CINXE.COM

Search results for: friction angle

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: friction angle</title> <meta name="description" content="Search results for: friction angle"> <meta name="keywords" content="friction angle"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="friction angle" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="friction angle"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2036</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: friction angle</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2036</span> Friction Estimation and Compensation for Steering Angle Control for Highly Automated Driving</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcus%20Walter">Marcus Walter</a>, <a href="https://publications.waset.org/abstracts/search?q=Norbert%20Nitzsche"> Norbert Nitzsche</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirk%20Odenthal"> Dirk Odenthal</a>, <a href="https://publications.waset.org/abstracts/search?q=Steffen%20M%C3%BCller"> Steffen Müller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This contribution presents a friction estimator for industrial purposes which identifies Coulomb friction in a steering system. The estimator only needs a few, usually known, steering system parameters. Friction occurs on almost every mechanical system and has a negative influence on high-precision position control. This is demonstrated on a steering angle controller for highly automated driving. In this steering system the friction induces limit cycles which cause oscillating vehicle movement when the vehicle follows a given reference trajectory. When compensating the friction with the introduced estimator, limit cycles can be suppressed. This is demonstrated by measurements in a series vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20estimation" title="friction estimation">friction estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20compensation" title=" friction compensation"> friction compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20system" title=" steering system"> steering system</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20vehicle%20guidance" title=" lateral vehicle guidance"> lateral vehicle guidance</a> </p> <a href="https://publications.waset.org/abstracts/27641/friction-estimation-and-compensation-for-steering-angle-control-for-highly-automated-driving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2035</span> An Experimental Study of the Influence of Particle Breakage on the Interface Friction Angle and Shear Strength of Carbonate Sands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruben%20Dario%20Tovar-Valencia">Ruben Dario Tovar-Valencia</a>, <a href="https://publications.waset.org/abstracts/search?q=Eshan%20Ganju"> Eshan Ganju</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20Han"> Fei Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Monica%20Prezzi"> Monica Prezzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Salgado"> Rodrigo Salgado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particle breakage occurs even in strong silica sand particles. There is compelling evidence that suggests that particle breakage causes changes in several properties such as permeability, peak strength, dilatancy and critical state friction angle. Current pile design methods that are based on soil properties do not account for particle breakage that occurs during driving or jacking of displacement piles. This may lead to significant overestimation of pile capacity in sands dominated by particles susceptible to breakage, such as carbonate sands. The objective of this paper is to study the influence of shear displacement on particle breakage and friction angle of carbonate sands, and to furthermore quantify the change in friction angle observed with different levels of particle breakage. To study the phenomenon of particle breakage, multiple ring shear tests have been performed at different levels of vertical confinement on a thoroughly characterized carbonate sand to find i) the shear displacement necessary to reach stable friction angles and ii) the effect of particle breakage on the mobilized friction angle of the tested sand. The findings of this study can potentially be used to update the current pile design methods by developing a friction angle which is a function of shear displacement and breakage characteristics of the sand instead of being a constant value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breakage" title="breakage">breakage</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonate%20sand" title=" carbonate sand"> carbonate sand</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20angle" title=" friction angle"> friction angle</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20design" title=" pile design"> pile design</a>, <a href="https://publications.waset.org/abstracts/search?q=ring%20shear%20test" title=" ring shear test"> ring shear test</a> </p> <a href="https://publications.waset.org/abstracts/73091/an-experimental-study-of-the-influence-of-particle-breakage-on-the-interface-friction-angle-and-shear-strength-of-carbonate-sands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2034</span> Studying the Impact of Soil Characteristics in Displacement of Retaining Walls Using Finite Element</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Ahmadabadi">Mojtaba Ahmadabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Masoudi"> Akbar Masoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Rezai"> Morteza Rezai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, using the finite element method, the effect of soil and wall characteristics was investigated. Thirty and two different models were studied by different parameters. These studies could calculate displacement at any height of the wall for frictional-cohesive soils. The main purpose of this research is to determine the most effective soil characteristics in reducing the wall displacement. Comparing different models showed that the overall increase in internal friction angle, angle of friction between soil and wall and modulus of elasticity reduce the replacement of the wall. In addition, increase in special weight of soil will increase the wall displacement. Based on results, it can be said that all wall displacements were overturning and in the backfill, soil was bulging. Results show that the highest impact is seen in reducing wall displacement, internal friction angle, and the angle friction between soil and wall. One of the advantages of this study is taking into account all the parameters of the soil and walls replacement distribution in wall and backfill soil. In this paper, using the finite element method and considering all parameters of the soil, we investigated the impact of soil parameter in wall displacement. The aim of this study is to provide the best conditions in reducing the wall displacement and displacement wall and soil distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retaining%20wall" title="retaining wall">retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=fem" title=" fem"> fem</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20and%20wall%20interaction" title=" soil and wall interaction"> soil and wall interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20internal%20friction%20of%20the%20soil" title=" angle of internal friction of the soil"> angle of internal friction of the soil</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20displacement" title=" wall displacement"> wall displacement</a> </p> <a href="https://publications.waset.org/abstracts/44288/studying-the-impact-of-soil-characteristics-in-displacement-of-retaining-walls-using-finite-element" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2033</span> Effect of Silt Presence on Shear Strength Parameters of Unsaturated Sandy Soils </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed">R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Khavaninzadeh"> E. Khavaninzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghorbani%20Tochaee"> M. Ghorbani Tochaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Direct