CINXE.COM
Search results for: thermomagnetic convection
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: thermomagnetic convection</title> <meta name="description" content="Search results for: thermomagnetic convection"> <meta name="keywords" content="thermomagnetic convection"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="thermomagnetic convection" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="thermomagnetic convection"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 353</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: thermomagnetic convection</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Electrohydrodynamic Instability and Enhanced Mixing with Thermal Field and Polymer Addition Modulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dilin%20Chen">Dilin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang%20Luo"> Kang Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Wu"> Jian Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun%20Yang"> Chun Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongliang%20Yi"> Hongliang Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrically driven flows (EDF) systems play an important role in fuel cells, electrochemistry, bioseparation technology, fluid pumping, and microswimmers. The core scientific problem is multifield coupling, the further development of which depends on the exploration of nonlinear instabilities, force competing mechanisms, and energy budgets. In our study, two categories of electrostatic force-dominated phenomena, induced charge electrosmosis (ICEO) and ion conduction pumping are investigated while considering polymer rheological characteristics and heat gradients. With finite volume methods, the thermal modulation strategy of ICEO under the thermal buoyancy force is numerically analyzed, and the electroelastic instability turn associated with polymer addition is extended. The results reveal that the thermal buoyancy forces are sufficient to create typical thermogravitational convection in competition with electroconvective modes. Electroelastic instability tends to be promoted by weak electrical forces, and polymers effectively alter the unstable transition routes. Our letter paves the way for improved mixing and heat transmission in microdevices, as well as insights into the non-Newtonian nature of electrohydrodynamic dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluid" title="non-Newtonian fluid">non-Newtonian fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=electroosmotic%20flow" title=" electroosmotic flow"> electroosmotic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=electrohydrodynamic" title=" electrohydrodynamic"> electrohydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20liquids" title=" viscoelastic liquids"> viscoelastic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/177082/electrohydrodynamic-instability-and-enhanced-mixing-with-thermal-field-and-polymer-addition-modulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> A Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Partha%20Sarathi%20Majee">Partha Sarathi Majee</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bhattacharyya"> S. Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-linear Nernst-Planck equations for the ion transport and the Poisson equation for the electric potential. A pressure correction based iterative algorithm is adopted for numerical computations. The effects of convection on double layer polarization (DLP) and diffusion dominated counter ions penetration are investigated for a wide range of Debye layer thickness, PEL fixed surface charge density, and permeability of the PEL. Our results show that when the Debye layer is in order of the particle size, the DLP effect is significant and produces a reduction in electrophoretic mobility. However, the double layer polarization effect is negligible for a thin Debye layer or low permeable cases. The point of zero mobility and the existence of mobility reversal depending on the electrolyte concentration are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=debye%20length" title="debye length">debye length</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20layer%20polarization" title=" double layer polarization"> double layer polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=electrophoresis" title=" electrophoresis"> electrophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility%20reversal" title=" mobility reversal"> mobility reversal</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20particle" title=" soft particle"> soft particle</a> </p> <a href="https://publications.waset.org/abstracts/63343/a-numerical-study-on-electrophoresis-of-a-soft-particle-with-charged-core-coated-with-polyelectrolyte-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Influence of Gravity on the Performance of Closed Loop Pulsating Heat Pipe </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vipul%20M.%20Patel">Vipul M. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20B.%20Mehta"> H. B. Mehta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Closed Loop Pulsating Heat Pipe (CLPHP) is a passive two-phase heat transfer device having potential to achieve high heat transfer rates over conventional cooling techniques. It is found in electronics cooling due to its outstanding characteristics such as excellent heat transfer performance, simple, reliable, cost effective, compact structure and no external mechanical power requirement etc. Comprehensive understanding of the thermo-hydrodynamic mechanism of CLPHP is still lacking due to its contradictory results available in the literature. The present paper discusses the experimental study on 9 turn CLPHP. Inner and outer diameters of the copper tube are 2 mm and 4 mm respectively. The lengths of the evaporator, adiabatic and condenser sections are 40 mm, 100 mm and 50 mm respectively. Water is used as working fluid. The Filling Ratio (FR) is kept as 50% throughout the investigations. The gravitational effect is studied by placing the evaporator heater at different orientations such as horizontal (90 degree), vertical top (180 degree) and bottom (0 degree) as well as inclined top (135 degree) and bottom (45 degree). Heat input is supplied in the range of 10-50 Watt. Heat transfer mechanism is natural convection in the condenser section. Vacuum pump is used to evacuate the system up to 10<sup>-5</sup> bar. The results demonstrate the influence of input heat flux and gravity on the thermal performance of the CLPHP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CLPHP" title="CLPHP">CLPHP</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity%20effect" title=" gravity effect"> gravity effect</a>, <a href="https://publications.waset.org/abstracts/search?q=start%20up" title=" start up"> start up</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a> </p> <a href="https://publications.waset.org/abstracts/42846/influence-of-gravity-on-the-performance-of-closed-loop-pulsating-heat-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Subsurface Water in Mars' Shallow Diluvium Deposits: Evidence from Tianwen-1 Radar Observations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changzhi%20Jiang">Changzhi Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunyu%20Ding"> Chunyu Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Su"> Yan Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiawei%20Li"> Jiawei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Sharma"> Ravi Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanzhou%20Liu"> Yuanzhou Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiangwan%20Xu"> Jiangwan Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Early Mars is believed to have had extensive liquid water activity, which has now predominantly transitioned to a frozen state, with the majority of water stored in polar ice caps. It has long been deemed that the shallow subsurface of Mars' mid-to-low latitudes is devoid of liquid water. However, geological features observed at the Tianwen-1 landing site hint potential subsurface water. Our research indicates that the shallow subsurface at the Tianwen-1 landing site consists primarily of diluvium deposits containing liquid brine and brine ice, which exhibits