CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 73 results for author: <span class="mathjax">Mandal, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-ph" aria-role="search"> Searching in archive <strong>hep-ph</strong>. <a href="/search/?searchtype=author&amp;query=Mandal%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Mandal, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Mandal%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Mandal, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Mandal%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Mandal%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Mandal%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17414">arXiv:2411.17414</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17414">pdf</a>, <a href="https://arxiv.org/format/2411.17414">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Phenomenology of Dirac neutrino EFTs up to dimension six </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Biswas%2C+A">Anirban Biswas</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chun%2C+E+J">Eung Jin Chun</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nanda%2C+D">Dibyendu Nanda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17414v1-abstract-short" style="display: inline;"> The gauge singlet right-handed neutrinos are one of the essential fields in neutrino mass models that explain tiny masses of active neutrinos. We consider the effective field theory of the Standard Model extended with these fields under the assumption that neutrinos are Dirac particles. In this framework, we provide a comprehensive study for the phenomenological consequences of various dimension s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17414v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17414v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17414v1-abstract-full" style="display: none;"> The gauge singlet right-handed neutrinos are one of the essential fields in neutrino mass models that explain tiny masses of active neutrinos. We consider the effective field theory of the Standard Model extended with these fields under the assumption that neutrinos are Dirac particles. In this framework, we provide a comprehensive study for the phenomenological consequences of various dimension six interactions employing various high and low energy observables such as the $pp\to\ell^\pm+\not{E}_T$, $pp\to j+\not{E}_T$, decays of proton, meson, tau and top, as well as the cosmological parameter $N_{\rm eff}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17414v1-abstract-full').style.display = 'none'; document.getElementById('2411.17414v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 8 figures, 10 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10704">arXiv:2411.10704</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10704">pdf</a>, <a href="https://arxiv.org/ps/2411.10704">ps</a>, <a href="https://arxiv.org/format/2411.10704">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1572-9494/ad91b4">10.1088/1572-9494/ad91b4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutrino oscillation in the presence of background classical sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Susobhan Mandal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10704v1-abstract-short" style="display: inline;"> The presence of background classical sources affects a quantum field theory significantly in different ways. Neutrino oscillation is a phenomenon that confirms that neutrinos are massive fermions in nature, a celebrated result in modern physics. Neutrino oscillation plays an important role in many astrophysical observations. However, the interactions between the background classical sources with n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10704v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10704v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10704v1-abstract-full" style="display: none;"> The presence of background classical sources affects a quantum field theory significantly in different ways. Neutrino oscillation is a phenomenon that confirms that neutrinos are massive fermions in nature, a celebrated result in modern physics. Neutrino oscillation plays an important role in many astrophysical observations. However, the interactions between the background classical sources with neutrinos are not often considered. In the present article, we show the effect of some classical sources, namely matter currents, electromagnetic waves, torsion, and gravitational waves on neutrino oscillation. It is shown explicitly that the above sources can change the helicity state of neutrinos during neutrino oscillation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10704v1-abstract-full').style.display = 'none'; document.getElementById('2411.10704v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, Accepted in Communications in Theoretical Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21956">arXiv:2410.21956</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.21956">pdf</a>, <a href="https://arxiv.org/format/2410.21956">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Testing tree level TeV scale tyep-I and type-II seesaw scenarios in $渭$TRISTAN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+J">Jinmian Li</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nomura%2C+T">Takaaki Nomura</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+R">Rao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21956v1-abstract-short" style="display: inline;"> We investigate TeV scale type-I and type-II seesaw scenarios at the tree level at the $渭^+ e^-$ and $渭^+ 渭^+$ colliders in the $渭$TRISTAN experiment. In minimal type-I seesaw scenario we consider two generations of Standard Model (SM) singlet heavy Majorana type Right Handed Neutrinos (RHNs) which couples with SM gauge boson through light-heavy neutrino mixing. We consider a minimal scenario where&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21956v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21956v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21956v1-abstract-full" style="display: none;"> We investigate TeV scale type-I and type-II seesaw scenarios at the tree level at the $渭^+ e^-$ and $渭^+ 渭^+$ colliders in the $渭$TRISTAN experiment. In minimal type-I seesaw scenario we consider two generations of Standard Model (SM) singlet heavy Majorana type Right Handed Neutrinos (RHNs) which couples with SM gauge boson through light-heavy neutrino mixing. We consider a minimal scenario where one (other) generation of the RHN dominantly couples with electron (muon). Generating events for the signal and generic SM backgrounds for the final states $e^- 谓jj$ and $渭^+ 谓jj$ from $渭^+ e^-$ collision at $\sqrt{s}=346$ GeV and 1 ab$^{-1}$ luminosity, we estimate limits on the light-heavy neutrino mixing angles with respect to heavy neutrino mass for two generations of the heavy neutrinos. Comparing with the existing limits we find such limits could be two orders of magnitude stronger than electroweak precision data. Further, we study the effect of doubly charged scalar boson $(H^{++})$ from the type-II seesaw scenario in $渭^+ 渭^+$ collision at $\sqrt{s}=2$ TeV. In this case we consider $渭^+ 渭^+ \to \ell_i^+ \ell_j^+$ and $渭^+ 渭^+ \to H^{++} Z/ 纬$ processes followed by the same sign dilepton decay of $H^{++}$. We find that events involving $e^+ e^+$ among these final states could provide significant difference between the normal and inverted orderings of the neutrino mass which could be probed in $渭$TRISTAN collider at 5$蟽$ significance in future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21956v1-abstract-full').style.display = 'none'; document.getElementById('2410.21956v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.06572">arXiv:2407.06572</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.06572">pdf</a>, <a href="https://arxiv.org/ps/2407.06572">ps</a>, <a href="https://arxiv.org/format/2407.06572">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Origin of effective graviton mass from spontaneous symmetry breaking of scalar field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Susobhan Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shankaranarayanan%2C+S">S. Shankaranarayanan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.06572v1-abstract-short" style="display: inline;"> General relativity and quantum field theory govern all fundamental physical processes, from nuclear and subatomic scales to the solar system, galactic, and cosmology. Both theories work remarkably well in their tested domains. However, there is minimal overlap between the two domains. Our work demonstrates that the non-overlapping of domains \emph{no longer} holds when non-perturbative effects are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06572v1-abstract-full').style.display = 'inline'; document.getElementById('2407.06572v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.06572v1-abstract-full" style="display: none;"> General relativity and quantum field theory govern all fundamental physical processes, from nuclear and subatomic scales to the solar system, galactic, and cosmology. Both theories work remarkably well in their tested domains. However, there is minimal overlap between the two domains. Our work demonstrates that the non-overlapping of domains \emph{no longer} holds when non-perturbative effects are considered. We introduce a novel mechanism in which the gravitons acquire \emph{effective mass} due to the spontaneous symmetry breaking (SSB) of global or local symmetry of complex scalar field minimally coupled to gravity. In the flat space-time limit, we demonstrate that the resulting action for the graviton is identical to the extended Fierz-Pauli (FP) action, corresponding to the mass deformation parameter $伪= 1/2$. The extended FP action has 6 Degrees of freedom and no ghost. For local $U(1)$ SSB, we establish that the effective graviton mass is related to the mass of the gauge boson and the electric charge of the complex scalar field. Interestingly, our results indicate that the millicharged dark matter scalar fields, generating dark photons, can produce graviton mass of the same order as the Hubble constant $(H_0)$. Hence, we argue that the dark sector offers a natural explanation for the acceleration of the current Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06572v1-abstract-full').style.display = 'none'; document.getElementById('2407.06572v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The key results of the paper are in the first 10 pages. The detailed calculations and other technicalities are deferred to the five Appendices</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00969">arXiv:2407.00969</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00969">pdf</a>, <a href="https://arxiv.org/format/2407.00969">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Dark matter-electron scattering and freeze-in scenarios in the light of $Z^\prime$ mediation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Barman%2C+B">Basabendu Barman</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00969v2-abstract-short" style="display: inline;"> We investigate dark matter (DM)-electron scattering in a minimal $U(1)_X$ extension of the Standard Model (SM), where the DM can appear as a Majorana fermion, a complex singlet scalar or a Dirac fermion. To study bounds on the $U(1)_X$ gauge coupling $(g_X)$ and new gauge boson mass $(M_{Z^\prime})$, from DM-electron scattering, we consider several direct search experiments like CDMS, DAMIC, SENSE&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00969v2-abstract-full').style.display = 'inline'; document.getElementById('2407.00969v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00969v2-abstract-full" style="display: none;"> We investigate dark matter (DM)-electron scattering in a minimal $U(1)_X$ extension of the Standard Model (SM), where the DM can appear as a Majorana fermion, a complex singlet scalar or a Dirac fermion. To study bounds on the $U(1)_X$ gauge coupling $(g_X)$ and new gauge boson mass $(M_{Z^\prime})$, from DM-electron scattering, we consider several direct search experiments like CDMS, DAMIC, SENSEI, PandaX-II, DarkSide-50 and XENON1T-S2 for different $U(1)_X$ charges. In this set-up we consider DM production via freeze-in both in radiation dominated and modified cosmological background to project sensitivities on $g_X-M_{Z^\prime}$ plane satisfying observed relic abundance. DM-electron scattering could provide comparable, or even stronger bounds than those obtained from the electron/ muon $(g-2)$, low energy scattering and intensity frontier experiments within 0.01 GeV $\lesssim M_{Z^\prime} \lesssim$ 0.1 GeV. Constrains from freeze-in could provide stronger sensitivities for $M_{Z^\prime}\gtrsim \mathcal{O}(1)$ GeV, however, these limits are comparable to those obtained from LHCb, LEP experiments for $\mathcal{O}(10)$ GeV $\lesssim M_{Z^\prime} \lesssim 150$ GeV. In future, electron-muon scattering (MUonE), proton (FASER, DUNE) and electron/positron (ILC) beam dump experiments could probe these parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00969v2-abstract-full').style.display = 'none'; document.getElementById('2407.00969v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figures, version accepted for publication in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05174">arXiv:2401.05174</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.05174">pdf</a>, <a href="https://arxiv.org/format/2401.05174">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Collider imprints of right handed neutrino magnetic moment operator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Chun%2C+E+J">Eung Jin Chun</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Padhan%2C+R">Rojalin Padhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05174v1-abstract-short" style="display: inline;"> We consider most general effective Lagrangian up to dimension five, built with Standard Model~(SM) fields and right-handed neutrinos~(RHNs) $N_i$. Assuming that the RHNs are present near the electroweak scale, we study the phenomenology of the RHNs and highlight the differences that arise due to the inclusion of dimension five operators. We specifically focus on the production process&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05174v1-abstract-full').style.display = 'inline'; document.getElementById('2401.05174v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05174v1-abstract-full" style="display: none;"> We consider most general effective Lagrangian up to dimension five, built with Standard Model~(SM) fields and right-handed neutrinos~(RHNs) $N_i$. Assuming that the RHNs are present near the electroweak scale, we study the phenomenology of the RHNs and highlight the differences that arise due to the inclusion of dimension five operators. We specifically focus on the production process $e^+e^-/pp\to N_i N_j$ which comes from the dimension five magnetic moment operator. We find that this production process followed by the decay chains such as $N_i\to N_j纬$, $N_i\to谓_j纬$ and $N_i\to\ell^\pm j j$ leads to striking collider signatures which might help to probe the Majorana nature of neutrinos. We discuss the current collider constraints on this operator, as well as projected limit at future colliders. In addition, we discuss the stellar-cooling bounds applicable to the RHN mass below 0.1 GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05174v1-abstract-full').style.display = 'none'; document.getElementById('2401.05174v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16911">arXiv:2310.16911</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.16911">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe10030122">10.3390/universe10030122 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observational Constraints on Dynamical Dark Energy Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Avsajanishvili%2C+O">Olga Avsajanishvili</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chitov%2C+G+Y">Gennady Y. Chitov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kahniashvili%2C+T">Tina Kahniashvili</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sayan Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Samushia%2C+L">Lado Samushia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16911v2-abstract-short" style="display: inline;"> $蠁$CDM models provide an alternative to the standard $螞$CDM paradigm, while being physically better motivated. These models lead to a time-dependent speed of sound for dark energy that is difficult to replicate by $w$CDM parametrizations. We review the most up-to-date status of observational evidence for the $蠁&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16911v2-abstract-full').style.display = 'inline'; document.getElementById('2310.16911v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16911v2-abstract-full" style="display: none;"> $蠁$CDM models provide an alternative to the standard $螞$CDM paradigm, while being physically better motivated. These models lead to a time-dependent speed of sound for dark energy that is difficult to replicate by $w$CDM parametrizations. We review the most up-to-date status of observational evidence for the $蠁$CDM models in this paper. We start with an overview of the motivation behind these classes of models, the basic mathematical formalism, and the different classes of models. We then present a compilation of recent results of applying different observational probes to constraining $蠁$CDM model parameters. Over the last twenty years, the precision of observational data has increased immensely, leading to ever tighter constraints. A combination of the recent measurements favors the spatially flat $螞$CDM model, but a large class of $蠁$CDM models is still not ruled out. