CINXE.COM

Trigonometrik fonksiyonların integralleri - Vikipedi

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="tr" dir="ltr"> <head> <meta charset="UTF-8"> <title>Trigonometrik fonksiyonların integralleri - Vikipedi</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )trwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","Ocak","Şubat","Mart","Nisan","Mayıs","Haziran","Temmuz","Ağustos","Eylül","Ekim","Kasım","Aralık"],"wgRequestId":"6a0243ef-0c12-4da2-ac2d-789519f06759","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Trigonometrik_fonksiyonların_integralleri","wgTitle":"Trigonometrik fonksiyonların integralleri","wgCurRevisionId":34007561,"wgRevisionId":30769732,"wgArticleId":477869,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Uzman ilgisi gerektiren maddeler Eylül 2023","Webarşiv şablonu wayback bağlantıları","Trigonometri","İntegral","İntegral listeleri","Matematik listeleri"],"wgPageViewLanguage":"tr","wgPageContentLanguage":"tr","wgPageContentModel":"wikitext","wgRelevantPageName":"Trigonometrik_fonksiyonların_integralleri","wgRelevantArticleId":477869,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true ,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":2}}},"wgStableRevisionId":30769732,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"tr","pageLanguageDir":"ltr","pageVariantFallbacks":"tr"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q846505","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true, "wgGETopicsMatchModeEnabled":true,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgEditLatestRevision":true};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.charinsert","ext.gadget.extra-toolbar-buttons","ext.gadget.HizliBilgi","ext.gadget.OpenStreetMap", "ext.gadget.switcher","ext.gadget.ReferenceTooltips","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=tr&amp;modules=ext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=tr&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=tr&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Trigonometrik fonksiyonların integralleri - Vikipedi"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//tr.m.wikipedia.org/wiki/Trigonometrik_fonksiyonlar%C4%B1n_integralleri"> <link rel="alternate" type="application/x-wiki" title="Değiştir" href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Vikipedi (tr)"> <link rel="EditURI" type="application/rsd+xml" href="//tr.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://tr.wikipedia.org/wiki/Trigonometrik_fonksiyonlar%C4%B1n_integralleri"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.tr"> <link rel="alternate" type="application/atom+xml" title="Vikipedi Atom beslemesi" href="/w/index.php?title=%C3%96zel:SonDe%C4%9Fi%C5%9Fiklikler&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Trigonometrik_fonksiyonların_integralleri rootpage-Trigonometrik_fonksiyonların_integralleri skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">İçeriğe atla</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Ana menü" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Ana menü</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Ana menü</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">kenar çubuğuna taşı</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">gizle</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Gezinti </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Anasayfa" title="Anasayfayı ziyaret et [z]" accesskey="z"><span>Anasayfa</span></a></li><li id="n-Hakkımızda" class="mw-list-item"><a href="/wiki/Vikipedi:Hakk%C4%B1nda"><span>Hakkımızda</span></a></li><li id="n-İçindekiler" class="mw-list-item"><a href="/wiki/Vikipedi:G%C3%B6z_at"><span>İçindekiler</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%C3%96zel:Rastgele" title="Rastgele bir sayfaya gidin [x]" accesskey="x"><span>Rastgele madde</span></a></li><li id="n-Seçkin-içerik" class="mw-list-item"><a href="/wiki/Vikipedi:Se%C3%A7kin_i%C3%A7erik"><span>Seçkin içerik</span></a></li><li id="n-Yakınımdakiler" class="mw-list-item"><a href="/wiki/%C3%96zel:Yak%C4%B1n%C4%B1mdakiler"><span>Yakınımdakiler</span></a></li> </ul> </div> </div> <div id="p-Katılım" class="vector-menu mw-portlet mw-portlet-Katılım" > <div class="vector-menu-heading"> Katılım </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-sandbox" class="mw-list-item"><a href="/wiki/Vikipedi:Deneme_tahtas%C4%B1"><span>Deneme tahtası</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Vikipedi:K%C3%B6y_%C3%A7e%C5%9Fmesi" title="Güncel olaylarla ilgili son bilgiler"><span>Köy çeşmesi</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%C3%96zel:SonDe%C4%9Fi%C5%9Fiklikler" title="Vikide yapılmış son değişikliklerin listesi [r]" accesskey="r"><span>Son değişiklikler</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Vikipedi:Y%C3%BCkle"><span>Dosya yükle</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Vikipedi:Topluluk_portali" title="Proje hakkında, neler yapabilirsiniz, ne nerededir"><span>Topluluk portali</span></a></li><li id="n-shop-text" class="mw-list-item"><a href="//shop.wikimedia.org"><span>Wikimedia dükkânı</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Yard%C4%B1m:%C4%B0%C3%A7indekiler" title="Yardım almak için"><span>Yardım</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Anasayfa" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Vikipedi" src="/static/images/mobile/copyright/wikipedia-wordmark-tr.svg" style="width: 6.6875em; height: 1.125em;"> <img class="mw-logo-tagline" alt="Özgür Ansiklopedi" src="/static/images/mobile/copyright/wikipedia-tagline-tr.svg" width="104" height="13" style="width: 6.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/%C3%96zel:Ara" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Vikipedi içinde ara [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Ara</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Vikipedi üzerinde ara" aria-label="Vikipedi üzerinde ara" autocapitalize="sentences" title="Vikipedi içinde ara [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Özel:Ara"> </div> <button class="cdx-button cdx-search-input__end-button">Ara</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Kişisel araçlar"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Görünüm"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Sayfanın yazı tipi boyutunun, genişliğinin ve renginin görünümünü değiştirin" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Görünüm" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Görünüm</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_tr.wikipedia.org&amp;uselang=tr" class=""><span>Bağış yapın</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%C3%96zel:HesapOlu%C5%9Ftur&amp;returnto=Trigonometrik+fonksiyonlar%C4%B1n+integralleri" title="Bir hesap oluşturup oturum açmanız tavsiye edilmektedir ancak bu zorunlu değildir" class=""><span>Hesap oluştur</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%C3%96zel:Kullan%C4%B1c%C4%B1OturumuA%C3%A7ma&amp;returnto=Trigonometrik+fonksiyonlar%C4%B1n+integralleri" title="Oturum açmanız tavsiye edilmektedir; ancak bu zorunlu değildir [o]" accesskey="o" class=""><span>Oturum aç</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Daha fazla seçenek" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Kişisel araçlar" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Kişisel araçlar</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Kullanıcı menüsü" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_tr.wikipedia.org&amp;uselang=tr"><span>Bağış yapın</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%C3%96zel:HesapOlu%C5%9Ftur&amp;returnto=Trigonometrik+fonksiyonlar%C4%B1n+integralleri" title="Bir hesap oluşturup oturum açmanız tavsiye edilmektedir ancak bu zorunlu değildir"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Hesap oluştur</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%C3%96zel:Kullan%C4%B1c%C4%B1OturumuA%C3%A7ma&amp;returnto=Trigonometrik+fonksiyonlar%C4%B1n+integralleri" title="Oturum açmanız tavsiye edilmektedir; ancak bu zorunlu değildir [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Oturum aç</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Çıkış yapmış editörler için sayfalar <a href="/wiki/Yard%C4%B1m:Giri%C5%9F" aria-label="Değişiklik yapma hakkında daha fazla bilgi edinin"><span>daha fazla bilgi</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/%C3%96zel:Katk%C4%B1lar%C4%B1m" title="Bu IP adresinden yapılmış değişiklikler listesi [y]" accesskey="y"><span>Katkılar</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/%C3%96zel:MesajSayfam" title="Bu IP adresindeki düzenlemeler hakkında tartışma [n]" accesskey="n"><span>Mesaj</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="İçindekiler" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">İçindekiler</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">kenar çubuğuna taşı</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">gizle</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Giriş</div> </a> </li> <li id="toc-Sadece_Sinüs_içeren_trigonometrik_fonksiyonların_integralleri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sadece_Sinüs_içeren_trigonometrik_fonksiyonların_integralleri"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Sadece Sinüs içeren trigonometrik fonksiyonların integralleri</span> </div> </a> <ul id="toc-Sadece_Sinüs_içeren_trigonometrik_fonksiyonların_integralleri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sadece_Kosinüs_içeren_trigonometrik_fonksiyonların_integralleri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sadece_Kosinüs_içeren_trigonometrik_fonksiyonların_integralleri"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Sadece Kosinüs içeren trigonometrik fonksiyonların integralleri</span> </div> </a> <ul id="toc-Sadece_Kosinüs_içeren_trigonometrik_fonksiyonların_integralleri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sadece_Tanjant_içeren_trigonometrik_fonksiyonların_integralleri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sadece_Tanjant_içeren_trigonometrik_fonksiyonların_integralleri"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Sadece Tanjant içeren trigonometrik fonksiyonların integralleri</span> </div> </a> <ul id="toc-Sadece_Tanjant_içeren_trigonometrik_fonksiyonların_integralleri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sadece_Sekant_içeren_trigonometrik_fonksiyonların_integralleri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sadece_Sekant_içeren_trigonometrik_fonksiyonların_integralleri"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Sadece Sekant içeren trigonometrik fonksiyonların integralleri</span> </div> </a> <ul id="toc-Sadece_Sekant_içeren_trigonometrik_fonksiyonların_integralleri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sadece_Kosekant_içeren_trigonometrik_fonksiyonların_integralleri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sadece_Kosekant_içeren_trigonometrik_fonksiyonların_integralleri"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Sadece Kosekant içeren trigonometrik fonksiyonların integralleri</span> </div> </a> <ul id="toc-Sadece_Kosekant_içeren_trigonometrik_fonksiyonların_integralleri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sadece_Kotanjant_içeren_trigonometrik_fonksiyonların_integralleri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sadece_Kotanjant_içeren_trigonometrik_fonksiyonların_integralleri"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Sadece Kotanjant içeren trigonometrik fonksiyonların integralleri</span> </div> </a> <ul id="toc-Sadece_Kotanjant_içeren_trigonometrik_fonksiyonların_integralleri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sinüs_ve_Kosinüsü_birlikte_içeren_trigonometrik_fonksiyonların_integralleri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sinüs_ve_Kosinüsü_birlikte_içeren_trigonometrik_fonksiyonların_integralleri"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Sinüs ve Kosinüsü birlikte içeren trigonometrik fonksiyonların integralleri</span> </div> </a> <ul id="toc-Sinüs_ve_Kosinüsü_birlikte_içeren_trigonometrik_fonksiyonların_integralleri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sinüs_ve_Tanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sinüs_ve_Tanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Sinüs ve Tanjantı birlikte içeren trigonometrik fonksiyonların integralleri</span> </div> </a> <ul id="toc-Sinüs_ve_Tanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kosinüs_ve_Tanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Kosinüs_ve_Tanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Kosinüs ve Tanjantı birlikte içeren trigonometrik fonksiyonların integralleri</span> </div> </a> <ul id="toc-Kosinüs_ve_Tanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sinüs_ve_Kotanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sinüs_ve_Kotanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Sinüs ve Kotanjantı birlikte içeren trigonometrik fonksiyonların integralleri</span> </div> </a> <ul id="toc-Sinüs_ve_Kotanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kosinüs_ve_Kotanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Kosinüs_ve_Kotanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Kosinüs ve Kotanjantı birlikte içeren trigonometrik fonksiyonların integralleri</span> </div> </a> <ul id="toc-Kosinüs_ve_Kotanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tanjant_ve_Kotanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Tanjant_ve_Kotanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Tanjant ve Kotanjantı birlikte içeren trigonometrik fonksiyonların integralleri</span> </div> </a> <ul id="toc-Tanjant_ve_Kotanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Trigonometrik_fonksiyonların_simetrik_sınırlar_altındaki_integralleri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Trigonometrik_fonksiyonların_simetrik_sınırlar_altındaki_integralleri"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Trigonometrik fonksiyonların simetrik sınırlar altındaki integralleri</span> </div> </a> <ul id="toc-Trigonometrik_fonksiyonların_simetrik_sınırlar_altındaki_integralleri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kaynakça" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Kaynakça"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Kaynakça</span> </div> </a> <ul id="toc-Kaynakça-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="İçindekiler" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="İçindekiler tablosunu değiştir" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">İçindekiler tablosunu değiştir</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Trigonometrik fonksiyonların integralleri</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Başka bir dildeki sayfaya gidin. 