diurnal thermal convection processes. Here we report the relationship between the loss tangent and temperature of materials within 5 meters depth of the subsurface at the Tianwen-1 landing site, as in-situ detected by high-frequency radar and climate station onboard the Zhurong rover. When the strata temperature exceeds ~ 240 K, the mixed brine ice transitions to liquid brine, significantly increasing the loss tangent from an average of ~ 0.0167 to a maximum of ~ 0.0448. This finding indicates the presence of substantial subsurface water in Mars' mid-to-low latitudes, influencing the shallow subsurface heat distribution and contributing to the current Martian hydrological cycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20on%20mars" title="water on mars">water on mars</a>, <a href="https://publications.waset.org/abstracts/search?q=mars%20exploration" title=" mars exploration"> mars exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20radar%20detection" title=" in-situ radar detection"> in-situ radar detection</a>, <a href="https://publications.waset.org/abstracts/search?q=tianwen-1%20mission" title=" tianwen-1 mission"> tianwen-1 mission</a> </p> <a href="https://publications.waset.org/abstracts/188927/subsurface-water-in-mars-shallow-diluvium-deposits-evidence-from-tianwen-1-radar-observations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Surface Morphology Refinement and Laves Phase Control of Inconel 718 during Plasma Arc Additive Manufacturing by Alternating Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi%20Zheng">Yi Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improving formability and mechanical properties have always been one of the challenges in the field of additive manufacturing (AM) of nickel-based superalloys. In this work, the effect of a coaxially coupled alternating magnetic field (AMF) on surface morphology and mechanical properties of plasma arc-based additive manufactured Inconel 718 deposit were investigated. Results show that the Lorentz force induced by AMF strongly alters the flow behavior of the plasma jet and the molten pool, suppressing the tendency of the liquid metal in the molten pool to flow down on the two sides face of the deposit, which in turn remarkably improved the surface accuracy of the thin-walled deposit. Furthermore, the electromagnetic stirring induced by AMF can effectively enhance the convection between the dendrites, which could not only contribute to the formation of finer dendrites but also alleviate the enrichment of the elements (i.e., Nb and Mo) at the solid-liquid interface and inhibits the precipitation of Laves phase. The smallest primary dendritic arm spacing (~13 μm) and lowest Laves phases area fraction (3.12%) were witnessed in the bottom region of the AMF-assisted deposit. The mechanical test confirmed that the deposit's micro-hardness and tensile properties were moderately improved compared with the counterpart without AMF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=inconel%20718" title=" inconel 718"> inconel 718</a>, <a href="https://publications.waset.org/abstracts/search?q=alternating%20magnetic%20field" title=" alternating magnetic field"> alternating magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=laves%20phase" title=" laves phase"> laves phase</a> </p> <a href="https://publications.waset.org/abstracts/152412/surface-morphology-refinement-and-laves-phase-control-of-inconel-718-during-plasma-arc-additive-manufacturing-by-alternating-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Thermal Performance of Fully Immersed Naturally Cooled Server</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Al-Anii">Yaser Al-Anii</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulmajeed%20Almaneea"> Abdulmajeed Almaneea</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20L.%20Summers"> Jonathan L. Summers</a>, <a href="https://publications.waset.org/abstracts/search?q=Harvey%20M.%20Thompson"> Harvey M. Thompson</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikil%20Kapur"> Nikil Kapur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The natural convection cooling system of a fully immersed server in a dielectric liquid is studied numerically. In the present case study, the dielectric liquid represents working fluid and it is in contact with server inside capsule. The capsule includes electronic component and fluid which can be modeled as saturated porous media. This medium follow Darcy flow regime and assumed to be in balance between its components. The study focus is on role of spatial parameters on thermal behavior of convective heat transfer. Based on server known unit, which is 1U, two parameters Ly and S are changed to test their effect. Meanwhile, wide-range of modified Rayleigh number, which is 0.5 to 300, are covered to better understand thermal performance. Navier-Stokes equations are used to model physical domain. Furthermore, successive over-relaxation and time marching techniques are used to solve momentum and energy equation. From obtained correlation, the in-between distance S is more effective on Nusselt number than distance to edge Ly by approximately 14%. In addition, as S increases, the average Nusselt number of the upper unit increases sharply, whereas the lower one keeps on the same level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convective%20cooling%20of%20server" title="convective cooling of server">convective cooling of server</a>, <a href="https://publications.waset.org/abstracts/search?q=Darcy%20flow" title=" Darcy flow"> Darcy flow</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-immersed%20server" title=" liquid-immersed server"> liquid-immersed server</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a> </p> <a href="https://publications.waset.org/abstracts/24866/thermal-performance-of-fully-immersed-naturally-cooled-server" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Verification of Simulated Accumulated Precipitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nato%20Kutaladze">Nato Kutaladze</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Mikuchadze"> George Mikuchadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgi%20Sokhadze"> Giorgi Sokhadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precipitation forecasts are one of the most demanding applications in numerical weather prediction (NWP). Georgia, as the whole Caucasian region, is characterized by very complex topography. The country territory is prone to flash floods and mudflows, quantitative precipitation estimation (QPE) and quantitative precipitation forecast (QPF) at any leading time are very important for Georgia. In this study, advanced research weather forecasting model’s skill in QPF is investigated over Georgia’s territory. We have analyzed several convection parameterization and microphysical scheme combinations for different rainy episodes and heavy rainy phenomena. We estimate errors and biases in accumulated 6 h precipitation using different spatial resolution during model performance verification for 12-hour and 24-hour lead time against corresponding rain gouge observations and satellite data. Various statistical parameters have been calculated for the 8-month comparison period, and some skills of model simulation have been evaluated. Our focus is on the formation and organization of convective precipitation systems in a low-mountain region. Several problems in connection with QPF have been identified for mountain regions, which include the overestimation and underestimation of precipitation on the windward and lee side of the mountains, respectively, and a phase error in the diurnal cycle of precipitation leading to the onset of convective precipitation in model forecasts several hours too early. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extremal%20dependence%20index" title="extremal dependence index">extremal dependence index</a>, <a href="https://publications.waset.org/abstracts/search?q=false%20alarm" title=" false alarm"> false alarm</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20weather%20prediction" title=" numerical weather prediction"> numerical weather prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20precipitation%20forecasting" title=" quantitative precipitation forecasting"> quantitative precipitation forecasting</a> </p> <a href="https://publications.waset.org/abstracts/136165/verification-of-simulated-accumulated-precipitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Explicit Numerical Approximations for a Pricing Weather Derivatives Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clarinda%20V.