shear test is widely used in soil mechanics experiment to determine the shear strength parameters of granular soils. For analysis of soil stability problems such as bearing capacity, slope stability and lateral pressure on soil retaining structures, the shear strength parameters must be known well. In the present study, shear strength parameters are determined in silty-sand mixtures. Direct shear tests are performed on 161 Firoozkooh sand with different silt content at a relative density of 70% in three vertical stress of 100, 150, and 200 kPa. Wet tamping method is used for soil sample preparation, and the results include diagrams of shear stress versus shear deformation and sample height changes against shear deformation. Accordingly, in different silt percent, the shear strength parameters of the soil such as internal friction angle and dilation angle are calculated and compared. According to the results, when the sample contains up to 10% silt, peak shear strength and internal friction angle have an upward trend. However, if the sample contains 10% to 50% of silt a downward trend is seen in peak shear strength and internal friction angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20strength%20parameters" title="shear strength parameters">shear strength parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20shear%20test" title=" direct shear test"> direct shear test</a>, <a href="https://publications.waset.org/abstracts/search?q=silty%20sand" title=" silty sand"> silty sand</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress" title=" shear stress"> shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20deformation" title=" shear deformation"> shear deformation</a> </p> <a href="https://publications.waset.org/abstracts/106132/effect-of-silt-presence-on-shear-strength-parameters-of-unsaturated-sandy-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2032</span> Effects of Ingredients Proportions on the Friction Performance of a Brake Pad Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rukiye%20Ertan">Rukiye Ertan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a brake friction material composition was investigated experimentally related to the effects of the friction modifiers and abrasive proportions on the tribological properties. The investigation was based on a simple experimental formulation, consisting of seven friction materials with different proportions of abrasives (ZrSiO4 and Fe2O3) and friction modifiers (cashew dust). The friction materials were evaluated using a Chase friction tester. The tribological properties, such as the wear resistance and friction stability, depending on the test temperature and the number of braking were obtained related to the friction material ingredient proportions. The results showed that the tribological properties of the brake pad were greatly affected by the abrasive and then cashew dust proportion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brake%20pad" title="brake pad">brake pad</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=abrasives" title=" abrasives"> abrasives</a> </p> <a href="https://publications.waset.org/abstracts/12601/effects-of-ingredients-proportions-on-the-friction-performance-of-a-brake-pad-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2031</span> An Interlock Model of Friction and Superlubricity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azadeh%20Malekan">Azadeh Malekan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahin%20Rouhani"> Shahin Rouhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superlubricity is a phenomenon where two surfaces in contact show negligible friction;this may be because the asperities of the two surfaces do not interlock. Two rough surfaces, when pressed against each other, can get into a formation where the summits of asperities of one surface lock into the valleys of the other surface. The amount of interlock depends on the geometry of the two surfaces. We suggest the friction force may then be proportional to the amount of interlock; this explains Superlubricity as the situation where there is little interlock. Then the friction force will be directly proportional to the normal force as it is related to the work necessary to lift the upper surface in order to clear the interlock. To investigate this model, we simulate the contact of two surfaces. In order to validate our model, we first investigate Amontons‘ law. Assuming that asperities retain deformations in the time scale while the top asperity moves across the lattice spacing Amonton’s law is observed. Structural superlubricity is examined by the hypothesis that surfaces are very rigid and there is no deformation in asperities. This may happen at small normal forces. When two identical surfaces come into contact, rotating the top surface we observe a peak in friction force near the angle of orientation where the two surfaces can interlock. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction" title="friction">friction</a>, <a href="https://publications.waset.org/abstracts/search?q=amonton%60s%20law" title=" amonton`s law"> amonton`s law</a>, <a href="https://publications.waset.org/abstracts/search?q=superlubricity" title=" superlubricity"> superlubricity</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20model" title=" contact model"> contact model</a> </p> <a href="https://publications.waset.org/abstracts/128468/an-interlock-model-of-friction-and-superlubricity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2030</span> Modeling of Cold Tube Drawing with a Fixed Plug by Finite Element Method and Determination of Optimum Drawing Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Yarar">E. Yarar</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Guven"> E. A. Guven</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Karabay"> S. Karabay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a comprehensive simulation was made for the cold tube drawing with fixed plug. The cold tube drawing process is preferred due to its high surface quality and the high mechanical properties. In drawing processes applied to materials with low plastic deformability, cracks can occur on the surfaces and the process efficiency decreases. The aim of the work is to investigate the effects of different drawing parameters on drawing forces and stresses. In the simulations, optimum conditions were investigated for four different materials, Ti64Al4V, AA5052, AISI4140, and C365. One of the most important parameters for the cold drawing process is the die angle. Three dies were designed for the analysis with semi die angles of 5°, 10°, and 15°. Three different parameters were used for the friction coefficient between die and the material. In the simulations, reduction of area and the drawing speed is kept constant. Drawing is done in one pass. According to the simulation results, the highest drawing forces were obtained in Ti64Al4V. As the semi die angle increases, the drawing forces decrease. The change in semi die angle was most effective on Ti64Al4V. Increasing the coefficient of friction is another effect that increases the drawing forces. The increase in the friction coefficient has also increased in drawing stresses. The increase in die angle also increased the drawing stress distribution for the other three materials outside C365. According to the results of the analysis, it is found that the designed drawing die is suitable for drawing. The lowest drawing stress distribution and drawing forces were obtained for AA5052. Drawing die parameters have a direct effect on the results. In addition, lubricants used for drawing have a significant effect on drawing forces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20tube%20drawing" title="cold tube drawing">cold tube drawing</a>, <a href="https://publications.waset.org/abstracts/search?q=drawing%20force" title=" drawing force"> drawing force</a>, <a href="https://publications.waset.org/abstracts/search?q=drawing%20stress" title=" drawing stress"> drawing stress</a>, <a href="https://publications.waset.org/abstracts/search?q=semi%20die%20angle" title=" semi