <a href="#citeas" data-track="click" data-track-action="cite this article" data-track-category="article body" data-track-label="link">Cite this article</a> </li> </ul> <div class="app-article-masthead__buttons" data-test="download-article-link-wrapper" data-track-context="masthead"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1140/epjc/s10052-023-11574-z.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> <p class="app-article-masthead__access"> <svg width="16" height="16" focusable="false" role="img" aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-check-filled-medium"></use></svg> You have full access to this <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link">open access</a> article</p> </div> </div> <div class="app-article-masthead__brand"> <a href="/journal/10052" class="app-article-masthead__journal-link" data-track="click_journal_home" data-track-action="journal homepage" data-track-context="article page" data-track-label="link"> <picture> <source type="image/webp" media="(min-width: 768px)" width="120" height="159" srcset="https://media.springernature.com/w120/springer-static/cover-hires/journal/10052?as=webp, https://media.springernature.com/w316/springer-static/cover-hires/journal/10052?as=webp 2x"> <img width="72" height="95" src="https://media.springernature.com/w72/springer-static/cover-hires/journal/10052?as=webp" srcset="https://media.springernature.com/w144/springer-static/cover-hires/journal/10052?as=webp 2x" alt=""> </picture> <span class="app-article-masthead__journal-title">The European Physical Journal C</span> </a> <a href="https://link.springer.com/journal/10052/aims-and-scope" class="app-article-masthead__submission-link" data-track="click_aims_and_scope" data-track-action="aims and scope" data-track-context="article page" data-track-label="link"> Aims and scope <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> <a href="https://mc.manuscriptcentral.com/epjc" class="app-article-masthead__submission-link" data-track="click_submit_manuscript" data-track-context="article masthead on springerlink article page" data-track-action="submit manuscript" data-track-label="link"> Submit manuscript <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> </div> </div> </div> </section> <div class="c-article-main u-container u-mt-24 u-mb-32 l-with-sidebar" id="main-content" data-component="article-container"> <main class="u-serif js-main-column" data-track-component="article body"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container"> <div class="c-context-bar__title"> Collider constraints on electroweakinos in the presence of a light gravitino </div> <div data-test="inCoD" data-track-context="sticky banner"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1140/epjc/s10052-023-11574-z.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> </div> </div> </div> <div class="c-article-header"> <header> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Viktor-Ananyev-Aff1" data-author-popup="auth-Viktor-Ananyev-Aff1" data-author-search="Ananyev, Viktor">Viktor Ananyev</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Csaba-Bal_zs-Aff2" data-author-popup="auth-Csaba-Bal_zs-Aff2" data-author-search="Balázs, Csaba">Csaba Balázs</a><sup class="u-js-hide"><a href="#Aff2">2</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Ankit-Beniwal-Aff3" data-author-popup="auth-Ankit-Beniwal-Aff3" data-author-search="Beniwal, Ankit">Ankit Beniwal</a><sup class="u-js-hide"><a href="#Aff3">3</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Lasse_Lorentz-Braseth-Aff1" data-author-popup="auth-Lasse_Lorentz-Braseth-Aff1" data-author-search="Braseth, Lasse Lorentz">Lasse Lorentz Braseth</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Andy-Buckley-Aff4" data-author-popup="auth-Andy-Buckley-Aff4" data-author-search="Buckley, Andy">Andy Buckley</a><sup class="u-js-hide"><a href="#Aff4">4</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Jonathan-Butterworth-Aff5" data-author-popup="auth-Jonathan-Butterworth-Aff5" data-author-search="Butterworth, Jonathan">Jonathan Butterworth</a><sup class="u-js-hide"><a href="#Aff5">5</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Christopher-Chang-Aff6" data-author-popup="auth-Christopher-Chang-Aff6" data-author-search="Chang, Christopher">Christopher Chang</a><sup class="u-js-hide"><a href="#Aff6">6</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Matthias-Danninger-Aff7" data-author-popup="auth-Matthias-Danninger-Aff7" data-author-search="Danninger, Matthias">Matthias Danninger</a><sup class="u-js-hide"><a href="#Aff7">7</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Andrew-Fowlie-Aff8" data-author-popup="auth-Andrew-Fowlie-Aff8" data-author-search="Fowlie, Andrew">Andrew Fowlie</a><sup class="u-js-hide"><a href="#Aff8">8</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Tom_s_E_-Gonzalo-Aff9" data-author-popup="auth-Tom_s_E_-Gonzalo-Aff9" data-author-search="Gonzalo, Tomás E.">Tomás E. Gonzalo</a><sup class="u-js-hide"><a href="#Aff9">9</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Anders-Kvellestad-Aff1" data-author-popup="auth-Anders-Kvellestad-Aff1" data-author-search="Kvellestad, Anders" data-corresp-id="c1">Anders Kvellestad<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><span class="u-js-hide"> <a class="js-orcid" href="http://orcid.org/0000-0002-5267-7705"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-5267-7705</a></span><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Farvah-Mahmoudi-Aff10-Aff11" data-author-popup="auth-Farvah-Mahmoudi-Aff10-Aff11" data-author-search="Mahmoudi, Farvah">Farvah Mahmoudi</a><sup class="u-js-hide"><a href="#Aff10">10</a>,<a href="#Aff11">11</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Gregory_D_-Martinez-Aff12" data-author-popup="auth-Gregory_D_-Martinez-Aff12" data-author-search="Martinez, Gregory D.">Gregory D. Martinez</a><sup class="u-js-hide"><a href="#Aff12">12</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Markus_T_-Prim-Aff13" data-author-popup="auth-Markus_T_-Prim-Aff13" data-author-search="Prim, Markus T.">Markus T. Prim</a><sup class="u-js-hide"><a href="#Aff13">13</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Tomasz-Procter-Aff4" data-author-popup="auth-Tomasz-Procter-Aff4" data-author-search="Procter, Tomasz">Tomasz Procter</a><sup class="u-js-hide"><a href="#Aff4">4</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Are-Raklev-Aff1" data-author-popup="auth-Are-Raklev-Aff1" data-author-search="Raklev, Are">Are Raklev</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Pat-Scott-Aff14" data-author-popup="auth-Pat-Scott-Aff14" data-author-search="Scott, Pat">Pat Scott</a><sup class="u-js-hide"><a href="#Aff14">14</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Patrick-St_cker-Aff15" data-author-popup="auth-Patrick-St_cker-Aff15" data-author-search="Stöcker, Patrick">Patrick Stöcker</a><sup class="u-js-hide"><a href="#Aff15">15</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Jeriek-Abeele-Aff1-Aff18" data-author-popup="auth-Jeriek-Abeele-Aff1-Aff18" data-author-search="Van den Abeele, Jeriek">Jeriek Van den Abeele</a><sup class="u-js-hide"><a href="#Aff1">1</a>,<a href="#Aff18">18</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Martin-White-Aff16" data-author-popup="auth-Martin-White-Aff16" data-author-search="White, Martin">Martin White</a><sup class="u-js-hide"><a href="#Aff16">16</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Yang-Zhang-Aff17-Aff19" data-author-popup="auth-Yang-Zhang-Aff17-Aff19" data-author-search="Zhang, Yang">Yang Zhang</a><sup class="u-js-hide"><a href="#Aff17">17</a>,<a href="#Aff19">19</a></sup> & </li><li class="c-article-author-list__item"><a data-test="author-name" data-author-popup="group-1" href="#group-1">GAMBIT Collaboration</a></li></ul><button aria-expanded="false" class="c-article-author-list__button"><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-down-medium"></use></svg><span>Show authors</span></button> <div data-test="article-metrics"> <ul class="app-article-metrics-bar u-list-reset"> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-accesses-medium"></use> </svg>1068 <span class="app-article-metrics-bar__label">Accesses</span></p> </li> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-citations-medium"></use> </svg>9 <span class="app-article-metrics-bar__label">Citations</span></p> </li> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-altmetric-medium"></use> </svg>1 <span class="app-article-metrics-bar__label">Altmetric</span></p> </li> <li class="app-article-metrics-bar__item app-article-metrics-bar__item--metrics"> <p class="app-article-metrics-bar__details"><a href="/article/10.1140/epjc/s10052-023-11574-z/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Explore all metrics <svg class="u-icon app-article-metrics-bar__arrow-icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a></p> </li> </ul> </div> <div class="u-mt-32"> </div> <div class="u-mb-8 c-status-message c-status-message--boxed c-status-message--info"><span class="c-status-message__icon"><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-info-filled-medium"></use></svg></span><p class="u-mt-0">A <a href="https://arxiv.org/abs/2303.09082" class="relation-link" data-track="click" data-track-label="link" data-track-action="preprint">preprint version</a> of the article is available at arXiv.</p></div> </header> </div> <div data-article-body="true" data-track-component="article body" class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Abs1">Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>Using the <span class="u-sans-serif">GAMBIT</span> global fitting framework, we constrain the MSSM with an eV-scale gravitino as the lightest supersymmetric particle, and the six electroweakinos (neutralinos and charginos) as the only other light new states. We combine 15 ATLAS and 12 CMS searches at 13 TeV, along with a large collection of ATLAS and CMS measurements of Standard Model signatures. This model, which we refer to as the <span class="mathjax-tex">\({{\tilde{G}}}\)</span>-EWMSSM, exhibits quite varied collider phenomenology due to its many permitted electroweakino production processes and decay modes. Characteristic <span class="mathjax-tex">\({{\tilde{G}}}\)</span>-EWMSSM signal events have two or more Standard Model bosons and missing energy due to the escaping gravitinos. While much of the <span class="mathjax-tex">\({{\tilde{G}}}\)</span>-EWMSSM parameter space is excluded, we find several viable parameter regions that predict phenomenologically rich scenarios with multiple neutralinos and charginos within the kinematic reach of the LHC during Run 3, or the High Luminosity LHC. In particular, we identify scenarios with Higgsino-dominated electroweakinos as light as 140 GeV that are consistent with our combined set of collider searches and measurements. The full set of <span class="mathjax-tex">\({{\tilde{G}}}\)</span>-EWMSSM parameter samples and <span class="u-sans-serif">GAMBIT</span> input files generated for this work is available via <span class="u-sans-serif">Zenodo</span>.</p></div></div></section> <div data-test="cobranding-download"> </div> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-019-6837-x/MediaObjects/10052_2019_6837_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1140/epjc/s10052-019-6837-x?fromPaywallRec=false" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1140/epjc/s10052-019-6837-x">Combined collider constraints on neutralinos and charginos </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">08 May 2019</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-024-13160-3/MediaObjects/10052_2024_13160_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1140/epjc/s10052-024-13160-3?fromPaywallRec=false" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1140/epjc/s10052-024-13160-3">HL-LHC sensitivity to higgsinos from natural SUSY with gravitino LSP </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">06 August 2024</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3Aplaceholder%2Fimages/placeholder-figure-springernature.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/JHEP01(2019)103?fromPaywallRec=false" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1007/JHEP01(2019)103">The past, present and future of the heavier electroweakinos in the light of LHC and other data </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">11 January 2019</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1732413214, embedded_user: 'null' } }); </script> <div class="app-card-service" data-test="article-checklist-banner"> <div> <a class="app-card-service__link" data-track="click_presubmission_checklist" data-track-context="article page top of reading companion" data-track-category="pre-submission-checklist" data-track-action="clicked article page checklist banner test 2 old version" data-track-label="link" href="https://beta.springernature.com/pre-submission?journalId=10052" data-test="article-checklist-banner-link"> <span class="app-card-service__link-text">Use our pre-submission checklist</span> <svg class="app-card-service__link-icon" aria-hidden="true" focusable="false"><use xlink:href="#icon-eds-i-arrow-right-small"></use></svg> </a> <p class="app-card-service__description">Avoid common mistakes on your manuscript.</p> </div> <div class="app-card-service__icon-container"> <svg class="app-card-service__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-clipboard-check-medium"></use> </svg> </div> </div> <div class="main-content"> <section data-title="Introduction"><div class="c-article-section" id="Sec1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec1"><span class="c-article-section__title-number">1 </span>Introduction</h2><div class="c-article-section__content" id="Sec1-content"><p>Although supersymmetry (SUSY) was not invented to address shortcomings of the Standard Model (SM) of particle physics or cosmology, it addresses them in various aspects. Inflation, dark matter, the cosmic matter–antimatter asymmetry, neutrino masses, patterns of fermion families, gauge and Yukawa couplings, naturalness, and more, can all be accommodated if supersymmetry is a symmetry of nature that is broken near the TeV scale; see for example Refs. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="H.P. Nilles, Supersymmetry, supergravity and particle physics. Phys. Rep. 110, 1–162 (1984)" href="#ref-CR1" id="ref-link-section-d154747430e1072">1</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="H.E. Haber, G.L. Kane, The search for supersymmetry: probing physics beyond the standard model. Phys. Rep. 117, 75–263 (1985)" href="#ref-CR2" id="ref-link-section-d154747430e1072_1">2</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="S.P. Martin, A supersymmetry primer. Adv. Ser. Direct High Energy Phys. 18, 1–98 (1998). 
 arXiv:hep-ph/9709356
 
 " href="#ref-CR3" id="ref-link-section-d154747430e1072_2">3</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="D.J.H. Chung, L.L. Everett et al., The soft supersymmetry breaking Lagrangian: theory and applications. Phys. Rep. 407, 1–203 (2005). 
 arXiv:hep-ph/0312378
 
 " href="#ref-CR4" id="ref-link-section-d154747430e1072_3">4</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="J.L. Feng, Naturalness and the status of supersymmetry. Ann. Rev. Nucl. Part. Sci. 63, 351–382 (2013). 
 arXiv:1302.6587
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR5" id="ref-link-section-d154747430e1075">5</a>] for reviews. Consequently, a major goal of the Large Hadron Collider (LHC) is to search for superpartners. So far, the LHC experiments have found no concrete evidence for SUSY and the impact of the null results in simple SUSY scenarios has been well explored (see e.g. the global fits in Refs. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="R. Ruiz de Austri, R. Trotta, L. Roszkowski, A Markov chain Monte Carlo analysis of CMSSM. JHEP 5, 2 (2006). 
 arXiv:hep-ph/0602028
 
 " href="#ref-CR6" id="ref-link-section-d154747430e1078">6</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="A. Fowlie, A. Kalinowski, M. Kazana, L. Roszkowski, Y.L.S. Tsai, Bayesian implications of current LHC and XENON100 search limits for the constrained MSSM. Phys. Rev. D 85, 075012 (2012). 
 arXiv:1111.6098
 
 " href="#ref-CR7" id="ref-link-section-d154747430e1078_1">7</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="A. Fowlie, M. Kazana et al., The CMSSM favoring new territories: the impact of new LHC limits and a 125 GeV Higgs. Phys. Rev. D 86, 075010 (2012). 
 arXiv:1206.0264
 
 " href="#ref-CR8" id="ref-link-section-d154747430e1078_2">8</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="P. Bechtle, T. Bringmann et al., Constrained supersymmetry after two years of LHC data: a global view with Fittino. JHEP 6, 98 (2012). 
 arXiv:1204.4199
 
 " href="#ref-CR9" id="ref-link-section-d154747430e1078_3">9</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="P. Bechtle, J.E. Camargo-Molina et al., Killing the cMSSM softly. Eur. Phys. J. C 76, 96 (2016). 
 arXiv:1508.05951
 
 " href="#ref-CR10" id="ref-link-section-d154747430e1078_4">10</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="O. Buchmueller et al., The CMSSM and NUHM1 after LHC Run 1. Eur. Phys. J. C 74, 2922 (2014). 
 arXiv:1312.5250
 
 " href="#ref-CR11" id="ref-link-section-d154747430e1078_5">11</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="O. Buchmueller, R. Cavanaugh et al., Frequentist analysis of the parameter space of minimal supergravity. Eur. Phys. J. C 71, 1583 (2011). 
 arXiv:1011.6118
 
 " href="#ref-CR12" id="ref-link-section-d154747430e1078_6">12</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="E. Bagnaschi et al., Likelihood analysis of the pMSSM11 in light of LHC 13-TeV data. Eur. Phys. J. C 78, 256 (2018). 
 arXiv:1710.11091
 
 " href="#ref-CR13" id="ref-link-section-d154747430e1078_7">13</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="J.C. Costa et al., Likelihood analysis of the sub-GUT MSSM in light of LHC 13-TeV data. Eur. Phys. J. C 78, 158 (2018). 
 arXiv:1711.00458
 
 " href="#ref-CR14" id="ref-link-section-d154747430e1078_8">14</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="GAMBIT Collaboration,P. Athron, C. Balázs, et al., Global fits of GUT-scale SUSY models with GAMBIT. Eur. Phys. J. C 77, 824 (2017). 
 arXiv:1705.07935
 
 " href="#ref-CR15" id="ref-link-section-d154747430e1078_9">15</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="GAMBIT Collaboration, P. Athron, C. Balázs, et al., A global fit of the MSSM with GAMBIT. Eur. Phys. J. C 77, 879 (2017). 
 arXiv:1705.07917
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR16" id="ref-link-section-d154747430e1081">16</a>]). For example, in our previous work [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="GAMBIT Collaboration, P. Athron et al., Combined collider constraints on neutralinos and charginos. Eur. Phys. J. C 79, 395 (2019). 
 arXiv:1809.02097
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR17" id="ref-link-section-d154747430e1084">17</a>], we investigated the collider constraints on the electroweakino sector of the Minimal Supersymmetric Standard Model (MSSM). Gravitinos, however, are an interesting and often ignored possibility in SUSY collider phenomenology.</p><p>The gravitino is the spin-3/2 superpartner of the spin-2 graviton. Its existence is a necessary consequence of supergravity [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="P. Nath, R. Arnowitt, Generalized super-gauge symmetry as a new framework for unified gauge theories. Phys. Lett. B 56, 177–180 (1975)" href="#ref-CR18" id="ref-link-section-d154747430e1090">18</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="S.D. Deser, B. Zumino, Consistent supergravity. Phys. Lett. B 62, 335–337 (1976)" href="#ref-CR19" id="ref-link-section-d154747430e1090_1">19</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="D.Z. Freedman, P. Van Nieuwenhuizen, Properties of supergravity theory. Phys. Rev. D 14, 912 (1976)" href="#ref-CR20" id="ref-link-section-d154747430e1090_2">20</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 21" title="R. Arnowitt, P. Nath, B. Zumino, Superfield densities and action principle in curved superspace. Phys. Lett. B 56, 81–84 (1975)" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR21" id="ref-link-section-d154747430e1093">21</a>], a local supersymmetry that implies gravity [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="V.P. Akulov, D.V. Volkov, V.A. Soroka, Gauge fields on superspaces with different holonomy groups. JETP Lett. 22, 187–188 (1975)" href="#ref-CR22" id="ref-link-section-d154747430e1096">22</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="J. Wess, B. Zumino, Superspace formulation of supergravity. Phys. Lett. B 66, 361–364 (1977)" href="#ref-CR23" id="ref-link-section-d154747430e1096_1">23</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="B. Zumino, Supersymmetry and Kahler manifolds. Phys. Lett. B 87, 203 (1979)" href="#ref-CR24" id="ref-link-section-d154747430e1096_2">24</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="K.S. Stelle, P.C. West, Minimal auxiliary fields for supergravity. Phys. Lett. B 74, 330–332 (1978)" href="#ref-CR25" id="ref-link-section-d154747430e1096_3">25</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="K.S. Stelle, P.C. West, Tensor calculus for the vector multiplet coupled to supergravity. Phys. Lett. B 77, 376 (1978)" href="#ref-CR26" id="ref-link-section-d154747430e1096_4">26</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 27" title="S. Ferrara, F. Gliozzi, J. Scherk, P. Van Nieuwenhuizen, Matter couplings in supergravity theory. Nucl. Phys. B 117, 333 (1976)" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR27" id="ref-link-section-d154747430e1099">27</a>]. The gravitino acquires mass through the super-Higgs mechanism and the mass is set solely by the scale of supersymmetry breaking; <span class="mathjax-tex">\({m_{3/2}}\sim \langle F \rangle / M_P\)</span> for <i>F</i>-term supersymmetry breaking [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="S. Deser, B. Zumino, Broken supersymmetry and supergravity. Phys. Rev. Lett. 38, 1433–1436 (1977)" href="#ref-CR28" id="ref-link-section-d154747430e1162">28</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="E. Cremmer, B. Julia et al., Super-Higgs effect in supergravity with general scalar interactions. Phys. Lett. B 79, 231–234 (1978)" href="#ref-CR29" id="ref-link-section-d154747430e1162_1">29</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 30" title="E. Cremmer, B. Julia et al., Spontaneous symmetry breaking and Higgs effect in supergravity without cosmological constant. Nucl. Phys. B 147, 105 (1979)" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR30" id="ref-link-section-d154747430e1165">30</a>] where <span class="mathjax-tex">\(M_P\)</span> is the Planck mass. In gravity-mediated supersymmetry breaking [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="A.H. Chamseddine, R.L. Arnowitt, P. Nath, Locally supersymmetric grand unification. Phys. Rev. Lett. 49, 970 (1982)" href="#ref-CR31" id="ref-link-section-d154747430e1190">31</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="R. Barbieri, S. Ferrara, C.A. Savoy, Gauge models with spontaneously broken local supersymmetry. Phys. Lett. B 119, 343 (1982)" href="#ref-CR32" id="ref-link-section-d154747430e1190_1">32</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="L.E. Ibanez, Locally supersymmetric SU(5) grand unification. Phys. Lett. B 118, 73–78 (1982)" href="#ref-CR33" id="ref-link-section-d154747430e1190_2">33</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="L.J. Hall, J.D. Lykken, S. Weinberg, Supergravity as the messenger of supersymmetry breaking. Phys. Rev. D 27, 2359–2378 (1983)" href="#ref-CR34" id="ref-link-section-d154747430e1190_3">34</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="J.R. Ellis, D.V. Nanopoulos, K. Tamvakis, Grand unification in simple supergravity. Phys. Lett. B 121, 123–129 (1983)" href="#ref-CR35" id="ref-link-section-d154747430e1190_4">35</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="L. Alvarez-Gaume, J. Polchinski, M.B. Wise, Minimal low-energy supergravity. Nucl. Phys. B 221, 495 (1983)" href="#ref-CR36" id="ref-link-section-d154747430e1190_5">36</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 37" title="A. Brignole, L.E. Ibanez, C. Munoz, Soft supersymmetry breaking terms from supergravity and superstring models. Adv. Ser. Direct High Energy Phys. 18, 125–148 (1998). 
 arXiv:hep-ph/9707209
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR37" id="ref-link-section-d154747430e1193">37</a>], the soft-breaking masses are of order <span class="mathjax-tex">\(m_\text {soft} \sim \langle F \rangle / M_P \sim {m_{3/2}}\)</span>, so that the gravitino can lie anywhere in the supersymmetric mass spectrum. In gauge-mediated supersymmetry breaking (GMSB) [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="M. Dine, W. Fischler, A phenomenological model of particle physics based on supersymmetry. Phys. Lett. B 110, 227–231 (1982)" href="#ref-CR38" id="ref-link-section-d154747430e1263">38</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="M. Dine, W. Fischler, M. Srednicki, Supersymmetric technicolor. Nucl. Phys. B 189, 575–593 (1981)" href="#ref-CR39" id="ref-link-section-d154747430e1263_1">39</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="S. Dimopoulos, S. Raby, Supercolor. Nucl. Phys. B 192, 353–368 (1981)" href="#ref-CR40" id="ref-link-section-d154747430e1263_2">40</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="L. Alvarez-Gaume, M. Claudson, M.B. Wise, Low-energy supersymmetry. Nucl. Phys. B 207, 96 (1982)" href="#ref-CR41" id="ref-link-section-d154747430e1263_3">41</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="C.R. Nappi, B.A. Ovrut, Supersymmetric extension of the SU(3) x SU(2) x U(1) model. Phys. Lett. B 113, 175–179 (1982)" href="#ref-CR42" id="ref-link-section-d154747430e1263_4">42</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="M. Dine, A.E. Nelson, Dynamical supersymmetry breaking at low-energies. Phys. Rev. D 48, 1277–1287 (1993). 
 arXiv:hep-ph/9303230
 
 " href="#ref-CR43" id="ref-link-section-d154747430e1263_5">43</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="M. Dine, A.E. Nelson, Y. Shirman, Low-energy dynamical supersymmetry breaking simplified. Phys. Rev. D 51, 1362–1370 (1995). 
 arXiv:hep-ph/9408384
 
 " href="#ref-CR44" id="ref-link-section-d154747430e1263_6">44</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="M. Dine, A.E. Nelson, Y. Nir, Y. Shirman, New tools for low-energy dynamical supersymmetry breaking. Phys. Rev. D 53, 2658–2669 (1996). 
 arXiv:hep-ph/9507378
 
 " href="#ref-CR45" id="ref-link-section-d154747430e1263_7">45</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 46" title="C.F. Kolda, Gauge mediated supersymmetry breaking: introduction, review and update. Nucl. Phys. B Proc. Suppl. 62, 266–275 (1998). 
 arXiv:hep-ph/9707450
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR46" id="ref-link-section-d154747430e1266">46</a>], on the other hand, the soft-breaking masses are of order <span class="mathjax-tex">\(m_\text {soft} \sim \langle F \rangle / M_\text {mess}\)</span>, where <span class="mathjax-tex">\(M_\text {mess}\)</span> is the scale of the messengers mediating SUSY breaking. Consequently, the gravitino mass is Planck-scale suppressed by <span class="mathjax-tex">\(M_\text {mess} / M_P\)</span> relative to the masses of the other superpartners. Thus, in GMSB the gravitino is expected to be the lightest supersymmetric particle (LSP).</p><p>Motivated by GMSB, in this work we consider the electroweakino sector and an approximately massless gravitino LSP, with the other superpartners decoupled. The next-to-lightest supersymmetric particle (NLSP) must then be a neutralino or a chargino, though the latter is unusual in the MSSM parameter space [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 47" title="G.D. Kribs, A. Martin, T.S. Roy, Supersymmetry with a chargino NLSP and gravitino LSP. JHEP 01, 023 (2009). 
 arXiv:0807.4936
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR47" id="ref-link-section-d154747430e1377">47</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 48" title="N.E. Bomark, A. Kvellestad, S. Lola, P. Osland, A.R. Raklev, Long lived charginos in natural SUSY? JHEP 05, 007 (2014). 
 arXiv:1310.2788
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR48" id="ref-link-section-d154747430e1380">48</a>]. The electroweakinos, <span class="mathjax-tex">\({\tilde{\chi }}^0_{1,2,3,4}\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}^\pm _{1,2}\)</span>, may decay to a gravitino and an SM particle. Naively, one might expect this to proceed slowly through gravitational interactions. However, as the gravitino acquires goldstino interactions through the super-Higgs mechanism [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 49" title="P. Fayet, Mixing between gravitational and weak interactions through the massive gravitino. Phys. Lett. B 70, 461–464 (1977)" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR49" id="ref-link-section-d154747430e1472">49</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 50" title="P. Fayet, Weak interactions of a light gravitino: a lower limit on the gravitino mass from the decay psi 
 
 
 
 $$\rightarrow $$
 
 →
 
 gravitino anti-photino. Phys. Lett. B 84, 421–426 (1979)" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR50" id="ref-link-section-d154747430e1476">50</a>], the decay may be prompt when <span class="mathjax-tex">\({m_{3/2}}\lesssim 1\,\text {keV} \)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 51" title="S. Ambrosanio, G.L. Kane, G.D. Kribs, S.P. Martin, S. Mrenna, Search for supersymmetry with a light gravitino at the Fermilab Tevatron and CERN LEP colliders. Phys. Rev. D 54, 5395–5411 (1996). 
 arXiv:hep-ph/9605398
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR51" id="ref-link-section-d154747430e1520">51</a>]. The neutralino decays <span class="mathjax-tex">\({\tilde{\chi }}^0 \rightarrow \{h, H, A, Z\} \, {{\tilde{G}}}\)</span> and the chargino decays <span class="mathjax-tex">\({\tilde{\chi }}^{\pm } \rightarrow \{H^{\pm }, W^{\pm }\} \, {{\tilde{G}}}\)</span> could be kinematically allowed depending on the mass spectrum, whereas the neutralino decays <span class="mathjax-tex">\({\tilde{\chi }}^0 \rightarrow \gamma \, {{\tilde{G}}}\)</span> are guaranteed to be allowed and dominate for the lightest neutralino, <span class="mathjax-tex">\({\tilde{\chi }}^0_1\)</span>, across much of parameter space [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 52" title="S. Dimopoulos, M. Dine, S. Raby, S.D. Thomas, Experimental signatures of low-energy gauge mediated supersymmetry breaking. Phys. Rev. Lett. 76, 3494–3497 (1996). 
 arXiv:hep-ph/9601367
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR52" id="ref-link-section-d154747430e1749">52</a>]. We thus assume that the electroweakinos may decay promptly through any kinematically open channel to an SM particle and a gravitino.</p><p>Direct LHC production of gravitino pairs, or associated production of a gravitino and another superpartner, can only reach detectable rates if <span class="mathjax-tex">\({m_{3/2}}\lll 1\,{\text {eV}} \)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 53" title="F. Maltoni, A. Martini, K. Mawatari, B. Oexl, Signals of a superlight gravitino at the LHC. JHEP 04, 021 (2015). 
 arXiv:1502.01637
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR53" id="ref-link-section-d154747430e1796">53</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 54" title="A. Brignole, F. Feruglio, M.L. Mangano, F. Zwirner, Signals of a superlight gravitino at hadron colliders when the other superparticles are heavy. Nucl. Phys. B 526, 136–152 (1998). 
 arXiv:hep-ph/9801329
 
 . [Erratum: Nucl. Phys. B 582, 759–761 (2000)]" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR54" id="ref-link-section-d154747430e1799">54</a>]. For scenarios with electroweakinos within LHC reach and an eV scale gravitino, which is the focus of our study, the dominant gravitino production mode is through the prompt decay of the NLSP. This gives rise to distinctive collider signatures, such as two gravitinos that carry away missing energy and two energetic photons. Whilst the NLSP always decays promptly to a gravitino, an eV scale gravitino implies that the heavier electroweakinos decay predominantly to lighter ones [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 51" title="S. Ambrosanio, G.L. Kane, G.D. Kribs, S.P. Martin, S. Mrenna, Search for supersymmetry with a light gravitino at the Fermilab Tevatron and CERN LEP colliders. Phys. Rev. D 54, 5395–5411 (1996). 
 arXiv:hep-ph/9605398
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR51" id="ref-link-section-d154747430e1802">51</a>], unless the mass degeneracy between the electroweakinos is severe (see below). Production of heavier electroweakinos will therefore typically result in multi-step decay chains that terminate with the decay of the NLSP to the gravitino.</p><p>The phenomenological impacts of electron-positron collider [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 52" title="S. Dimopoulos, M. Dine, S. Raby, S.D. Thomas, Experimental signatures of low-energy gauge mediated supersymmetry breaking. Phys. Rev. Lett. 76, 3494–3497 (1996). 
 arXiv:hep-ph/9601367
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR52" id="ref-link-section-d154747430e1809">52</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="P. Fayet, Lower limit on the mass of a light gravitino from e+ e- annihilation experiments. Phys. Lett. B 175, 471–477 (1986)" href="#ref-CR55" id="ref-link-section-d154747430e1812">55</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="D.A. Dicus, S. Nandi, J. Woodside, Unusual 
 
 
 
 $$Z^0$$
 
 
 Z
 0
 
 
 decays in supersymmetry with a superlight gravitino. Phys. Rev. D 43, 2951–2955 (1991)" href="#ref-CR56" id="ref-link-section-d154747430e1812_1">56</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="D.R. Stump, M. Wiest, C.P. Yuan, Detecting a light gravitino at linear collider to probe the SUSY breaking scale. Phys. Rev. D 54, 1936–1943 (1996). 
 arXiv:hep-ph/9601362
 
 " href="#ref-CR57" id="ref-link-section-d154747430e1812_2">57</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="A. Brignole, F. Feruglio, F. Zwirner, Signals of a superlight gravitino at 
 
 
 
 $$e^+ e^-$$
 
 
 
 e
 +
 
 
 e
 -
 
 
 
 colliders when the other superparticles are heavy. Nucl. Phys. B 516, 13–28 (1998). 
 arXiv:hep-ph/9711516
 
 . [Erratum: Nucl. Phys. B 555, 653–655 (1999)]" href="#ref-CR58" id="ref-link-section-d154747430e1812_3">58</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="J.L. Lopez, D.V. Nanopoulos, A. Zichichi, Single photon signals at LEP in supersymmetric models with a light gravitino. Phys. Rev. D 55, 5813–5825 (1997). 
 arXiv:hep-ph/9611437
 
 " href="#ref-CR59" id="ref-link-section-d154747430e1812_4">59</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="J.R. Ellis, J.L. Lopez, D.V. Nanopoulos, Analysis of LEP constraints on supersymmetric models with a light gravitino. Phys. Lett. B 394, 354–358 (1997). 
 arXiv:hep-ph/9610470
 
 " href="#ref-CR60" id="ref-link-section-d154747430e1812_5">60</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 61" title="S. Ambrosanio, G.D. Kribs, S.P. Martin, Signals for gauge mediated supersymmetry breaking models at the CERN LEP-2 collider. Phys. Rev. D 56, 1761–1777 (1997). 
 arXiv:hep-ph/9703211
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR61" id="ref-link-section-d154747430e1815">61</a>], Tevatron [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 51" title="S. Ambrosanio, G.L. Kane, G.D. Kribs, S.P. Martin, S. Mrenna, Search for supersymmetry with a light gravitino at the Fermilab Tevatron and CERN LEP colliders. Phys. Rev. D 54, 5395–5411 (1996). 
 arXiv:hep-ph/9605398
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR51" id="ref-link-section-d154747430e1818">51</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 52" title="S. Dimopoulos, M. Dine, S. Raby, S.D. Thomas, Experimental signatures of low-energy gauge mediated supersymmetry breaking. Phys. Rev. Lett. 76, 3494–3497 (1996). 
 arXiv:hep-ph/9601367
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR52" id="ref-link-section-d154747430e1821">52</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 54" title="A. Brignole, F. Feruglio, M.L. Mangano, F. Zwirner, Signals of a superlight gravitino at hadron colliders when the other superparticles are heavy. Nucl. Phys. B 526, 136–152 (1998). 
 arXiv:hep-ph/9801329
 
 . [Erratum: Nucl. Phys. B 582, 759–761 (2000)]" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR54" id="ref-link-section-d154747430e1825">54</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="D.A. Dicus, S. Nandi, J. Woodside, Collider signals of a superlight gravitino. Phys. Rev. D 41, 2347 (1990)" href="#ref-CR62" id="ref-link-section-d154747430e1828">62</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="S. Dimopoulos, S.D. Thomas, J.D. Wells, Implications of low-energy supersymmetry breaking at the Tevatron. Phys. Rev. D 54, 3283–3288 (1996). 
 arXiv:hep-ph/9604452
 
 " href="#ref-CR63" id="ref-link-section-d154747430e1828_1">63</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="K.T. Matchev, S.D. Thomas, Higgs and 
 
 
 
 $$Z$$
 
 Z
 
 boson signatures of supersymmetry. Phys. Rev. D 62, 077702 (2000). 
 arXiv:hep-ph/9908482
 
 " href="#ref-CR64" id="ref-link-section-d154747430e1828_2">64</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="H. Baer, P.G. Mercadante, X. Tata, Y.-L. Wang, The reach of Tevatron upgrades in gauge mediated supersymmetry breaking models. Phys. Rev. D 60, 055001 (1999). 
 arXiv:hep-ph/9903333
 
 " href="#ref-CR65" id="ref-link-section-d154747430e1828_3">65</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="S. Dimopoulos, M. Dine, S. Raby, S.D. Thomas, J.D. Wells, Phenomenological implications of low-energy supersymmetry breaking. Nucl. Phys. B Proc. Suppl. 52, 38–42 (1997). 
 arXiv:hep-ph/9607450
 
 " href="#ref-CR66" id="ref-link-section-d154747430e1828_4">66</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="SUSY Working Group, R.L. Culbertson et al., Low scale and gauge mediated supersymmetry breaking at the Fermilab Tevatron Run II. 
 arXiv:hep-ph/0008070
 
 " href="#ref-CR67" id="ref-link-section-d154747430e1828_5">67</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 68" title="P. Meade, M. Reece, D. Shih, Prompt decays of general neutralino NLSPs at the Tevatron. JHEP 05, 105 (2010). 
 arXiv:0911.4130
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR68" id="ref-link-section-d154747430e1831">68</a>] and LHC [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 53" title="F. Maltoni, A. Martini, K. Mawatari, B. Oexl, Signals of a superlight gravitino at the LHC. JHEP 04, 021 (2015). 
 arXiv:1502.01637
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR53" id="ref-link-section-d154747430e1834">53</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="J.S. Kim, M.E. Krauss, V. Martin-Lozano, Probing the electroweakino sector of general gauge mediation at the LHC. Phys. Lett. B 783, 150–157 (2018). 
 arXiv:1705.06497
 
 " href="#ref-CR69" id="ref-link-section-d154747430e1837">69</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="J.S. Kim, S. Pokorski, K. Rolbiecki, K. Sakurai, Gravitino vs neutralino LSP at the LHC. JHEP 09, 082 (2019). 
 arXiv:1905.05648
 
 " href="#ref-CR70" id="ref-link-section-d154747430e1837_1">70</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="J. Dutta, P. Konar, S. Mondal, B. Mukhopadhyaya, S.K. Rai, Search for a compressed supersymmetric spectrum with a light Gravitino. JHEP 09, 026 (2017). 
 arXiv:1704.04617
 
 " href="#ref-CR71" id="ref-link-section-d154747430e1837_2">71</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="X. Lu, S. Shirai, Low-scale gauge mediation after LHC Run 2. Phys. Lett. B 784, 237–247 (2018). 
 arXiv:1712.02359
 
 " href="#ref-CR72" id="ref-link-section-d154747430e1837_3">72</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Y. Gu, M. Khlopov, L. Wu, J.M. Yang, B. Zhu, Light gravitino dark matter: LHC searches and the Hubble tension. Phys. Rev. D 102, 115005 (2020). 
 arXiv:2006.09906
 
 " href="#ref-CR73" id="ref-link-section-d154747430e1837_4">73</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="A. Arbey, M. Battaglia, L. Covi, J. Hasenkamp, F. Mahmoudi, LHC constraints on gravitino dark matter. Phys. Rev. D 92, 115008 (2015). 
 arXiv:1505.04595
 
 " href="#ref-CR74" id="ref-link-section-d154747430e1837_5">74</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="M. Asano, T. Ito, S. Matsumoto, T. Moroi, Exploring supersymmetric model with very light gravitino at the LHC. JHEP 03, 011 (2012). 
 arXiv:1111.3725
 
 " href="#ref-CR75" id="ref-link-section-d154747430e1837_6">75</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="L. Roszkowski, R. Ruiz de Austri, K.-Y. Choi, Gravitino dark matter in the CMSSM and implications for leptogenesis and the LHC. JHEP 08, 080 (2005). 
 arXiv:hep-ph/0408227
 
 " href="#ref-CR76" id="ref-link-section-d154747430e1837_7">76</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 77" title="M.W. Cahill-Rowley, J.L. Hewett, S. Hoeche, A. Ismail, T.G. Rizzo, The new Look pMSSM with neutralino and gravitino LSPs. Eur. Phys. J. C 72, 2156 (2012). 
 arXiv:1206.4321
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR77" id="ref-link-section-d154747430e1840">77</a>] searches on these scenarios have been previously studied. Reference [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 69" title="J.S. Kim, M.E. Krauss, V. Martin-Lozano, Probing the electroweakino sector of general gauge mediation at the LHC. Phys. Lett. B 783, 150–157 (2018). 
 arXiv:1705.06497
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR69" id="ref-link-section-d154747430e1844">69</a>], for example, establishes limits on the electroweakino sector using light gravitino pair-production via electroweakino decay in the context of GMSB in the MSSM. This study shows that while LHC searches specifically designed for such scenarios are important, other LHC searches and measurements provide useful complementary constraints. Using the <span class="u-sans-serif">GAMBIT</span> software [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 78" title="GAMBIT Collaboration, P. Athron, C. Balázs, et al., GAMBIT: the global and modular beyond-the-standard-model inference tool. Eur. Phys. J. C 77, 784 (2017). 
 arXiv:1705.07908
 
 . Addendum in [79]" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR78" id="ref-link-section-d154747430e1850">78</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 79" title="GAMBIT Collaboration, P. Athron, C. Balázs, et al., GAMBIT: the global and modular beyond-the-standard-model inference tool. Addendum for GAMBIT 1.1: Mathematica backends, SUSYHD interface and updated likelihoods. Eur. Phys. J. C 78, 98 (2018). 
 arXiv:1705.07908
 
 . Addendum to [78]" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR79" id="ref-link-section-d154747430e1853">79</a>], we here go beyond previous works by performing the first global fit of electroweakinos in the presence of a light gravitino. We include up-to-date results from LHC Run 2, described in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Sec4">3.1</a>, and for the first time in a global fit we check that our models are allowed by a suite of measurements of SM-like final states using <span class="u-sans-serif">Contur</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 80" title="J.M. Butterworth, D. Grellscheid, M. Krämer, B. Sarrazin, D. Yallup, Constraining new physics with collider measurements of Standard Model signatures. JHEP 03, 078 (2017). 
 arXiv:1606.05296
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR80" id="ref-link-section-d154747430e1863">80</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 81" title="A. Buckley et al., Testing new physics models with global comparisons to collider measurements: the Contur toolkit. SciPost Phys. Core 4, 013 (2021). 
 arXiv:2102.04377
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR81" id="ref-link-section-d154747430e1866">81</a>]; see Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Sec5">3.2</a> for further details. Lastly, we include constraints from the Large Electron-Positron collider (LEP); see Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Sec6">3.3</a>. We do not include Tevatron searches as these constraints are in general superseded by LHC results, and performing event simulations for Tevatron searches in addition to LHC searches would greatly increase the computational expense of our study.</p><p>Whilst a gravitino LSP could play the role of dark matter (DM), and there are strong constraints that we do not consider [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="T. Asaka, K. Hamaguchi, K. Suzuki, Cosmological gravitino problem in gauge mediated supersymmetry breaking models. Phys. Lett. B 490, 136–146 (2000). 
 arXiv:hep-ph/0005136
 
 " href="#ref-CR82" id="ref-link-section-d154747430e1878">82</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="J.L. Feng, S. Su, F. Takayama, Supergravity with a gravitino LSP. Phys. Rev. D 70, 075019 (2004). 
 arXiv:hep-ph/0404231
 
 " href="#ref-CR83" id="ref-link-section-d154747430e1878_1">83</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Gravitino dark matter in the CMSSM. Phys. Lett. B 588, 7–16 (2004). 
 arXiv:hep-ph/0312262
 
 " href="#ref-CR84" id="ref-link-section-d154747430e1878_2">84</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 85" title="F.D. Steffen, Gravitino dark matter and cosmological constraints. JCAP 09, 001 (2006). 
 arXiv:hep-ph/0605306
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR85" id="ref-link-section-d154747430e1881">85</a>], each of these requires some additional assumptions. It was originally thought that to avoid over-closing the Universe it must be that <span class="mathjax-tex">\({m_{3/2}}\lesssim 1\,\text {keV} \)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 86" title="H. Pagels, J.R. Primack, Supersymmetry, cosmology and new TeV physics. Phys. Rev. Lett. 48, 223 (1982)" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR86" id="ref-link-section-d154747430e1925">86</a>]. Although this constraint is weakened when one considers inflation [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 87" title="M.Y. Khlopov, A.D. Linde, Is it easy to save the gravitino? Phys. Lett. B 138, 265–268 (1984)" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR87" id="ref-link-section-d154747430e1928">87</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 88" title="J.R. Ellis, J.E. Kim, D.V. Nanopoulos, Cosmological gravitino regeneration and decay. Phys. Lett. B 145, 181–186 (1984)" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR88" id="ref-link-section-d154747430e1932">88</a>], non-thermal production of gravitinos and the NLSP decays to gravitinos are both constrained by the measured abundance of DM. There are, furthermore, constraints from cosmic structure [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 89" title="M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese, A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest. Phys. Rev. D 71, 063534 (2005). 
 arXiv:astro-ph/0501562
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR89" id="ref-link-section-d154747430e1935">89</a>] and big-bang nucleosynthesis [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 90" title="T. Moroi, H. Murayama, M. Yamaguchi, Cosmological constraints on the light stable gravitino. Phys. Lett. B 303, 289–294 (1993)" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR90" id="ref-link-section-d154747430e1938">90</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 91" title="K. Jedamzik, M. Pospelov, Big bang nucleosynthesis and particle dark matter. New J. Phys. 11, 105028 (2009). 
 arXiv:0906.2087
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR91" id="ref-link-section-d154747430e1941">91</a>], however, the latter does not apply to our scenario where the NLSP decays promptly. We choose not to include constraints from the dark matter properties of the gravitino in this work, in order to explore electroweakinos more generally without making any limiting assumptions about cosmology.</p><p>A recent motivation for studying the possibility of light electroweakinos in this scenario is the surprising result from the CDF measurement of the <i>W</i> boson mass [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 92" title="CDF, T. Aaltonen et al., High-precision measurement of the W boson mass with the CDF II detector. Science 376, 170–176 (2022)" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR92" id="ref-link-section-d154747430e1950">92</a>], which gives a value considerably above both the SM prediction and above existing experimental results. See Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 93" title="Particle Data Group, R.L. Workman, Review of particle physics. PTEP 2022, 083C01 (2022)" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR93" id="ref-link-section-d154747430e1953">93</a>] for a review of the SM value and a summary of the experimental status. Light electroweakinos, in particular light winos and Higgsinos, are known to result in significant positive corrections to the <i>W</i> mass [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="S. Heinemeyer, W. Hollik, D. Stöckinger, A.M. Weber, G. Weiglein, Precise prediction for M(W) in the MSSM. JHEP 08, 052 (2006). 
 arXiv:hep-ph/0604147
 
 " href="#ref-CR94" id="ref-link-section-d154747430e1959">94</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="E. Bagnaschi, M. Chakraborti, S. Heinemeyer, I. Saha, G. Weiglein, Interdependence of the new “MUON G-2” result and the W-boson mass. Eur. Phys. J. C 82, 474 (2022). 
 arXiv:2203.15710
 