37 dilde mevcut" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-37" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">37 dil</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%82%D8%A7%D8%A6%D9%85%D8%A9_%D8%AA%D9%83%D8%A7%D9%85%D9%84%D8%A7%D8%AA_%D8%A7%D9%84%D8%AF%D9%88%D8%A7%D9%84_%D8%A7%D9%84%D9%85%D8%AB%D9%84%D8%AB%D9%8A%D8%A9" title="قائمة تكاملات الدوال المثلثية - Arapça" lang="ar" hreflang="ar" data-title="قائمة تكاملات الدوال المثلثية" data-language-autonym="العربية" data-language-local-name="Arapça" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Triqonometrik_funksiyalar%C4%B1n_inteqrallar%C4%B1_siyah%C4%B1s%C4%B1" title="Triqonometrik funksiyaların inteqralları siyahısı - Azerbaycan dili" lang="az" hreflang="az" data-title="Triqonometrik funksiyaların inteqralları siyahısı" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaycan dili" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A2%D0%B0%D0%B1%D0%BB%D0%B8%D1%86%D0%B0_%D1%81_%D0%B8%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D0%B8_%D0%BD%D0%B0_%D1%82%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%B8_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8" title="Таблица с интеграли на тригонометрични функции - Bulgarca" lang="bg" hreflang="bg" data-title="Таблица с интеграли на тригонометрични функции" data-language-autonym="Български" data-language-local-name="Bulgarca" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%A4%E0%A7%8D%E0%A6%B0%E0%A6%BF%E0%A6%95%E0%A7%8B%E0%A6%A3%E0%A6%AE%E0%A6%BF%E0%A6%A4%E0%A6%BF%E0%A6%95_%E0%A6%85%E0%A6%AA%E0%A7%87%E0%A6%95%E0%A7%8D%E0%A6%B7%E0%A6%95%E0%A7%87%E0%A6%B0_%E0%A6%B8%E0%A6%AE%E0%A6%BE%E0%A6%95%E0%A6%B2%E0%A7%87%E0%A6%B0_%E0%A6%A4%E0%A6%BE%E0%A6%B2%E0%A6%BF%E0%A6%95%E0%A6%BE" title="ত্রিকোণমিতিক অপেক্ষকের সমাকলের তালিকা - Bengalce" lang="bn" hreflang="bn" data-title="ত্রিকোণমিতিক অপেক্ষকের সমাকলের তালিকা" data-language-autonym="বাংলা" data-language-local-name="Bengalce" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Spisak_integrala_trigonometrijskih_funkcija" title="Spisak integrala trigonometrijskih funkcija - Boşnakça" lang="bs" hreflang="bs" data-title="Spisak integrala trigonometrijskih funkcija" data-language-autonym="Bosanski" data-language-local-name="Boşnakça" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Primitives_de_funcions_trigonom%C3%A8triques" title="Primitives de funcions trigonomètriques - Katalanca" lang="ca" hreflang="ca" data-title="Primitives de funcions trigonomètriques" data-language-autonym="Català" data-language-local-name="Katalanca" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%BE%DB%8E%D8%B1%D8%B3%D8%AA%DB%8C_%D8%AA%DB%95%D9%88%D8%A7%D9%88%DA%A9%D8%A7%D8%B1%DB%8C_%D9%81%D8%A7%D9%86%DA%A9%D8%B4%D9%86%DB%95_%D8%B3%DB%8E%DA%AF%DB%86%D8%B4%DB%95%DB%8C%DB%8C%DB%95%DA%A9%D8%A7%D9%86" title="پێرستی تەواوکاری فانکشنە سێگۆشەییەکان - Orta Kürtçe" lang="ckb" hreflang="ckb" data-title="پێرستی تەواوکاری فانکشنە سێگۆشەییەکان" data-language-autonym="کوردی" data-language-local-name="Orta Kürtçe" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Seznam_integr%C3%A1l%C5%AF_trigonometrick%C3%BDch_funkc%C3%AD" title="Seznam integrálů trigonometrických funkcí - Çekçe" lang="cs" hreflang="cs" data-title="Seznam integrálů trigonometrických funkcí" data-language-autonym="Čeština" data-language-local-name="Çekçe" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%BB%D0%BB%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%81%D0%B5%D0%BD_%D0%B8%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%C4%95%D1%81%D0%B5%D0%BD_%D0%B9%D1%8B%D1%88%C4%95" title="Тригонометрилле функцисен интегралĕсен йышĕ - Çuvaşça" lang="cv" hreflang="cv" data-title="Тригонометрилле функцисен интегралĕсен йышĕ" data-language-autonym="Чӑвашла" data-language-local-name="Çuvaşça" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/List_of_integrals_of_trigonometric_functions" title="List of integrals of trigonometric functions - İngilizce" lang="en" hreflang="en" data-title="List of integrals of trigonometric functions" data-language-autonym="English" data-language-local-name="İngilizce" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Anexo:Integrales_de_funciones_trigonom%C3%A9tricas" title="Anexo:Integrales de funciones trigonométricas - İspanyolca" lang="es" hreflang="es" data-title="Anexo:Integrales de funciones trigonométricas" data-language-autonym="Español" data-language-local-name="İspanyolca" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Zerrenda:Funtzio_trigonometrikoen_integralak" title="Zerrenda:Funtzio trigonometrikoen integralak - Baskça" lang="eu" hreflang="eu" data-title="Zerrenda:Funtzio trigonometrikoen integralak" data-language-autonym="Euskara" data-language-local-name="Baskça" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D9%87%D8%B1%D8%B3%D8%AA_%D8%A7%D9%86%D8%AA%DA%AF%D8%B1%D8%A7%D9%84_%D8%AA%D9%88%D8%A7%D8%A8%D8%B9_%D9%85%D8%AB%D9%84%D8%AB%D8%A7%D8%AA%DB%8C" title="فهرست انتگرال توابع مثلثاتی - Farsça" lang="fa" hreflang="fa" data-title="فهرست انتگرال توابع مثلثاتی" data-language-autonym="فارسی" data-language-local-name="Farsça" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Primitives_de_fonctions_trigonom%C3%A9triques" title="Primitives de fonctions trigonométriques - Fransızca" lang="fr" hreflang="fr" data-title="Primitives de fonctions trigonométriques" data-language-autonym="Français" data-language-local-name="Fransızca" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Lista_de_integrais_de_funci%C3%B3ns_trigonom%C3%A9tricas" title="Lista de integrais de funcións trigonométricas - Galiçyaca" lang="gl" hreflang="gl" data-title="Lista de integrais de funcións trigonométricas" data-language-autonym="Galego" data-language-local-name="Galiçyaca" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%A4%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%95%E0%A5%8B%E0%A4%A3%E0%A4%AE%E0%A4%BF%E0%A4%A4%E0%A5%80%E0%A4%AF_%E0%A4%AB%E0%A4%B2%E0%A4%A8%E0%A5%8B%E0%A4%82_%E0%A4%95%E0%A5%87_%E0%A4%B8%E0%A4%AE%E0%A4%BE%E0%A4%95%E0%A4%B2%E0%A5%8B%E0%A4%82_%E0%A4%95%E0%A5%80_%E0%A4%B8%E0%A5%82%E0%A4%9A%E0%A5%80" title="त्रिकोणमितीय फलनों के समाकलों की सूची - Hintçe" lang="hi" hreflang="hi" data-title="त्रिकोणमितीय फलनों के समाकलों की सूची" data-language-autonym="हिन्दी" data-language-local-name="Hintçe" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Popis_integrala_trigonometrijskih_funkcija" title="Popis integrala trigonometrijskih funkcija - Hırvatça" lang="hr" hreflang="hr" data-title="Popis integrala trigonometrijskih funkcija" data-language-autonym="Hrvatski" data-language-local-name="Hırvatça" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B5%D5%BC%D5%A1%D5%B6%D5%AF%D5%B5%D5%B8%D6%82%D5%B6%D5%A1%D5%B9%D5%A1%D6%83%D5%A1%D5%AF%D5%A1%D5%B6_%D6%86%D5%B8%D6%82%D5%B6%D5%AF%D6%81%D5%AB%D5%A1%D5%B6%D5%A5%D6%80%D5%AB_%D5%AB%D5%B6%D5%BF%D5%A5%D5%A3%D6%80%D5%A1%D5%AC%D5%B6%D5%A5%D6%80%D5%AB_%D6%81%D5%A1%D5%B6%D5%AF" title="Եռանկյունաչափական ֆունկցիաների ինտեգրալների ցանկ - Ermenice" lang="hy" hreflang="hy" data-title="Եռանկյունաչափական ֆունկցիաների ինտեգրալների ցանկ" data-language-autonym="Հայերեն" data-language-local-name="Ermenice" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Daftar_integral_dari_fungsi_trigonometri" title="Daftar integral dari fungsi trigonometri - Endonezce" lang="id" hreflang="id" data-title="Daftar integral dari fungsi trigonometri" data-language-autonym="Bahasa Indonesia" data-language-local-name="Endonezce" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Tavola_degli_integrali_indefiniti_di_funzioni_trigonometriche" title="Tavola degli integrali indefiniti di funzioni trigonometriche - İtalyanca" lang="it" hreflang="it" data-title="Tavola degli integrali indefiniti di funzioni trigonometriche" data-language-autonym="İtaliano" data-language-local-name="İtalyanca" class="interlanguage-link-target"><span>İtaliano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E4%B8%89%E8%A7%92%E9%96%A2%E6%95%B0%E3%81%AE%E5%8E%9F%E5%A7%8B%E9%96%A2%E6%95%B0%E3%81%AE%E4%B8%80%E8%A6%A7" title="三角関数の原始関数の一覧 - Japonca" lang="ja" hreflang="ja" data-title="三角関数の原始関数の一覧" data-language-autonym="日本語" data-language-local-name="Japonca" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%8F%E1%9E%B6%E1%9E%9A%E1%9E%B6%E1%9E%84%E1%9E%A2%E1%9E%B6%E1%9F%86%E1%9E%84%E1%9E%8F%E1%9F%81%E1%9E%80%E1%9F%92%E1%9E%9A%E1%9E%B6%E1%9E%9B%E1%9E%93%E1%9F%83%E1%9E%A2%E1%9E%93%E1%9E%BB%E1%9E%82%E1%9E%98%E1%9E%93%E1%9F%8D%E1%9E%8F%E1%9F%92%E1%9E%9A%E1%9E%B8%E1%9E%80%E1%9F%84%E1%9E%8E%E1%9E%98%E1%9E%B6%E1%9E%8F%E1%9F%92%E1%9E%9A" title="តារាងអាំងតេក្រាលនៃអនុគមន៍ត្រីកោណមាត្រ - Khmer dili" lang="km" hreflang="km" data-title="តារាងអាំងតេក្រាលនៃអនុគមន៍ត្រីកោណមាត្រ" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="Khmer dili" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%82%BC%EA%B0%81%ED%95%A8%EC%88%98_%EC%A0%81%EB%B6%84%ED%91%9C" title="삼각함수 적분표 - Korece" lang="ko" hreflang="ko" data-title="삼각함수 적분표" data-language-autonym="한국어" data-language-local-name="Korece" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%81%D0%BE%D0%BA_%D0%BD%D0%B0_%D0%B8%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D0%B8_%D0%BD%D0%B0_%D1%82%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%81%D0%BA%D0%B8_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8" title="Список на интеграли на тригонометриски функции - Makedonca" lang="mk" hreflang="mk" data-title="Список на интеграли на тригонометриски функции" data-language-autonym="Македонски" data-language-local-name="Makedonca" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Lijst_van_integralen_van_goniometrische_functies" title="Lijst van integralen van goniometrische functies - Felemenkçe" lang="nl" hreflang="nl" data-title="Lijst van integralen van goniometrische functies" data-language-autonym="Nederlands" data-language-local-name="Felemenkçe" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Liste_over_integraler_av_trigonometriske_funksjoner" title="Liste over integraler av trigonometriske funksjoner - Norveççe Bokmål" lang="nb" hreflang="nb" data-title="Liste over integraler av trigonometriske funksjoner" data-language-autonym="Norsk bokmål" data-language-local-name="Norveççe Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Lista_de_integrais_de_fun%C3%A7%C3%B5es_trigonom%C3%A9tricas" title="Lista de integrais de funções trigonométricas - Portekizce" lang="pt" hreflang="pt" data-title="Lista de integrais de funções trigonométricas" data-language-autonym="Português" data-language-local-name="Portekizce" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Primitivele_func%C8%9Biilor_trigonometrice" title="Primitivele funcțiilor trigonometrice - Rumence" lang="ro" hreflang="ro" data-title="Primitivele funcțiilor trigonometrice" data-language-autonym="Română" data-language-local-name="Rumence" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%81%D0%BE%D0%BA_%D0%B8%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D0%BE%D0%B2_%D0%BE%D1%82_%D1%82%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B9" title="Список интегралов от тригонометрических функций - Rusça" lang="ru" hreflang="ru" data-title="Список интегралов от тригонометрических функций" data-language-autonym="Русский" data-language-local-name="Rusça" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Lista_integrala_trigonometrijskih_funkcija" title="Lista integrala trigonometrijskih funkcija - Sırp-Hırvat Dili" lang="sh" hreflang="sh" data-title="Lista integrala trigonometrijskih funkcija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Sırp-Hırvat Dili" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Seznam_integralov_trigonometri%C4%8Dnih_funkcij" title="Seznam integralov trigonometričnih funkcij - Slovence" lang="sl" hreflang="sl" data-title="Seznam integralov trigonometričnih funkcij" data-language-autonym="Slovenščina" data-language-local-name="Slovence" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%81%D0%B0%D0%BA_%D0%B8%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D0%B0_%D1%82%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%98%D1%81%D0%BA%D0%B8%D1%85_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%98%D0%B0" title="Списак интеграла тригонометријских функција - Sırpça" lang="sr" hreflang="sr" data-title="Списак интеграла тригонометријских функција" data-language-autonym="Српски / srpski" data-language-local-name="Sırpça" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AE%E0%AF%81%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AF%8B%E0%AE%A3%E0%AE%B5%E0%AE%BF%E0%AE%AF%E0%AE%B2%E0%AF%8D_%E0%AE%9A%E0%AE%BE%E0%AE%B0%E0%AF%8D%E0%AE%AA%E0%AF%81%E0%AE%95%E0%AE%B3%E0%AE%BF%E0%AE%A9%E0%AF%8D_%E0%AE%A4%E0%AF%8A%E0%AE%95%E0%AF%88%E0%AE%AF%E0%AF%80%E0%AE%9F%E0%AF%81%E0%AE%95%E0%AE%B3%E0%AE%BF%E0%AE%A9%E0%AF%8D_%E0%AE%AA%E0%AE%9F%E0%AF%8D%E0%AE%9F%E0%AE%BF%E0%AE%AF%E0%AE%B2%E0%AF%8D" title="முக்கோணவியல் சார்புகளின் தொகையீடுகளின் பட்டியல் - Tamilce" lang="ta" hreflang="ta" data-title="முக்கோணவியல் சார்புகளின் தொகையீடுகளின் பட்டியல்" data-language-autonym="தமிழ்" data-language-local-name="Tamilce" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A3%E0%B8%B2%E0%B8%A2%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%9B%E0%B8%A3%E0%B8%B4%E0%B8%9E%E0%B8%B1%E0%B8%99%E0%B8%98%E0%B9%8C%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B8%9F%E0%B8%B1%E0%B8%87%E0%B8%81%E0%B9%8C%E0%B8%8A%E0%B8%B1%E0%B8%99%E0%B8%95%E0%B8%A3%E0%B8%B5%E0%B9%82%E0%B8%81%E0%B8%93%E0%B8%A1%E0%B8%B4%E0%B8%95%E0%B8%B4" title="รายการปริพันธ์ของฟังก์ชันตรีโกณมิติ - Tayca" lang="th" hreflang="th" data-title="รายการปริพันธ์ของฟังก์ชันตรีโกณมิติ" data-language-autonym="ไทย" data-language-local-name="Tayca" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D0%B0%D0%B1%D0%BB%D0%B8%D1%86%D1%8F_%D1%96%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%96%D0%B2_%D1%82%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%B8%D1%85_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%96%D0%B9" title="Таблиця інтегралів тригонометричних функцій - Ukraynaca" lang="uk" hreflang="uk" data-title="Таблиця інтегралів тригонометричних функцій" data-language-autonym="Українська" data-language-local-name="Ukraynaca" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Danh_s%C3%A1ch_t%C3%ADch_ph%C3%A2n_v%E1%BB%9Bi_h%C3%A0m_l%C6%B0%E1%BB%A3ng_gi%C3%A1c" title="Danh sách tích phân với hàm lượng giác - Vietnamca" lang="vi" hreflang="vi" data-title="Danh sách tích phân với hàm lượng giác" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamca" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E4%B8%89%E8%A7%92%E5%87%BD%E6%95%B0%E7%A7%AF%E5%88%86%E8%A1%A8" title="三角函数积分表 - Çince" lang="zh" hreflang="zh" data-title="三角函数积分表" data-language-autonym="中文" data-language-local-name="Çince" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q846505#sitelinks-wikipedia" title="Dillerarası