die angle"> semi die angle</a> </p> <a href="https://publications.waset.org/abstracts/100316/modeling-of-cold-tube-drawing-with-a-fixed-plug-by-finite-element-method-and-determination-of-optimum-drawing-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2029</span> Study of Mechanical Properties of Aluminium Alloys on Normal Friction Stir Welding and Underwater Friction Stir Welding for Structural Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lingaraju%20Dumpala">Lingaraju Dumpala</a>, <a href="https://publications.waset.org/abstracts/search?q=Laxmi%20Mohan%20Kumar%20Chintada"> Laxmi Mohan Kumar Chintada</a>, <a href="https://publications.waset.org/abstracts/search?q=Devadas%20Deepu"> Devadas Deepu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pravin%20Kumar%20Yadav"> Pravin Kumar Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction stir welding is the new-fangled and cutting-edge technique in welding applications; it is widely used in the fields of transportation, aerospace, defense, etc. For thriving significant welding joints and properties of friction stir welded components, it is essential to carry out this advanced process in a prescribed systematic procedure. At this moment, Underwater Friction Stir Welding (UFSW) Process is the field of interest to do research work. In the continuous assessment, the study of UFSW process is to comprehend problems occurred in the past and the structure through which the mechanical properties of the welded joints can be value-added and contributes to conclude results an acceptable and resourceful joint. A meticulous criticism is given on how to modify the experimental setup from NFSW to UFSW. It can discern the influence of tool materials, feeds, spindle angle, load, rotational speeds and mechanical properties. By expending the DEFORM-3D simulation software, the achieved outcomes are validated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Underwater%20Friction%20Stir%20Welding%28UFSW%29" title="Underwater Friction Stir Welding(UFSW)">Underwater Friction Stir Welding(UFSW)</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%20alloys" title=" Al alloys"> Al alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Normal%20Friction%20Stir%20Welding%28NFSW%29" title=" Normal Friction Stir Welding(NFSW)"> Normal Friction Stir Welding(NFSW)</a> </p> <a href="https://publications.waset.org/abstracts/75288/study-of-mechanical-properties-of-aluminium-alloys-on-normal-friction-stir-welding-and-underwater-friction-stir-welding-for-structural-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2028</span> Load Carrying Capacity of Soils Reinforced with Encased Stone Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Chandrakaran">S. Chandrakaran</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Govind"> G. Govind</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stone columns are effectively used to improve bearing strength of soils and also for many geotechnical applications. In soft soils when stone columns are loaded they undergo large settlements due to insufficient lateral confinement. Use of geosynthetics encasement has proved to be a solution for this problem. In this paper, results of a laboratory experimental study carried out with model stone columns with and without encasement. Sand was used for making test beds, and grain size of soil varies from 0.075mm to 4.75mm. Woven geotextiles produced by Gareware ropes India with mass per unit area of 240gm/M2 and having tensile strength of 52KN/m is used for the present investigation. Tests were performed with large scale direct shear box and also using scaled laboratory plate load tests. Stone column of 50mm and 75mm is used for the present investigation. Diameter of stone column, size of stones used for making stone columns is varied in making stone column in the present study. Two types of stone were used namely small and bigger in size. Results indicate that there is an increase in angle of internal friction and also an increase in the shear strength of soil when stone columns are encased. With stone columns with 50mm dia, an average increase of 7% in shear strength and 4.6 % in angle of internal friction was achieved. When large stones were used increase in the shear strength was 12.2%, and angle of internal friction was increased to 5.4%. When the stone column diameter has increased to 75mm increase in shear strength and angle of internal friction was increased with smaller size of stones to 7.9 and 7.5%, and with large size stones, it was 7.7 and 5.48% respectively. Similar results are obtained in plate load tests, also. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stone%20columns" title="stone columns">stone columns</a>, <a href="https://publications.waset.org/abstracts/search?q=encasement" title=" encasement"> encasement</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20load%20test" title=" plate load test"> plate load test</a> </p> <a href="https://publications.waset.org/abstracts/76343/load-carrying-capacity-of-soils-reinforced-with-encased-stone-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2027</span> Influence of the Moisture Content on the Flowability of Fine-Grained Iron Ore Concentrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Lanzerstorfer">C. Lanzerstorfer</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hinterberger"> M. Hinterberger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The iron content of the ore used is crucial for the productivity and coke consumption rate in blast furnace pig iron production. Therefore, most iron ore deposits are processed in beneficiation plants to increase the iron content and remove impurities. In several comminution stages, the particle size of the ore is reduced to ensure that the iron oxides are physically liberated from the gangue. Subsequently, physical separation processes are applied to concentrate the iron ore. The fine-grained ore concentrates produced need to be transported, stored, and processed. For smooth operation of these processes, the flow properties of the material are crucial. The flowability of powders depends on several properties of the material: grain size, grain size distribution, grain shape, and moisture content of the material. The flowability of powders can be measured using ring shear testers. In this study, the influence of the moisture content on the flowability for the Krivoy Rog magnetite iron ore concentrate was investigated. Dry iron ore concentrate was mixed with varying amounts of water to produce samples with a moisture content in the range of 0.2 to 12.2%. The flowability of the samples was investigated using a Schulze ring shear tester. At all measured values of the normal stress (1.0&nbsp;kPa &ndash; 20&nbsp;kPa), the flowability decreased significantly from dry ore to a moisture content of approximately 3-5%. At higher moisture contents, the flowability was nearly constant, while at the maximum moisture content the flowability improved for high values of the normal stress only. The results also showed an improving flowability with increasing consolidation stress for all moisture content levels investigated. The wall friction angle of the dust with carbon steel (S235JR), and an ultra-high molecule low-pressure polyethylene (Robalon) was also investigated. The wall friction angle increased significantly from dry ore to a moisture content of approximately 3%. For higher moisture content levels, the wall friction angles were nearly constant. Generally, the wall friction angle was approximately 4&deg; lower at the higher wall normal stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iron%20ore%20concentrate" title="iron ore concentrate">iron ore concentrate</a>, <a href="https://publications.waset.org/abstracts/search?q=flowability" title=" flowability"> flowability</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title=" moisture content"> moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20friction%20angle" title=" wall friction angle"> wall friction angle</a> </p> <a href="https://publications.waset.org/abstracts/65297/influence-of-the-moisture-content-on-the-flowability-of-fine-grained-iron-ore-concentrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2026</span> Effect of Bored Pile Diameter in Sand on Friction Resistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Mohammed%20M.