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16911v2-abstract-full').style.display = 'none'; document.getElementById('2310.16911v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Review article. 94 pages, 73 figures. Minor corrections done and references updated; final version accepted by the journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe 10 (3), 122 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00994">arXiv:2305.00994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00994">pdf</a>, <a href="https://arxiv.org/format/2305.00994">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP07(2023)221">10.1007/JHEP07(2023)221 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phenomenology of the simplest linear seesaw mechanism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Batra%2C+A">Aditya Batra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bharadwaj%2C+P">Praveen Bharadwaj</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Srivastava%2C+R">Rahul Srivastava</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Valle%2C+J+W+F">Jos茅 W. F. Valle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00994v2-abstract-short" style="display: inline;"> The linear seesaw mechanism provides a simple way to generate neutrino masses. In addition to Standard Model particles, it includes quasi-Dirac leptons as neutrino mass mediators, and a leptophilic scalar doublet seeding small neutrino masses. Here we review its associated physics, including restrictions from theory and phenomenology. The model yields potentially detectable $渭\to e纬$ rates as well&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00994v2-abstract-full').style.display = 'inline'; document.getElementById('2305.00994v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00994v2-abstract-full" style="display: none;"> The linear seesaw mechanism provides a simple way to generate neutrino masses. In addition to Standard Model particles, it includes quasi-Dirac leptons as neutrino mass mediators, and a leptophilic scalar doublet seeding small neutrino masses. Here we review its associated physics, including restrictions from theory and phenomenology. The model yields potentially detectable $渭\to e纬$ rates as well as distinctive signatures in the production and decay of heavy neutrinos ($N_i$) and the charged Higgs boson ($H^\pm$) arising from the second scalar doublet. We have found that production processes such as $e^+e^-\to NN$, $e^-纬\to NH^-$ and $e^+ e^-\to H^+ H^-$ followed by the decay chain $H^\pm\to\ell_i^\pm N$, $N\to \ell_j^{\pm}W^\mp$ leads to striking lepton number violation signatures at high energies which may probe the Majorana nature of neutrinos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00994v2-abstract-full').style.display = 'none'; document.getElementById('2305.00994v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, 33 figures, 2 tables, Matches published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06298">arXiv:2304.06298</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.06298">pdf</a>, <a href="https://arxiv.org/format/2304.06298">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.015022">10.1103/PhysRevD.108.015022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testing electroweak scale seesaw models at $e^{-} 纬$ and $纬纬$ colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shil%2C+S">Sujay Shil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06298v2-abstract-short" style="display: inline;"> We investigate the possibilities of probing the electroweak scale seesaw scenarios such as type-I, type-II and type-III seesaw at $e^-纬$ and $纬纬$ colliders. For the case of type-I seesaw, the heavy neutrinos can be produced at $e^{-}纬$ colliders in association with a $W$ boson. We study a variety of final states in this case including single and multilepton modes in association with jets to estima&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06298v2-abstract-full').style.display = 'inline'; document.getElementById('2304.06298v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06298v2-abstract-full" style="display: none;"> We investigate the possibilities of probing the electroweak scale seesaw scenarios such as type-I, type-II and type-III seesaw at $e^-纬$ and $纬纬$ colliders. For the case of type-I seesaw, the heavy neutrinos can be produced at $e^{-}纬$ colliders in association with a $W$ boson. We study a variety of final states in this case including single and multilepton modes in association with jets to estimate bounds on the light-heavy neutrino mixing angle. In case of type-II seesaw, doubly charged multiplets of the SU$(2)_L$ triplet scalar can be produced in pair at $纬纬$ collider. We study the multi-leptonic decay modes coming from this pair production of doubly charged Higgs and show how one can probe neutrino mass hierarchy. We also study same sign $W$ boson production from the doubly charged Higgs to study multilepton modes in association with missing energy. From the type-III seesaw, we study same sign dilepton+jets and trilepton+jets modes at $e^-纬$ collider which are coming from the neutral and charged component of the triplet fermion in association with a $W$ boson and $Z$ boson, respectively. Due to the existing limits on the triplet fermions from the LHC we choose heavier mass so that the gauge boson originated from the decay of a neutral multiplet can be sufficiently boosted producing a fat-jet signature in association with same sign dilepton and trilepton. Finally we estimate bounds on the light neutrino-heavy triplet fermion mixing angle and compare with the existing bounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06298v2-abstract-full').style.display = 'none'; document.getElementById('2304.06298v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, 30 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> EPHOU-22-017 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 108, 015022 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06080">arXiv:2304.06080</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.06080">pdf</a>, <a href="https://arxiv.org/format/2304.06080">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Large lepton number violation at colliders: predictions from the minimal linear seesaw mechanism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Batra%2C+A">Aditya Batra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bharadwaj%2C+P">Praveen Bharadwaj</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Srivastava%2C+R">Rahul Srivastava</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Valle%2C+J+W+F">Jos茅 W. F. Valle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06080v2-abstract-short" style="display: inline;"> Small neutrino masses can be sourced by a tiny vacuum expectation value of a leptophilic Higgs doublet, and mediated by Quasi-Dirac heavy neutrinos. In such simplest linear seesaw picture the neutrino mass mediators can be accessible to colliders. We describe novel charged Higgs and heavy neutrino production mechanisms that can be sizeable at $e^+ e^-$, $e^- 纬$, $pp$, or muon colliders and discuss&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06080v2-abstract-full').style.display = 'inline'; document.getElementById('2304.06080v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06080v2-abstract-full" style="display: none;"> Small neutrino masses can be sourced by a tiny vacuum expectation value of a leptophilic Higgs doublet, and mediated by Quasi-Dirac heavy neutrinos. In such simplest linear seesaw picture the neutrino mass mediators can be accessible to colliders. We describe novel charged Higgs and heavy neutrino production mechanisms that can be sizeable at $e^+ e^-$, $e^- 纬$, $pp$, or muon colliders and discuss some of the associated signatures. The oscillation length of the heavy neutrino mediators is directly related to the light neutrino mass ordering. Moreover, lepton number violation can be large despite the smallness of neutrino masses, and may shed light on the Majorana nature of neutrinos and the significance of basic symmetries in weak interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06080v2-abstract-full').style.display = 'none'; document.getElementById('2304.06080v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 12 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.02681">arXiv:2303.02681</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.02681">pdf</a>, <a href="https://arxiv.org/format/2303.02681">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP08(2023)130">10.1007/JHEP08(2023)130 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermionic Dark Matter in Dynamical Scotogenic Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Chun%2C+E+J">Eung Jin Chun</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Roy%2C+A">Abhishek Roy</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mitra%2C+M">Manimala Mitra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.02681v3-abstract-short" style="display: inline;"> In the Dynamical Scotogenic Model, the global $B-L$ symmetry is supposed to be broken spontaneously resulting in a massless Goldstone boson called majoron, and massive right handed neutrinos which participate in the generation of light neutrino massses at one-loop. One of them being the lightest stable particle can be a thermal dark matter candidate. We discuss how the dark matter phenomenology di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02681v3-abstract-full').style.display = 'inline'; document.getElementById('2303.02681v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.02681v3-abstract-full" style="display: none;"> In the Dynamical Scotogenic Model, the global $B-L$ symmetry is supposed to be broken spontaneously resulting in a massless Goldstone boson called majoron, and massive right handed neutrinos which participate in the generation of light neutrino massses at one-loop. One of them being the lightest stable particle can be a thermal dark matter candidate. We discuss how the dark matter phenomenology differs from the original Scotogenic model, taking into account all the constraints coming from the observed neutrino masses and mixing, lepton flavor violations such as $渭\to e纬, 渭\to e J$, astrophysical and cosmological observations of stellar cooling and $N_{eff}$, as well as collider signatures such as Higgs invisible decays. We find that the dark matter annihilation to majorons plays an important role to produce the right relic abundance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02681v3-abstract-full').style.display = 'none'; document.getElementById('2303.02681v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures, 3 tables, Published as JHEP08(2023)130</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IP/BBSR/2023-03 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP08(2023)130 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.01522">arXiv:2301.01522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.01522">pdf</a>, <a href="https://arxiv.org/format/2301.01522">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> $B-L$ model in light of the CDF II result </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Prajapati%2C+H">Hemant Prajapati</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Srivastava%2C+R">Rahul Srivastava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.01522v1-abstract-short" style="display: inline;"> Recent CDF II collaboration results on $W$ mass measurements contradict Standard Model~(SM) prediction, requiring new physics to explain this anomaly. To explain this issue, in this paper we investigate the idea of using the $U(1)_{B-L}$ gauged SM extension. We demonstrate that $B-L$ extended models can explain the revised best fit values for $S$, $T$, and $U$ following the CDF II results. We stud&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01522v1-abstract-full').style.display = 'inline'; document.getElementById('2301.01522v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.01522v1-abstract-full" style="display: none;"> Recent CDF II collaboration results on $W$ mass measurements contradict Standard Model~(SM) prediction, requiring new physics to explain this anomaly. To explain this issue, in this paper we investigate the idea of using the $U(1)_{B-L}$ gauged SM extension. We demonstrate that $B-L$ extended models can explain the revised best fit values for $S$, $T$, and $U$ following the CDF II results. We studied the parameter space of models with and without mixing between neutral gauge bosons. We also reviewed the dark matter constraints and demonstrated that there is parameter space which is compatible with current $W$ boson mass, relic abundance, and direct detection experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01522v1-abstract-full').style.display = 'none'; document.getElementById('2301.01522v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07884">arXiv:2212.07884</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.07884">pdf</a>, <a href="https://arxiv.org/format/2212.07884">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.123003">10.1103/PhysRevD.107.123003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mass-varying Dark Matter from a Phase Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sayan Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sehgal%2C+N">Neelima Sehgal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07884v2-abstract-short" style="display: inline;"> We propose a mass-varying dark matter (MVDM) model consisting of a scalar field and a fermionic field interacting via a simple Yukawa coupling, and containing an exponential self-interaction potential for the scalar field. Analyzing the evolution of this coupled scalar-fermion system in an expanding Universe, we find that it initially behaves like radiation but then undergoes a phase transition af&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07884v2-abstract-full').style.display = 'inline'; document.getElementById('2212.07884v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07884v2-abstract-full" style="display: none;"> We propose a mass-varying dark matter (MVDM) model consisting of a scalar field and a fermionic field interacting via a simple Yukawa coupling, and containing an exponential self-interaction potential for the scalar field. Analyzing the evolution of this coupled scalar-fermion system in an expanding Universe, we find that it initially behaves like radiation but then undergoes a phase transition after which it behaves like pressureless dark matter. The one free parameter of this model is the temperature at which the phase transition occurs; the mass of the dark matter particle, given by the mass of the fermion, is derived from this. For a phase transition temperature between 10 MeV and $10^7$ GeV, the current dark matter relic density is achieved for a fermion mass in the range of 1 GeV to $10^9$ GeV. In this dark matter model, the scalar becomes a sub-dominant unclustered component of dark matter that can lower the amplitude of structure formation by up to a few percent. Another feature is that the mass-varying fermion component can lead to discrepant measurements of the current dark matter density of about ten percent inferred from early and late-time probes assuming LCDM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07884v2-abstract-full').style.display = 'none'; document.getElementById('2212.07884v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures; version matches that accepted by PRD, changes are elaboration of some details; Mathematica code and notes for numerical/analytic calculations are provided at https://github.com/alphacephei/MVDM</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D, 107, 123003 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.03276">arXiv:2212.03276</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.03276">pdf</a>, <a href="https://arxiv.org/format/2212.03276">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.044062">10.1103/PhysRevD.108.044062 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Novel modulus stabilization mechanism in higher dimensional f(R) Gravity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Elahi%2C+S+G">Shafaq Gulzar Elahi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S+S">Soumya Samrat Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=SenGupta%2C+S">Soumitra SenGupta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.03276v3-abstract-short" style="display: inline;"> In this work, we obtain a new warped solution for a 5-dimensional $f(R) $ gravity in an anti de-Sitter bulk. The higher curvature term in the gravity action is shown to modify the usual warped metric. The novel feature