 " href="#ref-CR95" id="ref-link-section-d154747430e1959_1">95</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 96" title="J.M. Yang, Y. Zhang, Low energy SUSY confronted with new measurements of W-boson mass and muon g-2. Sci. Bull. 67, 1430–1436 (2022). 
 arXiv:2204.04202
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR96" id="ref-link-section-d154747430e1963">96</a>]. However, given the current uncertainty about the interpretation of the new result and its compatibility with other recent measurements, e.g. Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 97" title="LHCb, R. Aaij et al., Measurement of the W boson mass, JHEP 01, 036 (2022). 
 arXiv:2109.01113
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR97" id="ref-link-section-d154747430e1966">97</a>], we will not use this as a constraint on our model.</p></div></div></section><section data-title="Model"><div class="c-article-section" id="Sec2-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec2"><span class="c-article-section__title-number">2 </span>Model</h2><div class="c-article-section__content" id="Sec2-content"><p>The model under consideration in this study is a variant of the MSSM where all supersymmetric states except the electroweakinos and a quasi-massless gravitino are decoupled. This model, henceforth <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM, differs from the model in our previous study [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="GAMBIT Collaboration, P. Athron et al., Combined collider constraints on neutralinos and charginos. Eur. Phys. J. C 79, 395 (2019). 
 arXiv:1809.02097
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR17" id="ref-link-section-d154747430e2000">17</a>] by the addition of the light gravitino. As discussed in the introduction, a very light gravitino can be motivated in certain supersymmetry breaking scenarios, e.g. gauge mediation.</p><p>The general neutralino can be any linear combination of the neutral gauginos (<span class="mathjax-tex">\({\tilde{B}}\)</span>, <span class="mathjax-tex">\({\tilde{W}}^0\)</span>), and the neutral Higgsinos (<span class="mathjax-tex">\({\tilde{H}}^0_u\)</span>, <span class="mathjax-tex">\({\tilde{H}}^0_d\)</span>),</p><div id="Equ1" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\tilde{\chi }}_{i}^{0}=N_{i1}{\tilde{B}}+N_{i2}{\tilde{W}}^{0}+N_{i3}{\tilde{H}}_{d}^{0}+N_{i4}{\tilde{H}}_{u}^{0}, \end{aligned}$$</span></div><div class="c-article-equation__number"> (1) </div></div><p>where <span class="mathjax-tex">\(N_{ij}\)</span> are the mass eigenvectors indicating the weight of each field component in the gauge basis, <span class="mathjax-tex">\((\psi ^0)^{T} = ({\tilde{B}}, {\tilde{W}}^0, {\tilde{H}}^0_d, {\tilde{H}}^0_u)\)</span>. The corresponding bilinear terms in the Lagrangian density are</p><div id="Equ2" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\mathcal {L}}_{{\tilde{\chi }}^{0}\text {-mass}} = -\frac{1}{2}(\psi ^0)^T M_N \psi ^0 + \text {c.c.} \end{aligned}$$</span></div><div class="c-article-equation__number"> (2) </div></div><p>where the neutralino mass matrix, <span class="mathjax-tex">\(M_N\)</span>, is given by</p><div id="Equ3" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} M_N&= \left( \begin{matrix} M_1 &{} 0 &{} -\tfrac{1}{2}g^\prime vc_\beta &{} \tfrac{1}{2}g^\prime vs_\beta \\ 0 &{} M_2 &{} \tfrac{1}{2}gvc_\beta &{} -\tfrac{1}{2}gvs_\beta \\ -\tfrac{1}{2}g^\prime vc_\beta &{} \tfrac{1}{2}gvc_\beta &{} 0 &{} -\mu \\ \tfrac{1}{2}g^\prime vs_\beta &{} -\tfrac{1}{2}gvs_\beta &{} -\mu &{} 0 \end{matrix} \right) , \end{aligned}$$</span></div><div class="c-article-equation__number"> (3) </div></div><p>and <span class="mathjax-tex">\(M_1\)</span>, <span class="mathjax-tex">\(M_2\)</span> and <span class="mathjax-tex">\(\mu \)</span> are the gaugino and Higgsino soft-breaking bilinear couplings, respectively, which are free parameters in our model. Further, we have <span class="mathjax-tex">\(s_\beta = \sin \beta \)</span> and <span class="mathjax-tex">\(c_\beta = \cos \beta \)</span>, <i>g</i> and <span class="mathjax-tex">\(g^\prime \)</span> are the <span class="mathjax-tex">\(SU(2)_L\)</span> and <span class="mathjax-tex">\(U(1)_Y\)</span> gauge couplings, and <i>v</i> is the electroweak VEV. Amongst these, only the ratio <span class="mathjax-tex">\(\tan \beta = v_u/v_d\)</span> is not fixed by data and remains an additional free parameter in our model.</p><p>The general chargino eigenstates correspond to the charged Higgsinos (<span class="mathjax-tex">\({\tilde{H}}^+_u\)</span>, <span class="mathjax-tex">\({\tilde{H}}^-_d\)</span>), and gauginos (<span class="mathjax-tex">\({\tilde{W}}^+\)</span>, <span class="mathjax-tex">\({\tilde{W}}^-\)</span>). The corresponding bilinear terms in the Lagrangian density are</p><div id="Equ4" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\mathcal {L}}_{{\tilde{\chi }}^{\pm }\text {-mass}} = -\frac{1}{2}(\psi ^\pm )^T M_C \psi ^\pm + \text {c.c.} \end{aligned}$$</span></div><div class="c-article-equation__number"> (4) </div></div><p>where the chargino mass matrix, <span class="mathjax-tex">\(M_C\)</span>, is given by</p><div id="Equ16" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} M_C&= \left( \begin{matrix} 0 &{} X^T \\ X &{} 0 \end{matrix} \right) , \quad \text {with}\quad X = \left( \begin{matrix} M_2 &{} \tfrac{1}{\sqrt{2}} g v s_\beta \\ \tfrac{1}{\sqrt{2}} gv c_\beta &{} \mu \end{matrix} \right) . \end{aligned}$$</span></div></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1" data-title="Fig. 1"><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 1</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/1" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig1_HTML.png?as=webp"><img aria-describedby="Fig1" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig1_HTML.png" alt="figure 1" loading="lazy" width="685" height="651"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-1-desc"><p>Branching ratios for the lightest neutralino as a function of <span class="mathjax-tex">\(\mu \)</span>, with <span class="mathjax-tex">\(M_1=900\)</span> GeV, <span class="mathjax-tex">\(M_2=400\)</span> GeV, and <span class="mathjax-tex">\(\tan \beta =1\)</span> (top) or <span class="mathjax-tex">\(\tan \beta =10\)</span> (bottom). The wino and Higgsino NLSP regions are shown in red and green, respectively. The pink line (dash dot) shows the combined branching ratio for decays to all states other than on-shell <span class="mathjax-tex">\((Z,h,\gamma ) + {\tilde{G}}\)</span>. The thin, grey bar marks a parameter region where <span class="mathjax-tex">\(m_{{{\tilde{\chi }}}_1^\pm } < m_{{{\tilde{\chi }}}_1^0}\)</span></p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/1" data-track-dest="link:Figure1 Full size image" aria-label="Full size image figure 1" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>The gravitino mass <span class="mathjax-tex">\(m_{3/2}\)</span> depends on the dynamics of the supersymmetry breaking, but for the purpose of our study we fix it to <span class="mathjax-tex">\(m_{3/2} = 1\)</span> eV, similar to what is commonly assumed in ATLAS and CMS searches, see for example Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 98" title="CMS, A.M. Sirunyan et al., Combined search for supersymmetry with photons in proton-proton collisions at 
 
 
 
 $$\sqrt{s}=$$
 
 
 
 s
 
 =
 
 
 13 TeV. Phys. Lett. B 801, 135183 (2020). 
 arXiv:1907.00857
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR98" id="ref-link-section-d154747430e4058">98</a>]. In terms of the collider phenomenology, this makes the gravitino effectively massless and ensures prompt decays of the NLSP. We do not set the mass to exactly zero since the limit <span class="mathjax-tex">\(m_{3/2} \rightarrow 0\)</span> corresponds to no supersymmetry breaking. The exact choice for the small gravitino mass has very little impact on the results as long as <span class="mathjax-tex">\(m_{3/2} \ne 0\)</span>. The one small exception is for a wino-like chargino around the <i>W</i> mass or lower, where the gravitino mass may dictate whether the chargino decays directly to the gravitino or via the neutralino NLSP. However, scenarios with such light charginos are in any case heavily constrained, independent of this decay.</p><p>Since we do not consider direct production of gravitinos, where the cross section would be low and the signature difficult to disentangle from backgrounds, the LHC phenomenology of this model is dominated by the production and decay of the light electroweakinos. The hierarchy of <span class="mathjax-tex">\(M_1\)</span>, <span class="mathjax-tex">\(M_2\)</span> and <span class="mathjax-tex">\(\mu \)</span>, and to some extent the value of <span class="mathjax-tex">\(\tan \beta \)</span>, determines their gaugino and Higgsino components, production cross sections and branching ratios.</p><p>A chargino NLSP will decay promptly to the gravitino and a (possibly off-shell) <i>W</i> boson. However, having a chargino NLSP is only possible in narrow regions of parameter space; see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig1">1</a> for an example. Throughout most of parameter space the lightest neutralino is the NLSP. In general, a neutralino NLSP has three possible decay modes: <span class="mathjax-tex">\({\tilde{\chi }}_{1}^{0}\rightarrow \{\gamma ,Z,h\}\,{\tilde{G}}\)</span>. In the limit, <span class="mathjax-tex">\(m_{3/2}\ll m_{\{{\tilde{\chi }},Z,h\}}\)</span>, the decay widths take the form [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 83" title="J.L. Feng, S. Su, F. Takayama, Supergravity with a gravitino LSP. Phys. Rev. D 70, 075019 (2004). 
 arXiv:hep-ph/0404231
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR83" id="ref-link-section-d154747430e4371">83</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 99" title="L. Covi, J. Hasenkamp, S. Pokorski, J. Roberts, Gravitino dark matter and general neutralino NLSP. JHEP 11, 003 (2009). 
 arXiv:0908.3399
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR99" id="ref-link-section-d154747430e4375">99</a>]:</p><div id="Equ5" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \varGamma ({\tilde{\chi }}_{1}^{0}\rightarrow \gamma {\tilde{G}})&=|N_{11}c_W+N_{12}s_W|^{2}\,{\mathcal {R}}, \end{aligned}$$</span></div><div class="c-article-equation__number"> (5) </div></div><div id="Equ6" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \varGamma ({\tilde{\chi }}_{1}^{0}\rightarrow Z{\tilde{G}})&=\left( |-N_{11}s_W+N_{12}c_W|^{2} \right. \nonumber \\&\quad \left. +|-N_{13}c_\beta +N_{14}s_\beta |^{2}/2\right) \nonumber \\&\quad \times {\mathcal {C}}(m_{Z},m_{{\tilde{\chi }}_{1}^{0}})\,{\mathcal {R}}, \end{aligned}$$</span></div><div class="c-article-equation__number"> (6) </div></div><div id="Equ7" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \varGamma ({\tilde{\chi }}_{1}^{0}\rightarrow h{\tilde{G}})&=\frac{1}{2}|-N_{13}s_\alpha +N_{14}c_\alpha |^{2}\nonumber \\&\quad \times {\mathcal {C}}(m_{h},m_{{\tilde{\chi }}_{1}^{0}})\,{\mathcal {R}}. \end{aligned}$$</span></div><div class="c-article-equation__number"> (7) </div></div><p>Here <span class="mathjax-tex">\(s_W\)</span>, <span class="mathjax-tex">\(c_W\)</span>, <span class="mathjax-tex">\(s_\alpha \)</span> and <span class="mathjax-tex">\(c_\alpha \)</span> are the sines and cosines of the Weinberg angle <span class="mathjax-tex">\(\theta _W\)</span> and the mixing angle <span class="mathjax-tex">\(\alpha \)</span> between the <i>CP</i>-even neutral Higgs states, and</p><div id="Equ17" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\mathcal {R}}&=\frac{1}{48\pi M_{P}^{2}}\frac{m_{{\tilde{\chi }}_{1}^{0}}^{5}}{m_{3/2}^{2}}, \quad {\mathcal {C}}(m_{i},m_{{\tilde{\chi }}_{1}^{0}})&=\Bigg (1-\frac{m_{i}^{2}}{m_{{\tilde{\chi }}_{1}^{0}}^{2}}\Bigg )^{4}. \end{aligned}$$</span></div></div><p>In Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig1">1</a> we show representative branching ratios for the lightest neutralino, using the full expression for the widths from Refs. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 83" title="J.L. Feng, S. Su, F. Takayama, Supergravity with a gravitino LSP. Phys. Rev. D 70, 075019 (2004). 
 arXiv:hep-ph/0404231
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR83" id="ref-link-section-d154747430e5357">83</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 99" title="L. Covi, J. Hasenkamp, S. Pokorski, J. Roberts, Gravitino dark matter and general neutralino NLSP. JHEP 11, 003 (2009). 
 arXiv:0908.3399
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR99" id="ref-link-section-d154747430e5360">99</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 100" title="J. Hasenkamp, General neutralino NLSP with gravitino dark matter vs. big bang nucleosynthesis. Diploma thesis (2009)" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR100" id="ref-link-section-d154747430e5363">100</a>], including also decay modes through off-shell bosons in the total width. The plots use values of <span class="mathjax-tex">\(\mu \)</span> picked to illustrate the generic behaviour in the different wino NLSP (red) and Higgsino NLSP (green) regions (see below for further discussion), and two different values of <span class="mathjax-tex">\(\tan \beta \)</span>, which cover the impact of <span class="mathjax-tex">\(\tan \beta \)</span> on decays to <i>Z</i> and <i>h</i>. The bino NLSP region (low <span class="mathjax-tex">\(M_1\)</span> values) is much simpler and not illustrated since here dominantly <span class="mathjax-tex">\({{\tilde{\chi }}}_1^0\rightarrow \gamma {{\tilde{G}}}\)</span>, with some small branching ratio to <span class="mathjax-tex">\(Z{{\tilde{G}}}\)</span>. We see that the dominant decay mode of the lightest neutralino depends strongly on the relative ordering of the masses <span class="mathjax-tex">\(M_1\)</span>, <span class="mathjax-tex">\(M_2\)</span>, and <span class="mathjax-tex">\(\mu \)</span>, and the size of <span class="mathjax-tex">\(\tan \beta \)</span>.</p><p>To make our presentation more systematic, we now discuss the properties of these three major phenomenological regions in terms of the ordering of the gaugino, <span class="mathjax-tex">\(M_1\)</span> and <span class="mathjax-tex">\(M_2\)</span>, and Higgsino, <span class="mathjax-tex">\(\mu \)</span>, masses.</p><p><i>Wino NLSP:</i> With <span class="mathjax-tex">\(|M_2| < |M_1|,|\mu |\)</span>, the two lightest electroweakinos, <span class="mathjax-tex">\({{\tilde{\chi }}}_1^\pm \)</span> and <span class="mathjax-tex">\({{\tilde{\chi }}}_1^0\)</span>, are a charged and neutral wino with relatively large LHC production cross sections. The lightest neutralino decays as <span class="mathjax-tex">\({{\tilde{\chi }}}_1^0\rightarrow \{Z,\gamma \}\,{{\tilde{G}}}\)</span>, see for example the wino NLSP region (red) of Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig1">1</a> with <span class="mathjax-tex">\(\mu >M_2\)</span>. For the lightest chargino, when <span class="mathjax-tex">\(m_{{{\tilde{\chi }}}_1^\pm } \gg m_W\)</span> the small mass difference between the wino-like chargino and neutralino leads to decays directly to the gravitino and an on-shell <i>W</i>, <span class="mathjax-tex">\({{\tilde{\chi }}}_1^\pm \rightarrow W^\pm {{\tilde{G}}}\)</span>. For smaller chargino masses we have instead decays to two fermions (via an off-shell <i>W</i>), together with the gravitino or lightest neutralino <span class="mathjax-tex">\({{\tilde{\chi }}}_1^0\)</span>.</p><p><i>Higgsino NLSP:</i> If instead <span class="mathjax-tex">\(|\mu | < |M_1|, |M_2|\)</span>, the three lightest electroweakinos, <span class="mathjax-tex">\({{\tilde{\chi }}}_1^0\)</span>, <span class="mathjax-tex">\({{\tilde{\chi }}}_2^0\)</span> and <span class="mathjax-tex">\({{\tilde{\chi }}}_1^\pm \)</span>, are dominantly Higgsino and have somewhat smaller production cross sections compared to the wino scenario. Pure Higgsinos do not decay to photons at tree level, so in this case the decays <span class="mathjax-tex">\({{\tilde{\chi }}}_1^0\rightarrow \{Z,h\}\,{{\tilde{G}}}\)</span> are typically dominant, unless the NLSP mass is so small that the available phase space becomes limiting, or even that these decays go off-shell. In this case decays to photons become important again, especially at low masses, along with three-body final states with two opposite-sign SM fermions at intermediate masses. The relationship between the branching ratios to Higgs and <i>Z</i> final states is determined by the sign of <span class="mathjax-tex">\(\mu \)</span> and the value of <span class="mathjax-tex">\(\tan \beta \)</span>. In particular we note that taking <span class="mathjax-tex">\(\mu < 0\)</span> and <span class="mathjax-tex">\(\tan \beta \rightarrow 1\)</span> suppresses the <span class="mathjax-tex">\(Z {{\tilde{G}}}\)</span> channel, due to cancellation between the <span class="mathjax-tex">\(N_{13}\)</span> and <span class="mathjax-tex">\(N_{14}\)</span> terms in Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Equ6">6</a>). This interplay of decays is again illustrated in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig1">1</a> in the Higgsino NLSP region (green) with <span class="mathjax-tex">\(|\mu | < M_2\)</span>. The heavier neutralino and the chargino typically decay to the lightest neutralino and SM fermions in three-body decays, instead of the gravitino, due to the generically larger mass differences between the lightest electroweakinos in the Higgsino scenario [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 48" title="N.E. Bomark, A. Kvellestad, S. Lola, P. Osland, A.R. Raklev, Long lived charginos in natural SUSY? JHEP 05, 007 (2014). 
 arXiv:1310.2788
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR48" id="ref-link-section-d154747430e6468">48</a>].</p><p><i>Bino NLSP:</i> For <span class="mathjax-tex">\(|M_1| < |M_2|, |\mu |\)</span>, the NLSP is a mostly bino <span class="mathjax-tex">\({{\tilde{\chi }}}_1^0\)</span> and the direct pair production cross section at the LHC is small. Most of the production is then likely to be from decays of the heavier, wino- or Higgsino-dominated electroweakinos, depending on the hierarchy of <span class="mathjax-tex">\(M_2\)</span> and <span class="mathjax-tex">\(\mu \)</span>. The bino NLSP decays dominantly as <span class="mathjax-tex">\({{\tilde{\chi }}}_1^0\rightarrow \gamma {{\tilde{G}}}\)</span>.</p><p>The overall pattern that can be deduced from the above discussion is that the model predicts events with a pair of bosons picked from <span class="mathjax-tex">\(\{h,Z,W,\gamma \}\)</span>, along with missing energy from the escaping gravitinos, possibly with one or both bosons being off-shell if the mass of the NLSP is below 125 GeV. Additional bosons may also be produced from the decays of heavier electroweakinos into the NLSP. In addition to the classic signature of di-photons plus missing energy, we see that this model features events with final state SM fermions from the decays of the massive bosons, meaning that many LHC searches are relevant for the model.</p><p>Apart from the addition of the light gravitino LSP, our implementation of the <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM model in <span class="u-sans-serif">GAMBIT</span> is identical to our implementation of the EWMSSM model described in detail in Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="GAMBIT Collaboration, P. Athron et al., Combined collider constraints on neutralinos and charginos. Eur. Phys. J. C 79, 395 (2019). 
 arXiv:1809.02097
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR17" id="ref-link-section-d154747430e6728">17</a>]. In particular, the Higgs mass, which in this study only matters for event kinematics, is set by hand to <span class="mathjax-tex">\(125.09\,\text {GeV} \)</span>.</p></div></div></section><section data-title="Collider likelihoods"><div class="c-article-section" id="Sec3-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec3"><span class="c-article-section__title-number">3 </span>Collider likelihoods</h2><div class="c-article-section__content" id="Sec3-content"><p>The total likelihood function explored in our global fit consists of likelihoods for LHC searches for new particles, LHC measurements of SM signatures, and LEP cross-section limits for electroweakino production. We describe each of these likelihoods below.</p><h3 class="c-article__sub-heading" id="Sec4"><span class="c-article-section__title-number">3.1 </span>LHC searches</h3><p>The likelihood contribution from LHC searches is based on passing simulated signal events through our emulations of the 13 TeV ATLAS and CMS searches in Refs. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s}$$
 
 
 s
 
 
 = 13 TeV with the ATLAS detector. Phys. Rev. D 104, 112010 (2021). 
 arXiv:2108.07586
 
 " href="#ref-CR101" id="ref-link-section-d154747430e6770">101</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 
 
 
 
 $$\text{fb}^{-1}$$
 
 
 fb
 
 -
 1
 
 
 
 of 
 
 
 
 $$\sqrt{s}$$
 
 
 s
 
 
 =13 TeV 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collision data with the ATLAS detector. JHEP 02, 143 (2021). 
 arXiv:2010.14293
 
 " href="#ref-CR102" id="ref-link-section-d154747430e6770_1">102</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Search for a scalar partner of the top quark in the jets plus missing transverse momentum final state at 
 
 
 
 $$\sqrt{s}$$
 
 
 s
 
 
 =13 TeV with the ATLAS detector. JHEP 12, 085 (2017). 
 arXiv:1709.04183
 
 " href="#ref-CR103" id="ref-link-section-d154747430e6770_2">103</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Search for top-squark pair production in final states with one lepton, jets, and missing transverse momentum using 36 
 
 
 
 $$\text{ fb}^{-1}$$
 
 
 
 
 fb
 
 -
 1
 
 
 
 
 of 
 
 
 
 $$ \sqrt{s}=13 $$
 
 
 
 s
 
 =
 13
 
 
 TeV pp collision data with the ATLAS detector. JHEP 06, 108 (2018). 
 arXiv:1711.11520
 
 " href="#ref-CR104" id="ref-link-section-d154747430e6770_3">104</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Search for new phenomena in events with two opposite-charge leptons, jets and missing transverse momentum in pp collisions at 
 
 
 
 $$\sqrt{{\rm s}} $$
 
 
 s
 
 
 = 13 TeV with the ATLAS detector. JHEP 04, 165 (2021). 
 arXiv:2102.01444
 
 " href="#ref-CR105" id="ref-link-section-d154747430e6770_4">105</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Search for top squarks in events with a Higgs or 
 
 
 
 $$Z$$
 
 Z
 
 boson using 139 
 
 
 
 $$\text{ fb}^{-1}$$
 
 
 
 
 fb
 
 -
 1
 
 
 
 
 of 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collision data at 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector. Eur. Phys. J. C 80, 1080 (2020). 
 arXiv:2006.05880
 
 " href="#ref-CR106" id="ref-link-section-d154747430e6770_5">106</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions using the ATLAS detector. Eur. Phys. J. C 80, 123 (2020). 
 arXiv:1908.08215
 
 " href="#ref-CR107" id="ref-link-section-d154747430e6770_6">107</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Search for supersymmetry in events with 
 
 
 
 $$b$$
 
 b
 
 -tagged jets and missing transverse momentum in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector. JHEP 11, 195 (2017). 
 arXiv:1708.09266
 
 " href="#ref-CR108" id="ref-link-section-d154747430e6770_7">108</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Search for pair production of higgsinos in final states with at least three 
 
 
 
 $$b$$
 
 b
 
 -tagged jets in 
 
 
 
 $$\sqrt{s} = 13$$
 
 
 
 s
 
 =
 13
 
 
 TeV 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions using the ATLAS detector. Phys. Rev. D 98, 092002 (2018). 
 arXiv:1806.04030
 
 " href="#ref-CR109" id="ref-link-section-d154747430e6770_8">109</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Search for chargino-neutralino pair production in final states with three leptons and missing transverse momentum in 
 
 
 
 $$\sqrt{s} = 13$$
 
 
 
 s
 
 =
 13
 
 
 TeV pp collisions with the ATLAS detector. Eur. Phys. J. C 81, 1118 (2021). 
 arXiv:2106.01676
 
 " href="#ref-CR110" id="ref-link-section-d154747430e6770_9">110</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Search for supersymmetry in events with four or more charged leptons in 139 
 
 
 
 $$\text{ fb}^{-1}$$
 
 
 
 
 fb
 
 -
 1
 
 
 
 
 of 
 
 
 
 $$\sqrt{s} $$
 
 
 s
 
 
 = 13 TeV pp collisions with the ATLAS detector. JHEP 07, 167 (2021). 
 arXiv:2103.11684
 
 " href="#ref-CR111" id="ref-link-section-d154747430e6770_10">111</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Search for squarks and gluinos in final states with same-sign leptons and jets using 139 
 
 
 
 $$\text{ fb}^{-1}$$
 
 
 
 
 fb
 
 -
 1
 
 
 
 
 of data collected with the ATLAS detector. JHEP 06, 046 (2020). 
 arXiv:1909.08457
 
 " href="#ref-CR112" id="ref-link-section-d154747430e6770_11">112</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Search for new phenomena in final states with photons, jets and missing transverse momentum in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s} = 13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector" href="#ref-CR113" id="ref-link-section-d154747430e6770_12">113</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions with the ATLAS detector. Phys. Rev. D 97, 092006 (2018). 
 arXiv:1802.03158
 
 " href="#ref-CR114" id="ref-link-section-d154747430e6770_13">114</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Search for exotic decays of the Higgs boson to at least one photon and missing transverse momentum using 79.8 
 
 
 
 $$\text{ fb}^{-1}$$
 
 
 
 
 fb
 
 -
 1
 
 
 
 
 of proton–proton collisions collected at 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector" href="#ref-CR115" id="ref-link-section-d154747430e6770_14">115</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum. JHEP 10, 244 (2019). 
 arXiv:1908.04722
 
 " href="#ref-CR116" id="ref-link-section-d154747430e6770_15">116</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Search for electroweak production of charginos and neutralinos in WH events in proton-proton collisions at 
 
 
 
 $$ \sqrt{s}=13 $$
 
 
 
 s
 
 =
 13
 
 
 TeV. JHEP 11, 029 (2017). 
 arXiv:1706.09933
 
 " href="#ref-CR117" id="ref-link-section-d154747430e6770_16">117</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Search for top squark pair production in pp collisions at 
 
 
 
 $$ \sqrt{s}=13 $$
 
 
 
 s
 
 =
 13
 
 
 TeV using single lepton events. JHEP 10, 019 (2017). 
 arXiv:1706.04402
 
 " href="#ref-CR118" id="ref-link-section-d154747430e6770_17">118</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Search for top squarks and dark matter particles in opposite-charge dilepton final states at 
 
 
 
 $$\sqrt{s}=$$
 
 
 
 s
 
 =
 
 
 13 TeV. Phys. Rev. D 97, 032009 (2018). 
 arXiv:1711.00752
 
 " href="#ref-CR119" id="ref-link-section-d154747430e6770_18">119</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Search for new physics in events with two soft oppositely charged leptons and missing transverse momentum in proton-proton collisions at 
 
 
 
 $$\sqrt{s}=$$
 
 
 
 s
 
 =
 
 
 13 TeV. Phys. Lett. B 782, 440–467 (2018). 
 arXiv:1801.01846
 
 " href="#ref-CR120" id="ref-link-section-d154747430e6770_19">120</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Search for supersymmetry in final states with two oppositely charged same-flavor leptons and missing transverse momentum in proton-proton collisions at 
 
 
 
 $$\sqrt{s} =$$
 
 
 
 s
 
 =
 
 
 13 TeV. JHEP 04, 123 (2021). 
 arXiv:2012.08600
 
 " href="#ref-CR121" id="ref-link-section-d154747430e6770_20">121</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Searches for pair production of charginos and top squarks in final states with two oppositely charged leptons in proton-proton collisions at 
 
 
 
 $$\sqrt{s}=$$
 
 
 
 s
 
 =
 
 
 13 TeV. JHEP 11, 079 (2018). 
 arXiv:1807.07799
 
 " href="#ref-CR122" id="ref-link-section-d154747430e6770_21">122</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Search for physics beyond the standard model in events with jets and two same-sign or at least three charged leptons in proton-proton collisions at 
 
 
 
 $$\sqrt{s}=$$
 
 
 
 s
 
 =
 
 
 13 TeV. Eur. Phys. J. C 80, 752 (2020). 
 arXiv:2001.10086
 
 " href="#ref-CR123" id="ref-link-section-d154747430e6770_22">123</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A. Tumasyan et al., Search for electroweak production of charginos and neutralinos in proton-proton collisions at 
 
 
 
 $$ \sqrt{s} $$
 
 
 s
 
 
 = 13 TeV. JHEP 04, 147 (2022). 
 arXiv:2106.14246
 
 " href="#ref-CR124" id="ref-link-section-d154747430e6770_23">124</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Search for gauge-mediated supersymmetry in events with at least one photon and missing transverse momentum in pp collisions at 
 
 
 
 $$\sqrt{s} = $$
 
 
 
 s
 
 =
 
 
 13 TeV. Phys. Lett. B 780, 118–143 (2018). 
 arXiv:1711.08008
 
 " href="#ref-CR125" id="ref-link-section-d154747430e6770_24">125</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Search for supersymmetry in final states with photons and missing transverse momentum in proton-proton collisions at 13 TeV. JHEP 06, 143 (2019). 
 arXiv:1903.07070
 
 " href="#ref-CR126" id="ref-link-section-d154747430e6770_25">126</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 127" title="CMS, A.M. Sirunyan et al., Search for supersymmetry in events with a photon, a lepton, and missing transverse momentum in proton-proton collisions at 
 
 
 
 $$\sqrt{s} =$$
 
 
 
 s
 
 =
 
 
 13 TeV. JHEP 01, 154 (2019). [
 arXiv:1812.04066
 
 ]" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR127" id="ref-link-section-d154747430e6773">127</a>]. Reproducing a collider search to sufficient accuracy can be challenging, e.g. due to limited available information about technical details of the analysis, or due to limitations in the tool-chain used for fast event simulation. In some cases we can therefore only incorporate a subset of the signal regions defined by the search. In Appendix B we provide a short description of each search, and point out which signal regions our signal simulation includes.</p><p>For all the included LHC searches we have the background uncertainty for each signal region, but in many cases there is no public information on how these uncertainties are correlated. We then take a conservative approach and, for each search, construct a likelihood function that only uses the signal region <i>i</i> with the best expected sensitivity for the given <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM parameter point. Our likelihood function for each of these searches is then constructed from a simple product of a Poisson and a Gaussian factor,</p><div id="Equ8" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\mathcal {L}}_{\text {search}}^\text {1SR}(s_i, \gamma _i)&= \left[ \frac{(s_i + b_i + \gamma _i)^{n_i} \, e^{-(s_i + b_i + \gamma _i)}}{n_i!} \right] \nonumber \\&\quad \times \frac{1}{\sqrt{2\pi }\sigma _i} e^{-\frac{\gamma _i^2}{2 \sigma _i^2}}, \end{aligned}$$</span></div><div class="c-article-equation__number"> (8) </div></div><p>where <span class="mathjax-tex">\(s_i\)</span>, <span class="mathjax-tex">\(b_i\)</span> and <span class="mathjax-tex">\(n_i\)</span> are, respectively, the expected signal yield, expected background yield and observed yield for the given signal region <i>i</i>. The Gaussian factor with the nuisance parameter <span class="mathjax-tex">\(\gamma _i\)</span> is introduced to account for the uncertainty in the total predicted yield, and we therefore set the width <span class="mathjax-tex">\(\sigma _i\)</span> by adding in quadrature the uncertainties of <span class="mathjax-tex">\(s_i\)</span> and <span class="mathjax-tex">\(b_i\)</span>. For our parameter scans we need a likelihood function that only depends on the predicted signal yield. Thus, for each sampled <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM parameter point we profile <span class="mathjax-tex">\({\mathcal {L}}_{\text {search}}^\text {1SR}(s_i, \gamma _i)\)</span> over the nuisance parameter <span class="mathjax-tex">\(\gamma _i\)</span>:</p><div id="Equ9" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\mathcal {L}}_{\text {search}}^\text {1SR}(s_i) \equiv {\mathcal {L}}_{\text {search}}^\text {1SR}(s_i, \hat{\hat{\gamma _i}}), \end{aligned}$$</span></div><div class="c-article-equation__number"> (9) </div></div><p>where <span class="mathjax-tex">\(\hat{\hat{\gamma _i}}\)</span> is the <span class="mathjax-tex">\(\gamma _i\)</span> value that maximises <span class="mathjax-tex">\({\mathcal {L}}_{\text {search}}^\text {1SR}(s_i,\gamma _i)\)</span> for a given <span class="mathjax-tex">\(s_i\)</span>.</p><p>CMS have for a number of their searches published covariance matrices for the background uncertainties, following the <i>simplified likelihood</i> approach [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 128" title="CMS Collaboration, Simplified likelihood for the re-interpretation of public CMS results. CMS-NOTE-2017-001 (2017)" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR128" id="ref-link-section-d154747430e7591">128</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 129" title="A. Buckley, M. Citron et al., The simplified likelihood framework. JHEP 04, 064 (2019). 
 arXiv:1809.05548
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR129" id="ref-link-section-d154747430e7594">129</a>]. For these searches we can generalise Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Equ8">8</a>) to a likelihood that utilises the information in all signal regions. A search with <span class="mathjax-tex">\(n_\text {SR}\)</span> signal regions is then described by the likelihood function</p><div id="Equ10" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\mathcal {L}}_{\text {search}}(\varvec{s}, \varvec{\gamma })&= \prod _{i=1}^{n_\text {SR}} \left[ \frac{(s_i + b_i + \gamma _i)^{n_i} \, e^{-(s_i + b_i + \gamma _i)}}{n_i!} \right] \nonumber \\&\quad \times \frac{1}{\sqrt{\det 2\pi \varSigma }} e^{-\frac{1}{2} \varvec{\gamma }^T \varvec{\varSigma ^{-1}} \varvec{\gamma }}. \end{aligned}$$</span></div><div class="c-article-equation__number"> (10) </div></div><p>Here <span class="mathjax-tex">\(\varvec{\varSigma }\)</span> is the <span class="mathjax-tex">\(n_\text {SR} \times n_\text {SR}\)</span> covariance matrix for the nuisance parameters <span class="mathjax-tex">\(\gamma _i\)</span>. We construct <span class="mathjax-tex">\(\varvec{\varSigma }\)</span> by taking the covariance matrix provided by CMS and adding in quadrature our signal yield uncertainties along the diagonal. To obtain a likelihood that only depends on the set of signal yields <span class="mathjax-tex">\(\varvec{s}\)</span> we, for each <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM point, profile <span class="mathjax-tex">\({\mathcal {L}}_{\text {search}}(\varvec{s}, \varvec{\gamma })\)</span> over the set of <span class="mathjax-tex">\(n_\text {SR}\)</span> nuisance parameters,</p><div id="Equ11" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\mathcal {L}}_{\text {search}}(\varvec{s}) \equiv {\mathcal {L}}_{\text {search}}(\varvec{s}, \hat{\hat{\varvec{\gamma }}}). \end{aligned}$$</span></div><div class="c-article-equation__number"> (11) </div></div><p>We also note that for the searches in Refs. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 102" title="ATLAS, G. Aad et al., Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 
 
 
 
 $$\text{fb}^{-1}$$
 
 
 fb
 
 -
 1
 
 
 
 of 
 
 
 
 $$\sqrt{s}$$
 
 
 s
 
 
 =13 TeV 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collision data with the ATLAS detector. JHEP 02, 143 (2021). 
 arXiv:2010.14293
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR102" id="ref-link-section-d154747430e8234">102</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 107" title="ATLAS, G. Aad et al., Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions using the ATLAS detector. Eur. Phys. J. C 80, 123 (2020). 
 arXiv:1908.08215
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR107" id="ref-link-section-d154747430e8237">107</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Search for chargino-neutralino pair production in final states with three leptons and missing transverse momentum in 
 
 
 
 $$\sqrt{s} = 13$$
 
 
 
 s
 
 =
 13
 
 
 TeV pp collisions with the ATLAS detector. Eur. Phys. J. C 81, 1118 (2021). 
 arXiv:2106.01676
 
 " href="#ref-CR110" id="ref-link-section-d154747430e8241">110</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Search for supersymmetry in events with four or more charged leptons in 139 
 
 
 
 $$\text{ fb}^{-1}$$
 
 
 
 
 fb
 
 -
 1
 
 
 
 
 of 
 
 
 
 $$\sqrt{s} $$
 
 
 s
 
 
 = 13 TeV pp collisions with the ATLAS detector. JHEP 07, 167 (2021). 
 arXiv:2103.11684
 
 " href="#ref-CR111" id="ref-link-section-d154747430e8241_1">111</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 112" title="ATLAS, G. Aad et al., Search for squarks and gluinos in final states with same-sign leptons and jets using 139 
 
 
 
 $$\text{ fb}^{-1}$$
 
 
 
 
 fb
 
 -
 1
 
 
 
 
 of data collected with the ATLAS detector. JHEP 06, 046 (2020). 
 arXiv:1909.08457
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR112" id="ref-link-section-d154747430e8244">112</a>] ATLAS have published the information required to fully utilise all signal regions, through the <i>full likelihood</i> framework [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 130" title="ATLAS, G. Aad et al., Reproducing searches for new physics with the ATLAS experiment through publication of full statistical likelihoods" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR130" id="ref-link-section-d154747430e8250">130</a>]. We will make use of these likelihoods in future GAMBIT studies.</p><p>The LHC experiments often present results for multiple categories of final states in a single publication, e.g. the CMS multilepton search for charginos and neutralinos in Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 124" title="CMS, A. Tumasyan et al., Search for electroweak production of charginos and neutralinos in proton-proton collisions at 
 
 
 
 $$ \sqrt{s} $$
 
 
 s
 
 
 = 13 TeV. JHEP 04, 147 (2022). 
 arXiv:2106.14246
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR124" id="ref-link-section-d154747430e8256">124</a>], which presents results for searches in 2-lepton, 3-lepton and 4-lepton final states. In these cases we follow the same approach as in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="GAMBIT Collaboration, P. Athron et al., Combined collider constraints on neutralinos and charginos. Eur. Phys. J. C 79, 395 (2019). 
 arXiv:1809.02097
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR17" id="ref-link-section-d154747430e8259">17</a>] and treat the results for the different final states as approximately independent searches, meaning that for each final state category we include a separate likelihood contribution of the form given in Eqs. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Equ9">9</a>) or (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Equ11">11</a>).<sup><a href="#Fn1"><span class="u-visually-hidden">Footnote </span>1</a></sup></p><p>Similar to the approach in Refs. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="GAMBIT Collaboration, P. Athron et al., Combined collider constraints on neutralinos and charginos. Eur. Phys. J. C 79, 395 (2019). 
 arXiv:1809.02097
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR17" id="ref-link-section-d154747430e8283">17</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 132" title="GAMBIT, P. Athron et al., Thermal WIMPs and the scale of new physics: global fits of Dirac dark matter effective field theories. Eur. Phys. J. C 81, 992 (2021). 
 arXiv:2106.02056
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR132" id="ref-link-section-d154747430e8286">132</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 133" title="C. Chang, P. Scott et al., Global fits of simplified models for dark matter with GAMBIT I. Scalar and fermionic models with s-channel vector mediators. 
 arXiv:2209.13266
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR133" id="ref-link-section-d154747430e8289">133</a>], we normalise the likelihood function for each LHC search with the corresponding background-only (<span class="mathjax-tex">\(\varvec{s} = \varvec{0}\)</span>) likelihood. The log-likelihood contribution from each search therefore takes the form of a log-likelihood difference</p><div id="Equ12" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \varDelta \ln {\mathcal {L}}_\text {search}(\varvec{s}) = \ln {\mathcal {L}}_\text {search}(\varvec{s}) - \ln {\mathcal {L}}_\text {search}(\varvec{s} = \varvec{0}). \end{aligned}$$</span></div><div class="c-article-equation__number"> (12) </div></div><p>Treating the searches as independent, what we consider as the combined log-likelihood from all the LHC searches is</p><div id="Equ13" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \varDelta \ln {\mathcal {L}}_\text {searches}(\varvec{s}) = \sum _{j} \varDelta \ln {\mathcal {L}}_j(\varvec{s}), \end{aligned}$$</span></div><div class="c-article-equation__number"> (13) </div></div><p>where <span class="mathjax-tex">\(\varDelta \ln {\mathcal {L}}_j\)</span> is the log-likelihood contribution from search <i>j</i>. A positive value for the <span class="mathjax-tex">\(\varDelta \ln {\mathcal {L}}_\text {searches}(\varvec{s})\)</span> indicates that the combined set of <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM signal predictions <span class="mathjax-tex">\(\varvec{s}(\varvec{\theta })\)</span> for parameter point <span class="mathjax-tex">\(\varvec{\theta }\)</span> gives an overall better agreement with current LHC search results than the background-only assumption does. This happens when the predicted <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM signals can help accommodate data excesses in some searches, without conflicting strongly with the results of the other searches.</p><p>We will present the result of our global fit as profile likelihood maps in different <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM mass planes. For each plane we show the <span class="mathjax-tex">\(1\sigma \)</span> (68.3%) and <span class="mathjax-tex">\(2\sigma \)</span> (95.4%) confidence regions, derived using the likelihood ratio <span class="mathjax-tex">\({\mathcal {L}}(\varvec{\theta }) / {\mathcal {L}}(\varvec{\theta }_\text {best-fit})\)</span>, where <span class="mathjax-tex">\(\varvec{\theta }_\text {best-fit}\)</span> is the highest-likelihood <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM parameter point. Therefore, if the best-fit point can explain some excesses in the search data (<span class="mathjax-tex">\(\varDelta \ln {\mathcal {L}}_\text {searches}(\varvec{s}) > 0\)</span>), the <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM parameter regions outside the <span class="mathjax-tex">\(2\sigma \)</span> contour should not be considered “excluded” in the same sense as for an exclusion limit from an LHC search. Rather, these parameter regions simply provide a significantly worse fit to the combined data compared to that of the best-fit point. It is then interesting to also ask a different question: What <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM parameter regions are excluded by the combination of LHC searches, when judged relative to the background-only expectation? A simple way to estimate this is to replace <span class="mathjax-tex">\(\varDelta \ln {\mathcal {L}}_\text {searches}(\varvec{s})\)</span> in Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Equ13">13</a>) with</p><div id="Equ14" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \varDelta&\ln {\mathcal {L}}_\text {searches}^{\text {cap}}(\varvec{s}) \nonumber \\&= \min \left[ \varDelta \ln {\mathcal {L}}_\text {searches}(\varvec{s}), \varDelta \ln {\mathcal {L}}_\text {searches}(\varvec{s} = \varvec{0}) \right] \nonumber \\&= \min \left[ \varDelta \ln {\mathcal {L}}_\text {searches}(\varvec{s}), 0 \right] . \end{aligned}$$</span></div><div class="c-article-equation__number"> (14) </div></div><p>This log-likelihood penalises <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM parameter points that give a joint prediction in worse agreement with data than the background-only prediction, while all other points are assigned the same log-likelihood of 0. We note that the maximum value <span class="mathjax-tex">\(\varDelta \ln {\mathcal {L}}_\text {searches}^{\text {cap}}(\varvec{s}) = 0\)</span> can be obtained in two different ways: The first case is when none of the included searches are sensitive to the given <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM parameter point, i.e. the limit <span class="mathjax-tex">\(\varvec{s} \rightarrow \varvec{0}\)</span>. This is typically what happens for high-mass scenarios, due to small production cross-sections. The second case is when a <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM scenario fits the results from some LHC searches sufficiently better than the SM does, enough to offset any likelihood penalty from tensions with other LHC analyses. In Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Sec10">5</a> we will present results both for the “full likelihood” (<span class="mathjax-tex">\({\mathcal {L}}_\text {searches}\)</span>) case and the “capped likelihood” (<span class="mathjax-tex">\({\mathcal {L}}_\text {searches}^{\text {cap}}\)</span>) case. This is the same approach as was taken in Refs. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="GAMBIT Collaboration, P. Athron et al., Combined collider constraints on neutralinos and charginos. Eur. Phys. J. C 79, 395 (2019). 
 arXiv:1809.02097
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR17" id="ref-link-section-d154747430e9492">17</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 132" title="GAMBIT, P. Athron et al., Thermal WIMPs and the scale of new physics: global fits of Dirac dark matter effective field theories. Eur. Phys. J. C 81, 992 (2021). 
 arXiv:2106.02056
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR132" id="ref-link-section-d154747430e9495">132</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 133" title="C. Chang, P. Scott et al., Global fits of simplified models for dark matter with GAMBIT I. Scalar and fermionic models with s-channel vector mediators. 
 arXiv:2209.13266
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR133" id="ref-link-section-d154747430e9499">133</a>].</p><h3 class="c-article__sub-heading" id="Sec5"><span class="c-article-section__title-number">3.2 </span>LHC measurements of SM signatures</h3><p>The complexity of the phenomenology of the model means that the possibility that it may produce events which could contribute to well-measured SM-like final states must also be taken into account. This is the scenario for which <span class="u-sans-serif">Contur</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 80" title="J.M. Butterworth, D. Grellscheid, M. Krämer, B. Sarrazin, D. Yallup, Constraining new physics with collider measurements of Standard Model signatures. JHEP 03, 078 (2017). 
 arXiv:1606.05296
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR80" id="ref-link-section-d154747430e9513">80</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 81" title="A. Buckley et al., Testing new physics models with global comparisons to collider measurements: the Contur toolkit. SciPost Phys. Core 4, 013 (2021). 
 arXiv:2102.04377
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR81" id="ref-link-section-d154747430e9516">81</a>] is designed. Via <span class="u-sans-serif">Rivet</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 134" title="C. Bierlich et al., Robust independent validation of experiment and theory: rivet version 3. SciPost Phys. 8, 026 (2020). 
 arXiv:1912.05451
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR134" id="ref-link-section-d154747430e9522">134</a>], <span class="u-sans-serif">Contur</span> has access to an extensive library of measurements from the LHC experiments, mostly corrected for detector effects and thus not requiring explicit detector simulation. Simulated events are passed through <span class="u-sans-serif">Rivet</span> and projected into the fiducial phase space of the measured cross sections. In the release of <span class="u-sans-serif">GAMBIT</span> accompanying this paper, we have interfaced <span class="u-sans-serif">Contur</span> and <span class="u-sans-serif">Rivet</span> to the <span class="u-sans-serif">GAMBIT</span> <span class="u-sans-serif">ColliderBit</span> module.</p><p>As binned unfolding of detector effects requires statistically stable bin populations, a <span class="mathjax-tex">\(\chi ^2\)</span> test has proven indistinguishable from Poisson log-likelihood differences for measurement interpretations. The <span class="mathjax-tex">\(\chi ^2\)</span> is evaluated and used as the log-likelihood difference between the “signal-injection” hypothesis and the SM null hypothesis, in this application assuming the data to be equal to the SM:</p><div id="Equ15" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \ln {\mathcal {L}}_\text {meas}(\varvec{s})&= -\chi ^2(\varvec{s})/2\nonumber \\&\equiv - \sum _{i \,\in \, \text {active bins}} \left[ \frac{y_i^\text {s+b}(\varvec{s}) - y_i^\text {obs}}{(\varDelta y_i)} \right] ^2 \Big / 2 ,\nonumber \\ \end{aligned}$$</span></div><div class="c-article-equation__number"> (15) </div></div><p>with the log-likelihood difference then evaluated as <span class="mathjax-tex">\(\varDelta \ln {\mathcal {L}}_\text {meas}(\varvec{s}) = \ln {\mathcal {L}}_\text {meas}(\varvec{s}) - \ln {\mathcal {L}}_\text {meas}(\varvec{s} = 0)\)</span>. The set of active bins is conservatively selected to avoid acceptance overlaps, as described in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Sec8">4.1</a>, and <span class="mathjax-tex">\(y_i\)</span> and <span class="mathjax-tex">\(\varDelta {y_i}\)</span> are the bin values and uncertainties respectively. The experimental uncertainties are taken into account in the <span class="mathjax-tex">\(\chi ^2\)</span> construction, but are treated as uncorrelated in the version of <span class="u-sans-serif">Contur</span> (2.3.0) used here.</p><p>The set of 13 TeV analyses used by <span class="u-sans-serif">Contur</span> in this analysis are those described in Refs. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, V. Khachatryan et al., Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV. Phys. Rev. D 95, 092001 (2017). 
 arXiv:1610.04191
 
 " href="#ref-CR135" id="ref-link-section-d154747430e10001">135</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Measurement of the cross section for isolated-photon plus jet production in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV using the ATLAS detector. Phys. Lett. B 780, 578–602 (2018). 
 arXiv:1801.00112
 
 " href="#ref-CR136" id="ref-link-section-d154747430e10001_1">136</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at 
 
 
 
 $$\sqrt{s} =$$
 
 
 
 s
 
 =
 
 
 13 TeV. Phys. Rev. D 97, 112003 (2018). 
 arXiv:1803.08856
 
 " href="#ref-CR137" id="ref-link-section-d154747430e10001_2">137</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Charged-particle distributions in 
 
 
 
 $$\sqrt{s}$$
 
 
 s
 
 
 = 13 TeV pp interactions measured with the ATLAS detector at the LHC. Phys. Lett. B 758, 67–88 (2016). 
 arXiv:1602.01633
 