%20Eid">Ashraf Mohammed M. Eid</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossam%20El%20Badry"> Hossam El Badry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bored pile friction resistance may be affected by many factors such as the method of construction, pile length and diameter, the soil properties, as well as the depth below ground level. These factors can be represented analytically to study the influence of diameter on the unit skin friction. In this research, the Egyptian Code of soil mechanics is used to assess the skin friction capacity for either the ordinary pile diameter as well as for the large pile diameter. The later is presented in the code and through the work of some researchers based on the results of investigations adopted for a sufficient number of field tests. The comparative results of these researchers with respect to the Egyptian Code are used to check the adequacy of both methods. Based on the results of this study, the traditional static formula adopted for piles of diameter less than 60 cm may be continually used for larger piles by correlating the analyzed formulae. Accordingly, the corresponding modified angle of internal friction is concluded demonstrating a reduction of shear strength due to soil disturbance along the pile shaft. Based on this research the difference between driven piles and bored piles constructed in same soil can be assessed and a better understanding can be evaluated for the effect of different factors on pile skin friction capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20piles" title="large piles">large piles</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20formula" title=" static formula"> static formula</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20piles" title=" friction piles"> friction piles</a>, <a href="https://publications.waset.org/abstracts/search?q=sandy%20soils" title=" sandy soils"> sandy soils</a> </p> <a href="https://publications.waset.org/abstracts/27820/effect-of-bored-pile-diameter-in-sand-on-friction-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2025</span> The Influence of Water Content on the Shear Resistance of Silty Sands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Boualem%20Salah">Mohamed Boualem Salah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work involves an experimental study of the behavior of chlef sand under effect of various parameters influencing on shear strength. Because of their distinct nature, sands, silts and clays exhibit completely different behavior (shear strength, the contracting and dilatancy, the angle of internal friction and cohesion etc.). By cons when these materials are mixed, their behavior will become different from each considered alone. The behavior of these mixtures (silty sands etc.) is currently the state of several studies to better use. We studied in this work: The influence of the following factors on the shear strength: (The density, the fines content, the water content). The apparatus used for the tests is the shear box casagrande. This device, although one may have some disadvantages and modern instrumentation is appropriate used to study the shear strength of soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behavior" title="behavior">behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=silt" title=" silt"> silt</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20angle" title=" friction angle"> friction angle</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesion" title=" cohesion"> cohesion</a>, <a href="https://publications.waset.org/abstracts/search?q=fines%20content" title=" fines content"> fines content</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title=" moisture content"> moisture content</a> </p> <a href="https://publications.waset.org/abstracts/18663/the-influence-of-water-content-on-the-shear-resistance-of-silty-sands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2024</span> Effect of Rotation Speed on Microstructure and Microhardness of AA7039 Rods Joined by Friction Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Karakoc">H. Karakoc</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Uzun"> A. Uzun</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20K%C4%B1rm%C4%B1z%C4%B1"> G. Kırmızı</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20%C3%87inici"> H. Çinici</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20%C3%87itak"> R. Çitak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this investigation was to apply friction welding for joining of AA7039 rods produced by powder metallurgy. Friction welding joints were carried out using a rotational friction welding machine. Friction welds were obtained under different rotational speeds between (2700 and 2900 rpm). The friction pressure of 10 MPa and friction time of 30 s was kept constant. The cross sections of joints were observed by optical microscopy. The microstructures were analyzed using scanning electron microscope/energy dispersive X-ray spectroscopy. The Vickers micro hardness measurement of the interface was evaluated using a micro hardness testing machine. Finally the results obtained were compared and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aluminum%20alloy" title="Aluminum alloy">Aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20welding" title=" friction welding"> friction welding</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/30362/effect-of-rotation-speed-on-microstructure-and-microhardness-of-aa7039-rods-joined-by-friction-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2023</span> The Effect of the Water and Fines Content on Shear Strength of Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouledja%20Abdessalam">Ouledja Abdessalam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work Contains an experimental study of the behavior of Chlef sand under the effect of various parameters influencing on shear strength. Because of their distinct nature, sands, silts, and clays exhibit completely different behavior (shear strength, the Contracting and dilatancy, the angle of internal friction and cohesion...). By cons when these materials are mixed, their behavior will become different from each considered alone. The behavior of these mixtures (silty sands...) is currently the state of several studies to better use. We have studied in this work: The influence of the following factors on the shear strength: The density (loose and dense), the fines content (silt), The water content. The apparatus used for the tests is the casagrande shear box. This device, although one may have some disadvantages and modern instrumentation is appropriately used to study the shear strength of soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title="shear strength">shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=silt" title=" silt"> silt</a>, <a href="https://publications.waset.org/abstracts/search?q=contractancy" title=" contractancy"> contractancy</a>, <a href="https://publications.waset.org/abstracts/search?q=dilatancy" title=" dilatancy"> dilatancy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20angle" title=" friction angle"> friction angle</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesion" title=" cohesion"> cohesion</a>, <a href="https://publications.waset.org/abstracts/search?q=fines%20content" title=" fines content"> fines content</a> </p> <a href="https://publications.waset.org/abstracts/24378/the-effect-of-the-water-and-fines-content-on-shear-strength-of-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2022</span> The Effect of Water and Fines Content on Shear Strength of Silty Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dellal%20Seyyid%20Ali">Dellal Seyyid Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work Contains an experimental study of the behavior of Chlef sand under effect of various parameters influencing on shear strength. Because of their distinct