of this modification leads to a natural geometric stabilization of the modulus/radion field in the underlying effective theory on the visible 3-brane without the need for any extern&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03276v3-abstract-full').style.display = 'inline'; document.getElementById('2212.03276v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.03276v3-abstract-full" style="display: none;"> In this work, we obtain a new warped solution for a 5-dimensional $f(R) $ gravity in an anti de-Sitter bulk. The higher curvature term in the gravity action is shown to modify the usual warped metric. The novel feature of this modification leads to a natural geometric stabilization of the modulus/radion field in the underlying effective theory on the visible 3-brane without the need for any external stabilizing field. It is further shown that the stabilized value of the modulus resolves the well-known gauge hierarchy problem without any unnatural fine-tuning of the model parameters. This new solution also opens up the possibilities of new signatures in various scenarios formulated in the backdrop of higher dimensional space-time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03276v3-abstract-full').style.display = 'none'; document.getElementById('2212.03276v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 Pages, 3 figures;Matches the journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 108, 044062 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.12404">arXiv:2210.12404</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.12404">pdf</a>, <a href="https://arxiv.org/format/2210.12404">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.113008">10.1103/PhysRevD.106.113008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Re-examining $N_{R}$-EFT Upto Dimension Six </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mitra%2C+M">Manimala Mitra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Padhan%2C+R">Rojalin Padhan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sarkar%2C+A">Agnivo Sarkar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Spannowsky%2C+M">Michael Spannowsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.12404v2-abstract-short" style="display: inline;"> The gauge singlet right-handed neutrinos (RHNs) are essential fields in several neutrino mass models that explain the observed eV scale neutrino mass. We assume RHN field to be present in the vicinity of the electroweak scale and all the other possible beyond the standard model (BSM) fields arise at high energy scale $\ge螞$. In this scenario, the BSM physics can be described using effective field&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12404v2-abstract-full').style.display = 'inline'; document.getElementById('2210.12404v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.12404v2-abstract-full" style="display: none;"> The gauge singlet right-handed neutrinos (RHNs) are essential fields in several neutrino mass models that explain the observed eV scale neutrino mass. We assume RHN field to be present in the vicinity of the electroweak scale and all the other possible beyond the standard model (BSM) fields arise at high energy scale $\ge螞$. In this scenario, the BSM physics can be described using effective field theory (EFT) where the set of canonical degrees of freedoms consists of both RHN and SM fields. EFT of this kind is usually dubbed as $N_{R}$-EFT. We systematically construct relevant operators that can arise at dimension five and six while respecting underlying symmetry. To quantify the phenomenological implication of these EFT operators we calculate different couplings that involve RHN fields. We discuss the constraints on these EFT operators coming from different energy and precision frontier experiments. For $pp$, $e^{-}p$ and $e^{+}e^{-}$ colliders, we identify various channels which crucially depends on these operators. We analytically evaluate the decay widths of RHN considering all relevant operators and highlight the differences that arise because of the EFT framework. Based upon the signal cross-section we propose different multi-lepton channels to search for the RHN at 14 TeV LHC as well as \emph{future} particle colliders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12404v2-abstract-full').style.display = 'none'; document.getElementById('2210.12404v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 106 (2022) 11, 113008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.01134">arXiv:2210.01134</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.01134">pdf</a>, <a href="https://arxiv.org/format/2210.01134">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/sym16101308">10.3390/sym16101308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Schwinger-Keldysh path integral formalism for a Quenched Quantum Inverted Oscillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Choudhury%2C+S">Sayantan Choudhury</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dey%2C+S">Suman Dey</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gharat%2C+R+M">Rakshit Mandish Gharat</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Saptarshi Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Pandey%2C+N">Nilesh Pandey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.01134v2-abstract-short" style="display: inline;"> In this work, we study the time-dependent behaviour of quantum correlations of a system of an inverted oscillator governed by out-of-equilibrium dynamics using the well-known Schwinger-Keldysh formalism in presence of quantum mechanical quench. Considering a generalized structure of a time-dependent Hamiltonian for an inverted oscillator system, we use the invariant operator method to obtain its e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01134v2-abstract-full').style.display = 'inline'; document.getElementById('2210.01134v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.01134v2-abstract-full" style="display: none;"> In this work, we study the time-dependent behaviour of quantum correlations of a system of an inverted oscillator governed by out-of-equilibrium dynamics using the well-known Schwinger-Keldysh formalism in presence of quantum mechanical quench. Considering a generalized structure of a time-dependent Hamiltonian for an inverted oscillator system, we use the invariant operator method to obtain its eigenstates and continuous energy eigenvalues. Using the expression for the eigenstates, we further derive the most general expression for the generating function as well as the out-of-time-ordered correlators (OTOC) for the given system using this formalism. Further, considering the time-dependent coupling and frequency of the quantum inverted oscillator characterized by quench parameters, we comment on the dynamical behaviour, specifically the early, intermediate and late time-dependent features of the OTOC for the quenched quantum inverted oscillator. Next, we study a specific case, where the system of inverted oscillator exhibits chaotic behaviour by computing the quantum Lyapunov exponent from the time-dependent behaviour of OTOC in presence of the given quench profile. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01134v2-abstract-full').style.display = 'none'; document.getElementById('2210.01134v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 8 figures, Accepted for publication in Symmetry (Feature Papers 2024: https://www.mdpi.com/journal/symmetry/special_issues/7PP2510774)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Symmetry 16 (2024) 10, 1308 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.03372">arXiv:2209.03372</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.03372">pdf</a>, <a href="https://arxiv.org/format/2209.03372">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/sym15030655">10.3390/sym15030655 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Circuit Complexity in an interacting quenched Quantum Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Choudhury%2C+S">Sayantan Choudhury</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gharat%2C+R+M">Rakshit Mandish Gharat</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Saptarshi Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Pandey%2C+N">Nilesh Pandey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.03372v2-abstract-short" style="display: inline;"> In this work, we explore the effects of a quantum quench on the circuit complexity for a quenched quantum field theory having weakly coupled quartic interaction. We use the invariant operator method, under a perturbative framework, for computing the ground state of this system}. We give the analytical expressions for specific reference and target states using the ground state of the system. Using&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.03372v2-abstract-full').style.display = 'inline'; document.getElementById('2209.03372v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.03372v2-abstract-full" style="display: none;"> In this work, we explore the effects of a quantum quench on the circuit complexity for a quenched quantum field theory having weakly coupled quartic interaction. We use the invariant operator method, under a perturbative framework, for computing the ground state of this system}. We give the analytical expressions for specific reference and target states using the ground state of the system. Using a particular cost functional, we show the analytical computation of circuit complexity for the quenched and interacting field theory. Further, we give a numerical estimate of circuit complexity with respect to the quench rate, $未t$ for two coupled oscillators. The parametric variation of the unambiguous contribution of the circuit complexity for an arbitrary number of oscillators has been studied with respect to the dimensionless parameter $(t/未t$). We comment on the variation of circuit complexity for different values of coupling strength, different number of oscillators, and even in different dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.03372v2-abstract-full').style.display = 'none'; document.getElementById('2209.03372v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures, Revised version, Accepted for publication in Symmetry (section: Physics and Symmetry/Asymmetry, Special issue: &#34;Symmetry and Asymmetry in Quantum Mechanics&#34;)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Symmetry 2023, 15(3), 655 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01200">arXiv:2209.01200</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.01200">pdf</a>, <a href="https://arxiv.org/format/2209.01200">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> $h \to 违纬$ Decay: Smoking Gun Signature of Wrong-Sign $hb\bar{b}$ Coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Batra%2C+A">Aditya Batra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Srivastava%2C+R">Rahul Srivastava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01200v1-abstract-short" style="display: inline;"> We analyze in a model-independent way the potential to probe new physics using Higgs decay to $违纬$. The $h \to 违纬$ decay width is unusually small in the Standard Model because of an accidental cancellation among the direct and indirect decay diagrams. Thus, any new physics that can modify the direct or the indirect decay amplitudes disrupts the accidental Standard Model cancellation and can potent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01200v1-abstract-full').style.display = 'inline'; document.getElementById('2209.01200v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01200v1-abstract-full" style="display: none;"> We analyze in a model-independent way the potential to probe new physics using Higgs decay to $违纬$. The $h \to 违纬$ decay width is unusually small in the Standard Model because of an accidental cancellation among the direct and indirect decay diagrams. Thus, any new physics that can modify the direct or the indirect decay amplitudes disrupts the accidental Standard Model cancellation and can potentially lead to a relatively large decay width for $h \to 违纬$. Here, we carry out a detailed model-independent analysis of the possible new physics that can disrupt this cancellation. We demonstrate that after taking into account all possible constraints on Higgs production and decay processes from experimental measurements, the wrong-sign $h b \bar{b}$ coupling is the only scenario in which the $h \to 违纬$ decay width can be changed by almost two orders of magnitude. We conclude that an observation of a significantly enhanced $h \to 违纬$ decay width at the LHC or any future collider will be a conclusive evidence of a wrong-sign $h b \bar{b}$ coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01200v1-abstract-full').style.display = 'none'; document.getElementById('2209.01200v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 30 figures, 12 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.04983">arXiv:2208.04983</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.04983">pdf</a>, <a href="https://arxiv.org/format/2208.04983">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2022.137408">10.1016/j.physletb.2022.137408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> W-mass Anomaly in the Simplest Linear Seesaw Mechanism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Batra%2C+A">Aditya Batra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bharadwaj%2C+P">Praveen Bharadwaj</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Srivastava%2C+R">Rahul Srivastava</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Valle%2C+J+W+F">Jos茅 W. F. Valle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.04983v1-abstract-short" style="display: inline;"> The simplest linear seesaw mechanism can accommodate the new CDF-II $W$ mass measurement. In addition to Standard Model particles, the model includes quasi-Dirac leptons, and a second, leptophilic, scalar doublet seeding small neutrino masses. Our proposal is consistent with electroweak precision tests, neutrino physics, rare decays and collider restrictions, requiring a new charged scalar below a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04983v1-abstract-full').style.display = 'inline'; document.getElementById('2208.04983v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.04983v1-abstract-full" style="display: none;"> The simplest linear seesaw mechanism can accommodate the new CDF-II $W$ mass measurement. In addition to Standard Model particles, the model includes quasi-Dirac leptons, and a second, leptophilic, scalar doublet seeding small neutrino masses. Our proposal is consistent with electroweak precision tests, neutrino physics, rare decays and collider restrictions, requiring a new charged scalar below a few TeV, split in mass from the new degenerate scalar and pseudoscalar neutral Higgs bosons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04983v1-abstract-full').style.display = 'none'; document.getElementById('2208.04983v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 9 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IFIC/22-XXX </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.11945">arXiv:2204.11945</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.11945">pdf</a>, <a href="https://arxiv.org/format/2204.11945">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0217732323500906">10.1142/S0217732323500906 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CDF-II $W$ Boson Mass Anomaly in the Canonical Scotogenic Neutrino-Dark Matter Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Batra%2C+A">Aditya Batra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=A%2C+S+K">ShivaSankar K. A</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Prajapati%2C+H">Hemant Prajapati</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Srivastava%2C+R">Rahul Srivastava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.11945v2-abstract-short" style="display: inline;"> The CDF-II collaboration&#39;s recent high-precision measurement of $W$ boson mass indicates new physics contribution(s) beyond the Standard Model. We investigate the possibility of the well-known canonical Scotogenic model to explain the CDF-II measurement. The Scotogenic model is a popular scenario beyond the Standard Model that induces neutrino masses at the 1-loop level and includes a viable dark&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11945v2-abstract-full').style.display = 'inline'; document.getElementById('2204.11945v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.11945v2-abstract-full" style="display: none;"> The CDF-II collaboration&#39;s recent high-precision measurement of $W$ boson mass indicates new physics contribution(s) beyond the Standard Model. We investigate the possibility of the well-known canonical Scotogenic model to explain the CDF-II measurement. The Scotogenic model is a popular scenario beyond the Standard Model that induces neutrino masses at the 1-loop level and includes a viable dark matter candidate, either scalar or fermionic. For both scalar and fermionic dark matter possibilities, we simultaneously examine the constraints coming from (a) neutrino mass, oscillation, neutrinoless double beta decay and lepton flavour violation experiments, (b) from LEP