 " href="#ref-CR138" id="ref-link-section-d154747430e10001_3">138</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{{\bf s}}=13 $$
 
 
 
 s
 
 =
 13
 
 
 TeV using the ATLAS detector. Eur. Phys. J. C 77, 765 (2017). 
 arXiv:1707.03263
 
 " href="#ref-CR139" id="ref-link-section-d154747430e10001_4">139</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Measurements of inclusive and differential fiducial cross-sections of 
 
 
 
 $$t{\bar{t}}\gamma $$
 
 
 t
 
 
 t
 
 
 ¯
 
 
 γ
 
 
 production in leptonic final states at 
 
 
 
 $$\sqrt{s}=13~\text{ TeV }$$
 
 
 
 s
 
 =
 13
 
 
 TeV
 
 
 
 in ATLAS. Eur. Phys. J. C 79, 382 (2019). 
 arXiv:1812.01697
 
 " href="#ref-CR140" id="ref-link-section-d154747430e10001_5">140</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Measurement of the 
 
 
 
 $$t{\bar{t}}$$
 
 
 t
 
 
 t
 
 
 ¯
 
 
 
 
 production cross-section and lepton differential distributions in 
 
 
 
 $$e\mu $$
 
 
 e
 μ
 
 
 dilepton events from 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s}=13\,\text{ TeV }$$
 
 
 
 s
 
 =
 13
 
 
 TeV
 
 
 
 with the ATLAS detector. Eur. Phys. J. C 80, 528 (2020). 
 arXiv:1910.08819
 
 " href="#ref-CR141" id="ref-link-section-d154747430e10001_6">141</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Measurements of differential cross-sections in four-lepton events in 13 TeV proton-proton collisions with the ATLAS detector. JHEP 07, 005 (2021). 
 arXiv:2103.01918
 
 " href="#ref-CR142" id="ref-link-section-d154747430e10001_7">142</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Charged-particle distributions at low transverse momentum in 
 
 
 
 $$\sqrt{s} = 13$$
 
 
 
 s
 
 =
 13
 
 
 TeV 
 
 
 
 $$pp$$
 
 
 pp
 
 
 interactions measured with the ATLAS detector at the LHC. Eur. Phys. J. C 76, 502 (2016). 
 arXiv:1606.01133
 
 " href="#ref-CR143" id="ref-link-section-d154747430e10001_8">143</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Measurement of associated production of a W boson and a charm quark in proton-proton collisions at 
 
 
 
 $$\sqrt{s} =$$
 
 
 
 s
 
 =
 
 
 13 TeV. Eur. Phys. J. C 79, 269 (2019). 
 arXiv:1811.10021
 
 " href="#ref-CR144" id="ref-link-section-d154747430e10001_9">144</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Properties of jet fragmentation using charged particles measured with the ATLAS detector in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV. Phys. Rev. D 100, 052011 (2019). 
 arXiv:1906.09254
 
 " href="#ref-CR145" id="ref-link-section-d154747430e10001_10">145</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Measurements of angular distance and momentum ratio distributions in three-jet and 
 
 
 
 $${\text{ Z }}$$
 
 
 
 Z
 
 
 
 + two-jet final states in 
 
 
 
 $${\text{ p }}{\text{ p }}$$
 
 
 
 
 p
 
 
 
 
 p
 
 
 
 
 collisions. Eur. Phys. J. C 81, 852 (2021). 
 arXiv:2102.08816
 
 " href="#ref-CR146" id="ref-link-section-d154747430e10001_11">146</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Measurements of top-quark pair differential cross-sections in the lepton+jets channel in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV using the ATLAS detector. JHEP 11, 191 (2017). 
 arXiv:1708.00727
 
 " href="#ref-CR147" id="ref-link-section-d154747430e10001_12">147</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at 
 
 
 
 $$ \sqrt{s}=13 $$
 
 
 
 s
 
 =
 13
 
 
 TeV. JHEP 11, 113 (2018). 
 arXiv:1807.05974
 
 " href="#ref-CR148" id="ref-link-section-d154747430e10001_13">148</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Measurements of 
 
 
 
 $$t{\bar{t}}$$
 
 
 t
 
 
 t
 
 
 ¯
 
 
 
 
 differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s}=13\,$$
 
 
 
 s
 
 =
 13
 
 
 
 TeV using the ATLAS detector. Phys. Rev. D 98, 012003 (2018). 
 arXiv:1801.02052
 
 " href="#ref-CR149" id="ref-link-section-d154747430e10001_14">149</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Searches for scalar leptoquarks and differential cross-section measurements in dilepton-dijet events in proton-proton collisions at a centre-of-mass energy of 
 
 
 
 $$\sqrt{s}$$
 
 
 s
 
 
 = 13 TeV with the ATLAS experiment. Eur. Phys. J. C 79, 733 (2019). 
 arXiv:1902.00377
 
 " href="#ref-CR150" id="ref-link-section-d154747430e10001_15">150</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Measurement of differential cross sections for Z boson production in association with jets in proton-proton collisions at 
 
 
 
 $$\sqrt{s} =$$
 
 
 
 s
 
 =
 
 
 13 TeV. Eur. Phys. J. C 78, 965 (2018). 
 arXiv:1804.05252
 
 " href="#ref-CR151" id="ref-link-section-d154747430e10001_16">151</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Measurement of jet-substructure observables in top quark, 
 
 
 
 $$W$$
 
 W
 
 boson and light jet production in proton-proton collisions at 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector. JHEP 08, 033 (2019). 
 arXiv:1903.02942
 
 " href="#ref-CR152" id="ref-link-section-d154747430e10001_17">152</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Measurements of the production cross section of a 
 
 
 
 $$Z$$
 
 Z
 
 boson in association with jets in pp collisions at 
 
 
 
 $$\sqrt{s} = 13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector. Eur. Phys. J. C 77, 361 (2017). 
 arXiv:1702.05725
 
 " href="#ref-CR153" id="ref-link-section-d154747430e10001_18">153</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Measurements of differential Z boson production cross sections in proton-proton collisions at 
 
 
 
 $$ \sqrt{s} $$
 
 
 s
 
 
 = 13 TeV. JHEP 12, 061 (2019). 
 arXiv:1909.04133
 
 " href="#ref-CR154" id="ref-link-section-d154747430e10001_19">154</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Measurement of the transverse momentum distribution of Drell-Yan lepton pairs in proton-proton collisions at 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector. Eur. Phys. J. C 80, 616 (2020). 
 arXiv:1912.02844
 
 " href="#ref-CR155" id="ref-link-section-d154747430e10001_20">155</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Measurements of differential cross sections of top quark pair production in association with jets in 
 
 
 
 $${pp}$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV using the ATLAS detector. JHEP 10, 159 (2018). 
 arXiv:1802.06572
 
 " href="#ref-CR156" id="ref-link-section-d154747430e10001_21">156</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Measurements of the production cross-section for a 
 
 
 
 $$Z$$
 
 Z
 
 boson in association with 
 
 
 
 $$b$$
 
 b
 
 -jets in proton-proton collisions at 
 
 
 
 $$\sqrt{s} = 13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector. JHEP 07, 044 (2020). 
 arXiv:2003.11960
 
 " href="#ref-CR157" id="ref-link-section-d154747430e10001_22">157</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Differential cross-section measurements for the electroweak production of dijets in association with a 
 
 
 
 $$Z$$
 
 Z
 
 boson in proton-proton collisions at ATLAS. Eur. Phys. J. C 81, 163 (2021). 
 arXiv:2006.15458
 
 " href="#ref-CR158" id="ref-link-section-d154747430e10001_23">158</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Measurement of the soft-drop jet mass in pp collisions at 
 
 
 
 $$\sqrt{s} = 13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector. Phys. Rev. Lett. 121, 092001 (2018). 
 arXiv:1711.08341
 
 " href="#ref-CR159" id="ref-link-section-d154747430e10001_24">159</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Measurement of the four-lepton invariant mass spectrum in 13 TeV proton-proton collisions with the ATLAS detector. JHEP 04, 048 (2019). 
 arXiv:1902.05892
 
 " href="#ref-CR160" id="ref-link-section-d154747430e10001_25">160</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Observation of electroweak production of a same-sign 
 
 
 
 $$W$$
 
 W
 
 boson pair in association with two jets in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector. Phys. Rev. Lett. 123, 161801 (2019). 
 arXiv:1906.03203
 
 " href="#ref-CR161" id="ref-link-section-d154747430e10001_26">161</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Measurements of differential cross sections of top quark pair production as a function of kinematic event variables in proton-proton collisions at 
 
 
 
 $$ \sqrt{s}=13 $$
 
 
 
 s
 
 =
 13
 
 
 TeV. JHEP 06, 002 (2018). 
 arXiv:1803.03991
 
 " href="#ref-CR162" id="ref-link-section-d154747430e10001_27">162</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Measurements of 
 
 
 
 $$W^+W^-+\ge 1~$$
 
 
 
 W
 +
 
 
 W
 -
 
 +
 ≥
 1
 
 
 
 jet production cross-sections in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s}=13~$$
 
 
 
 s
 
 =
 13
 
 
 
 TeV with the ATLAS detector. JHEP 06, 003 (2021). 
 arXiv:2103.10319
 
 " href="#ref-CR163" id="ref-link-section-d154747430e10001_28">163</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A. Tumasyan et al., Measurement of double-parton scattering in inclusive production of four jets with low transverse momentum in proton-proton collisions at 
 
 
 
 $$ \sqrt{s} $$
 
 
 s
 
 
 = 13 TeV. JHEP 01, 177 (2022). 
 arXiv:2109.13822
 
 " href="#ref-CR164" id="ref-link-section-d154747430e10001_29">164</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Measurements of top-quark pair differential and double-differential cross-sections in the 
 
 
 
 $$\ell $$
 
 ℓ
 
 +jets channel with 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV using the ATLAS detector. Eur. Phys. J. C 79, 1028 (2019). 
 arXiv:1908.07305
 
 . [Erratum: Eur. Phys. J. C 80, 1092 (2020)]" href="#ref-CR165" id="ref-link-section-d154747430e10001_30">165</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Measurement of fiducial and differential 
 
 
 
 $$W^+W^-$$
 
 
 
 W
 +
 
 
 W
 -
 
 
 
 production cross-sections at 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector. Eur. Phys. J. C 79, 884 (2019). 
 arXiv:1905.04242
 
 " href="#ref-CR166" id="ref-link-section-d154747430e10001_31">166</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Measurements of inclusive and differential fiducial cross-sections of 
 
 
 
 $$ t{\overline{t}} $$
 
 
 t
 
 t
 ¯
 
 
 
 production with additional heavy-flavour jets in proton-proton collisions at 
 
 
 
 $$ \sqrt{s} $$
 
 
 s
 
 
 = 13 TeV with the ATLAS detector. JHEP 04, 046 (2019). 
 arXiv:1811.12113
 
 " href="#ref-CR167" id="ref-link-section-d154747430e10001_32">167</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Measurement of the differential Drell-Yan cross section in proton-proton collisions at 
 
 
 
 $$ \sqrt{{\rm s}} $$
 
 
 s
 
 
 = 13 TeV. JHEP 12, 059 (2019). 
 arXiv:1812.10529
 
 " href="#ref-CR168" id="ref-link-section-d154747430e10001_33">168</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="LHCb, R. Aaij et al., Measurement of forward top pair production in the dilepton channel in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV. JHEP 08, 174 (2018). 
 arXiv:1803.05188
 
 " href="#ref-CR169" id="ref-link-section-d154747430e10001_34">169</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Measurements of top-quark pair single- and double-differential cross-sections in the all-hadronic channel in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s}=13~{\rm TeV}$$
 
 
 
 s
 
 =
 13
 
 TeV
 
 
 using the ATLAS detector. JHEP 01, 033 (2021). 
 arXiv:2006.09274
 
 " href="#ref-CR170" id="ref-link-section-d154747430e10001_35">170</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Measurement of the production cross section of pairs of isolated photons in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 13 TeV with the ATLAS detector. JHEP 11, 169 (2021). 
 arXiv:2107.09330
 
 " href="#ref-CR171" id="ref-link-section-d154747430e10001_36">171</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Measurement of hadronic event shapes in high-
 
 
 
 $$\text{ p}_{{T}}$$
 
 
 
 
 p
 T
 
 
 
 multijet final states at 
 
 
 
 $$ \sqrt{s} $$
 
 
 s
 
 
 = 13 TeV with the ATLAS detector. JHEP 01, 188 (2021). 
 arXiv:2007.12600
 
 " href="#ref-CR172" id="ref-link-section-d154747430e10001_37">172</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, V. Khachatryan et al., Measurement of the double-differential inclusive jet cross section in proton-proton collisions at 
 
 
 
 $$\sqrt{s} = 13\,\text{ TeV } $$
 
 
 
 s
 
 =
 13
 
 
 TeV
 
 
 
 . Eur. Phys. J. C 76, 451 (2016). 
 arXiv:1605.04436
 
 " href="#ref-CR173" id="ref-link-section-d154747430e10001_38">173</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s} = 13$$
 
 
 
 s
 
 =
 13
 
 
 TeV. Phys. Rev. Lett. 124, 202001 (2020). 
 arXiv:1911.03800
 
 " href="#ref-CR174" id="ref-link-section-d154747430e10001_39">174</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., 
 
 
 
 $$ZZ \rightarrow \ell ^{+}\ell ^{-}\ell ^{\prime +}\ell ^{\prime -}$$
 
 
 Z
 Z
 →
 
 ℓ
 +
 
 
 ℓ
 -
 
 
 ℓ
 
 ′
 +
 
 
 
 ℓ
 
 ′
 -
 
 
 
 
 cross-section measurements and search for anomalous triple gauge couplings in 13 TeV 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions with the ATLAS detector. Phys. Rev. D 97, 032005 (2018). 
 arXiv:1709.07703
 
 " href="#ref-CR175" id="ref-link-section-d154747430e10001_40">175</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., 
 
 
 
 $$\text{ W}^{+}\text{ W}^{-}$$
 
 
 
 
 W
 +
 
 
 
 W
 -
 
 
 
 boson pair production in proton-proton collisions at 
 
 
 
 $$\sqrt{s} = 13\, \text{ TeV }$$
 
 
 
 s
 
 =
 13
 
 
 TeV
 
 
 
 . Phys. Rev. D 102, 092001 (2020). 
 arXiv:2009.00119
 
 " href="#ref-CR176" id="ref-link-section-d154747430e10001_41">176</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Measurement of differential cross sections and charge ratios for t-channel single top quark production in proton-proton collisions at 
 
 
 
 $$\sqrt{s}=13\,\text{ Te }\text{ V }$$
 
 
 
 s
 
 =
 13
 
 
 Te
 
 
 V
 
 
 
 . Eur. Phys. J. C 80, 370 (2020). 
 arXiv:1907.08330
 
 " href="#ref-CR177" id="ref-link-section-d154747430e10001_42">177</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="CMS, A.M. Sirunyan et al., Measurement of the 
 
 
 
 $${\rm t}{\bar{t}}{\rm b}{\bar{b}} $$
 
 
 t
 
 
 t
 
 
 ¯
 
 
 b
 
 
 b
 
 
 ¯
 
 
 
 
 production cross section in the all-jet final state in pp collisions at 
 
 
 
 $$\sqrt{s} =$$
 
 
 
 s
 
 =
 
 
 13 TeV. Phys. Lett. B 803, 135285 (2020). 
 arXiv:1909.05306
 
 " href="#ref-CR178" id="ref-link-section-d154747430e10001_43">178</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, M. Aaboud et al., Measurement of inclusive jet and dijet cross-sections in proton-proton collisions at 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector. JHEP 05, 195 (2018). 
 arXiv:1711.02692
 
 " href="#ref-CR179" id="ref-link-section-d154747430e10001_44">179</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector. Phys. Rev. Lett. 124, 222002 (2020). 
 arXiv:2004.03540
 
 " href="#ref-CR180" id="ref-link-section-d154747430e10001_45">180</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="ATLAS, G. Aad et al., Measurement of the 
 
 
 
 $$Z(\rightarrow \ell ^+\ell ^-)\gamma $$
 
 
 Z
 (
 →
 
 ℓ
 +
 
 
 ℓ
 -
 
 )
 γ
 
 
 production cross-section in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s} =13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector. JHEP 03, 054 (2020). 
 arXiv:1911.04813
 
 " href="#ref-CR181" id="ref-link-section-d154747430e10001_46">181</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 182" title="ATLAS, M. Aaboud et al., Measurement of the 
 
 
 
 $$ Z\gamma \rightarrow \nu {\overline{\nu }}\gamma $$
 
 
 Z
 γ
 →
 ν
 
 ν
 ¯
 
 γ
 
 
 production cross section in pp collisions at 
 
 
 
 $$ \sqrt{s}=13 $$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector and limits on anomalous triple gauge-boson couplings. JHEP 12, 010 (2018). 
 arXiv:1810.04995
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR182" id="ref-link-section-d154747430e10004">182</a>]. These cover final states with (multiple) jets, isolated photons and leptons, as well as missing energy. When discussing our results in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Sec10">5</a> we will highlight the analyses with the greatest impact.</p><h3 class="c-article__sub-heading" id="Sec6"><span class="c-article-section__title-number">3.3 </span>Cross-section limits from LEP searches</h3><p>In addition to the above LHC searches and measurements that are implemented at the event level, we include LEP searches and measurements that were published as upper limits on particular electroweakino production cross-sections. See [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="GAMBIT Collaboration, P. Athron et al., Combined collider constraints on neutralinos and charginos. Eur. Phys. J. C 79, 395 (2019). 
 arXiv:1809.02097
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR17" id="ref-link-section-d154747430e10018">17</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 183" title="GAMBIT Collider Workgroup, C. Balázs, A. Buckley, et al., ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods. Eur. Phys. J. C 77, 795 (2017). 
 arXiv:1705.07919
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR183" id="ref-link-section-d154747430e10021">183</a>] for general details of our treatment of LEP searches. First, there are searches for electroweakinos that we applied in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="GAMBIT Collaboration, P. Athron et al., Combined collider constraints on neutralinos and charginos. Eur. Phys. J. C 79, 395 (2019). 
 arXiv:1809.02097
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR17" id="ref-link-section-d154747430e10024">17</a>] that we re-interpret as searches for gravitinos. Specifically, we consider searches for pair production of charginos that each decay into SM particles and a stable neutralino, <span class="mathjax-tex">\({{\tilde{\chi }}}^\pm \rightarrow \text {SM} + \chi \)</span>. In our gravitino model, the chargino may decay into SM particles and a gravitino, <span class="mathjax-tex">\({{\tilde{\chi }}}^\pm \rightarrow \text {SM} + {{\tilde{G}}}\)</span>. This leads to an identical signature as both the gravitino and a stable neutralino only contribute to missing energy.</p><p>Second, we include a multi-photon and missing energy search by L3 at <span class="mathjax-tex">\(\sqrt{s} = 207\,\text {GeV} \)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 184" title="L3, P. Achard et al., Single photon and multiphoton events with missing energy in 
 
 
 
 $$e^{+} e^{-}$$
 
 
 
 e
 +
 
 
 e
 -
 
 
 
 collisions at LEP. Phys. Lett. B 587, 16–32 (2004). 
 arXiv:hep-ex/0402002
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR184" id="ref-link-section-d154747430e10153">184</a>]. In our model, neutralinos can be pair produced at LEP and can each decay to a photon and a gravitino, giving a signature of missing energy and two photons. The number of observed events in the search was less than expected from SM backgrounds, leading to strong constraints on the <span class="mathjax-tex">\(e^+ e^- \rightarrow {{\tilde{\chi }}}^0_1 {{\tilde{\chi }}}^0_1 \rightarrow {{\tilde{G}}}{{\tilde{G}}}\gamma \gamma \)</span> cross section as a function of the gravitino and neutralino masses for masses less than about <span class="mathjax-tex">\(\sqrt{s} / 2\)</span>. We apply the <span class="mathjax-tex">\(95\%\)</span> limits shown in Fig. 6c of [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 184" title="L3, P. Achard et al., Single photon and multiphoton events with missing energy in 
 
 
 
 $$e^{+} e^{-}$$
 
 
 
 e
 +
 
 
 e
 -
 
 
 
 collisions at LEP. Phys. Lett. B 587, 16–32 (2004). 
 arXiv:hep-ex/0402002
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR184" id="ref-link-section-d154747430e10302">184</a>] following the treatment described in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 183" title="GAMBIT Collider Workgroup, C. Balázs, A. Buckley, et al., ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods. Eur. Phys. J. C 77, 795 (2017). 
 arXiv:1705.07919
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR183" id="ref-link-section-d154747430e10305">183</a>]. The impact of this constraint on our <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM model is limited, however, as our assumption of decoupled selectrons typically leads to a very small <span class="mathjax-tex">\(e^+ e^- \rightarrow {{\tilde{\chi }}}^0_1 {{\tilde{\chi }}}^0_1\)</span> production cross-section.</p></div></div></section><section data-title="Global fit setup"><div class="c-article-section" id="Sec7-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec7"><span class="c-article-section__title-number">4 </span>Global fit setup</h2><div class="c-article-section__content" id="Sec7-content"><h3 class="c-article__sub-heading" id="Sec8"><span class="c-article-section__title-number">4.1 </span>Software framework and event generation</h3><p>We perform our study of the <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM with the <span class="u-sans-serif">GAMBIT</span> <span class="u-sans-serif">2.4</span> global fit framework [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 78" title="GAMBIT Collaboration, P. Athron, C. Balázs, et al., GAMBIT: the global and modular beyond-the-standard-model inference tool. Eur. Phys. J. C 77, 784 (2017). 
 arXiv:1705.07908
 
 . Addendum in [79]" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR78" id="ref-link-section-d154747430e10444">78</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 185" title="S. Bloor, T.E. Gonzalo et al., The GAMBIT universal model machine: from Lagrangians to likelihoods. 
 arXiv:2107.00030
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR185" id="ref-link-section-d154747430e10447">185</a>], utilising the <span class="u-sans-serif">SpecBit</span>, <span class="u-sans-serif">DecayBit</span>, <span class="u-sans-serif">ColliderBit</span> and <span class="u-sans-serif">ScannerBit</span> modules [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 183" title="GAMBIT Collider Workgroup, C. Balázs, A. Buckley, et al., ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods. Eur. Phys. J. C 77, 795 (2017). 
 arXiv:1705.07919
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR183" id="ref-link-section-d154747430e10463">183</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 186" title="GAMBIT Models Workgroup, P. Athron, C. Balázs, et al., SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables. Eur. Phys. J. C 78, 22 (2018). 
 arXiv:1705.07936
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR186" id="ref-link-section-d154747430e10466">186</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 187" title="GAMBIT Scanner Workgroup, G.D. Martinez, J. McKay, et al., Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module. Eur. Phys. J. C 77, 761 (2017). 
 arXiv:1705.07959
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR187" id="ref-link-section-d154747430e10470">187</a>]. To compute the chargino and neutralino mass spectrum at one-loop level, <span class="u-sans-serif">SpecBit</span> employs a <span class="u-sans-serif">FlexibleSUSY</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 188" title="P. Athron, J.-H. Park, D. Stöckinger, A. Voigt, FlexibleSUSY—a spectrum generator generator for supersymmetric models. Comput. Phys. Comm. 190, 139–172 (2015). 
 arXiv:1406.2319
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR188" id="ref-link-section-d154747430e10479">188</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 189" title="P. Athron, M. Bach, et al., FlexibleSUSY 2.0: extensions to investigate the phenomenology of SUSY and non-SUSY models. Comput. Phys. Comm. 230, 145–217 (2018). 
 arXiv:1710.03760
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR189" id="ref-link-section-d154747430e10482">189</a>] spectrum generator which uses <span class="u-sans-serif">SARAH</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 190" title="F. Staub, SARAH. 
 arXiv:0806.0538
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR190" id="ref-link-section-d154747430e10489">190</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 191" title="F. Staub, Automatic calculation of supersymmetric renormalization group equations and self energies. Comput. Phys. Commun. 182, 808–833 (2011). 
 arXiv:1002.0840
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR191" id="ref-link-section-d154747430e10492">191</a>] and routines from <span class="u-sans-serif">SOFTSUSY</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 192" title="B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra. Comput. Phys. Commun. 143, 305–331 (2002). 
 arXiv:hep-ph/0104145
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR192" id="ref-link-section-d154747430e10498">192</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 193" title="B.C. Allanach, P. Athron, L.C. Tunstall, A. Voigt, A.G. Williams, Next-to-minimal SOFTSUSY. Comput. Phys. Commun. 185, 2322–2339 (2014). 
 arXiv:1311.7659
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR193" id="ref-link-section-d154747430e10501">193</a>]. A more detailed discussion of this spectrum computation is given in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="GAMBIT Collaboration, P. Athron et al., Combined collider constraints on neutralinos and charginos. Eur. Phys. J. C 79, 395 (2019). 
 arXiv:1809.02097
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR17" id="ref-link-section-d154747430e10504">17</a>].</p><p>For this study we have extended <span class="u-sans-serif">DecayBit</span> with the capability to compute decay widths for a neutralino or chargino decaying to final states with a gravitino. The implementation is based on analytical expressions given in Refs. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 83" title="J.L. Feng, S. Su, F. Takayama, Supergravity with a gravitino LSP. Phys. Rev. D 70, 075019 (2004). 
 arXiv:hep-ph/0404231
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR83" id="ref-link-section-d154747430e10513">83</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 99" title="L. Covi, J. Hasenkamp, S. Pokorski, J. Roberts, Gravitino dark matter and general neutralino NLSP. JHEP 11, 003 (2009). 
 arXiv:0908.3399
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR99" id="ref-link-section-d154747430e10516">99</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 100" title="J. Hasenkamp, General neutralino NLSP with gravitino dark matter vs. big bang nucleosynthesis. Diploma thesis (2009)" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR100" id="ref-link-section-d154747430e10519">100</a>]. To compute neutralino and chargino decays into final states with a lighter neutralino or chargino, <span class="u-sans-serif">DecayBit</span> uses <span class="u-sans-serif">SUSY-HIT</span> <span class="u-sans-serif">1.5</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 194" title="A. Djouadi, M.M. Mühlleitner, M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-Hdecay-InTerface). Acta Phys. Polon. 38, 635–644 (2007). 
 arXiv:hep-ph/0609292
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR194" id="ref-link-section-d154747430e10532">194</a>], which includes the packages <span class="u-sans-serif">SDECAY</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 195" title="M. Muhlleitner, A. Djouadi, Y. Mambrini, SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM. Comput. Phys. Commun. 168, 46–70 (2005). 
 arXiv:hep-ph/0311167
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR195" id="ref-link-section-d154747430e10538">195</a>] and <span class="u-sans-serif">HDECAY</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 196" title="A. Djouadi, J. Kalinowski, M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension. Comput. Phys. Commun. 108, 56–74 (1998). 
 arXiv:hep-ph/9704448
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR196" id="ref-link-section-d154747430e10545">196</a>].</p><p>We simulate LHC events with electroweakino production at <span class="mathjax-tex">\(\sqrt{s}=13\,\text {TeV} \)</span> using <span class="u-sans-serif">ColliderBit</span> ’s parallelised interface to <span class="u-sans-serif">Pythia 8</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 197" title="T. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). 
 arXiv:hep-ph/0603175
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR197" id="ref-link-section-d154747430e10588">197</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 198" title="T. Sjostrand, S. Ask, et al., An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159–177 (2015). 
 arXiv:1410.3012
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR198" id="ref-link-section-d154747430e10591">198</a>] and native fast detector simulator <span class="u-sans-serif">BuckFast</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 183" title="GAMBIT Collider Workgroup, C. Balázs, A. Buckley, et al., ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods. Eur. Phys. J. C 77, 795 (2017). 
 arXiv:1705.07919
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR183" id="ref-link-section-d154747430e10598">183</a>].<sup><a href="#Fn2"><span class="u-visually-hidden">Footnote </span>2</a></sup> Due to the cost of computing higher-order production cross-sections, we use the cross-sections computed by <span class="u-sans-serif">Pythia 8</span> at leading-order plus leading-logarithmic (LO+LL) accuracy. As we will see in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Sec10">5</a>, the lowest-mass scenarios not disfavoured by current results are scenarios where the lightest electroweakinos are Higgsinos with masses around <span class="mathjax-tex">\(200\,\text {GeV} \)</span>. For such scenarios the production cross-sections at next-to-leading order with next-to-leading-logarithmic corrections (NLO+NLL) can be up to 30% higher compared the LO+LL cross-sections [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 199" title="J. Fiaschi, M. Klasen, Neutralino-chargino pair production at NLO+NLL with resummation-improved parton density functions for LHC Run II. Phys. Rev. D 98, 055014 (2018). 
 arXiv:1805.11322
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR199" id="ref-link-section-d154747430e10662">199</a>], so this choice is somewhat conservative.</p><p>For each parameter point included in our final scan results we generate 16 million LHC events to evaluate the impact of the LHC searches. The main reason that such a high number of events is needed is that for many of the searches we do not have the information needed to allow a proper statistical combination of all the signal regions in the search. As discussed in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Sec4">3.1</a>, for these searches the conservative approach is, for each sampled parameter point, to identify the signal region with the best expected sensitivity, and only use this signal region when computing the likelihood contribution from the given search. Many searches will for large parts of the <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM parameter space have several signal regions with low and near identical expected sensitivities. Thus, the signal region choice, and through it the likelihood value, becomes highly sensitive to Monte Carlo noise.<sup><a href="#Fn3"><span class="u-visually-hidden">Footnote </span>3</a></sup></p><p>As a post-processing step, we generate a further 100,000 events at each sampled parameter point, which are then passed to first <span class="u-sans-serif">Rivet</span> and then <span class="u-sans-serif">Contur</span> using the new <span class="u-sans-serif">ColliderBit</span> interface. This enables evaluation of whether the parameter point in question would have led to significant but unnoticed collective deviations from the SM expectation in existing measurements. Since LHC measurements have much higher acceptances than LHC searches, we here need fewer simulated events to ensure sufficiently small Monte Carlo uncertainties and a stable identification of the most sensitive measurements. <span class="u-sans-serif">Contur</span> tests the full set of measurements for each parameter point, evaluating the expected likelihood ratio for each measurement. As is usual with <span class="u-sans-serif">Contur</span>, to account for statistical correlations between measurements and avoid double-counting of BSM effects, these measurements are divided into non-overlapping “analysis pools” based upon the run period, experiment and final state. Only the most sensitive measurement from each pool is used, and the set of pool-likelihoods is then combined to provide an overall <span class="u-sans-serif">Contur</span> likelihood, which in <span class="u-sans-serif">ColliderBit</span> is then combined with the likelihoods for the LHC searches and the LEP cross-section limits. The likelihood provided by <span class="u-sans-serif">Contur</span> in this post-processing step had a significant impact on the final results, which will be discussed in detail in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Sec14">5.4</a>.</p><h3 class="c-article__sub-heading" id="Sec9"><span class="c-article-section__title-number">4.2 </span>Scanning strategy</h3><p>With the gravitino mass fixed at <span class="mathjax-tex">\(1\,{\text {eV}} \)</span>, the collider phenomenology of our model is determined by the mass parameters <span class="mathjax-tex">\(M_1\)</span>, <span class="mathjax-tex">\(M_2\)</span> and <span class="mathjax-tex">\(\mu \)</span>, and the dimensionless <span class="mathjax-tex">\(\tan \beta \)</span> parameter. We restrict our attention to scenarios where the electroweakino masses are all <span class="mathjax-tex">\(\lesssim 1\,\text {TeV} \)</span>. This is due to the substantial computational cost of accurately mapping out the profile likelihood function across wide, many-dimensional parameter regions where the likelihood function is mostly flat – especially when MC event simulation is performed for each scan point. The high detectability of final states with photons and missing energy ensures that current LHC searches can exclude specific scenarios of electroweakino production where the masses of the produced electroweakinos are close to or beyond <span class="mathjax-tex">\(1\,\text {TeV} \)</span>. These are typically scenarios with production of a dominantly wino chargino-neutralino pair and a large <span class="mathjax-tex">\(\textrm{BR} ({{\tilde{\chi }}}_1^0 \rightarrow \gamma {\tilde{G}})\)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 114" title="ATLAS, M. Aaboud et al., Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions with the ATLAS detector. Phys. Rev. D 97, 092006 (2018). 
 arXiv:1802.03158
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR114" id="ref-link-section-d154747430e10974">114</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 125" title="CMS, A.M. Sirunyan et al., Search for gauge-mediated supersymmetry in events with at least one photon and missing transverse momentum in pp collisions at 
 
 
 
 $$\sqrt{s} = $$
 
 
 
 s
 
 =
 
 
 13 TeV. Phys. Lett. B 780, 118–143 (2018). 
 arXiv:1711.08008
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR125" id="ref-link-section-d154747430e10977">125</a>]. But as we will see, within the general electroweakino parameter space explored here, there are still large, unconstrained parameter regions with all electroweakinos <span class="mathjax-tex">\(\lesssim 1\,\text {TeV} \)</span>.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-1"><figure><figcaption class="c-article-table__figcaption"><b id="Tab1" data-test="table-caption">Table 1 Ranges and scanning priors for the input parameters. The “hybrid” prior refers to a prior that is flat on <span class="mathjax-tex">\(|x| < 10\,\text {GeV} \)</span>, and logarithmic elsewhere</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-023-11574-z/tables/1" aria-label="Full size table 1"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>In Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Tab1">1</a> we summarise our choices for the scan input parameters. The MSSM parametrisation we use is implemented in the <span class="u-sans-serif">GAMBIT</span> MSSM model hierarchy as <span class="u-sans-serif">MSSM11atQ_mA_mG</span> (Appendix C), which has 11 free parameters. For the six parameters not listed in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Tab1">1</a> we use the following fixed values: the trilinear couplings <span class="mathjax-tex">\(A_{d_3} = A_{e_3} = A_{u_3} = 0\)</span>; the gluino mass parameter <span class="mathjax-tex">\(M_3 = 5\,\text {TeV} \)</span>; the pseudo-scalar Higgs mass <span class="mathjax-tex">\(m_A = 5\,\text {TeV} \)</span>; and the squared soft sfermion mass parameters <span class="mathjax-tex">\(m_l^2 = m_q^2 = (3\,\text {TeV})^2\)</span>. The parameters are defined at an input scale <span class="mathjax-tex">\(Q = 3\,\text {TeV} \)</span>. The specific values for these fixed parameters are not important, as they simply ensure that all superpartners except the gravitino and the electroweakinos are decoupled from the collider phenomenology.</p><p>In order to obtain accurate profile likelihood maps we must ensure that the parameter space is explored in sufficient detail. We therefore combine the parameter samples from multiple scans using different combinations of the priors (metrics) listed in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Tab1">1</a> to scan the parameters. The “hybrid” prior in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Tab1">1</a> combines a logarithmic prior for <span class="mathjax-tex">\(|x| > 10\,\text {GeV} \)</span> with a flat prior for <span class="mathjax-tex">\(|x| < 10\,\text {GeV} \)</span> (<span class="mathjax-tex">\(x = M_1, M_2, \mu \)</span>). As the physics is invariant under a global sign change for <span class="mathjax-tex">\(M_1\)</span>, <span class="mathjax-tex">\(M_2\)</span> and <span class="mathjax-tex">\(\mu \)</span>, we follow the common approach in the literature of restricting <span class="mathjax-tex">\(M_2\)</span> to positive values. All scans are performed with the differential evolution sampler <span class="u-sans-serif">Diver</span> <span class="u-sans-serif">1.0.4</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 187" title="GAMBIT Scanner Workgroup, G.D. Martinez, J. McKay, et al., Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module. Eur. Phys. J. C 77, 761 (2017). 
 arXiv:1705.07959
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR187" id="ref-link-section-d154747430e12104">187</a>], interfaced via <span class="u-sans-serif">ScannerBit</span>. We run <span class="u-sans-serif">Diver</span> in the <span class="u-sans-serif">jDE</span> mode (self-adaptive rand/1/bin evolution), which is based on Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 201" title="J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evolut. Comput. 10, 646–657 (2006)" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR201" id="ref-link-section-d154747430e12116">201</a>]. The final combined data set consists of around <span class="mathjax-tex">\(3.1\times 10^5\)</span> parameter samples.</p></div></div></section><section data-title="Results"><div class="c-article-section" id="Sec10-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec10"><span class="c-article-section__title-number">5 </span>Results</h2><div class="c-article-section__content" id="Sec10-content"><h3 class="c-article__sub-heading" id="Sec11"><span class="c-article-section__title-number">5.1 </span>Best-fit scenarios</h3><p>In Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig2">2</a> we show our fit result in terms of the profile likelihood function across the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> and <span class="mathjax-tex">\((m_{{\tilde{\chi }}_1^{\pm }},m_{{\tilde{\chi }}_1^{0}})\)</span> planes. We will present most of our results in one or both of these planes as they are well suited for mapping out the key phenomenological aspects of the high-likelihood scenarios. For reference, in Appendix A we provide profile likelihood maps in terms of the input parameters.</p><p>We find that the <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM scenarios in best agreement with current LHC searches and measurements are scenarios where the lightest electroweakinos are dominantly Higgsino, i.e. scenarios with <span class="mathjax-tex">\(|\mu | < |M_1|, M_2\)</span>, corresponding to the Higgsino NLSP region (green) in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig1">1</a>. As the <span class="mathjax-tex">\(\mu \)</span> parameter largely controls the mass of three Higgsino states, these scenarios have near-degenerate masses for <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span>, <span class="mathjax-tex">\({\tilde{\chi }}_2^0\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_1^\pm \)</span>, explaining why the best-fit region falls along the diagonals of the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> and <span class="mathjax-tex">\((m_{{\tilde{\chi }}_1^{\pm }},m_{{\tilde{\chi }}_1^{0}})\)</span> planes.</p><p>For the best-fit point, marked by a white star in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig2">2</a>, the three Higgsinos have masses <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^0} = 169.9\)</span> GeV, <span class="mathjax-tex">\(m_{{\tilde{\chi }}_2^0} = 178.9\)</span> GeV and <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^\pm } = 177.2\)</span> GeV. This point further has a pair of wino-dominated <span class="mathjax-tex">\({\tilde{\chi }}_3^0\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_2^\pm \)</span> at <span class="mathjax-tex">\(m_{{\tilde{\chi }}_3^0} = 740.8\)</span> GeV and <span class="mathjax-tex">\(m_{{\tilde{\chi }}_2^\pm } = 741.3\)</span> GeV, and a dominantly bino <span class="mathjax-tex">\({\tilde{\chi }}_4^0\)</span> at <span class="mathjax-tex">\(m_{{\tilde{\chi }}_4^0} = 788.1\)</span> GeV. The scenarios allowed at <span class="mathjax-tex">\(2\sigma \)</span> confidence level (CL) relative to the best-fit point, all predict such a trio of near-degenerate Higgsinos with masses no less than about 140 GeV and no greater than about 500 GeV.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-2" data-title="Fig. 2"><figure><figcaption><b id="Fig2" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 2</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/2" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig2_HTML.png?as=webp"><img aria-describedby="Fig2" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig2_HTML.png" alt="figure 2" loading="lazy" width="685" height="273"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-2-desc"><p>Profile likelihood in the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> plane (left) and in the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_1^{\pm }},m_{{\tilde{\chi }}_1^{0}})\)</span> plane (right). The contour lines show the <span class="mathjax-tex">\(1\sigma \)</span> and <span class="mathjax-tex">\(2\sigma \)</span> confidence regions. The best-fit point is marked by the white star</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/2" data-track-dest="link:Figure2 Full size image" aria-label="Full size image figure 2" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>The scenarios within the <span class="mathjax-tex">\(2\sigma \)</span> region in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig2">2</a> are largely scenarios with negative <span class="mathjax-tex">\(\mu \)</span> parameter, <span class="mathjax-tex">\(|\mu | < M_2, |M_1|\)</span>, and <span class="mathjax-tex">\(\tan \beta \lesssim 5\)</span>, with the highest-likelihood solutions favouring <span class="mathjax-tex">\(\tan \beta \)</span> values close to 1. For such scenarios, the dominant and subdominant decay modes for the lightest neutralino are the <span class="mathjax-tex">\({\tilde{\chi }}_1^0 \rightarrow h {{\tilde{G}}}\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_1^0 \rightarrow Z {{\tilde{G}}}\)</span> channels, respectively – see e.g. the region around <span class="mathjax-tex">\(\mu \sim -300\,\text {GeV} \)</span> in the branching ratio plots in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig1">1</a>. Low branching ratios for decays to <span class="mathjax-tex">\(\gamma {{\tilde{G}}}\)</span> final states ensure that the scenarios in the <span class="mathjax-tex">\(2\sigma \)</span> region escape the otherwise highly constraining photons + <span class="mathjax-tex">\(E_T^\text {miss}\)</span> searches. Many of these scenarios also have sizeable branching ratios for <span class="mathjax-tex">\({\tilde{\chi }}_2^0\)</span> to decay directly to a <span class="mathjax-tex">\({{\tilde{G}}}\)</span> final state, typically through the <span class="mathjax-tex">\({\tilde{\chi }}_2^0 \rightarrow Z {{\tilde{G}}}\)</span> decay mode, rather than decaying exclusively through <span class="mathjax-tex">\({\tilde{\chi }}_2^0 \rightarrow Z^* {\tilde{\chi }}_1^0\)</span>, as often assumed in LHC searches for Higgsino production. Similarly, many scenarios in the higher-mass part of the <span class="mathjax-tex">\(2\sigma \)</span> region (<span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^\pm } > rsim 300\,\text {GeV} \)</span>) have large branching ratios for direct decays of <span class="mathjax-tex">\({\tilde{\chi }}_1^\pm \)</span> to the gravitino, through <span class="mathjax-tex">\({\tilde{\chi }}_1^\pm \rightarrow W^\pm {{\tilde{G}}}\)</span>.</p><p>By tuning the branching ratios <span class="mathjax-tex">\(\text {BR}({\tilde{\chi }}_{1,2}^0 \rightarrow h {{\tilde{G}}})\)</span> versus <span class="mathjax-tex">\(\text {BR}({\tilde{\chi }}_{1,2}^0 \rightarrow Z {{\tilde{G}}})\)</span>, and <span class="mathjax-tex">\(\text {BR}({\tilde{\chi }}_1^\pm \rightarrow W^\pm {{\tilde{G}}})\)</span> versus <span class="mathjax-tex">\(\text {BR}({\tilde{\chi }}_1^\pm \rightarrow f f' {\tilde{\chi }}_1^0)\)</span>,<sup><a href="#Fn4"><span class="u-visually-hidden">Footnote </span>4</a></sup> the model can partly fit small excesses in the ATLAS and CMS leptons + <span class="mathjax-tex">\(E_T^\text {miss}\)</span> searches and the ATLAS <i>b</i>-jets + <span class="mathjax-tex">\(E_T^\text {miss}\)</span> search. (The preference for a small signal contribution in <i>b</i>-jet final states in part explains the preference for <span class="mathjax-tex">\(\tan \beta \sim 1\)</span>, since this increases the branching ratio for <span class="mathjax-tex">\({\tilde{\chi }}_1^0 \rightarrow h {{\tilde{G}}}\)</span>, see Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Sec2">2</a>.) In combination, this produces a weak preference for the lower-mass end of the diagonal in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig2">2</a>, at masses around <span class="mathjax-tex">\(170\,\text {GeV} \)</span>.<sup><a href="#Fn5"><span class="u-visually-hidden">Footnote </span>5</a></sup></p><p>We found a preference for low-mass electroweakino scenarios also in our EWMSSM fit in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="GAMBIT Collaboration, P. Athron et al., Combined collider constraints on neutralinos and charginos. Eur. Phys. J. C 79, 395 (2019). 
 arXiv:1809.02097
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR17" id="ref-link-section-d154747430e14510">17</a>]. The EWMSSM parameter regions favoured in that study allow for electroweakino decay chains that produce multiple on-shell <i>Z</i>, <i>h</i> and <i>W</i> bosons, and terminate in a bino-dominated <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> that provides the missing energy signal. The favoured low-mass scenarios in the <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM predict a similar collider phenomenology, but now with the gravitino rather than a bino-like neutralino terminating the decay chains. However, in the present study the preference for these low-mass scenarios is weaker, as the previously-observed data excesses are less pronounced in the now larger ATLAS and CMS data sets.</p><h3 class="c-article__sub-heading" id="Sec12"><span class="c-article-section__title-number">5.2 </span>Non-excluded scenarios</h3> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-3" data-title="Fig. 3"><figure><figcaption><b id="Fig3" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 3</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/3" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig3_HTML.png?as=webp"><img aria-describedby="Fig3" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig3_HTML.png" alt="figure 3" loading="lazy" width="685" height="273"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-3-desc"><p>Capped profile likelihood in the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> plane (left) and in the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_1^{\pm }},m_{{\tilde{\chi }}_1^{0}})\)</span> plane (right). The white contour lines show the <span class="mathjax-tex">\(1\sigma \)</span> and <span class="mathjax-tex">\(2\sigma \)</span> confidence regions</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/3" data-track-dest="link:Figure3 Full size image" aria-label="Full size image figure 3" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>Assuming that these small data excesses are just background fluctuations rather than a true BSM signal, it is interesting to consider what electroweakino mass combinations the current combined data clearly exclude in the <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM. We investigate this in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig3">3</a> by showing profile likelihood plots where we use the capped likelihood, <span class="mathjax-tex">\({\mathcal {L}}_\text {searches}^\text {cap}\)</span> (Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Equ14">14</a>), as described in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Sec4">3.1</a>.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-4" data-title="Fig. 4"><figure><figcaption><b id="Fig4" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 4</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/4" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig4_HTML.png?as=webp"><img aria-describedby="Fig4" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig4_HTML.png" alt="figure 4" loading="lazy" width="685" height="181"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-4-desc"><p>The Higgsino (left), wino (middle) and bino (right) fraction of the <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span>, plotted across the profile-likelihood surface for the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> plane</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/4" data-track-dest="link:Figure4 Full size image" aria-label="Full size image figure 4" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>To understand the structures visible in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig3">3</a>, we first consider Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig4">4</a>, where we show the Higgsino, wino and bino components of the lightest neutralino for the highest-likelihood point in each bin across the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> plane. This allows us to identify which of the three NLSP scenarios discussed in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Sec2">2</a> are preferred in different parts of the mass plane. We see clearly that the preferred scenarios along the diagonal are scenarios with a mostly Higgsino NLSP (left panel), as discussed above. Moving away from the diagonal, towards higher <span class="mathjax-tex">\(m_{{\tilde{\chi }}_2^0}\)</span>, the best-fitting scenarios are wino NLSP scenarios (middle panel). We note that around <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^0}, m_{{\tilde{\chi }}_2^0} \sim 400\)</span> GeV, the current collider data prefers a fairly even wino/Higgsino admixture for the <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span>. Finally, at even higher <span class="mathjax-tex">\({\tilde{\chi }}_2^0\)</span>–<span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> mass splittings, the best possible fits are obtained for bino NLSP scenarios (right panel).<sup><a href="#Fn6"><span class="u-visually-hidden">Footnote </span>6</a></sup></p><p>We will in the following use the term <i>profile-likelihood surface</i> to refer to the set of parameter samples that appear in figures like Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig4">4</a>, where for each bin in the given plane we visualise some property of the highest-likelihood parameter sample belonging to that bin. For the interpretation of these figures it is important to remember that apparent discontinuities, such as the boundaries between the yellow and black regions in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig4">4</a>, typically result from the projection done by the profile likelihood procedure: two neighbouring bins in a mass plane can have their respective highest-likelihood points coming from very different parts of the four-dimensional <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM parameter space. So for instance the black region in the right-hand panel of Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig4">4</a> does not imply that there are no parameter samples that predict the given <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_2^0\)</span> masses and a bino-dominated <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span>, only that there for these mass predictions exist other parameter points that give a better fit to data and for which the <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> is dominantly wino or Higgsino.</p><p>We can now go back and reconsider Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig3">3</a>. Along the diagonals of the two mass planes, we see the allowed scenarios with Higgsino-dominated <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span>, <span class="mathjax-tex">\({\tilde{\chi }}_2^0\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_1^\pm \)</span>. This region extends all the way up towards the edge of our scan range, corresponding to masses around <span class="mathjax-tex">\(1\,\text {TeV} \)</span>. In addition, there are three other non-excluded scenarios visible.</p><p>First, in the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> plane, we find an allowed horizontal region at around <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^0} \approx 450\,\text {GeV} \)</span>, with wino-dominated and mass degenerate <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_1^\pm \)</span>. Second, in the region of <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^0} \lesssim 450\,\text {GeV} \)</span> and <span class="mathjax-tex">\(m_{{\tilde{\chi }}_2^0}, m_{{\tilde{\chi }}_1^\pm } > rsim 800\,\text {GeV} \)</span>, we see solutions with a lonely, light, bino-dominated <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span>. Lastly, in the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> plane around <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^0} > 700\,\text {GeV} \)</span> and away from the diagonal, we see a region of solutions allowed at <span class="mathjax-tex">\(2\sigma \)</span>, where again the <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_1^\pm \)</span> are mostly wino, though with non-negligible Higgsino components.</p><p>Before we explore these findings further, let us briefly compare them with the capped-likelihood results from our analysis of the EWMSSM [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="GAMBIT Collaboration, P. Athron et al., Combined collider constraints on neutralinos and charginos. Eur. Phys. J. C 79, 395 (2019). 
 arXiv:1809.02097
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR17" id="ref-link-section-d154747430e16243">17</a>]. In [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="GAMBIT Collaboration, P. Athron et al., Combined collider constraints on neutralinos and charginos. Eur. Phys. J. C 79, 395 (2019). 
 arXiv:1809.02097
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR17" id="ref-link-section-d154747430e16246">17</a>] we found that essentially no combinations of <span class="mathjax-tex">\({\tilde{\chi }}_1^{\pm }\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_1^{0}\)</span> masses could be conclusively ruled out by the combination of LHC search results at the time of that study. The conclusion is markedly different in the present <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM study, where only four distinct scenarios for electroweakinos below <span class="mathjax-tex">\(1\,\text {TeV} \)</span> remain viable. There are several factors contributing to this result: (1) the overall stronger constraining power due to the now larger LHC data sets; (2) the diminishing of the data excesses that in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="GAMBIT Collaboration, P. Athron et al., Combined collider constraints on neutralinos and charginos. Eur. Phys. J. C 79, 395 (2019). 
 arXiv:1809.02097
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR17" id="ref-link-section-d154747430e16357">17</a>] helped improve the fit for low-mass solutions in the EWMSSM; (3) the additional constraining power in the present study, coming from our inclusion of LHC measurements in addition to direct BSM searches; and (4) the distinctive <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM collider signatures, in particular the photon signatures, that result in strong constraints on large parts of the <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM parameter space.</p><h3 class="c-article__sub-heading" id="Sec13"><span class="c-article-section__title-number">5.3 </span>Impact of different searches</h3> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-5" data-title="Fig. 5"><figure><figcaption><b id="Fig5" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 5</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/5" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig5_HTML.png?as=webp"><img aria-describedby="Fig5" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig5_HTML.png" alt="figure 5" loading="lazy" width="685" height="273"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-5-desc"><p>The total log-likelihood plotted across the profile-likelihood surface in the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> plane (left) and in the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_1^{\pm }},m_{{\tilde{\chi }}_1^0})\)</span> plane (right)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/5" data-track-dest="link:Figure5 Full size image" aria-label="Full size image figure 5" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-6" data-title="Fig. 6"><figure><figcaption><b id="Fig6" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 6</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/6" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig6_HTML.png?as=webp"><img aria-describedby="Fig6" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig6_HTML.png" alt="figure 6" loading="lazy" width="685" height="558"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-6-desc"><p>Log-likelihood contribution from various groups of LHC searches across the profile-likelihood surface for the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> plane</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/6" data-track-dest="link:Figure6 Full size image" aria-label="Full size image figure 6" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-7" data-title="Fig. 7"><figure><figcaption><b id="Fig7" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 7</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/7" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig7_HTML.png?as=webp"><img aria-describedby="Fig7" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig7_HTML.png" alt="figure 7" loading="lazy" width="685" height="844"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-7-desc"><p>Total LHC production cross-section for electroweakinos, and selected branching ratios for the decays of <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_1^\pm \)</span>, plotted across the profile-likelihood surface for the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> plane</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/7" data-track-dest="link:Figure7 Full size image" aria-label="Full size image figure 7" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>To understand our results in greater detail, we will in the following discuss the contributions from the LHC searches and measurements that most strongly influence the fit result. To aid this discussion we consider Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig5">5</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig6">6</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig7">7</a>: In Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig5">5</a> we show the total log-likelihood difference <span class="mathjax-tex">\(\ln {\mathcal {L}}(\varvec{s}) - \ln {\mathcal {L}}(\varvec{s}=\varvec{0})\)</span>. The various solutions in Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig2">2</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig3">3</a> are visible as regions of greater likelihood. In Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig6">6</a> we consider the profile likelihood surface for the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> plane and break the total log-likelihood down into contributions from photon searches, lepton searches, other searches and measurements of SM-like final states. Finally, in the six panels of Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig7">7</a> we show the total electroweakino LHC production cross-section and a selection of relevant branching ratios across the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> profile likelihood surface.</p><p>The top-left panel of Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig6">6</a> shows that for the scenarios with a bino NLSP (see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig4">4</a>, right), the most constraining LHC analyses are the photons + <span class="mathjax-tex">\(E_T^\text {miss}\)</span> searches. This can be understood from the fact that for these scenarios the dominant <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> decay mode is <span class="mathjax-tex">\({\tilde{\chi }}_1^0 \rightarrow \gamma {{\tilde{G}}}\)</span> (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig7">7</a>, top right), while the heavier wino- or Higgsino-dominated electroweakinos, which here dominate the production cross-section, decay via the <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> rather than directly to a <span class="mathjax-tex">\({{\tilde{G}}}\)</span> final state (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig7">7</a>, bottom right). Towards larger masses for the heavier electroweakinos the production cross-section diminishes (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig7">7</a>, top left) enough to leave an allowed region at <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^0} \lesssim 450\,\text {GeV} \)</span> and <span class="mathjax-tex">\(m_{{\tilde{\chi }}_2^0}, m_{{\tilde{\chi }}_1^\pm } > rsim 800\,\text {GeV} \)</span>.</p><p>In the middle sector of the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> plane, where the highest-likelihood scenarios are wino NLSP scenarios (see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig4">4</a>, middle), the most important contributions to the profile likelihood surface come from the leptons + <span class="mathjax-tex">\(E_T^\text {miss}\)</span> searches (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig6">6</a>, top right), and searches for jets + <span class="mathjax-tex">\(E_T^\text {miss}\)</span> final states, with or without leptons (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig6">6</a>, bottom left). This is largely explained by the fact that the dominant decay modes of the now wino-dominated and near mass-degenerate <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_1^\pm \)</span> are <span class="mathjax-tex">\({\tilde{\chi }}_1^0 \rightarrow Z {{\tilde{G}}}\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_1^\pm \rightarrow W^\pm {{\tilde{G}}}\)</span>, respectively (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig7">7</a>, middle right and bottom left). Thus, <span class="mathjax-tex">\({\tilde{\chi }}_1^\pm {\tilde{\chi }}_1^0\)</span> production will for these scenarios typically give rise to the same collider signatures as the commonly studied SUSY scenarios where wino-dominated <span class="mathjax-tex">\({\tilde{\chi }}_1^\pm {\tilde{\chi }}_2^0\)</span> are produced and decay to final states with a stable, light <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> through <span class="mathjax-tex">\({\tilde{\chi }}_2^0 \rightarrow Z {\tilde{\chi }}_1^0\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_1^\pm \rightarrow W^\pm {\tilde{\chi }}_1^0\)</span>. However, while <span class="mathjax-tex">\({\tilde{\chi }}_1^\pm {\tilde{\chi }}_1^0\)</span> is the most important production mode for these <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM scenarios, relevant signal contributions can also arise from production of some of the heavier, Higgsino-dominated electroweakinos. Towards low <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^0}\)</span> (<span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^0} \lesssim 200\,\text {GeV} \)</span>), phase space suppression of the <span class="mathjax-tex">\({\tilde{\chi }}_1^0 \rightarrow Z {{\tilde{G}}}\)</span> decay makes <span class="mathjax-tex">\({\tilde{\chi }}_1^0 \rightarrow \gamma {{\tilde{G}}}\)</span> the dominant decay mode for <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig7">7</a>, top right). Here the photons + <span class="mathjax-tex">\(E_T^\text {miss}\)</span> searches contribute strongly to the total log-likelihood, as does the measurements of SM signatures, to be discussed in more detail below (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig6">6</a>, top left and bottom right). At around <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^0} \sim 450\,\text {GeV} \)</span>, the reduction in the production cross-section with increasing mass (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig7">7</a>, top left), combined with a balancing of the <span class="mathjax-tex">\({\tilde{\chi }}_1^0 \rightarrow \gamma {{\tilde{G}}}\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_1^0 \rightarrow Z {{\tilde{G}}}\)</span> branching ratios (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig7">7</a>, top right and middle right) means that the combined constraining power of the searches is sufficiently weakened so that a horizontal band in the mass plane avoids exclusion at the <span class="mathjax-tex">\(2\sigma \)</span> level. This is also partly due to the model fitting some weak excesses in leptons + <span class="mathjax-tex">\(E_T^\text {miss}\)</span> and photons + <span class="mathjax-tex">\(E_T^\text {miss}\)</span> searches (light blue bands in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig6">6</a>, top left and top right). However, towards even higher <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^0}\)</span>, the ATLAS search for <span class="mathjax-tex">\(E_T^\text {miss}\)</span> + boosted bosons [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 101" title="ATLAS, G. Aad et al., Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s}$$
 