%20Nhangumbe">Clarinda V. Nhangumbe</a>, <a href="https://publications.waset.org/abstracts/search?q=Erc%C3%ADlia%20Sousa"> Ercília Sousa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weather Derivatives are financial instruments used to cover non-catastrophic weather events and can be expressed in the form of standard or plain vanilla products, structured or exotics products. The underlying asset, in this case, is the weather index, such as temperature, rainfall, humidity, wind, and snowfall. The complexity of the Weather Derivatives structure shows the weakness of the Black Scholes framework. Therefore, under the risk-neutral probability measure, the option price of a weather contract can be given as a unique solution of a two-dimensional partial differential equation (parabolic in one direction and hyperbolic in other directions), with an initial condition and subjected to adequate boundary conditions. To calculate the price of the option, one can use numerical methods such as the Monte Carlo simulations and implicit finite difference schemes conjugated with Semi-Lagrangian methods. This paper is proposed two explicit methods, namely, first-order upwind in the hyperbolic direction combined with Lax-Wendroff in the parabolic direction and first-order upwind in the hyperbolic direction combined with second-order upwind in the parabolic direction. One of the advantages of these methods is the fact that they take into consideration the boundary conditions obtained from the financial interpretation and deal efficiently with the different choices of the convection coefficients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=incomplete%20markets" title="incomplete markets">incomplete markets</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title=" numerical methods"> numerical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equations" title=" partial differential equations"> partial differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20process" title=" stochastic process"> stochastic process</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20derivatives" title=" weather derivatives"> weather derivatives</a> </p> <a href="https://publications.waset.org/abstracts/150745/explicit-numerical-approximations-for-a-pricing-weather-derivatives-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Finite Volume Method Simulations of GaN Growth Process in MOVPE Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Skibinski">J. Skibinski</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Caban"> P. Caban</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Wejrzanowski"> T. Wejrzanowski</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20J.%20Kurzydlowski"> K. J. Kurzydlowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, numerical simulations of heat and mass transfer during gallium nitride growth process in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Existing knowledge about phenomena occurring in the MOVPE process allows to produce high quality nitride based semiconductors. However, process parameters of MOVPE reactors can vary in certain ranges. Main goal of this study is optimization of the process and improvement of the quality of obtained crystal. In order to investigate this subject a series of computer simulations have been performed. Numerical simulations of heat and mass transfer in GaN epitaxial growth process have been performed to determine growth rate for various mass flow rates and pressures of reagents. According to the fact that it’s impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during the process, modeling is the only solution to understand the process precisely. Main heat transfer mechanisms during MOVPE process are convection and radiation. Correlation of modeling results with the experiment allows to determine optimal process parameters for obtaining crystals of highest quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Finite%20Volume%20Method" title="Finite Volume Method">Finite Volume Method</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductors" title=" semiconductors"> semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=epitaxial%20growth" title=" epitaxial growth"> epitaxial growth</a>, <a href="https://publications.waset.org/abstracts/search?q=metalorganic%20vapor%20phase%20epitaxy" title=" metalorganic vapor phase epitaxy"> metalorganic vapor phase epitaxy</a>, <a href="https://publications.waset.org/abstracts/search?q=gallium%20nitride" title=" gallium nitride"> gallium nitride</a> </p> <a href="https://publications.waset.org/abstracts/19033/finite-volume-method-simulations-of-gan-growth-process-in-movpe-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Thermal Performance of Fully Immersed Server into Saturated Fluid Porous Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Al-Anii">Yaser Al-Anii</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulmajeed%20Almaneea"> Abdulmajeed Almaneea</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20L.%20Summers"> Jonathan L. Summers</a>, <a href="https://publications.waset.org/abstracts/search?q=Harvey%20M.%20Thompson"> Harvey M. Thompson</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikil%20Kapur"> Nikil Kapur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The natural convection cooling system of a fully immersed server in dielectric liquid is studied numerically. In present case study, the dielectric liquid represents working fluid and it is in contact with server inside capsule. The capsule includes electronic component and fluid, which can be modelled as saturated porous media. This medium follow Darcy flow regime and assumed to be in balance between its components. The study focus is on role of spatial parameters on thermal behavior of convective heat transfer. Based on server known unit, which is 1U, two parameters Ly and S are changed to test their effect. Meanwhile, wide range of modified Rayleigh number, which is 0.5 to 300, are covered to better understand thermal performance. Navier-Stokes equations are used to model physical domain. Furthermore, successive over relaxation and time marching techniques are used to solve momentum and energy equation. From obtained correlation, the in-between distance S is more effective on Nusselt number than distance to edge Ly by approximately 14%. In addition, as S increase, the average Nusselt number of the upper unit is increased sharply, whereas the lower one keeps on same level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convective%20cooling%20of%20server" title="convective cooling of server">convective cooling of server</a>, <a href="https://publications.waset.org/abstracts/search?q=darcy%20flow" title=" darcy flow"> darcy flow</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-immersed%20server" title=" liquid-immersed server"> liquid-immersed server</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a> </p> <a href="https://publications.waset.org/abstracts/24864/thermal-performance-of-fully-immersed-server-into-saturated-fluid-porous-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Flame Kernel Growth and Related Effects of Spark Plug Electrodes: Fluid Motion Interaction in an Optically Accessible DISI Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Schirru">A. Schirru</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Irimescu"> A. Irimescu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Merola"> S. Merola</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20d%E2%80%99Adamo"> A. d’Adamo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Fontanesi"> S. Fontanesi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the aspects that are usually neglected during the design phase of an engine is the effect of the spark plug on the flow field inside the combustion chamber. Because of the difficulties in the experimental investigation of the mutual interaction between flow alteration and early