and LHC (c) from dark matter relic density and direct detection experiments (d) from the oblique $S,T,U$ parameter values consistent with CDF-II $W$ boson measurement. We demonstrate that the new CDF-II measurement rules out the feasible parameter space of the scalar dark matter in the high mass regions ($m_{畏_{R}} \gtrsim 500~\text{GeV}$), while still allowing the intermediate mass regions $54~\text{GeV} \lesssim m_{畏_{R}} \lesssim 76~\text{GeV}$. We also showed that the fermionic dark matter candidate in the canonical Scotogenic model, in the range $M_{N_{1}} \lesssim 500~\text{GeV} $ , can simultaneously explain all the aforementioned issues. Furthermore, we investigated how the recent findings from ATLAS 2023 impact this study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11945v2-abstract-full').style.display = 'none'; document.getElementById('2204.11945v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 15 figures, 3 tables, new analysis added, matches published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.09376">arXiv:2204.09376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.09376">pdf</a>, <a href="https://arxiv.org/format/2204.09376">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> W boson mass in Singlet-Triplet Scotogenic dark matter model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Batra%2C+A">Aditya Batra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=A%2C+S+K">ShivaSankar K. A</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Srivastava%2C+R">Rahul Srivastava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.09376v1-abstract-short" style="display: inline;"> The recent high precision measurement of $W$ boson mass by CDF-II collaboration points to the contribution(s) of new physics beyond the Standard Model. One of the minimalistic ways to account for the anomalous $W$ boson mass is by introducing a hyperchargeless real $SU(2)_L$ triplet scalar whose vacuum expectation value explicitly contributes to the $W$ boson mass at the tree level while the $Z$ b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09376v1-abstract-full').style.display = 'inline'; document.getElementById('2204.09376v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.09376v1-abstract-full" style="display: none;"> The recent high precision measurement of $W$ boson mass by CDF-II collaboration points to the contribution(s) of new physics beyond the Standard Model. One of the minimalistic ways to account for the anomalous $W$ boson mass is by introducing a hyperchargeless real $SU(2)_L$ triplet scalar whose vacuum expectation value explicitly contributes to the $W$ boson mass at the tree level while the $Z$ boson mass remains the same. Such a triplet can be naturally embedded in a singlet-triplet scotogenic model for one loop neutrino mass generated by dark sector particles running in the loop. We discuss the detailed phenomenology of the model, obtaining the parameter space consistent with the CDF-II $W$ boson mass measurements. The dark matter as well as the constraints comings from $S$, $T$, $U$ parameters are also analyzed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09376v1-abstract-full').style.display = 'none'; document.getElementById('2204.09376v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 7 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.05326">arXiv:2204.05326</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.05326">pdf</a>, <a href="https://arxiv.org/format/2204.05326">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.025002">10.1103/PhysRevD.106.025002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entanglement in interacting quenched two-body coupled oscillator system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Choudhury%2C+S">Sayantan Choudhury</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gharat%2C+R+M">Rakshit Mandish Gharat</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Saptarshi Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Pandey%2C+N">Nilesh Pandey</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Roy%2C+A">Abhishek Roy</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sarker%2C+P">Partha Sarker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.05326v3-abstract-short" style="display: inline;"> In this work, we explore the effects of a quantum quench on the entanglement measures of a two-body coupled oscillator system having quartic interaction. We use the invariant operator method, under a perturbative framework, for computing the ground state of this system. We give the analytical expressions for the total and reduced density matrix of the system having non-Gaussian, quartic interactio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05326v3-abstract-full').style.display = 'inline'; document.getElementById('2204.05326v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.05326v3-abstract-full" style="display: none;"> In this work, we explore the effects of a quantum quench on the entanglement measures of a two-body coupled oscillator system having quartic interaction. We use the invariant operator method, under a perturbative framework, for computing the ground state of this system. We give the analytical expressions for the total and reduced density matrix of the system having non-Gaussian, quartic interaction terms. Using this reduced density matrix, we show the analytical calculation of two entanglement measures viz., Von Neumann entanglement entropy using replica trick and Renyi entanglement entropy. Further, we give a numerical estimate of these entanglement measures with respect to the dimensionless parameter $(t/未t$) and show its behaviour in the three regimes, i.e; late time behaviour, around the quench point and the early time behaviour. We comment on the variation of these entanglement measures for different orders of coupling strength. The variation of Renyi entropy of different orders has also been discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05326v3-abstract-full').style.display = 'none'; document.getElementById('2204.05326v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures, Title changed, Revised version, Accepted for publication in Physical Review D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 106, 025002 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07622">arXiv:2203.07622</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07622">pdf</a>, <a href="https://arxiv.org/format/2203.07622">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The International Linear Collider: Report to Snowmass 2021 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Aryshev%2C+A">Alexander Aryshev</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Behnke%2C+T">Ties Behnke</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berggren%2C+M">Mikael Berggren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brau%2C+J">James Brau</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Craig%2C+N">Nathaniel Craig</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Freitas%2C+A">Ayres Freitas</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gaede%2C+F">Frank Gaede</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gessner%2C+S">Spencer Gessner</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gori%2C+S">Stefania Gori</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Grojean%2C+C">Christophe Grojean</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Heinemeyer%2C+S">Sven Heinemeyer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Jeans%2C+D">Daniel Jeans</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kruger%2C+K">Katja Kruger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=List%2C+B">Benno List</a>, <a href="/search/hep-ph?searchtype=author&amp;query=List%2C+J">Jenny List</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+Z">Zhen Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Michizono%2C+S">Shinichiro Michizono</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Miller%2C+D+W">David W. Miller</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Moult%2C+I">Ian Moult</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Murayama%2C+H">Hitoshi Murayama</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nakada%2C+T">Tatsuya Nakada</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nanni%2C+E">Emilio Nanni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nojiri%2C+M">Mihoko Nojiri</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Padamsee%2C+H">Hasan Padamsee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Perelstein%2C+M">Maxim Perelstein</a> , et al. (487 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07622v3-abstract-short" style="display: inline;"> The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This docu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07622v3-abstract-full').style.display = 'inline'; document.getElementById('2203.07622v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07622v3-abstract-full" style="display: none;"> The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07622v3-abstract-full').style.display = 'none'; document.getElementById('2203.07622v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">356 pages, Large pdf file (40 MB) submitted to Snowmass 2021; v2 references to Snowmass contributions added, additional authors; v3 references added, some updates, additional authors</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-22-045, IFT--UAM/CSIC--22-028, KEK Preprint 2021-61, PNNL-SA-160884, SLAC-PUB-17662 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.06362">arXiv:2203.06362</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.06362">pdf</a>, <a href="https://arxiv.org/format/2203.06362">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.095020">10.1103/PhysRevD.105.095020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards deconstructing the simplest seesaw mechanism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Miranda%2C+O+G">O. G. Miranda</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Garcia%2C+G+S">G. Sanchez Garcia</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Valle%2C+J+W+F">J. W. F. Valle</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Xu%2C+X">Xun-Jie Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.06362v1-abstract-short" style="display: inline;"> The triplet or type-II seesaw mechanism is the simplest way to endow neutrinos with mass in the Standard Model (SM). Here we review its associated theory and phenomenology, including restrictions from $S$, $T$, $U$ parameters, neutrino experiments, charged lepton flavour violations as well as collider searches. We also examine restrictions coming from requiring consistency of electroweak symmetry&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06362v1-abstract-full').style.display = 'inline'; document.getElementById('2203.06362v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.06362v1-abstract-full" style="display: none;"> The triplet or type-II seesaw mechanism is the simplest way to endow neutrinos with mass in the Standard Model (SM). Here we review its associated theory and phenomenology, including restrictions from $S$, $T$, $U$ parameters, neutrino experiments, charged lepton flavour violations as well as collider searches. We also examine restrictions coming from requiring consistency of electroweak symmetry breaking, i.e. perturbative unitarity and stability of the vacuum. Finally, we discuss novel effects associated to the scalar mediator of neutrino mass generation namely, (i) rare processes, e.g. $l_伪\to l_尾纬$ decays, at the intensity frontier, and also (ii) four-lepton signatures in colliders at the high-energy frontier. These can be used to probe neutrino properties in an important way, providing a test of the absolute neutrino mass and mass-ordering, as well as of the atmospheric octant. They may also provide the first evidence for charged lepton flavour violation in nature. In contrast, neutrino non-standard interaction strengths are found to lie below current detectability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06362v1-abstract-full').style.display = 'none'; document.getElementById('2203.06362v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 25 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.05728">arXiv:2203.05728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.05728">pdf</a>, <a href="https://arxiv.org/format/2203.05728">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Snowmass2021 CMB-HD White Paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Collaboration%2C+T+C">The CMB-HD Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Akrami%2C+Y">Yashar Akrami</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Basu%2C+K">Kaustuv Basu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boylan-Kolchin%2C+M">Michael Boylan-Kolchin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brinckmann%2C+T">Thejs Brinckmann</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bryan%2C+S">Sean Bryan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Casey%2C+C+M">Caitlin M. Casey</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chluba%2C+J">Jens Chluba</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Clesse%2C+S">Sebastien Clesse</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cyr-Racine%2C+F">Francis-Yan Cyr-Racine</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Farren%2C+G+S">Gerrit S. Farren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fedderke%2C+M+A">Michael A. Fedderke</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fuller%2C+G+M">George M. Fuller</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gluscevic%2C+V">Vera Gluscevic</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Grin%2C+D">Daniel Grin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hlozek%2C+R">Renee Hlozek</a> , et al. (40 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.05728v1-abstract-short" style="display: inline;"> CMB-HD is a proposed millimeter-wave survey over half the sky that would be ultra-deep (0.5 uK-arcmin) and have unprecedented resolution (15 arcseconds at 150 GHz). Such a survey would answer many outstanding questions about the fundamental physics of the Universe. Major advances would be 1.) the use of gravitational lensing of the primordial microwave background to map the distribution of matter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05728v1-abstract-full').style.display = 'inline'; document.getElementById('2203.05728v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.05728v1-abstract-full" style="display: none;"> CMB-HD is a proposed millimeter-wave survey over half the sky that would be ultra-deep (0.5 uK-arcmin) and have unprecedented resolution (15 arcseconds at 150 GHz). Such a survey would answer many outstanding questions about the fundamental physics of the Universe. Major advances would be 1.) the use of gravitational lensing of the primordial microwave background to map the distribution of matter on small scales (k~10 h Mpc^(-1)), which probes dark matter particle properties. It will also allow 2.) measurements of the thermal and kinetic Sunyaev-Zel&#39;dovich effects on small scales to map the gas density and velocity, another probe of cosmic structure. In addition, CMB-HD would allow us to cross critical thresholds: 3.) ruling out or detecting any new, light (&lt; 0.1 eV) particles that were in thermal equilibrium with known particles in the early Universe, 4.) testing a wide class of multi-field models that could explain an epoch of inflation in the early Universe, and 5.) ruling out or detecting inflationary magnetic fields. CMB-HD would also provide world-leading constraints on 6.) axion-like particles, 7.) cosmic birefringence, 8.) the sum of the neutrino masses, and 9.) the dark energy equation of state. The CMB-HD survey would be delivered in 7.5 years of observing 20,000 square degrees of sky, using two new 30-meter-class off-axis crossed Dragone telescopes to be located at Cerro Toco in the Atacama Desert. Each telescope would field 800,000 detectors (200,000 pixels), for a total of 1.6 million detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05728v1-abstract-full').style.display = 'none'; document.getElementById('2203.05728v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021. Note some text overlap with CMB-HD Astro2020 APC and RFI (arXiv:1906.10134, arXiv:2002.12714). Science case further broadened and updated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.13358">arXiv:2202.13358</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.13358">pdf</a>, <a href="https://arxiv.org/format/2202.13358">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.095031">10.1103/PhysRevD.105.095031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heavy Majorana neutrino pair production from $Z^\prime$ at hadron and lepton colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nomura%2C+T">Takaaki Nomura</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shil%2C+S">Sujay Shil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.13358v3-abstract-short" style="display: inline;"> A gauged U$(1)$ extension of the Standard Model (SM) is a simple and anomaly free framework where three generations of Majorana type right-handed neutrinos (RHNs) are introduced to generate