 
 s
 
 
 = 13 TeV with the ATLAS detector. Phys. Rev. D 104, 112010 (2021). 
 arXiv:2108.07586
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR101" id="ref-link-section-d154747430e18416">101</a>] gains sensitivity (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig6">6</a>, bottom left) and the total likelihood therefore drops below the <span class="mathjax-tex">\(2\sigma \)</span> threshold for <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^0}\)</span> between <span class="mathjax-tex">\(\sim 500\,\text {GeV} \)</span> and <span class="mathjax-tex">\(\sim 700\,\text {GeV} \)</span>.</p><p>As discussed above, the overall highest-likelihood scenarios are Higgsino NLSP scenarios, close to the diagonals of the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> and <span class="mathjax-tex">\((m_{{\tilde{\chi }}_1^\pm },m_{{\tilde{\chi }}_1^0})\)</span> planes. Here the model obtains positive contributions to <span class="mathjax-tex">\(\varDelta \ln {\mathcal {L}}_\text {searches}\)</span> from small excesses in leptons + <span class="mathjax-tex">\(E_T^\text {miss}\)</span> searches and the ATLAS <i>b</i>-jets + <span class="mathjax-tex">\(E_T^\text {miss}\)</span> search (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig6">6</a>, top right and bottom left). Some examples of the balancing of different branching ratios that these scenarios exhibit, discussed in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Sec11">5.1</a>, can be seen in the middle left, middle right and bottom left panels of Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig7">7</a>.</p><h3 class="c-article__sub-heading" id="Sec14"><span class="c-article-section__title-number">5.4 </span>Impact of measurements</h3><p>The present study is the first to include LHC measurements of SM signatures in a many-parameter BSM global fit. It is therefore interesting to explore what impact these likelihood contributions have on our results. The log-likelihood contribution <span class="mathjax-tex">\(\varDelta \ln {\mathcal {L}}_\text {meas}\)</span> on the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> profile-likelihood surface is shown in the bottom-right panel of Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig6">6</a>. The contribution is significant in the regions with wino- or Higgsino-dominated <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> with <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^0} \lesssim 200\,\text {GeV} \)</span>, where <span class="mathjax-tex">\(\textrm{BR} ({\tilde{\chi }}_1^0 \rightarrow \gamma {{\tilde{G}}})\)</span> is large. In particular, the SM signature measurements contribute to excluding low-mass scenarios where the constraints from leptons + <span class="mathjax-tex">\(E_T^\text {miss}\)</span> searches would otherwise have been largely balanced by positive log-likelihood contributions from the photons + <span class="mathjax-tex">\(E_T^\text {miss}\)</span> searches (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig6">6</a>, top panels, <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^0} \lesssim 100\,\text {GeV} \)</span>).</p><p>The <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> profile likelihood surface discussed above is by definition made up of the overall <i>least</i> constrained parameter sample within each <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> bin. To get a more complete picture of the constraining power of the SM signature measurements, it is interesting to also look at <span class="mathjax-tex">\(\varDelta \ln {\mathcal {L}}_\text {meas}\)</span> across the surface of parameter samples that are <i>most strongly</i> constrained by this log-likelihood contribution. This is shown in the top-left panel of Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig8">8</a>. For the <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM scenarios where the SM signature measurements have their largest sensitivity, they rule out scenarios that have both <span class="mathjax-tex">\(m_{{\tilde{\chi }}_2^0}\)</span> and <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^0}\)</span> below <span class="mathjax-tex">\(\sim 500\,\text {GeV} \)</span>, and scenarios towards higher <span class="mathjax-tex">\(m_{{\tilde{\chi }}_2^0}\)</span> when <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^0} \lesssim 150\,\text {GeV} \)</span>. The three other panels in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig8">8</a> show the individual log-likelihood contributions from the pools of measurements that contribute most strongly to the combined <span class="mathjax-tex">\(\varDelta \ln {\mathcal {L}}_\text {meas}\)</span> in the upper-left panel: ATLAS measurements of the <span class="mathjax-tex">\(pp \rightarrow ZZ \rightarrow 4l\)</span> cross-section (top right) [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 142" title="ATLAS, G. Aad et al., Measurements of differential cross-sections in four-lepton events in 13 TeV proton-proton collisions with the ATLAS detector. JHEP 07, 005 (2021). 
 arXiv:2103.01918
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR142" id="ref-link-section-d154747430e19541">142</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 160" title="ATLAS, M. Aaboud et al., Measurement of the four-lepton invariant mass spectrum in 13 TeV proton-proton collisions with the ATLAS detector. JHEP 04, 048 (2019). 
 arXiv:1902.05892
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR160" id="ref-link-section-d154747430e19544">160</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 175" title="ATLAS, M. Aaboud et al., 
 
 
 
 $$ZZ \rightarrow \ell ^{+}\ell ^{-}\ell ^{\prime +}\ell ^{\prime -}$$
 
 
 Z
 Z
 →
 
 ℓ
 +
 
 
 ℓ
 -
 
 
 ℓ
 
 ′
 +
 
 
 
 ℓ
 
 ′
 -
 
 
 
 
 cross-section measurements and search for anomalous triple gauge couplings in 13 TeV 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions with the ATLAS detector. Phys. Rev. D 97, 032005 (2018). 
 arXiv:1709.07703
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR175" id="ref-link-section-d154747430e19548">175</a>]; ATLAS measurements of final states with two different flavour leptons and missing energy, with or without jets (bottom left) [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 141" title="ATLAS, G. Aad et al., Measurement of the 
 
 
 
 $$t{\bar{t}}$$
 
 
 t
 
 
 t
 
 
 ¯
 
 
 
 
 production cross-section and lepton differential distributions in 
 
 
 
 $$e\mu $$
 
 
 e
 μ
 
 
 dilepton events from 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s}=13\,\text{ TeV }$$
 
 
 
 s
 
 =
 13
 
 
 TeV
 
 
 
 with the ATLAS detector. Eur. Phys. J. C 80, 528 (2020). 
 arXiv:1910.08819
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR141" id="ref-link-section-d154747430e19551">141</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 150" title="ATLAS, M. Aaboud et al., Searches for scalar leptoquarks and differential cross-section measurements in dilepton-dijet events in proton-proton collisions at a centre-of-mass energy of 
 
 
 
 $$\sqrt{s}$$
 
 
 s
 
 
 = 13 TeV with the ATLAS experiment. Eur. Phys. J. C 79, 733 (2019). 
 arXiv:1902.00377
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR150" id="ref-link-section-d154747430e19554">150</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 163" title="ATLAS, G. Aad et al., Measurements of 
 
 
 
 $$W^+W^-+\ge 1~$$
 
 
 
 W
 +
 
 
 W
 -
 
 +
 ≥
 1
 
 
 
 jet production cross-sections in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s}=13~$$
 
 
 
 s
 
 =
 13
 
 
 
 TeV with the ATLAS detector. JHEP 06, 003 (2021). 
 arXiv:2103.10319
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR163" id="ref-link-section-d154747430e19557">163</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 166" title="ATLAS, M. Aaboud et al., Measurement of fiducial and differential 
 
 
 
 $$W^+W^-$$
 
 
 
 W
 +
 
 
 W
 -
 
 
 
 production cross-sections at 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector. Eur. Phys. J. C 79, 884 (2019). 
 arXiv:1905.04242
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR166" id="ref-link-section-d154747430e19560">166</a>], where the dominant contribution is coming from the <span class="mathjax-tex">\(pp \rightarrow W^+ W^-\)</span> cross-section measurements in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 163" title="ATLAS, G. Aad et al., Measurements of 
 
 
 
 $$W^+W^-+\ge 1~$$
 
 
 
 W
 +
 
 
 W
 -
 
 +
 ≥
 1
 
 
 
 jet production cross-sections in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s}=13~$$
 
 
 
 s
 
 =
 13
 
 
 
 TeV with the ATLAS detector. JHEP 06, 003 (2021). 
 arXiv:2103.10319
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR163" id="ref-link-section-d154747430e19603">163</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 166" title="ATLAS, M. Aaboud et al., Measurement of fiducial and differential 
 
 
 
 $$W^+W^-$$
 
 
 
 W
 +
 
 
 W
 -
 
 
 
 production cross-sections at 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector. Eur. Phys. J. C 79, 884 (2019). 
 arXiv:1905.04242
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR166" id="ref-link-section-d154747430e19606">166</a>]; and an ATLAS measurement of the <span class="mathjax-tex">\(pp \rightarrow Z(\rightarrow l^+ l^-) \gamma + X\)</span> production cross-section [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 181" title="ATLAS, G. Aad et al., Measurement of the 
 
 
 
 $$Z(\rightarrow \ell ^+\ell ^-)\gamma $$
 
 
 Z
 (
 →
 
 ℓ
 +
 
 
 ℓ
 -
 
 )
 γ
 
 
 production cross-section in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s} =13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector. JHEP 03, 054 (2020). 
 arXiv:1911.04813
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR181" id="ref-link-section-d154747430e19667">181</a>] (bottom right).</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-8" data-title="Fig. 8"><figure><figcaption><b id="Fig8" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 8</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/8" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig8_HTML.png?as=webp"><img aria-describedby="Fig8" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig8_HTML.png" alt="figure 8" loading="lazy" width="685" height="558"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-8-desc"><p>Log-likelihood contributions from different pools of LHC measurements, plotted across the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> plane for the scan points where the combined constraint from the LHC measurements is at its strongest</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/8" data-track-dest="link:Figure8 Full size image" aria-label="Full size image figure 8" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-9" data-title="Fig. 9"><figure><figcaption><b id="Fig9" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 9</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/9" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig9_HTML.png?as=webp"><img aria-describedby="Fig9" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig9_HTML.png" alt="figure 9" loading="lazy" width="685" height="181"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-9-desc"><p>The Higgsino (left), wino (middle) and bino (right) fraction of the <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span>, plotted across the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> plane for the scan points where the combined constraint from the LHC measurements is the largest</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/9" data-track-dest="link:Figure9 Full size image" aria-label="Full size image figure 9" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>In Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig9">9</a> we show the <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> composition for the parameter samples contributing to Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig8">8</a>. From Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig8">8</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig9">9</a> we see that the <i>ZZ</i> cross-section measurements most strongly constrain low-mass scenarios where the <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> is dominantly Higgsino or a wino-Higgsino mixture. These <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM scenarios combine a large total electroweakino production cross-section,<sup><a href="#Fn7"><span class="u-visually-hidden">Footnote </span>7</a></sup> with significant branching ratios for some of the decays <span class="mathjax-tex">\({\tilde{\chi }}_{i}^0 \rightarrow Z {{\tilde{G}}}\)</span> and/or <span class="mathjax-tex">\({\tilde{\chi }}_{i}^0 \rightarrow Z {\tilde{\chi }}_{j}^0\)</span>. The measurements of <span class="mathjax-tex">\(W^+ W^-\)</span> production cross-sections exclude low-mass scenarios with wino-dominated <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span>. Here the strongest <span class="mathjax-tex">\(W^+W^-\)</span> signal contribution comes from the production of pairs of light, wino-dominated <span class="mathjax-tex">\({\tilde{\chi }}_1^\pm \)</span>, which decay as <span class="mathjax-tex">\({\tilde{\chi }}_1^\pm \rightarrow W^\pm {{\tilde{G}}}\)</span>. Finally, the <span class="mathjax-tex">\(Z(\rightarrow l^+ l^-) \gamma + X\)</span> cross-section measurement constrains scenarios with bino-dominated <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span>. These scenarios typically have a large <span class="mathjax-tex">\(\textrm{BR} ({\tilde{\chi }}_1^0 \rightarrow \gamma {{\tilde{G}}})\)</span> and a non-negligible <span class="mathjax-tex">\(\textrm{BR} ({\tilde{\chi }}_1^0 \rightarrow Z {{\tilde{G}}})\)</span>, such that production of any pair of electroweakinos that decay to <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span>’s can result in signal contributions to the measured cross-section.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-10" data-title="Fig. 10"><figure><figcaption><b id="Fig10" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/10" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig10_HTML.png?as=webp"><img aria-describedby="Fig10" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig10_HTML.png" alt="figure 10" loading="lazy" width="685" height="446"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-10-desc"><p>The log-likelihood impact from including <span class="mathjax-tex">\(8\,\text {TeV} \)</span> LHC measurements of SM signatures, shown for the highest-likelihood scan points in the mass region around the best-fit point (left) and a higher-mass region (right)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/10" data-track-dest="link:Figure10 Full size image" aria-label="Full size image figure 10" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Since the best-fit region predicts light Higgsinos, at masses around <span class="mathjax-tex">\(170\,\text {GeV} \)</span>, the LHC searches and measurements performed at <span class="mathjax-tex">\(\sqrt{s} = 8\,\text {TeV} \)</span> can also be relevant. A full investigation of the impact of <span class="mathjax-tex">\(8\,\text {TeV} \)</span> results is beyond the scope of this study, as it would effectively double the computational cost of our parameter scans. However, to gauge the possible impact, we generate 100,000 events at <span class="mathjax-tex">\(8\,\text {TeV} \)</span> for each of our 100 highest-likelihood parameter points. We pass the events through <span class="u-sans-serif">Rivet</span> and <span class="u-sans-serif">Contur</span> to compute a log-likelihood contribution from the collection of <span class="mathjax-tex">\(\sqrt{s} = 8\,\text {TeV} \)</span> measurements in <span class="u-sans-serif">Rivet</span>. The result of this is illustrated in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig10">10</a>, where we show the change in the total log-likelihood for each point when the contribution from <span class="mathjax-tex">\(8\,\text {TeV} \)</span> measurements is added. In the left-hand panel we show the points close to the best-fit point at <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^0} \sim 170\,\text {GeV} \)</span>. Of our 100 highest-likelihood points, some also belong to the higher-mass region, at <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^0} > rsim 280\,\text {GeV} \)</span>, shown in the right-hand panel. For the best-fit points in the low-mass region, including the <span class="mathjax-tex">\(8\,\text {TeV} \)</span> measurements reduces the total log-likelihood by around 0.2 units. As expected, there is a smaller impact on points in the higher-mass region.</p><h3 class="c-article__sub-heading" id="Sec15"><span class="c-article-section__title-number">5.5 </span>Scenarios with a chargino NLSP</h3><p>In contrast with the EWMSSM, the <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM admits the possibility of a chargino as the lightest electroweakino. Such a scenario was highlighted in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig1">1</a> where the gray band signals a sudden drop in branching ratio due to <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^{\pm }} < m_{{\tilde{\chi }}_1^{0}}\)</span>. While rare for MSSM-like electroweakino mass matrices, and featuring small mass differences, our scan identified still-viable parameter regions with <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^{\pm }} < m_{{\tilde{\chi }}_1^{0}}\)</span>, shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig11">11</a>.</p><p>We find that in these cases, the points with the highest likelihoods have Higgsino-like electroweakinos, with only small splittings for the <span class="mathjax-tex">\({\tilde{\chi }}_1^{\pm }\)</span>, <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_2^0\)</span>, with masses preferred to be in the region of 400–<span class="mathjax-tex">\(500\,\text {GeV} \)</span>. Here, the decay mode for <span class="mathjax-tex">\({\tilde{\chi }}_1^{\pm }\)</span> is always <span class="mathjax-tex">\({\tilde{\chi }}_1^{\pm }\rightarrow W {{\tilde{G}}}\)</span>. Hence, the detectable signal for <span class="mathjax-tex">\({\tilde{\chi }}_1^{\pm }{\tilde{\chi }}_1^{\pm }\)</span> pair production is two on-shell <i>W</i> bosons and some missing energy from the gravitinos. For the <span class="mathjax-tex">\({\tilde{\chi }}_1^{0}\)</span>, the dominant decay modes are <span class="mathjax-tex">\({\tilde{\chi }}_1^{0}\rightarrow Z {{\tilde{G}}}\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_1^{0}\rightarrow h {{\tilde{G}}}\)</span> due to the dominant Higgsino component. The detectable signal for <span class="mathjax-tex">\({\tilde{\chi }}_1^{0}{\tilde{\chi }}_1^{\pm }\)</span> production would then be on-shell <i>WZ</i> or <i>Wh</i> plus missing energy from the gravitinos. Finally, <span class="mathjax-tex">\({\tilde{\chi }}_2^0\)</span> decays to soft SM fermions and the <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> or <span class="mathjax-tex">\({\tilde{\chi }}_1^\pm \)</span>. Thus, the production of <span class="mathjax-tex">\({\tilde{\chi }}_1^{0}{\tilde{\chi }}_2^{0}\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_1^{\pm }{\tilde{\chi }}_2^{0}\)</span> will in effect enhance the cross sections for <span class="mathjax-tex">\({\tilde{\chi }}_1^{0}{\tilde{\chi }}_1^{\pm }\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_1^{\pm }{\tilde{\chi }}_1^{\pm }\)</span> production.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-11" data-title="Fig. 11"><figure><figcaption><b id="Fig11" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 11</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/11" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig11_HTML.png?as=webp"><img aria-describedby="Fig11" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig11_HTML.png" alt="figure 11" loading="lazy" width="685" height="273"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-11-desc"><p>The total log-likelihood plotted across the profile-likelihood surface for the subset of points with <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^\pm } < m_{{\tilde{\chi }}_1^0}\)</span>, shown in the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_2^0},m_{{\tilde{\chi }}_1^0})\)</span> plane (left) and in the <span class="mathjax-tex">\((m_{{\tilde{\chi }}_1^{\pm }},m_{{\tilde{\chi }}_1^0})\)</span> plane (right)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/11" data-track-dest="link:Figure11 Full size image" aria-label="Full size image figure 11" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div></div></div></section><section data-title="Conclusions"><div class="c-article-section" id="Sec16-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec16"><span class="c-article-section__title-number">6 </span>Conclusions</h2><div class="c-article-section__content" id="Sec16-content"><p>In this study we have investigated the current viability of the <span class="mathjax-tex">\({{\tilde{G}}}\)</span>-EWMSSM, the simplest realisation of a light supersymmetric electroweak sector together with a nearly massless gravitino LSP. We have confronted the <span class="mathjax-tex">\({{\tilde{G}}}\)</span>-EWMSSM with a comprehensive selection of the relevant Run 2 searches at the LHC, relevant past searches at LEP, and, we have, for the first time in a global fit, used a broad set of SM measurements at the LHC to constrain the model by building a new interface between <span class="u-sans-serif">GAMBIT</span> and <span class="u-sans-serif">Contur</span>.</p><p>Our best-fit region for the model is where <span class="mathjax-tex">\(|\mu |<|M_1|,M_2\)</span>, and is characterised phenomenologically by a trio of relatively light degenerate Higgsinos in the mass range of 140–<span class="mathjax-tex">\(500\,\text {GeV} \)</span>, with a best fit point around <span class="mathjax-tex">\(170\,\text {GeV} \)</span>. Due to the collective effect of small excesses over multiple ATLAS and CMS searches we find closed <span class="mathjax-tex">\(2\sigma \)</span> contours in the parameter space, but we emphasise that this is a model-specific best-fit region and does not constitute a measure of goodness-of-fit.</p><p>Our main result is that the bulk of the <span class="mathjax-tex">\({{\tilde{G}}}\)</span>-EWMSSM parameter space with electroweakino masses below <span class="mathjax-tex">\(1\,\text {TeV} \)</span> is excluded by collider searches and measurements. The four exceptions, classified according to the nature of the lightest electroweakinos, are: </p><dl class="c-abbreviation_list"><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>(i):</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>degenerate Higgsinos from <span class="mathjax-tex">\(140\,\text {GeV} \)</span> and up,</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>(ii):</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>a region of degenerate winos around 400–<span class="mathjax-tex">\(500\,\text {GeV} \)</span> allowed at the <span class="mathjax-tex">\(2\sigma \)</span> level,</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>(iii):</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>degenerate winos above <span class="mathjax-tex">\(700\,\text {GeV} \)</span>, and</p> </dd><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn>(iv):</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <p>a ‘lonely’ bino from <span class="mathjax-tex">\(62\,\text {GeV} \)</span> and up, decoupled from heavier Higgsinos and winos lying above <span class="mathjax-tex">\(800\,\text {GeV} \)</span>.</p> </dd></dl><p>For Run 3 of the LHC the degenerate Higgsino region, (i), will be challenging to test fully. Drawing from the lessons learnt in this study, the measurement of SM multi-lepton signatures will continue to be important to exclude parameter space at the low-mass end of the region. Potential improvements to searches sensitive to the important <span class="mathjax-tex">\({\tilde{\chi }}_1^{0}\rightarrow h {{\tilde{G}}}\)</span> decay (see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig7">7</a>, middle left), will also improve the reach. However, fully excluding this still very viable region will need future <span class="mathjax-tex">\(e^+e^-\)</span> or muon colliders operating at high enough centre-of-mass energies.</p><p>On the other hand, the surviving wino band, (ii), with masses around <span class="mathjax-tex">\(450\,\text {GeV} \)</span> seems to be fully excludable with the slightly higher Run 3 centre-of-mass energy and more data, in particular since its survival is already marginal. For the same reason it should also be possible to push the remaining wino region, (iii), to somewhat higher masses with higher cross sections and more data.</p><p>For the lonely bino region, (iv), the search for pair production of light binos decaying to photons is also hampered by low production cross sections. However, we expect some impact here with increasing statistics in Run 3 and beyond to the High-Luminosity LHC, in particular on the parts of parameter space where there is bino production through the decay of heavier electroweakinos, which could realistically be pushed out beyond 1 TeV.</p><p>We emphasise the still open interesting possibility of a reverse mass hierarchy of charginos and neutralinos, with <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^{\pm }} < m_{{\tilde{\chi }}_1^{0}}\)</span>, with distinct signal predictions for LHC Run 3 searches. Although the base production cross section is not so high given their Higgsino nature, the preferred region of this scenario should be within reach of Run 3 statistics and the slightly higher centre-of-mass energy, when considering all final states <i>WW</i>, <i>WZ</i> and <i>Wh</i>.</p><p>We make all our generated parameter samples available from <span class="u-sans-serif">Zenodo</span> for further study [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 202" title="GAMBIT Collaboration, Supplementary data: collider constraints on electroweakinos in the presence of a light gravitino (2023). 
 https://zenodo.org/record/7704832
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR202" id="ref-link-section-d154747430e22648">202</a>].</p></div></div></section> </div> <section data-title="Data Availability Statement"><div class="c-article-section" id="data-availability-statement-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="data-availability-statement">Data Availability Statement</h2><div class="c-article-section__content" id="data-availability-statement-content"> <p>The manuscript has associated data in a data repository. [Authors’ comment: The supplementary repository is provided by Zenodo (DOI: <a href="https://doi.org/10.5281/zenodo.7704832">https://doi.org/10.5281/zenodo.7704832</a>) and contains the complete data set generated for this study, as well as a GAMBIT configuration file and example plotting scripts.]</p> </div></div></section><section data-title="Notes"><div class="c-article-section" id="notes-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="notes">Notes</h2><div class="c-article-section__content" id="notes-content"><ol class="c-article-footnote c-article-footnote--listed"><li class="c-article-footnote--listed__item" id="Fn1" data-counter="1."><div class="c-article-footnote--listed__content"><p>A new method for identifying non-overlapping combinations of signal regions from large collections of LHC searches was recently presented in Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 131" title="J.Y. Araz, A. Buckley et. al., Strength in numbers: optimal and scalable combination of LHC new-physics searches. 
 arXiv:2209.00025
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR131" id="ref-link-section-d154747430e8272">131</a>]. We plan to implement this method in <span class="u-sans-serif">GAMBIT</span> and use it in future studies.</p></div></li><li class="c-article-footnote--listed__item" id="Fn2" data-counter="2."><div class="c-article-footnote--listed__content"><p>To avoid the additional computational cost of simulating light electroweakino production through decays of SM bosons, we do not consider parameter points with electroweakino masses below <span class="mathjax-tex">\(62.5\,\text {GeV} \)</span>.</p></div></li><li class="c-article-footnote--listed__item" id="Fn3" data-counter="3."><div class="c-article-footnote--listed__content"><p>The computational cost of overcoming this problem, also discussed in Refs. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="GAMBIT Collaboration, P. Athron et al., Combined collider constraints on neutralinos and charginos. Eur. Phys. J. C 79, 395 (2019). 
 arXiv:1809.02097
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR17" id="ref-link-section-d154747430e10698">17</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 200" title="K. Cranmer et al., Publishing statistical models: Getting the most out of particle physics experiments. SciPost Phys. 12, 037 (2022). 
 arXiv:2109.04981
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR200" id="ref-link-section-d154747430e10701">200</a>], is currently a major limiting factor for the proper utilisation of LHC results through full MC simulations in BSM global fits. The severity of the problem is reduced with every new LHC search that is published with enough information to enable a statistical combination of the different signal regions, e.g. through the <i>simplified likelihood</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 128" title="CMS Collaboration, Simplified likelihood for the re-interpretation of public CMS results. CMS-NOTE-2017-001 (2017)" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR128" id="ref-link-section-d154747430e10707">128</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 129" title="A. Buckley, M. Citron et al., The simplified likelihood framework. JHEP 04, 064 (2019). 
 arXiv:1809.05548
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR129" id="ref-link-section-d154747430e10710">129</a>] or <i>full likelihood</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 130" title="ATLAS, G. Aad et al., Reproducing searches for new physics with the ATLAS experiment through publication of full statistical likelihoods" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR130" id="ref-link-section-d154747430e10717">130</a>] approaches.</p></div></li><li class="c-article-footnote--listed__item" id="Fn4" data-counter="4."><div class="c-article-footnote--listed__content"><p>Here <i>f</i> and <span class="mathjax-tex">\(f'\)</span> are SM fermions.</p></div></li><li class="c-article-footnote--listed__item" id="Fn5" data-counter="5."><div class="c-article-footnote--listed__content"><p>At the best-fit point, the three dominant contributions to the likelihood come from (i) a signal region requiring <span class="mathjax-tex">\(\ge 3\)</span> <i>b</i>-jets, no leptons, <span class="mathjax-tex">\(m_{\text {eff}} > 860\,\text {GeV} \)</span> and <span class="mathjax-tex">\(E_{T}^{\text {miss}} \in (150,200)\,\text {GeV} \)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 109" title="ATLAS, M. Aaboud et al., Search for pair production of higgsinos in final states with at least three 
 
 
 
 $$b$$
 
 b
 
 -tagged jets in 
 
 
 
 $$\sqrt{s} = 13$$
 
 
 
 s
 
 =
 13
 
 
 TeV 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions using the ATLAS detector. Phys. Rev. D 98, 092002 (2018). 
 arXiv:1806.04030
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR109" id="ref-link-section-d154747430e14404">109</a>]; (ii) a signal region requiring 3 leptons, no opposite-sign, same-flavour lepton pairs and <span class="mathjax-tex">\(E_{T}^{\text {miss}} > 50\,\text {GeV} \)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 111" title="ATLAS, G. Aad et al., Search for supersymmetry in events with four or more charged leptons in 139 
 
 
 
 $$\text{ fb}^{-1}$$
 
 
 
 
 fb
 
 -
 1
 
 
 
 
 of 
 
 
 
 $$\sqrt{s} $$
 
 
 s
 
 
 = 13 TeV pp collisions with the ATLAS detector. JHEP 07, 167 (2021). 
 arXiv:2103.11684
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR111" id="ref-link-section-d154747430e14446">111</a>]; and (iii) a signal region requiring <span class="mathjax-tex">\(\ge 5\)</span> leptons [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 124" title="CMS, A. Tumasyan et al., Search for electroweak production of charginos and neutralinos in proton-proton collisions at 
 
 
 