bağlantıları değiştir" class="wbc-editpage">Bağlantıları değiştir</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Ad alanları"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Trigonometrik_fonksiyonlar%C4%B1n_integralleri" title="İçerik sayfasını göster [c]" accesskey="c"><span>Madde</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Tart%C4%B1%C5%9Fma:Trigonometrik_fonksiyonlar%C4%B1n_integralleri" rel="discussion" title="İçerik ile ilgili tartışma [t]" accesskey="t"><span>Tartışma</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Dil varyantını değiştir" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Türkçe</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Görünüm"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;stable=1"><span>Oku</span></a></li><li id="ca-current" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;stable=0&amp;redirect=no" title="Bu sayfayı bekleyen değişikliklerle gör [v]" accesskey="v"><span>Bekleyen değişiklikler</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;oldid=30769732&amp;veaction=edit" title="Bu sayfayı değiştir [v]" accesskey="v"><span>Değiştir</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="//tr.wikipedia.org/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=edit" title="Bu sayfanın kaynak kodunu düzenleyin [e]" accesskey="e"><span>Kaynağı değiştir</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=history" title="Bu sayfanın geçmiş sürümleri [h]" accesskey="h"><span>Geçmişi gör</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Sayfa araçları"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Araçlar" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Araçlar</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Araçlar</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">kenar çubuğuna taşı</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">gizle</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Daha fazla seçenek" > <div class="vector-menu-heading"> Eylemler </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;stable=1"><span>Oku</span></a></li><li id="ca-more-current" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;stable=0&amp;redirect=no"><span>Bekleyen değişiklikler</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;oldid=30769732&amp;veaction=edit" title="Bu sayfayı değiştir [v]" accesskey="v"><span>Değiştir</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="//tr.wikipedia.org/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=edit" title="Bu sayfanın kaynak kodunu düzenleyin [e]" accesskey="e"><span>Kaynağı değiştir</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=history"><span>Geçmişi gör</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Genel </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%C3%96zel:SayfayaBa%C4%9Flant%C4%B1lar/Trigonometrik_fonksiyonlar%C4%B1n_integralleri" title="Bu sayfaya bağlantı vermiş tüm viki sayfalarının listesi [j]" accesskey="j"><span>Sayfaya bağlantılar</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%C3%96zel:%C4%B0lgiliDe%C4%9Fi%C5%9Fiklikler/Trigonometrik_fonksiyonlar%C4%B1n_integralleri" rel="nofollow" title="Bu sayfadan bağlantı verilen sayfalardaki son değişiklikler [k]" accesskey="k"><span>İlgili değişiklikler</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/%C3%96zel:%C3%96zelSayfalar" title="Tüm özel sayfaların listesi [q]" accesskey="q"><span>Özel sayfalar</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;oldid=30769732" title="Bu sayfanın bu revizyonuna kalıcı bağlantı"><span>Kalıcı bağlantı</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=info" title="Bu sayfa hakkında daha fazla bilgi"><span>Sayfa bilgisi</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%C3%96zel:KaynakG%C3%B6ster&amp;page=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;id=30769732&amp;wpFormIdentifier=titleform" title="Bu sayfadan nasıl kaynak göstereceği hakkında bilgi"><span>Bu sayfayı kaynak göster</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%C3%96zel:UrlShortener&amp;url=https%3A%2F%2Ftr.wikipedia.org%2Fwiki%2FTrigonometrik_fonksiyonlar%25C4%25B1n_integralleri"><span>Kısaltılmış URL'yi al</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%C3%96zel:QrCode&amp;url=https%3A%2F%2Ftr.wikipedia.org%2Fwiki%2FTrigonometrik_fonksiyonlar%25C4%25B1n_integralleri"><span>Karekodu indir</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Yazdır/dışa aktar </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=%C3%96zel:Kitap&amp;bookcmd=book_creator&amp;referer=Trigonometrik+fonksiyonlar%C4%B1n+integralleri"><span>Bir kitap oluştur</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;printable=yes" title="Bu sayfanın basılmaya uygun sürümü [p]" accesskey="p"><span>Basılmaya uygun görünüm</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Diğer projelerde </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q846505" title="Veri havuzundaki ilgili ögeye bağlantı [g]" accesskey="g"><span>Vikiveri ögesi</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Sayfa araçları"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Görünüm"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Görünüm</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">kenar çubuğuna taşı</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">gizle</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-indicator-fr-review-status" class="mw-indicator"><indicator name="fr-review-status" class="mw-fr-review-status-indicator" id="mw-fr-revision-toggle"><span class="cdx-fr-css-icon-review--status--stable"></span><b>Kontrol Edilmiş</b></indicator></div> </div> <div id="siteSub" class="noprint">Vikipedi, özgür ansiklopedi</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><div id="mw-fr-revision-messages"><div id="mw-fr-revision-details" class="mw-fr-revision-details-dialog" style="display:none;"><div tabindex="0"></div><div class="cdx-dialog cdx-dialog--horizontal-actions"><header class="cdx-dialog__header cdx-dialog__header--default"><div class="cdx-dialog__header__title-group"><h2 class="cdx-dialog__header__title">Sayfa sürüm durumu</h2><p class="cdx-dialog__header__subtitle">Bu, bu sayfanın kontrol edilmiş bir sürümüdür</p></div><button class="cdx-button cdx-button--action-default cdx-button--weight-quiet&#10;&#9;&#9;&#9;&#9;&#9;&#9;&#9;cdx-button--size-medium cdx-button--icon-only cdx-dialog__header__close-button" aria-label="Close" onclick="document.getElementById(&quot;mw-fr-revision-details&quot;).style.display = &quot;none&quot;;" type="submit"><span class="cdx-icon cdx-icon--medium&#10;&#9;&#9;&#9;&#9;&#9;&#9;&#9;cdx-fr-css-icon--close"></span></button></header><div class="cdx-dialog__body"><i>15 Aralık 2023</i> tarihinde <a class="external text" href="https://tr.wikipedia.org/w/index.php?title=%C3%96zel:G%C3%BCnl%C3%BCk&amp;type=review&amp;page=%C3%96zel:Badtitle/Message">kontrol edilmiş</a> <a href="/wiki/Vikipedi:S%C3%BCr%C3%BCm_kontrol%C3%BC" title="Vikipedi:Sürüm kontrolü">kararlı sürüm</a> gösterilmektedir. İnceleme bekleyen <a class="external text" href="https://tr.wikipedia.org/w/index.php?title=%C3%96zel:Badtitle/Message&amp;oldid=30769732&amp;diff=cur">6 değişiklik</a> bulunmaktadır.<p><table id="mw-fr-revisionratings-box" class="flaggedrevs-color-1" style="margin: auto;" cellpadding="0"><tr><td class="fr-text" style="vertical-align: middle;">Doğruluk</td><td class="fr-value40" style="vertical-align: middle;">Görüldü</td></tr></table></p></div></div><div tabindex="0"></div></div></div></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="tr" dir="ltr"><table class="box-Uzman plainlinks metadata ambox ambox-content ambox-Cleanup" role="presentation"><tbody><tr><td class="mbox-image"><div style="width:52px"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Ambox_important.svg/40px-Ambox_important.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Ambox_important.svg/60px-Ambox_important.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Ambox_important.svg/80px-Ambox_important.svg.png 2x" data-file-width="40" data-file-height="40" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span"><b>Bu maddenin veya maddenin bir bölümünün gelişebilmesi için alakalı konuda uzman kişilere gereksinim duyulmaktadır.</b><span class="hide-when-compact"> <br />Ayrıntılar için lütfen <a href="/wiki/Tart%C4%B1%C5%9Fma:Trigonometrik_fonksiyonlar%C4%B1n_integralleri" title="Tartışma:Trigonometrik fonksiyonların integralleri">tartışma sayfasını</a> inceleyin veya yeni bir tartışma başlatın.<br /><small>Konu hakkında uzman birini bulmaya yardımcı olarak ya da maddeye gerekli bilgileri <a href="/wiki/%C3%96zel:EditPage/Trigonometrik_fonksiyonlar%C4%B1n_integralleri" title="Özel:EditPage/Trigonometrik fonksiyonların integralleri">ekleyerek</a> Vikipedi'ye katkıda bulunabilirsiniz.</small><br /></span> <small class="date-container"><i>(<span class="date">Eylül 2023</span>)</i></small></div></td></tr></tbody></table> <p>Aşağıdaki liste <a href="/wiki/Trigonometrik_fonksiyonlar" title="Trigonometrik fonksiyonlar">trigonometrik fonksiyonların</a> <a href="/wiki/%C4%B0ntegral" title="İntegral">integrallerini</a> içermektedir. İntegral fonksiyonlarının tüm bir listesi için lütfen <a href="/wiki/%C4%B0ntegral_tablosu" title="İntegral tablosu">İntegral tablosu</a> sayfasına bakınız. </p><p><i>c</i> sabiti sıfırdan farklı varsayılmıştır. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Sadece_Sinüs_içeren_trigonometrik_fonksiyonların_integralleri"><span id="Sadece_Sin.C3.BCs_i.C3.A7eren_trigonometrik_fonksiyonlar.C4.B1n_integralleri"></span>Sadece <a href="/wiki/Sin%C3%BCs" class="mw-disambig" title="Sinüs">Sinüs</a> içeren trigonometrik fonksiyonların integralleri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;veaction=edit&amp;section=1" title="Değiştirilen bölüm: Sadece Sinüs içeren trigonometrik fonksiyonların integralleri" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=edit&amp;section=1" title="Bölümün kaynak kodunu değiştir: Sadece Sinüs içeren trigonometrik fonksiyonların integralleri"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>c burada integral sabitidir: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \sin ax\;dx=-{\frac {1}{a}}\cos ax\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>a</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>a</mi> <mi>x</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \sin ax\;dx=-{\frac {1}{a}}\cos ax\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/798131e16d08b7b0a0413b952e3ce70c170f2863" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:25.378ex; height:5.676ex;" alt="{\displaystyle \int \sin ax\;dx=-{\frac {1}{a}}\cos ax\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \sin x\,dx=-\cos x\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \sin x\,dx=-\cos x\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d04aa3f5da845c638287552ea59a185e29f950c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:20.595ex; height:5.676ex;" alt="{\displaystyle \int \sin x\,dx=-\cos x\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \sin ^{n}{cx}\;dx=-{\frac {\sin ^{n-1}cx\cos cx}{nc}}+{\frac {n-1}{n}}\int \sin ^{n-2}cx\;dx\qquad {\mbox{(}}n&gt;0{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>x</mi> </mrow> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mi>c</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&gt;</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \sin ^{n}{cx}\;dx=-{\frac {\sin ^{n-1}cx\cos cx}{nc}}+{\frac {n-1}{n}}\int \sin ^{n-2}cx\;dx\qquad {\mbox{(}}n&gt;0{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/951a7778b98ef0997fd4a29530698cb85db83f50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:74.644ex; height:6.176ex;" alt="{\displaystyle \int \sin ^{n}{cx}\;dx=-{\frac {\sin ^{n-1}cx\cos cx}{nc}}+{\frac {n-1}{n}}\int \sin ^{n-2}cx\;dx\qquad {\mbox{(}}n&gt;0{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \sin ^{2}{cx}\;dx={\frac {x}{2}}-{\frac {1}{4c}}\sin 2cx={\frac {x}{2}}-{\frac {1}{2c}}\sin cx\cos cx\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>x</mi> </mrow> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2</mn> <mi>c</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \sin ^{2}{cx}\;dx={\frac {x}{2}}-{\frac {1}{4c}}\sin 2cx={\frac {x}{2}}-{\frac {1}{2c}}\sin cx\cos cx\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e299cc3a3d71b32d9a94abc0a2d8bdddfc7702c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.271ex; width:53.826ex; height:5.676ex;" alt="{\displaystyle \int \sin ^{2}{cx}\;dx={\frac {x}{2}}-{\frac {1}{4c}}\sin 2cx={\frac {x}{2}}-{\frac {1}{2c}}\sin cx\cos cx\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\sqrt {1-\sin {x}}}\,dx=\int {\sqrt {\operatorname {cvs} \,{x}}}\,dx=2{\frac {\cos {\frac {x}{2}}+\sin {\frac {x}{2}}}{\cos {\frac {x}{2}}-\sin {\frac {x}{2}}}}{\sqrt {\operatorname {cvs} \,{x}}}=2{\sqrt {1+\sin {x}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msqrt> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>cvs</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msqrt> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>cvs</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msqrt> </mrow> <mo>=</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\sqrt {1-\sin {x}}}\,dx=\int {\sqrt {\operatorname {cvs} \,{x}}}\,dx=2{\frac {\cos {\frac {x}{2}}+\sin {\frac {x}{2}}}{\cos {\frac {x}{2}}-\sin {\frac {x}{2}}}}{\sqrt {\operatorname {cvs} \,{x}}}=2{\sqrt {1+\sin {x}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e03ede04d9421080125aaa4a001d6e9e750c5bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:72.071ex; height:7.176ex;" alt="{\displaystyle \int {\sqrt {1-\sin {x}}}\,dx=\int {\sqrt {\operatorname {cvs} \,{x}}}\,dx=2{\frac {\cos {\frac {x}{2}}+\sin {\frac {x}{2}}}{\cos {\frac {x}{2}}-\sin {\frac {x}{2}}}}{\sqrt {\operatorname {cvs} \,{x}}}=2{\sqrt {1+\sin {x}}}}"></span></dd></dl> <p>Not: cvs{x} fonksiyonu 1-sinx'e eşittir. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x\sin cx\;dx={\frac {\sin cx}{c^{2}}}-{\frac {x\cos cx}{c}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>x</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mi>c</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x\sin cx\;dx={\frac {\sin cx}{c^{2}}}-{\frac {x\cos cx}{c}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ba196bb420de05f3a536e722b9fa9b633ae1edb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:34.197ex; height:5.676ex;" alt="{\displaystyle \int x\sin cx\;dx={\frac {\sin cx}{c^{2}}}-{\frac {x\cos cx}{c}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x^{n}\sin cx\;dx=-{\frac {x^{n}}{c}}\cos cx+{\frac {n}{c}}\int x^{n-1}\cos cx\;dx\qquad {\mbox{(}}n&gt;0{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>c</mi> </mfrac> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>c</mi> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&gt;</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x^{n}\sin cx\;dx=-{\frac {x^{n}}{c}}\cos cx+{\frac {n}{c}}\int x^{n-1}\cos cx\;dx\qquad {\mbox{(}}n&gt;0{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac578b670ddc87108226e20461e9a6254026a89b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:67.98ex; height:5.676ex;" alt="{\displaystyle \int x^{n}\sin cx\;dx=-{\frac {x^{n}}{c}}\cos cx+{\frac {n}{c}}\int x^{n-1}\cos cx\;dx\qquad {\mbox{(}}n&gt;0{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{\frac {-a}{2}}^{\frac {a}{2}}x^{2}\sin ^{2}{\frac {n\pi x}{a}}\;dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(}}n=2,4,6...