flame kernel convection effect inside the engine combustion chamber, CFD-3D simulation is usually exploited in such cases. Experimentally speaking, a particular type of engine has to be used in order to directly observe the flame propagation process. In this study, a double electrode spark plug was fitted into an optically accessible engine and a high-speed camera was used to capture the initial stages of the combustion process. Both the arc and the kernel phases were observed. Then, a morphologic analysis was carried out and the position of the center of mass of the flame, relative to the spark plug position, was calculated. The crossflow orientation was chosen for the spark plug and the kernel growth process was observed for different air-fuel ratios. It was observed that during a normal cycle the flow field between the electrodes tends to transport the arc deforming it. Because of that, the kernel growth phase takes place away from the electrodes and the flame propagates with a preferential direction dictated by the flow field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Combustion" title="Combustion">Combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=Optically%20Accessible%20Engine" title=" Optically Accessible Engine"> Optically Accessible Engine</a>, <a href="https://publications.waset.org/abstracts/search?q=Spark-Ignition%20Engine" title=" Spark-Ignition Engine"> Spark-Ignition Engine</a>, <a href="https://publications.waset.org/abstracts/search?q=Sparl%20Orientation" title=" Sparl Orientation"> Sparl Orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=Kernel%20Growth" title=" Kernel Growth"> Kernel Growth</a> </p> <a href="https://publications.waset.org/abstracts/122902/flame-kernel-growth-and-related-effects-of-spark-plug-electrodes-fluid-motion-interaction-in-an-optically-accessible-disi-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Heat Transfer and Entropy Generation in a Partial Porous Channel Using LTNE and Exothermicity/Endothermicity Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Torabi">Mohsen Torabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Karimi"> Nader Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaili%20Zhang"> Kaili Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to provide a comprehensive study on the heat transfer and entropy generation rates of a horizontal channel partially filled with a porous medium which experiences internal heat generation or consumption due to exothermic or endothermic chemical reaction. The focus has been given to the local thermal non-equilibrium (LTNE) model. The LTNE approach helps us to deliver more accurate data regarding temperature distribution within the system and accordingly to provide more accurate Nusselt number and entropy generation rates. Darcy-Brinkman model is used for the momentum equations, and constant heat flux is assumed for boundary conditions for both upper and lower surfaces. Analytical solutions have been provided for both velocity and temperature fields. By incorporating the investigated velocity and temperature formulas into the provided fundamental equations for the entropy generation, both local and total entropy generation rates are plotted for a number of cases. Bifurcation phenomena regarding temperature distribution and interface heat flux ratio are observed. It has been found that the exothermicity or endothermicity characteristic of the channel does have a considerable impact on the temperature fields and entropy generation rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy%20generation" title="entropy generation">entropy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=exothermicity%20or%20endothermicity" title=" exothermicity or endothermicity"> exothermicity or endothermicity</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20thermal%20non-equilibrium" title=" local thermal non-equilibrium"> local thermal non-equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20modelling" title=" analytical modelling"> analytical modelling</a> </p> <a href="https://publications.waset.org/abstracts/36865/heat-transfer-and-entropy-generation-in-a-partial-porous-channel-using-ltne-and-exothermicityendothermicity-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Effect of Shrinkage on Heat and Mass Transfer Parameters of Solar Dried Potato Samples of Variable Diameter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kshanaprava%20Dhalsamant">Kshanaprava Dhalsamant</a>, <a href="https://publications.waset.org/abstracts/search?q=Punyadarshini%20P.%20Tripathy"> Punyadarshini P. Tripathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanker%20L.%20Shrivastava"> Shanker L. Shrivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potato is chosen as the food product for carrying out the natural convection mixed-mode solar drying experiments since they are easily available and globally consumed. The convective heat and mass transfer coefficients along with effective diffusivity were calculated considering both shrinkage and without shrinkage for the potato cylinders of different geometry (8, 10 and 13 mm diameters and a constant length of 50 mm). The convective heat transfer coefficient (hc) without considering shrinkage effect were 24.28, 18.69, 15.89 W/m2˚C and hc considering shrinkage effect were 37.81, 29.21, 25.72 W/m2˚C for 8, 10 and 13 mm diameter samples respectively. Similarly, the effective diffusivity (Deff) without considering shrinkage effect were 3.20×10-9, 4.82×10-9, 2.48×10-8 m2/s and Deff considering shrinkage effect were 1.68×10-9, 2.56×10-9, 1.34×10-8 m2/s for 8, 10 and 13 mm diameter samples respectively and the mass transfer coefficient (hm) without considering the shrinkage effect were 5.16×10-7, 2.93×10-7, 2.59×10-7 m/s and hm considering shrinkage effect were 3.71×10-7, 2.04×10-7, 1.80×10-7 m/s for 8, 10 and 13 mm diameter samples respectively. Increased values of hc were obtained by considering shrinkage effect in all diameter samples because shrinkage results in decreasing diameter with time achieving in enhanced rate of water loss. The average values of Deff determined without considering the shrinkage effect were found to be almost double that with shrinkage effect. The reduction in hm values is due to the fact that with increasing sample diameter, the exposed surface area per unit mass decreases, resulting in a slower moisture removal. It is worth noting that considering shrinkage effect led to overestimation of hc values in the range of 55.72-61.86% and neglecting the shrinkage effect in the mass transfer analysis, the values of Deff and hm are overestimated in the range of 85.02-90.27% and 39.11-45.11%, respectively, for the range of sample diameter investigated in the present study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shrinkage" title="shrinkage">shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20heat%20transfer%20coefficient" title=" convective heat transfer coefficient"> convective heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=effectivive%20diffusivity" title=" effectivive diffusivity"> effectivive diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20mass%20transfer%20coefficient" title=" convective mass transfer coefficient"> convective mass transfer coefficient</a> </p> <a href="https://publications.waset.org/abstracts/83081/effect-of-shrinkage-on-heat-and-mass-transfer-parameters-of-solar-dried-potato-samples-of-variable-diameter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ya%20Lv">Ya Lv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semi-analytic%20method" title="semi-analytic method">semi-analytic method</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20prediction%20model" title=" fast prediction model"> fast prediction model</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20influence%20of%20boundary%20parameters" title=" thermal influence of boundary parameters"> thermal influence of boundary parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20system" title=" energy storage system"> energy storage system</a> </p> <a href="https://publications.waset.org/abstracts/130915/semi-analytic-method-in-fast-evaluation-of-thermal-management-solution-in-energy-storage-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> A Numerical