 $$ \sqrt{s} $$
 
 
 s
 
 
 = 13 TeV. JHEP 04, 147 (2022). 
 arXiv:2106.14246
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR124" id="ref-link-section-d154747430e14471">124</a>]. Due to the many different final state combinations of leptons and <i>b</i>-jets that can arise in the decays of 2–4 on-shell and off-shell <i>h</i>, <i>Z</i> and <span class="mathjax-tex">\(W^\pm \)</span> bosons, the best-fit parameter point simultaneously predicts small signal contributions in all of these three signal regions.</p></div></li><li class="c-article-footnote--listed__item" id="Fn6" data-counter="6."><div class="c-article-footnote--listed__content"><p>For <span class="mathjax-tex">\(m_{{\tilde{\chi }}_2^0} \approx m_{{\tilde{\chi }}_1^0} \approx 1\)</span> TeV in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig4">4</a>, all neutralino components contribute significantly to the composition of <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span>. This is largely a consequence of our scan settings: Since we restrict our study to the parameter space that has <i>all</i> electroweakino masses below <span class="mathjax-tex">\(1\,\text {TeV} \)</span>, having the lightest neutralino mass close to <span class="mathjax-tex">\(1\,\text {TeV} \)</span> will correspond to parameter points with <span class="mathjax-tex">\(|M_1| \sim M_2 \sim |\mu | \sim 1\,\text {TeV} \)</span>.</p></div></li><li class="c-article-footnote--listed__item" id="Fn7" data-counter="7."><div class="c-article-footnote--listed__content"><p>A balanced wino-Higgsino mixture for a low-mass <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> implies that <span class="mathjax-tex">\(M_2\)</span> for these points typically is within <span class="mathjax-tex">\(\sim 100\,\text {GeV} \)</span> of <span class="mathjax-tex">\(|\mu |\)</span>. This means that at least four of the five heavier electroweakino states will have masses not too much larger than <span class="mathjax-tex">\(m_{{\tilde{\chi }}_1^0}\)</span>.</p></div></li><li class="c-article-footnote--listed__item" id="Fn8" data-counter="8."><div class="c-article-footnote--listed__content"><p><span class="mathjax-tex">\(H^{\text {miss}}_{\text {T,sig}}\)</span> is defined as <span class="mathjax-tex">\(H^{\text {miss}}_{\text {T,sig}}=\frac{|\vec {H}_\text {T}^{\text {miss}}|-M}{\sigma _{|\vec {H}_\text {T}^{\text {miss}}|}}\)</span>, where <span class="mathjax-tex">\(\vec {H}_\text {T}^{\text {miss}}\)</span> is the negative vectorial sum of the momenta of the signal jets and the lepton, <span class="mathjax-tex">\(M=100\)</span> GeV is an offset parameter, and the denominator is computed from the per-event jet energy uncertainties.</p></div></li><li class="c-article-footnote--listed__item" id="Fn9" data-counter="9."><div class="c-article-footnote--listed__content"><p>With the exception of flavour, which is handled by <span class="u-sans-serif">FlavBit</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 205" title="GAMBIT Flavour Workgroup, F.U. Bernlochner, M. Chrząszcz, et al., FlavBit: a GAMBIT module for computing flavour observables and likelihoods. Eur. Phys. J. C 77, 786 (2017). 
 arXiv:1705.07933
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR205" id="ref-link-section-d154747430e31692">205</a>].</p></div></li><li class="c-article-footnote--listed__item" id="Fn10" data-counter="10."><div class="c-article-footnote--listed__content"><p><a href="https://yoda.hepforge.org/">https://yoda.hepforge.org/</a>.</p></div></li></ol></div></div></section><div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ol class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="1."><p class="c-article-references__text" id="ref-CR1">H.P. Nilles, Supersymmetry, supergravity and particle physics. Phys. Rep. <b>110</b>, 1–162 (1984)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1984PhR...110....1N" aria-label="ADS reference 1">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 1" href="http://scholar.google.com/scholar_lookup?&title=Supersymmetry%2C%20supergravity%20and%20particle%20physics&journal=Phys.%20Rep.&volume=110&pages=1-162&publication_year=1984&author=Nilles%2CHP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="2."><p class="c-article-references__text" id="ref-CR2">H.E. Haber, G.L. Kane, The search for supersymmetry: probing physics beyond the standard model. Phys. Rep. <b>117</b>, 75–263 (1985)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1985PhR...117...75H" aria-label="ADS reference 2">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 2" href="http://scholar.google.com/scholar_lookup?&title=The%20search%20for%20supersymmetry%3A%20probing%20physics%20beyond%20the%20standard%20model&journal=Phys.%20Rep.&volume=117&pages=75-263&publication_year=1985&author=Haber%2CHE&author=Kane%2CGL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="3."><p class="c-article-references__text" id="ref-CR3">S.P. Martin, A supersymmetry primer. Adv. Ser. Direct High Energy Phys. <b>18</b>, 1–98 (1998). <a href="http://arxiv.org/abs/hep-ph/9709356" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9709356">arXiv:hep-ph/9709356</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1998ASDHE..18....1M" aria-label="ADS reference 3">ADS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1106.81320" aria-label="MATH reference 3">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 3" href="http://scholar.google.com/scholar_lookup?&title=A%20supersymmetry%20primer&journal=Adv.%20Ser.%20Direct%20High%20Energy%20Phys.&volume=18&pages=1-98&publication_year=1998&author=Martin%2CSP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="4."><p class="c-article-references__text" id="ref-CR4">D.J.H. Chung, L.L. Everett et al., The soft supersymmetry breaking Lagrangian: theory and applications. Phys. Rep. <b>407</b>, 1–203 (2005). <a href="http://arxiv.org/abs/hep-ph/0312378" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0312378">arXiv:hep-ph/0312378</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2005PhR...407....1C" aria-label="ADS reference 4">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 4" href="http://scholar.google.com/scholar_lookup?&title=The%20soft%20supersymmetry%20breaking%20Lagrangian%3A%20theory%20and%20applications&journal=Phys.%20Rep.&volume=407&pages=1-203&publication_year=2005&author=Chung%2CDJH&author=Everett%2CLL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="5."><p class="c-article-references__text" id="ref-CR5">J.L. Feng, Naturalness and the status of supersymmetry. Ann. Rev. Nucl. Part. Sci. <b>63</b>, 351–382 (2013). <a href="http://arxiv.org/abs/1302.6587" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1302.6587">arXiv:1302.6587</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2013ARNPS..63..351F" aria-label="ADS reference 5">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 5" href="http://scholar.google.com/scholar_lookup?&title=Naturalness%20and%20the%20status%20of%20supersymmetry&journal=Ann.%20Rev.%20Nucl.%20Part.%20Sci.&volume=63&pages=351-382&publication_year=2013&author=Feng%2CJL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="6."><p class="c-article-references__text" id="ref-CR6">R. Ruiz de Austri, R. Trotta, L. Roszkowski, A Markov chain Monte Carlo analysis of CMSSM. JHEP <b>5</b>, 2 (2006). <a href="http://arxiv.org/abs/hep-ph/0602028" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0602028">arXiv:hep-ph/0602028</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2006JHEP...05..002R" aria-label="ADS reference 6">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 6" href="http://scholar.google.com/scholar_lookup?&title=A%20Markov%20chain%20Monte%20Carlo%20analysis%20of%20CMSSM&journal=JHEP&volume=5&publication_year=2006&author=Ruiz%20de%20Austri%2CR&author=Trotta%2CR&author=Roszkowski%2CL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="7."><p class="c-article-references__text" id="ref-CR7">A. Fowlie, A. Kalinowski, M. Kazana, L. Roszkowski, Y.L.S. Tsai, Bayesian implications of current LHC and XENON100 search limits for the constrained MSSM. Phys. Rev. D <b>85</b>, 075012 (2012). <a href="http://arxiv.org/abs/1111.6098" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1111.6098">arXiv:1111.6098</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2012PhRvD..85g5012F" aria-label="ADS reference 7">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 7" href="http://scholar.google.com/scholar_lookup?&title=Bayesian%20implications%20of%20current%20LHC%20and%20XENON100%20search%20limits%20for%20the%20constrained%20MSSM&journal=Phys.%20Rev.%20D&volume=85&publication_year=2012&author=Fowlie%2CA&author=Kalinowski%2CA&author=Kazana%2CM&author=Roszkowski%2CL&author=Tsai%2CYLS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="8."><p class="c-article-references__text" id="ref-CR8">A. Fowlie, M. Kazana et al., The CMSSM favoring new territories: the impact of new LHC limits and a 125 GeV Higgs. Phys. Rev. D <b>86</b>, 075010 (2012). <a href="http://arxiv.org/abs/1206.0264" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1206.0264">arXiv:1206.0264</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2012PhRvD..86g5010F" aria-label="ADS reference 8">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 8" href="http://scholar.google.com/scholar_lookup?&title=The%20CMSSM%20favoring%20new%20territories%3A%20the%20impact%20of%20new%20LHC%20limits%20and%20a%20125%20GeV%20Higgs&journal=Phys.%20Rev.%20D&volume=86&publication_year=2012&author=Fowlie%2CA&author=Kazana%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="9."><p class="c-article-references__text" id="ref-CR9">P. Bechtle, T. Bringmann et al., Constrained supersymmetry after two years of LHC data: a global view with Fittino. JHEP <b>6</b>, 98 (2012). <a href="http://arxiv.org/abs/1204.4199" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1204.4199">arXiv:1204.4199</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2012JHEP...06..098B" aria-label="ADS reference 9">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 9" href="http://scholar.google.com/scholar_lookup?&title=Constrained%20supersymmetry%20after%20two%20years%20of%20LHC%20data%3A%20a%20global%20view%20with%20Fittino&journal=JHEP&volume=6&publication_year=2012&author=Bechtle%2CP&author=Bringmann%2CT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="10."><p class="c-article-references__text" id="ref-CR10">P. Bechtle, J.E. Camargo-Molina et al., Killing the cMSSM softly. Eur. Phys. J. C <b>76</b>, 96 (2016). <a href="http://arxiv.org/abs/1508.05951" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1508.05951">arXiv:1508.05951</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="11."><p class="c-article-references__text" id="ref-CR11">O. Buchmueller et al., The CMSSM and NUHM1 after LHC Run 1. Eur. Phys. J. C <b>74</b>, 2922 (2014). <a href="http://arxiv.org/abs/1312.5250" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1312.5250">arXiv:1312.5250</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2014EPJC...74.2922B" aria-label="ADS reference 11">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="http://scholar.google.com/scholar_lookup?&title=The%20CMSSM%20and%20NUHM1%20after%20LHC%20Run%201&journal=Eur.%20Phys.%20J.%20C&volume=74&publication_year=2014&author=Buchmueller%2CO"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="12."><p class="c-article-references__text" id="ref-CR12">O. Buchmueller, R. Cavanaugh et al., Frequentist analysis of the parameter space of minimal supergravity. Eur. Phys. J. C <b>71</b>, 1583 (2011). <a href="http://arxiv.org/abs/1011.6118" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1011.6118">arXiv:1011.6118</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2011EPJC...71.1583B" aria-label="ADS reference 12">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 12" href="http://scholar.google.com/scholar_lookup?&title=Frequentist%20analysis%20of%20the%20parameter%20space%20of%20minimal%20supergravity&journal=Eur.%20Phys.%20J.%20C&volume=71&publication_year=2011&author=Buchmueller%2CO&author=Cavanaugh%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="13."><p class="c-article-references__text" id="ref-CR13">E. Bagnaschi et al., Likelihood analysis of the pMSSM11 in light of LHC 13-TeV data. Eur. Phys. J. C <b>78</b>, 256 (2018). <a href="http://arxiv.org/abs/1710.11091" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1710.11091">arXiv:1710.11091</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="14."><p class="c-article-references__text" id="ref-CR14">J.C. Costa et al., Likelihood analysis of the sub-GUT MSSM in light of LHC 13-TeV data. Eur. Phys. J. C <b>78</b>, 158 (2018). <a href="http://arxiv.org/abs/1711.00458" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1711.00458">arXiv:1711.00458</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="15."><p class="c-article-references__text" id="ref-CR15"><span class="u-sans-serif">GAMBIT</span> Collaboration,P. Athron, C. Balázs, et al., Global fits of GUT-scale SUSY models with GAMBIT. Eur. Phys. J. C <b>77</b>, 824 (2017). <a href="http://arxiv.org/abs/1705.07935" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1705.07935">arXiv:1705.07935</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="16."><p class="c-article-references__text" id="ref-CR16"><span class="u-sans-serif">GAMBIT</span> Collaboration, P. Athron, C. Balázs, et al., A global fit of the MSSM with GAMBIT. Eur. Phys. J. C <b>77</b>, 879 (2017). <a href="http://arxiv.org/abs/1705.07917" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1705.07917">arXiv:1705.07917</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="17."><p class="c-article-references__text" id="ref-CR17">GAMBIT Collaboration, P. Athron et al., Combined collider constraints on neutralinos and charginos. Eur. Phys. J. C <b>79</b>, 395 (2019). <a href="http://arxiv.org/abs/1809.02097" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1809.02097">arXiv:1809.02097</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="18."><p class="c-article-references__text" id="ref-CR18">P. Nath, R. Arnowitt, Generalized super-gauge symmetry as a new framework for unified gauge theories. Phys. Lett. B <b>56</b>, 177–180 (1975)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1975PhLB...56..177N" aria-label="ADS reference 18">ADS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=408627" aria-label="MathSciNet reference 18">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 18" href="http://scholar.google.com/scholar_lookup?&title=Generalized%20super-gauge%20symmetry%20as%20a%20new%20framework%20for%20unified%20gauge%20theories&journal=Phys.%20Lett.%20B&volume=56&pages=177-180&publication_year=1975&author=Nath%2CP&author=Arnowitt%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="19."><p class="c-article-references__text" id="ref-CR19">S.D. Deser, B. Zumino, Consistent supergravity. Phys. Lett. B <b>62</b>, 335–337 (1976)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1976PhLB...62..335D" aria-label="ADS reference 19">ADS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=411531" aria-label="MathSciNet reference 19">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 19" href="http://scholar.google.com/scholar_lookup?&title=Consistent%20supergravity&journal=Phys.%20Lett.%20B&volume=62&pages=335-337&publication_year=1976&author=Deser%2CSD&author=Zumino%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="20."><p class="c-article-references__text" id="ref-CR20">D.Z. Freedman, P. Van Nieuwenhuizen, Properties of supergravity theory. Phys. Rev. D <b>14</b>, 912 (1976)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1976PhRvD..14..912F" aria-label="ADS reference 20">ADS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=456127" aria-label="MathSciNet reference 20">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 20" href="http://scholar.google.com/scholar_lookup?&title=Properties%20of%20supergravity%20theory&journal=Phys.%20Rev.%20D&volume=14&publication_year=1976&author=Freedman%2CDZ&author=Nieuwenhuizen%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="21."><p class="c-article-references__text" id="ref-CR21">R. Arnowitt, P. Nath, B. Zumino, Superfield densities and action principle in curved superspace. Phys. Lett. B <b>56</b>, 81–84 (1975)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1975PhLB...56...81A" aria-label="ADS reference 21">ADS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=408619" aria-label="MathSciNet reference 21">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 21" href="http://scholar.google.com/scholar_lookup?&title=Superfield%20densities%20and%20action%20principle%20in%20curved%20superspace&journal=Phys.%20Lett.%20B&volume=56&pages=81-84&publication_year=1975&author=Arnowitt%2CR&author=Nath%2CP&author=Zumino%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="22."><p class="c-article-references__text" id="ref-CR22">V.P. Akulov, D.V. Volkov, V.A. Soroka, Gauge fields on superspaces with different holonomy groups. JETP Lett. <b>22</b>, 187–188 (1975)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1975JETPL..22..187A" aria-label="ADS reference 22">ADS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?0983.81113" aria-label="MATH reference 22">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 22" href="http://scholar.google.com/scholar_lookup?&title=Gauge%20fields%20on%20superspaces%20with%20different%20holonomy%20groups&journal=JETP%20Lett.&volume=22&pages=187-188&publication_year=1975&author=Akulov%2CVP&author=Volkov%2CDV&author=Soroka%2CVA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="23."><p class="c-article-references__text" id="ref-CR23">J. Wess, B. Zumino, Superspace formulation of supergravity. Phys. Lett. B <b>66</b>, 361–364 (1977)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1977PhLB...66..361W" aria-label="ADS reference 23">ADS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=456294" aria-label="MathSciNet reference 23">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 23" href="http://scholar.google.com/scholar_lookup?&title=Superspace%20formulation%20of%20supergravity&journal=Phys.%20Lett.%20B&volume=66&pages=361-364&publication_year=1977&author=Wess%2CJ&author=Zumino%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="24."><p class="c-article-references__text" id="ref-CR24">B. Zumino, Supersymmetry and Kahler manifolds. Phys. Lett. B <b>87</b>, 203 (1979)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1979PhLB...87..203Z" aria-label="ADS reference 24">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 24" href="http://scholar.google.com/scholar_lookup?&title=Supersymmetry%20and%20Kahler%20manifolds&journal=Phys.%20Lett.%20B&volume=87&publication_year=1979&author=Zumino%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="25."><p class="c-article-references__text" id="ref-CR25">K.S. Stelle, P.C. West, Minimal auxiliary fields for supergravity. Phys. Lett. B <b>74</b>, 330–332 (1978)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1978PhLB...74..330S" aria-label="ADS reference 25">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 25" href="http://scholar.google.com/scholar_lookup?&title=Minimal%20auxiliary%20fields%20for%20supergravity&journal=Phys.%20Lett.%20B&volume=74&pages=330-332&publication_year=1978&author=Stelle%2CKS&author=West%2CPC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="26."><p class="c-article-references__text" id="ref-CR26">K.S. Stelle, P.C. West, Tensor calculus for the vector multiplet coupled to supergravity. Phys. Lett. B <b>77</b>, 376 (1978)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1978PhLB...77..376S" aria-label="ADS reference 26">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 26" href="http://scholar.google.com/scholar_lookup?&title=Tensor%20calculus%20for%20the%20vector%20multiplet%20coupled%20to%20supergravity&journal=Phys.%20Lett.%20B&volume=77&publication_year=1978&author=Stelle%2CKS&author=West%2CPC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="27."><p class="c-article-references__text" id="ref-CR27">S. Ferrara, F. Gliozzi, J. Scherk, P. Van Nieuwenhuizen, Matter couplings in supergravity theory. Nucl. Phys. B <b>117</b>, 333 (1976)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1976NuPhB.117..333F" aria-label="ADS reference 27">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 27" href="http://scholar.google.com/scholar_lookup?&title=Matter%20couplings%20in%20supergravity%20theory&journal=Nucl.%20Phys.%20B&volume=117&publication_year=1976&author=Ferrara%2CS&author=Gliozzi%2CF&author=Scherk%2CJ&author=Nieuwenhuizen%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="28."><p class="c-article-references__text" id="ref-CR28">S. Deser, B. Zumino, Broken supersymmetry and supergravity. Phys. Rev. Lett. <b>38</b>, 1433–1436 (1977)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1977PhRvL..38.1433D" aria-label="ADS reference 28">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 28" href="http://scholar.google.com/scholar_lookup?&title=Broken%20supersymmetry%20and%20supergravity&journal=Phys.%20Rev.%20Lett.&volume=38&pages=1433-1436&publication_year=1977&author=Deser%2CS&author=Zumino%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="29."><p class="c-article-references__text" id="ref-CR29">E. Cremmer, B. Julia et al., Super-Higgs effect in supergravity with general scalar interactions. Phys. Lett. B <b>79</b>, 231–234 (1978)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1978PhLB...79..231C" aria-label="ADS reference 29">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 29" href="http://scholar.google.com/scholar_lookup?&title=Super-Higgs%20effect%20in%20supergravity%20with%20general%20scalar%20interactions&journal=Phys.%20Lett.%20B&volume=79&pages=231-234&publication_year=1978&author=Cremmer%2CE&author=Julia%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="30."><p class="c-article-references__text" id="ref-CR30">E. Cremmer, B. Julia et al., Spontaneous symmetry breaking and Higgs effect in supergravity without cosmological constant. Nucl. Phys. B <b>147</b>, 105 (1979)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1979NuPhB.147..105C" aria-label="ADS reference 30">ADS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=516919" aria-label="MathSciNet reference 30">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 30" href="http://scholar.google.com/scholar_lookup?&title=Spontaneous%20symmetry%20breaking%20and%20Higgs%20effect%20in%20supergravity%20without%20cosmological%20constant&journal=Nucl.%20Phys.%20B&volume=147&publication_year=1979&author=Cremmer%2CE&author=Julia%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="31."><p class="c-article-references__text" id="ref-CR31">A.H. Chamseddine, R.L. Arnowitt, P. Nath, Locally supersymmetric grand unification. Phys. Rev. Lett. <b>49</b>, 970 (1982)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1982PhRvL..49..970C" aria-label="ADS reference 31">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 31" href="http://scholar.google.com/scholar_lookup?&title=Locally%20supersymmetric%20grand%20unification&journal=Phys.%20Rev.%20Lett.&volume=49&publication_year=1982&author=Chamseddine%2CAH&author=Arnowitt%2CRL&author=Nath%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="32."><p class="c-article-references__text" id="ref-CR32">R. Barbieri, S. Ferrara, C.A. Savoy, Gauge models with spontaneously broken local supersymmetry. Phys. Lett. B <b>119</b>, 343 (1982)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1982PhLB..119..343B" aria-label="ADS reference 32">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 32" href="http://scholar.google.com/scholar_lookup?&title=Gauge%20models%20with%20spontaneously%20broken%20local%20supersymmetry&journal=Phys.%20Lett.%20B&volume=119&publication_year=1982&author=Barbieri%2CR&author=Ferrara%2CS&author=Savoy%2CCA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="33."><p class="c-article-references__text" id="ref-CR33">L.E. Ibanez, Locally supersymmetric SU(5) grand unification. Phys. Lett. B <b>118</b>, 73–78 (1982)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1982PhLB..118...73I" aria-label="ADS reference 33">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 33" href="http://scholar.google.com/scholar_lookup?&title=Locally%20supersymmetric%20SU%285%29%20grand%20unification&journal=Phys.%20Lett.%20B&volume=118&pages=73-78&publication_year=1982&author=Ibanez%2CLE"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="34."><p class="c-article-references__text" id="ref-CR34">L.J. Hall, J.D. Lykken, S. Weinberg, Supergravity as the messenger of supersymmetry breaking. Phys. Rev. D <b>27</b>, 2359–2378 (1983)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1983PhRvD..27.2359H" aria-label="ADS reference 34">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 34" href="http://scholar.google.com/scholar_lookup?&title=Supergravity%20as%20the%20messenger%20of%20supersymmetry%20breaking&journal=Phys.%20Rev.%20D&volume=27&pages=2359-2378&publication_year=1983&author=Hall%2CLJ&author=Lykken%2CJD&author=Weinberg%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="35."><p class="c-article-references__text" id="ref-CR35">J.R. Ellis, D.V. Nanopoulos, K. Tamvakis, Grand unification in simple supergravity. Phys. Lett. B <b>121</b>, 123–129 (1983)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1983PhLB..121..123E" aria-label="ADS reference 35">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 35" href="http://scholar.google.com/scholar_lookup?&title=Grand%20unification%20in%20simple%20supergravity&journal=Phys.%20Lett.%20B&volume=121&pages=123-129&publication_year=1983&author=Ellis%2CJR&author=Nanopoulos%2CDV&author=Tamvakis%2CK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="36."><p class="c-article-references__text" id="ref-CR36">L. Alvarez-Gaume, J. Polchinski, M.B. Wise, Minimal low-energy supergravity. Nucl. Phys. B <b>221</b>, 495 (1983)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1983NuPhB.221..495A" aria-label="ADS reference 36">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 36" href="http://scholar.google.com/scholar_lookup?&title=Minimal%20low-energy%20supergravity&journal=Nucl.%20Phys.%20B&volume=221&publication_year=1983&author=Alvarez-Gaume%2CL&author=Polchinski%2CJ&author=Wise%2CMB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="37."><p class="c-article-references__text" id="ref-CR37">A. Brignole, L.E. Ibanez, C. Munoz, Soft supersymmetry breaking terms from supergravity and superstring models. Adv. Ser. Direct High Energy Phys. <b>18</b>, 125–148 (1998). <a href="http://arxiv.org/abs/hep-ph/9707209" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9707209">arXiv:hep-ph/9707209</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1998ASDHE..18..125B" aria-label="ADS reference 37">ADS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1106.81314" aria-label="MATH reference 37">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 37" href="http://scholar.google.com/scholar_lookup?&title=Soft%20supersymmetry%20breaking%20terms%20from%20supergravity%20and%20superstring%20models&journal=Adv.%20Ser.%20Direct%20High%20Energy%20Phys.&volume=18&pages=125-148&publication_year=1998&author=Brignole%2CA&author=Ibanez%2CLE&author=Munoz%2CC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="38."><p class="c-article-references__text" id="ref-CR38">M. Dine, W. Fischler, A phenomenological model of particle physics based on supersymmetry. Phys. Lett. B <b>110</b>, 227–231 (1982)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1982PhLB..110..227D" aria-label="ADS reference 38">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 38" href="http://scholar.google.com/scholar_lookup?&title=A%20phenomenological%20model%20of%20particle%20physics%20based%20on%20supersymmetry&journal=Phys.%20Lett.%20B&volume=110&pages=227-231&publication_year=1982&author=Dine%2CM&author=Fischler%2CW"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="39."><p class="c-article-references__text" id="ref-CR39">M. Dine, W. Fischler, M. Srednicki, Supersymmetric technicolor. Nucl. Phys. B <b>189</b>, 575–593 (1981)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1981NuPhB.189..575D" aria-label="ADS reference 39">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 39" href="http://scholar.google.com/scholar_lookup?&title=Supersymmetric%20technicolor&journal=Nucl.%20Phys.%20B&volume=189&pages=575-593&publication_year=1981&author=Dine%2CM&author=Fischler%2CW&author=Srednicki%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="40."><p class="c-article-references__text" id="ref-CR40">S. Dimopoulos, S. Raby, Supercolor. Nucl. Phys. B <b>192</b>, 353–368 (1981)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1981NuPhB.192..353D" aria-label="ADS reference 40">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 40" href="http://scholar.google.com/scholar_lookup?&title=Supercolor&journal=Nucl.%20Phys.%20B&volume=192&pages=353-368&publication_year=1981&author=Dimopoulos%2CS&author=Raby%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="41."><p class="c-article-references__text" id="ref-CR41">L. Alvarez-Gaume, M. Claudson, M.B. Wise, Low-energy supersymmetry. Nucl. Phys. B <b>207</b>, 96 (1982)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1982NuPhB.207...96A" aria-label="ADS reference 41">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 41" href="http://scholar.google.com/scholar_lookup?&title=Low-energy%20supersymmetry&journal=Nucl.%20Phys.%20B&volume=207&publication_year=1982&author=Alvarez-Gaume%2CL&author=Claudson%2CM&author=Wise%2CMB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="42."><p class="c-article-references__text" id="ref-CR42">C.R. Nappi, B.A. Ovrut, Supersymmetric extension of the SU(3) x SU(2) x U(1) model. Phys. Lett. B <b>113</b>, 175–179 (1982)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1982PhLB..113..175N" aria-label="ADS reference 42">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 42" href="http://scholar.google.com/scholar_lookup?&title=Supersymmetric%20extension%20of%20the%20SU%283%29%20x%20SU%282%29%20x%20U%281%29%20model&journal=Phys.%20Lett.%20B&volume=113&pages=175-179&publication_year=1982&author=Nappi%2CCR&author=Ovrut%2CBA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="43."><p class="c-article-references__text" id="ref-CR43">M. Dine, A.E. Nelson, Dynamical supersymmetry breaking at low-energies. Phys. Rev. D <b>48</b>, 1277–1287 (1993). <a href="http://arxiv.org/abs/hep-ph/9303230" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9303230">arXiv:hep-ph/9303230</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1993PhRvD..48.1277D" aria-label="ADS reference 43">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 43" href="http://scholar.google.com/scholar_lookup?&title=Dynamical%20supersymmetry%20breaking%20at%20low-energies&journal=Phys.%20Rev.%20D&volume=48&pages=1277-1287&publication_year=1993&author=Dine%2CM&author=Nelson%2CAE"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="44."><p class="c-article-references__text" id="ref-CR44">M. Dine, A.E. Nelson, Y. Shirman, Low-energy dynamical supersymmetry breaking simplified. Phys. Rev. D <b>51</b>, 1362–1370 (1995). <a href="http://arxiv.org/abs/hep-ph/9408384" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9408384">arXiv:hep-ph/9408384</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1995PhRvD..51.1362D" aria-label="ADS reference 44">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 44" href="http://scholar.google.com/scholar_lookup?&title=Low-energy%20dynamical%20supersymmetry%20breaking%20simplified&journal=Phys.%20Rev.%20D&volume=51&pages=1362-1370&publication_year=1995&author=Dine%2CM&author=Nelson%2CAE&author=Shirman%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="45."><p class="c-article-references__text" id="ref-CR45">M. Dine, A.E. Nelson, Y. Nir, Y. Shirman, New tools for low-energy dynamical supersymmetry breaking. Phys. Rev. D <b>53</b>, 2658–2669 (1996). <a href="http://arxiv.org/abs/hep-ph/9507378" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9507378">arXiv:hep-ph/9507378</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1996PhRvD..53.2658D" aria-label="ADS reference 45">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 45" href="http://scholar.google.com/scholar_lookup?&title=New%20tools%20for%20low-energy%20dynamical%20supersymmetry%20breaking&journal=Phys.%20Rev.%20D&volume=53&pages=2658-2669&publication_year=1996&author=Dine%2CM&author=Nelson%2CAE&author=Nir%2CY&author=Shirman%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="46."><p class="c-article-references__text" id="ref-CR46">C.F. Kolda, Gauge mediated supersymmetry breaking: introduction, review and update. Nucl. Phys. B Proc. Suppl. <b>62</b>, 266–275 (1998). <a href="http://arxiv.org/abs/hep-ph/9707450" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9707450">arXiv:hep-ph/9707450</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1998NuPhS..62..266K" aria-label="ADS reference 46">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 46" href="http://scholar.google.com/scholar_lookup?&title=Gauge%20mediated%20supersymmetry%20breaking%3A%20introduction%2C%20review%20and%20update&journal=Nucl.%20Phys.%20B%20Proc.%20Suppl.&volume=62&pages=266-275&publication_year=1998&author=Kolda%2CCF"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="47."><p class="c-article-references__text" id="ref-CR47">G.D. Kribs, A. Martin, T.S. Roy, Supersymmetry with a chargino NLSP and gravitino LSP. JHEP <b>01</b>, 023 (2009). <a href="http://arxiv.org/abs/0807.4936" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0807.4936">arXiv:0807.4936</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2009JHEP...01..023K" aria-label="ADS reference 47">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 47" href="http://scholar.google.com/scholar_lookup?&title=Supersymmetry%20with%20a%20chargino%20NLSP%20and%20gravitino%20LSP&journal=JHEP&volume=01&publication_year=2009&author=Kribs%2CGD&author=Martin%2CA&author=Roy%2CTS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="48."><p class="c-article-references__text" id="ref-CR48">N.E. Bomark, A. Kvellestad, S. Lola, P. Osland, A.R. Raklev, Long lived charginos in natural SUSY? JHEP <b>05</b>, 007 (2014). <a href="http://arxiv.org/abs/1310.2788" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1310.2788">arXiv:1310.2788</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2014JHEP...05..007B" aria-label="ADS reference 48">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 48" href="http://scholar.google.com/scholar_lookup?&title=Long%20lived%20charginos%20in%20natural%20SUSY%3F&journal=JHEP&volume=05&publication_year=2014&author=Bomark%2CNE&author=Kvellestad%2CA&author=Lola%2CS&author=Osland%2CP&author=Raklev%2CAR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="49."><p class="c-article-references__text" id="ref-CR49">P. Fayet, Mixing between gravitational and weak interactions through the massive gravitino. Phys. Lett. B <b>70</b>, 461–464 (1977)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1977PhLB...70..461F" aria-label="ADS reference 49">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 49" href="http://scholar.google.com/scholar_lookup?&title=Mixing%20between%20gravitational%20and%20weak%20interactions%20through%20the%20massive%20gravitino&journal=Phys.%20Lett.%20B&volume=70&pages=461-464&publication_year=1977&author=Fayet%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="50."><p class="c-article-references__text" id="ref-CR50">P. Fayet, Weak interactions of a light gravitino: a lower limit on the gravitino mass from the decay psi <span class="mathjax-tex">\(\rightarrow \)</span> gravitino anti-photino. Phys. Lett. B <b>84</b>, 421–426 (1979)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1979PhLB...84..421F" aria-label="ADS reference 50">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 50" href="http://scholar.google.com/scholar_lookup?&title=Weak%20interactions%20of%20a%20light%20gravitino%3A%20a%20lower%20limit%20on%20the%20gravitino%20mass%20from%20the%20decay%20psi%20%24%24%5Crightarrow%20%24%24%20%E2%86%92%20gravitino%20anti-photino&journal=Phys.%20Lett.%20B&volume=84&pages=421-426&publication_year=1979&author=Fayet%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="51."><p class="c-article-references__text" id="ref-CR51">S. Ambrosanio, G.L. Kane, G.D. Kribs, S.P. Martin, S. Mrenna, Search for supersymmetry with a light gravitino at the Fermilab Tevatron and CERN LEP colliders. Phys. Rev. D <b>54</b>, 5395–5411 (1996). <a href="http://arxiv.org/abs/hep-ph/9605398" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9605398">arXiv:hep-ph/9605398</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1996PhRvD..54.5395A" aria-label="ADS reference 51">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 51" href="http://scholar.google.com/scholar_lookup?&title=Search%20for%20supersymmetry%20with%20a%20light%20gravitino%20at%20the%20Fermilab%20Tevatron%20and%20CERN%20LEP%20colliders&journal=Phys.%20Rev.%20D&volume=54&pages=5395-5411&publication_year=1996&author=Ambrosanio%2CS&author=Kane%2CGL&author=Kribs%2CGD&author=Martin%2CSP&author=Mrenna%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="52."><p class="c-article-references__text" id="ref-CR52">S. Dimopoulos, M. Dine, S. Raby, S.D. Thomas, Experimental signatures of low-energy gauge mediated supersymmetry breaking. Phys. Rev. Lett. <b>76</b>, 3494–3497 (1996). <a href="http://arxiv.org/abs/hep-ph/9601367" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9601367">arXiv:hep-ph/9601367</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1996PhRvL..76.3494D" aria-label="ADS reference 52">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 52" href="http://scholar.google.com/scholar_lookup?&title=Experimental%20signatures%20of%20low-energy%20gauge%20mediated%20supersymmetry%20breaking&journal=Phys.%20Rev.%20Lett.&volume=76&pages=3494-3497&publication_year=1996&author=Dimopoulos%2CS&author=Dine%2CM&author=Raby%2CS&author=Thomas%2CSD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="53."><p class="c-article-references__text" id="ref-CR53">F. Maltoni, A. Martini, K. Mawatari, B. Oexl, Signals of a superlight gravitino at the LHC. JHEP <b>04</b>, 021 (2015). <a href="http://arxiv.org/abs/1502.01637" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1502.01637">arXiv:1502.01637</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="54."><p class="c-article-references__text" id="ref-CR54">A. Brignole, F. Feruglio, M.L. Mangano, F. Zwirner, Signals of a superlight gravitino at hadron colliders when the other superparticles are heavy. Nucl. Phys. B <b>526</b>, 136–152 (1998). <a href="http://arxiv.org/abs/hep-ph/9801329" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9801329">arXiv:hep-ph/9801329</a>. [Erratum: Nucl. Phys. B <b>582</b>, 759–761 (2000)]</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="55."><p class="c-article-references__text" id="ref-CR55">P. Fayet, Lower limit on the mass of a light gravitino from e+ e- annihilation experiments. Phys. Lett. B <b>175</b>, 471–477 (1986)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1986PhLB..175..471F" aria-label="ADS reference 55">ADS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=854197" aria-label="MathSciNet reference 55">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 55" href="http://scholar.google.com/scholar_lookup?&title=Lower%20limit%20on%20the%20mass%20of%20a%20light%20gravitino%20from%20e%2B%20e-%20annihilation%20experiments&journal=Phys.%20Lett.%20B&volume=175&pages=471-477&publication_year=1986&author=Fayet%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="56."><p class="c-article-references__text" id="ref-CR56">D.A. Dicus, S. Nandi, J. Woodside, Unusual <span class="mathjax-tex">\(Z^0\)</span> decays in supersymmetry with a superlight gravitino. Phys. Rev. D <b>43</b>, 2951–2955 (1991)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1991PhRvD..43.2951D" aria-label="ADS reference 56">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 56" href="http://scholar.google.com/scholar_lookup?&title=Unusual%20%24%24Z%5E0%24%24%20Z%200%20decays%20in%20supersymmetry%20with%20a%20superlight%20gravitino&journal=Phys.%20Rev.%20D&volume=43&pages=2951-2955&publication_year=1991&author=Dicus%2CDA&author=Nandi%2CS&author=Woodside%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="57."><p class="c-article-references__text" id="ref-CR57">D.R. Stump, M. Wiest, C.P. Yuan, Detecting a light gravitino at linear collider to probe the SUSY breaking scale. Phys. Rev. D <b>54</b>, 1936–1943 (1996). <a href="http://arxiv.org/abs/hep-ph/9601362" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9601362">arXiv:hep-ph/9601362</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1996PhRvD..54.1936S" aria-label="ADS reference 57">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 57" href="http://scholar.google.com/scholar_lookup?&title=Detecting%20a%20light%20gravitino%20at%20linear%20collider%20to%20probe%20the%20SUSY%20breaking%20scale&journal=Phys.%20Rev.%20D&volume=54&pages=1936-1943&publication_year=1996&author=Stump%2CDR&author=Wiest%2CM&author=Yuan%2CCP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="58."><p class="c-article-references__text" id="ref-CR58">A. Brignole, F. Feruglio, F. Zwirner, Signals of a superlight gravitino at <span class="mathjax-tex">\(e^+ e^-\)</span> colliders when the other superparticles are heavy. Nucl. Phys. B <b>516</b>, 13–28 (1998). <a href="http://arxiv.org/abs/hep-ph/9711516" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9711516">arXiv:hep-ph/9711516</a>. [Erratum: Nucl. Phys. B <b>555</b>, 653–655 (1999)]</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="59."><p class="c-article-references__text" id="ref-CR59">J.L. Lopez, D.V. Nanopoulos, A. Zichichi, Single photon signals at LEP in supersymmetric models with a light gravitino. Phys. Rev. D <b>55</b>, 5813–5825 (1997). <a href="http://arxiv.org/abs/hep-ph/9611437" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9611437">arXiv:hep-ph/9611437</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1997PhRvD..55.5813L" aria-label="ADS reference 59">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 59" href="http://scholar.google.com/scholar_lookup?&title=Single%20photon%20signals%20at%20LEP%20in%20supersymmetric%20models%20with%20a%20light%20gravitino&journal=Phys.%20Rev.%20D&volume=55&pages=5813-5825&publication_year=1997&author=Lopez%2CJL&author=Nanopoulos%2CDV&author=Zichichi%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="60."><p class="c-article-references__text" id="ref-CR60">J.R. Ellis, J.L. Lopez, D.V. Nanopoulos, Analysis of LEP constraints on supersymmetric models with a light gravitino. Phys. Lett. B <b>394</b>, 354–358 (1997). <a href="http://arxiv.org/abs/hep-ph/9610470" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9610470">arXiv:hep-ph/9610470</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1997PhLB..394..354E" aria-label="ADS reference 60">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 60" href="http://scholar.google.com/scholar_lookup?&title=Analysis%20of%20LEP%20constraints%20on%20supersymmetric%20models%20with%20a%20light%20gravitino&journal=Phys.%20Lett.%20B&volume=394&pages=354-358&publication_year=1997&author=Ellis%2CJR&author=Lopez%2CJL&author=Nanopoulos%2CDV"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="61."><p class="c-article-references__text" id="ref-CR61">S. Ambrosanio, G.D. Kribs, S.P. Martin, Signals for gauge mediated supersymmetry breaking models at the CERN LEP-2 collider. Phys. Rev. D <b>56</b>, 1761–1777 (1997). <a href="http://arxiv.org/abs/hep-ph/9703211" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9703211">arXiv:hep-ph/9703211</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1997PhRvD..56.1761A" aria-label="ADS reference 61">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 61" href="http://scholar.google.com/scholar_lookup?&title=Signals%20for%20gauge%20mediated%20supersymmetry%20breaking%20models%20at%20the%20CERN%20LEP-2%20collider&journal=Phys.%20Rev.%20D&volume=56&pages=1761-1777&publication_year=1997&author=Ambrosanio%2CS&author=Kribs%2CGD&author=Martin%2CSP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="62."><p class="c-article-references__text" id="ref-CR62">D.A. Dicus, S. Nandi, J. Woodside, Collider signals of a superlight gravitino. Phys. Rev. D <b>41</b>, 2347 (1990)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1990PhRvD..41.2347D" aria-label="ADS reference 62">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 62" href="http://scholar.google.com/scholar_lookup?&title=Collider%20signals%20of%20a%20superlight%20gravitino&journal=Phys.%20Rev.%20D&volume=41&publication_year=1990&author=Dicus%2CDA&author=Nandi%2CS&author=Woodside%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="63."><p class="c-article-references__text" id="ref-CR63">S. Dimopoulos, S.D. Thomas, J.D. Wells, Implications of low-energy supersymmetry breaking at the Tevatron. Phys. Rev. D <b>54</b>, 3283–3288 (1996). <a href="http://arxiv.org/abs/hep-ph/9604452" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9604452">arXiv:hep-ph/9604452</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1996PhRvD..54.3283D" aria-label="ADS reference 63">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 63" href="http://scholar.google.com/scholar_lookup?&title=Implications%20of%20low-energy%20supersymmetry%20breaking%20at%20the%20Tevatron&journal=Phys.%20Rev.%20D&volume=54&pages=3283-3288&publication_year=1996&author=Dimopoulos%2CS&author=Thomas%2CSD&author=Wells%2CJD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="64."><p class="c-article-references__text" id="ref-CR64">K.T. Matchev, S.D. Thomas, Higgs and <span class="mathjax-tex">\(Z\)</span> boson signatures of supersymmetry. Phys. Rev. D <b>62</b>, 077702 (2000). <a href="http://arxiv.org/abs/hep-ph/9908482" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9908482">arXiv:hep-ph/9908482</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2000PhRvD..62g7702M" aria-label="ADS reference 64">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 64" href="http://scholar.google.com/scholar_lookup?&title=Higgs%20and%20%24%24Z%24%24%20Z%20boson%20signatures%20of%20supersymmetry&journal=Phys.%20Rev.%20D&volume=62&publication_year=2000&author=Matchev%2CKT&author=Thomas%2CSD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="65."><p class="c-article-references__text" id="ref-CR65">H. Baer, P.G. Mercadante, X. Tata, Y.-L. Wang, The reach of Tevatron upgrades in gauge mediated supersymmetry breaking models. Phys. Rev. D <b>60</b>, 055001 (1999). <a href="http://arxiv.org/abs/hep-ph/9903333" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9903333">arXiv:hep-ph/9903333</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1999PhRvD..60e5001B" aria-label="ADS reference 65">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 65" href="http://scholar.google.com/scholar_lookup?&title=The%20reach%20of%20Tevatron%20upgrades%20in%20gauge%20mediated%20supersymmetry%20breaking%20models&journal=Phys.%20Rev.%20D&volume=60&publication_year=1999&author=Baer%2CH&author=Mercadante%2CPG&author=Tata%2CX&author=Wang%2CY-L"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="66."><p class="c-article-references__text" id="ref-CR66">S. Dimopoulos, M. Dine, S. Raby, S.D. Thomas, J.D. Wells, Phenomenological implications of low-energy supersymmetry breaking. Nucl. Phys. B Proc. Suppl. <b>52</b>, 38–42 (1997). <a href="http://arxiv.org/abs/hep-ph/9607450" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9607450">arXiv:hep-ph/9607450</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1997NuPhS..52...38D" aria-label="ADS reference 66">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 66" href="http://scholar.google.com/scholar_lookup?&title=Phenomenological%20implications%20of%20low-energy%20supersymmetry%20breaking&journal=Nucl.%20Phys.%20B%20Proc.%20Suppl.&volume=52&pages=38-42&publication_year=1997&author=Dimopoulos%2CS&author=Dine%2CM&author=Raby%2CS&author=Thomas%2CSD&author=Wells%2CJD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="67."><p class="c-article-references__text" id="ref-CR67">SUSY Working Group, R.L. Culbertson et al., Low scale and gauge mediated supersymmetry breaking at the Fermilab Tevatron Run II. <a href="http://arxiv.org/abs/hep-ph/0008070" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0008070">arXiv:hep-ph/0008070</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="68."><p class="c-article-references__text" id="ref-CR68">P. Meade, M. Reece, D. Shih, Prompt decays of general neutralino NLSPs at the Tevatron. JHEP <b>05</b>, 105 (2010). <a href="http://arxiv.org/abs/0911.4130" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0911.4130">arXiv:0911.4130</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2010JHEP...05..105M" aria-label="ADS reference 68">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 68" href="http://scholar.google.com/scholar_lookup?&title=Prompt%20decays%20of%20general%20neutralino%20NLSPs%20at%20the%20Tevatron&journal=JHEP&volume=05&publication_year=2010&author=Meade%2CP&author=Reece%2CM&author=Shih%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="69."><p class="c-article-references__text" id="ref-CR69">J.S. Kim, M.E. Krauss, V. Martin-Lozano, Probing the electroweakino sector of general gauge mediation at the LHC. Phys. Lett. B <b>783</b>, 150–157 (2018). <a href="http://arxiv.org/abs/1705.06497" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1705.06497">arXiv:1705.06497</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="70."><p class="c-article-references__text" id="ref-CR70">J.S. Kim, S. Pokorski, K. Rolbiecki, K. Sakurai, Gravitino vs neutralino LSP at the LHC. JHEP <b>09</b>, 082 (2019). <a href="http://arxiv.org/abs/1905.05648" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1905.05648">arXiv:1905.05648</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="71."><p class="c-article-references__text" id="ref-CR71">J. Dutta, P. Konar, S. Mondal, B. Mukhopadhyaya, S.K. Rai, Search for a compressed supersymmetric spectrum with a light Gravitino. JHEP <b>09</b>, 026 (2017). <a href="http://arxiv.org/abs/1704.04617" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1704.04617">arXiv:1704.04617</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="72."><p class="c-article-references__text" id="ref-CR72">X. Lu, S. Shirai, Low-scale gauge mediation after LHC Run 2. Phys. Lett. B <b>784</b>, 237–247 (2018). <a href="http://arxiv.org/abs/1712.02359" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1712.02359">arXiv:1712.02359</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="73."><p class="c-article-references__text" id="ref-CR73">Y. Gu, M. Khlopov, L. Wu, J.M. Yang, B. Zhu, Light gravitino dark matter: LHC searches and the Hubble tension. Phys. Rev. D <b>102</b>, 115005 (2020). <a href="http://arxiv.org/abs/2006.09906" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2006.09906">arXiv:2006.09906</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="74."><p class="c-article-references__text" id="ref-CR74">A. Arbey, M. Battaglia, L. Covi, J. Hasenkamp, F. Mahmoudi, LHC constraints on gravitino dark matter. Phys. Rev. D <b>92</b>, 115008 (2015). <a href="http://arxiv.org/abs/1505.04595" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1505.04595">arXiv:1505.04595</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="75."><p class="c-article-references__text" id="ref-CR75">M. Asano, T. Ito, S. Matsumoto, T. Moroi, Exploring supersymmetric model with very light gravitino at the LHC. JHEP <b>03</b>, 011 (2012). <a href="http://arxiv.org/abs/1111.3725" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1111.3725">arXiv:1111.3725</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2012JHEP...03..011A" aria-label="ADS reference 75">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 75" href="http://scholar.google.com/scholar_lookup?&title=Exploring%20supersymmetric%20model%20with%20very%20light%20gravitino%20at%20the%20LHC&journal=JHEP&volume=03&publication_year=2012&author=Asano%2CM&author=Ito%2CT&author=Matsumoto%2CS&author=Moroi%2CT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="76."><p class="c-article-references__text" id="ref-CR76">L. Roszkowski, R. Ruiz de Austri, K.-Y. Choi, Gravitino dark matter in the CMSSM and implications for leptogenesis and the LHC. JHEP <b>08</b>, 080 (2005). <a href="http://arxiv.org/abs/hep-ph/0408227" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0408227">arXiv:hep-ph/0408227</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2005JHEP...08..080R" aria-label="ADS reference 76">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 76" href="http://scholar.google.com/scholar_lookup?&title=Gravitino%20dark%20matter%20in%20the%20CMSSM%20and%20implications%20for%20leptogenesis%20and%20the%20LHC&journal=JHEP&volume=08&publication_year=2005&author=Roszkowski%2CL&author=Ruiz%20de%20Austri%2CR&author=Choi%2CK-Y"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="77."><p class="c-article-references__text" id="ref-CR77">M.W. Cahill-Rowley, J.L. Hewett, S. Hoeche, A. Ismail, T.G. Rizzo, The new Look pMSSM with neutralino and gravitino LSPs. Eur. Phys. J. C <b>72</b>, 2156 (2012). <a href="http://arxiv.org/abs/1206.4321" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1206.4321">arXiv:1206.4321</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2012EPJC...72.2156C" aria-label="ADS reference 77">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 77" href="http://scholar.google.com/scholar_lookup?&title=The%20new%20Look%20pMSSM%20with%20neutralino%20and%20gravitino%20LSPs&journal=Eur.%20Phys.%20J.%20C&volume=72&publication_year=2012&author=Cahill-Rowley%2CMW&author=Hewett%2CJL&author=Hoeche%2CS&author=Ismail%2CA&author=Rizzo%2CTG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="78."><p class="c-article-references__text" id="ref-CR78"><span class="u-sans-serif">GAMBIT</span> Collaboration, P. Athron, C. Balázs, et al., GAMBIT: the global and modular beyond-the-standard-model inference tool. Eur. Phys. J. C <b>77</b>, 784 (2017). <a href="http://arxiv.org/abs/1705.07908" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1705.07908">arXiv:1705.07908</a>. Addendum in [79]</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="79."><p class="c-article-references__text" id="ref-CR79"><span class="u-sans-serif">GAMBIT</span> Collaboration, P. Athron, C. Balázs, et al., GAMBIT: the global and modular beyond-the-standard-model inference tool. Addendum for GAMBIT 1.1: Mathematica backends, SUSYHD interface and updated likelihoods. Eur. Phys. J. C <b>78</b>, 98 (2018). <a href="http://arxiv.org/abs/1705.07908" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1705.07908">arXiv:1705.07908</a>. Addendum to [78]</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="80."><p class="c-article-references__text" id="ref-CR80">J.M. Butterworth, D. Grellscheid, M. Krämer, B. Sarrazin, D. Yallup, Constraining new physics with collider measurements of Standard Model signatures. JHEP <b>03</b>, 078 (2017). <a href="http://arxiv.org/abs/1606.05296" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1606.05296">arXiv:1606.05296</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="81."><p class="c-article-references__text" id="ref-CR81">A. Buckley et al., Testing new physics models with global comparisons to collider measurements: the Contur toolkit. SciPost Phys. Core <b>4</b>, 013 (2021). <a href="http://arxiv.org/abs/2102.04377" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2102.04377">arXiv:2102.04377</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="82."><p class="c-article-references__text" id="ref-CR82">T. Asaka, K. Hamaguchi, K. Suzuki, Cosmological gravitino problem in gauge mediated supersymmetry breaking models. Phys. Lett. B <b>490</b>, 136–146 (2000). <a href="http://arxiv.org/abs/hep-ph/0005136" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0005136">arXiv:hep-ph/0005136</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2000PhLB..490..136A" aria-label="ADS reference 82">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 82" href="http://scholar.google.com/scholar_lookup?&title=Cosmological%20gravitino%20problem%20in%20gauge%20mediated%20supersymmetry%20breaking%20models&journal=Phys.%20Lett.%20B&volume=490&pages=136-146&publication_year=2000&author=Asaka%2CT&author=Hamaguchi%2CK&author=Suzuki%2CK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="83."><p class="c-article-references__text" id="ref-CR83">J.L. Feng, S. Su, F. Takayama, Supergravity with a gravitino LSP. Phys. Rev. D <b>70</b>, 075019 (2004). <a href="http://arxiv.org/abs/hep-ph/0404231" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0404231">arXiv:hep-ph/0404231</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2004PhRvD..70g5019F" aria-label="ADS reference 83">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 83" href="http://scholar.google.com/scholar_lookup?&title=Supergravity%20with%20a%20gravitino%20LSP&journal=Phys.%20Rev.%20D&volume=70&publication_year=2004&author=Feng%2CJL&author=Su%2CS&author=Takayama%2CF"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="84."><p class="c-article-references__text" id="ref-CR84">J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Gravitino dark matter in the CMSSM. Phys. Lett. B <b>588</b>, 7–16 (2004). <a href="http://arxiv.org/abs/hep-ph/0312262" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0312262">arXiv:hep-ph/0312262</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2004PhLB..588....7E" aria-label="ADS reference 84">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 84" href="http://scholar.google.com/scholar_lookup?&title=Gravitino%20dark%20matter%20in%20the%20CMSSM&journal=Phys.%20Lett.%20B&volume=588&pages=7-16&publication_year=2004&author=Ellis%2CJR&author=Olive%2CKA&author=Santoso%2CY&author=Spanos%2CVC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="85."><p class="c-article-references__text" id="ref-CR85">F.D. Steffen, Gravitino dark matter and cosmological constraints. JCAP <b>09</b>, 001 (2006). <a href="http://arxiv.org/abs/hep-ph/0605306" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0605306">arXiv:hep-ph/0605306</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2006JCAP...09..001S" aria-label="ADS reference 85">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 85" href="http://scholar.google.com/scholar_lookup?&title=Gravitino%20dark%20matter%20and%20cosmological%20constraints&journal=JCAP&volume=09&publication_year=2006&author=Steffen%2CFD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="86."><p class="c-article-references__text" id="ref-CR86">H. Pagels, J.R. Primack, Supersymmetry, cosmology and new TeV physics. Phys. Rev. Lett. <b>48</b>, 223 (1982)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1982PhRvL..48..223P" aria-label="ADS reference 86">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 86" href="http://scholar.google.com/scholar_lookup?&title=Supersymmetry%2C%20cosmology%20and%20new%20TeV%20physics&journal=Phys.%20Rev.%20Lett.&volume=48&publication_year=1982&author=Pagels%2CH&author=Primack%2CJR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="87."><p class="c-article-references__text" id="ref-CR87">M.Y. Khlopov, A.D. Linde, Is it easy to save the gravitino? Phys. Lett. B <b>138</b>, 265–268 (1984)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1984PhLB..138..265K" aria-label="ADS reference 87">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 87" href="http://scholar.google.com/scholar_lookup?&title=Is%20it%20easy%20to%20save%20the%20gravitino%3F&journal=Phys.%20Lett.%20B&volume=138&pages=265-268&publication_year=1984&author=Khlopov%2CMY&author=Linde%2CAD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="88."><p class="c-article-references__text" id="ref-CR88">J.R. Ellis, J.E. Kim, D.V. Nanopoulos, Cosmological gravitino regeneration and decay. Phys. Lett. B <b>145</b>, 181–186 (1984)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1984PhLB..145..181E" aria-label="ADS reference 88">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 88" href="http://scholar.google.com/scholar_lookup?&title=Cosmological%20gravitino%20regeneration%20and%20decay&journal=Phys.%20Lett.%20B&volume=145&pages=181-186&publication_year=1984&author=Ellis%2CJR&author=Kim%2CJE&author=Nanopoulos%2CDV"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="89."><p class="c-article-references__text" id="ref-CR89">M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese, A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest. Phys. Rev. D <b>71</b>, 063534 (2005). <a href="http://arxiv.org/abs/astro-ph/0501562" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/astro-ph/0501562">arXiv:astro-ph/0501562</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2005PhRvD..71f3534V" aria-label="ADS reference 89">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 89" href="http://scholar.google.com/scholar_lookup?&title=Constraining%20warm%20dark%20matter%20candidates%20including%20sterile%20neutrinos%20and%20light%20gravitinos%20with%20WMAP%20and%20the%20Lyman-alpha%20forest&journal=Phys.%20Rev.%20D&volume=71&publication_year=2005&author=Viel%2CM&author=Lesgourgues%2CJ&author=Haehnelt%2CMG&author=Matarrese%2CS&author=Riotto%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="90."><p class="c-article-references__text" id="ref-CR90">T. Moroi, H. Murayama, M. Yamaguchi, Cosmological constraints on the light stable gravitino. Phys. Lett. B <b>303</b>, 289–294 (1993)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1993PhLB..303..289M" aria-label="ADS reference 90">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 90" href="http://scholar.google.com/scholar_lookup?&title=Cosmological%20constraints%20on%20the%20light%20stable%20gravitino&journal=Phys.%20Lett.%20B&volume=303&pages=289-294&publication_year=1993&author=Moroi%2CT&author=Murayama%2CH&author=Yamaguchi%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="91."><p class="c-article-references__text" id="ref-CR91">K. Jedamzik, M. Pospelov, Big bang nucleosynthesis and particle dark matter. New J. Phys. <b>11</b>, 105028 (2009). <a href="http://arxiv.org/abs/0906.2087" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0906.2087">arXiv:0906.2087</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2009NJPh...11j5028J" aria-label="ADS reference 91">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 91" href="http://scholar.google.com/scholar_lookup?&title=Big%20bang%20nucleosynthesis%20and%20particle%20dark%20matter&journal=New%20J.%20Phys.&volume=11&publication_year=2009&author=Jedamzik%2CK&author=Pospelov%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="92."><p class="c-article-references__text" id="ref-CR92">CDF, T. Aaltonen et al., High-precision measurement of the W boson mass with the CDF II detector. Science <b>376</b>, 170–176 (2022)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="93."><p class="c-article-references__text" id="ref-CR93">Particle Data Group, R.L. Workman, Review of particle physics. PTEP <b>2022</b>, 083C01 (2022)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="94."><p class="c-article-references__text" id="ref-CR94">S. Heinemeyer, W. Hollik, D. Stöckinger, A.M. Weber, G. Weiglein, Precise prediction for M(W) in the MSSM. JHEP <b>08</b>, 052 (2006). <a href="http://arxiv.org/abs/hep-ph/0604147" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0604147">arXiv:hep-ph/0604147</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2006JHEP...08..052H" aria-label="ADS reference 94">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 94" href="http://scholar.google.com/scholar_lookup?&title=Precise%20prediction%20for%20M%28W%29%20in%20the%20MSSM&journal=JHEP&volume=08&publication_year=2006&author=Heinemeyer%2CS&author=Hollik%2CW&author=St%C3%B6ckinger%2CD&author=Weber%2CAM&author=Weiglein%2CG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="95."><p class="c-article-references__text" id="ref-CR95">E. Bagnaschi, M. Chakraborti, S. Heinemeyer, I. Saha, G. Weiglein, Interdependence of the new “MUON G-2” result and the W-boson mass. Eur. Phys. J. C <b>82</b>, 474 (2022). <a href="http://arxiv.org/abs/2203.15710" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2203.15710">arXiv:2203.15710</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="96."><p class="c-article-references__text" id="ref-CR96">J.M. Yang, Y. Zhang, Low energy SUSY confronted with new measurements of W-boson mass and muon g-2. Sci. Bull. <b>67</b>, 1430–1436 (2022). <a href="http://arxiv.org/abs/2204.04202" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2204.04202">arXiv:2204.04202</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="97."><p class="c-article-references__text" id="ref-CR97">LHCb, R. Aaij et al., Measurement of the W boson mass, JHEP <b>01</b>, 036 (2022). <a href="http://arxiv.org/abs/2109.01113" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2109.01113">arXiv:2109.01113</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="98."><p class="c-article-references__text" id="ref-CR98">CMS, A.M. Sirunyan et al., Combined search for supersymmetry with photons in proton-proton collisions at <span class="mathjax-tex">\(\sqrt{s}=\)</span> 13 TeV. Phys. Lett. B <b>801</b>, 135183 (2020). <a href="http://arxiv.org/abs/1907.00857" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1907.00857">arXiv:1907.00857</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="99."><p class="c-article-references__text" id="ref-CR99">L. Covi, J. Hasenkamp, S. Pokorski, J. Roberts, Gravitino dark matter and general neutralino NLSP. JHEP <b>11</b>, 003 (2009). <a href="http://arxiv.org/abs/0908.3399" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0908.3399">arXiv:0908.3399</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2009JHEP...11..003C" aria-label="ADS reference 99">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 99" href="http://scholar.google.com/scholar_lookup?&title=Gravitino%20dark%20matter%20and%20general%20neutralino%20NLSP&journal=JHEP&volume=11&publication_year=2009&author=Covi%2CL&author=Hasenkamp%2CJ&author=Pokorski%2CS&author=Roberts%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="100."><p class="c-article-references__text" id="ref-CR100">J. Hasenkamp, General neutralino NLSP with gravitino dark matter vs. big bang nucleosynthesis. Diploma thesis (2009)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="101."><p class="c-article-references__text" id="ref-CR101">ATLAS, G. Aad et al., Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}\)</span> = 13 TeV with the ATLAS detector. Phys. Rev. D <b>104</b>, 112010 (2021). <a href="http://arxiv.org/abs/2108.07586" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2108.07586">arXiv:2108.07586</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="102."><p class="c-article-references__text" id="ref-CR102">ATLAS, G. Aad et al., Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 <span class="mathjax-tex">\(\text{fb}^{-1}\)</span> of <span class="mathjax-tex">\(\sqrt{s}\)</span> =13 TeV <span class="mathjax-tex">\(pp\)</span> collision data with the ATLAS detector. JHEP <b>02</b>, 143 (2021). <a href="http://arxiv.org/abs/2010.14293" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2010.14293">arXiv:2010.14293</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="103."><p class="c-article-references__text" id="ref-CR103">ATLAS, M. Aaboud et al., Search for a scalar partner of the top quark in the jets plus missing transverse momentum final state at <span class="mathjax-tex">\(\sqrt{s}\)</span>=13 TeV with the ATLAS detector. JHEP <b>12</b>, 085 (2017). <a href="http://arxiv.org/abs/1709.04183" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1709.04183">arXiv:1709.04183</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="104."><p class="c-article-references__text" id="ref-CR104">ATLAS, M. Aaboud et al., Search for top-squark pair production in final states with one lepton, jets, and missing transverse momentum using 36 <span class="mathjax-tex">\(\text{ fb}^{-1}\)</span> of <span class="mathjax-tex">\( \sqrt{s}=13 \)</span> TeV pp collision data with the ATLAS detector. JHEP <b>06</b>, 108 (2018). <a href="http://arxiv.org/abs/1711.11520" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1711.11520">arXiv:1711.11520</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="105."><p class="c-article-references__text" id="ref-CR105">ATLAS, G. Aad et al., Search for new phenomena in events with two opposite-charge leptons, jets and missing transverse momentum in pp collisions at <span class="mathjax-tex">\(\sqrt{{\rm s}} \)</span> = 13 TeV with the ATLAS detector. JHEP <b>04</b>, 165 (2021). <a href="http://arxiv.org/abs/2102.01444" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2102.01444">arXiv:2102.01444</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="106."