{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mn>2</mn> </mfrac> </mrow> </msubsup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> </mrow> <mi>a</mi> </mfrac> </mrow> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>6</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>24</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>6...</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{\frac {-a}{2}}^{\frac {a}{2}}x^{2}\sin ^{2}{\frac {n\pi x}{a}}\;dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(}}n=2,4,6...{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c0a3006a08c35076d9210c7c8a2e31d2ae000e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; margin-right: -0.387ex; width:60.059ex; height:7.509ex;" alt="{\displaystyle \int _{\frac {-a}{2}}^{\frac {a}{2}}x^{2}\sin ^{2}{\frac {n\pi x}{a}}\;dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(}}n=2,4,6...{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\sin cx}{x}}dx=\sum _{k=0}^{\infty }(-1)^{k}{\frac {(cx)^{2k+1}}{(2k+1)\cdot (2k+1)!}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mi>x</mi> </mfrac> </mrow> <mi>d</mi> <mi>x</mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>c</mi> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\sin cx}{x}}dx=\sum _{k=0}^{\infty }(-1)^{k}{\frac {(cx)^{2k+1}}{(2k+1)\cdot (2k+1)!}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/343b85fb17cb0aa2fd49d6e219a9a01346372e97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; margin-right: -0.387ex; width:43.785ex; height:7.176ex;" alt="{\displaystyle \int {\frac {\sin cx}{x}}dx=\sum _{k=0}^{\infty }(-1)^{k}{\frac {(cx)^{2k+1}}{(2k+1)\cdot (2k+1)!}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\sin cx}{x^{n}}}dx=-{\frac {\sin cx}{(n-1)x^{n-1}}}+{\frac {c}{n-1}}\int {\frac {\cos cx}{x^{n-1}}}dx\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mfrac> </mrow> <mi>d</mi> <mi>x</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\sin cx}{x^{n}}}dx=-{\frac {\sin cx}{(n-1)x^{n-1}}}+{\frac {c}{n-1}}\int {\frac {\cos cx}{x^{n-1}}}dx\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee2c4bcf48fc3ff6ee0d8eb14b330bf55dacd67f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:50.785ex; height:6.009ex;" alt="{\displaystyle \int {\frac {\sin cx}{x^{n}}}dx=-{\frac {\sin cx}{(n-1)x^{n-1}}}+{\frac {c}{n-1}}\int {\frac {\cos cx}{x^{n-1}}}dx\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{\sin cx}}={\frac {1}{c}}\ln \left|\tan {\frac {cx}{2}}\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{\sin cx}}={\frac {1}{c}}\ln \left|\tan {\frac {cx}{2}}\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33e9b1d708e4a982d400c2bf4ce60212c69b1273" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:24.633ex; height:5.843ex;" alt="{\displaystyle \int {\frac {dx}{\sin cx}}={\frac {1}{c}}\ln \left|\tan {\frac {cx}{2}}\right|}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{\sin ^{n}cx}}={\frac {\cos cx}{c(1-n)\sin ^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\sin ^{n-2}cx}}\qquad {\mbox{(}}n&gt;1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&gt;</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{\sin ^{n}cx}}={\frac {\cos cx}{c(1-n)\sin ^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\sin ^{n-2}cx}}\qquad {\mbox{(}}n&gt;1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f68f27752442ec49c7ecacbbd63d62fae915c164" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; margin-right: -0.387ex; width:70.505ex; height:6.343ex;" alt="{\displaystyle \int {\frac {dx}{\sin ^{n}cx}}={\frac {\cos cx}{c(1-n)\sin ^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\sin ^{n-2}cx}}\qquad {\mbox{(}}n&gt;1{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{1\pm \sin cx}}={\frac {1}{c}}\tan \left({\frac {cx}{2}}\mp {\frac {\pi }{4}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x00B1;<!-- ± --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>&#x2213;<!-- ∓ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{1\pm \sin cx}}={\frac {1}{c}}\tan \left({\frac {cx}{2}}\mp {\frac {\pi }{4}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce341569f2cd1bf50b4d093c9a4a5c6f236505ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:32.799ex; height:5.843ex;" alt="{\displaystyle \int {\frac {dx}{1\pm \sin cx}}={\frac {1}{c}}\tan \left({\frac {cx}{2}}\mp {\frac {\pi }{4}}\right)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {x\;dx}{1+\sin cx}}={\frac {x}{c}}\tan \left({\frac {cx}{2}}-{\frac {\pi }{4}}\right)+{\frac {2}{c^{2}}}\ln \left|\cos \left({\frac {cx}{2}}-{\frac {\pi }{4}}\right)\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>c</mi> </mfrac> </mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {x\;dx}{1+\sin cx}}={\frac {x}{c}}\tan \left({\frac {cx}{2}}-{\frac {\pi }{4}}\right)+{\frac {2}{c^{2}}}\ln \left|\cos \left({\frac {cx}{2}}-{\frac {\pi }{4}}\right)\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2ad92be2fe75f28b3a47ea3948950df8e6efcb4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:56.392ex; height:5.843ex;" alt="{\displaystyle \int {\frac {x\;dx}{1+\sin cx}}={\frac {x}{c}}\tan \left({\frac {cx}{2}}-{\frac {\pi }{4}}\right)+{\frac {2}{c^{2}}}\ln \left|\cos \left({\frac {cx}{2}}-{\frac {\pi }{4}}\right)\right|}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {x\;dx}{1-\sin cx}}={\frac {x}{c}}\cot \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)+{\frac {2}{c^{2}}}\ln \left|\sin \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>c</mi> </mfrac> </mrow> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {x\;dx}{1-\sin cx}}={\frac {x}{c}}\cot \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)+{\frac {2}{c^{2}}}\ln \left|\sin \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57b478db3bb323ac13e34688e726f9c5b72fb44d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:55.877ex; height:5.843ex;" alt="{\displaystyle \int {\frac {x\;dx}{1-\sin cx}}={\frac {x}{c}}\cot \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)+{\frac {2}{c^{2}}}\ln \left|\sin \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)\right|}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\sin cx\;dx}{1\pm \sin cx}}=\pm x+{\frac {1}{c}}\tan \left({\frac {\pi }{4}}\mp {\frac {cx}{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x00B1;<!-- ± --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> <mo>&#x2213;<!-- ∓ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\sin cx\;dx}{1\pm \sin cx}}=\pm x+{\frac {1}{c}}\tan \left({\frac {\pi }{4}}\mp {\frac {cx}{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0e1d0c0992f04eb68ac1d4b84f8c8fd96e43064" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:38.778ex; height:5.843ex;" alt="{\displaystyle \int {\frac {\sin cx\;dx}{1\pm \sin cx}}=\pm x+{\frac {1}{c}}\tan \left({\frac {\pi }{4}}\mp {\frac {cx}{2}}\right)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \sin c_{1}x\sin c_{2}x\;dx={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}-{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}\qquad {\mbox{(}}|c_{1}|\neq |c_{2}|{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>x</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2260;<!-- ≠ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \sin c_{1}x\sin c_{2}x\;dx={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}-{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}\qquad {\mbox{(}}|c_{1}|\neq |c_{2}|{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7e84b2ba79324a826a4b665ab4ccc067a4fa6d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:74.184ex; height:6.509ex;" alt="{\displaystyle \int \sin c_{1}x\sin c_{2}x\;dx={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}-{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}\qquad {\mbox{(}}|c_{1}|\neq |c_{2}|{\mbox{ için)}}\,\!}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Sadece_Kosinüs_içeren_trigonometrik_fonksiyonların_integralleri"><span id="Sadece_Kosin.C3.BCs_i.C3.A7eren_trigonometrik_fonksiyonlar.C4.B1n_integralleri"></span>Sadece <a href="/wiki/Kosin%C3%BCs" title="Kosinüs">Kosinüs</a> içeren trigonometrik fonksiyonların integralleri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;veaction=edit&amp;section=2" title="Değiştirilen bölüm: Sadece Kosinüs içeren trigonometrik fonksiyonların integralleri" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=edit&amp;section=2" title="Bölümün kaynak kodunu değiştir: Sadece Kosinüs içeren trigonometrik fonksiyonların integralleri"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \cos cx\;dx={\frac {1}{c}}\sin cx\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \cos cx\;dx={\frac {1}{c}}\sin cx\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd5a071bc63ba7f827d559d720b4e5ef34b64d48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:23.057ex; height:5.676ex;" alt="{\displaystyle \int \cos cx\;dx={\frac {1}{c}}\sin cx\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \cos ^{n}cx\;dx={\frac {\cos ^{n-1}cx\sin cx}{nc}}+{\frac {n-1}{n}}\int \cos ^{n-2}cx\;dx\qquad {\mbox{(}}n&gt;0{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mi>c</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&gt;</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \cos ^{n}cx\;dx={\frac {\cos ^{n-1}cx\sin cx}{nc}}+{\frac {n-1}{n}}\int \cos ^{n-2}cx\;dx\qquad {\mbox{(}}n&gt;0{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fb974e6372f62e86a668e38d4f1f1417a649756" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:73.347ex; height:6.176ex;" alt="{\displaystyle \int \cos ^{n}cx\;dx={\frac {\cos ^{n-1}cx\sin cx}{nc}}+{\frac {n-1}{n}}\int \cos ^{n-2}cx\;dx\qquad {\mbox{(}}n&gt;0{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x\cos cx\;dx={\frac {\cos cx}{c^{2}}}+{\frac {x\sin cx}{c}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>x</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mi>c</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x\cos cx\;dx={\frac {\cos cx}{c^{2}}}+{\frac {x\sin cx}{c}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c5fc103923703bd335b87b1bffc18e6ed72832e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:34.452ex; height:5.676ex;" alt="{\displaystyle \int x\cos cx\;dx={\frac {\cos cx}{c^{2}}}+{\frac {x\sin cx}{c}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \cos ^{2}{cx}\;dx={\frac {x}{2}}+{\frac {1}{4c}}\sin 2cx={\frac {x}{2}}+{\frac {1}{2c}}\sin cx\cos cx\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>x</mi> </mrow> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2</mn> <mi>c</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \cos ^{2}{cx}\;dx={\frac {x}{2}}+{\frac {1}{4c}}\sin 2cx={\frac {x}{2}}+{\frac {1}{2c}}\sin cx\cos cx\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e71422edce24cd77acb6b7b08db24d0f76de334" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.271ex; width:54.082ex; height:5.676ex;" alt="{\displaystyle \int \cos ^{2}{cx}\;dx={\frac {x}{2}}+{\frac {1}{4c}}\sin 2cx={\frac {x}{2}}+{\frac {1}{2c}}\sin cx\cos cx\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x^{n}\cos cx\;dx={\frac {x^{n}\sin cx}{c}}-{\frac {n}{c}}\int x^{n-1}\sin cx\;dx\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mi>c</mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>c</mi> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x^{n}\cos cx\;dx={\frac {x^{n}\sin cx}{c}}-{\frac {n}{c}}\int x^{n-1}\sin cx\;dx\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/593a0631f1f6c5d29a40eed7e6035a515ff8e3d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:49.223ex; height:5.676ex;" alt="{\displaystyle \int x^{n}\cos cx\;dx={\frac {x^{n}\sin cx}{c}}-{\frac {n}{c}}\int x^{n-1}\sin cx\;dx\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{\frac {-a}{2}}^{\frac {a}{2}}x^{2}\cos ^{2}{\frac {n\pi x}{a}}\;dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(}}n=1,3,5...{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mn>2</mn> </mfrac> </mrow> </msubsup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> </mrow> <mi>a</mi> </mfrac> </mrow> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>6</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>24</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>5...</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{\frac {-a}{2}}^{\frac {a}{2}}x^{2}\cos ^{2}{\frac {n\pi x}{a}}\;dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(}}n=1,3,5...{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c711abcc61d06b7d591132c7b35751eead7224b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; margin-right: -0.387ex; width:60.315ex; height:7.509ex;" alt="{\displaystyle \int _{\frac {-a}{2}}^{\frac {a}{2}}x^{2}\cos ^{2}{\frac {n\pi x}{a}}\;dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(}}n=1,3,5...{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\cos cx}{x}}dx=\ln |cx|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(cx)^{2k}}{2k\cdot (2k)!}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mi>x</mi> </mfrac> </mrow> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>c</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>c</mi> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\cos cx}{x}}dx=\ln |cx|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(cx)^{2k}}{2k\cdot (2k)!}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72dc9439fede8f2e8040e1470f777fcbc1342d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; margin-right: -0.387ex; width:43.022ex; height:7.009ex;" alt="{\displaystyle \int {\frac {\cos cx}{x}}dx=\ln |cx|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(cx)^{2k}}{2k\cdot (2k)!