Investigation of Total Temperature Probes Measurement Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erdem%20Meri%C3%A7">Erdem Meriç</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Measuring total temperature of air flow accurately is a very important requirement in the development phases of many industrial products, including gas turbines and rockets. Thermocouples are very practical devices to measure temperature in such cases, but in high speed and high temperature flows, the temperature of thermocouple junction may deviate considerably from real flow total temperature due to the effects of heat transfer mechanisms of convection, conduction, and radiation. To avoid errors in total temperature measurement, special probe designs which are experimentally characterized are used. In this study, a validation case which is an experimental characterization of a specific class of total temperature probes is selected from the literature to develop a numerical conjugate heat transfer analysis methodology to study the total temperature probe flow field and solid temperature distribution. Validated conjugate heat transfer methodology is used to investigate flow structures inside and around the probe and effects of probe design parameters like the ratio between inlet and outlet hole areas and prob tip geometry on measurement accuracy. Lastly, a thermal model is constructed to account for errors in total temperature measurement for a specific class of probes in different operating conditions. Outcomes of this work can guide experimentalists to design a very accurate total temperature probe and quantify the possible error for their specific case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conjugate%20heat%20transfer" title="conjugate heat transfer">conjugate heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20factor" title=" recovery factor"> recovery factor</a>, <a href="https://publications.waset.org/abstracts/search?q=thermocouples" title=" thermocouples"> thermocouples</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20temperature%20probes" title=" total temperature probes"> total temperature probes</a> </p> <a href="https://publications.waset.org/abstracts/159224/a-numerical-investigation-of-total-temperature-probes-measurement-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Indoor Radon Concentrations in the High Levels of Uranium Deposit of Phanom and Ko Pha-Ngan Districts, Surat Thani Province, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanokkan%20Titipornpun">Kanokkan Titipornpun</a>, <a href="https://publications.waset.org/abstracts/search?q=Somphorn%20Sriarpanon"> Somphorn Sriarpanon</a>, <a href="https://publications.waset.org/abstracts/search?q=Apinun%20Titipornpun"> Apinun Titipornpun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Gimsa"> Jan Gimsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tripob%20Bhongsuwan"> Tripob Bhongsuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Noodchanath%20Kongchouy"> Noodchanath Kongchouy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Phanom and Ko Pha-ngan districts of Surat Thani province are known for their high atmospheric radon concentrations from different sources. While Phanom district is located in an active fault zone, the main radon source in Ko Pha-ngan district is the high amounts of equivalent uranium in the ground surface. Survey measurements of the indoor radon concentrations have been carried out in 105 dwellings and 93 workplaces, using CR-39 detectors that were exposed to indoor radon for forty days. Alpha tracks were made visible by chemical etching and counted manually under an optical microscope. The indoor radon concentrations in the two districts were found to vary between 9 and 63 Bq m-3 (Phanom) and 12 and 645 Bq m-3 (Ko Pha-ngan). The geometric mean radon concentration in Ko Pha-ngan district (51±2 Bq m-3) was significantly higher than in the Phanom district (26±1 Bq m-3) at a significance level of p<0.05 (t-test for independent samples). Nevertheless, only in two dwellings (1%), located in Ko Pha-ngan district, radon concentrations (177 and 645 Bq m-3) were found to exceed the limit recommended by the US EPA of 148 Bq m-3. The two houses are probably located near to radon sources which, in combination with low air convection, led to increased indoor levels of radon. Our study also shows that the geometric mean radon concentration was higher in workplaces than in dwellings (0.05 significance level) in both districts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20radon" title="indoor radon">indoor radon</a>, <a href="https://publications.waset.org/abstracts/search?q=CR-39%20detector" title=" CR-39 detector"> CR-39 detector</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20fault%20zone" title=" active fault zone"> active fault zone</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20uranium" title=" equivalent uranium"> equivalent uranium</a> </p> <a href="https://publications.waset.org/abstracts/44717/indoor-radon-concentrations-in-the-high-levels-of-uranium-deposit-of-phanom-and-ko-pha-ngan-districts-surat-thani-province-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Performance Analysis of Air Conditioning System Working on the Vapour Compression Refrigeration Cycle under Magnetohydrodynamic Influence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20S.%20Mane">Nikhil S. Mane</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukund%20L.%20Harugade"> Mukund L. Harugade</a>, <a href="https://publications.waset.org/abstracts/search?q=Narayan%20V.%20Hargude"> Narayan V. Hargude</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishal%20P.%20Patil"> Vishal P. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fluids exposed to magnetic field can enhance the convective heat transfer by inducing secondary convection currents due to Lorentz force. The use of magnetohydrodynamic (MHD) forces in power generation and mass transfer is increasing steadily but its application to enhance the convective currents in fluids needed to be explored. The enhancement in convective heat transfer using MHD forces can be employed in heat exchangers, cooling of molten metal, vapour compression refrigeration (VCR) systems etc. The effective increase in the convective heat transfer without any additional energy consumption will lead to the energy efficient heat exchanging devices. In this work, the effect of MHD forces on the performance of air conditioning system working on the VCR system is studied. The refrigerant in VCR system is exposed to the magnetic field which influenced the flow of refrigerant. The different intensities of magnets are used on the different liquid refrigerants and investigation on performance of split air conditioning system is done under different loading conditions. The results of this research work show that the application of magnet on refrigerant flow has positive influence on the coefficient of performance (COP) of split air conditioning system. It is also observed that with increasing intensity of magnetic force the COP of split air conditioning system also increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamics" title="magnetohydrodynamics">magnetohydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=VCRS" title=" VCRS"> VCRS</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning" title=" air conditioning"> air conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigeration" title=" refrigeration"> refrigeration</a> </p> <a href="https://publications.waset.org/abstracts/81030/performance-analysis-of-air-conditioning-system-working-on-the-vapour-compression-refrigeration-cycle-under-magnetohydrodynamic-influence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Simulation of Laser Structuring by Three Dimensional Heat Transfer Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bassim%20Shaheen%20Bachy">Bassim Shaheen Bachy</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B6rg%20Franke"> Jörg Franke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multi-functional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20structuring" title="laser structuring">laser structuring</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20modeling" title=" thermal modeling"> thermal modeling</a> </p> <a href="https://publications.waset.org/abstracts/12614/simulation-of-laser-structuring-by-three-dimensional-heat-transfer-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mouna%20Hamed">Mouna Hamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20B.