light neutrino mass and flavor mixings through the seesaw mechanism. We investigate such models at different hadron and lepton colliders via $Z^\prime$ induced Majorana type RHNs pair production. We derive boun&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.13358v3-abstract-full').style.display = 'inline'; document.getElementById('2202.13358v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.13358v3-abstract-full" style="display: none;"> A gauged U$(1)$ extension of the Standard Model (SM) is a simple and anomaly free framework where three generations of Majorana type right-handed neutrinos (RHNs) are introduced to generate light neutrino mass and flavor mixings through the seesaw mechanism. We investigate such models at different hadron and lepton colliders via $Z^\prime$ induced Majorana type RHNs pair production. We derive bounds on U$(1)$ gauge coupling $(g^\prime)$ comparing the model cross sections with experimentally observed data for different $Z^\prime$ mass $(M_{Z^\prime})$ and RHNs mass $(M_N)$. Using these limits we estimate the allowed RHN pair production cross section which can be manifested by lepton number violating signatures in association with fat-jets at the hadron colliders depending on the mass of the RHNs. Hence we study dilepton and trilepton modes with fat-jet/s of the signal for different benchmark values of $M_{Z^\prime}$ and $M_N$. Using fat-jet signatures and studying the signal and corresponding SM backgrounds, we estimate bounds on $M_N-M_{Z^\prime}$ plane at different center of mass energies which could be probed at different hadron colliders. In the context of the lepton colliders we consider electron positron initial states where Majorana type RHNs can be produced from $Z^\prime$ manifesting same sign dilepton plus jets signature and trilepton plus jets in association with missing energy. Studying the signal and corresponding SM backgrounds we estimate the bounds on the $M_N-M_{Z^\prime}$ plane for different center of mass energies. In the context of U$(1)$ extension of the SM there is an SM singlet BSM scalar which couples with the RHNs. We can probe the Majorana nature of RHNs via this BSM scalar production at electron positron colliders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.13358v3-abstract-full').style.display = 'none'; document.getElementById('2202.13358v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 18 figures, matched with published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 105 (2022) 9, 095031 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.04502">arXiv:2202.04502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.04502">pdf</a>, <a href="https://arxiv.org/format/2202.04502">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2022.137110">10.1016/j.physletb.2022.137110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-energy colliders as a probe of neutrino properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Miranda%2C+O+G">O. G. Miranda</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Garcia%2C+G+S">G. Sanchez Garcia</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Valle%2C+J+W+F">J. W. F. Valle</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Xu%2C+X">Xun-Jie Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.04502v2-abstract-short" style="display: inline;"> The mediators of neutrino mass generation can provide a probe of neutrino properties at the next round of high-energy hadron (FCC-hh) and lepton colliders (FCC-ee/ILC/CEPC/CLIC). We show how the decays of the Higgs triplet scalars mediating the simplest seesaw mechanism can shed light on the neutrino mass scale and mass-ordering, as well as the atmospheric octant. Four-lepton signatures at the hig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04502v2-abstract-full').style.display = 'inline'; document.getElementById('2202.04502v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.04502v2-abstract-full" style="display: none;"> The mediators of neutrino mass generation can provide a probe of neutrino properties at the next round of high-energy hadron (FCC-hh) and lepton colliders (FCC-ee/ILC/CEPC/CLIC). We show how the decays of the Higgs triplet scalars mediating the simplest seesaw mechanism can shed light on the neutrino mass scale and mass-ordering, as well as the atmospheric octant. Four-lepton signatures at the high-energy frontier may provide the discovery-site for charged lepton flavour non-conservation in nature, rather than low-energy intensity frontier experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04502v2-abstract-full').style.display = 'none'; document.getElementById('2202.04502v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, matches Phys. Lett. B accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IFIC/22-XXX </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.01443">arXiv:2202.01443</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.01443">pdf</a>, <a href="https://arxiv.org/format/2202.01443">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2022.137117">10.1016/j.physletb.2022.137117 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-component scalar and fermionic dark matter candidates in a generic U$(1)_X$ model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gola%2C+S">Shivam Gola</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sinha%2C+N">Nita Sinha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.01443v3-abstract-short" style="display: inline;"> We consider a $U(1)_X\otimes \mathbb{Z}_2\otimes \mathbb{Z}&#39;_2$ extension of the Standard Model (SM), where the $U(1)_X$ charge of an SM field is given by a linear combination of its hypercharge and B$-$L number. Apart from the SM particle content, the model contains three right-handed neutrinos (RHNs) $N_R^i$ and two scalars $桅$, $蠂$, all singlets under the SM gauge group but charged under&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01443v3-abstract-full').style.display = 'inline'; document.getElementById('2202.01443v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.01443v3-abstract-full" style="display: none;"> We consider a $U(1)_X\otimes \mathbb{Z}_2\otimes \mathbb{Z}&#39;_2$ extension of the Standard Model (SM), where the $U(1)_X$ charge of an SM field is given by a linear combination of its hypercharge and B$-$L number. Apart from the SM particle content, the model contains three right-handed neutrinos (RHNs) $N_R^i$ and two scalars $桅$, $蠂$, all singlets under the SM gauge group but charged under $U(1)_X$ gauge group. Two of these additional fields, fermion $N_R^3$ is odd under $\mathbb{Z}_2$ and scalar $蠂$ is odd under $\mathbb{Z}&#39;_2$ symmetry. Thus both $蠂$ and $N_R^3$ contribute to the observed dark matter relic density, leading to two-component dark matter candidates. We study in detail its dark matter properties such as relic density and direct detection taking into account the constraints coming from collider studies. We find that in our model, there can be possible annihilation of one Dark Matter (DM) into the other, which may potentially alter the relic density in a significant way. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01443v3-abstract-full').style.display = 'none'; document.getElementById('2202.01443v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">One Table changed</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.02204">arXiv:2201.02204</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.02204">pdf</a>, <a href="https://arxiv.org/format/2201.02204">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.063537">10.1103/PhysRevD.105.063537 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Finding Evidence for Inflation and the Origin of Galactic Magnetic Fields with CMB Surveys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sayan Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sehgal%2C+N">Neelima Sehgal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Namikawa%2C+T">Toshiya Namikawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.02204v2-abstract-short" style="display: inline;"> The origin of the $渭$G magnetic fields observed in galaxies is unknown. One promising scenario is that magnetic fields generated during inflation, larger than 0.1 nG on Mpc scales, were adiabatically compressed to $渭$G strengths in galaxies during structure formation. Thus, detecting a scale-invariant primordial magnetic field (PMF) above 0.1 nG on Mpc scales just after recombination would indicat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02204v2-abstract-full').style.display = 'inline'; document.getElementById('2201.02204v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.02204v2-abstract-full" style="display: none;"> The origin of the $渭$G magnetic fields observed in galaxies is unknown. One promising scenario is that magnetic fields generated during inflation, larger than 0.1 nG on Mpc scales, were adiabatically compressed to $渭$G strengths in galaxies during structure formation. Thus, detecting a scale-invariant primordial magnetic field (PMF) above 0.1 nG on Mpc scales just after recombination would indicate an inflationary origin of galactic magnetic fields. This would also provide compelling evidence that inflation occurred since only an inflationary mechanism could generate such a strong, scale-invariant magnetic field on Mpc scales. In contrast, constraining the scale-invariant PMF strength to be below 0.1 nG would imply an inflationary scenario is not the primary origin, since such weak PMFs cannot be amplified enough via adiabatic compression to produce the strength of the galactic fields we observe today. We find that measurements of anisotropic birefringence by future CMB surveys will be able to improve the sensitivity to Mpc-scale inflationary PMFs by an order of magnitude, and, in particular, that CMB-HD would lower the upper bound to 0.072 nG at the 95% C.L., which is below the critical 0.1 nG threshold for ruling out a purely inflationary origin. If inflationary PMFs exist, we find that a CMB-HD survey would be able to detect them with about $3蟽$ significance or higher, providing evidence for inflation itself. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02204v2-abstract-full').style.display = 'none'; document.getElementById('2201.02204v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures; version matches that published in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 063537 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.09759">arXiv:2109.09759</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.09759">pdf</a>, <a href="https://arxiv.org/format/2109.09759">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/sym15010031">10.3390/sym15010031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Circuit Complexity in $\mathcal{Z}_{2}$ ${\cal EEFT}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Adhikari%2C+K">Kiran Adhikari</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Choudhury%2C+S">Sayantan Choudhury</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kumar%2C+S">Sourabh Kumar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Saptarshi Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Pandey%2C+N">Nilesh Pandey</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Roy%2C+A">Abhishek Roy</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sarkar%2C+S">Soumya Sarkar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sarker%2C+P">Partha Sarker</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shariff%2C+S+S">Saadat Salman Shariff</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.09759v5-abstract-short" style="display: inline;"> Motivated by recent studies of circuit complexity in weakly interacting scalar field theory, we explore the computation of circuit complexity in $\mathcal{Z}_2$ Even Effective Field Theories ($\mathcal{Z}_2$ EEFTs). We consider a massive free field theory with higher-order Wilsonian operators such as $蠁^{4}$, $蠁^{6}$ and $蠁^8.$ To facilitate our computation we regularize the theory by putting it o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09759v5-abstract-full').style.display = 'inline'; document.getElementById('2109.09759v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.09759v5-abstract-full" style="display: none;"> Motivated by recent studies of circuit complexity in weakly interacting scalar field theory, we explore the computation of circuit complexity in $\mathcal{Z}_2$ Even Effective Field Theories ($\mathcal{Z}_2$ EEFTs). We consider a massive free field theory with higher-order Wilsonian operators such as $蠁^{4}$, $蠁^{6}$ and $蠁^8.$ To facilitate our computation we regularize the theory by putting it on a lattice. First, we consider a simple case of two oscillators and later generalize the results to $N$ oscillators. The study has been carried out for nearly Gaussian states. In our computation, the reference state is an approximately Gaussian unentangled state, and the corresponding target state, calculated from our theory, is an approximately Gaussian entangled state. We compute the complexity using the geometric approach developed by Nielsen, parameterizing the path ordered unitary transformation and minimizing the geodesic in the space of unitaries. The contribution of higher-order operators, to the circuit complexity, in our theory has been discussed. We also explore the dependency of complexity with other parameters in our theory for various cases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09759v5-abstract-full').style.display = 'none'; document.getElementById('2109.09759v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 5 figures, 3 tables, reference list updated and version modified, Accepted for publication in Symmetry (section: Physics and Symmetry/Asymmetry, Special issue: Symmetry and Geometry in Physics II)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Symmetry 2023, 15(1), 31 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.00547">arXiv:2106.00547</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.00547">pdf</a>, <a href="https://arxiv.org/format/2106.00547">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0217751X22501317">10.1142/S0217751X22501317 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ALP-portal majorana dark matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Gola%2C+S">Shivam Gola</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sinha%2C+N">Nita Sinha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.00547v2-abstract-short" style="display: inline;"> Axion like particles(ALPs) and right handed neutrinos~(RHNs) are two well-motivated dark matter(DM) candidates. However, these two particles have a completely different origin. Axion was proposed to solve the Strong CP problem, whereas RHNs were introduced to explain light neutrino masses through seesaw mechanisms. We study the case of ALP portal RHN DM taking into account existing constraints on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00547v2-abstract-full').style.display = 'inline'; document.getElementById('2106.00547v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.00547v2-abstract-full" style="display: none;"> Axion like particles(ALPs) and right handed neutrinos~(RHNs) are two well-motivated dark matter(DM) candidates. However, these two particles have a completely different origin. Axion was proposed to solve the Strong CP problem, whereas RHNs were introduced to explain light neutrino masses through seesaw mechanisms. We study the case of ALP portal RHN DM taking into account existing constraints on ALPs. We consider the leading effective operators mediating interactions between the ALP and SM particles and three RHNs to generate light neutrino masses through type-I seesaw. Further, ALP-RHN neutrino coupling is introduced to generalize the model which is restricted by the relic density and indirect detection constraint. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00547v2-abstract-full').style.display = 'none'; document.getElementById('2106.00547v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 6 figures, Matched with the published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.13578">arXiv:2104.13578</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.13578">pdf</a>, <a href="https://arxiv.org/format/2104.13578">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP06(2022)168">10.1007/JHEP06(2022)168 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Displaced Neutrino Jets at the LHeC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Cottin%2C+G">Giovanna Cottin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fischer%2C+O">Oliver Fischer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mitra%2C+M">Manimala Mitra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Padhan%2C+R">Rojalin Padhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.13578v1-abstract-short" style="display: inline;"> Extending the Standard Model with right-handed neutrinos (RHNs) is well motivated by the observation of neutrino oscillations. In the type-I seesaw model, the RHNs interact with the SM particles via tiny mixings with the active neutrinos, which makes their discovery in the laboratory, and in particular at collider experiments in general challenging. In this work we instead consider an extension of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13578v1-abstract-full').style.display = 'inline'; document.getElementById('2104.13578v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.13578v1-abstract-full" style="display: none;"> Extending the Standard Model with right-handed neutrinos (RHNs) is well motivated by the observation of neutrino oscillations. In the type-I seesaw model, the RHNs interact with the SM particles via tiny mixings with the active neutrinos, which makes their discovery in the laboratory, and in particular at collider experiments in general challenging. In this work we instead consider an extension of the type-I seesaw model with the addition of a leptoquark (LQ), and employ a non-minimal production mechanism of the RHN via LQ decay, which is unsuppressed by neutrino mixing. We focus on relatively light RHN with mass $\mathcal{O}(10)$ GeV and LQ with mass 1.0 TeV, and explore the discovery prospect of the RHN at the proposed Large Hadron electron Collider. In the considered mass range and with the given interaction strength, the RHN is long lived and, due to it stemming from the LQ decay, it is also heavily boosted, resulting in collimated decay products. The unique signature under investigation is thus a displaced fat jet. We use kinematic variables to separate signal from background, and demonstrate that the ratio variables with respect to energy/number of displaced and prompt tracks are useful handles in the identification of displaced decays of the RHN. We also show that employing a positron beam provides order of magnitude enhancement in the detection prospect of this signature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13578v1-abstract-full').style.display = 'none'; document.getElementById('2104.13578v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.13401">arXiv:2104.13401</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.13401">pdf</a>, <a href="https://arxiv.org/format/2104.13401">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2021.136458">10.1016/j.physletb.2021.136458 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The simplest scoto-seesaw model: WIMP dark matter phenomenology and Higgs vacuum stability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Srivastava%2C+R">Rahul Srivastava</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Valle%2C+J+W+F">Jos茅 W. F. Valle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.13401v2-abstract-short" style="display: inline;"> We analyze the consistency of electroweak breaking, neutrino and dark matter phenomenology within the simplest scoto-seesaw model. By adding the minimal dark sector to the simplest &#34;missing partner&#34; type-I seesaw one has a physical picture for the neutrino oscillation lengths: the &#34;atmospheric&#34; mass scale arises from the tree-level seesaw, while the &#34;solar&#34; scale is induced radiatively, mediated b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13401v2-abstract-full').style.display = 'inline'; document.getElementById('2104.13401v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.13401v2-abstract-full" style="display: none;"> We analyze the consistency of electroweak breaking, neutrino and dark matter phenomenology within the simplest scoto-seesaw model. By adding the minimal dark sector to the simplest &#34;missing partner&#34; type-I seesaw one has a physical picture for the neutrino oscillation lengths: the &#34;atmospheric&#34; mass scale arises from the tree-level seesaw, while the &#34;solar&#34; scale is induced radiatively, mediated by the dark sector. We identify parameter regions consistent with theoretical constraints, as well as dark matter relic abundance and direct detection searches. Using two-loop renormalization group equations we explore the stability of the vacuum and the consistency of the underlying dark parity symmetry. One also has a lower bound for the neutrinoless double beta decay amplitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13401v2-abstract-full').style.display = 'none'; document.getElementById('2104.13401v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IFIC/21-XXX </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B 819(2021) 136458 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.10902">arXiv:2104.10902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.10902">pdf</a>, <a href="https://arxiv.org/format/2104.10902">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.115030">10.1103/PhysRevD.105.115030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the minimal $U(1)_X$ model at future electron-positron colliders via the fermion pair-production channel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dev%2C+P+S+B">P. S. Bhupal Dev</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hosotani%2C+Y">Yutaka Hosotani</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.10902v3-abstract-short" style="display: inline;"> The minimal $U(1)_X$ extension of the Standard Model (SM) is a well-motivated new physics scenario, where anomaly cancellation dictates new neutral gauge boson ($Z^\prime$) couplings with the SM fermions in terms of the $U(1)_X$ charges of the new scalar fields. We investigate the SM charged fermion pair-production process for different values of these $U(1)_X$ charges at future $e^-e^+$ colliders&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10902v3-abstract-full').style.display = 'inline'; document.getElementById('2104.10902v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.10902v3-abstract-full" style="display: none;"> The minimal $U(1)_X$ extension of the Standard Model (SM) is a well-motivated new physics scenario, where anomaly cancellation dictates new neutral gauge boson ($Z^\prime$) couplings with the SM fermions in terms of the $U(1)_X$ charges of the new scalar fields. We investigate the SM charged fermion pair-production process for different values of these $U(1)_X$ charges at future $e^-e^+$ colliders: $e^+e^-\to f\bar f$. Apart from the standard $纬$ and $Z$-mediated processes, this model features additional $s$-channel (or both $s$ and $t$-channel when $f=e^-$) $Z^\prime$ exchange which interferes with the SM processes. We first estimate the bounds on the $U(1)_X$ coupling $(g^\prime)$ and the $Z^\prime$ mass $(M_{Z^\prime})$ considering the latest dilepton and dijet constraints from the heavy resonance searches at the LHC. Then using the allowed values of $g^\prime$, we study the angular distributions, forward-backward $(\mathcal{A}_{\rm{FB}})$, left-right $(\mathcal{A}_{\rm{LR}})$ and left-right forward-backward $(\mathcal{A}_{\rm{LR, FB}})$ asymmetries of the $f\bar{f}$ final states. We find that these observables can show substantial deviations from the SM results in the $U(1)_X$ model, thus providing a powerful probe of the multi-TeV $Z^\prime$ bosons at future $e^+e^-$ colliders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10902v3-abstract-full').style.display = 'none'; document.getElementById('2104.10902v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">51 pages. Typos in Higgs charges in Tab-II corrected. Results unaltered. Matched published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> OU-HET-1085 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review D 105, 115030 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.02670">arXiv:2103.02670</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.02670">pdf</a>, <a href="https://arxiv.org/format/2103.02670">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP07(2021)029">10.1007/JHEP07(2021)029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical inverse seesaw mechanism as a simple benchmark for electroweak breaking and Higgs boson studies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Rom%C3%A3o%2C+J+C">Jorge C. Rom茫o</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Srivastava%2C+R">Rahul Srivastava</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Valle%2C+J+W+F">Jos茅 W. F. Valle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.02670v1-abstract-short" style="display: inline;"> The Standard Model(SM) vacuum is unstable for the measured values of the top Yukawa coupling and Higgs mass. Here we study the issue of vacuum stability when neutrino masses are generated through spontaneous low-scale lepton number violation. In the simplest dynamical inverse seesaw, the SM Higgs has two siblings: a massive CP-even scalar plus a massless Nambu-Goldstone boson, called majoron. For&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02670v1-abstract-full').style.display = 'inline'; document.getElementById('2103.02670v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.02670v1-abstract-full" style="display: none;"> The Standard Model(SM) vacuum is unstable for the measured values of the top Yukawa coupling and Higgs mass. Here we study the issue of vacuum stability when neutrino masses are generated through spontaneous low-scale lepton number violation. In the simplest dynamical inverse seesaw, the SM Higgs has two siblings: a massive CP-even scalar plus a massless Nambu-Goldstone boson, called majoron. For TeV scale breaking of lepton number, Higgs bosons can have a sizeable decay into the invisible majorons. We examine the interplay and complementarity of vacuum stability and perturbativity restrictions, with collider constraints on visible and invisible Higgs boson decay channels. This simple framework may help guiding further studies, for example, at the proposed FCC facility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02670v1-abstract-full').style.display = 'none'; document.getElementById('2103.02670v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IFIC/21-XXX, CFTP/21-002 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 07 (2021) 029 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.05556">arXiv:2011.05556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.05556">pdf</a>, <a href="https://arxiv.org/ps/2011.05556">ps</a>, <a href="https://arxiv.org/format/2011.05556">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.013193">10.1103/PhysRevResearch.3.013193 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Circular Polarization of Gravitational Waves from Early-Universe Helical Turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Kahniashvili%2C+T">Tina Kahniashvili</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brandenburg%2C+A">Axel Brandenburg</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gogoberidze%2C+G">Grigol Gogoberidze</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sayan Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Pol%2C+A+R">Alberto Roper Pol</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.05556v2-abstract-short" style="display: inline;"> We perform direct numerical simulations to compute the net circular polarization of gravitational waves from helical (chiral) turbulent sources in the early Universe for a variety of initial conditions, including driven (stationary) and decaying turbulence. We investigate the resulting gravitational wave signal assuming different turbulent geneses such as magnetically or kinetically driven cases.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05556v2-abstract-full').style.display = 'inline'; document.getElementById('2011.05556v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.05556v2-abstract-full" style="display: none;"> We perform direct numerical simulations to compute the net circular polarization of gravitational waves from helical (chiral) turbulent sources in the early Universe for a variety of initial conditions, including driven (stationary) and decaying turbulence. We investigate the resulting gravitational wave signal assuming different turbulent geneses such as magnetically or kinetically driven cases. Under realistic physical conditions in the early Universe we compute numerically the wave number-dependent polarization degree of the gravitational waves. We find that the spectral polarization degree strongly depends on the initial conditions. The peak of the spectral polarization degree occurs at twice the typical wavenumber of the source, as expected, and for fully helical decaying turbulence, it reaches its maximum of nearly 100\% {\it only} at the peak. We determine the temporal evolution of the turbulent sources as well as the resulting gravitational waves, showing that the dominant contribution to their spectral energy density happens shortly after the activation of the source. Only through an artificially prolonged decay of the turbulence can further increase of the gravitational wave amplitude be achieved. We estimate the detection prospects for the net polarization, arguing that its detection contains {\it clean} information (including the generation mechanisms, time, and strength) about the sources of possible parity violations in the early Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05556v2-abstract-full').style.display = 'none'; document.getElementById('2011.05556v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures; discussions added; references updated and added; conclusions unchanged; Phys. Rev. Research in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NORDITA-2020-102 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 3, 013193 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.10116">arXiv:2009.10116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.10116">pdf</a>, <a href="https://arxiv.org/format/2009.10116">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP03(2021)212">10.1007/JHEP03(2021)212 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electroweak symmetry breaking in the inverse seesaw mechanism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Srivastava%2C+R">Rahul Srivastava</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Valle%2C+J+W+F">Jos茅 W. F. Valle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.10116v2-abstract-short" style="display: inline;"> We investigate the stability of Higgs potential in inverse seesaw models. We derive the full two-loop RGEs of the relevant parameters, such as the quartic Higgs self-coupling, taking thresholds into account. We find that for relatively large Yukawa couplings the Higgs quartic self-coupling goes negative well below the Standard Model instability scale $\sim 10^{10}$ GeV. We show, however, that the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10116v2-abstract-full').style.display = 'inline'; document.getElementById('2009.10116v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.10116v2-abstract-full" style="display: none;"> We investigate the stability of Higgs potential in inverse seesaw models. We derive the full two-loop RGEs of the relevant parameters, such as the quartic Higgs self-coupling, taking thresholds into account. We find that for relatively large Yukawa couplings the Higgs quartic self-coupling goes negative well below the Standard Model instability scale $\sim 10^{10}$ GeV. We show, however, that the ``dynamical&#39;&#39; inverse seesaw with spontaneous lepton number violation can lead to a completely consistent and stable Higgs vacuum up to the Planck scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10116v2-abstract-full').style.display = 'none'; document.getElementById('2009.10116v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IFIC/20-XXX </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 03(2021) 212 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.05467">arXiv:2008.05467</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.05467">pdf</a>, <a href="https://arxiv.org/format/2008.05467">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.095009">10.1103/PhysRevD.104.095009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interference effect in lepton number violating and conserving meson decays for a left-right symmetric model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Godbole%2C+R+M">Rohini M. Godbole</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Maharathy%2C+S+P">Siddharth P. Maharathy</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mitra%2C+M">Manimala Mitra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sinha%2C+N">Nita Sinha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.05467v4-abstract-short" style="display: inline;"> We study the effect of interference on the lepton number violating~(LNV) and lepton number conserving~(LNC) three-body meson decays $M_1^{+}\to l_i^{+} l_j^{\pm}蟺^{\mp}$, that arise in a TeV scale Left Right Symmetric model~(LRSM) with degenerate or nearly degenerate right handed~(RH) neutrinos. LRSM contains three RH neutrinos and a RH gauge boson. The RH neutrinos with masses in the range of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05467v4-abstract-full').style.display = 'inline'; document.getElementById('2008.05467v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.05467v4-abstract-full" style="display: none;"> We study the effect of interference on the lepton number violating~(LNV) and lepton number conserving~(LNC) three-body meson decays $M_1^{+}\to l_i^{+} l_j^{\pm}蟺^{\mp}$, that arise in a TeV scale Left Right Symmetric model~(LRSM) with degenerate or nearly degenerate right handed~(RH) neutrinos. LRSM contains three RH neutrinos and a RH gauge boson. The RH neutrinos with masses in the range of $M_N \sim$ (MeV - few GeV) can give resonant enhancement in the semi-leptonic LNV and LNC meson decays. In the case, where only one RH neutrino contributes to these decays, the predicted new physics branching ratio of semi-leptonic LNV and LNC meson decays $M_1^{+}\to l_i^{+} l_j^{+}蟺^{-}$ and $M_1^{+}\to l_i^{+} l_j^{-}蟺^{+}$ are equal. We find that with at least two RH neutrinos contributing to the process, the LNV and LNC decay rates can differ. Depending on the neutrino mixing angles and $CP$ violating phases, the branching ratios of LNV and LNC decay channels mediated by the heavy neutrinos can be either enhanced or suppressed, and the ratio of these two rates can differ from unity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05467v4-abstract-full').style.display = 'none'; document.getElementById('2008.05467v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 104 (2021) 9, 095009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.14491">arXiv:2007.14491</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.14491">pdf</a>, <a href="https://arxiv.org/format/2007.14491">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/abf3ba">10.1088/1361-6471/abf3ba <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Large Hadron-Electron Collider at the HL-LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agostini%2C+P">P. Agostini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aksakal%2C+H">H. Aksakal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alekhin%2C+S">S. Alekhin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Allport%2C+P+P">P. P. Allport</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andari%2C+N">N. Andari</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andre%2C+K+D+J">K. D. J. Andre</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Angal-Kalinin%2C+D">D. Angal-Kalinin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">S. Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bella%2C+L+A">L. Aperio Bella</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Apolinario%2C+L">L. Apolinario</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Apsimon%2C+R">R. Apsimon</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Apyan%2C+A">A. Apyan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Arduini%2C+G">G. Arduini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ari%2C+V">V. Ari</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Armbruster%2C+A">A. Armbruster</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Armesto%2C+N">N. Armesto</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Auchmann%2C+B">B. Auchmann</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aulenbacher%2C+K">K. Aulenbacher</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Azuelos%2C+G">G. Azuelos</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Backovic%2C+S">S. Backovic</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bailey%2C+I">I. Bailey</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bailey%2C+S">S. Bailey</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balli%2C+F">F. Balli</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Behera%2C+S">S. Behera</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Behnke%2C+O">O. Behnke</a> , et al. (312 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.14491v2-abstract-short" style="display: inline;"> The Large Hadron electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High Luminosity--Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent el&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14491v2-abstract-full').style.display = 'inline'; document.getElementById('2007.14491v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.14491v2-abstract-full" style="display: none;"> The Large Hadron electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High Luminosity--Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operation. This report represents an update of the Conceptual Design Report (CDR) of the LHeC, published in 2012. It comprises new results on parton structure of the proton and heavier nuclei, QCD dynamics, electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics in extending the accessible kinematic range in lepton-nucleus scattering by several orders of magnitude. Due to enhanced luminosity, large energy and the cleanliness of the hadronic final states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, the report represents a detailed updated design of the energy recovery electron linac (ERL) including new lattice, magnet, superconducting radio frequency technology and further components. Challenges of energy recovery are described and the lower energy, high current, 3-turn ERL facility, PERLE at Orsay, is presented which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution and calibration goals which arise from the Higgs and parton density function physics programmes. The paper also presents novel results on the Future Circular Collider in electron-hadron mode, FCC-eh, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14491v2-abstract-full').style.display = 'none'; document.getElementById('2007.14491v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">373 pages, many figures, to be published by J. Phys. G</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-ACC-Note-2020-0002 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J.Phys.G 48 (2021) 11, 110501 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.04123">arXiv:2006.04123</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.04123">pdf</a>, <a href="https://arxiv.org/format/2006.04123">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2021.115374">10.1016/j.nuclphysb.2021.115374 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bounds on the triplet fermions in type-III seesaw and implications for collider searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.04123v2-abstract-short" style="display: inline;"> Type-III seesaw is a simple extension of the Standard Model~(SM) with the SU$(2)_\text{L}$ triplet fermion with zero hypercharge. It can explain the origin of the tiny neutrino mass and flavor mixing. After the electroweak symmetry breaking the light neutrino mass is generated by the seesaw mechanism which further ensures the mixings between the light neutrino and heavy neutral lepton mass eigenst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.04123v2-abstract-full').style.display = 'inline'; document.getElementById('2006.04123v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.04123v2-abstract-full" style="display: none;"> Type-III seesaw is a simple extension of the Standard Model~(SM) with the SU$(2)_\text{L}$ triplet fermion with zero hypercharge. It can explain the origin of the tiny neutrino mass and flavor mixing. After the electroweak symmetry breaking the light neutrino mass is generated by the seesaw mechanism which further ensures the mixings between the light neutrino and heavy neutral lepton mass eigenstates. If the triplet fermions are around the electroweak scale having sizable mixings with the SM sector allowed by the correct gauge symmetry, they can be produced at the high energy colliders leaving a variety of characteristic signatures. Based on a simple and concrete realizations of the model we employ a general parametrization for the neutrino Dirac mass matrix and perform a parameter scan to identify the allowed regions satisfying the experimental constraints from the neutrino oscillation data, the electroweak precision measurements and the lepton-flavor violating processes, respectively considering the normal and inverted neutrino mass hierarchies. These parameter regions can be probed at the different collider experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.04123v2-abstract-full').style.display = 'none'; document.getElementById('2006.04123v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, matched published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> OU-HET-1062 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Physics B 966 (2021) 115374 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.02267">arXiv:2005.02267</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.02267">pdf</a>, <a href="https://arxiv.org/format/2005.02267">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.033001">10.1103/PhysRevD.102.033001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testing triplet fermions at the electron-positron and electron-proton colliders using fat jet signatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Modak%2C+T">Tanmoy Modak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.02267v2-abstract-short" style="display: inline;"> The addition of $SU(2)_L$ triplet fermions of zero hypercharge with the Standard Model (SM) helps to explain the origin of the neutrino mass by the so-called seesaw mechanism. Such a scenario is commonly know as the type-III seesaw model. After the electroweak symmetry breaking the mixings between the light and heavy mass eigenstates of the neutral leptons are developed which play important roles&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02267v2-abstract-full').style.display = 'inline'; document.getElementById('2005.02267v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.02267v2-abstract-full" style="display: none;"> The addition of $SU(2)_L$ triplet fermions of zero hypercharge with the Standard Model (SM) helps to explain the origin of the neutrino mass by the so-called seesaw mechanism. Such a scenario is commonly know as the type-III seesaw model. After the electroweak symmetry breaking the mixings between the light and heavy mass eigenstates of the neutral leptons are developed which play important roles in the study of the charged and neutral multiplets of the triplet fermions at the colliders. In this article we study such interactions to produce these multiplets of the triplet fermion at the electron-positron and electron-proton colliders at different center of mass energies. We focus on the heavy triplets, for example, having mass in the TeV scale so that their decay products including the SM the gauge bosons or Higgs boson can be sufficiently boosted, leading to a fat jet. Hence we probe the mixing between light-heavy mass eigenstates of the neutrinos and compare the results with the bounds obtained by the electroweak precision study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02267v2-abstract-full').style.display = 'none'; document.getElementById('2005.02267v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 Figures, 41 Pages and matched published version in Physical Review D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> OU-HET-1055 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 033001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.06593">arXiv:2001.06593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.06593">pdf</a>, <a href="https://arxiv.org/format/2001.06593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Corroborating pseudoscalar probing model with pulsar polarisation datasets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Chand%2C+K">Karam Chand</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Subhayan Mandal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.06593v1-abstract-short" style="display: inline;"> Recently, we have used, pulsar polarisation datasets, on circular polarisation degree &amp; linear polarisation position angle, to relate with well established theories, on ellipticity parameter and linear polarisation position angles, accrued by unpolarised photons, while undergoing photon-ALP oscillations, inside a magnetised medium. This has given us parameter values such as ALP mass and its coupli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06593v1-abstract-full').style.display = 'inline'; document.getElementById('2001.06593v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.06593v1-abstract-full" style="display: none;"> Recently, we have used, pulsar polarisation datasets, on circular polarisation degree &amp; linear polarisation position angle, to relate with well established theories, on ellipticity parameter and linear polarisation position angles, accrued by unpolarised photons, while undergoing photon-ALP oscillations, inside a magnetised medium. This has given us parameter values such as ALP mass and its coupling to photons. To further test this, we now switch to different wavebands, other than earlier 21 cm wavelength, and check for the validity of our model. Here we use two data sets on circular polarisation degree of identical pulsars observed in two different wavebands. We show, correlation between these two new sets of data and our model using the composite product variable of ALP mass and its coupling to photons, exist. We also check whether our model hypothesis that one physical effect, namely ALP-photon mixing is sufficient to, estimate ALP parameters, faithfully, or not. We conclude by describing other pertinent physical effects that may be included into our model to explain the circular polarisation degree of pulsars, independent of its operating wavelength of observation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06593v1-abstract-full').style.display = 'none'; document.getElementById('2001.06593v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, 3 tables. [EICP2]</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.07236">arXiv:1912.07236</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.07236">pdf</a>, <a href="https://arxiv.org/format/1912.07236">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.075037">10.1103/PhysRevD.101.075037 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signatures of $\tilde{R}_2$ class of Leptoquarks at the upcoming $ep$ colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Padhan%2C+R">Rojalin Padhan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mitra%2C+M">Manimala Mitra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sinha%2C+N">Nita Sinha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.07236v2-abstract-short" style="display: inline;"> We explore the signatures of the $\tilde{R}_2$ class of leptoquark (LQ) models at the proposed $e^- p$ and $e^+p$ colliders. We carry out an analysis for the proposed colliders LHeC and FCC-eh with center of mass (c.m.) energy 1.3 TeV and 3.46 TeV, respectively. For $\tilde{R}_2$ class of LQ models, there are a number of final states that can arise from LQ production and its subsequent decay. In t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07236v2-abstract-full').style.display = 'inline'; document.getElementById('1912.07236v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.07236v2-abstract-full" style="display: none;"> We explore the signatures of the $\tilde{R}_2$ class of leptoquark (LQ) models at the proposed $e^- p$ and $e^+p$ colliders. We carry out an analysis for the proposed colliders LHeC and FCC-eh with center of mass (c.m.) energy 1.3 TeV and 3.46 TeV, respectively. For $\tilde{R}_2$ class of LQ models, there are a number of final states that can arise from LQ production and its subsequent decay. In this report we do a detailed cut-based analysis for the $l^{\pm}j$ final state. We also discuss the effect of polarized electron and positron beams on LQ production and in turn on $l^{\pm}j$ production. At LHeC, the final state $l^+j$ has very good discovery prospect. We find that, only 100 $\text{fb}^{-1}$ of data can probe LQ mass upto 1.2 TeV with $5蟽$ significance, even with a generic set of cuts. On the contrary, at FCC-eh, one can probe LQ masses upto 2.2 TeV (for $e^-$ beam) and 3 TeV (for $e^+$ beam), at more than $5蟽$ significance with luminosity $1000\,\text{fb}^{-1}$ and $500\,\text{fb}^{-1}$, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07236v2-abstract-full').style.display = 'none'; document.getElementById('1912.07236v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 075037 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.06099">arXiv:1911.06099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.06099">pdf</a>, <a href="https://arxiv.org/ps/1911.06099">ps</a>, <a href="https://arxiv.org/format/1911.06099">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2021/05/018">10.1088/1475-7516/2021/05/018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mass varying neutrinos with different quintessence potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sayan Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chitov%2C+G+Y">Gennady Y. Chitov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Avsajanishvili%2C+O">Olga Avsajanishvili</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Singha%2C+B">Bijit Singha</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kahniashvili%2C+T">Tina Kahniashvili</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.06099v2-abstract-short" style="display: inline;"> The mass-varying neutrino scenario is analyzed for three trial quintessence potentials (Ferreira-Joyce, inverse exponential, and thawing oscillating). The neutrino mass is generated via Yukawa coupling to the scalar field which represents dark energy. The inverse exponential and oscillating potentials are shown to successfully generate the neutrino masses in the range $m \sim 10^{-2}-10^{-3}~$eV a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06099v2-abstract-full').style.display = 