}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\cos cx}{x^{n}}}dx=-{\frac {\cos cx}{(n-1)x^{n-1}}}-{\frac {c}{n-1}}\int {\frac {\sin cx}{x^{n-1}}}dx\qquad {\mbox{(}}n\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mfrac> </mrow> <mi>d</mi> <mi>x</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\cos cx}{x^{n}}}dx=-{\frac {\cos cx}{(n-1)x^{n-1}}}-{\frac {c}{n-1}}\int {\frac {\sin cx}{x^{n-1}}}dx\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28e1bd9d87a6a04d485f2257908b248b511f5212" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:67.479ex; height:6.009ex;" alt="{\displaystyle \int {\frac {\cos cx}{x^{n}}}dx=-{\frac {\cos cx}{(n-1)x^{n-1}}}-{\frac {c}{n-1}}\int {\frac {\sin cx}{x^{n-1}}}dx\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{\cos cx}}={\frac {1}{c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{\cos cx}}={\frac {1}{c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/136d5e28887252d271d77638ae7c15b2b32c09f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:32.285ex; height:5.843ex;" alt="{\displaystyle \int {\frac {dx}{\cos cx}}={\frac {1}{c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{\cos ^{n}cx}}={\frac {\sin cx}{c(n-1)cos^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cos ^{n-2}cx}}\qquad {\mbox{(}}n&gt;1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>c</mi> <mi>o</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&gt;</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{\cos ^{n}cx}}={\frac {\sin cx}{c(n-1)cos^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cos ^{n-2}cx}}\qquad {\mbox{(}}n&gt;1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb6a9fee7031ddc8dbb5866da70ac89a2d8ca436" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:70.611ex; height:6.176ex;" alt="{\displaystyle \int {\frac {dx}{\cos ^{n}cx}}={\frac {\sin cx}{c(n-1)cos^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cos ^{n-2}cx}}\qquad {\mbox{(}}n&gt;1{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{1+\cos cx}}={\frac {1}{c}}\tan {\frac {cx}{2}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{1+\cos cx}}={\frac {1}{c}}\tan {\frac {cx}{2}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/478322b4056d8192a77bc75153738e2508453aa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:26.045ex; height:5.843ex;" alt="{\displaystyle \int {\frac {dx}{1+\cos cx}}={\frac {1}{c}}\tan {\frac {cx}{2}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{1-\cos cx}}=-{\frac {1}{c}}\cot {\frac {cx}{2}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{1-\cos cx}}=-{\frac {1}{c}}\cot {\frac {cx}{2}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24e320bd9d4ec7e20248bbb72a2ab04ea060355c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:27.593ex; height:5.843ex;" alt="{\displaystyle \int {\frac {dx}{1-\cos cx}}=-{\frac {1}{c}}\cot {\frac {cx}{2}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {x\;dx}{1+\cos cx}}={\frac {x}{c}}\tan {\frac {cx}{2}}+{\frac {2}{c^{2}}}\ln \left|\cos {\frac {cx}{2}}\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>c</mi> </mfrac> </mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {x\;dx}{1+\cos cx}}={\frac {x}{c}}\tan {\frac {cx}{2}}+{\frac {2}{c^{2}}}\ln \left|\cos {\frac {cx}{2}}\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d18ff5f4712370e7b333e04b0220acba13840b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:41.854ex; height:5.843ex;" alt="{\displaystyle \int {\frac {x\;dx}{1+\cos cx}}={\frac {x}{c}}\tan {\frac {cx}{2}}+{\frac {2}{c^{2}}}\ln \left|\cos {\frac {cx}{2}}\right|}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {x\;dx}{1-\cos cx}}=-{\frac {x}{c}}\cot {\frac {cx}{2}}+{\frac {2}{c^{2}}}\ln \left|\sin {\frac {cx}{2}}\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>c</mi> </mfrac> </mrow> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {x\;dx}{1-\cos cx}}=-{\frac {x}{c}}\cot {\frac {cx}{2}}+{\frac {2}{c^{2}}}\ln \left|\sin {\frac {cx}{2}}\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62d94b8fcbba8f323b79bc40238f50ced144f145" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:43.146ex; height:5.843ex;" alt="{\displaystyle \int {\frac {x\;dx}{1-\cos cx}}=-{\frac {x}{c}}\cot {\frac {cx}{2}}+{\frac {2}{c^{2}}}\ln \left|\sin {\frac {cx}{2}}\right|}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\cos cx\;dx}{1+\cos cx}}=x-{\frac {1}{c}}\tan {\frac {cx}{2}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\cos cx\;dx}{1+\cos cx}}=x-{\frac {1}{c}}\tan {\frac {cx}{2}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b785bd70c86d08bbb26514f8f2e5d5302886c140" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:30.215ex; height:5.843ex;" alt="{\displaystyle \int {\frac {\cos cx\;dx}{1+\cos cx}}=x-{\frac {1}{c}}\tan {\frac {cx}{2}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\cos cx\;dx}{1-\cos cx}}=-x-{\frac {1}{c}}\cot {\frac {cx}{2}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\cos cx\;dx}{1-\cos cx}}=-x-{\frac {1}{c}}\cot {\frac {cx}{2}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5924bce1ec5d6eae2f8ff87b166bea8199d3b46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:31.763ex; height:5.843ex;" alt="{\displaystyle \int {\frac {\cos cx\;dx}{1-\cos cx}}=-x-{\frac {1}{c}}\cot {\frac {cx}{2}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \cos c_{1}x\cos c_{2}x\;dx={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}+{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}\qquad {\mbox{(}}|c_{1}|\neq |c_{2}|{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>x</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2260;<!-- ≠ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \cos c_{1}x\cos c_{2}x\;dx={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}+{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}\qquad {\mbox{(}}|c_{1}|\neq |c_{2}|{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbe7f33db549c22c495b328c9851b936f234d8d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:74.695ex; height:6.509ex;" alt="{\displaystyle \int \cos c_{1}x\cos c_{2}x\;dx={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}+{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}\qquad {\mbox{(}}|c_{1}|\neq |c_{2}|{\mbox{ için)}}\,\!}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Sadece_Tanjant_içeren_trigonometrik_fonksiyonların_integralleri"><span id="Sadece_Tanjant_i.C3.A7eren_trigonometrik_fonksiyonlar.C4.B1n_integralleri"></span>Sadece <a href="/wiki/Tanjant" title="Tanjant">Tanjant</a> içeren trigonometrik fonksiyonların integralleri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;veaction=edit&amp;section=3" title="Değiştirilen bölüm: Sadece Tanjant içeren trigonometrik fonksiyonların integralleri" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=edit&amp;section=3" title="Bölümün kaynak kodunu değiştir: Sadece Tanjant içeren trigonometrik fonksiyonların integralleri"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \tan cx\;dx=-{\frac {1}{c}}\ln |\cos cx|\,\!={\frac {1}{c}}\ln |\sec cx|\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>sec</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \tan cx\;dx=-{\frac {1}{c}}\ln |\cos cx|\,\!={\frac {1}{c}}\ln |\sec cx|\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c913537b6e079a80ab0caa4b24d4cf18b14cd9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:44.572ex; height:5.676ex;" alt="{\displaystyle \int \tan cx\;dx=-{\frac {1}{c}}\ln |\cos cx|\,\!={\frac {1}{c}}\ln |\sec cx|\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{\tan cx}}={\frac {1}{c}}\ln |\sin cx|\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{\tan cx}}={\frac {1}{c}}\ln |\sin cx|\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32416692ac0309457fc465631bf6aec9e9381291" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:24.958ex; height:5.843ex;" alt="{\displaystyle \int {\frac {dx}{\tan cx}}={\frac {1}{c}}\ln |\sin cx|\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \tan ^{n}cx\;dx={\frac {1}{c(n-1)}}\tan ^{n-1}cx-\int \tan ^{n-2}cx\;dx\qquad {\mbox{(}}n\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \tan ^{n}cx\;dx={\frac {1}{c(n-1)}}\tan ^{n-1}cx-\int \tan ^{n-2}cx\;dx\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1b4c411a233da4ab6b3b11bd8155ce2b9e2923c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:70.106ex; height:6.009ex;" alt="{\displaystyle \int \tan ^{n}cx\;dx={\frac {1}{c(n-1)}}\tan ^{n-1}cx-\int \tan ^{n-2}cx\;dx\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{\tan cx+1}}={\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx+\cos cx|\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{\tan cx+1}}={\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx+\cos cx|\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/378ca3a1ec5d434aabbdf51e48373878fd21bd55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:43.649ex; height:5.843ex;" alt="{\displaystyle \int {\frac {dx}{\tan cx+1}}={\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx+\cos cx|\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{\tan cx-1}}=-{\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx-\cos cx|\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{\tan cx-1}}=-{\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx-\cos cx|\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11ba73cb9cdef52d2fc4527075cea0310344c7e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:45.457ex; height:5.843ex;" alt="{\displaystyle \int {\frac {dx}{\tan cx-1}}=-{\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx-\cos cx|\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\tan cx\;dx}{\tan cx+1}}={\frac {x}{2}}-{\frac {1}{2c}}\ln |\sin cx+\cos cx|\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\tan cx\;dx}{\tan cx+1}}={\frac {x}{2}}-{\frac {1}{2c}}\ln |\sin cx+\cos cx|\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e44adbe3d6c8dcb668a2510e034eb472255ab69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:43.649ex; height:5.843ex;" alt="{\displaystyle \int {\frac {\tan cx\;dx}{\tan cx+1}}={\frac {x}{2}}-{\frac {1}{2c}}\ln |\sin cx+\cos cx|\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\tan cx\;dx}{\tan cx-1}}={\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx-\cos cx|\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\tan cx\;dx}{\tan cx-1}}={\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx-\cos cx|\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69ef7342905057f0b5d5af57d0a472c818529d51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:43.649ex; height:5.843ex;" alt="{\displaystyle \int {\frac {\tan cx\;dx}{\tan cx-1}}={\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx-\cos cx|\,\!}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Sadece_Sekant_içeren_trigonometrik_fonksiyonların_integralleri"><span id="Sadece_Sekant_i.C3.A7eren_trigonometrik_fonksiyonlar.C4.B1n_integralleri"></span>Sadece <a href="/wiki/Sekant" title="Sekant">Sekant</a> içeren trigonometrik fonksiyonların integralleri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;veaction=edit&amp;section=4" title="Değiştirilen bölüm: Sadece Sekant içeren trigonometrik fonksiyonların integralleri" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=edit&amp;section=4" title="Bölümün kaynak kodunu değiştir: Sadece Sekant içeren trigonometrik fonksiyonların integralleri"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \sec {cx}\,dx={\frac {1}{c}}\ln {\left|\sec {cx}+\tan {cx}\right|}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>sec</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>x</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mrow> <mi>sec</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>x</mi> </mrow> <mo>+</mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>x</mi> </mrow> </mrow> <mo>|</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \sec {cx}\,dx={\frac {1}{c}}\ln {\left|\sec {cx}+\tan {cx}\right|}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/588308331007a93415956219ab2d80eba1749f82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:34.951ex; height:5.676ex;" alt="{\displaystyle \int \sec {cx}\,dx={\frac {1}{c}}\ln {\left|\sec {cx}+\tan {cx}\right|}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \sec ^{n}{cx}\,dx={\frac {\sec ^{n-1}{cx}\sin {cx}}{c(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{cx}\,dx\qquad {\mbox{ (}}n\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>sec</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>x</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sec</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>x</mi> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>x</mi> </mrow> </mrow> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>sec</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>x</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \sec ^{n}{cx}\,dx={\frac {\sec ^{n-1}{cx}\sin {cx}}{c(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{cx}\,dx\qquad {\mbox{ (}}n\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa0d42b61e1dce835287def528aa9061303381c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:73.795ex; height:6.509ex;" alt="{\displaystyle \int \sec ^{n}{cx}\,dx={\frac {\sec ^{n-1}{cx}\sin {cx}}{c(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{cx}\,dx\qquad {\mbox{ (}}n\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{\sec {x}+1}}=x-\tan {\frac {x}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>sec</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{\sec {x}+1}}=x-\tan {\frac {x}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bcc12662b9bdd3e263861867ebee100e8d244d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.299ex; height:5.843ex;" alt="{\displaystyle \int {\frac {dx}{\sec {x}+1}}=x-\tan {\frac {x}{2}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Sadece_Kosekant_içeren_trigonometrik_fonksiyonların_integralleri"><span id="Sadece_Kosekant_i.C3.A7eren_trigonometrik_fonksiyonlar.C4.B1n_integralleri"></span>Sadece <a href="/wiki/Kosekant" title="Kosekant">Kosekant</a> içeren trigonometrik fonksiyonların integralleri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;veaction=edit&amp;section=5" title="Değiştirilen bölüm: Sadece Kosekant içeren trigonometrik fonksiyonların integralleri" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=edit&amp;section=5" title="Bölümün kaynak kodunu değiştir: Sadece Kosekant içeren trigonometrik fonksiyonların integralleri"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \csc {cx}\,dx=-{\frac {1}{c}}\ln {\left|\csc {cx}+\cot {cx}\right|}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>csc</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>x</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mrow> <mi>csc</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>x</mi> </mrow> <mo>+</mo> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>x</mi> </mrow> </mrow> <mo>|</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \csc {cx}\,dx=-{\frac {1}{c}}\ln {\left|\csc {cx}+\cot {cx}\right|}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e2aa8997fe046d1daad90c3b401c1905a539469" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:36.499ex; height:5.676ex;" alt="{\displaystyle \int \csc {cx}\,dx=-{\frac {1}{c}}\ln {\left|\csc {cx}+\cot {cx}\right|}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \csc ^{2}{x}\,dx=-\cot {x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>csc</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \csc ^{2}{x}\,dx=-\cot {x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18041b783a75aec58dacce4295c266fc55129fdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:21.375ex; height:5.676ex;" alt="{\displaystyle \int \csc ^{2}{x}\,dx=-\cot {x}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \csc ^{n}{cx}\,dx=-{\frac {\csc ^{n-1}{cx}\cos {cx}}{c(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \csc ^{n-2}{cx}\,dx\qquad {\mbox{ (}}n\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>csc</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>x</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>csc</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>x</mi> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>x</mi> </mrow> </mrow> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>csc</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>x</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \csc ^{n}{cx}\,dx=-{\frac {\csc ^{n-1}{cx}\cos {cx}}{c(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \csc ^{n-2}{cx}\,dx\qquad {\mbox{ (}}n\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bcbee270115df510c27958f0e9f5bfd56aeb5b39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:75.859ex; height:6.509ex;" alt="{\displaystyle \int \csc ^{n}{cx}\,dx=-{\frac {\csc ^{n-1}{cx}\cos {cx}}{c(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \csc ^{n-2}{cx}\,dx\qquad {\mbox{ (}}n\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Sadece_Kotanjant_içeren_trigonometrik_fonksiyonların_integralleri"><span id="Sadece_Kotanjant_i.C3.A7eren_trigonometrik_fonksiyonlar.C4.B1n_integralleri"></span>Sadece <a href="/wiki/Kotanjant" title="Kotanjant">Kotanjant</a> içeren trigonometrik fonksiyonların integralleri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;veaction=edit&amp;section=6" title="Değiştirilen bölüm: Sadece Kotanjant içeren trigonometrik fonksiyonların integralleri" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=edit&amp;section=6" title="Bölümün kaynak kodunu değiştir: Sadece Kotanjant içeren trigonometrik fonksiyonların integralleri"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \cot cx\;dx={\frac {1}{c}}\ln |\sin cx|\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \cot cx\;dx={\frac {1}{c}}\ln |\sin cx|\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea3d36717ab57ddfb45a6d98f9ee5a7264aaa8d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:27.052ex; height:5.676ex;" alt="{\displaystyle \int \cot cx\;dx={\frac {1}{c}}\ln |\sin cx|\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \cot ^{n}cx\;dx=-{\frac {1}{c(n-1)}}\cot ^{n-1}cx-\int \cot ^{n-2}cx\;dx\qquad {\mbox{(}}n\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \cot ^{n}cx\;dx=-{\frac {1}{c(n-1)}}\cot ^{n-1}cx-\int \cot ^{n-2}cx\;dx\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e050a62d4d9d468943e85d40328d043da96600f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:71.133ex; height:6.009ex;" alt="{\displaystyle \int \cot ^{n}cx\;dx=-{\frac {1}{c(n-1)}}\cot ^{n-1}cx-\int \cot ^{n-2}cx\;dx\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{1+\cot cx}}=\int {\frac {\tan cx\;dx}{\tan cx+1}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{1+\cot cx}}=\int {\frac {\tan cx\;dx}{\tan cx+1}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/011756769be171392a20919b191f9ff30349d68b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:30.231ex; height:5.843ex;" alt="{\displaystyle \int {\frac {dx}{1+\cot cx}}=\int {\frac {\tan cx\;dx}{\tan cx+1}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{1-\cot cx}}=\int {\frac {\tan cx\;dx}{\tan cx-1}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{1-\cot cx}}=\int {\frac {\tan cx\;dx}{\tan cx-1}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e9f3f2697d4e65fdd9c46ae47c080f0fbee0cee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:30.231ex; height:5.843ex;" alt="{\displaystyle \int {\frac {dx}{1-\cot cx}}=\int {\frac {\tan cx\;dx}{\tan cx-1}}\,\!}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Sinüs_ve_Kosinüsü_birlikte_içeren_trigonometrik_fonksiyonların_integralleri"><span id="Sin.C3.BCs_ve_Kosin.C3.BCs.C3.BC_birlikte_i.C3.A7eren_trigonometrik_fonksiyonlar.C4.B1n_integralleri"></span><a href="/wiki/Sin%C3%BCs" class="mw-disambig" title="Sinüs">Sinüs</a> ve <a href="/wiki/Kosin%C3%BCs" title="Kosinüs">Kosinüsü</a> birlikte içeren trigonometrik fonksiyonların integralleri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;veaction=edit&amp;section=7" title="Değiştirilen bölüm: Sinüs ve Kosinüsü birlikte içeren trigonometrik fonksiyonların integralleri" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=edit&amp;section=7" title="Bölümün kaynak kodunu değiştir: Sinüs ve Kosinüsü birlikte içeren trigonometrik fonksiyonların integralleri"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{\cos cx\pm \sin cx}}={\frac {1}{c{\sqrt {2}}}}\ln \left|\tan \left({\frac {cx}{2}}\pm {\frac {\pi }{8}}\right)\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>&#x00B1;<!-- ± --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>8</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{\cos cx\pm \sin cx}}={\frac {1}{c{\sqrt {2}}}}\ln \left|\tan \left({\frac {cx}{2}}\pm {\frac {\pi }{8}}\right)\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddec8e2fcfa6386ad1690c5b1838e9aca4a9c4df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:43.648ex; height:6.343ex;" alt="{\displaystyle \int {\frac {dx}{\cos cx\pm \sin cx}}={\frac {1}{c{\sqrt {2}}}}\ln \left|\tan \left({\frac {cx}{2}}\pm {\frac {\pi }{8}}\right)\right|}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{(\cos cx\pm \sin cx)^{2}}}={\frac {1}{2c}}\tan \left(cx\mp {\frac {\pi }{4}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>&#x00B1;<!-- ± --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mi>x</mi> <mo>&#x2213;<!-- ∓ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{(\cos cx\pm \sin cx)^{2}}}={\frac {1}{2c}}\tan \left(cx\mp {\frac {\pi }{4}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6af03e2ed5b6774576d1b3cd202dd1e35319fa06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:40.506ex; height:6.176ex;" alt="{\displaystyle \int {\frac {dx}{(\cos cx\pm \sin cx)^{2}}}={\frac {1}{2c}}\tan \left(cx\mp {\frac {\pi }{4}}\right)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{(\cos x+\sin x)^{n}}}={\frac {1}{n-1}}\left({\frac {\sin x-\cos x}{(\cos x+\sin x)^{n-1}}}-2(n-2)\int {\frac {dx}{(\cos x+\sin x)^{n-2}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{(\cos x+\sin x)^{n}}}={\frac {1}{n-1}}\left({\frac {\sin x-\cos x}{(\cos x+\sin x)^{n-1}}}-2(n-2)\int {\frac {dx}{(\cos x+\sin x)^{n-2}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae4a31631ace2155c341f3a42e944454f4d2525b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:82.414ex; height:6.343ex;" alt="{\displaystyle \int {\frac {dx}{(\cos x+\sin x)^{n}}}={\frac {1}{n-1}}\left({\frac {\sin x-\cos x}{(\cos x+\sin x)^{n-1}}}-2(n-2)\int {\frac {dx}{(\cos x+\sin x)^{n-2}}}\right)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\cos cx\;dx}{\cos cx+\sin cx}}={\frac {x}{2}}+{\frac {1}{2c}}\ln \left|\sin cx+\cos cx\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\cos cx\;dx}{\cos cx+\sin cx}}={\frac {x}{2}}+{\frac {1}{2c}}\ln \left|\sin cx+\cos cx\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b7c28a3cbb8faae8da164304c18ffac19bd99cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:46.656ex; height:5.843ex;" alt="{\displaystyle \int {\frac {\cos cx\;dx}{\cos cx+\sin cx}}={\frac {x}{2}}+{\frac {1}{2c}}\ln \left|\sin cx+\cos cx\right|}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\cos cx\;dx}{\cos cx-\sin cx}}={\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\sin cx-\cos cx\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\cos cx\;dx}{\cos cx-\sin cx}}={\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\sin cx-\cos cx\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/641492bf3f2102ff0e0a3c3aab3fadb29fd74c4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:46.656ex; height:5.843ex;" alt="{\displaystyle \int {\frac {\cos cx\;dx}{\cos cx-\sin cx}}={\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\sin cx-\cos cx\right|}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx+\sin cx}}={\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\sin cx+\cos cx\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx+\sin cx}}={\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\sin cx+\cos cx\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/948e3466f7b59d4a7e6e34fa5c4a5f6536ad7420" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:46.656ex; height:5.843ex;" alt="{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx+\sin cx}}={\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\sin cx+\cos cx\right|}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx-\sin cx}}=-{\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\sin cx-\cos cx\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx-\sin cx}}=-{\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\sin cx-\cos cx\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/635f3cb11427290dd7b1146eea072bd34274c244" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:48.464ex; height:5.843ex;" alt="{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx-\sin cx}}=-{\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\sin cx-\cos cx\right|}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\cos cx\;dx}{\sin cx(1+\cos cx)}}=-{\frac {1}{4c}}\tan ^{2}{\frac {cx}{2}}+{\frac {1}{2c}}\ln \left|\tan {\frac {cx}{2}}\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\cos cx\;dx}{\sin cx(1+\cos cx)}}=-{\frac {1}{4c}}\tan ^{2}{\frac {cx}{2}}+{\frac {1}{2c}}\ln \left|\tan {\frac {cx}{2}}\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbb14e2970b623def16c9fef2abcaed2230b4981" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:53.301ex; height:6.176ex;" alt="{\displaystyle \int {\frac {\cos cx\;dx}{\sin cx(1+\cos cx)}}=-{\frac {1}{4c}}\tan ^{2}{\frac {cx}{2}}+{\frac {1}{2c}}\ln \left|\tan {\frac {cx}{2}}\right|}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\cos cx\;dx}{\sin cx(1+-\cos cx)}}=-{\frac {1}{4c}}\cot ^{2}{\frac {cx}{2}}-{\frac {1}{2c}}\ln \left|\tan {\frac {cx}{2}}\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\cos cx\;dx}{\sin cx(1+-\cos cx)}}=-{\frac {1}{4c}}\cot ^{2}{\frac {cx}{2}}-{\frac {1}{2c}}\ln \left|\tan {\frac {cx}{2}}\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20cb83257ae9be351676972155dcd06c9f77ad00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:55.236ex; height:6.176ex;" alt="{\displaystyle \int {\frac {\cos cx\;dx}{\sin cx(1+-\cos cx)}}=-{\frac {1}{4c}}\cot ^{2}{\frac {cx}{2}}-{\frac {1}{2c}}\ln \left|\tan {\frac {cx}{2}}\right|}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx(1+\sin cx)}}={\frac {1}{4c}}\cot ^{2}\left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)+{\frac {1}{2c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx(1+\sin cx)}}={\frac {1}{4c}}\cot ^{2}\left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)+{\frac {1}{2c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c3f98d01f0d576d4ce48b5343e32e79b2327d05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:66.027ex; height:6.176ex;" alt="{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx(1+\sin cx)}}={\frac {1}{4c}}\cot ^{2}\left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)+{\frac {1}{2c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx(1-\sin cx)}}={\frac {1}{4c}}\tan ^{2}\left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)-{\frac {1}{2c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx(1-\sin cx)}}={\frac {1}{4c}}\tan ^{2}\left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)-{\frac {1}{2c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7103e74e9574f047e5ed9287d0bc3a3d44d79305" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:66.287ex; height:6.176ex;" alt="{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx(1-\sin cx)}}={\frac {1}{4c}}\tan ^{2}\left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)-{\frac {1}{2c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \sin cx\cos cx\;dx={\frac {1}{2c}}\sin ^{2}cx\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \sin cx\cos cx\;dx={\frac {1}{2c}}\sin ^{2}cx\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b23856c5dc1d08f8df89537a8199d6cc6e631b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:31.084ex; height:5.676ex;" alt="{\displaystyle \int \sin cx\cos cx\;dx={\frac {1}{2c}}\sin ^{2}cx\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \sin c_{1}x\cos c_{2}x\;dx=-{\frac {\cos(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}-{\frac {\cos(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}\qquad {\mbox{(}}|c_{1}|\neq |c_{2}|{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>x</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2260;<!