%20Brahim"> Ammar B. Brahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using MATLAB computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy%20storage" title="thermal energy storage">thermal energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20material" title=" phase change material"> phase change material</a>, <a href="https://publications.waset.org/abstracts/search?q=melting" title=" melting"> melting</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a> </p> <a href="https://publications.waset.org/abstracts/39608/theoretical-model-of-a-flat-plate-solar-collector-integrated-with-phase-change-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Boundary Layer Flow of a Casson Nanofluid Past a Vertical Exponentially Stretching Cylinder in the Presence of a Transverse Magnetic Field with Internal Heat Generation/Absorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Sarojamma">G. Sarojamma</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Vendabai"> K. Vendabai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An analysis is carried out to investigate the effect of magnetic field and heat source on the steady boundary layer flow and heat transfer of a Casson nanofluid over a vertical cylinder stretching exponentially along its radial direction. Using a similarity transformation, the governing mathematical equations, with the boundary conditions are reduced to a system of coupled, non –linear ordinary differential equations. The resulting system is solved numerically by the fourth order Runge – Kutta scheme with shooting technique. The influence of various physical parameters such as Reynolds number, Prandtl number, magnetic field, Brownian motion parameter, thermophoresis parameter, Lewis number and the natural convection parameter are presented graphically and discussed for non – dimensional velocity, temperature and nanoparticle volume fraction. Numerical data for the skin – friction coefficient, local Nusselt number and the local Sherwood number have been tabulated for various parametric conditions. It is found that the local Nusselt number is a decreasing function of Brownian motion parameter Nb and the thermophoresis parameter Nt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=casson%20nanofluid" title="casson nanofluid">casson nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20flow" title=" boundary layer flow"> boundary layer flow</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20heat%20generation%2Fabsorption" title=" internal heat generation/absorption"> internal heat generation/absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=exponentially%20stretching%20cylinder" title=" exponentially stretching cylinder"> exponentially stretching cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=brownian%20motion" title=" brownian motion"> brownian motion</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophoresis" title=" thermophoresis "> thermophoresis </a> </p> <a href="https://publications.waset.org/abstracts/22055/boundary-layer-flow-of-a-casson-nanofluid-past-a-vertical-exponentially-stretching-cylinder-in-the-presence-of-a-transverse-magnetic-field-with-internal-heat-generationabsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Modelling and Optimization of Geothermal Energy in the Gulf of Suez</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20Abdelhafez">Amira Abdelhafez</a>, <a href="https://publications.waset.org/abstracts/search?q=Rufus%20Brunt"> Rufus Brunt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geothermal energy in Egypt represents a significant untapped renewable resource that can reduce reliance on conventional power generation. Exploiting these geothermal resources depends on depth, temperature range, and geological characteristics. The intracontinental rift setting of the Gulf of Suez (GoS)-Red Sea rift is a favourable tectonic setting for convection-dominated geothermal plays. The geothermal gradient across the GoS ranges from 24.9 to 86.66 °C/km, with a heat flow of 31-127.2 mW/m². Surface expressions of convective heat loss emerge along the gulf flanks as hot springs (e.g., Hammam Faraun) accompanying deeper geothermal resources. These thermal anomalies are driven mainly by the local tectonic configuration. Characterizing the structural framework of major faults and their control on reservoir properties and subsurface hydrothermal fluid circulation is vital for geothermal applications in the gulf. The geothermal play systems of the GoS depend on structural and lithological properties that contribute to heat storage and vertical transport. Potential geothermal reservoirs include the Nubia sandstones, which, due to their thickness, continuity, and contact with hot basement rocks at a mean depth of 3 km, create an extensive reservoir for geothermal fluids. To develop these geothermal resources for energy production, defining the permeability anisotropy of the reservoir due to faults and facies variation is a crucial step in our study, particularly the evaluation of influence on thermal breakthrough and production rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geothermal" title="geothermal">geothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=October%20field" title=" October field"> October field</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20specific%20study" title=" site specific study"> site specific study</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20modelling" title=" reservoir modelling"> reservoir modelling</a> </p> <a href="https://publications.waset.org/abstracts/193828/modelling-and-optimization-of-geothermal-energy-in-the-gulf-of-suez" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Temperature Fields in a Channel Partially-Filled by Porous Material with Internal Heat Generations: On Exact Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Mahmoudi">Yasser Mahmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Karimi"> Nader Karimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work examines analytically the effect internal heat generation on temperature fields in a channel partially-filled with a porous under local thermal non-equilibrium condition. The Darcy-Brinkman model is used to represent the fluid transport through the porous material. Two fundamental models (models A and B) represent the thermal boundary conditions at the interface between the porous medium and the clear region. The governing equations of the problem are manipulated, and for each interface model, exact solutions for the solid and fluid temperature fields are developed. These solutions incorporate the porous material thickness, Biot number, fluid to solid thermal conductivity ratio Darcy number, as the non-dimensional energy terms in fluid and solid as parameters. Results show that considering any of the two models and under zero or negative heat generation (heat sink) and for any Darcy number, an increase in the porous thickness increases the amount of heat flux transferred to the porous region. The obtained results are applicable to the analysis of complex porous media incorporating internal heat generation, such as heat transfer enhancement (THE), tumor ablation in biological tissues and porous radiant burners (PRBs). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title="porous media">porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20thermal%20non-equilibrium" title=" local thermal non-equilibrium"> local thermal non-equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20solution" title=" exact solution"> exact solution</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20heat%20generation" title=" internal heat generation"> internal heat generation</a> </p> <a href="https://publications.waset.org/abstracts/7825/temperature-fields-in-a-channel-partially-filled-by-porous-material-with-internal-heat-generations-on-exact-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> The Influence of Surface Roughness on the Flow Fields Generated by an Oscillating Cantilever</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ciaran%20Conway">Ciaran Conway</a>, <a href="https://publications.waset.org/abstracts/search?q=Nick%20Jeffers"> Nick Jeffers</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeff%20Punch"> Jeff Punch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the current trend of miniaturisation of electronic devices, piezoelectric fans have attracted increasing interest as an alternative means of forced convection over traditional rotary solutions. Whilst there exists an abundance of research on various piezo-actuated flapping fans in the literature, the geometries of these fans all consist of a smooth rectangular cross section with thicknesses typically of the order of 100 um. The focus of these studies is primarily on variables such as frequency, amplitude, and in some cases resonance mode. As a result, the induced flow dynamics are a direct consequence of the pressure differential at the fan tip as well as the pressure-driven ‘over the top’ vortices generated at the upper and lower edges of the fan. Rough surfaces such as golf ball dimples or vortex generators on an aircraft wing have proven to be beneficial by tripping the boundary layer and energising the adjacent air flow. This paper aims to examine the influence of surface roughness on the airflow generation of a flapping fan and determine whether the induced wake can be manipulated or enhanced by energising the airflow around the fan tip. Particle Image Velocimetry (PIV) is carried out on mechanically oscillated rigid fans with various surfaces consisting of pillars, perforations and cell-like grids derived from the wing topology of natural fliers. The results of this paper may be used to inform the design of piezoelectric fans and possibly aid in understanding the complex aerodynamics inherent in flapping wing flight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillating%20cantilevers" title=" oscillating cantilevers"> oscillating cantilevers</a>, <a href="https://publications.waset.org/abstracts/search?q=PIV" title=" PIV"> PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=vortices" title=" vortices"> vortices</a> </p> <a href="https://publications.waset.org/abstracts/74807/the-influence-of-surface-roughness-on-the-flow-fields-generated-by-an-oscillating-cantilever" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Panda">J. P. Panda</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sasmal"> K. Sasmal</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20V.%20Warrior"> H. V. Warrior</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eddy%20viscosity" title="Eddy viscosity">Eddy viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20modeling" title=" turbulence modeling"> turbulence modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=GOTM" title=" GOTM"> GOTM</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/84098/a-non-linear-eddy-viscosity-model-for-turbulent-natural-convection-in-geophysical-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Thermo-Mechanical Behavior of Steel-Wood Connections of Wooden Structures Under the Effect of a Fire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Alagha">Ahmed Alagha</a>, <a href="https://publications.waset.org/abstracts/search?q=Belkacem%20Lamri"> Belkacem Lamri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhak%20Kada."> Abdelhak Kada.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel-wood assemblies often have complex geometric configurations whose overall behavior under the effect of a fire is conditioned by the thermal response, by combining the two materials steel and wood, whose thermal characteristics are greatly influenced by high temperatures. The objective of this work is to study the thermal behavior of a steel-wood connection, with or without insulating material, subjected to an ISO834 standard fire model. The analysis is developed by the analytical approach using the Eurocode, and numerically, by the finite element method, through the ANSYS calculation code. The design of the connections is evaluated at room temperature taking the cases of single shear and double shear. The thermal behavior of the connections is simulated in transient state while taking into account the modes of heat transfer by convection and by radiation. The variation of temperature as a function of time is evaluated in different positions of the connections while talking about the heat produced and the formation of the carbon layer. The results relate to the temperature distributions in the connection elements as a function of the duration of the fire. The results of the thermal analysis show that the temperature increases rapidly and reaches more than 260 °C in the steel material for an hour of exposure to fire. The temperature development in wood material is different from that in steel because of its thermal properties. Wood heats up on the outside and burns, its surface can reach very high temperatures in points on the surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eurocode%205" title="Eurocode 5">Eurocode 5</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20elements" title=" finite elements"> finite elements</a>, <a href="https://publications.waset.org/abstracts/search?q=ISO834" title=" ISO834"> ISO834</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20shear" title=" simple shear"> simple shear</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20behaviour" title=" thermal behaviour"> thermal behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=wood-steel%20connection" title=" wood-steel connection"> wood-steel connection</a> </p> <a href="https://publications.waset.org/abstracts/160170/thermo-mechanical-behavior-of-steel-wood-connections-of-wooden-structures-under-the-effect-of-a-fire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Modelling Heat Transfer Characteristics in the Pasteurization Process of Medium Long Necked Bottled Beers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Fasogbon">S. K. Fasogbon</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20E.%20Oguegbu"> O. E. Oguegbu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pasteurization is one of the most important steps in the preservation of beer products, which improves its shelf life by inactivating almost all the spoilage organisms present in it. However, there is no gain saying the fact that it is always difficult to determine the slowest heating zone, the temperature profile and pasteurization units inside bottled beer during pasteurization, hence there had been significant experimental and ANSYS fluent approaches on the problem. This work now developed Computational fluid dynamics model using COMSOL Multiphysics. The model was simulated to determine the slowest heating zone, temperature profile and pasteurization units inside the bottled beer during the pasteurization process. The results of the simulation were compared with the existing data in the literature. The results showed that, the location and size of the slowest heating zone is dependent on the time-temperature combination of each zone. The results also showed that the temperature profile of the bottled beer was found to be affected by the natural convection resulting from variation in density during pasteurization process and that the pasteurization unit increases with time subject to the temperature reached by the beer. Although the results of this work agreed with literatures in the aspects of slowest heating zone and temperature profiles, the results of pasteurization unit however did not agree. It was suspected that this must have been greatly affected by the bottle geometry, specific heat capacity and density of the beer in question. The work concludes that for effective pasteurization to be achieved, there is a need to optimize the spray water temperature and the time spent by the bottled product in each of the pasteurization zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20profile" title=" temperature profile"> temperature profile</a>, <a href="https://publications.waset.org/abstracts/search?q=pasteurization%20process" title=" pasteurization process"> pasteurization process</a>, <a href="https://publications.waset.org/abstracts/search?q=bottled%20beer" title=" bottled beer"> bottled beer</a> </p> <a