nature, sands, silts and clays exhibit completely different behavior (shear strength, the Contracting and dilatancy, the angle of internal friction and cohesion ...). By cons when these materials are mixed, their behavior will become different from each considered alone. The behavior of these mixtures (silty sands ...) is currently the state of several studies to better use. We have studied in this work: The influence of the following factors on the shear strength: The density (loose and dense), the fines content (silt), the water content. The apparatus used for the tests is the casagrande shear box. This device, although one may have some disadvantages and modern instrumentation is appropriate used to study the shear strength of soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title="shear strength">shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=silt" title=" silt"> silt</a>, <a href="https://publications.waset.org/abstracts/search?q=contractanct" title=" contractanct"> contractanct</a>, <a href="https://publications.waset.org/abstracts/search?q=dilatancy" title=" dilatancy"> dilatancy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20angle" title=" friction angle"> friction angle</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesion" title=" cohesion"> cohesion</a>, <a href="https://publications.waset.org/abstracts/search?q=fines%20content" title=" fines content"> fines content</a> </p> <a href="https://publications.waset.org/abstracts/39451/the-effect-of-water-and-fines-content-on-shear-strength-of-silty-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2021</span> Friction Calculation and Simulation of Column Electric Power Steering System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Hamid%20Mirmohammad%20Sadeghi">Seyed Hamid Mirmohammad Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Raffaella%20Sesana"> Raffaella Sesana</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Maffiodo"> Daniela Maffiodo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a procedure for friction calculation of column electric power steering (C-EPS) system which affects handling and comfort in driving. The friction losses estimation is obtained from experimental tests and mathematical calculation. Parts in C-EPS mainly involved in friction losses are bearings and worm gear. In the theoretical approach, the gear geometry and Hertz law were employed to measure the normal load and the sliding velocity and contact areas from the worm gears driving conditions. The viscous friction generated in the worm gear was obtained with a theoretical approach and the result was applied to model the friction in the steering system. Finally, by viscous friction coefficient and Coulomb friction coefficient, values of friction in worm gear were calculated. According to the Bearing Company and the characteristics of each bearing, the friction torques due to load and due to speed were calculated. A MATLAB Simulink model for calculating the friction in bearings and worm gear in C-EPS were done and the total friction value was estimated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction" title="friction">friction</a>, <a href="https://publications.waset.org/abstracts/search?q=worm%20gear" title=" worm gear"> worm gear</a>, <a href="https://publications.waset.org/abstracts/search?q=column%20electric%20power%20steering%20system" title=" column electric power steering system"> column electric power steering system</a>, <a href="https://publications.waset.org/abstracts/search?q=simulink" title=" simulink"> simulink</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing" title=" bearing"> bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=EPS" title=" EPS"> EPS</a> </p> <a href="https://publications.waset.org/abstracts/58098/friction-calculation-and-simulation-of-column-electric-power-steering-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2020</span> Identification of Dynamic Friction Model for High-Precision Motion Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Goubej">Martin Goubej</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Popule"> Tomas Popule</a>, <a href="https://publications.waset.org/abstracts/search?q=Alois%20Krejci"> Alois Krejci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with experimental identification of mechanical systems with nonlinear friction characteristics. Dynamic LuGre friction model is adopted and a systematic approach to parameter identification of both linear and nonlinear subsystems is given. The identification procedure consists of three subsequent experiments which deal with the individual parts of plant dynamics. The proposed method is experimentally verified on an industrial-grade robotic manipulator. Model fidelity is compared with the results achieved with a static friction model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20friction" title="mechanical friction">mechanical friction</a>, <a href="https://publications.waset.org/abstracts/search?q=LuGre%20model" title=" LuGre model"> LuGre model</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20identification" title=" friction identification"> friction identification</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20control" title=" motion control"> motion control</a> </p> <a href="https://publications.waset.org/abstracts/51897/identification-of-dynamic-friction-model-for-high-precision-motion-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2019</span> Determination of the Friction Coefficient of AL5754 Alloy by Ring Compression Test: Experimental and Numerical Survey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20Keshtiban">P. M. Keshtiban</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zadshakoyan"> M. Zadshakoyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the important factors that alter different process and geometrical parameters on metal forming processes is friction between contacting surfaces. Some important factors that effected directly by friction are: stress, strain, required load, wear of surfaces and then geometrical parameters. In order to control friction effects permanent lubrication is necessary. In this article, the friction coefficient is elicited by the most effective method, ring compression tests. The tests were done by both finite element method and practical tests. Different friction curves that extracted by finite element simulations and has good conformity with published results, used for obtaining final friction coefficient. In this study Mos2 is used as the lubricant and Al5754 alloy used as the specimens material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experiment" title="experiment">experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=ring%20compression" title=" ring compression"> ring compression</a> </p> <a href="https://publications.waset.org/abstracts/37586/determination-of-the-friction-coefficient-of-al5754-alloy-by-ring-compression-test-experimental-and-numerical-survey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2018</span> Comparative Study on the Effect of Compaction Energy and Moisture Content on the Strength Properties of Lateritic Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Idris">Ahmad Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=O.A.