-- ≠ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \sin c_{1}x\cos c_{2}x\;dx=-{\frac {\cos(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}-{\frac {\cos(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}\qquad {\mbox{(}}|c_{1}|\neq |c_{2}|{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c720fa793c3e35a241e5606f0bbf2108206fe5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:76.759ex; height:6.509ex;" alt="{\displaystyle \int \sin c_{1}x\cos c_{2}x\;dx=-{\frac {\cos(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}-{\frac {\cos(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}\qquad {\mbox{(}}|c_{1}|\neq |c_{2}|{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \sin ^{n}cx\cos cx\;dx={\frac {1}{c(n+2)}}\sin ^{n+1}cx\qquad {\mbox{(}}n\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \sin ^{n}cx\cos cx\;dx={\frac {1}{c(n+2)}}\sin ^{n+1}cx\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/118be6c6cf9ac2511594783d246e833a00f7ac3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:57.305ex; height:6.009ex;" alt="{\displaystyle \int \sin ^{n}cx\cos cx\;dx={\frac {1}{c(n+2)}}\sin ^{n+1}cx\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \sin cx\cos ^{n}cx\;dx=-{\frac {1}{c(n+1)}}\cos ^{n+1}cx\qquad {\mbox{(}}n\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \sin cx\cos ^{n}cx\;dx=-{\frac {1}{c(n+1)}}\cos ^{n+1}cx\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e32b99d6ae53d69e5f9c11bf9ddffcbfda70d1c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:59.369ex; height:6.009ex;" alt="{\displaystyle \int \sin cx\cos ^{n}cx\;dx=-{\frac {1}{c(n+1)}}\cos ^{n+1}cx\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \sin ^{n}cx\cos ^{m}cx\;dx=-{\frac {\sin ^{n-1}cx\cos ^{m+1}cx}{c(n+m)}}+{\frac {n-1}{n+m}}\int \sin ^{n-2}cx\cos ^{m}cx\;dx\qquad {\mbox{(}}m,n&gt;0{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mi>m</mi> </mrow> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>&gt;</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \sin ^{n}cx\cos ^{m}cx\;dx=-{\frac {\sin ^{n-1}cx\cos ^{m+1}cx}{c(n+m)}}+{\frac {n-1}{n+m}}\int \sin ^{n-2}cx\cos ^{m}cx\;dx\qquad {\mbox{(}}m,n&gt;0{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f712f1026179196a43f1a68a62be494da4240c48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:98.165ex; height:6.509ex;" alt="{\displaystyle \int \sin ^{n}cx\cos ^{m}cx\;dx=-{\frac {\sin ^{n-1}cx\cos ^{m+1}cx}{c(n+m)}}+{\frac {n-1}{n+m}}\int \sin ^{n-2}cx\cos ^{m}cx\;dx\qquad {\mbox{(}}m,n&gt;0{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd>Ayrıca: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \sin ^{n}cx\cos ^{m}cx\;dx={\frac {\sin ^{n+1}cx\cos ^{m-1}cx}{c(n+m)}}+{\frac {m-1}{n+m}}\int \sin ^{n}cx\cos ^{m-2}cx\;dx\qquad {\mbox{(}}m,n&gt;0{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mi>m</mi> </mrow> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>&gt;</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \sin ^{n}cx\cos ^{m}cx\;dx={\frac {\sin ^{n+1}cx\cos ^{m-1}cx}{c(n+m)}}+{\frac {m-1}{n+m}}\int \sin ^{n}cx\cos ^{m-2}cx\;dx\qquad {\mbox{(}}m,n&gt;0{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6d0c78881badfb93191c9ed34634aeaf188951e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:96.357ex; height:6.509ex;" alt="{\displaystyle \int \sin ^{n}cx\cos ^{m}cx\;dx={\frac {\sin ^{n+1}cx\cos ^{m-1}cx}{c(n+m)}}+{\frac {m-1}{n+m}}\int \sin ^{n}cx\cos ^{m-2}cx\;dx\qquad {\mbox{(}}m,n&gt;0{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{\sin cx\cos cx}}={\frac {1}{c}}\ln \left|\tan cx\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{\sin cx\cos cx}}={\frac {1}{c}}\ln \left|\tan cx\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c5c9ba1b9b040eae50c07eb9f47f83561eee42d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:30.018ex; height:5.843ex;" alt="{\displaystyle \int {\frac {dx}{\sin cx\cos cx}}={\frac {1}{c}}\ln \left|\tan cx\right|}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{\sin cx\cos ^{n}cx}}={\frac {1}{c(n-1)\cos ^{n-1}cx}}+\int {\frac {dx}{\sin cx\cos ^{n-2}cx}}\qquad {\mbox{(}}n\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{\sin cx\cos ^{n}cx}}={\frac {1}{c(n-1)\cos ^{n-1}cx}}+\int {\frac {dx}{\sin cx\cos ^{n-2}cx}}\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/219b3b783b03fdaff33535cda051433bf3f2233d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:76.584ex; height:6.176ex;" alt="{\displaystyle \int {\frac {dx}{\sin cx\cos ^{n}cx}}={\frac {1}{c(n-1)\cos ^{n-1}cx}}+\int {\frac {dx}{\sin cx\cos ^{n-2}cx}}\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{\sin ^{n}cx\cos cx}}=-{\frac {1}{c(n-1)\sin ^{n-1}cx}}+\int {\frac {dx}{\sin ^{n-2}cx\cos cx}}\qquad {\mbox{(}}n\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{\sin ^{n}cx\cos cx}}=-{\frac {1}{c(n-1)\sin ^{n-1}cx}}+\int {\frac {dx}{\sin ^{n-2}cx\cos cx}}\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b53f012c05ea71034ed8d842c9ecfcd46fae1277" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; margin-right: -0.387ex; width:78.136ex; height:6.343ex;" alt="{\displaystyle \int {\frac {dx}{\sin ^{n}cx\cos cx}}=-{\frac {1}{c(n-1)\sin ^{n-1}cx}}+\int {\frac {dx}{\sin ^{n-2}cx\cos cx}}\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\sin cx\;dx}{\cos ^{n}cx}}={\frac {1}{c(n-1)\cos ^{n-1}cx}}\qquad {\mbox{(}}n\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\sin cx\;dx}{\cos ^{n}cx}}={\frac {1}{c(n-1)\cos ^{n-1}cx}}\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95339c06aba061118542f6fbf4aa769440d31eb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:50.957ex; height:6.176ex;" alt="{\displaystyle \int {\frac {\sin cx\;dx}{\cos ^{n}cx}}={\frac {1}{c(n-1)\cos ^{n-1}cx}}\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\sin ^{2}cx\;dx}{\cos cx}}=-{\frac {1}{c}}\sin cx+{\frac {1}{c}}\ln \left|\tan \left({\frac {\pi }{4}}+{\frac {cx}{2}}\right)\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\sin ^{2}cx\;dx}{\cos cx}}=-{\frac {1}{c}}\sin cx+{\frac {1}{c}}\ln \left|\tan \left({\frac {\pi }{4}}+{\frac {cx}{2}}\right)\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7a184b1964664bfc2c1882c1b63b1917c1473f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:48.888ex; height:6.176ex;" alt="{\displaystyle \int {\frac {\sin ^{2}cx\;dx}{\cos cx}}=-{\frac {1}{c}}\sin cx+{\frac {1}{c}}\ln \left|\tan \left({\frac {\pi }{4}}+{\frac {cx}{2}}\right)\right|}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\sin ^{2}cx\;dx}{\cos ^{n}cx}}={\frac {\sin cx}{c(n-1)\cos ^{n-1}cx}}-{\frac {1}{n-1}}\int {\frac {dx}{\cos ^{n-2}cx}}\qquad {\mbox{(}}n\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\sin ^{2}cx\;dx}{\cos ^{n}cx}}={\frac {\sin cx}{c(n-1)\cos ^{n-1}cx}}-{\frac {1}{n-1}}\int {\frac {dx}{\cos ^{n-2}cx}}\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b644c198ff8656dfb05bb2f8c971679051cc887c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:74.043ex; height:6.509ex;" alt="{\displaystyle \int {\frac {\sin ^{2}cx\;dx}{\cos ^{n}cx}}={\frac {\sin cx}{c(n-1)\cos ^{n-1}cx}}-{\frac {1}{n-1}}\int {\frac {dx}{\cos ^{n-2}cx}}\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos cx}}=-{\frac {\sin ^{n-1}cx}{c(n-1)}}+\int {\frac {\sin ^{n-2}cx\;dx}{\cos cx}}\qquad {\mbox{(}}n\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos cx}}=-{\frac {\sin ^{n-1}cx}{c(n-1)}}+\int {\frac {\sin ^{n-2}cx\;dx}{\cos cx}}\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63e687b7551ddbacf6aefea08455a79fb6cb6a6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:63.473ex; height:6.509ex;" alt="{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos cx}}=-{\frac {\sin ^{n-1}cx}{c(n-1)}}+\int {\frac {\sin ^{n-2}cx\;dx}{\cos cx}}\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos ^{m}cx}}={\frac {\sin ^{n+1}cx}{c(m-1)\cos ^{m-1}cx}}-{\frac {n-m+2}{m-1}}\int {\frac {\sin ^{n}cx\;dx}{\cos ^{m-2}cx}}\qquad {\mbox{(}}m\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> </mrow> <mrow> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>m</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos ^{m}cx}}={\frac {\sin ^{n+1}cx}{c(m-1)\cos ^{m-1}cx}}-{\frac {n-m+2}{m-1}}\int {\frac {\sin ^{n}cx\;dx}{\cos ^{m-2}cx}}\qquad {\mbox{(}}m\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7678dec0a78e3a3ee279c7e7663a8f50f5c438f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:81.67ex; height:6.509ex;" alt="{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos ^{m}cx}}={\frac {\sin ^{n+1}cx}{c(m-1)\cos ^{m-1}cx}}-{\frac {n-m+2}{m-1}}\int {\frac {\sin ^{n}cx\;dx}{\cos ^{m-2}cx}}\qquad {\mbox{(}}m\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd>Ayrıca: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos ^{m}cx}}=-{\frac {\sin ^{n-1}cx}{c(n-m)\cos ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {\sin ^{n-2}cx\;dx}{\cos ^{m}cx}}\qquad {\mbox{(}}m\neq n{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mo stretchy="false">)</mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>m</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos ^{m}cx}}=-{\frac {\sin ^{n-1}cx}{c(n-m)\cos ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {\sin ^{n-2}cx\;dx}{\cos ^{m}cx}}\qquad {\mbox{(}}m\neq n{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d346af0525c6d28f19a7682589488b12255a25b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:82.041ex; height:6.509ex;" alt="{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos ^{m}cx}}=-{\frac {\sin ^{n-1}cx}{c(n-m)\cos ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {\sin ^{n-2}cx\;dx}{\cos ^{m}cx}}\qquad {\mbox{(}}m\neq n{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd>Ayrıca: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos ^{m}cx}}={\frac {\sin ^{n-1}cx}{c(m-1)\cos ^{m-1}cx}}-{\frac {n-1}{n-1}}\int {\frac {\sin ^{n-1}cx\;dx}{\cos ^{m-2}cx}}\qquad {\mbox{(}}m\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>m</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos ^{m}cx}}={\frac {\sin ^{n-1}cx}{c(m-1)\cos ^{m-1}cx}}-{\frac {n-1}{n-1}}\int {\frac {\sin ^{n-1}cx\;dx}{\cos ^{m-2}cx}}\qquad {\mbox{(}}m\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0668294ec4fef3978c067435c91885a4c070f43a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:78.89ex; height:6.509ex;" alt="{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos ^{m}cx}}={\frac {\sin ^{n-1}cx}{c(m-1)\cos ^{m-1}cx}}-{\frac {n-1}{n-1}}\int {\frac {\sin ^{n-1}cx\;dx}{\cos ^{m-2}cx}}\qquad {\mbox{(}}m\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\cos cx\;dx}{\sin ^{n}cx}}=-{\frac {1}{c(n-1)\sin ^{n-1}cx}}\qquad {\mbox{(}}n\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\cos cx\;dx}{\sin ^{n}cx}}=-{\frac {1}{c(n-1)\sin ^{n-1}cx}}\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65cccf61a07092589f8cd59122de60b5cda7f32d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; margin-right: -0.387ex; width:52.765ex; height:6.343ex;" alt="{\displaystyle \int {\frac {\cos cx\;dx}{\sin ^{n}cx}}=-{\frac {1}{c(n-1)\sin ^{n-1}cx}}\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\cos ^{2}cx\;dx}{\sin cx}}={\frac {1}{c}}\left(\cos cx+\ln \left|\tan {\frac {cx}{2}}\right|\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>+</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>|</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\cos ^{2}cx\;dx}{\sin cx}}={\frac {1}{c}}\left(\cos cx+\ln \left|\tan {\frac {cx}{2}}\right|\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72006b01ffe8fe2d3fb85781b47a33a40c2f7377" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:40.584ex; height:6.176ex;" alt="{\displaystyle \int {\frac {\cos ^{2}cx\;dx}{\sin cx}}={\frac {1}{c}}\left(\cos cx+\ln \left|\tan {\frac {cx}{2}}\right|\right)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\cos ^{2}cx\;dx}{\sin ^{n}cx}}=-{\frac {1}{n-1}}\left({\frac {\cos cx}{c\sin ^{n-1}cx)}}+\int {\frac {dx}{\sin ^{n-2}cx}}\right)\qquad {\mbox{(}}n\neq 1{\mbox{ i&#xE7;in)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mrow> <mi>c</mi> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\cos ^{2}cx\;dx}{\sin ^{n}cx}}=-{\frac {1}{n-1}}\left({\frac {\cos cx}{c\sin ^{n-1}cx)}}+\int {\frac {dx}{\sin ^{n-2}cx}}\right)\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35abcf93209c62115e28ffff1f1e1043b821baeb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:72.975ex; height:7.509ex;" alt="{\displaystyle \int {\frac {\cos ^{2}cx\;dx}{\sin ^{n}cx}}=-{\frac {1}{n-1}}\left({\frac {\cos cx}{c\sin ^{n-1}cx)}}+\int {\frac {dx}{\sin ^{n-2}cx}}\right)\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}}=-{\frac {\cos ^{n+1}cx}{c(m-1)\sin ^{m-1}cx}}-{\frac {n-m-2}{m-1}}\int {\frac {cos^{n}cx\;dx}{\sin ^{m-2}cx}}\qquad {\mbox{(}}m\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> <mrow> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>o</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>m</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}}=-{\frac {\cos ^{n+1}cx}{c(m-1)\sin ^{m-1}cx}}-{\frac {n-m-2}{m-1}}\int {\frac {cos^{n}cx\;dx}{\sin ^{m-2}cx}}\qquad {\mbox{(}}m\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1977af6574e29aa39b321a4bfbe7a2d7853f8a35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; margin-right: -0.387ex; width:83.461ex; height:6.676ex;" alt="{\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}}=-{\frac {\cos ^{n+1}cx}{c(m-1)\sin ^{m-1}cx}}-{\frac {n-m-2}{m-1}}\int {\frac {cos^{n}cx\;dx}{\sin ^{m-2}cx}}\qquad {\mbox{(}}m\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd>Ayrıca: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}}={\frac {\cos ^{n-1}cx}{c(n-m)\sin ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {cos^{n-2}cx\;dx}{\sin ^{m}cx}}\qquad {\mbox{(}}m\neq n{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mo stretchy="false">)</mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>o</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>m</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}}={\frac {\cos ^{n-1}cx}{c(n-m)\sin ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {cos^{n-2}cx\;dx}{\sin ^{m}cx}}\qquad {\mbox{(}}m\neq n{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f542393674b3901a6729bf31c2476c6db21fd0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; margin-right: -0.387ex; width:80.215ex; height:6.676ex;" alt="{\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}}={\frac {\cos ^{n-1}cx}{c(n-m)\sin ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {cos^{n-2}cx\;dx}{\sin ^{m}cx}}\qquad {\mbox{(}}m\neq n{\mbox{ için)}}\,\!}"></span></dd></dl> <dl><dd>Ayrıca: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}}=-{\frac {\cos ^{n-1}cx}{c(m-1)\sin ^{m-1}cx}}-{\frac {n-1}{m-1}}\int {\frac {cos^{n-2}cx\;dx}{\sin ^{m-2}cx}}\qquad {\mbox{(}}m\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>o</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>m</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}}=-{\frac {\cos ^{n-1}cx}{c(m-1)\sin ^{m-1}cx}}-{\frac {n-1}{m-1}}\int {\frac {cos^{n-2}cx\;dx}{\sin ^{m-2}cx}}\qquad {\mbox{(}}m\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c2e1081d90d28593c42d24c78be98889928cfa5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; margin-right: -0.387ex; width:81.326ex; height:6.676ex;" alt="{\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}}=-{\frac {\cos ^{n-1}cx}{c(m-1)\sin ^{m-1}cx}}-{\frac {n-1}{m-1}}\int {\frac {cos^{n-2}cx\;dx}{\sin ^{m-2}cx}}\qquad {\mbox{(}}m\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Sinüs_ve_Tanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri"><span id="Sin.C3.BCs_ve_Tanjant.C4.B1_birlikte_i.C3.A7eren_trigonometrik_fonksiyonlar.C4.B1n_integralleri"></span><a href="/wiki/Sin%C3%BCs" class="mw-disambig" title="Sinüs">Sinüs</a> ve <a href="/wiki/Tanjant" title="Tanjant">Tanjantı</a> birlikte içeren trigonometrik fonksiyonların integralleri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;veaction=edit&amp;section=8" title="Değiştirilen bölüm: Sinüs ve Tanjantı birlikte içeren trigonometrik fonksiyonların integralleri" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=edit&amp;section=8" title="Bölümün kaynak kodunu değiştir: Sinüs ve Tanjantı birlikte içeren trigonometrik fonksiyonların integralleri"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \sin cx\tan cx\;dx={\frac {1}{c}}(\ln |\sec cx+\tan cx|-\sin cx)\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>sec</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo>+</mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \sin cx\tan cx\;dx={\frac {1}{c}}(\ln |\sec cx+\tan cx|-\sin cx)\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70a803de5cb5fb6444c37f130c7faf1b10db21cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:52.17ex; height:5.676ex;" alt="{\displaystyle \int \sin cx\tan cx\;dx={\frac {1}{c}}(\ln |\sec cx+\tan cx|-\sin cx)\,\!