href="https://publications.waset.org/abstracts/49248/modelling-heat-transfer-characteristics-in-the-pasteurization-process-of-medium-long-necked-bottled-beers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Mugume">Isaac Mugume</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Basalirwa"> Charles Basalirwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Waiswa"> Daniel Waiswa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mary%20Nsabagwa"> Mary Nsabagwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Triphonia%20Jacob%20Ngailo"> Triphonia Jacob Ngailo</a>, <a href="https://publications.waset.org/abstracts/search?q=Joachim%20Reuder"> Joachim Reuder</a>, <a href="https://publications.waset.org/abstracts/search?q=Sch%C2%A8attler%20Ulrich"> Sch¨attler Ulrich</a>, <a href="https://publications.waset.org/abstracts/search?q=Musa%20Semujju"> Musa Semujju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparative%20performance" title="comparative performance">comparative performance</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20COSMO%20model" title=" the COSMO model"> the COSMO model</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20WRF%20model" title=" the WRF model"> the WRF model</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20rainfall%20events" title=" light rainfall events"> light rainfall events</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20rainfall%20events" title=" extreme rainfall events"> extreme rainfall events</a> </p> <a href="https://publications.waset.org/abstracts/88050/a-comparative-analysis-of-the-performance-of-cosmo-and-wrf-models-in-quantitative-rainfall-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Numerical Simulation of Free Surface Water Wave for the Flow Around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Imine">Omar Imine</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Aounallah"> Mohammed Aounallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Belkadi"> Mustapha Belkadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation, a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of the fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRICscheme for VOF discretization. The results obtained compare well with the experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20surface%20flows" title="free surface flows">free surface flows</a>, <a href="https://publications.waset.org/abstracts/search?q=breaking%20waves" title=" breaking waves"> breaking waves</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=Wigley%20hull" title=" Wigley hull"> Wigley hull</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20of%20fluid" title=" volume of fluid "> volume of fluid </a> </p> <a href="https://publications.waset.org/abstracts/26743/numerical-simulation-of-free-surface-water-wave-for-the-flow-around-naca-0012-hydrofoil-and-wigley-hull-using-vof-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Membrane Distillation Process Modeling: Dynamical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fadi%20Eleiwi">Fadi Eleiwi</a>, <a href="https://publications.waset.org/abstracts/search?q=Taous%20Meriem%20Laleg-Kirati"> Taous Meriem Laleg-Kirati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a complete dynamic modeling of a membrane distillation process. The model contains two consistent dynamic models. A 2D advection-diffusion equation for modeling the whole process and a modified heat equation for modeling the membrane itself. The complete model describes the temperature diffusion phenomenon across the feed, membrane, permeate containers and boundary layers of the membrane. It gives an online and complete temperature profile for each point in the domain. It explains heat conduction and convection mechanisms that take place inside the process in terms of mathematical parameters, and justify process behavior during transient and steady state phases. The process is monitored for any sudden change in the performance at any instance of time. In addition, it assists maintaining production rates as desired, and gives recommendations during membrane fabrication stages. System performance and parameters can be optimized and controlled using this complete dynamic model. Evolution of membrane boundary temperature with time, vapor mass transfer along the process, and temperature difference between membrane boundary layers are depicted and included. Simulations were performed over the complete model with real membrane specifications. The plots show consistency between 2D advection-diffusion model and the expected behavior of the systems as well as literature. Evolution of heat inside the membrane starting from transient response till reaching steady state response for fixed and varying times is illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20distillation" title="membrane distillation">membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20modeling" title=" dynamical modeling"> dynamical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=advection-diffusion%20equation" title=" advection-diffusion equation"> advection-diffusion equation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20equilibrium" title=" thermal equilibrium"> thermal equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20equation" title=" heat equation"> heat equation</a> </p> <a href="https://publications.waset.org/abstracts/6363/membrane-distillation-process-modeling-dynamical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Chemical Reaction, Heat and Mass Transfer on Unsteady MHD Flow along a Vertical Stretching Sheet with Heat Generation/Absorption and Variable Viscosity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatindra%20Lahkar">Jatindra Lahkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of chemical reaction on laminar mixed convection flow and heat and mass transfer along a vertical unsteady stretching sheet is investigated, in the presence of heat generation/absorption with variable viscosity and viscous dissipation. The governing non-linear partial differential equations are reduced to ordinary differential equations using similarity transformation and solved numerically using the fourth order Runge-Kutta method along with shooting technique. The effects of various flow parameters on the velocity, temperature and concentration distributions are analyzed and presented graphically. Skin-friction coefficient, Nusselt number and Sherwood number are derived at the sheet. It is observed that the influence of chemical reaction, the fluid flow along the sheet accelerate with the increase of chemical reaction parameter, on the other hand, temperature of the fluid increases with increase of chemical reaction parameter but concentration of the fluid reduces with it. The boundary layer decreases on the surface of the sheet for all values of unsteadiness parameter, increasing values of the chemical reaction parameter. The increases in the values of Sc cause the species concentration and its boundary layer thickness to decrease resulting in less induced flow and higher fluid temperatures. This is depicted in the decreases in the velocity and species concentration and increases in the fluid temperature as Sc increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20reaction" title="chemical reaction">chemical reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20generation%2Fabsorption" title=" heat generation/absorption"> heat generation/absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20number" title=" magnetic number"> magnetic number</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteadiness" title=" unsteadiness"> unsteadiness</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20viscosity" title=" variable viscosity"> variable viscosity</a> </p> <a href="https://publications.waset.org/abstracts/48002/chemical-reaction-heat-and-mass-transfer-on-unsteady-mhd-flow-along-a-vertical-stretching-sheet-with-heat-generationabsorption-and-variable-viscosity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&page=9" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&page=9">9</a></li> <li class="page-item active"><span class="page-link">10</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&page=11" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>