'inline'; document.getElementById('1911.06099v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.06099v2-abstract-full" style="display: none;"> The mass-varying neutrino scenario is analyzed for three trial quintessence potentials (Ferreira-Joyce, inverse exponential, and thawing oscillating). The neutrino mass is generated via Yukawa coupling to the scalar field which represents dark energy. The inverse exponential and oscillating potentials are shown to successfully generate the neutrino masses in the range $m \sim 10^{-2}-10^{-3}~$eV and to yield the current dark energy density in the regime of the late-time acceleration of the Universe. Depending on the choice of potentials, the acceleration could occur in two different regimes: (1) the regime of instability, and (2) the stable regime. The first regime of instability is after the Universe underwent a first-order transition and is rolling toward the new stable vacuum. The imaginary sound velocity $c^2_s &lt; 0$ in this regime implies growing fluctuations of the neutrino density (clustering). In the second regime, the Universe smoothly changes its stable states via a continuous transition. Since $c^2_s &gt; 0$, the neutrino density is stable. For all cases the predicted late-time acceleration of the Universe is asymptotically very close to that of the $螞$CDM model. Further extensions of the theory to modify the neutrino sector of the Standard Model and to incorporate inflation are also discussed. It is also shown that in the stable regimes where the neutrino mass is given by the minimum of the thermodynamic potential, the tree-level dynamics of the scalar field is robust with respect to one-loop bosonic and fermionic corrections to the potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06099v2-abstract-full').style.display = 'none'; document.getElementById('1911.06099v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 19 figures. Version accepted by the journal. Added discussions about one-loop bosonic and fermionic corrections to the thermodynamic potential</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.00971">arXiv:1911.00971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.00971">pdf</a>, <a href="https://arxiv.org/format/1911.00971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.075008">10.1103/PhysRevD.101.075008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Same-Sign Tetralepton Signature at Large Hadron Collider, and future $pp$ Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Chun%2C+E+J">Eung Jin Chun</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Khan%2C+S">Sarif Khan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mitra%2C+M">Manimala Mitra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shil%2C+S">Sujay Shil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.00971v1-abstract-short" style="display: inline;"> We analyze a novel signature of the type II seesaw model - same-sign tetra-lepton signal arising from the mixing of neutral Higgs bosons and their subsequent decays to singly and doubly charged Higgs bosons. For this, we consider wide ranges of the triplet vacuum expectation value (vev) and Yukawa couplings, that are consistent with the observed neutrino masses and mixing as well as the LHC search&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.00971v1-abstract-full').style.display = 'inline'; document.getElementById('1911.00971v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.00971v1-abstract-full" style="display: none;"> We analyze a novel signature of the type II seesaw model - same-sign tetra-lepton signal arising from the mixing of neutral Higgs bosons and their subsequent decays to singly and doubly charged Higgs bosons. For this, we consider wide ranges of the triplet vacuum expectation value (vev) and Yukawa couplings, that are consistent with the observed neutrino masses and mixing as well as the LHC search limits. We find that a doubly charged Higgs boson with mass around 250 GeV and triplet vev around $10^{-4}-10^{-2}$ GeV can give significantly large number of events through it decay to same-sign $W$ gauge bosons at High-Luminosity LHC with $3000 \text{fb}^{-1}$ of data. We also pursue the analysis for a future hadron collider with the c.m. energy of 100 TeV. Considering a heavy Higgs boson around 900 GeV and an intermediate region of the triplet vev, where both same-sign dilepton and gauge boson decays can occur, we identify a limited range of the parameters where the number of same-sign tetra-lepton events are as large as 1000. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.00971v1-abstract-full').style.display = 'none'; document.getElementById('1911.00971v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 075008 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.09838">arXiv:1908.09838</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.09838">pdf</a>, <a href="https://arxiv.org/format/1908.09838">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2019)070">10.1007/JHEP12(2019)070 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Displaced heavy neutrinos from $Z&#39;$ decays at the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Chiang%2C+C">Cheng-Wei Chiang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cottin%2C+G">Giovanna Cottin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.09838v2-abstract-short" style="display: inline;"> We study the LHC sensitivity to probe a long-lived heavy neutrino $N$ in the context of $Z&#39;$ models. We focus on displaced vertex signatures of $N$ when pair produced via a $Z&#39;$, decaying to leptons and jets inside the inner trackers of the LHC experiments. We explore the LHC reach with current long-lived particle search strategies for either one or two displaced vertices in association with hadro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09838v2-abstract-full').style.display = 'inline'; document.getElementById('1908.09838v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.09838v2-abstract-full" style="display: none;"> We study the LHC sensitivity to probe a long-lived heavy neutrino $N$ in the context of $Z&#39;$ models. We focus on displaced vertex signatures of $N$ when pair produced via a $Z&#39;$, decaying to leptons and jets inside the inner trackers of the LHC experiments. We explore the LHC reach with current long-lived particle search strategies for either one or two displaced vertices in association with hadronic tracks or jets. We focus on two well-motivated models, namely, the minimal $U(1)_{B-L}$ scenario and its $U(1)_{X}$ extension. We find that searches for at least one displaced vertex can cover a significant portion of the parameter space, with light-heavy neutrino mixings as low as $|V_{lN}|^2\approx 10^{-17}$, and $l=e,渭$ accessible across GeV scale heavy neutrino masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09838v2-abstract-full').style.display = 'none'; document.getElementById('1908.09838v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 11 figures. In v2: added references and eta cut for electrons. Figures modified, results unchanged. Version accepted for publication in JHEP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.09562">arXiv:1908.09562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.09562">pdf</a>, <a href="https://arxiv.org/format/1908.09562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.095022">10.1103/PhysRevD.100.095022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitivity of Lepton Number Violating Meson Decays in Different Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Chun%2C+E+J">Eung Jin Chun</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mitra%2C+M">Manimala Mitra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sinha%2C+N">Nita Sinha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.09562v2-abstract-short" style="display: inline;"> We study the discovery prospect of different three body lepton number violating~(LNV) meson decays $M_{1}^{-}\to\ell_{1}^{-}\ell_{2}^{-}M_{2}^{+}$ in the framework of right handed~(RH) neutrino extended Standard Model~(SM). We consider a number of ongoing experiments, such as, NA62 and LHCb at CERN, Belle II at SuperKEK, as well as at the proposed future experiments, SHiP, MATHUSLA and FCC-ee. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09562v2-abstract-full').style.display = 'inline'; document.getElementById('1908.09562v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.09562v2-abstract-full" style="display: none;"> We study the discovery prospect of different three body lepton number violating~(LNV) meson decays $M_{1}^{-}\to\ell_{1}^{-}\ell_{2}^{-}M_{2}^{+}$ in the framework of right handed~(RH) neutrino extended Standard Model~(SM). We consider a number of ongoing experiments, such as, NA62 and LHCb at CERN, Belle II at SuperKEK, as well as at the proposed future experiments, SHiP, MATHUSLA and FCC-ee. The RH Majorana neutrino $N$ mediating these meson decays provides a resonant enhancement of the rates, if the mass of $N$ lies in the range $(100\, \text{MeV}-6\, \text{GeV})$. We consider the effect of parent mesons velocity, as well as, the effect of finite detector size. Using the expected upper limits on the number of events for the LNV decay modes, $M_{1}^{-} \to\ell_1^{-}\ell_2^{-}蟺^{+}$~($M_{1}=B, B_c,D, D_{s}\,\text{and}\,K$), we analyze the sensitivity reach of the mixing angles $|V_{e N}|^{2}$, $|V_{渭N}|^{2}$, $|V_{蟿N}|^{2}$, $|V_{e N}V_{渭N}|$, $|V_{e N}V_{蟿N}|$ and $|V_{渭N}V_{蟿N}|$ as a function of heavy neutrino mass $M_{N}$. We show that, inclusion of parent meson velocity can account to a large difference for active-sterile mixing, specially for $D$, $D_s$ meson decay at SHiP and $K$ meson decay at NA62. Taking into account the velocity of the $D_s$ meson, the future beam dump experiment SHiP can probe $|V_{eN}|^2 \sim 10^{-9}$. For RH neutrino mass in between 2 - 5 GeV, MATHUSLA can provide best sensitivity reach of active-sterile mixings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09562v2-abstract-full').style.display = 'none'; document.getElementById('1908.09562v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 46 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> OU-HEP-1016, IP/BBSR/2019-4 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 095022 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.07728">arXiv:1907.07728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.07728">pdf</a>, <a href="https://arxiv.org/format/1907.07728">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2021.136609">10.1016/j.physletb.2021.136609 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dark matter as the origin of neutrino mass in the inverse seesaw mechanism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Rojas%2C+N">Nicol谩s Rojas</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Srivastava%2C+R">Rahul Srivastava</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Valle%2C+J+W+F">Jos茅 W. F. Valle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.07728v2-abstract-short" style="display: inline;"> We propose that neutrino masses are &#34;seeded&#34; by a dark sector within the inverse seesaw mechanism. This way we have a new, &#34;hidden&#34;, variant of the scotogenic scenario for radiative neutrino masses. We discuss both explicit and dynamical lepton number violation. In addition to invisible Higgs decays with majoron emission, we discuss in detail the pheneomenolgy of dark matter, as well as the novel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07728v2-abstract-full').style.display = 'inline'; document.getElementById('1907.07728v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.07728v2-abstract-full" style="display: none;"> We propose that neutrino masses are &#34;seeded&#34; by a dark sector within the inverse seesaw mechanism. This way we have a new, &#34;hidden&#34;, variant of the scotogenic scenario for radiative neutrino masses. We discuss both explicit and dynamical lepton number violation. In addition to invisible Higgs decays with majoron emission, we discuss in detail the pheneomenolgy of dark matter, as well as the novel features associated to charged lepton flavour violation, and neutrino physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07728v2-abstract-full').style.display = 'none'; document.getElementById('1907.07728v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 5 tables, 12 figures. Substantially expanded version, including detailed phenomenology discussion. Model and conclusions unchanged. New author added. Version matches the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IFIC/19-XXX </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B, 821, (2021), 136609 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.09779">arXiv:1904.09779</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.09779">pdf</a>, <a href="https://arxiv.org/format/1904.09779">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Reduced Chandrasekhar mass limit due to the fine-structure constant </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Hossain%2C+G+M">Golam Mortuza Hossain</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Susobhan Mandal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.09779v1-abstract-short" style="display: inline;"> The electromagnetic interaction alters the Chandrasekhar mass limit by a factor which depends, as computed in the literature, on the atomic number of the positively charged nuclei present within the degenerate matter. Unfortunately, the methods employed for such computations break Lorentz invariance ab initio. By employing the methods of finite temperature relativistic quantum field theory, we sho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09779v1-abstract-full').style.display = 'inline'; document.getElementById('1904.09779v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.09779v1-abstract-full" style="display: none;"> The electromagnetic interaction alters the Chandrasekhar mass limit by a factor which depends, as computed in the literature, on the atomic number of the positively charged nuclei present within the degenerate matter. Unfortunately, the methods employed for such computations break Lorentz invariance ab initio. By employing the methods of finite temperature relativistic quantum field theory, we show that in the leading order, the effect of electromagnetic interaction reduces the Chandrasekhar mass limit for non-general-relativistic, spherically symmetric white dwarfs by a universal factor of $(1-3伪/4蟺)$, $伪$ being the fine-structure constant. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09779v1-abstract-full').style.display = 'none'; document.getElementById('1904.09779v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 1 figure, revtex</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.03631">arXiv:1903.03631</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.03631">pdf</a>, <a href="https://arxiv.org/format/1903.03631">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.115030">10.1103/PhysRevD.101.115030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Consistency of the dynamical high-scale type-I seesaw mechanism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Srivastava%2C+R">Rahul Srivastava</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Valle%2C+J+W+F">Jos茅 W. F. Valle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.03631v3-abstract-short" style="display: inline;"> We analyze the consistency of electroweak breaking within the simplest high-scale Standard Model type-I seesaw mechanism. We derive the full two-loop RGEs of the relevant parameters, including the quartic Higgs self-coupling of the Standard Model. For the simplest case of bare &#34;right-handed&#34; neutrino mass terms we find that, with large Yukawa couplings, the Higgs quartic self-coupling becomes nega&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.03631v3-abstract-full').style.display = 'inline'; document.getElementById('1903.03631v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.03631v3-abstract-full" style="display: none;"> We analyze the consistency of electroweak breaking within the simplest high-scale Standard Model type-I seesaw mechanism. We derive the full two-loop RGEs of the relevant parameters, including the quartic Higgs self-coupling of the Standard Model. For the simplest case of bare &#34;right-handed&#34; neutrino mass terms we find that, with large Yukawa couplings, the Higgs quartic self-coupling becomes negative much below the seesaw scale, so that the model may be inconsistent even as an effective theory. We show, however, that the &#34;dynamical&#34; type-I high-scale seesaw with spontaneous lepton number violation has better stability properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.03631v3-abstract-full').style.display = 'none'; document.getElementById('1903.03631v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 10 figures, 1 table, Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IFIC/19-XXX </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 115030 (2020) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Mandal%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Mandal%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Mandal%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10