><p class="c-article-references__text" id="ref-CR106">ATLAS, G. Aad et al., Search for top squarks in events with a Higgs or <span class="mathjax-tex">\(Z\)</span> boson using 139 <span class="mathjax-tex">\(\text{ fb}^{-1}\)</span> of <span class="mathjax-tex">\(pp\)</span> collision data at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV with the ATLAS detector. Eur. Phys. J. C <b>80</b>, 1080 (2020). <a href="http://arxiv.org/abs/2006.05880" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2006.05880">arXiv:2006.05880</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="107."><p class="c-article-references__text" id="ref-CR107">ATLAS, G. Aad et al., Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV <span class="mathjax-tex">\(pp\)</span> collisions using the ATLAS detector. Eur. Phys. J. C <b>80</b>, 123 (2020). <a href="http://arxiv.org/abs/1908.08215" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1908.08215">arXiv:1908.08215</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="108."><p class="c-article-references__text" id="ref-CR108">ATLAS, M. Aaboud et al., Search for supersymmetry in events with <span class="mathjax-tex">\(b\)</span>-tagged jets and missing transverse momentum in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV with the ATLAS detector. JHEP <b>11</b>, 195 (2017). <a href="http://arxiv.org/abs/1708.09266" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1708.09266">arXiv:1708.09266</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="109."><p class="c-article-references__text" id="ref-CR109">ATLAS, M. Aaboud et al., Search for pair production of higgsinos in final states with at least three <span class="mathjax-tex">\(b\)</span>-tagged jets in <span class="mathjax-tex">\(\sqrt{s} = 13\)</span> TeV <span class="mathjax-tex">\(pp\)</span> collisions using the ATLAS detector. Phys. Rev. D <b>98</b>, 092002 (2018). <a href="http://arxiv.org/abs/1806.04030" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1806.04030">arXiv:1806.04030</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="110."><p class="c-article-references__text" id="ref-CR110">ATLAS, G. Aad et al., Search for chargino-neutralino pair production in final states with three leptons and missing transverse momentum in <span class="mathjax-tex">\(\sqrt{s} = 13\)</span> TeV pp collisions with the ATLAS detector. Eur. Phys. J. C <b>81</b>, 1118 (2021). <a href="http://arxiv.org/abs/2106.01676" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2106.01676">arXiv:2106.01676</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="111."><p class="c-article-references__text" id="ref-CR111">ATLAS, G. Aad et al., Search for supersymmetry in events with four or more charged leptons in 139 <span class="mathjax-tex">\(\text{ fb}^{-1}\)</span> of <span class="mathjax-tex">\(\sqrt{s} \)</span> = 13 TeV pp collisions with the ATLAS detector. JHEP <b>07</b>, 167 (2021). <a href="http://arxiv.org/abs/2103.11684" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2103.11684">arXiv:2103.11684</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="112."><p class="c-article-references__text" id="ref-CR112">ATLAS, G. Aad et al., Search for squarks and gluinos in final states with same-sign leptons and jets using 139 <span class="mathjax-tex">\(\text{ fb}^{-1}\)</span> of data collected with the ATLAS detector. JHEP <b>06</b>, 046 (2020). <a href="http://arxiv.org/abs/1909.08457" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1909.08457">arXiv:1909.08457</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="113."><p class="c-article-references__text" id="ref-CR113">ATLAS, G. Aad et al., Search for new phenomena in final states with photons, jets and missing transverse momentum in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s} = 13\)</span> TeV with the ATLAS detector</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="114."><p class="c-article-references__text" id="ref-CR114">ATLAS, M. Aaboud et al., Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV <span class="mathjax-tex">\(pp\)</span> collisions with the ATLAS detector. Phys. Rev. D <b>97</b>, 092006 (2018). <a href="http://arxiv.org/abs/1802.03158" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1802.03158">arXiv:1802.03158</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="115."><p class="c-article-references__text" id="ref-CR115">ATLAS, M. Aaboud et al., Search for exotic decays of the Higgs boson to at least one photon and missing transverse momentum using 79.8 <span class="mathjax-tex">\(\text{ fb}^{-1}\)</span> of proton–proton collisions collected at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV with the ATLAS detector</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="116."><p class="c-article-references__text" id="ref-CR116">CMS, A.M. Sirunyan et al., Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum. JHEP <b>10</b>, 244 (2019). <a href="http://arxiv.org/abs/1908.04722" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1908.04722">arXiv:1908.04722</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="117."><p class="c-article-references__text" id="ref-CR117">CMS, A.M. Sirunyan et al., Search for electroweak production of charginos and neutralinos in WH events in proton-proton collisions at <span class="mathjax-tex">\( \sqrt{s}=13 \)</span> TeV. JHEP <b>11</b>, 029 (2017). <a href="http://arxiv.org/abs/1706.09933" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1706.09933">arXiv:1706.09933</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="118."><p class="c-article-references__text" id="ref-CR118">CMS, A.M. Sirunyan et al., Search for top squark pair production in pp collisions at <span class="mathjax-tex">\( \sqrt{s}=13 \)</span> TeV using single lepton events. JHEP <b>10</b>, 019 (2017). <a href="http://arxiv.org/abs/1706.04402" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1706.04402">arXiv:1706.04402</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="119."><p class="c-article-references__text" id="ref-CR119">CMS, A.M. Sirunyan et al., Search for top squarks and dark matter particles in opposite-charge dilepton final states at <span class="mathjax-tex">\(\sqrt{s}=\)</span> 13 TeV. Phys. Rev. D <b>97</b>, 032009 (2018). <a href="http://arxiv.org/abs/1711.00752" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1711.00752">arXiv:1711.00752</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="120."><p class="c-article-references__text" id="ref-CR120">CMS, A.M. Sirunyan et al., Search for new physics in events with two soft oppositely charged leptons and missing transverse momentum in proton-proton collisions at <span class="mathjax-tex">\(\sqrt{s}=\)</span> 13 TeV. Phys. Lett. B <b>782</b>, 440–467 (2018). <a href="http://arxiv.org/abs/1801.01846" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1801.01846">arXiv:1801.01846</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="121."><p class="c-article-references__text" id="ref-CR121">CMS, A.M. Sirunyan et al., Search for supersymmetry in final states with two oppositely charged same-flavor leptons and missing transverse momentum in proton-proton collisions at <span class="mathjax-tex">\(\sqrt{s} =\)</span> 13 TeV. JHEP <b>04</b>, 123 (2021). <a href="http://arxiv.org/abs/2012.08600" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2012.08600">arXiv:2012.08600</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="122."><p class="c-article-references__text" id="ref-CR122">CMS, A.M. Sirunyan et al., Searches for pair production of charginos and top squarks in final states with two oppositely charged leptons in proton-proton collisions at <span class="mathjax-tex">\(\sqrt{s}=\)</span> 13 TeV. JHEP <b>11</b>, 079 (2018). <a href="http://arxiv.org/abs/1807.07799" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1807.07799">arXiv:1807.07799</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="123."><p class="c-article-references__text" id="ref-CR123">CMS, A.M. Sirunyan et al., Search for physics beyond the standard model in events with jets and two same-sign or at least three charged leptons in proton-proton collisions at <span class="mathjax-tex">\(\sqrt{s}=\)</span> 13 TeV. Eur. Phys. J. C <b>80</b>, 752 (2020). <a href="http://arxiv.org/abs/2001.10086" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2001.10086">arXiv:2001.10086</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="124."><p class="c-article-references__text" id="ref-CR124">CMS, A. Tumasyan et al., Search for electroweak production of charginos and neutralinos in proton-proton collisions at <span class="mathjax-tex">\( \sqrt{s} \)</span> = 13 TeV. JHEP <b>04</b>, 147 (2022). <a href="http://arxiv.org/abs/2106.14246" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2106.14246">arXiv:2106.14246</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="125."><p class="c-article-references__text" id="ref-CR125">CMS, A.M. Sirunyan et al., Search for gauge-mediated supersymmetry in events with at least one photon and missing transverse momentum in pp collisions at <span class="mathjax-tex">\(\sqrt{s} = \)</span> 13 TeV. Phys. Lett. B <b>780</b>, 118–143 (2018). <a href="http://arxiv.org/abs/1711.08008" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1711.08008">arXiv:1711.08008</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="126."><p class="c-article-references__text" id="ref-CR126">CMS, A.M. Sirunyan et al., Search for supersymmetry in final states with photons and missing transverse momentum in proton-proton collisions at 13 TeV. JHEP <b>06</b>, 143 (2019). <a href="http://arxiv.org/abs/1903.07070" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1903.07070">arXiv:1903.07070</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="127."><p class="c-article-references__text" id="ref-CR127">CMS, A.M. Sirunyan et al., Search for supersymmetry in events with a photon, a lepton, and missing transverse momentum in proton-proton collisions at <span class="mathjax-tex">\(\sqrt{s} =\)</span> 13 TeV. JHEP <b>01</b>, 154 (2019). [<a href="http://arxiv.org/abs/1812.04066" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1812.04066">arXiv:1812.04066</a>]</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="128."><p class="c-article-references__text" id="ref-CR128">CMS Collaboration, Simplified likelihood for the re-interpretation of public CMS results. CMS-NOTE-2017-001 (2017)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="129."><p class="c-article-references__text" id="ref-CR129">A. Buckley, M. Citron et al., The simplified likelihood framework. JHEP <b>04</b>, 064 (2019). <a href="http://arxiv.org/abs/1809.05548" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1809.05548">arXiv:1809.05548</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2019JHEP...04..064B" aria-label="ADS reference 129">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 129" href="http://scholar.google.com/scholar_lookup?&title=The%20simplified%20likelihood%20framework&journal=JHEP&volume=04&publication_year=2019&author=Buckley%2CA&author=Citron%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="130."><p class="c-article-references__text" id="ref-CR130">ATLAS, G. Aad et al., Reproducing searches for new physics with the ATLAS experiment through publication of full statistical likelihoods</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="131."><p class="c-article-references__text" id="ref-CR131">J.Y. Araz, A. Buckley et. al., Strength in numbers: optimal and scalable combination of LHC new-physics searches. <a href="http://arxiv.org/abs/2209.00025" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2209.00025">arXiv:2209.00025</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="132."><p class="c-article-references__text" id="ref-CR132">GAMBIT, P. Athron et al., Thermal WIMPs and the scale of new physics: global fits of Dirac dark matter effective field theories. Eur. Phys. J. C <b>81</b>, 992 (2021). <a href="http://arxiv.org/abs/2106.02056" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2106.02056">arXiv:2106.02056</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="133."><p class="c-article-references__text" id="ref-CR133">C. Chang, P. Scott et al., Global fits of simplified models for dark matter with GAMBIT I. Scalar and fermionic models with s-channel vector mediators. <a href="http://arxiv.org/abs/2209.13266" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2209.13266">arXiv:2209.13266</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="134."><p class="c-article-references__text" id="ref-CR134">C. Bierlich et al., Robust independent validation of experiment and theory: rivet version 3. SciPost Phys. <b>8</b>, 026 (2020). <a href="http://arxiv.org/abs/1912.05451" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1912.05451">arXiv:1912.05451</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="135."><p class="c-article-references__text" id="ref-CR135">CMS, V. Khachatryan et al., Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV. Phys. Rev. D <b>95</b>, 092001 (2017). <a href="http://arxiv.org/abs/1610.04191" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1610.04191">arXiv:1610.04191</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="136."><p class="c-article-references__text" id="ref-CR136">ATLAS, M. Aaboud et al., Measurement of the cross section for isolated-photon plus jet production in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV using the ATLAS detector. Phys. Lett. B <b>780</b>, 578–602 (2018). <a href="http://arxiv.org/abs/1801.00112" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1801.00112">arXiv:1801.00112</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="137."><p class="c-article-references__text" id="ref-CR137">CMS, A.M. Sirunyan et al., Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at <span class="mathjax-tex">\(\sqrt{s} =\)</span> 13 TeV. Phys. Rev. D <b>97</b>, 112003 (2018). <a href="http://arxiv.org/abs/1803.08856" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1803.08856">arXiv:1803.08856</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="138."><p class="c-article-references__text" id="ref-CR138">ATLAS, G. Aad et al., Charged-particle distributions in <span class="mathjax-tex">\(\sqrt{s}\)</span> = 13 TeV pp interactions measured with the ATLAS detector at the LHC. Phys. Lett. B <b>758</b>, 67–88 (2016). <a href="http://arxiv.org/abs/1602.01633" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1602.01633">arXiv:1602.01633</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="139."><p class="c-article-references__text" id="ref-CR139">ATLAS, M. Aaboud et al., Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{{\bf s}}=13 \)</span> TeV using the ATLAS detector. Eur. Phys. J. C <b>77</b>, 765 (2017). <a href="http://arxiv.org/abs/1707.03263" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1707.03263">arXiv:1707.03263</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="140."><p class="c-article-references__text" id="ref-CR140">ATLAS, M. Aaboud et al., Measurements of inclusive and differential fiducial cross-sections of <span class="mathjax-tex">\(t{\bar{t}}\gamma \)</span> production in leptonic final states at <span class="mathjax-tex">\(\sqrt{s}=13~\text{ TeV }\)</span> in ATLAS. Eur. Phys. J. C <b>79</b>, 382 (2019). <a href="http://arxiv.org/abs/1812.01697" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1812.01697">arXiv:1812.01697</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="141."><p class="c-article-references__text" id="ref-CR141">ATLAS, G. Aad et al., Measurement of the <span class="mathjax-tex">\(t{\bar{t}}\)</span> production cross-section and lepton differential distributions in <span class="mathjax-tex">\(e\mu \)</span> dilepton events from <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}=13\,\text{ TeV }\)</span> with the ATLAS detector. Eur. Phys. J. C <b>80</b>, 528 (2020). <a href="http://arxiv.org/abs/1910.08819" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1910.08819">arXiv:1910.08819</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="142."><p class="c-article-references__text" id="ref-CR142">ATLAS, G. Aad et al., Measurements of differential cross-sections in four-lepton events in 13 TeV proton-proton collisions with the ATLAS detector. JHEP <b>07</b>, 005 (2021). <a href="http://arxiv.org/abs/2103.01918" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2103.01918">arXiv:2103.01918</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="143."><p class="c-article-references__text" id="ref-CR143">ATLAS, M. Aaboud et al., Charged-particle distributions at low transverse momentum in <span class="mathjax-tex">\(\sqrt{s} = 13\)</span> TeV <span class="mathjax-tex">\(pp\)</span> interactions measured with the ATLAS detector at the LHC. Eur. Phys. J. C <b>76</b>, 502 (2016). <a href="http://arxiv.org/abs/1606.01133" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1606.01133">arXiv:1606.01133</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="144."><p class="c-article-references__text" id="ref-CR144">CMS, A.M. Sirunyan et al., Measurement of associated production of a W boson and a charm quark in proton-proton collisions at <span class="mathjax-tex">\(\sqrt{s} =\)</span> 13 TeV. Eur. Phys. J. C <b>79</b>, 269 (2019). <a href="http://arxiv.org/abs/1811.10021" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1811.10021">arXiv:1811.10021</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="145."><p class="c-article-references__text" id="ref-CR145">ATLAS, G. Aad et al., Properties of jet fragmentation using charged particles measured with the ATLAS detector in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV. Phys. Rev. D <b>100</b>, 052011 (2019). <a href="http://arxiv.org/abs/1906.09254" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1906.09254">arXiv:1906.09254</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="146."><p class="c-article-references__text" id="ref-CR146">CMS, A.M. Sirunyan et al., Measurements of angular distance and momentum ratio distributions in three-jet and <span class="mathjax-tex">\({\text{ Z }}\)</span> + two-jet final states in <span class="mathjax-tex">\({\text{ p }}{\text{ p }}\)</span> collisions. Eur. Phys. J. C <b>81</b>, 852 (2021). <a href="http://arxiv.org/abs/2102.08816" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2102.08816">arXiv:2102.08816</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="147."><p class="c-article-references__text" id="ref-CR147">ATLAS, M. Aaboud et al., Measurements of top-quark pair differential cross-sections in the lepton+jets channel in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV using the ATLAS detector. JHEP <b>11</b>, 191 (2017). <a href="http://arxiv.org/abs/1708.00727" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1708.00727">arXiv:1708.00727</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="148."><p class="c-article-references__text" id="ref-CR148">CMS, A.M. Sirunyan et al., Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at <span class="mathjax-tex">\( \sqrt{s}=13 \)</span> TeV. JHEP <b>11</b>, 113 (2018). <a href="http://arxiv.org/abs/1807.05974" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1807.05974">arXiv:1807.05974</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="149."><p class="c-article-references__text" id="ref-CR149">ATLAS, M. Aaboud et al., Measurements of <span class="mathjax-tex">\(t{\bar{t}}\)</span> differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}=13\,\)</span> TeV using the ATLAS detector. Phys. Rev. D <b>98</b>, 012003 (2018). <a href="http://arxiv.org/abs/1801.02052" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1801.02052">arXiv:1801.02052</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="150."><p class="c-article-references__text" id="ref-CR150">ATLAS, M. Aaboud et al., Searches for scalar leptoquarks and differential cross-section measurements in dilepton-dijet events in proton-proton collisions at a centre-of-mass energy of <span class="mathjax-tex">\(\sqrt{s}\)</span> = 13 TeV with the ATLAS experiment. Eur. Phys. J. C <b>79</b>, 733 (2019). <a href="http://arxiv.org/abs/1902.00377" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1902.00377">arXiv:1902.00377</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="151."><p class="c-article-references__text" id="ref-CR151">CMS, A.M. Sirunyan et al., Measurement of differential cross sections for Z boson production in association with jets in proton-proton collisions at <span class="mathjax-tex">\(\sqrt{s} =\)</span> 13 TeV. Eur. Phys. J. C <b>78</b>, 965 (2018). <a href="http://arxiv.org/abs/1804.05252" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1804.05252">arXiv:1804.05252</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="152."><p class="c-article-references__text" id="ref-CR152">ATLAS, M. Aaboud et al., Measurement of jet-substructure observables in top quark, <span class="mathjax-tex">\(W\)</span> boson and light jet production in proton-proton collisions at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV with the ATLAS detector. JHEP <b>08</b>, 033 (2019). <a href="http://arxiv.org/abs/1903.02942" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1903.02942">arXiv:1903.02942</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="153."><p class="c-article-references__text" id="ref-CR153">ATLAS, M. Aaboud et al., Measurements of the production cross section of a <span class="mathjax-tex">\(Z\)</span> boson in association with jets in pp collisions at <span class="mathjax-tex">\(\sqrt{s} = 13\)</span> TeV with the ATLAS detector. Eur. Phys. J. C <b>77</b>, 361 (2017). <a href="http://arxiv.org/abs/1702.05725" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1702.05725">arXiv:1702.05725</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="154."><p class="c-article-references__text" id="ref-CR154">CMS, A.M. Sirunyan et al., Measurements of differential Z boson production cross sections in proton-proton collisions at <span class="mathjax-tex">\( \sqrt{s} \)</span> = 13 TeV. JHEP <b>12</b>, 061 (2019). <a href="http://arxiv.org/abs/1909.04133" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1909.04133">arXiv:1909.04133</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="155."><p class="c-article-references__text" id="ref-CR155">ATLAS, G. Aad et al., Measurement of the transverse momentum distribution of Drell-Yan lepton pairs in proton-proton collisions at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV with the ATLAS detector. Eur. Phys. J. C <b>80</b>, 616 (2020). <a href="http://arxiv.org/abs/1912.02844" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1912.02844">arXiv:1912.02844</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="156."><p class="c-article-references__text" id="ref-CR156">ATLAS, M. Aaboud et al., Measurements of differential cross sections of top quark pair production in association with jets in <span class="mathjax-tex">\({pp}\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV using the ATLAS detector. JHEP <b>10</b>, 159 (2018). <a href="http://arxiv.org/abs/1802.06572" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1802.06572">arXiv:1802.06572</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="157."><p class="c-article-references__text" id="ref-CR157">ATLAS, G. Aad et al., Measurements of the production cross-section for a <span class="mathjax-tex">\(Z\)</span> boson in association with <span class="mathjax-tex">\(b\)</span>-jets in proton-proton collisions at <span class="mathjax-tex">\(\sqrt{s} = 13\)</span> TeV with the ATLAS detector. JHEP <b>07</b>, 044 (2020). <a href="http://arxiv.org/abs/2003.11960" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2003.11960">arXiv:2003.11960</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="158."><p class="c-article-references__text" id="ref-CR158">ATLAS, G. Aad et al., Differential cross-section measurements for the electroweak production of dijets in association with a <span class="mathjax-tex">\(Z\)</span> boson in proton-proton collisions at ATLAS. Eur. Phys. J. C <b>81</b>, 163 (2021). <a href="http://arxiv.org/abs/2006.15458" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2006.15458">arXiv:2006.15458</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="159."><p class="c-article-references__text" id="ref-CR159">ATLAS, M. Aaboud et al., Measurement of the soft-drop jet mass in pp collisions at <span class="mathjax-tex">\(\sqrt{s} = 13\)</span> TeV with the ATLAS detector. Phys. Rev. Lett. <b>121</b>, 092001 (2018). <a href="http://arxiv.org/abs/1711.08341" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1711.08341">arXiv:1711.08341</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="160."><p class="c-article-references__text" id="ref-CR160">ATLAS, M. Aaboud et al., Measurement of the four-lepton invariant mass spectrum in 13 TeV proton-proton collisions with the ATLAS detector. JHEP <b>04</b>, 048 (2019). <a href="http://arxiv.org/abs/1902.05892" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1902.05892">arXiv:1902.05892</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="161."><p class="c-article-references__text" id="ref-CR161">ATLAS, M. Aaboud et al., Observation of electroweak production of a same-sign <span class="mathjax-tex">\(W\)</span> boson pair in association with two jets in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV with the ATLAS detector. Phys. Rev. Lett. <b>123</b>, 161801 (2019). <a href="http://arxiv.org/abs/1906.03203" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1906.03203">arXiv:1906.03203</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="162."><p class="c-article-references__text" id="ref-CR162">CMS, A.M. Sirunyan et al., Measurements of differential cross sections of top quark pair production as a function of kinematic event variables in proton-proton collisions at <span class="mathjax-tex">\( \sqrt{s}=13 \)</span> TeV. JHEP <b>06</b>, 002 (2018). <a href="http://arxiv.org/abs/1803.03991" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1803.03991">arXiv:1803.03991</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="163."><p class="c-article-references__text" id="ref-CR163">ATLAS, G. Aad et al., Measurements of <span class="mathjax-tex">\(W^+W^-+\ge 1~\)</span>jet production cross-sections in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}=13~\)</span>TeV with the ATLAS detector. JHEP <b>06</b>, 003 (2021). <a href="http://arxiv.org/abs/2103.10319" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2103.10319">arXiv:2103.10319</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="164."><p class="c-article-references__text" id="ref-CR164">CMS, A. Tumasyan et al., Measurement of double-parton scattering in inclusive production of four jets with low transverse momentum in proton-proton collisions at <span class="mathjax-tex">\( \sqrt{s} \)</span> = 13 TeV. JHEP <b>01</b>, 177 (2022). <a href="http://arxiv.org/abs/2109.13822" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2109.13822">arXiv:2109.13822</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="165."><p class="c-article-references__text" id="ref-CR165">ATLAS, G. Aad et al., Measurements of top-quark pair differential and double-differential cross-sections in the <span class="mathjax-tex">\(\ell \)</span>+jets channel with <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV using the ATLAS detector. Eur. Phys. J. C <b>79</b>, 1028 (2019). <a href="http://arxiv.org/abs/1908.07305" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1908.07305">arXiv:1908.07305</a>. [Erratum: Eur. Phys. J. C <b>80</b>, 1092 (2020)]</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="166."><p class="c-article-references__text" id="ref-CR166">ATLAS, M. Aaboud et al., Measurement of fiducial and differential <span class="mathjax-tex">\(W^+W^-\)</span> production cross-sections at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV with the ATLAS detector. Eur. Phys. J. C <b>79</b>, 884 (2019). <a href="http://arxiv.org/abs/1905.04242" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1905.04242">arXiv:1905.04242</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="167."><p class="c-article-references__text" id="ref-CR167">ATLAS, M. Aaboud et al., Measurements of inclusive and differential fiducial cross-sections of <span class="mathjax-tex">\( t{\overline{t}} \)</span> production with additional heavy-flavour jets in proton-proton collisions at <span class="mathjax-tex">\( \sqrt{s} \)</span> = 13 TeV with the ATLAS detector. JHEP <b>04</b>, 046 (2019). <a href="http://arxiv.org/abs/1811.12113" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1811.12113">arXiv:1811.12113</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="168."><p class="c-article-references__text" id="ref-CR168">CMS, A.M. Sirunyan et al., Measurement of the differential Drell-Yan cross section in proton-proton collisions at <span class="mathjax-tex">\( \sqrt{{\rm s}} \)</span> = 13 TeV. JHEP <b>12</b>, 059 (2019). <a href="http://arxiv.org/abs/1812.10529" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1812.10529">arXiv:1812.10529</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="169."><p class="c-article-references__text" id="ref-CR169">LHCb, R. Aaij et al., Measurement of forward top pair production in the dilepton channel in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV. JHEP <b>08</b>, 174 (2018). <a href="http://arxiv.org/abs/1803.05188" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1803.05188">arXiv:1803.05188</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="170."><p class="c-article-references__text" id="ref-CR170">ATLAS, G. Aad et al., Measurements of top-quark pair single- and double-differential cross-sections in the all-hadronic channel in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}=13~{\rm TeV}\)</span> using the ATLAS detector. JHEP <b>01</b>, 033 (2021). <a href="http://arxiv.org/abs/2006.09274" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2006.09274">arXiv:2006.09274</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="171."><p class="c-article-references__text" id="ref-CR171">ATLAS, G. Aad et al., Measurement of the production cross section of pairs of isolated photons in <span class="mathjax-tex">\(pp\)</span> collisions at 13 TeV with the ATLAS detector. JHEP <b>11</b>, 169 (2021). <a href="http://arxiv.org/abs/2107.09330" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2107.09330">arXiv:2107.09330</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="172."><p class="c-article-references__text" id="ref-CR172">ATLAS, G. Aad et al., Measurement of hadronic event shapes in high-<span class="mathjax-tex">\(\text{ p}_{{T}}\)</span> multijet final states at <span class="mathjax-tex">\( \sqrt{s} \)</span> = 13 TeV with the ATLAS detector. JHEP <b>01</b>, 188 (2021). <a href="http://arxiv.org/abs/2007.12600" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2007.12600">arXiv:2007.12600</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="173."><p class="c-article-references__text" id="ref-CR173">CMS, V. Khachatryan et al., Measurement of the double-differential inclusive jet cross section in proton-proton collisions at <span class="mathjax-tex">\(\sqrt{s} = 13\,\text{ TeV } \)</span>. Eur. Phys. J. C <b>76</b>, 451 (2016). <a href="http://arxiv.org/abs/1605.04436" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1605.04436">arXiv:1605.04436</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="174."><p class="c-article-references__text" id="ref-CR174">CMS, A.M. Sirunyan et al., Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s} = 13\)</span> TeV. Phys. Rev. Lett. <b>124</b>, 202001 (2020). <a href="http://arxiv.org/abs/1911.03800" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1911.03800">arXiv:1911.03800</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="175."><p class="c-article-references__text" id="ref-CR175">ATLAS, M. Aaboud et al., <span class="mathjax-tex">\(ZZ \rightarrow \ell ^{+}\ell ^{-}\ell ^{\prime +}\ell ^{\prime -}\)</span> cross-section measurements and search for anomalous triple gauge couplings in 13 TeV <span class="mathjax-tex">\(pp\)</span> collisions with the ATLAS detector. Phys. Rev. D <b>97</b>, 032005 (2018). <a href="http://arxiv.org/abs/1709.07703" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1709.07703">arXiv:1709.07703</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="176."><p class="c-article-references__text" id="ref-CR176">CMS, A.M. Sirunyan et al., <span class="mathjax-tex">\(\text{ W}^{+}\text{ W}^{-}\)</span> boson pair production in proton-proton collisions at <span class="mathjax-tex">\(\sqrt{s} = 13\, \text{ TeV }\)</span>. Phys. Rev. D <b>102</b>, 092001 (2020). <a href="http://arxiv.org/abs/2009.00119" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2009.00119">arXiv:2009.00119</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="177."><p class="c-article-references__text" id="ref-CR177">CMS, A.M. Sirunyan et al., Measurement of differential cross sections and charge ratios for t-channel single top quark production in proton-proton collisions at <span class="mathjax-tex">\(\sqrt{s}=13\,\text{ Te }\text{ V }\)</span>. Eur. Phys. J. C <b>80</b>, 370 (2020). <a href="http://arxiv.org/abs/1907.08330" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1907.08330">arXiv:1907.08330</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="178."><p class="c-article-references__text" id="ref-CR178">CMS, A.M. Sirunyan et al., Measurement of the <span class="mathjax-tex">\({\rm t}{\bar{t}}{\rm b}{\bar{b}} \)</span> production cross section in the all-jet final state in pp collisions at <span class="mathjax-tex">\(\sqrt{s} =\)</span> 13 TeV. Phys. Lett. B <b>803</b>, 135285 (2020). <a href="http://arxiv.org/abs/1909.05306" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1909.05306">arXiv:1909.05306</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="179."><p class="c-article-references__text" id="ref-CR179">ATLAS, M. Aaboud et al., Measurement of inclusive jet and dijet cross-sections in proton-proton collisions at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV with the ATLAS detector. JHEP <b>05</b>, 195 (2018). <a href="http://arxiv.org/abs/1711.02692" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1711.02692">arXiv:1711.02692</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="180."><p class="c-article-references__text" id="ref-CR180">ATLAS, G. Aad et al., Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector. Phys. Rev. Lett. <b>124</b>, 222002 (2020). <a href="http://arxiv.org/abs/2004.03540" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2004.03540">arXiv:2004.03540</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="181."><p class="c-article-references__text" id="ref-CR181">ATLAS, G. Aad et al., Measurement of the <span class="mathjax-tex">\(Z(\rightarrow \ell ^+\ell ^-)\gamma \)</span> production cross-section in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s} =13\)</span> TeV with the ATLAS detector. JHEP <b>03</b>, 054 (2020). <a href="http://arxiv.org/abs/1911.04813" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1911.04813">arXiv:1911.04813</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="182."><p class="c-article-references__text" id="ref-CR182">ATLAS, M. Aaboud et al., Measurement of the <span class="mathjax-tex">\( Z\gamma \rightarrow \nu {\overline{\nu }}\gamma \)</span> production cross section in pp collisions at <span class="mathjax-tex">\( \sqrt{s}=13 \)</span> TeV with the ATLAS detector and limits on anomalous triple gauge-boson couplings. JHEP <b>12</b>, 010 (2018). <a href="http://arxiv.org/abs/1810.04995" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1810.04995">arXiv:1810.04995</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="183."><p class="c-article-references__text" id="ref-CR183"><span class="u-sans-serif">GAMBIT</span> Collider Workgroup, C. Balázs, A. Buckley, et al., ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods. Eur. Phys. J. C <b>77</b>, 795 (2017). <a href="http://arxiv.org/abs/1705.07919" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1705.07919">arXiv:1705.07919</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="184."><p class="c-article-references__text" id="ref-CR184">L3, P. Achard et al., Single photon and multiphoton events with missing energy in <span class="mathjax-tex">\(e^{+} e^{-}\)</span> collisions at LEP. Phys. Lett. B <b>587</b>, 16–32 (2004). <a href="http://arxiv.org/abs/hep-ex/0402002" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ex/0402002">arXiv:hep-ex/0402002</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="185."><p class="c-article-references__text" id="ref-CR185">S. Bloor, T.E. Gonzalo et al., The GAMBIT universal model machine: from Lagrangians to likelihoods. <a href="http://arxiv.org/abs/2107.00030" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2107.00030">arXiv:2107.00030</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="186."><p class="c-article-references__text" id="ref-CR186"><span class="u-sans-serif">GAMBIT</span> Models Workgroup, P. Athron, C. Balázs, et al., SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables. Eur. Phys. J. C <b>78</b>, 22 (2018). <a href="http://arxiv.org/abs/1705.07936" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1705.07936">arXiv:1705.07936</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="187."><p class="c-article-references__text" id="ref-CR187"><span class="u-sans-serif">GAMBIT</span> Scanner Workgroup, G.D. Martinez, J. McKay, et al., Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module. Eur. Phys. J. C <b>77</b>, 761 (2017). <a href="http://arxiv.org/abs/1705.07959" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1705.07959">arXiv:1705.07959</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="188."><p class="c-article-references__text" id="ref-CR188">P. Athron, J.-H. Park, D. Stöckinger, A. Voigt, FlexibleSUSY—a spectrum generator generator for supersymmetric models. Comput. Phys. Comm. <b>190</b>, 139–172 (2015). <a href="http://arxiv.org/abs/1406.2319" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1406.2319">arXiv:1406.2319</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2015CoPhC.190..139A" aria-label="ADS reference 188">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 188" href="http://scholar.google.com/scholar_lookup?&title=FlexibleSUSY%E2%80%94a%20spectrum%20generator%20generator%20for%20supersymmetric%20models&journal=Comput.%20Phys.%20Comm.&volume=190&pages=139-172&publication_year=2015&author=Athron%2CP&author=Park%2CJ-H&author=St%C3%B6ckinger%2CD&author=Voigt%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="189."><p class="c-article-references__text" id="ref-CR189">P. Athron, M. Bach, et al., FlexibleSUSY 2.0: extensions to investigate the phenomenology of SUSY and non-SUSY models. Comput. Phys. Comm. <b>230</b>, 145–217 (2018). <a href="http://arxiv.org/abs/1710.03760" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1710.03760">arXiv:1710.03760</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="190."><p class="c-article-references__text" id="ref-CR190">F. Staub, SARAH. <a href="http://arxiv.org/abs/0806.0538" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0806.0538">arXiv:0806.0538</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="191."><p class="c-article-references__text" id="ref-CR191">F. Staub, Automatic calculation of supersymmetric renormalization group equations and self energies. Comput. Phys. Commun. <b>182</b>, 808–833 (2011). <a href="http://arxiv.org/abs/1002.0840" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1002.0840">arXiv:1002.0840</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2011CoPhC.182..808S" aria-label="ADS reference 191">ADS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1214.81168" aria-label="MATH reference 191">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 191" href="http://scholar.google.com/scholar_lookup?&title=Automatic%20calculation%20of%20supersymmetric%20renormalization%20group%20equations%20and%20self%20energies&journal=Comput.%20Phys.%20Commun.&volume=182&pages=808-833&publication_year=2011&author=Staub%2CF"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="192."><p class="c-article-references__text" id="ref-CR192">B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra. Comput. Phys. Commun. <b>143</b>, 305–331 (2002). <a href="http://arxiv.org/abs/hep-ph/0104145" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0104145">arXiv:hep-ph/0104145</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2002CoPhC.143..305A" aria-label="ADS reference 192">ADS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1009.81588" aria-label="MATH reference 192">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 192" href="http://scholar.google.com/scholar_lookup?&title=SOFTSUSY%3A%20a%20program%20for%20calculating%20supersymmetric%20spectra&journal=Comput.%20Phys.%20Commun.&volume=143&pages=305-331&publication_year=2002&author=Allanach%2CBC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="193."><p class="c-article-references__text" id="ref-CR193">B.C. Allanach, P. Athron, L.C. Tunstall, A. Voigt, A.G. Williams, Next-to-minimal SOFTSUSY. Comput. Phys. Commun. <b>185</b>, 2322–2339 (2014). <a href="http://arxiv.org/abs/1311.7659" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1311.7659">arXiv:1311.7659</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2014CoPhC.185.2322A" aria-label="ADS reference 193">ADS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1344.81007" aria-label="MATH reference 193">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 193" href="http://scholar.google.com/scholar_lookup?&title=Next-to-minimal%20SOFTSUSY&journal=Comput.%20Phys.%20Commun.&volume=185&pages=2322-2339&publication_year=2014&author=Allanach%2CBC&author=Athron%2CP&author=Tunstall%2CLC&author=Voigt%2CA&author=Williams%2CAG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="194."><p class="c-article-references__text" id="ref-CR194">A. Djouadi, M.M. Mühlleitner, M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-Hdecay-InTerface). Acta Phys. Polon. <b>38</b>, 635–644 (2007). <a href="http://arxiv.org/abs/hep-ph/0609292" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0609292">arXiv:hep-ph/0609292</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2007AcPPB..38..635M" aria-label="ADS reference 194">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 194" href="http://scholar.google.com/scholar_lookup?&title=Decays%20of%20supersymmetric%20particles%3A%20the%20program%20SUSY-HIT%20%28SUspect-SdecaY-Hdecay-InTerface%29&journal=Acta%20Phys.%20Polon.&volume=38&pages=635-644&publication_year=2007&author=Djouadi%2CA&author=M%C3%BChlleitner%2CMM&author=Spira%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="195."><p class="c-article-references__text" id="ref-CR195">M. Muhlleitner, A. Djouadi, Y. Mambrini, SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM. Comput. Phys. Commun. <b>168</b>, 46–70 (2005). <a href="http://arxiv.org/abs/hep-ph/0311167" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0311167">arXiv:hep-ph/0311167</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2005CoPhC.168...46M" aria-label="ADS reference 195">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 195" href="http://scholar.google.com/scholar_lookup?&title=SDECAY%3A%20a%20Fortran%20code%20for%20the%20decays%20of%20the%20supersymmetric%20particles%20in%20the%20MSSM&journal=Comput.%20Phys.%20Commun.&volume=168&pages=46-70&publication_year=2005&author=Muhlleitner%2CM&author=Djouadi%2CA&author=Mambrini%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="196."><p class="c-article-references__text" id="ref-CR196">A. Djouadi, J. Kalinowski, M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension. Comput. Phys. Commun. <b>108</b>, 56–74 (1998). <a href="http://arxiv.org/abs/hep-ph/9704448" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9704448">arXiv:hep-ph/9704448</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1998CoPhC.108...56D" aria-label="ADS reference 196">ADS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?0938.81515" aria-label="MATH reference 196">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 196" href="http://scholar.google.com/scholar_lookup?&title=HDECAY%3A%20a%20program%20for%20Higgs%20boson%20decays%20in%20the%20standard%20model%20and%20its%20supersymmetric%20extension&journal=Comput.%20Phys.%20Commun.&volume=108&pages=56-74&publication_year=1998&author=Djouadi%2CA&author=Kalinowski%2CJ&author=Spira%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="197."><p class="c-article-references__text" id="ref-CR197">T. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP <b>05</b>, 026 (2006). <a href="http://arxiv.org/abs/hep-ph/0603175" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0603175">arXiv:hep-ph/0603175</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="198."><p class="c-article-references__text" id="ref-CR198">T. Sjostrand, S. Ask, et al., An introduction to PYTHIA 8.2. Comput. Phys. Commun. <b>191</b>, 159–177 (2015). <a href="http://arxiv.org/abs/1410.3012" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1410.3012">arXiv:1410.3012</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="199."><p class="c-article-references__text" id="ref-CR199">J. Fiaschi, M. Klasen, Neutralino-chargino pair production at NLO+NLL with resummation-improved parton density functions for LHC Run II. Phys. Rev. D <b>98</b>, 055014 (2018). <a href="http://arxiv.org/abs/1805.11322" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1805.11322">arXiv:1805.11322</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="200."><p class="c-article-references__text" id="ref-CR200">K. Cranmer et al., Publishing statistical models: Getting the most out of particle physics experiments. SciPost Phys. <b>12</b>, 037 (2022). <a href="http://arxiv.org/abs/2109.04981" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2109.04981">arXiv:2109.04981</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="201."><p class="c-article-references__text" id="ref-CR201">J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evolut. Comput. <b>10</b>, 646–657 (2006)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 201" href="http://scholar.google.com/scholar_lookup?&title=Self-adapting%20control%20parameters%20in%20differential%20evolution%3A%20a%20comparative%20study%20on%20numerical%20benchmark%20problems&journal=IEEE%20Trans.%20Evolut.%20Comput.&volume=10&pages=646-657&publication_year=2006&author=Brest%2CJ&author=Greiner%2CS&author=Boskovic%2CB&author=Mernik%2CM&author=Zumer%2CV"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="202."><p class="c-article-references__text" id="ref-CR202"><span class="u-sans-serif">GAMBIT</span> Collaboration, Supplementary data: collider constraints on electroweakinos in the presence of a light gravitino (2023). <a href="https://zenodo.org/record/7704832" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://zenodo.org/record/7704832">https://zenodo.org/record/7704832</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="203."><p class="c-article-references__text" id="ref-CR203">P. Scott, Pippi-painless parsing, post-processing and plotting of posterior and likelihood samples. Eur. Phys. J. Plus <b>127</b>, 138 (2012). <a href="http://arxiv.org/abs/1206.2245" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1206.2245">arXiv:1206.2245</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 203" href="http://scholar.google.com/scholar_lookup?&title=Pippi-painless%20parsing%2C%20post-processing%20and%20plotting%20of%20posterior%20and%20likelihood%20samples&journal=Eur.%20Phys.%20J.%20Plus&volume=127&publication_year=2012&author=Scott%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="204."><p class="c-article-references__text" id="ref-CR204">M.R. Buckley, J.D. Lykken, C. Rogan, M. Spiropulu, Super-razor and searches for sleptons and charginos at the LHC. Phys. Rev. D <b>89</b>, 055020 (2014). <a href="http://arxiv.org/abs/1310.4827" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1310.4827">arXiv:1310.4827</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2014PhRvD..89e5020B" aria-label="ADS reference 204">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 204" href="http://scholar.google.com/scholar_lookup?&title=Super-razor%20and%20searches%20for%20sleptons%20and%20charginos%20at%20the%20LHC&journal=Phys.%20Rev.%20D&volume=89&publication_year=2014&author=Buckley%2CMR&author=Lykken%2CJD&author=Rogan%2CC&author=Spiropulu%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="205."><p class="c-article-references__text" id="ref-CR205"><span class="u-sans-serif">GAMBIT</span> Flavour Workgroup, F.U. Bernlochner, M. Chrząszcz, et al., FlavBit: a GAMBIT module for computing flavour observables and likelihoods. Eur. Phys. J. C <b>77</b>, 786 (2017). <a href="http://arxiv.org/abs/1705.07933" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1705.07933">arXiv:1705.07933</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="206."><p class="c-article-references__text" id="ref-CR206">A. Buckley, J. Butterworth et al., Rivet user manual. Comput. Phys. Commun. <b>184</b>, 2803–2819 (2013). <a href="http://arxiv.org/abs/1003.0694" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1003.0694">arXiv:1003.0694</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2013CoPhC.184.2803B" aria-label="ADS reference 206">ADS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 206" href="http://scholar.google.com/scholar_lookup?&title=Rivet%20user%20manual&journal=Comput.%20Phys.%20Commun.&volume=184&pages=2803-2819&publication_year=2013&author=Buckley%2CA&author=Butterworth%2CJ"> Google Scholar</a> </p></li></ol><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1140/epjc/s10052-023-11574-z?format=refman&flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Acknowledgements"><div class="c-article-section" id="Ack1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Ack1">Acknowledgements</h2><div class="c-article-section__content" id="Ack1-content"><p>We thank our colleagues in the GAMBIT Community for helpful discussions and comments. We also thank the ATLAS and CMS experiments for the resources they have made public to enable reinterpretations of their searches and measurements. For computing resources, we thank PRACE for awarding us access to Marconi at CINECA and Joliot-Curie at CEA. Computing resources were also provided by Sigma2, the National Infrastructure for HPC in Norway, under project NN9284K. AF was supported by the National Natural Science Foundation of China (NNSFC) Research Fund for International Excellent Young Scientists grant 1950410509. ABu and JB were supported by the UK Science and Technology Facilities Council (STFC) Consolidated Grant programme awards ST/S000887/1 and ST/S000666/1 respectively, ABe by STFC grant ST/T00679X/1, and TP by the STFC Doctoral Training Programme. The work of CB was supported by the Australian Research Council Discovery Project grant DP210101636. AK and AR were supported by the Research Council of Norway FRIPRO grant 323985. TEG was funded by the Deutsche Forschungsgemeinschaft (DFG) through the Emmy Noether Grant No. KA 4662/1-1. The work of VA was supported by the European Union Framework Programme for Research and Innovation Horizon 2020 (2014–2021) under the Marie Sklodowska-Curie Grant Agreement No. 765710. YZ was supported by the NNSFC under grant No. 12105248 and 12047503 (Peng-Huan-Wu Theoretical Physics Innovation Center). MJW is supported by the ARC Centre of Excellence for Dark Matter Particle Physics (CE200100008). We made use of <span class="u-sans-serif">pippi v2.2</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 203" title="P. Scott, Pippi-painless parsing, post-processing and plotting of posterior and likelihood samples. Eur. Phys. J. Plus 127, 138 (2012). 
 arXiv:1206.2245
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR203" id="ref-link-section-d154747430e22667">203</a>] for this work.</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">Department of Physics, University of Oslo, 0316, Oslo, Norway</p><p class="c-article-author-affiliation__authors-list">Viktor Ananyev, Lasse Lorentz Braseth, Anders Kvellestad, Are Raklev & Jeriek Van den Abeele</p></li><li id="Aff2"><p class="c-article-author-affiliation__address">School of Physics and Astronomy, Monash University, Melbourne, VIC, 3800, Australia</p><p class="c-article-author-affiliation__authors-list">Csaba Balázs</p></li><li id="Aff3"><p class="c-article-author-affiliation__address">Department of Physics, Theoretical Particle Physics and Cosmology (TPPC), King’s College London, Strand, London, WC2R 2LS, UK</p><p class="c-article-author-affiliation__authors-list">Ankit Beniwal</p></li><li id="Aff4"><p class="c-article-author-affiliation__address">SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK</p><p class="c-article-author-affiliation__authors-list">Andy Buckley & Tomasz Procter</p></li><li id="Aff5"><p class="c-article-author-affiliation__address">Department of Physics and Astronomy, University College London, Gower St., London, WC1E 6BT, UK</p><p class="c-article-author-affiliation__authors-list">Jonathan Butterworth</p></li><li id="Aff6"><p class="c-article-author-affiliation__address">School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia</p><p class="c-article-author-affiliation__authors-list">Christopher Chang</p></li><li id="Aff7"><p class="c-article-author-affiliation__address">Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada</p><p class="c-article-author-affiliation__authors-list">Matthias Danninger</p></li><li id="Aff8"><p class="c-article-author-affiliation__address">Department of Physics, School of Mathematics and Physics, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou Dushu Lake, Science and Education Innovation District, Suzhou Industrial Park, Suzhou, 215123, People’s Republic of China</p><p class="c-article-author-affiliation__authors-list">Andrew Fowlie</p></li><li id="Aff9"><p class="c-article-author-affiliation__address">Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany</p><p class="c-article-author-affiliation__authors-list">Tomás E. Gonzalo</p></li><li id="Aff10"><p class="c-article-author-affiliation__address">Institut de Physique des 2 Infinis de Lyon, Univ Lyon, Univ Lyon 1, CNRS/IN2P3, UMR 5822, 69622, Villeurbanne, France</p><p class="c-article-author-affiliation__authors-list">Farvah Mahmoudi</p></li><li id="Aff11"><p class="c-article-author-affiliation__address">Theoretical Physics Department, CERN, 1211, Geneva 23, Switzerland</p><p class="c-article-author-affiliation__authors-list">Farvah Mahmoudi</p></li><li id="Aff12"><p class="c-article-author-affiliation__address">Physics and Astronomy Department, University of California, Los Angeles, CA, 90095, USA</p><p class="c-article-author-affiliation__authors-list">Gregory D. Martinez</p></li><li id="Aff13"><p class="c-article-author-affiliation__address">Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn, 53115, Bonn, Germany</p><p class="c-article-author-affiliation__authors-list">Markus T. Prim</p></li><li id="Aff14"><p class="c-article-author-affiliation__address">Quantum Brilliance Pty Ltd, The Australian National University, Daley Road, Acton, ACT, 2601, Australia</p><p class="c-article-author-affiliation__authors-list">Pat Scott</p></li><li id="Aff15"><p class="c-article-author-affiliation__address">Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, 52056, Aachen, Germany</p><p class="c-article-author-affiliation__authors-list">Patrick Stöcker</p></li><li id="Aff16"><p class="c-article-author-affiliation__address">Department of Physics, ARC Centre of Excellence for Dark Matter Particle Physics & CSSM, University of Adelaide, Adelaide, SA, 5005, Australia</p><p class="c-article-author-affiliation__authors-list">Martin White</p></li><li id="Aff17"><p class="c-article-author-affiliation__address">School of Physics, Zhengzhou University, Zhengzhou, 450000, China</p><p class="c-article-author-affiliation__authors-list">Yang Zhang</p></li><li id="Aff18"><p class="c-article-author-affiliation__address">Telenor Research, 1360, Fornebu, Norway</p><p class="c-article-author-affiliation__authors-list">Jeriek Van den Abeele</p></li><li id="Aff19"><p class="c-article-author-affiliation__address">CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China</p><p class="c-article-author-affiliation__authors-list">Yang Zhang</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Viktor-Ananyev-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Viktor Ananyev</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Viktor%20Ananyev" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Viktor%20Ananyev" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Viktor%20Ananyev%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Csaba-Bal_zs-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">Csaba Balázs</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Csaba%20Bal%C3%A1zs" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Csaba%20Bal%C3%A1zs" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Csaba%20Bal%C3%A1zs%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Ankit-Beniwal-Aff3"><span class="c-article-authors-search__title u-h3 js-search-name">Ankit Beniwal</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Ankit%20Beniwal" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Ankit%20Beniwal" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Ankit%20Beniwal%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Lasse_Lorentz-Braseth-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Lasse Lorentz Braseth</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Lasse%20Lorentz%20Braseth" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Lasse%20Lorentz%20Braseth" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Lasse%20Lorentz%20Braseth%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Andy-Buckley-Aff4"><span class="c-article-authors-search__title u-h3 js-search-name">Andy Buckley</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Andy%20Buckley" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Andy%20Buckley" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Andy%20Buckley%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Jonathan-Butterworth-Aff5"><span class="c-article-authors-search__title u-h3 js-search-name">Jonathan Butterworth</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Jonathan%20Butterworth" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Jonathan%20Butterworth" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Jonathan%20Butterworth%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Christopher-Chang-Aff6"><span class="c-article-authors-search__title u-h3 js-search-name">Christopher Chang</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Christopher%20Chang" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Christopher%20Chang" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Christopher%20Chang%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Matthias-Danninger-Aff7"><span class="c-article-authors-search__title u-h3 js-search-name">Matthias Danninger</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Matthias%20Danninger" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Matthias%20Danninger" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Matthias%20Danninger%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Andrew-Fowlie-Aff8"><span class="c-article-authors-search__title u-h3 js-search-name">Andrew Fowlie</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Andrew%20Fowlie" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Andrew%20Fowlie" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Andrew%20Fowlie%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Tom_s_E_-Gonzalo-Aff9"><span class="c-article-authors-search__title u-h3 js-search-name">Tomás E. Gonzalo</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Tom%C3%A1s%20E.%20Gonzalo" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Tom%C3%A1s%20E.%20Gonzalo" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Tom%C3%A1s%20E.%20Gonzalo%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Anders-Kvellestad-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Anders Kvellestad</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Anders%20Kvellestad" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Anders%20Kvellestad" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Anders%20Kvellestad%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Farvah-Mahmoudi-Aff10-Aff11"><span class="c-article-authors-search__title u-h3 js-search-name">Farvah Mahmoudi</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Farvah%20Mahmoudi" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Farvah%20Mahmoudi" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Farvah%20Mahmoudi%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Gregory_D_-Martinez-Aff12"><span class="c-article-authors-search__title u-h3 js-search-name">Gregory D. Martinez</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Gregory%20D.%20Martinez" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Gregory%20D.%20Martinez" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Gregory%20D.%20Martinez%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Markus_T_-Prim-Aff13"><span class="c-article-authors-search__title u-h3 js-search-name">Markus T. Prim</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Markus%20T.%20Prim" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Markus%20T.%20Prim" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Markus%20T.%20Prim%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Tomasz-Procter-Aff4"><span class="c-article-authors-search__title u-h3 js-search-name">Tomasz Procter</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Tomasz%20Procter" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Tomasz%20Procter" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Tomasz%20Procter%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Are-Raklev-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Are Raklev</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Are%20Raklev" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Are%20Raklev" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Are%20Raklev%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Pat-Scott-Aff14"><span class="c-article-authors-search__title u-h3 js-search-name">Pat Scott</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Pat%20Scott" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Pat%20Scott" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Pat%20Scott%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Patrick-St_cker-Aff15"><span class="c-article-authors-search__title u-h3 js-search-name">Patrick Stöcker</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Patrick%20St%C3%B6cker" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Patrick%20St%C3%B6cker" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Patrick%20St%C3%B6cker%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Jeriek-Abeele-Aff1-Aff18"><span class="c-article-authors-search__title u-h3 js-search-name">Jeriek Van den Abeele</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Jeriek%20Van%20den%20Abeele" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Jeriek%20Van%20den%20Abeele" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Jeriek%20Van%20den%20Abeele%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Martin-White-Aff16"><span class="c-article-authors-search__title u-h3 js-search-name">Martin White</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Martin%20White" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Martin%20White" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Martin%20White%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Yang-Zhang-Aff17-Aff19"><span class="c-article-authors-search__title u-h3 js-search-name">Yang Zhang</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Yang%20Zhang" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Yang%20Zhang" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Yang%20Zhang%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="groups">Consortia</h3><div class="c-article-author-institutional-author" id="group-1"><h3 class="c-article-author-institutional-author__name u-h3">GAMBIT Collaboration</h3></div><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:anders.kvellestad@fys.uio.no">Anders Kvellestad</a>.</p></div></div></section><section aria-labelledby="appendices"><div class="c-article-section" id="appendices-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="appendices">Appendices</h2><div class="c-article-section__content" id="appendices-content"><h3 class="c-article__sub-heading" id="App1">Appendix A: Profile likelihood maps for the input parameters</h3> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-12" data-title="Fig. 12"><figure><figcaption><b id="Fig12" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 12</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/12" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig12_HTML.png?as=webp"><img aria-describedby="Fig12" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Fig12_HTML.png" alt="figure 12" loading="lazy" width="685" height="365"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-12-desc"><p>Profile likelihood maps for the <span class="mathjax-tex">\((M_1,\mu )\)</span>, <span class="mathjax-tex">\((M_2,\mu )\)</span> and <span class="mathjax-tex">\((\tan \beta ,\mu )\)</span> parameter planes, using the full likelihood (top row) or the capped likelihood (bottom row). The white contour lines show the <span class="mathjax-tex">\(1\sigma \)</span> and <span class="mathjax-tex">\(2\sigma \)</span> confidence regions, and the white star in the top-row panels mark the point of highest likelihood. The region with <span class="mathjax-tex">\(M_2 < 0\)</span> (grey) in the middle panels is included only to ensure equal aspect ratio for all three mass parameters</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-023-11574-z/figures/12" data-track-dest="link:Figure12 Full size image" aria-label="Full size image figure 12" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>In Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig12">12</a> we show profile likelihood results for three different planes of the <span class="mathjax-tex">\({\tilde{G}}\)</span>-EWMSSM parameters. The panels in the top row show likelihood maps using the full likelihood, i.e. corresponding to the results in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig2">2</a>. In the bottom row we show results for the same parameter planes using the capped likelihood (see Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Sec4">3.1</a>), corresponding to the results in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Fig3">3</a>. As discussed in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Sec11">5.1</a>, the highest-likelihood solutions are found for <span class="mathjax-tex">\(|\mu | < |M_1|, M_2\)</span>, <span class="mathjax-tex">\(\mu < 0\)</span> and <span class="mathjax-tex">\(\tan \beta \)</span> close to 1. When <span class="mathjax-tex">\(|\mu |\)</span> is larger than <span class="mathjax-tex">\(|M_1|\)</span> or <span class="mathjax-tex">\(M_2\)</span>, the likelihood is only very weakly dependent on <span class="mathjax-tex">\(|\mu |\)</span> and <span class="mathjax-tex">\(\tan \beta \)</span>. This explains the patchiness of the capped profile likelihood in the bottom-right panel, since the set of high-likelihood scan samples (which pick out the required <span class="mathjax-tex">\(M_1\)</span> or <span class="mathjax-tex">\(M_2\)</span> values) is spread out across large regions in the <span class="mathjax-tex">\((\tan \beta ,\mu )\)</span> plane.</p><h3 class="c-article__sub-heading" id="App2">Appendix B: LHC searches</h3><p>Below we give a short description of each 13 TeV LHC search we include in our study, and point out which signal regions our simulation includes. A list of all the searches, along with the corresponding labels used in <span class="u-sans-serif">ColliderBit</span>, is given in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Tab2">2</a>.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-2"><figure><figcaption class="c-article-table__figcaption"><b id="Tab2" data-test="table-caption">Table 2 The different ATLAS and CMS searches we simulate for our LHC likelihood, with associated short-hand labels</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-023-11574-z/tables/2" aria-label="Full size table 2"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p><i>The ATLAS search for electroweak production of charginos and neutralinos in final states with two boosted, hadronically-decaying bosons and missing transverse momentum</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 101" title="ATLAS, G. Aad et al., Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s}$$
 