%20Uche"> O.A. Uche</a>, <a href="https://publications.waset.org/abstracts/search?q=Ado%20Y%20Abdulfatah"> Ado Y Abdulfatah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lateritic soils are found in abundance and are the most common types of soils used in construction of roads and embankments in Nigeria. Strength properties of the soils depend on the amount of compaction applied and the amount of water available in the soil at the time of compaction. In this study, the influence of the compactive effort and that of the amount of water in the soil in the determination of the shear strength properties of lateritic soil was investigated. Lateritic soil sample was collected from an existing borrow pit in Kano, Nigeria and its basic characteristics were determined and the soil was classified according to AASHTO classification method. The soil was then compacted under various compactive efforts and at wide range of moisture contents. The maximum dry density (MDD) and optimum moisture content (OMC) at each compactive effort was determined. Unconfined undrained triaxial test was carried out to determine the shear strength properties of the soil under various conditions of moisture and energy. Preliminary results obtained indicated that the soil is an A-7-5 soil. The final results obtained shows that as the compaction energy is increased, both the cohesion and friction angle increased irrespective of the moisture content used in the compaction. However, when the amount of water in the soil was increased and compaction effort kept constant, only the cohesion of the soil increases while the friction angle shows no any pattern of variation. It was also found that the highest values for cohesion and friction angle were obtained when the soil was compacted at the highest energy and at OMC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laterite" title="laterite">laterite</a>, <a href="https://publications.waset.org/abstracts/search?q=OMC" title=" OMC"> OMC</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction%20energy" title=" compaction energy"> compaction energy</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title=" moisture content"> moisture content</a> </p> <a href="https://publications.waset.org/abstracts/6272/comparative-study-on-the-effect-of-compaction-energy-and-moisture-content-on-the-strength-properties-of-lateritic-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2017</span> The Effect of the Low Plastic Fines on the Shear Strength and Mechanical Behavior of Granular Classes of Sand-Silt Mixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Metmati%20Abdelhaq">El Metmati Abdelhaq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic and earthquake loading conditions. The objective of this laboratory investigation is to study the influence of the fraction of low plastic fines and gradation on the mechanical behavior of sand-silt mixtures reconstituted in the laboratory. For this purpose, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations at two initial relative densities (Dr = 20 and 91 %) with different fines content ranging from 0 to 40 %. The soil samples were tested under different normal stresses (100, 200 and 300 kPa). The evaluation of the data indicates that the fines content and the gradation have significant influence on the friction angle and the cohesion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior" title="mechanical behavior">mechanical behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=silty%20sand" title=" silty sand"> silty sand</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20angle" title=" friction angle"> friction angle</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesion" title=" cohesion"> cohesion</a>, <a href="https://publications.waset.org/abstracts/search?q=fines%20content" title=" fines content"> fines content</a> </p> <a href="https://publications.waset.org/abstracts/8112/the-effect-of-the-low-plastic-fines-on-the-shear-strength-and-mechanical-behavior-of-granular-classes-of-sand-silt-mixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2016</span> Change of Internal Friction on Magnesium Alloy with 5.48% Al Dependence on the Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milan%20Uhr%C3%AD%C4%8Dik">Milan Uhríčik</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Soviarov%C3%A1"> Andrea Soviarová</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuzana%20Dresslerov%C3%A1"> Zuzana Dresslerová</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Pal%C4%8Dek"> Peter Palček</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Va%C5%A1ko"> Alan Vaško</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article is focused on the analysis changes dependence on the temperature on the magnesium alloy with 5,48% Al, 0,813% Zn and 0,398% Mn by internal friction. Internal friction is a property of the material is measured on the ultrasonic resonant aparature at a frequency about f = 20470 Hz. The measured temperature range was from 30 °C up to 420 °C. Precisely measurement of the internal friction can be monitored ongoing structural changes and various mechanisms that prevent these changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20friction" title="internal friction">internal friction</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloy" title=" magnesium alloy"> magnesium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20frequency" title=" resonant frequency"> resonant frequency</a> </p> <a href="https://publications.waset.org/abstracts/20361/change-of-internal-friction-on-magnesium-alloy-with-548-al-dependence-on-the-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">701</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2015</span> Dry Friction Fluctuations in Plain Journal Bearings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20Moran">James Moran</a>, <a href="https://publications.waset.org/abstracts/search?q=Anusarn%20Permsuwan"> Anusarn Permsuwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper compares oscillations in the dry friction coefficient in different journal bearings. Measurements are made of the average and standard deviation in the coefficient of friction as a function of sliding velocity. The standard deviation of the friction coefficient changed dramatically with sliding velocity. The magnitude and frequency of the oscillations were a function of the velocity. A numerical model was developed for the frictional oscillations. There was good agreement between the model and results. Five different materials were used as the sliding surfaces in the experiments, Aluminum, Bronze, Mild Steel, Stainless Steel, and Nylon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coulomb%20friction" title="Coulomb friction">Coulomb friction</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20friction" title=" dynamic friction"> dynamic friction</a>, <a href="https://publications.waset.org/abstracts/search?q=non-lubricated%20bearings" title=" non-lubricated bearings"> non-lubricated bearings</a>, <a href="https://publications.waset.org/abstracts/search?q=frictional%20oscillations" title=" frictional oscillations"> frictional oscillations</a> </p> <a href="https://publications.waset.org/abstracts/67083/dry-friction-fluctuations-in-plain-journal-bearings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2014</span> Simulation of Kinetic Friction in L-Bending of Sheet Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maziar%20Ramezani">Maziar Ramezani</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Neitzert"> Thomas Neitzert</a>, <a href="https://publications.waset.org/abstracts/search?q=Timotius%20Pasang"> Timotius Pasang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction" title="friction">friction</a>, <a href="https://publications.waset.org/abstracts/search?q=L-bending" title=" L-bending"> L-bending</a>, <a href="https://publications.waset.org/abstracts/search?q=springback" title=" springback"> springback</a>, <a href="https://publications.waset.org/abstracts/search?q=Stribeck%20curves" title=" Stribeck curves"> Stribeck curves</a> </p> <a href="https://publications.waset.org/abstracts/7441/simulation-of-kinetic-friction-in-l-bending-of-sheet-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2013</span> Friction Stir Welding Process as a Solid State Joining -A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Anees%20Siddiqui">Mohd Anees Siddiqui</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20H.