}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\tan ^{n}cx\;dx}{\sin ^{2}cx}}={\frac {1}{c(n-1)}}\tan ^{n-1}(cx)\qquad {\mbox{(}}n\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\tan ^{n}cx\;dx}{\sin ^{2}cx}}={\frac {1}{c(n-1)}}\tan ^{n-1}(cx)\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a927a645b3e3d4f174fdfabb74cd65dede73351" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:54.35ex; height:6.176ex;" alt="{\displaystyle \int {\frac {\tan ^{n}cx\;dx}{\sin ^{2}cx}}={\frac {1}{c(n-1)}}\tan ^{n-1}(cx)\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Kosinüs_ve_Tanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri"><span id="Kosin.C3.BCs_ve_Tanjant.C4.B1_birlikte_i.C3.A7eren_trigonometrik_fonksiyonlar.C4.B1n_integralleri"></span><a href="/wiki/Kosin%C3%BCs" title="Kosinüs">Kosinüs</a> ve <a href="/wiki/Tanjant" title="Tanjant">Tanjantı</a> birlikte içeren trigonometrik fonksiyonların integralleri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;veaction=edit&amp;section=9" title="Değiştirilen bölüm: Kosinüs ve Tanjantı birlikte içeren trigonometrik fonksiyonların integralleri" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=edit&amp;section=9" title="Bölümün kaynak kodunu değiştir: Kosinüs ve Tanjantı birlikte içeren trigonometrik fonksiyonların integralleri"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\tan ^{n}cx\;dx}{\cos ^{2}cx}}={\frac {1}{c(n+1)}}\tan ^{n+1}cx\qquad {\mbox{(}}n\neq -1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\tan ^{n}cx\;dx}{\cos ^{2}cx}}={\frac {1}{c(n+1)}}\tan ^{n+1}cx\qquad {\mbox{(}}n\neq -1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc0f4b985bc89b65fd0976eedccf71865f051e03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:54.736ex; height:6.176ex;" alt="{\displaystyle \int {\frac {\tan ^{n}cx\;dx}{\cos ^{2}cx}}={\frac {1}{c(n+1)}}\tan ^{n+1}cx\qquad {\mbox{(}}n\neq -1{\mbox{ için)}}\,\!}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Sinüs_ve_Kotanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri"><span id="Sin.C3.BCs_ve_Kotanjant.C4.B1_birlikte_i.C3.A7eren_trigonometrik_fonksiyonlar.C4.B1n_integralleri"></span><a href="/wiki/Sin%C3%BCs" class="mw-disambig" title="Sinüs">Sinüs</a> ve <a href="/wiki/Kotanjant" title="Kotanjant">Kotanjantı</a> birlikte içeren trigonometrik fonksiyonların integralleri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;veaction=edit&amp;section=10" title="Değiştirilen bölüm: Sinüs ve Kotanjantı birlikte içeren trigonometrik fonksiyonların integralleri" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=edit&amp;section=10" title="Bölümün kaynak kodunu değiştir: Sinüs ve Kotanjantı birlikte içeren trigonometrik fonksiyonların integralleri"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\cot ^{n}cx\;dx}{\sin ^{2}cx}}={\frac {1}{c(n+1)}}\cot ^{n+1}cx\qquad {\mbox{(}}n\neq -1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\cot ^{n}cx\;dx}{\sin ^{2}cx}}={\frac {1}{c(n+1)}}\cot ^{n+1}cx\qquad {\mbox{(}}n\neq -1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a19fe83b01fccf7fc1454e6d027f38525b03386e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:54.216ex; height:6.176ex;" alt="{\displaystyle \int {\frac {\cot ^{n}cx\;dx}{\sin ^{2}cx}}={\frac {1}{c(n+1)}}\cot ^{n+1}cx\qquad {\mbox{(}}n\neq -1{\mbox{ için)}}\,\!}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Kosinüs_ve_Kotanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri"><span id="Kosin.C3.BCs_ve_Kotanjant.C4.B1_birlikte_i.C3.A7eren_trigonometrik_fonksiyonlar.C4.B1n_integralleri"></span><a href="/wiki/Kosin%C3%BCs" title="Kosinüs">Kosinüs</a> ve <a href="/wiki/Kotanjant" title="Kotanjant">Kotanjantı</a> birlikte içeren trigonometrik fonksiyonların integralleri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;veaction=edit&amp;section=11" title="Değiştirilen bölüm: Kosinüs ve Kotanjantı birlikte içeren trigonometrik fonksiyonların integralleri" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=edit&amp;section=11" title="Bölümün kaynak kodunu değiştir: Kosinüs ve Kotanjantı birlikte içeren trigonometrik fonksiyonların integralleri"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\cot ^{n}cx\;dx}{\cos ^{2}cx}}={\frac {1}{c(1-n)}}\tan ^{1-n}cx\qquad {\mbox{(}}n\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>x</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\cot ^{n}cx\;dx}{\cos ^{2}cx}}={\frac {1}{c(1-n)}}\tan ^{1-n}cx\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b1a85076d76e7a0f8b074372180d986b4b84711" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:52.668ex; height:6.176ex;" alt="{\displaystyle \int {\frac {\cot ^{n}cx\;dx}{\cos ^{2}cx}}={\frac {1}{c(1-n)}}\tan ^{1-n}cx\qquad {\mbox{(}}n\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Tanjant_ve_Kotanjantı_birlikte_içeren_trigonometrik_fonksiyonların_integralleri"><span id="Tanjant_ve_Kotanjant.C4.B1_birlikte_i.C3.A7eren_trigonometrik_fonksiyonlar.C4.B1n_integralleri"></span><a href="/wiki/Tanjant" title="Tanjant">Tanjant</a> ve <a href="/wiki/Kotanjant" title="Kotanjant">Kotanjantı</a> birlikte içeren trigonometrik fonksiyonların integralleri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;veaction=edit&amp;section=12" title="Değiştirilen bölüm: Tanjant ve Kotanjantı birlikte içeren trigonometrik fonksiyonların integralleri" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=edit&amp;section=12" title="Bölümün kaynak kodunu değiştir: Tanjant ve Kotanjantı birlikte içeren trigonometrik fonksiyonların integralleri"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {\tan ^{m}(cx)}{\cot ^{n}(cx)}}\;dx={\frac {1}{c(m+n-1)}}\tan ^{m+n-1}(cx)-\int {\frac {\tan ^{m-2}(cx)}{\cot ^{n}(cx)}}\;dx\qquad {\mbox{(}}m+n\neq 1{\mbox{ i&#xE7;in)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>(</mtext> </mstyle> </mrow> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;i&#xE7;in)</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {\tan ^{m}(cx)}{\cot ^{n}(cx)}}\;dx={\frac {1}{c(m+n-1)}}\tan ^{m+n-1}(cx)-\int {\frac {\tan ^{m-2}(cx)}{\cot ^{n}(cx)}}\;dx\qquad {\mbox{(}}m+n\neq 1{\mbox{ için)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d7ebb6da070177c5dc201d2d0a8dc8e3c43b1f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.387ex; width:89.441ex; height:6.676ex;" alt="{\displaystyle \int {\frac {\tan ^{m}(cx)}{\cot ^{n}(cx)}}\;dx={\frac {1}{c(m+n-1)}}\tan ^{m+n-1}(cx)-\int {\frac {\tan ^{m-2}(cx)}{\cot ^{n}(cx)}}\;dx\qquad {\mbox{(}}m+n\neq 1{\mbox{ için)}}\,\!}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Trigonometrik_fonksiyonların_simetrik_sınırlar_altındaki_integralleri"><span id="Trigonometrik_fonksiyonlar.C4.B1n_simetrik_s.C4.B1n.C4.B1rlar_alt.C4.B1ndaki_integralleri"></span>Trigonometrik fonksiyonların simetrik sınırlar altındaki integralleri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;veaction=edit&amp;section=13" title="Değiştirilen bölüm: Trigonometrik fonksiyonların simetrik sınırlar altındaki integralleri" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=edit&amp;section=13" title="Bölümün kaynak kodunu değiştir: Trigonometrik fonksiyonların simetrik sınırlar altındaki integralleri"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-c}^{c}\sin {x}\;dx=0\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msubsup> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-c}^{c}\sin {x}\;dx=0\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33469f374c9c3af903d9607671dcfdf18c1a5077" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; margin-right: -0.294ex; width:15.834ex; height:6.009ex;" alt="{\displaystyle \int _{-c}^{c}\sin {x}\;dx=0\!}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-c}^{c}\cos {x}\;dx=2\int _{0}^{c}\cos {x}\;dx=2\int _{-c}^{0}\cos {x}\;dx=2\sin {c}\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msubsup> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mn>2</mn> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msubsup> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mn>2</mn> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mn>2</mn> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-c}^{c}\cos {x}\;dx=2\int _{0}^{c}\cos {x}\;dx=2\int _{-c}^{0}\cos {x}\;dx=2\sin {c}\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43f875b81a6b5c38d2d0a7f54fbe9ae958b47526" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; margin-right: -0.38ex; width:53.846ex; height:6.343ex;" alt="{\displaystyle \int _{-c}^{c}\cos {x}\;dx=2\int _{0}^{c}\cos {x}\;dx=2\int _{-c}^{0}\cos {x}\;dx=2\sin {c}\!}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-c}^{c}\tan {x}\;dx=0\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msubsup> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mspace width="thickmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-c}^{c}\tan {x}\;dx=0\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46a562f35f07612ecdd0e562ba5e93b728320032" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; margin-right: -0.294ex; width:16.338ex; height:6.009ex;" alt="{\displaystyle \int _{-c}^{c}\tan {x}\;dx=0\!}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Kaynakça"><span id="Kaynak.C3.A7a"></span>Kaynakça</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;veaction=edit&amp;section=14" title="Değiştirilen bölüm: Kaynakça" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;action=edit&amp;section=14" title="Bölümün kaynak kodunu değiştir: Kaynakça"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/w/index.php?title=Milton_Abramowitz&amp;action=edit&amp;redlink=1" class="new" title="Milton Abramowitz (sayfa mevcut değil)">Milton Abramowitz</a> ve <a href="/w/index.php?title=Irene_A._Stegun&amp;action=edit&amp;redlink=1" class="new" title="Irene A. Stegun (sayfa mevcut değil)">Irene A. Stegun</a>, <i><a href="/w/index.php?title=Abramowitz_and_Stegun&amp;action=edit&amp;redlink=1" class="new" title="Abramowitz and Stegun (sayfa mevcut değil)">Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables</a></i>, 1964. Birkaç integral bu kitapta <a rel="nofollow" class="external text" href="http://www.math.sfu.ca/~cbm/aands/page_69.htm">69. sayfada</a>16 Şubat 2009 tarihinde <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> sitesinde <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090216143124/http://math.sfu.ca/~cbm/aands/page_69.htm">arşivlendi</a>. listelenmiştir.</li></ul></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">"<a dir="ltr" href="https://tr.wikipedia.org/w/index.php?title=Trigonometrik_fonksiyonların_integralleri&amp;oldid=30769732">https://tr.wikipedia.org/w/index.php?title=Trigonometrik_fonksiyonların_integralleri&amp;oldid=30769732</a>" sayfasından alınmıştır</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%C3%96zel:Kategoriler" title="Özel:Kategoriler">Kategori</a>: <ul><li><a href="/wiki/Kategori:Trigonometri" title="Kategori:Trigonometri">Trigonometri</a></li><li><a href="/wiki/Kategori:%C4%B0ntegral" title="Kategori:İntegral">İntegral</a></li><li><a href="/wiki/Kategori:%C4%B0ntegral_listeleri" title="Kategori:İntegral listeleri">İntegral listeleri</a></li><li><a href="/wiki/Kategori:Matematik_listeleri" title="Kategori:Matematik listeleri">Matematik listeleri</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Gizli kategoriler: <ul><li><a href="/wiki/Kategori:Uzman_ilgisi_gerektiren_maddeler_Eyl%C3%BCl_2023" title="Kategori:Uzman ilgisi gerektiren maddeler Eylül 2023">Uzman ilgisi gerektiren maddeler Eylül 2023</a></li><li><a href="/wiki/Kategori:Webar%C5%9Fiv_%C5%9Fablonu_wayback_ba%C4%9Flant%C4%B1lar%C4%B1" title="Kategori:Webarşiv şablonu wayback bağlantıları">Webarşiv şablonu wayback bağlantıları</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Sayfa en son 20.28, 15 Aralık 2023 tarihinde değiştirildi.</li> <li id="footer-info-copyright">Metin <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.tr">Creative Commons Atıf-AynıLisanslaPaylaş Lisansı</a> altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/tr">Kullanım Şartlarını</a> ve <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/tr">Gizlilik Politikasını</a> kabul etmiş olursunuz.<br />Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan <a rel="nofollow" class="external text" href="https://www.wikimediafoundation.org/">Wikimedia Foundation, Inc.</a> tescilli markasıdır.<br /></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Gizlilik politikası</a></li> <li id="footer-places-about"><a href="/wiki/Vikipedi:Hakk%C4%B1nda">Vikipedi hakkında</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Vikipedi:Genel_sorumluluk_reddi">Sorumluluk reddi</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Davranış Kuralları</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Geliştiriciler</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/tr.wikipedia.org">İstatistikler</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Çerez politikası</a></li> <li id="footer-places-mobileview"><a href="//tr.m.wikipedia.org/w/index.php?title=Trigonometrik_fonksiyonlar%C4%B1n_integralleri&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobil görünüm</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-mkx9z","wgBackendResponseTime":434,"wgPageParseReport":{"limitreport":{"cputime":"0.121","walltime":"0.220","ppvisitednodes":{"value":596,"limit":1000000},"postexpandincludesize":{"value":4322,"limit":2097152},"templateargumentsize":{"value":22,"limit":2097152},"expansiondepth":{"value":7,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":3348,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 47.911 1 -total"," 82.68% 39.613 1 Şablon:Uzman"," 74.12% 35.514 1 Şablon:Ambox"," 12.92% 6.190 1 Şablon:Webarşiv"]},"scribunto":{"limitreport-timeusage":{"value":"0.013","limit":"10.000"},"limitreport-memusage":{"value":790494,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-mkx9z","timestamp":"20241124202516","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Trigonometrik fonksiyonlar\u0131n integralleri","url":"https:\/\/tr.wikipedia.org\/wiki\/Trigonometrik_fonksiyonlar%C4%B1n_integralleri","sameAs":"http:\/\/www.wikidata.org\/entity\/Q846505","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q846505","author":{"@type":"Organization","name":"Wikimedia projelerine katk\u0131da bulunanlar"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2008-01-25T22:40:04Z","headline":"Vikimedya liste maddesi"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10