 
 s
 
 
 = 13 TeV with the ATLAS detector. Phys. Rev. D 104, 112010 (2021). 
 arXiv:2108.07586
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR101" id="ref-link-section-d154747430e24703">101</a>]: This search (<span class="u-sans-serif">ATLAS_2BoostedBosons</span>) targets the pair production of electroweakinos, where each of them is assumed to decay into the LSP and an on-shell <i>W</i>, <i>Z</i> or SM Higgs boson. The mass difference between the produced electroweakinos and the LSP is assumed to be at least 400 GeV. The analysis is optimised on three different scenarios: (1) a baseline MSSM scenario where the produced electroweakinos and the LSPs can be either binos, winos or Higgsinos, (2) a general gauge mediation-inspired scenario in which the LSP is a gravitino and the heavier particles are Higgsinos and (3) a scenario with an axino LSP, where the heavier particles are assumed to be Higgsinos. Various simplified models are considered in each case. The analysis is performed in two fully-hadronic final states: the <i>qqqq</i> final state arising from <i>W</i>/<i>Z</i> bosons each decaying to light-flavour quarks/antiquarks, and the <i>bbqq</i> final state which arises from a <i>Z</i> or Higgs boson decaying to <span class="mathjax-tex">\(b{\bar{b}}\)</span> and a <i>W</i> or <i>Z</i> boson decaying to light-flavour quarks/antiquarks. The analysis uses events with at least two large-<i>R</i> jets, and counts the <i>b</i>-multiplicity of each of these jets using a <i>b</i>-tagged track jet procedure. Boosted boson tagging algorithms are then defined to identify various SM boson decays in the two leading large-<i>R</i> jets: <span class="mathjax-tex">\(W_{qq}(Z_{qq})\)</span>-tagging targets <span class="mathjax-tex">\(W(Z)\rightarrow qq\)</span>, whilst <span class="mathjax-tex">\(Z_{bb}(h_{bb})\)</span>-tagging targets <span class="mathjax-tex">\(Z(h)\rightarrow bb\)</span>. <span class="mathjax-tex">\(V_{qq}\)</span>-tagging is used to denote the logical OR of <span class="mathjax-tex">\(W_{qq}\)</span>- and <span class="mathjax-tex">\(Z_{qq}\)</span>-tagging. Signal regions are then defined using the multiciplities of the different boson tags <span class="mathjax-tex">\(n(W_{qq})\)</span>, <span class="mathjax-tex">\(n(Z_{qq})\)</span>, <span class="mathjax-tex">\(n(V_{qq})\)</span>, <span class="mathjax-tex">\(n(Z_{bb})\)</span> and <span class="mathjax-tex">\(n(h_{bb})\)</span>. Additional background rejection is provided by selections such as a veto on <i>b</i>-jets that do not originate from the boosted boson candidates, lower bounds on the effective mass <span class="mathjax-tex">\(m_{\text {eff}}\)</span> (defined as the scalar sum of the <span class="mathjax-tex">\(p_T\)</span> of the two leading large-<i>R</i> jets and <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>), lower bounds on <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>, cuts on an event shape variable, and a lower bound on the stransverse mass <span class="mathjax-tex">\(m_{\text {T2}}\)</span> constructed from the two leading large-<i>R</i> jets. Our implementation of this search includes the signal regions <span class="u-sans-serif">4Q-WW</span>, <span class="u-sans-serif">4Q-WZ</span>, <span class="u-sans-serif">4Q-ZZ</span> and <span class="u-sans-serif">4Q-VV</span>. Due to difficulties with reproducing the <i>b</i>-tagging for small radius track jets we do not include the signal regions that rely on this.</p><p><i>The ATLAS search for gluino and squark production in final states with jets and missing transverse momentum</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 102" title="ATLAS, G. Aad et al., Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 
 
 
 
 $$\text{fb}^{-1}$$
 
 
 fb
 
 -
 1
 
 
 
 of 
 
 
 
 $$\sqrt{s}$$
 
 
 s
 
 
 =13 TeV 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collision data with the ATLAS detector. JHEP 02, 143 (2021). 
 arXiv:2010.14293
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR102" id="ref-link-section-d154747430e25370">102</a>]: This is the flagship ATLAS supersymmetry search for squarks and gluinos (<span class="u-sans-serif">ATLAS_0lep</span>), targeting events with multiple jets and significant missing transverse momentum. Although it is optimised on models of squark and gluino production, similar final states can be produced by electroweakino production with subsequent cascade decay processes that produce hadronically-decaying gauge bosons. We implement the optimised single-bin signal regions that are designed to present the ATLAS results in a model-independent way (<span class="u-sans-serif">2j-1600</span>, <span class="u-sans-serif">2j-2200</span>, <span class="u-sans-serif">2j-2800</span>, <span class="u-sans-serif">4j-1000</span>, <span class="u-sans-serif">4j-2200</span>, <span class="u-sans-serif">4j-3400</span>, <span class="u-sans-serif">5j-1600</span>, <span class="u-sans-serif">6j-1000</span>, <span class="u-sans-serif">6j-2200</span> and <span class="u-sans-serif">6j-3400</span>). The signal region selections include requirements on the multiplicity and transverse momenta of the jets in each event, the angular separation between the jets and the missing transverse momentum vector, the aplanarity, <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}/\sqrt{H_{\text {T}}}\)</span> and <span class="mathjax-tex">\(m_{\text {eff}}\)</span>.</p><p><i>The ATLAS search for top squarks in the jets plus missing transverse momentum final state</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 103" title="ATLAS, M. Aaboud et al., Search for a scalar partner of the top quark in the jets plus missing transverse momentum final state at 
 
 
 
 $$\sqrt{s}$$
 
 
 s
 
 
 =13 TeV with the ATLAS detector. JHEP 12, 085 (2017). 
 arXiv:1709.04183
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR103" id="ref-link-section-d154747430e25478">103</a>]: This search (<span class="u-sans-serif">ATLAS_0lep_stop</span>) seeks to uncover evidence of stop production in final states with four or more jets plus missing transverse momentum. Five sets of signal region are defined in the analysis, targeting different stop simplified models, with a range of different included sparticles and sparticle mass differences. The six <span class="u-sans-serif">SRA</span> and <span class="u-sans-serif">SRB</span> regions employ top-mass reconstruction to increase sensitivity to models in which the stop produces a top quark, which makes them less relevant for the scenario considered in this paper. The five <span class="u-sans-serif">SRC</span> regions use recursive jigsaw variables to target regions with a small <span class="mathjax-tex">\({\tilde{t}}_1-{\tilde{\chi }}^0_1\)</span> mass difference, the details of which are highly-dependent on the treatment of initial state radiation in the Monte Carlo generator used to model LHC events. We do not include these <span class="u-sans-serif">SRC</span> regions due to known deficiencies of the Pythia initial state radiation model in this region. The two <span class="u-sans-serif">SRD</span> regions are optimised for direct top squark production where both top squarks decay via <span class="mathjax-tex">\({\tilde{t}}\rightarrow b{\tilde{\chi }}^\pm _1\)</span>. At least five jets are required, two of which must be <i>b</i>-tagged, and further requirements are placed on the jet transverse momenta and the scalar sum of the transverse momenta of the two jets with the highest <i>b</i>-tag weights. Finally, the <span class="u-sans-serif">SRE</span> signal region is designed for models with highly boosted top quarks. Requirements on the jet mass of reclustered fat jets are used, alongside requirements on the main discriminating variables <span class="mathjax-tex">\(H_T\)</span>, <span class="mathjax-tex">\(E_T^\text {miss}\)</span> and <span class="mathjax-tex">\(E_T^\text {miss}/\sqrt{H_T}\)</span>.</p><p><i>The ATLAS search for top squarks in final states with one lepton, jets plus missing transverse momentum</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 104" title="ATLAS, M. Aaboud et al., Search for top-squark pair production in final states with one lepton, jets, and missing transverse momentum using 36 
 
 
 
 $$\text{ fb}^{-1}$$
 
 
 
 
 fb
 
 -
 1
 
 
 
 
 of 
 
 
 
 $$ \sqrt{s}=13 $$
 
 
 
 s
 
 =
 13
 
 
 TeV pp collision data with the ATLAS detector. JHEP 06, 108 (2018). 
 arXiv:1711.11520
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR104" id="ref-link-section-d154747430e25702">104</a>]: This search (<span class="u-sans-serif">ATLAS_1lep_stop</span>) is optimised on simplified models of stop production with decays that produce one lepton (through a real or off-shell leptonically-decaying <i>W</i> boson), and also on a dark matter model with a spin-0 mediator produced in association with two top quarks. All signal region are required to have exactly one signal lepton, and 2, 3 or 4 jets. Five regions labelled <span class="u-sans-serif">tN</span> are optimised for the decay pattern <span class="mathjax-tex">\({\tilde{t}}\rightarrow t {\tilde{\chi }}^0_1\)</span>, using selections on variables such as the <span class="mathjax-tex">\(am_{\text {T2}}\)</span> variable, the transverse mass <span class="mathjax-tex">\(m_T\)</span> formed from the lepton and missing transverse momentum, the <span class="mathjax-tex">\(H^{\text {miss}}_{\text {T,sig}}\)</span><sup><a href="#Fn8"><span class="u-visually-hidden">Footnote </span>8</a></sup> and the mass of a reconstructed hadronic top quark. Note that we do not include three signal regions that use a boosted decision tree in the definition of the signal region, since this is very difficult to reproduce outside of the ATLAS collaboration. Two additional signal regions, <span class="u-sans-serif">bWN</span> and <span class="u-sans-serif">bffN</span>, are dedicated to the three-body (<span class="mathjax-tex">\({\tilde{t}}\rightarrow bW{\tilde{\chi }}^\pm _1\)</span>) and four-body (<span class="mathjax-tex">\({\tilde{t}}\rightarrow bff'{\tilde{\chi }}^\pm _1\)</span>) decay searches. Six signal regions target various <span class="mathjax-tex">\({\tilde{t}}\rightarrow b{\tilde{\chi }}^\pm _1\)</span> scenarios: three are optimised on a simplified model that assumes <span class="mathjax-tex">\(m_{{\tilde{\chi }}^\pm _1}=2m_{{\tilde{\chi }}^0_1}\)</span> (labels <span class="u-sans-serif">bC2x_diag</span>, <span class="u-sans-serif">bC2x_med</span>, <span class="u-sans-serif">bCbv</span>), and three are designed to search for the case of a Higgsino LSP, in which the <span class="mathjax-tex">\({\tilde{\chi }}^\pm _1\)</span>, <span class="mathjax-tex">\({\tilde{\chi }}^0_2\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}^0_1\)</span> are close in mass (labels <span class="u-sans-serif">bCsoft_diag</span>, <span class="u-sans-serif">bCsoft_med</span>, <span class="u-sans-serif">bCsoft_high</span>). In the latter case, the signature is characterised by low-momentum leptons or jets from highly off-shell <i>W</i> or <i>Z</i> bosons, and the analysis benefits from a dedicated soft lepton reconstruction. Finally, three extra signal regions (<span class="u-sans-serif">DM_low_loose</span>, <span class="u-sans-serif">DM_low</span>, <span class="u-sans-serif">DM_high</span>) are optimised on the dark matter mediator model, with the analysis using similar variables to the regions targeting the decay <span class="mathjax-tex">\({\tilde{t}}\rightarrow t {\tilde{\chi }}^0_1\)</span>.</p><p>The ATLAS search for top squarks in final states with two opposite-charge leptons and missing transverse momentum [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 105" title="ATLAS, G. Aad et al., Search for new phenomena in events with two opposite-charge leptons, jets and missing transverse momentum in pp collisions at 
 
 
 
 $$\sqrt{{\rm s}} $$
 
 
 s
 
 
 = 13 TeV with the ATLAS detector. JHEP 04, 165 (2021). 
 arXiv:2102.01444
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR105" id="ref-link-section-d154747430e26441">105</a>]: This search (<span class="u-sans-serif">ATLAS_2lep_stop</span>) is optimised on similar models of direct stop production to the 0 lepton and 1 lepton searches. Events are required to have exactly two light leptons (electrons or muons) of opposite charge, with an invariant mass outside of the <i>Z</i> boson mass window in the case of same flavour leptons. A series of discriminating variables are constructed from the missing transverse momentum and <span class="mathjax-tex">\(p_T\)</span> values of the leading leptons and jets, with other useful variables including a variant of <span class="mathjax-tex">\(m_{\text {T2}}\)</span> and the super-razor variables first defined in Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 204" title="M.R. Buckley, J.D. Lykken, C. Rogan, M. Spiropulu, Super-razor and searches for sleptons and charginos at the LHC. Phys. Rev. D 89, 055020 (2014). 
 arXiv:1310.4827
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR204" id="ref-link-section-d154747430e26495">204</a>]. Various signal regions are optimised for 2-body, 3-body and 4-body stop decays. For the case of 2-body decays, the ATLAS analysis also defines a set of seven inclusive signal regions (labelled <span class="u-sans-serif">SR2bInc</span>) intended to provide less model-specific sensitivity. Our implementation of the search uses this set of inclusive signal regions.</p><p><i>The ATLAS search for top squarks in events with a Higgs or</i> <i>Z</i> <b>boson</b> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 106" title="ATLAS, G. Aad et al., Search for top squarks in events with a Higgs or 
 
 
 
 $$Z$$
 
 Z
 
 boson using 139 
 
 
 
 $$\text{ fb}^{-1}$$
 
 
 
 
 fb
 
 -
 1
 
 
 
 
 of 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collision data at 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector. Eur. Phys. J. C 80, 1080 (2020). 
 arXiv:2006.05880
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR106" id="ref-link-section-d154747430e26512">106</a>]: This search (<span class="u-sans-serif">ATLAS_2OSlep_Z</span>) is optimised on various simplified models of top squark production in which a top squark decays to produce a Higgs or <i>Z</i> boson. Top squark decays involving <i>Z</i> bosons are targeted using a 3-lepton selection, with at least one same-flavour-opposite-sign pair (SFOS) whose invariant mass is consistent with <i>Z</i> boson mass. Further selections are placed on the transverse momenta of the three leading leptons, the jet multiplicity, the <i>b</i>-jet multiplicity, the transverse momenta of the leading jet and <i>b</i>-jet, the missing transverse energy, a variant of <span class="mathjax-tex">\(m_{\text {T2}}\)</span> and the transverse momentum of the SFOS pair. Events containing Higgs bosons are targeted using a 1-lepton event selection, with further selections placed on the jet and <i>b</i>-jet multiplicity, the transverse mass formed from the lepton and the missing transverse momentum, and the missing transverse energy significance. In addition, a Higgs tagger built from a neural network is used to identify Higgs boson candidates, and events must contain at least one of them. Due to the difficulty of reproducing this Higgs tagging with sufficient accuracy, our implementation of this search covers only the 3-lepton final states (labels <span class="u-sans-serif">SRZ1A</span>, <span class="u-sans-serif">SRZ1B</span>, <span class="u-sans-serif">SRZ2A</span>, <span class="u-sans-serif">SRZ2B</span>).</p><p><i>The ATLAS search for charginos and sleptons in final states with two leptons and missing transverse momentum</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 107" title="ATLAS, G. Aad et al., Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions using the ATLAS detector. Eur. Phys. J. C 80, 123 (2020). 
 arXiv:1908.08215
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR107" id="ref-link-section-d154747430e26577">107</a>]: This search (<span class="u-sans-serif">ATLAS_2OSlep_chargino</span>) is optimised on simplified models of slepton and chargino production, targeting chargino pair production with decays to lightest neutralinos and <i>W</i> bosons, chargino cascade decays through sleptons to lightest neutralinos, and the direct production of slepton pairs. Events are required to have exactly two opposite-charge light leptons with an invariant mass greater than 100 GeV. Selected events must also have no <i>b</i>-tagged jets, and large values of <span class="mathjax-tex">\(E_T^{\text {miss}}\)</span> and <span class="mathjax-tex">\(E_T^{\text {miss}}\)</span> significance. Further discrimination comes from the use of the <span class="mathjax-tex">\(m_{\text {T2}}\)</span> variable. Four sets of signal regions are defined (labels <span class="u-sans-serif">SR-SF-0J</span>, <span class="u-sans-serif">SR-SF-1J</span>, <span class="u-sans-serif">SR-DF-0J</span>, <span class="u-sans-serif">SR-DF-1J</span>) based on whether the leptons have the same or a different flavour, and whether the events have 0 or 1 non-<i>b</i>-tagged jets. From this, the ATLAS analysis defines a total of 16 inclusive signal regions, intended for more model-independent sensitivity, and a set of 36 signal regions with fine-grained binning in <span class="mathjax-tex">\(m_{\text {T2}}\)</span>, to maximise sensitivity to the simplified model studied by ATLAS. In our study we use the inclusive signal regions.</p><p><i>The ATLAS search for bottom and top squarks in final states with two</i> <i>b</i><i>-tagged jets and missing transverse momentum</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 108" title="ATLAS, M. Aaboud et al., Search for supersymmetry in events with 
 
 
 
 $$b$$
 
 b
 
 -tagged jets and missing transverse momentum in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector. JHEP 11, 195 (2017). 
 arXiv:1708.09266
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR108" id="ref-link-section-d154747430e26708">108</a>]: This search (<span class="u-sans-serif">ATLAS_2b</span>) is optimised on various simplified models of stop and sbottom production, targeting final states with 2 <i>b</i>-tagged jets, large missing transverse momentum and either zero leptons or one lepton. A long list of discriminating variables is used, including the minimum <span class="mathjax-tex">\(\varDelta \varPhi \)</span> between any of the leading jets and the missing transverse momentum vector, <span class="mathjax-tex">\(H_{\text {T}}\)</span> (defined as the scalar sum of the <span class="mathjax-tex">\(p_T\)</span> values of a subset of the jets in the event), <span class="mathjax-tex">\(m_{\text {eff}}\)</span>, ratios of the missing transverse energy with <span class="mathjax-tex">\(m_{\text {eff}}\)</span> and <span class="mathjax-tex">\(\sqrt{H_{\text {T}}}\)</span>, the contranverse mass, <span class="mathjax-tex">\(am_{\text {T2}}\)</span> and others. Three zero lepton signal regions and three one lepton signal regions are defined. Due to challenges in reproducing the cuts based on <span class="mathjax-tex">\(am_{\text {T2}}\)</span> our study only uses the zero lepton signal regions (labels <span class="u-sans-serif">0 L_SRA350</span>, <span class="u-sans-serif">0 L_SRA450</span>, <span class="u-sans-serif">0 L_SRA550</span>, <span class="u-sans-serif">0 L_SRB</span>, <span class="u-sans-serif">0 L_SRC</span>).</p><p><i>The ATLAS search for Higgsinos in final states with at least three</i> <i>b</i><i>-tagged jets</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 109" title="ATLAS, M. Aaboud et al., Search for pair production of higgsinos in final states with at least three 
 
 
 
 $$b$$
 
 b
 
 -tagged jets in 
 
 
 
 $$\sqrt{s} = 13$$
 
 
 
 s
 
 =
 13
 
 
 TeV 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions using the ATLAS detector. Phys. Rev. D 98, 092002 (2018). 
 arXiv:1806.04030
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR109" id="ref-link-section-d154747430e26934">109</a>]: This search (<span class="u-sans-serif">ATLAS_3b</span>) targets Higgsino production and decay in gauge-mediated supersymmetry scenarios, in which each Higgsino is assumed to decay to a Higgs boson and a gravitino. Two complementary analyses, targeting high- and low-mass signals, are performed. For the high-mass analysis, events with at least three <i>b</i>-tagged jets are selected, and jet pairs are assigned to two Higgs candidates. For the low-mass analysis, events with four <i>b</i>-jets are analysed by grouping the jets into Higgs candidates. Selections are placed on a number of kinematic variables including <span class="mathjax-tex">\(m_{\text {eff}}\)</span>, <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>, the mass of the Higgs boson candidates, angular variables and the minimum transverse mass formed with the missing transverse momentum vector and any of the leading four jets. Due to some overlaps between the signal regions for the low-mass and high-mass analyses, our analysis only uses the low-mass signal regions. From this analysis we have implemented all the 46 signal regions optimised for exclusion.</p><p><i>The ATLAS search for chargino-neutralino pair production in final states with three leptons and missing transverse momentum</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 110" title="ATLAS, G. Aad et al., Search for chargino-neutralino pair production in final states with three leptons and missing transverse momentum in 
 
 
 
 $$\sqrt{s} = 13$$
 
 
 
 s
 
 =
 13
 
 
 TeV pp collisions with the ATLAS detector. Eur. Phys. J. C 81, 1118 (2021). 
 arXiv:2106.01676
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR110" id="ref-link-section-d154747430e27002">110</a>]: This search (<span class="u-sans-serif">ATLAS_3lep</span>) is optimised on two scenarios of electroweakino production. In the first, a <span class="mathjax-tex">\({\tilde{\chi }}_1^\pm \)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_2^0\)</span> are produced (both wino-dominated), with subsequent decay to a bino-dominated <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span>. In the second, the <span class="mathjax-tex">\({\tilde{\chi }}_1^\pm \)</span>, <span class="mathjax-tex">\({\tilde{\chi }}_2^0\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> are pure Higgsino states, and are therefore typically more mass degenerate (although an arbitrary mass hierarchy is assigned in order to define a parameter plane in which to optimise the analysis). The analysis has three dedicated selections to cover different mass regimes and assumptions, including an on-shell <i>WZ</i> selection, an off-shell <i>WZ</i> selection and a <i>Wh</i> selection. All consider final states with exactly three leptons, possible ISR jets and <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>. Events with at least one SFOS pair are divided into three bins of the SFOS pair invariant mass, <span class="mathjax-tex">\(m_{ll}\)</span>, covering the regions below, on and above the <i>Z</i> mass. Each <span class="mathjax-tex">\(m_{ll}\)</span> bin is further divided into <span class="mathjax-tex">\(E_{\text {T}}^{miss}\)</span> and <span class="mathjax-tex">\(m_{\text {T}}\)</span> bins, where the transverse mass <span class="mathjax-tex">\(m_{T}\)</span> is defined using the lepton that is not in the SFOS pair (and which can therefore be assumed to arise from a <i>W</i> boson decay). Events are further separated by their jet multiplicity, and by two different variants of <span class="mathjax-tex">\(H_\text {T}\)</span>, defined as the scalar sum of the transverse momenta of jets or leptons depending on the definition. Signal regions for events with a different-flavour-opposite-sign (DFOS) lepton pair are defined separately, using selections on the jet multiplicity, <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span> significance, transverse momentum for the third-leading lepton, and the <span class="mathjax-tex">\(\varDelta R\)</span> between the DFOS leptons and the same-flavour-same-sign lepton that is nearest in <span class="mathjax-tex">\(\phi \)</span>. Our implementation includes 39 of the 41 signal regions targeting on-shell <i>WZ</i> or <i>Wh</i> production, leaving out the two regions <span class="u-sans-serif">SR-Wh-DFOS-1</span> and <span class="u-sans-serif">SR-Wh-DFOS-2</span> for which some cuts rely on object resolution variables that are not available in our fast event simulation framework.</p><p><i>The ATLAS search for gluino, electroweakino or slepton production in final states with four or more leptons</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 111" title="ATLAS, G. Aad et al., Search for supersymmetry in events with four or more charged leptons in 139 
 
 
 
 $$\text{ fb}^{-1}$$
 
 
 
 
 fb
 
 -
 1
 
 
 
 
 of 
 
 
 
 $$\sqrt{s} $$
 
 
 s
 
 
 = 13 TeV pp collisions with the ATLAS detector. JHEP 07, 167 (2021). 
 arXiv:2103.11684
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR111" id="ref-link-section-d154747430e27466">111</a>]: This search (<span class="u-sans-serif">ATLAS_4lep</span>) is optimised on different R-parity violating and R-parity conserving SUSY scenarios that can produce lepton-rich final states. The simplified model used for the R-parity conserving scenarios is a model with Higgsino production and a gravitino LSP, thus highly relevant for our study. Events are required to have four or more leptons (electrons, muons or hadronically-decaying taus). The signal regions for four-lepton events are classified by whether the events have four light leptons and zero taus, three light leptons and one tau, or two light leptons and two taus. Further selections are placed on the number of <i>b</i>-tagged jets, the presence or absence of a <i>Z</i> boson, <span class="mathjax-tex">\(E_T^{\text {miss}}\)</span> and <span class="mathjax-tex">\(m_{\text {eff}}\)</span>. A further signal region is also defined, requiring at least five light leptons, subject to no kinematic requirements. Our implementation includes all the zero-tau signal regions, i.e. the five-lepton region (label <span class="u-sans-serif">SR5L</span>) and the seven regions with four light leptons (the regions with the <span class="u-sans-serif">SR0</span> label). In particular, this includes the the two signal regions <span class="u-sans-serif">SR0-ZZ-loose-bveto</span> and <span class="u-sans-serif">SR0-ZZ-tight-bveto</span> designed to target the Higgsino plus gravitino scenario.</p><p><i>The ATLAS search for squarks and gluinos in final states with same-sign leptons and jets</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 112" title="ATLAS, G. Aad et al., Search for squarks and gluinos in final states with same-sign leptons and jets using 139 
 
 
 
 $$\text{ fb}^{-1}$$
 
 
 
 
 fb
 
 -
 1
 
 
 
 
 of data collected with the ATLAS detector. JHEP 06, 046 (2020). 
 arXiv:1909.08457
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR112" id="ref-link-section-d154747430e27542">112</a>]: This search (<span class="u-sans-serif">ATLAS_MultiLep_strong</span>) is optimised on simplified models of gluino and squark production, covering the case of both R-parity conversation and R-parity violation. Events are required to have two same-sign leptons and may contain additional leptons. In the case of the R-parity conserving search, large missing transverse momentum is required. Five signal regions are defined using the number of leptons and their relative electric charges, the number of jets and the number of <i>b</i>-tagged jets. Key kinematic variables used include the effective mass <span class="mathjax-tex">\(m_{\text {eff}}\)</span>, <span class="mathjax-tex">\(E_T^{\text {miss}}\)</span> and its ratio to <span class="mathjax-tex">\(m_{\text {eff}}\)</span> and the invariant mass of same-sign electron pairs (which reduces contamination from <span class="mathjax-tex">\(Z\rightarrow e^+ e^-\)</span> decays where the charge of one electron is mismeasured). We include all five signal regions in our analysis.</p><p><i>The ATLAS search for gauge-mediated supersymmetry in final states with photons, jets and missing transverse momentum</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 113" title="ATLAS, G. Aad et al., Search for new phenomena in final states with photons, jets and missing transverse momentum in 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions at 
 
 
 
 $$\sqrt{s} = 13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR113" id="ref-link-section-d154747430e27662">113</a>]: This search (<span class="u-sans-serif">ATLAS_PhotonGGM_1photon</span>) is optimised on a simplified model in which pair-produced gluinos decay to neutralinos, which in turn decay to a gravitino, at least one photon and jets. Three signal regions are defined which target the cases of large, medium and small mass differences between the gluino and neutralino, and all of them veto leptons in the selected events. Further selections are placed on the transverse momentum of the leading photon, the jet multiplicity, the angular separations of the jet and photon momenta with the missing transverse energy vector, <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>, <span class="mathjax-tex">\(H_{\text {T}}\)</span> and a variable called <span class="mathjax-tex">\(R_{\text {T}}^4\)</span>, defined as the ratio of the scalar sum of the <span class="mathjax-tex">\(p_{\text {T}}\)</span> for the four leading jets, and the scalar sum of the <span class="mathjax-tex">\(p_{\text {T}}\)</span> for all signal jets in the event. Our implementation includes all three signal regions.</p><p><i>The ATLAS search for photonic signatures from gauge-mediated supersymmetry models</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 114" title="ATLAS, M. Aaboud et al., Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collisions with the ATLAS detector. Phys. Rev. D 97, 092006 (2018). 
 arXiv:1802.03158
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR114" id="ref-link-section-d154747430e27794">114</a>]: This search (<span class="u-sans-serif">ATLAS_PhotonGGM_2photon</span>) is optimised on models of both strong and electroweak sparticle production, and targets final states with either a single photon and multiple jets, or two photons, plus significant missing transverse momentum in both cases. Discriminating variables include <span class="mathjax-tex">\(m_{\text {eff}}\)</span>, <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>, a variant of <span class="mathjax-tex">\(H_{\text {T}}\)</span>, the angular separation between photons and the missing transverse momentum vector and <span class="mathjax-tex">\(R_{\text {T}}^4\)</span> (the scalar sum of the transverse momenta of the four leading jets divided by the scalar sum of the transverse momenta of all jets in the event). Our implementation contains all signal regions from the paper, but in our analysis we only use the two-photon signal regions (labels <span class="u-sans-serif">SRaa_SL</span>, <span class="u-sans-serif">SRaa_SH</span>, <span class="u-sans-serif">SRaa_WL</span>, <span class="u-sans-serif">SRaa_WH</span>), since the one-photon signal regions largely overlap with (and are superseded by) the signal regions in <span class="u-sans-serif">ATLAS_PhotonGGM_1photon</span> above.</p><p><i>The ATLAS search for exotic decays of the Higgs boson to at least one photon and missing transverse momentum</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 115" title="ATLAS, M. Aaboud et al., Search for exotic decays of the Higgs boson to at least one photon and missing transverse momentum using 79.8 
 
 
 
 $$\text{ fb}^{-1}$$
 
 
 
 
 fb
 
 -
 1
 
 
 
 
 of proton–proton collisions collected at 
 
 
 
 $$\sqrt{s}=13$$
 
 
 
 s
 
 =
 13
 
 
 TeV with the ATLAS detector" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR115" id="ref-link-section-d154747430e27919">115</a>]: This search (<span class="u-sans-serif">ATLAS_Z_photon</span>) targets exotic decays of the Higgs boson to, for example, a gravitino and a lightest neutralino, with the neutralino subsequently decaying to a gravitino and a photon, This generates a final state with a single photon plus missing transverse energy, and one can reduce SM backgrounds by looking for events with a Higgs boson produced in association with a <i>Z</i> boson. One can also generate final states with two photons if the Higgs boson decays to a pair of neutralinos that subsequently decay. Events are selected in the analysis if they have at least one photon, moderate <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span> and two opposite-sign electrons or muons with an invariant mass within 10 GeV of the <i>Z</i> boson mass (and no additional leptons). A <span class="mathjax-tex">\(\gamma E_{\text {T}}^{\text {miss}}\)</span> system is defined by performing the vector sum of the photon momentum or momenta and the missing momentum vector in the transverse plane. The search relies on two discriminating variables that quantify the angular separation of the two-lepton and <span class="mathjax-tex">\(\gamma E_{\text {T}}^{\text {miss}}\)</span> systems and the <span class="mathjax-tex">\(p_T\)</span> asymmetry of the two systems, and the analysis has only one signal region.</p><p><i>The CMS search for gluino and squark production in final states with multiple jets and missing transverse momentum</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 116" title="CMS, A.M. Sirunyan et al., Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum. JHEP 10, 244 (2019). 
 arXiv:1908.04722
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR116" id="ref-link-section-d154747430e28051">116</a>]: This is the flagship CMS search for gluino and squark production (<span class="u-sans-serif">CMS_0lep</span>), and is the CMS equivalent of the ATLAS search presented in Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 102" title="ATLAS, G. Aad et al., Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 
 
 
 
 $$\text{fb}^{-1}$$
 
 
 fb
 
 -
 1
 
 
 
 of 
 
 
 
 $$\sqrt{s}$$
 
 
 s
 
 
 =13 TeV 
 
 
 
 $$pp$$
 
 
 pp
 
 
 collision data with the ATLAS detector. JHEP 02, 143 (2021). 
 arXiv:2010.14293
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR102" id="ref-link-section-d154747430e28057">102</a>]. Search regions are defined in a four-dimensional space of variables given by the total number of jets, the number of <i>b</i>-tagged jets, the scalar sum of the jet <span class="mathjax-tex">\(p_{\text {T}}\)</span> values (<span class="mathjax-tex">\(H_{\text {T}}\)</span>), and the magnitude of the vector <span class="mathjax-tex">\(p_{\text {T}}\)</span> sum of the jets (<span class="mathjax-tex">\(H_{\text {T}^{\text {miss}}}\)</span>). In total, there are 174 exclusive signal region bins. For our analysis, we implement 12 aggregate search bins which are presented in an appendix of the paper, and which are constructed from the original search bins after taking correlations into account.</p><p><i>The CMS search for chargino and neutralino production in the WH final state</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 117" title="CMS, A.M. Sirunyan et al., Search for electroweak production of charginos and neutralinos in WH events in proton-proton collisions at 
 
 
 
 $$ \sqrt{s}=13 $$
 
 
 
 s
 
 =
 13
 
 
 TeV. JHEP 11, 029 (2017). 
 arXiv:1706.09933
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR117" id="ref-link-section-d154747430e28162">117</a>]: This search (<span class="u-sans-serif">CMS_1lep_bb</span>) is optimised on simplified models of chargino and neutralino production, with subsequent decays to a lightest neutralino and either a <i>W</i> or Higgs boson. Events are required to have an electron or muon, two <i>b</i>-tagged jets with an invariant mass close to the Higgs boson mass and significant missing transverse momentum. Discriminating variables include the transverse mass of the lepton-neutrino system, the contranverse mass, and the <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>. The paper defines two signal regions, distinguished by the selection on <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>. In our analysis we use both signal regions, and account for the correlated background uncertainties using the correlation coefficient provided by the CMS collaboration.</p><p><i>The CMS search for stop production in final states with one lepton</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 118" title="CMS, A.M. Sirunyan et al., Search for top squark pair production in pp collisions at 
 