%20Jafri"> S. A. H. Jafri</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahnawaz%20Alam"> Shahnawaz Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Through this paper an attempt is made to review a special welding technology of friction stir welding (FSW) which is a solid-state joining. Friction stir welding is used for joining of two plates which are applied compressive force by using fixtures over the work table. This is a non consumable type welding technique in which a rotating tool of cylindrical shape is used. Process parameters such as tool geometry, joint design and process speed are discussed in the paper. Comparative study of Friction stir welding with other welding techniques such as MIG, TIG & GMAW is also done. Some light is put on several major applications of friction stir welding in different industries. Quality and environmental aspects of friction stir welding is also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding%20%28FSW%29" title="friction stir welding (FSW)">friction stir welding (FSW)</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20parameters" title=" process parameters"> process parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=tool" title=" tool"> tool</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20joining%20processes" title=" solid state joining processes "> solid state joining processes </a> </p> <a href="https://publications.waset.org/abstracts/24239/friction-stir-welding-process-as-a-solid-state-joining-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2012</span> Influence of Bottom Ash on the Geotechnical Parameters of Clayey Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanios%20Saliba">Tanios Saliba</a>, <a href="https://publications.waset.org/abstracts/search?q=Jad%20Wakim"> Jad Wakim</a>, <a href="https://publications.waset.org/abstracts/search?q=Elie%20Awwad"> Elie Awwad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clayey soils exhibit undesirable problems in civil engineering project: poor bearing soil capacity, shrinkage, cracking, …etc. On the other hand, the increasing production of bottom ash and its disposal in an eco-friendly manner is a matter of concern. Soil stabilization using bottom ash is a new technic in the geo-environmental engineering. It can be used wherever a soft clayey soil is encountered in foundations or road subgrade, instead of using old technics such as cement-soil mixing. This new technology can be used for road embankments and clayey foundations platform (shallow or deep foundations) instead of replacing bad soil or using old technics which aren’t eco-friendly. Moreover, applying this new technic in our geotechnical engineering projects can reduce the disposal of the bottom ash problem which is getting bigger day after day. The research consists of mixing clayey soil with different percentages of bottom ash at different values of water content, and evaluates the mechanical properties of every mix: the percentages of bottom ash are 10% 20% 30% 40% and 50% with values of water content of 25% 35% and 45% of the mix’s weight. Before testing the different mixes, clayey soil’s properties were determined: Atterbeg limits, soil’s cohesion and friction angle and particle size distribution. In order to evaluate the mechanical properties and behavior of every mix, different tests are conducted: -Direct shear test in order to determine the cohesion and internal friction angle of every mix. -Unconfined compressive strength (stress strain curve) to determine mix’s elastic modulus and compressive strength. Soil samples are prepared in accordance with the ASTM standards, and tested at different times, in order to be able to emphasize the influence of the curing period on the variation of the mix’s mechanical properties and characteristics. As of today, the results obtained are very promising: the mix’s cohesion and friction angle vary in function of the bottom ash percentage, water content and curing period: the cohesion increases enormously before decreasing for a long curing period (values of mix’s cohesion are larger than intact soil’s cohesion) while internal friction angle keeps on increasing even when the curing period is 28 days (the tests largest curing period), which give us a better soil behavior: less cracks and better soil bearing capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottom%20ash" title="bottom ash">bottom ash</a>, <a href="https://publications.waset.org/abstracts/search?q=Clayey%20soil" title=" Clayey soil"> Clayey soil</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=tests" title=" tests"> tests</a> </p> <a href="https://publications.waset.org/abstracts/77560/influence-of-bottom-ash-on-the-geotechnical-parameters-of-clayey-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2011</span> Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Almontas%20Vilutis">Almontas Vilutis</a>, <a href="https://publications.waset.org/abstracts/search?q=Vytenis%20Jankauskas"> Vytenis Jankauskas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against WC-Co cemented carbide. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy dispersive spectroscopy (EDS), based on elemental composition, provided important insights into the friction process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction" title="friction">friction</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=carbide" title=" carbide"> carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=factors" title=" factors"> factors</a> </p> <a href="https://publications.waset.org/abstracts/170669/friction-behavior-of-wood-plastic-composites-against-uncoated-cemented-carbide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2010</span> Evaluation of Internal Friction Angle in Overconsolidated Granular Soil Deposits Using P- and S-Wave Seismic Velocities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Pegah">Ehsan Pegah</a>, <a href="https://publications.waset.org/abstracts/search?q=Huabei%20Liu"> Huabei Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determination of the internal friction angle (φ) in natural soil deposits is an important issue in geotechnical engineering. The main objective of this study was to examine the evaluation of this parameter in overconsolidated granular soil deposits by using the P-wave velocity and the anisotropic components of S-wave velocity (i.e., both the vertical component (SV) and the horizontal component (SH) of S-wave). To this end, seventeen pairs of P-wave and S-wave seismic refraction profiles were carried out at three different granular sites in Iran using non-invasive seismic wave methods. The acquired shot gathers were processed, from which the P-wave, SV-wave and SH-wave velocities were derived. The reference values of φ and overconsolidation ratio (OCR) in the soil deposits were measured through laboratory tests. By assuming cross-anisotropy of the soils, the P-wave and S-wave velocities were utilized to develop an equation for calculating the coefficient of lateral earth pressure at-rest (K₀) based on the theory of elasticity for a cross-anisotropic medium. In addition, to develop an equation for OCR estimation in granular geomaterials in terms of SH/SV velocity ratios, a general regression analysis was performed on the resulting information from this research incorporated with the respective data published in the literature. The calculated K₀ values coupled with the estimated OCR values were finally employed in the Mayne and Kulhawy formula to evaluate φ in granular soil deposits. The results showed that reliable values of φ could be estimated based on the seismic wave velocities. The findings of this study may be used as the appropriate approaches for economic and non-invasive determination of in-situ φ in granular soil deposits using the surface seismic surveys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20internal%20friction" title="angle of internal friction">angle of internal friction</a>, <a href="https://publications.waset.org/abstracts/search?q=overconsolidation%20ratio" title=" overconsolidation ratio"> overconsolidation ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20soils" title=" granular soils"> granular soils</a>, <a href="https://publications.waset.org/abstracts/search?q=P-wave%20velocity" title=" P-wave velocity"> P-wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=SV-wave%20velocity" title=" SV-wave velocity"> SV-wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=SH-wave%20velocity" title=" SH-wave velocity"> SH-wave velocity</a> </p> <a href="https://publications.waset.org/abstracts/106511/evaluation-of-internal-friction-angle-in-overconsolidated-granular-soil-deposits-using-p-and-s-wave-seismic-velocities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2009</span> Enhancing the Engineering Properties of Clay by Using Mechanically Treated Rice Straw Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeedullah%20J.