 
 
 $$ \sqrt{s}=13 $$
 
 
 
 s
 
 =
 13
 
 
 TeV using single lepton events. JHEP 10, 019 (2017). 
 arXiv:1706.04402
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR118" id="ref-link-section-d154747430e28234">118</a>]: This search (<span class="u-sans-serif">CMS_1lep_stop</span>) is optimised on simplified models of stop production, and targets events with a single isolated electron or muon, jets and large missing transverse momentum. Two sets of signal regions are defined; one for a large range of <span class="mathjax-tex">\({\tilde{t}}_1-{\tilde{\chi }}_1^0\)</span> mass splittings, and one for compressed spectra. For the first set of 27 signal regions, events are selected based on the number of jets, the <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>, the invariant mass of the lepton and the closest <i>b</i>-tagged jet and a special “topness” variable. For the second set of 4 signal regions, at least five jets are required, and with the highest <span class="mathjax-tex">\(p_{\text {T}}\)</span> jet must not be <i>b</i>-tagged since it is expected to arise from initial state radiation. Further selections are placed on the angular separations of the missing transverse momentum and the lepton/jets, plus the <span class="mathjax-tex">\(p_{\text {T}}\)</span> of the lepton. Our analysis makes use of a smaller set of six aggregated signal regions that are provided in an appendix of the paper.</p><p><i>The CMS search for stop production and dark matter in final states with two opposite-charge leptons</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 119" title="CMS, A.M. Sirunyan et al., Search for top squarks and dark matter particles in opposite-charge dilepton final states at 
 
 
 
 $$\sqrt{s}=$$
 
 
 
 s
 
 =
 
 
 13 TeV. Phys. Rev. D 97, 032009 (2018). 
 arXiv:1711.00752
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR119" id="ref-link-section-d154747430e28371">119</a>]: This search (<span class="u-sans-serif">CMS_2lep_stop</span>) is optimised on models of stop production, and on dark matter models with a scalar or pseudo-scalar mediator in which the mediator is produced in association with a pair of top quarks. Events are selected if they have exactly two leptons with opposite charge and, in the case of a same-flavour lepton pair, the invariant mass of the lepton pair must not be close to the <i>Z</i> mass. Events must also have at least two jets, at least one <i>b</i>-tagged jet and a moderate amount of missing transverse momentum. Signal regions are defined in bins of three variables: two variants of <span class="mathjax-tex">\(m_{\text {T2}}\)</span>, and <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>, giving 13 signal regions, which are further split into 26 regions by separating events with same-flavour and different-flavour lepton pair. Our analysis includes all 26 signal regions, plus makes use of the covariance matrix provided by the CMS collaboration to account for the correlated background uncertainties.</p><p><i>The CMS search for charginos and neutralinos in final states with two low-momentum opposite-charge leptons</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 120" title="CMS, A.M. Sirunyan et al., Search for new physics in events with two soft oppositely charged leptons and missing transverse momentum in proton-proton collisions at 
 
 
 
 $$\sqrt{s}=$$
 
 
 
 s
 
 =
 
 
 13 TeV. Phys. Lett. B 782, 440–467 (2018). 
 arXiv:1801.01846
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR120" id="ref-link-section-d154747430e28438">120</a>]: This search (<span class="u-sans-serif">CMS_2lep_soft</span>) is optimised on simplified models of chargino and neutralino production where the mass difference between the mass-degenerate <span class="mathjax-tex">\({\tilde{\chi }}_2^0\)</span> and <span class="mathjax-tex">\({\tilde{\chi }}_1^\pm \)</span> and the <span class="mathjax-tex">\({\tilde{\chi }}_1^0\)</span> is small, such that decays proceed via off-shell <i>W</i> and <i>Z</i> bosons. A separate series of signal regions targets stop production. Selected events in both cases must contain two opposite-charge leptons (of either the same or different flavour) with a low transverse momentum, moderate <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span> and at least one jet. No <i>b</i>-tagged jets must be present and further selections are applied to variables such as the invariant mass and transverse momentum of the dilepton pair, <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}/H_{\text {T}}\)</span>, <span class="mathjax-tex">\(H_{\text {T}}\)</span> and the transverse masses form from the leptons and the missing transverse momentum. For the electroweakino search, signal regions are defined in bins of <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span> and the dilepton invariant mass. For the stop search, signal regions are defined in bins of <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span> and the transverse momentum of the leptons. We implement all of the signal regions in our analysis, and treat the correlated background uncertainties using the covariance matrices provided by CMS.</p><p><i>The CMS search for supersymmetry in final states with two opposite-sign same-flavour leptons and missing transverse energy</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 121" title="CMS, A.M. Sirunyan et al., Search for supersymmetry in final states with two oppositely charged same-flavor leptons and missing transverse momentum in proton-proton collisions at 
 
 
 
 $$\sqrt{s} =$$
 
 
 
 s
 
 =
 
 
 13 TeV. JHEP 04, 123 (2021). 
 arXiv:2012.08600
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR121" id="ref-link-section-d154747430e28693">121</a>]: This search (<span class="u-sans-serif">CMS_2OSlep</span>) is optimised on various simplified models of gluino, squark, slepton and electroweakino production, and targets three potential signatures: (1) an excess of events with a lepton pair, whose invariant mass is consistent with the <i>Z</i> boson mass, (2) a kinematic edge in the invariant mass distribution of the lepton pair and (3) non-resonant production of two leptons. A set of strong production signal regions is defined using selections on the jet and <i>b</i>-jet multiplicities, <span class="mathjax-tex">\(H_{\text {T}}\)</span>, a variant of <span class="mathjax-tex">\(m_{\text {T2}}\)</span> and <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>, with the signal regions binned in the latter of these variables. On-<i>Z</i> electroweak production signal regions are defined using selections on the jet and <i>b</i>-jet multiplicities, the dijet invariant mass (sometimes defined using the <i>b</i>-jets), two different variants of <span class="mathjax-tex">\(m_{\text {T2}}\)</span> and <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>. In addition, a set of boosted signal regions is defined by requiring that there is a large radius jet with <span class="mathjax-tex">\(p_T>200\)</span> GeV, consistent with a hadronically-decaying gauge boson. For the dilepton edge search, a first approach is based on a fit to the dilepton invariant mass using events that pass selections on <span class="mathjax-tex">\(m_{\text {T2}}\)</span> and <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>. A second approach uses counts in various bins of <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>, after applying other selections on <span class="mathjax-tex">\(m_{\text {T2}}\)</span> and the jet and <i>b</i>-jet multiplicities. An additional requirement is placed on a novel variable that characterises how “<span class="mathjax-tex">\(t{\bar{t}}\)</span>-like” the events are. Finally, a set of slepton search regions are defined using selections on the jet and <i>b</i>-jet multiplicities, <span class="mathjax-tex">\(m_{\text {T2}}\)</span>, <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span> and the ratio of the transverse momenta of the sub-leading lepton with the leading jet. Our implementation includes all signal regions except the edge fit regions, due to difficulty of implementing these outside of the CMS collaboration. We use the covariance matrices provided by CMS to account for correlated background uncertainties.</p><p><i>The CMS search for charginos and stops in final states with two opposite-charge leptons</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 122" title="CMS, A.M. Sirunyan et al., Searches for pair production of charginos and top squarks in final states with two oppositely charged leptons in proton-proton collisions at 
 
 
 
 $$\sqrt{s}=$$
 
 
 
 s
 
 =
 
 
 13 TeV. JHEP 11, 079 (2018). 
 arXiv:1807.07799
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR122" id="ref-link-section-d154747430e29059">122</a>]: This search (<span class="u-sans-serif">CMS_2OSlep_chargino_stop</span>) is optimised on various simplified models of chargino and stop production and decay. Events are selected if they contain two opposite-charge electrons or muons, plus missing transverse momentum. For events with a same-flavour lepton pair, the invariant mass of the dilepton pair must not be close to the <i>Z</i> mass. For the chargino search, signal regions are defined in bins of the <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>, number of <i>b</i>-tagged jets, number of jets, same-flavour or different-flavour status of the leptons and <span class="mathjax-tex">\(m_{\text {T2}}\)</span>. For the stop search, an extra requirement is added on the number of “ISR jets”, defined as jets with <span class="mathjax-tex">\(p_{\text {T}}>\)</span>150 GeV and no <i>b</i>-tag. We implement all of the chargino and stop regions, and make use of the covariance matrices provided by the CMS collaboration.</p><p><i>The CMS search for beyond-Standard Model physics in final states with jets and two same-sign or at least three charged leptons</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 123" title="CMS, A.M. Sirunyan et al., Search for physics beyond the standard model in events with jets and two same-sign or at least three charged leptons in proton-proton collisions at 
 
 
 
 $$\sqrt{s}=$$
 
 
 
 s
 
 =
 
 
 13 TeV. Eur. Phys. J. C 80, 752 (2020). 
 arXiv:2001.10086
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR123" id="ref-link-section-d154747430e29156">123</a>]: This search (<span class="u-sans-serif">CMS_2SSlep_stop</span>) is optimised on various simplified models of gluino production and decay, including both R-parity conserving and violating processes. Six exclusive categories of events are defined using preliminary selections on the lepton multiplicity and charge, plus <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>. For events with two leptons, the leptons must have the same sign. For events with at least three charged leptons, separate categories are defined for the cases where there either is or is not an opposite-sign same-flavour pair with an invariant mass consistent with the <i>Z</i> boson mass. The main search is performed using a very large number of binned regions, and we instead implement the set of 17 inclusive signal regions (labels <span class="u-sans-serif">ISR1</span>–<span class="u-sans-serif">ISR17</span>) that are designed for easier interpretation of the results. These are defined in bins of the minimum transverse mass formed from either of the leptons and the missing transverse momentum, <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>, the jet and <i>b</i>-tagged jet multiplicities and <span class="mathjax-tex">\(H_{\text {T}}\)</span>.</p><p><i>The CMS search for electroweak production of charginos and neutralinos in final states with three or four leptons, up to two hadronically-decaying</i> <span class="mathjax-tex">\(\tau \)</span> <i>leptons or two same-sign light leptons</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 124" title="CMS, A. Tumasyan et al., Search for electroweak production of charginos and neutralinos in proton-proton collisions at 
 
 
 
 $$ \sqrt{s} $$
 
 
 s
 
 
 = 13 TeV. JHEP 04, 147 (2022). 
 arXiv:2106.14246
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR124" id="ref-link-section-d154747430e29276">124</a>]:This search (<span class="u-sans-serif">CMS_MultiLep</span>) is optimised on a broad range of simplified models of chargino and neutralino production, including <span class="mathjax-tex">\(\tilde{\chi _2}^0\tilde{\chi _1}^\pm \)</span> production with decays to lightest neutralinos via intermediate sleptons or with Higgs, <i>W</i> or <i>Z</i> bosons, and <span class="mathjax-tex">\(\tilde{\chi _1}^0\tilde{\chi _1}^0\)</span> production with decays to gravitinos and <i>Z</i> or Higgs bosons. A number of event categories are defined in the analysis, based on the lepton multiplicity, whether there is a same-sign lepton pair or same-flavour-opposite-sign lepton pair, and the hadronically-decaying <span class="mathjax-tex">\(\tau \)</span> lepton multiplicity. The analysis is performed using a large number of binned signal regions for each category. The key variables used are various variants of <span class="mathjax-tex">\(m_{\text {T2}}\)</span>, the transverse momentum of the dilepton system in 2 lepton events, <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>, the dilepton invariant mass of same-flavour-opposite-sign lepton pairs, the transverse mass formed from the trilepton system, dilepton system or a single lepton and the missing transverse energy vector, <span class="mathjax-tex">\(H_{\text {T}}\)</span>, the <span class="mathjax-tex">\(\varDelta R\)</span> separation between leptons, and the invariant mass formed from a light lepton and a hadronically-decaying <span class="mathjax-tex">\(\tau \)</span> lepton. Our analysis includes the signal regions labelled <span class="u-sans-serif">SS01</span>–<span class="u-sans-serif">SS20</span> (two same-sign leptons), <span class="u-sans-serif">A01</span>–<span class="u-sans-serif">A64</span> (three leptons, one SFOS pair), <span class="u-sans-serif">B01</span>–<span class="u-sans-serif">B03</span> (three leptons, no SFOS pair), <span class="u-sans-serif">G01</span>–<span class="u-sans-serif">G05</span> (four leptons, two SFOS pairs) and <span class="u-sans-serif">H01</span>–<span class="u-sans-serif">H03</span> (four leptons, one or zero SFOS pairs).</p><p><i>The CMS search for gauge-mediated supersymmetry in events with at least one photon and missing transverse momentum</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 125" title="CMS, A.M. Sirunyan et al., Search for gauge-mediated supersymmetry in events with at least one photon and missing transverse momentum in pp collisions at 
 
 
 
 $$\sqrt{s} = $$
 
 
 
 s
 
 =
 
 
 13 TeV. Phys. Lett. B 780, 118–143 (2018). 
 arXiv:1711.08008
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR125" id="ref-link-section-d154747430e29565">125</a>]: This search (<span class="u-sans-serif">CMS_photon</span>) is optimised on various simplified models of gauge-mediated supersymmetry breaking, in which neutralinos and charginos decay to produce gravitinos and photons, as well as <i>Z</i>, <i>W</i> and Higgs bosons. Events are required to contain at least one high-energy photon plus large missing transverse momentum. The signal regions feature common selections on the transverse mass formed from the missing transverse momentum and the photon, and the <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>. After these selections, four signal regions are defined as bins in <span class="mathjax-tex">\(S_{\text {T}}^\gamma \)</span>, the scalar sum of <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span> and the <span class="mathjax-tex">\(p_{\text {T}}\)</span> of all photons in the event. We implement all four signal regions in our analysis.</p><p><i>The CMS search for gauge-mediated supersymmetry in events with two photons and missing transverse momentum</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 126" title="CMS, A.M. Sirunyan et al., Search for supersymmetry in final states with photons and missing transverse momentum in proton-proton collisions at 13 TeV. JHEP 06, 143 (2019). 
 arXiv:1903.07070
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR126" id="ref-link-section-d154747430e29686">126</a>]: This search (<span class="u-sans-serif">CMS_2photon</span>) is optimised on simplified models of squark and gluino production, with cascade decays terminating in lightest neutralinos that always decay to a photon and a gravitino. Events are required to have two photons and large missing transverse momentum, and to satisfy various selections on their electromagnetic activity. Six signal regions are defined by selecting different ranges of <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>, and all of these are implemented in our analysis.</p><p><i>The CMS search for gauge-mediated supersymmetry in events with a photon, an electron or muon and large missing transverse momentum</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 127" title="CMS, A.M. Sirunyan et al., Search for supersymmetry in events with a photon, a lepton, and missing transverse momentum in proton-proton collisions at 
 
 
 
 $$\sqrt{s} =$$
 
 
 
 s
 
 =
 
 
 13 TeV. JHEP 01, 154 (2019). [
 arXiv:1812.04066
 
 ]" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR127" id="ref-link-section-d154747430e29724">127</a>]: This search (<span class="u-sans-serif">CMS_1photon_1lepton</span>) is optimised on simplified models of gauge-mediated supersymmetry breaking that include gluino and quark production, plus direct production of neutralinos and charginos. Events are required to have at least one photon and at least one electron or muon. In the case of more than one light lepton, the lepton with the highest transverse momentum is used in the analysis. Selections are placed on the transverse mass formed from the lepton plus missing transverse momentum, and the <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>, and multiple signal regions are defined in bins of <span class="mathjax-tex">\(E_{\text {T}}^{\text {miss}}\)</span>, the transverse momentum of the photon and <span class="mathjax-tex">\(H_{\text {T}}\)</span> (defined as the scalar sum of the jet <span class="mathjax-tex">\(p_{\text {T}}\)</span> values in the event). The CMS search defines 18 signal regions per lepton channel (i.e. electron or muon), and we implement all regions in our analysis.</p><h3 class="c-article__sub-heading" id="App3">Appendix C: Code extensions</h3><p>In this Appendix we describe the extensions to the <span class="u-sans-serif">GAMBIT</span> framework introduced for this study, and how to use them. See Refs. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 78" title="GAMBIT Collaboration, P. Athron, C. Balázs, et al., GAMBIT: the global and modular beyond-the-standard-model inference tool. Eur. Phys. J. C 77, 784 (2017). 
 arXiv:1705.07908
 
 . Addendum in [79]" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR78" id="ref-link-section-d154747430e29843">78</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 185" title="S. Bloor, T.E. Gonzalo et al., The GAMBIT universal model machine: from Lagrangians to likelihoods. 
 arXiv:2107.00030
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR185" id="ref-link-section-d154747430e29846">185</a>] for a general introduction to the <span class="u-sans-serif">GAMBIT</span> framework and Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 183" title="GAMBIT Collider Workgroup, C. Balázs, A. Buckley, et al., ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods. Eur. Phys. J. C 77, 795 (2017). 
 arXiv:1705.07919
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR183" id="ref-link-section-d154747430e29852">183</a>] for an introduction to the <span class="u-sans-serif">ColliderBit</span> module.</p><h3 class="c-article__sub-heading" id="Sec20"><span class="c-article-section__title-number">1.1 </span>C.1 <span class="u-sans-serif">GAMBIT</span> models with a light gravitino</h3><p>The first modification is the addition of a new family of models <span class="u-sans-serif">MSSMXatY_mG</span> , mirroring the existing family of MSSM models <span class="u-sans-serif">MSSMXatY</span> in <span class="u-sans-serif">GAMBIT</span>, supplemented with a new parameter <span class="u-monospace">mG</span> which codifies the mass of a light gravitino. As in the existing <span class="u-sans-serif">MSSMXatY</span> models, <span class="u-sans-serif">X</span> refers to the number of parameters and <span class="u-sans-serif">Y</span> to the scale at which the parameters are defined (which itself could be a parameter in <span class="u-sans-serif">MSSMXatQ</span> models) (e.g. <span class="u-sans-serif">MSSM30atMGUT</span> has 30 parameters defined at the GUT scale). Models with alternate parametrisation are labelled with increasing alphabetical letters after the number of parameters (e.g. <span class="u-sans-serif">MSSM10batQ</span> ) or in the specific case of reparametrisation with <span class="mathjax-tex">\(m_A\)</span> and <span class="mathjax-tex">\(\mu \)</span> instead of <span class="mathjax-tex">\(m_{H_u}\)</span> and <span class="mathjax-tex">\(m_{H_d}\)</span>, models are labelled with the suffix <span class="u-sans-serif">_mA</span> (e.g. <span class="u-sans-serif">MSSM30atMGUT_mA</span> . The specific model used in the study is the <span class="u-sans-serif">MSSM11atQ_mA_mG</span> , defined as </p><dl class="c-abbreviation_list"><dt class="c-abbreviation_list__term u-text-bold u-float-left u-pr-16" style="min-width:50px;"><dfn><span class="mathjax-tex">\({\textbf {\textsf {MSSM11atQ\_mA\_mG}}}:\)</span>:</dfn></dt><dd class="c-abbreviation_list__description u-mb-24"> <img src="//media.springernature.com/lw218/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figa_HTML.gif" style="width:218px;max-width:none;" alt=""><img src="//media.springernature.com/lw313/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figb_HTML.gif" alt=""> <p>An MSSM parametrisation with 11 parameters plus a gravitino mass <span class="u-monospace">mG</span>, of which we vary only four in this study: <span class="u-monospace">TanBeta</span>, <span class="u-monospace">M1</span>, <span class="u-monospace">M2</span> and <span class="u-monospace">mu</span>. We fix the other parameters to <span class="u-monospace">mG</span> = 1 eV, <span class="u-monospace">Ad_3</span> = <span class="u-monospace">Ae_3</span> = <span class="u-monospace">Au_3</span> = 0, <span class="u-monospace">M3</span> = <span class="u-monospace">mA</span> = 5 TeV and <span class="u-monospace">ml2</span> = <span class="u-monospace">mq2</span> = (3 TeV)<span class="mathjax-tex">\(^2\)</span>, to decouple all superpartners other than the electroweakinos and the gravtino from the low energy phenomenology. The input parameters are defined at a scale <span class="u-monospace">Qin</span> = 3 TeV. We choose to use a model parametrised with <span class="u-monospace">mA</span> and <span class="u-monospace">mu</span> instead of <span class="u-monospace">mHu2</span> and <span class="u-monospace">mHd2</span>, as <span class="mathjax-tex">\(\mu \)</span> controls the Higgsino masses.</p> </dd></dl><h3 class="c-article__sub-heading" id="Sec21"><span class="c-article-section__title-number">1.2 </span>C.2 Additions to <span class="u-sans-serif">DecayBit</span> </h3> <div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-3"><figure><figcaption class="c-article-table__figcaption"><b id="Tab3" data-test="table-caption">Table 3 Capabilities and module functions added to <span class="u-sans-serif">DecayBit</span> for this study. The</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-023-11574-z/tables/3" aria-label="Full size table 3"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>The <span class="u-sans-serif">GAMBIT</span> module <span class="u-sans-serif">DecayBit</span> takes care of the computation of the decay widths of the various BSM particles [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 186" title="GAMBIT Models Workgroup, P. Athron, C. Balázs, et al., SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables. Eur. Phys. J. C 78, 22 (2018). 
 arXiv:1705.07936
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR186" id="ref-link-section-d154747430e30464">186</a>]. As detailed on Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Sec2">2</a>, the main channel for the production of gravitinos is through the decays of the light electroweakinos. Therefore, for the purpose of this study we have implemented new capabilities and module functions for the computation of the decays of neutralinos and charginos to gravitinos, which can be seen in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Tab3">3</a>. The capabilities <img src="//media.springernature.com/lw288/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figu_HTML.gif" alt="">, where <img src="//media.springernature.com/lw11/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figv_HTML.gif" style="width:11px;max-width:none;" alt=""> runs through the neutralino eigenstates, i.e. <img src="//media.springernature.com/lw11/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figw_HTML.gif" style="width:11px;max-width:none;" alt=""><span class="mathjax-tex">\(=1,\dots ,4\)</span>, compute the decay of each of the neutralinos to a gravitino and a <span class="mathjax-tex">\(\gamma \)</span>, <i>h</i> or <i>Z</i>, following eqs. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Equ5">5</a>)-(<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Equ7">7</a>). The capabilities <img src="//media.springernature.com/lw272/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figx_HTML.gif" alt="">, where <img src="//media.springernature.com/lw7/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figy_HTML.gif" style="width:7px;max-width:none;" alt=""> runs through the chargino eigenstates, i.e. <img src="//media.springernature.com/lw7/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figz_HTML.gif" style="width:7px;max-width:none;" alt=""><span class="mathjax-tex">\(=1,2\)</span>, compute the decay of each of the charginos to a gravitino and a (possibly off-shell) <i>W</i>-boson.</p><p>In order to combine the newly added decays to gravitinos with the pre-existing decay channels of neutralinos and charginos, we implemented a new set of module functions that provide the capabilities <img src="//media.springernature.com/lw205/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figaa_HTML.gif" style="width:205px;max-width:none;" alt=""> and <img src="//media.springernature.com/lw189/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figab_HTML.gif" style="width:189px;max-width:none;" alt="">, respectively. These module functions, also seen in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Tab3">3</a> are called <img src="//media.springernature.com/lw195/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figac_HTML.gif" style="width:195px;max-width:none;" alt=""> and <img src="//media.springernature.com/lw178/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figad_HTML.gif" style="width:178px;max-width:none;" alt="">, and simply combine the decay tables computed by <span class="u-monospace">SUSY-HIT</span>, via the capabilities <img src="//media.springernature.com/lw231/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figae_HTML.gif" style="width:231px;max-width:none;" alt=""> and <img src="//media.springernature.com/lw214/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figaf_HTML.gif" style="width:214px;max-width:none;" alt="">, with the computation for the decays to gravitinos, via the capabilities introduced above, <img src="//media.springernature.com/lw288/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figag_HTML.gif" alt=""> and <img src="//media.springernature.com/lw272/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figah_HTML.gif" alt="">.</p><h3 class="c-article__sub-heading" id="Sec22"><span class="c-article-section__title-number">1.3 </span>C.3 Additions to <span class="u-sans-serif">ColliderBit</span> </h3> <div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-4"><figure><figcaption class="c-article-table__figcaption"><b id="Tab4" data-test="table-caption">Table 4 New <span class="u-sans-serif">ColliderBit</span> capabilities for the <span class="u-sans-serif">ColliderBit</span> added in this study, including a new LEP search, restructuring of the event generation capabilities and new capabilities for LHC measurements, using <span class="u-sans-serif">Rivet</span> and <span class="u-sans-serif">Contur</span> as backends. Note that the dependency type is only provided when there is ambiguity and that every <span class="u-sans-serif">Contur</span> related function has a partner function with the prefix <img src="//media.springernature.com/lw55/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figai_HTML.gif" style="width:55px;max-width:none;" alt="">, which allows running different sets of <span class="u-sans-serif">Contur</span> options in the same run</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-023-11574-z/tables/4" aria-label="Full size table 4"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p><span class="u-sans-serif">ColliderBit</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 183" title="GAMBIT Collider Workgroup, C. Balázs, A. Buckley, et al., ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods. Eur. Phys. J. C 77, 795 (2017). 
 arXiv:1705.07919
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR183" id="ref-link-section-d154747430e31679">183</a>] is the <span class="u-sans-serif">GAMBIT</span> module that handles anything related to collider physics,<sup><a href="#Fn9"><span class="u-visually-hidden">Footnote </span>9</a></sup> such as LHC searches, LEP limits and Higgs measurements. It is naturally the most relevant module used in a collider-focused study such as this one. We extended <span class="u-sans-serif">ColliderBit</span> significantly for this study, implementing new LHC analyses (Appendix B), adding a new LEP limit, and introducing the ability to compute the likelihood for BSM models to agree with LHC SM-like measurements, using the new interfaces to <span class="u-sans-serif">Rivet</span> and <span class="u-sans-serif">Contur</span>.</p><p>For the most part in this study we reuse the pre-existing LEP upper limits on electroweakino production, which we re-interpret for the gravitino model. However, we added a new module function to compute the limit from an L3 multi-photon and missing energy search, which is exclusive of models such as this one. For this purpose we added a new module function, <img src="//media.springernature.com/lw154/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figdk_HTML.gif" style="width:154px;max-width:none;" alt="">, providing a capability of the same name, to compute the 95% CL upper limit on the cross section. The new capabilitiy and module function can be found in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Tab4">4</a>.</p><p>The machinery for computing the likelihood for LHC measurements follows the structure of the existing <span class="u-sans-serif">ColliderBit</span>, where a Monte Carlo event generator (e.g. <span class="u-sans-serif">Pythia 8</span>) is used to simulate hard scattering events at the LHC, each of those events is passed through a native detector simulation, then a collection of analyses, and a likelihood is computed from the resulting yields. In previous incarnations of <span class="u-sans-serif">ColliderBit</span>, the events generated by <span class="u-sans-serif">Pythia 8</span> were immediately converted into a <img src="//media.springernature.com/lw128/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figdl_HTML.gif" style="width:128px;max-width:none;" alt=""> type, which is needed for detector simulation and analysis of the events. However, to compute the predicted yields of a given simulated event for LHC SM measurements in <span class="u-sans-serif">Rivet</span>, the event must be provided as a HepMC event (<img src="//media.springernature.com/lw138/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figdm_HTML.gif" style="width:138px;max-width:none;" alt=""> type). This is done by splitting the existing module function <img src="//media.springernature.com/lw162/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figdn_HTML.gif" style="width:162px;max-width:none;" alt="">, which provides the capability <img src="//media.springernature.com/lw161/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figdo_HTML.gif" style="width:161px;max-width:none;" alt="">, into three parts, one that returns a <img src="//media.springernature.com/lw121/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figdp_HTML.gif" style="width:121px;max-width:none;" alt="">, carrying the original name, one that converts the event to a <img src="//media.springernature.com/lw128/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figdq_HTML.gif" style="width:128px;max-width:none;" alt="">, called <img src="//media.springernature.com/lw239/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figdr_HTML.gif" style="width:239px;max-width:none;" alt="">, and one that converts the event into a <img src="//media.springernature.com/lw138/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figds_HTML.gif" style="width:138px;max-width:none;" alt="">, called <img src="//media.springernature.com/lw212/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figdt_HTML.gif" style="width:212px;max-width:none;" alt="">. With this, each generated event can be converted to whichever format it is needed in for native <span class="u-sans-serif">ColliderBit</span> LHC search analyses, or for SM measurements using <span class="u-sans-serif">Rivet</span>. This new structure of module functions can be seen in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Tab4">4</a>.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-5"><figure><figcaption class="c-article-table__figcaption"><b id="Tab5" data-test="table-caption">Table 5 Statistics that can be returned by <span class="u-sans-serif">Contur</span> when running on a Python <img src="//media.springernature.com/lw70/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figdu_HTML.gif" style="width:70px;max-width:none;" alt=""></b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-023-11574-z/tables/5" aria-label="Full size table 5"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Lastly, some of the most relevant additions to <span class="u-sans-serif">ColliderBit</span> are module functions to compute the likelihood for LHC SM measurements, using <span class="u-sans-serif">Rivet</span> and <span class="u-sans-serif">Contur</span>. The new module function <img src="//media.springernature.com/lw154/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figeb_HTML.gif" style="width:154px;max-width:none;" alt=""> provides an eponymous capability and analyses a given HepMC event using <span class="u-sans-serif">Rivet</span> ’s measurements. Its output, a <span class="u-sans-serif">YODA</span><sup><a href="#Fn10"><span class="u-visually-hidden">Footnote </span>10</a></sup> analysis object written as a stream, is then used by the module function <img src="//media.springernature.com/lw297/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figec_HTML.gif" alt="">, which provides the capability <img src="//media.springernature.com/lw137/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figed_HTML.gif" style="width:137px;max-width:none;" alt=""> and that runs the <span class="u-sans-serif">YODA</span> analysis object through <span class="u-sans-serif">Contur</span> to compute the likelihood. An additional module function, <img src="//media.springernature.com/lw281/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figee_HTML.gif" alt=""> provides the same capability and performs the same computation but starting from a <span class="u-sans-serif">YODA</span> analysis object read from a file. Both of these functions return a <img src="//media.springernature.com/lw111/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figef_HTML.gif" style="width:111px;max-width:none;" alt=""> structure which contains the output from <span class="u-sans-serif">Contur</span>, including the total likelihood value as well as the likelihood value per pool. These respective values are extracted by the module functions <img src="//media.springernature.com/lw262/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figeg_HTML.gif" alt=""> and <img src="//media.springernature.com/lw329/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figeh_HTML.gif" alt="">, which provide the capabilities <img src="//media.springernature.com/lw205/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figei_HTML.gif" style="width:205px;max-width:none;" alt=""> and <img src="//media.springernature.com/lw271/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figej_HTML.gif" alt="">, respectively. For debugging purposes only, there exists an additional module function <img src="//media.springernature.com/lw348/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figek_HTML.gif" alt="">, providing the capability <img src="//media.springernature.com/lw288/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figel_HTML.gif" alt=""> that extract the tag of the dominant histogram(s) in each pool. Descriptions of these capabilities and module functions can be found in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Tab4">4</a>. Finally, each of the module functions that use <span class="u-sans-serif">Contur</span> has a partner function that allows running with multiple sets of <span class="u-sans-serif">Contur</span> options simultaneously, and these are called <img src="//media.springernature.com/lw349/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figem_HTML.gif" alt="">, <img src="//media.springernature.com/lw381/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figen_HTML.gif" alt="">, <img src="//media.springernature.com/lw400/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figeo_HTML.gif" alt="">, <img src="//media.springernature.com/lw375/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figep_HTML.gif" alt=""> and <img src="//media.springernature.com/lw349/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figeq_HTML.gif" alt="">. The <img src="//media.springernature.com/lw51/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figer_HTML.gif" style="width:51px;max-width:none;" alt=""> variation of the <img src="//media.springernature.com/lw61/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figes_HTML.gif" style="width:61px;max-width:none;" alt=""> function is required to provide a single one of the multiple likelihoods to <span class="u-sans-serif">ColliderBit</span> for combination with LHC search likelihoods, whereas the <img src="//media.springernature.com/lw25/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figet_HTML.gif" style="width:25px;max-width:none;" alt=""> version – which comes under its own dedicated <img src="//media.springernature.com/lw256/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figeu_HTML.gif" alt=""> capability – can be used to collect and save all the likelihoods for examination after the run.</p><h3 class="c-article__sub-heading" id="Sec23"><span class="c-article-section__title-number">1.4 </span>C.4 New backend interfaces: <span class="u-sans-serif">Rivet</span> and <span class="u-sans-serif">Contur</span> </h3><p>One the major breakthroughs of this study is the simultaneous combination of LHC searches and measurements in the analysis. This is possible due to the newly developed interfaces to <span class="u-sans-serif">Rivet</span> 3.1.5 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 206" title="A. Buckley, J. Butterworth et al., Rivet user manual. Comput. Phys. Commun. 184, 2803–2819 (2013). 
 arXiv:1003.0694
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR206" id="ref-link-section-d154747430e32160">206</a>], which contains the extensive library of measurements, and <span class="u-sans-serif">Contur</span> 2.1.1 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 80" title="J.M. Butterworth, D. Grellscheid, M. Krämer, B. Sarrazin, D. Yallup, Constraining new physics with collider measurements of Standard Model signatures. JHEP 03, 078 (2017). 
 arXiv:1606.05296
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR80" id="ref-link-section-d154747430e32166">80</a>], which takes care of the rigorous statistical combination of the results from individual measurements.</p><p><span class="u-sans-serif">Rivet</span> is written in <img src="//media.springernature.com/lw36/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figev_HTML.gif" style="width:36px;max-width:none;" alt="">, so its interface to <span class="u-sans-serif">GAMBIT</span> is auto-generated using the package <span class="u-sans-serif">BOSS</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 78" title="GAMBIT Collaboration, P. Athron, C. Balázs, et al., GAMBIT: the global and modular beyond-the-standard-model inference tool. Eur. Phys. J. C 77, 784 (2017). 
 arXiv:1705.07908
 
 . Addendum in [79]" href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR78" id="ref-link-section-d154747430e32185">78</a>], to allow dynamic loading of <span class="u-sans-serif">Rivet</span> classes. Although some modifications of <span class="u-sans-serif">BOSS</span> were needed to interface <span class="u-sans-serif">Rivet</span>, these will not be documented here, but in a future publication. This interface provides <span class="u-sans-serif">GAMBIT</span> with access to the classes inside of <span class="u-sans-serif">Rivet</span> and some of its global functions. In particular, the only class of interest for the interface is the <img src="//media.springernature.com/lw128/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figew_HTML.gif" style="width:128px;max-width:none;" alt=""> class, which handles the analysis of the passed HepMC events. The usage of this class in <span class="u-sans-serif">ColliderBit</span> was described above. Note that at the time of writing, <span class="u-sans-serif">Rivet</span> 3.1.5 and, in particular, the class <img src="//media.springernature.com/lw128/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figex_HTML.gif" style="width:128px;max-width:none;" alt="">, is not threadsafe. This class must therefore be used within a <img src="//media.springernature.com/lw67/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figey_HTML.gif" style="width:67px;max-width:none;" alt=""> section. In addition to the aforementioned class, <span class="u-sans-serif">GAMBIT</span> also uses the global function <img src="//media.springernature.com/lw153/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figez_HTML.gif" style="width:153px;max-width:none;" alt="">. This function is just called once at the beginning of the scan by the backend initialisation function to inform <span class="u-sans-serif">Rivet</span> of the location of the analysis library.</p><p>The interface to the <span class="u-monospace">Python</span> package <span class="u-sans-serif">Contur</span> opens the possibility to compute the likelihood for LHC measurements from a <span class="u-sans-serif">YODA</span> analysis object generated by <span class="u-sans-serif">Rivet</span>. Two backend convenience functions were implemented for this purpose: <img src="//media.springernature.com/lw204/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figfa_HTML.gif" style="width:204px;max-width:none;" alt="">, which reads the analysis object from a <span class="u-sans-serif">YODA</span> file, and <img src="//media.springernature.com/lw220/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figfb_HTML.gif" style="width:220px;max-width:none;" alt="">, which reads it from a standard <img src="//media.springernature.com/lw102/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figfc_HTML.gif" style="width:102px;max-width:none;" alt="">. Both of these functions provide the same capability <img src="//media.springernature.com/lw160/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figfd_HTML.gif" style="width:160px;max-width:none;" alt="">, but with different signatures, as the former takes just a string with the <span class="u-sans-serif">YODA</span> file path, and the latter a shared pointer to the stream. In addition, both functions take as an argument a list of options for <span class="u-sans-serif">Contur</span> (see [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 80" title="J.M. Butterworth, D. Grellscheid, M. Krämer, B. Sarrazin, D. Yallup, Constraining new physics with collider measurements of Standard Model signatures. JHEP 03, 078 (2017). 
 arXiv:1606.05296
 
 " href="/article/10.1140/epjc/s10052-023-11574-z#ref-CR80" id="ref-link-section-d154747430e32283">80</a>] for a list of useful options). The value returned by both functions is an object of the class <img src="//media.springernature.com/lw111/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figfe_HTML.gif" style="width:111px;max-width:none;" alt="">, which is a simple class designed to manage the <span class="u-monospace">Python</span> dictionary produced by <span class="u-sans-serif">Contur</span>. Lastly, the backend convenience function <img src="//media.springernature.com/lw246/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figff_HTML.gif" style="width:246px;max-width:none;" alt="">, which provides the capability <img src="//media.springernature.com/lw153/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figfg_HTML.gif" style="width:153px;max-width:none;" alt="">, is used to inform <span class="u-sans-serif">Rivet</span> of the analyses known to <span class="u-sans-serif">Contur</span>.</p><h3 class="c-article__sub-heading" id="Sec24"><span class="c-article-section__title-number">1.5 </span>C.5 Adaptations to <span class="u-sans-serif">Rivet</span> and <span class="u-sans-serif">Contur</span> </h3><p>Besides the implementation of the interfaces to <span class="u-sans-serif">Rivet</span> and <span class="u-sans-serif">Contur</span> on the side of <span class="u-sans-serif">GAMBIT</span>, minor modifications of each of these packages were necessary to adapt them to the <span class="u-sans-serif">GAMBIT</span> workflow.</p><p>Typically, <span class="u-sans-serif">Contur</span> is run on <span class="u-sans-serif">YODA</span> files that have been generated in a separate <span class="u-sans-serif">Rivet</span> run. However, in a high-performance computing environment, the cost of writing and reading from a <span class="u-sans-serif">YODA</span> file at each parameter point would be prohibitive. Therefore, <span class="u-sans-serif">Rivet</span> and <span class="u-sans-serif">Contur</span> were adapted so that the <span class="u-sans-serif">YODA</span> file could be passed between them in memory via <img src="//media.springernature.com/lw102/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figfh_HTML.gif" style="width:102px;max-width:none;" alt="">.</p><p>In <span class="u-sans-serif">Rivet</span>, this means the <img src="//media.springernature.com/lw128/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figfi_HTML.gif" style="width:128px;max-width:none;" alt=""> class received a new overload to the <img src="//media.springernature.com/lw45/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figfj_HTML.gif" style="width:45px;max-width:none;" alt=""> method to output to <img src="//media.springernature.com/lw102/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figfk_HTML.gif" style="width:102px;max-width:none;" alt="">. This is also available in the Python interface, and became available as of <span class="u-sans-serif">Rivet</span> 3.1.4.</p><p>The changes to <span class="u-sans-serif">Contur</span> were more significant. The <img src="//media.springernature.com/lw36/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figfl_HTML.gif" style="width:36px;max-width:none;" alt=""> run function now takes a dictionary of arguments, and if the <img src="//media.springernature.com/lw101/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figfm_HTML.gif" style="width:101px;max-width:none;" alt=""> term contains a Python <img src="//media.springernature.com/lw70/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figfn_HTML.gif" style="width:70px;max-width:none;" alt=""> – which can be converted to and from a <span class="u-monospace">C++</span><img src="//media.springernature.com/lw102/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figfo_HTML.gif" style="width:102px;max-width:none;" alt=""> – then <span class="u-sans-serif">Contur</span> will run on that stream. When run like this, the <span class="u-sans-serif">Contur</span> main will return a dictionary containing various statistics. Which outputs appear in the dictionary is controlled by the <img src="//media.springernature.com/lw260/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-023-11574-z/MediaObjects/10052_2023_11574_Figfp_HTML.gif" alt=""> argument, and the options here are summarised by Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-023-11574-z#Tab5">5</a>. These features first appeared in <span class="u-sans-serif">Contur</span> 2.1.1.</p></div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"> <p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">http://creativecommons.org/licenses/by/4.0/</a>.</p> <p>Funded by SCOAP<sup>3</sup>. SCOAP<sup>3</sup> supports the goals of the International Year of Basic Sciences for Sustainable Development.</p> <p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=Collider%20constraints%20on%20electroweakinos%20in%20the%20presence%20of%20a%20light%20gravitino&author=Viktor%20Ananyev%20et%20al&contentID=10.1140%2Fepjc%2Fs10052-023-11574-z&copyright=The%20Author%28s%29&publication=1434-6052&publicationDate=2023-06-10&publisherName=SpringerNature&orderBeanReset=true&oa=CC%20BY">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1140/epjc/s10052-023-11574-z" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-023-11574-z" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">Ananyev, V., Balázs, C., Beniwal, A. <i>et al.</i> Collider constraints on electroweakinos in the presence of a light gravitino. <i>Eur. Phys. J. C</i> <b>83</b>, 493 (2023). https://doi.org/10.1140/epjc/s10052-023-11574-z</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1140/epjc/s10052-023-11574-z?format=refman&flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Received<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2023-03-30">30 March 2023</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Accepted<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2023-05-01">01 May 2023</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2023-06-10">10 June 2023</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1140/epjc/s10052-023-11574-z</span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><div data-component="article-info-list"></div></div></div></div></div></section> </div> </main> <div class="c-article-sidebar u-text-sm u-hide-print l-with-sidebar__sidebar" id="sidebar" data-container-type="reading-companion" data-track-component="reading companion"> <aside> <div class="app-card-service" data-test="article-checklist-banner"> <div> <a class="app-card-service__link" data-track="click_presubmission_checklist" data-track-context="article page top of reading companion" data-track-category="pre-submission-checklist" data-track-action="clicked article page checklist banner test 2 old version" data-track-label="link" href="https://beta.springernature.com/pre-submission?journalId=10052" data-test="article-checklist-banner-link"> <span class="app-card-service__link-text">Use our pre-submission checklist</span> <svg class="app-card-service__link-icon" aria-hidden="true" focusable="false"><use xlink:href="#icon-eds-i-arrow-right-small"></use></svg> </a> <p class="app-card-service__description">Avoid common mistakes on your manuscript.</p> </div> <div class="app-card-service__icon-container"> <svg class="app-card-service__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-clipboard-check-medium"></use> </svg> </div> </div> <div data-test="collections"> </div> <div data-test="editorial-summary"> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu><div class="c-ad c-ad--300x250"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-MPU1" class="div-gpt-ad grade-c-hide" data-pa11y-ignore data-gpt data-gpt-unitpath="/270604982/springerlink/10052/article" data-gpt-sizes="300x250" data-test="MPU1-ad" data-gpt-targeting="pos=MPU1;articleid=s10052-023-11574-z;"> </div> </div> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> </div> </article> <div class="app-elements"> <div class="eds-c-header__expander eds-c-header__expander--search" id="eds-c-header-popup-search"> <h2 class="eds-c-header__heading">Search</h2> <div class="u-container"> <search class="eds-c-header__search" role="search" aria-label="Search from the header"> <form method="GET" action="//link.springer.com/search" data-test="header-search" data-track="search" data-track-context="search from header" data-track-action="submit search form" data-track-category="unified header" data-track-label="form" > <label for="eds-c-header-search" class="eds-c-header__search-label">Search by keyword or author</label> <div class="eds-c-header__search-container"> <input id="eds-c-header-search" class="eds-c-header__search-input" autocomplete="off" name="query" type="search" value="" required> <button class="eds-c-header__search-button" type="submit"> <svg class="eds-c-header__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg> <span class="u-visually-hidden">Search</span> </button> </div> </form> </search> </div> </div> <div class="eds-c-header__expander eds-c-header__expander--menu" id="eds-c-header-nav"> <h2 class="eds-c-header__heading">Navigation</h2> <ul class="eds-c-header__list"> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </li> </ul> </div> <footer > <div class="eds-c-footer" > <div class="eds-c-footer__container"> <div class="eds-c-footer__grid eds-c-footer__group--separator"> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Discover content</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals/a/1" data-track="nav_journals_a_z" data-track-action="journals a-z" data-track-context="unified footer" data-track-label="link">Journals A-Z</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/books/a/1" data-track="nav_books_a_z" data-track-action="books a-z" data-track-context="unified footer" data-track-label="link">Books A-Z</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Publish with us</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals" data-track="nav_journal_finder" data-track-action="journal finder" data-track-context="unified footer" data-track-label="link">Journal finder</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/authors" data-track="nav_publish_your_research" data-track-action="publish your research" data-track-context="unified footer" data-track-label="link">Publish your research</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="nav_open_access_publishing" data-track-action="open access publishing" data-track-context="unified footer" data-track-label="link">Open access publishing</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Products and services</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/products" data-track="nav_our_products" data-track-action="our products" data-track-context="unified footer" data-track-label="link">Our products</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/librarians" data-track="nav_librarians" data-track-action="librarians" data-track-context="unified footer" data-track-label="link">Librarians</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/societies" data-track="nav_societies" data-track-action="societies" data-track-context="unified footer" data-track-label="link">Societies</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/partners" data-track="nav_partners_and_advertisers" data-track-action="partners and advertisers" data-track-context="unified footer" data-track-label="link">Partners and advertisers</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Our imprints</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springer.com/" data-track="nav_imprint_Springer" data-track-action="Springer" data-track-context="unified footer" data-track-label="link">Springer</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.nature.com/" data-track="nav_imprint_Nature_Portfolio" data-track-action="Nature Portfolio" data-track-context="unified footer" data-track-label="link">Nature Portfolio</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.biomedcentral.com/" data-track="nav_imprint_BMC" data-track-action="BMC" data-track-context="unified footer" data-track-label="link">BMC</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.palgrave.com/" data-track="nav_imprint_Palgrave_Macmillan" data-track-action="Palgrave Macmillan" data-track-context="unified footer" data-track-label="link">Palgrave Macmillan</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.apress.com/" data-track="nav_imprint_Apress" data-track-action="Apress" data-track-context="unified footer" data-track-label="link">Apress</a></li> </ul> </div> </div> </div> <div class="eds-c-footer__container"> <nav aria-label="footer navigation"> <ul class="eds-c-footer__links"> <li class="eds-c-footer__item"> <button class="eds-c-footer__link" data-cc-action="preferences" data-track="dialog_manage_cookies" data-track-action="Manage cookies" data-track-context="unified footer" data-track-label="link"><span class="eds-c-footer__button-text">Your privacy choices/Manage cookies</span></button> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/legal/ccpa" data-track="nav_california_privacy_statement" data-track-action="california privacy statement" data-track-context="unified footer" data-track-label="link">Your US state privacy rights</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/info/accessibility" data-track="nav_accessibility_statement" data-track-action="accessibility statement" data-track-context="unified footer" data-track-label="link">Accessibility statement</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/termsandconditions" data-track="nav_terms_and_conditions" data-track-action="terms and conditions" data-track-context="unified footer" data-track-label="link">Terms and conditions</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/privacystatement" data-track="nav_privacy_policy" data-track-action="privacy policy" data-track-context="unified footer" data-track-label="link">Privacy policy</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/home" data-track="nav_help_and_support" data-track-action="help and support" data-track-context="unified footer" data-track-label="link">Help and support</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/solutions/articles/6000255911-subscription-cancellations" data-track-action="cancel contracts here">Cancel contracts here</a> </li> </ul> </nav> <div class="eds-c-footer__user"> <p class="eds-c-footer__user-info"> <span data-test="footer-user-ip">8.222.208.146</span> </p> <p class="eds-c-footer__user-info" data-test="footer-business-partners">Not affiliated</p> </div> <a href="https://www.springernature.com/" class="eds-c-footer__link"> <img src="/oscar-static/images/logo-springernature-white-19dd4ba190.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="eds-c-footer__legal" data-test="copyright">© 2024 Springer Nature</p> </div> </div> </footer> </div> </body> </html>