%20Mandokhail">Saeedullah J. Mandokhail</a>, <a href="https://publications.waset.org/abstracts/search?q=Meer%20H.%20Khan"> Meer H. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhibullah%20Kakar"> Muhibullah Kakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The studies on the mechanical behavior of randomly distributed short fiber soil composite are relatively new technique in geotechnical engineering. In this paper, mechanically treated rice straw (MTRS) fiber is used to improve the engineering properties of clay. Clay was mixed with 0 %, 0.5 %, 1 % and 2 % of MTRS fiber to analyze the effect of MTRS fiber on properties of soil. It was found that the plasticity index of soil decreases with increase in the MTRS fiber. Cohesion and angle of internal friction of soil were also found to increase with limiting increase in the amount of MTRS fiber and then decreases. The maximum dry density slightly decreases and the optimum moisture content slightly increases with increasing amount of MTRS fibers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cohesion" title="cohesion">cohesion</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20angle" title=" friction angle"> friction angle</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20moisture%20content" title=" optimum moisture content"> optimum moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20straw%20fiber" title=" rice straw fiber"> rice straw fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20fiber" title=" short fiber "> short fiber </a> </p> <a href="https://publications.waset.org/abstracts/94258/enhancing-the-engineering-properties-of-clay-by-using-mechanically-treated-rice-straw-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2008</span> A Simple Device for in-Situ Direct Shear and Sinkage Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Jerves">A. Jerves</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ling"> H. Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Gabaldon"> J. Gabaldon</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Usoltceva"> M. Usoltceva</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Couste"> C. Couste</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Agarwal"> A. Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Hurley"> R. Hurley</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Andrade"> J. Andrade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work introduces a simple device designed to perform in-situ direct shear and sinkage tests on granular materials as sand, clays, or regolith. It consists of a box nested within a larger box. Both have open bottoms, allowing them to be lowered into the material. Afterwards, two rotating plates on opposite sides of the outer box will rotate outwards in order to clear regolith on either side, providing room for the inner box to move relative to the plates and perform a shear test without the resistance of the surrounding soil. From this test, Coulomb parameters, including cohesion and internal friction angle, as well as, Bekker parameters can be in erred. This device has been designed for a laboratory setting, but with few modi cations, could be put on the underside of a rover for use in a remote location. The goal behind this work is to ultimately create a compact, but accurate measuring tool to put onto a rover or any kind of exploratory vehicle to test for regolith properties of celestial bodies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simple%20shear" title="simple shear">simple shear</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20angle" title=" friction angle"> friction angle</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekker%20parameters" title=" Bekker parameters"> Bekker parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=device" title=" device"> device</a>, <a href="https://publications.waset.org/abstracts/search?q=regolith" title=" regolith"> regolith</a> </p> <a href="https://publications.waset.org/abstracts/20915/a-simple-device-for-in-situ-direct-shear-and-sinkage-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2007</span> Analytical Slope Stability Analysis Based on the Statistical Characterization of Soil Shear Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernardo%20C.%20P.%20Albuquerque">Bernardo C. P. Albuquerque</a>, <a href="https://publications.waset.org/abstracts/search?q=Darym%20J.%20F.%20Campos"> Darym J. F. Campos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing our ability to solve complex engineering problems is directly related to the processing capacity of computers. By means of such equipments, one is able to fast and accurately run numerical algorithms. Besides the increasing interest in numerical simulations, probabilistic approaches are also of great importance. This way, statistical tools have shown their relevance to the modelling of practical engineering problems. In general, statistical approaches to such problems consider that the random variables involved follow a normal distribution. This assumption tends to provide incorrect results when skew data is present since normal distributions are symmetric about their means. Thus, in order to visualize and quantify this aspect, 9 statistical distributions (symmetric and skew) have been considered to model a hypothetical slope stability problem. The data modeled is the friction angle of a superficial soil in Brasilia, Brazil. Despite the apparent universality, the normal distribution did not qualify as the best fit. In the present effort, data obtained in consolidated-drained triaxial tests and saturated direct shear tests have been modeled and used to analytically derive the probability density function (PDF) of the safety factor of a hypothetical slope based on Mohr-Coulomb rupture criterion. Therefore, based on this analysis, it is possible to explicitly derive the failure probability considering the friction angle as a random variable. Furthermore, it is possible to compare the stability analysis when the friction angle is modelled as a Dagum distribution (distribution that presented the best fit to the histogram) and as a Normal distribution. This comparison leads to relevant differences when analyzed in light of the risk management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=statistical%20slope%20stability%20analysis" title="statistical slope stability analysis">statistical slope stability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=skew%20distributions" title=" skew distributions"> skew distributions</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20failure" title=" probability of failure"> probability of failure</a>, <a href="https://publications.waset.org/abstracts/search?q=functions%20of%20random%20variables" title=" functions of random variables"> functions of random variables</a> </p> <a href="https://publications.waset.org/abstracts/35856/analytical-slope-stability-analysis-based-on-the-statistical-characterization-of-soil-shear-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=friction%20angle&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=friction%20angle&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=friction%20angle&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=friction%20angle&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=friction%20angle&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=friction%20angle&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=friction%20angle&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=friction%20angle&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=friction%20angle&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=friction%20angle&amp;page=67">67</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=friction%20angle&amp;page=68">68</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=friction%20angle&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10