CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 75 results for author: <span class="mathjax">Sato, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Sato%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Sato, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Sato%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Sato, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Sato%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Sato%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sato%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00772">arXiv:2407.00772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00772">pdf</a>, <a href="https://arxiv.org/format/2407.00772">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Core-level signature of long-range density-wave order and short-range excitonic correlations probed by attosecond broadband spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zong%2C+A">Alfred Zong</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+S">Sheng-Chih Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+E">Emma Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Nebgen%2C+B+R">Bailey R. Nebgen</a>, <a href="/search/physics?searchtype=author&amp;query=Hui%2C+M">Marcus Hui</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+B+Q">B. Q. Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y">Yun Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Xiang%2C+D">Dao Xiang</a>, <a href="/search/physics?searchtype=author&amp;query=Zuerch%2C+M+W">Michael W. Zuerch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00772v2-abstract-short" style="display: inline;"> Advances in attosecond core-level spectroscopies have successfully unlocked the fastest dynamics involving high-energy electrons. Yet, these techniques are not conventionally regarded as an appropriate probe for low-energy quasiparticle interactions that govern the ground state of quantum materials, nor for studying long-range order because of their limited sensitivity to local charge environments&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00772v2-abstract-full').style.display = 'inline'; document.getElementById('2407.00772v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00772v2-abstract-full" style="display: none;"> Advances in attosecond core-level spectroscopies have successfully unlocked the fastest dynamics involving high-energy electrons. Yet, these techniques are not conventionally regarded as an appropriate probe for low-energy quasiparticle interactions that govern the ground state of quantum materials, nor for studying long-range order because of their limited sensitivity to local charge environments. Here, by employing a unique cryogenic attosecond beamline, we identified clear core-level signatures of long-range charge-density-wave (CDW) formation in a quasi-2D excitonic insulator candidate, even though equilibrium photoemission and absorption measurements of the same core levels showed no spectroscopic singularity at the phase transition. Leveraging the high time resolution and intrinsic sensitivity to short-range charge excitations in attosecond core-level absorption, we observed compelling time-domain evidence for excitonic correlations in the normal-state of the material, whose presence has been subjected to a long-standing debate in equilibrium experiments because of interfering phonon fluctuations in a similar part of the phase space. Our findings support the scenario that short-range excitonic fluctuations prelude long-range order formation in the ground state, providing important insights in the mechanism of exciton condensation in a quasi-low-dimensional system. These results further demonstrate the importance of a simultaneous access to long- and short-range order with underlying dynamical processes spanning a multitude of time- and energy-scales, making attosecond spectroscopy an indispensable tool for both understanding the equilibrium phase diagram and for discovering novel, nonequilibrium states in strongly correlated materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00772v2-abstract-full').style.display = 'none'; document.getElementById('2407.00772v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03567">arXiv:2406.03567</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.03567">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Initial electron thermalization in metals measured by attosecond transient absorption spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=de+Roulet%2C+B+R">Bethany R. de Roulet</a>, <a href="/search/physics?searchtype=author&amp;query=Drescher%2C+L">Lorenz Drescher</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Leone%2C+S+R">Stephen R. Leone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03567v1-abstract-short" style="display: inline;"> Understanding initial electron thermalization has relevance to both fundamental scientific knowledge and application to the construction of novel devices. In this study, attosecond transient absorption is used to directly measure initial electron thermalization times of 38 $\pm$ 8 fs, 15 $\pm$ 3 fs, 4.2 $\pm$ 1 fs, and 2.0 $\pm$ 0.3 fs for Mg, Pt, Fe, and Co, respectively. Through time dependent d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03567v1-abstract-full').style.display = 'inline'; document.getElementById('2406.03567v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03567v1-abstract-full" style="display: none;"> Understanding initial electron thermalization has relevance to both fundamental scientific knowledge and application to the construction of novel devices. In this study, attosecond transient absorption is used to directly measure initial electron thermalization times of 38 $\pm$ 8 fs, 15 $\pm$ 3 fs, 4.2 $\pm$ 1 fs, and 2.0 $\pm$ 0.3 fs for Mg, Pt, Fe, and Co, respectively. Through time dependent density function theory calculations, it is shown that the fast electron thermalization observed in Fe and Co is correlated with a strong local field effect. We find that a simple analytical model can be used to calculate the initial electron thermalization time measured by the transient extreme ultraviolet absorption spectroscopy method performed here. Our results suggest that the most significant contributions to the initial electron thermalization times are the basic metal properties of the density of states volume available for scattering and screened electron interaction. Many-body effects contribute less, but still significantly to the initial electron thermalization time. Ultimately the information gained through this study shows the unique view that attosecond transient absorption spectroscopy contributes to unraveling and monitoring electron dynamics and its connection to many-body effects in metals and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03567v1-abstract-full').style.display = 'none'; document.getElementById('2406.03567v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.08875">arXiv:2310.08875</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.08875">pdf</a>, <a href="https://arxiv.org/format/2310.08875">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Limitations of mean-field approximations in describing shift-current and injection-current in materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.08875v1-abstract-short" style="display: inline;"> We theoretically investigate bulk photovoltaic effects, with a specific focus on shift-current and injection-current. Initially, we perform a numerical analysis of the direct current (dc) induced by a laser pulse with a one-dimensional model, utilizing mean-field theories such as time-dependent Hartree--Fock and time-dependent Hartree methods. Our numerical results, obtained with mean-field theori&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08875v1-abstract-full').style.display = 'inline'; document.getElementById('2310.08875v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.08875v1-abstract-full" style="display: none;"> We theoretically investigate bulk photovoltaic effects, with a specific focus on shift-current and injection-current. Initially, we perform a numerical analysis of the direct current (dc) induced by a laser pulse with a one-dimensional model, utilizing mean-field theories such as time-dependent Hartree--Fock and time-dependent Hartree methods. Our numerical results, obtained with mean-field theories, reveal that the dc component of the current exists even after irradiation with linearly polarized light as a second-order nonlinear effect, indicating the generation of injection current. Conversely, when we employ the independent particle approximation, no injection current is generated by linearly polarized light. To develop the microscopic understanding of injection current within the mean-field approximation, we further analyze the dc component of the current with the perturbation theory, employing the mean-field approximations, the independent-particle approximation, and the exact solution of the many-body Schr枚dinger equation. The perturbation analysis clarifies that the injection current induced by linearly polarized light under the mean-field approximations is an artifact caused by population imbalance, created through quantum interference from unphysical self-excitation pathways. Therefore, investigation of many-body effects on the bulk photovoltaic effects have to be carefully conducted in mean-field schemes due to potential contamination by unphysical dc current. Additionally, we perform the first-principles electron dynamics calculation for BaTiO$_3$ based on the time-dependent density functional theory, and we confirm that the above findings from the one-dimensional model calculation and the perturbation analysis apply to realistic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08875v1-abstract-full').style.display = 'none'; document.getElementById('2310.08875v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.05669">arXiv:2310.05669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.05669">pdf</a>, <a href="https://arxiv.org/format/2310.05669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Transverse Emittance Reduction in Muon Beams by Ionization Cooling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+MICE+Collaboration"> The MICE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&amp;query=Tsenov%2C+R">R. Tsenov</a>, <a href="/search/physics?searchtype=author&amp;query=Vankova-Kirilova%2C+G">G. Vankova-Kirilova</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y+P">Y. P. Song</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J+Y">J. Y. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z+H">Z. H. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&amp;query=Chignoli%2C+F">F. Chignoli</a>, <a href="/search/physics?searchtype=author&amp;query=Mazza%2C+R">R. Mazza</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Orestano%2C+D">D. Orestano</a>, <a href="/search/physics?searchtype=author&amp;query=Tortora%2C+L">L. Tortora</a>, <a href="/search/physics?searchtype=author&amp;query=Kuno%2C+Y">Y. Kuno</a>, <a href="/search/physics?searchtype=author&amp;query=Sakamoto%2C+H">H. Sakamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+A">A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Ishimoto%2C+S">S. Ishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&amp;query=Sung%2C+C+K">C. K. Sung</a>, <a href="/search/physics?searchtype=author&amp;query=Filthaut%2C+F">F. Filthaut</a>, <a href="/search/physics?searchtype=author&amp;query=Fedorov%2C+M">M. Fedorov</a>, <a href="/search/physics?searchtype=author&amp;query=Jokovic%2C+D">D. Jokovic</a>, <a href="/search/physics?searchtype=author&amp;query=Maletic%2C+D">D. Maletic</a>, <a href="/search/physics?searchtype=author&amp;query=Savic%2C+M">M. Savic</a> , et al. (112 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.05669v2-abstract-short" style="display: inline;"> Accelerated muon beams have been considered for next-generation studies of high-energy lepton-antilepton collisions and neutrino oscillations. However, high-brightness muon beams have not yet been produced. The main challenge for muon acceleration and storage stems from the large phase-space volume occupied by the beam, derived from the muon production mechanism through the decay of pions from pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05669v2-abstract-full').style.display = 'inline'; document.getElementById('2310.05669v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.05669v2-abstract-full" style="display: none;"> Accelerated muon beams have been considered for next-generation studies of high-energy lepton-antilepton collisions and neutrino oscillations. However, high-brightness muon beams have not yet been produced. The main challenge for muon acceleration and storage stems from the large phase-space volume occupied by the beam, derived from the muon production mechanism through the decay of pions from proton collisions. Ionization cooling is the technique proposed to decrease the muon beam phase-space volume. Here we demonstrate a clear signal of ionization cooling through the observation of transverse emittance reduction in beams that traverse lithium hydride or liquid hydrogen absorbers in the Muon Ionization Cooling Experiment (MICE). The measurement is well reproduced by the simulation of the experiment and the theoretical model. The results shown here represent a substantial advance towards the realization of muon-based facilities that could operate at the energy and intensity frontiers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05669v2-abstract-full').style.display = 'none'; document.getElementById('2310.05669v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages and 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> STFC-P-2023-004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05933">arXiv:2309.05933</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05933">pdf</a>, <a href="https://arxiv.org/format/2309.05933">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Workshop on a future muon program at FNAL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Corrodi%2C+S">S. Corrodi</a>, <a href="/search/physics?searchtype=author&amp;query=Oksuzian%2C+Y">Y. Oksuzian</a>, <a href="/search/physics?searchtype=author&amp;query=Edmonds%2C+A">A. Edmonds</a>, <a href="/search/physics?searchtype=author&amp;query=Miller%2C+J">J. Miller</a>, <a href="/search/physics?searchtype=author&amp;query=Tran%2C+H+N">H. N. Tran</a>, <a href="/search/physics?searchtype=author&amp;query=Bonventre%2C+R">R. Bonventre</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+D+N">D. N. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Meot%2C+F">F. Meot</a>, <a href="/search/physics?searchtype=author&amp;query=Singh%2C+V">V. Singh</a>, <a href="/search/physics?searchtype=author&amp;query=Kolomensky%2C+Y">Y. Kolomensky</a>, <a href="/search/physics?searchtype=author&amp;query=Tripathy%2C+S">S. Tripathy</a>, <a href="/search/physics?searchtype=author&amp;query=Borrel%2C+L">L. Borrel</a>, <a href="/search/physics?searchtype=author&amp;query=Bub%2C+M">M. Bub</a>, <a href="/search/physics?searchtype=author&amp;query=Echenard%2C+B">B. Echenard</a>, <a href="/search/physics?searchtype=author&amp;query=Hitlin%2C+D+G">D. G. Hitlin</a>, <a href="/search/physics?searchtype=author&amp;query=Jafree%2C+H">H. Jafree</a>, <a href="/search/physics?searchtype=author&amp;query=Middleton%2C+S">S. Middleton</a>, <a href="/search/physics?searchtype=author&amp;query=Plestid%2C+R">R. Plestid</a>, <a href="/search/physics?searchtype=author&amp;query=Porter%2C+F+C">F. C. Porter</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+R+Y">R. Y. Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Bottura%2C+L">L. Bottura</a>, <a href="/search/physics?searchtype=author&amp;query=Pinsard%2C+E">E. Pinsard</a>, <a href="/search/physics?searchtype=author&amp;query=Teixeira%2C+A+M">A. M. Teixeira</a>, <a href="/search/physics?searchtype=author&amp;query=Carelli%2C+C">C. Carelli</a>, <a href="/search/physics?searchtype=author&amp;query=Ambrose%2C+D">D. Ambrose</a> , et al. (68 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05933v1-abstract-short" style="display: inline;"> The Snowmass report on rare processes and precision measurements recommended Mu2e-II and a next generation muon facility at Fermilab (Advanced Muon Facility) as priorities for the frontier. The Workshop on a future muon program at FNAL was held in March 2023 to discuss design studies for Mu2e-II, organizing efforts for the next generation muon facility, and identify synergies with other efforts (e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05933v1-abstract-full').style.display = 'inline'; document.getElementById('2309.05933v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05933v1-abstract-full" style="display: none;"> The Snowmass report on rare processes and precision measurements recommended Mu2e-II and a next generation muon facility at Fermilab (Advanced Muon Facility) as priorities for the frontier. The Workshop on a future muon program at FNAL was held in March 2023 to discuss design studies for Mu2e-II, organizing efforts for the next generation muon facility, and identify synergies with other efforts (e.g., muon collider). Topics included high-power targetry, status of R&amp;D for Mu2e-II, development of compressor rings, FFA and concepts for muon experiments (conversion, decays, muonium and other opportunities) at AMF. This document summarizes the workshop discussions with a focus on future R&amp;D tasks needed to realize these concepts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05933v1-abstract-full').style.display = 'none'; document.getElementById('2309.05933v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">68 pages, 36 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-23-464-PPD, CALT-TH-2023-036 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.00220">arXiv:2309.00220</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.00220">pdf</a>, <a href="https://arxiv.org/format/2309.00220">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Development of wide range photon detection system for muonic X-ray spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mizuno%2C+R">R. Mizuno</a>, <a href="/search/physics?searchtype=author&amp;query=Niikura%2C+M">M. Niikura</a>, <a href="/search/physics?searchtype=author&amp;query=Saito%2C+T+Y">T. Y. Saito</a>, <a href="/search/physics?searchtype=author&amp;query=Matsuzaki%2C+T">T. Matsuzaki</a>, <a href="/search/physics?searchtype=author&amp;query=Sakurai%2C+H">H. Sakurai</a>, <a href="/search/physics?searchtype=author&amp;query=Amato%2C+A">A. Amato</a>, <a href="/search/physics?searchtype=author&amp;query=Asari%2C+S">S. Asari</a>, <a href="/search/physics?searchtype=author&amp;query=Biswas%2C+S">S. Biswas</a>, <a href="/search/physics?searchtype=author&amp;query=Chiu%2C+I">I. Chiu</a>, <a href="/search/physics?searchtype=author&amp;query=Gerchow%2C+L">L. Gerchow</a>, <a href="/search/physics?searchtype=author&amp;query=Guguchia%2C+Z">Z. Guguchia</a>, <a href="/search/physics?searchtype=author&amp;query=Janka%2C+G">G. Janka</a>, <a href="/search/physics?searchtype=author&amp;query=Ninomiya%2C+K">K. Ninomiya</a>, <a href="/search/physics?searchtype=author&amp;query=Ritjoho%2C+N">N. Ritjoho</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+A">A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=von+Schoeler%2C+K">K. von Schoeler</a>, <a href="/search/physics?searchtype=author&amp;query=Tomono%2C+D">D. Tomono</a>, <a href="/search/physics?searchtype=author&amp;query=Terada%2C+K">K. Terada</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">C. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.00220v2-abstract-short" style="display: inline;"> We have developed a photon detection system for muonic X-ray spectroscopy. The detector system consists of high-purity germanium detectors with BGO Compton suppressors. The signals from the detectors are readout with a digital acquisition system. The absolute energy accuracy, energy and timing resolutions, photo-peak efficiency, the performance of the Compton suppressor, and high count rate durabi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00220v2-abstract-full').style.display = 'inline'; document.getElementById('2309.00220v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.00220v2-abstract-full" style="display: none;"> We have developed a photon detection system for muonic X-ray spectroscopy. The detector system consists of high-purity germanium detectors with BGO Compton suppressors. The signals from the detectors are readout with a digital acquisition system. The absolute energy accuracy, energy and timing resolutions, photo-peak efficiency, the performance of the Compton suppressor, and high count rate durability are studied with standard $纬$-ray sources and in-beam experiment using $^{27}\mathrm{Al}(p, 纬){}^{28}\mathrm{Si}$ resonance reaction. The detection system was demonstrated at Paul Scherrer Institute. A calibration method for a photon detector at a muon facility using muonic X-rays of $^{197}$Au and $^{209}$Bi is proposed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00220v2-abstract-full').style.display = 'none'; document.getElementById('2309.00220v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.17346">arXiv:2306.17346</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.17346">pdf</a>, <a href="https://arxiv.org/format/2306.17346">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Enhancement of high-order harmonic generation in graphene by mid-infrared and terahertz fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mao%2C+W">Wenwen Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.17346v1-abstract-short" style="display: inline;"> We theoretically investigate high-order harmonic generation (HHG) in graphene under mid-infrared (MIR) and terahertz (THz) fields based on a quantum master equation. Numerical simulations show that MIR-induced HHG in graphene can be enhanced by a factor of 10 for fifth harmonic and a factor of 25 for seventh harmonic under a THz field with a peak strength of 0.5 MV/cm by optimizing the relative an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17346v1-abstract-full').style.display = 'inline'; document.getElementById('2306.17346v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.17346v1-abstract-full" style="display: none;"> We theoretically investigate high-order harmonic generation (HHG) in graphene under mid-infrared (MIR) and terahertz (THz) fields based on a quantum master equation. Numerical simulations show that MIR-induced HHG in graphene can be enhanced by a factor of 10 for fifth harmonic and a factor of 25 for seventh harmonic under a THz field with a peak strength of 0.5 MV/cm by optimizing the relative angle between the MIR and THz fields. To identify the origin of this enhancement, we compare the fully dynamical calculations with a simple thermodynamic model and a nonequilibrium population model. The analysis shows that the enhancement of the high-order harmonics mainly results from a coherent coupling between MIR- and THz-induced transitions that goes beyond a simple THz-induced population contribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17346v1-abstract-full').style.display = 'none'; document.getElementById('2306.17346v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16010">arXiv:2306.16010</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.16010">pdf</a>, <a href="https://arxiv.org/format/2306.16010">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.013069">10.1103/PhysRevResearch.6.013069 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing Ultrafast Phonon Mediated Inter-Valley Scattering through Transient Absorption and High Harmonic Spectroscopies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lively%2C+K">Kevin Lively</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Albareda%2C+G">Guillermo Albareda</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a>, <a href="/search/physics?searchtype=author&amp;query=Kelly%2C+A">Aaron Kelly</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16010v1-abstract-short" style="display: inline;"> Processes involving ultrafast laser driven electron-phonon dynamics play a fundamental role in the response of quantum systems in a growing number of situations of interest, as evidenced by phenomena such as strongly driven phase transitions and light driven engineering of material properties. To show how these processes can be captured from a computational perspective, we simulate the transient a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16010v1-abstract-full').style.display = 'inline'; document.getElementById('2306.16010v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16010v1-abstract-full" style="display: none;"> Processes involving ultrafast laser driven electron-phonon dynamics play a fundamental role in the response of quantum systems in a growing number of situations of interest, as evidenced by phenomena such as strongly driven phase transitions and light driven engineering of material properties. To show how these processes can be captured from a computational perspective, we simulate the transient absorption spectra and high harmonic generation signals associated with valley selective excitation and intra-band charge carrier relaxation in monolayer hexagonal boron nitride. We show that the multi-trajectory Ehrenfest dynamics approach, implemented in combination with real-time time-dependent density functional theory and tight-binding models, offers a simple, accurate and efficient method to study ultrafast electron-phonon coupled phenomena in solids under diverse pump-probe regimes which can be easily incorporated into the majority of real-time ab-initio software packages. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16010v1-abstract-full').style.display = 'none'; document.getElementById('2306.16010v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.05859">arXiv:2302.05859</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.05859">pdf</a>, <a href="https://arxiv.org/format/2302.05859">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Frequency-resolved microscopic current density analysis of linear and nonlinear optical phenomena in solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.05859v2-abstract-short" style="display: inline;"> We perform a frequency-resolved analysis of electron dynamics in solids to obtain microscopic insight into linear and nonlinear optical phenomena. For the analysis, we first compute the electron dynamics under optical electric fields and evaluate the microscopic current density as a function of time and space. Subsequently, we perform the Fourier transformation on the microscopic current density a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05859v2-abstract-full').style.display = 'inline'; document.getElementById('2302.05859v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.05859v2-abstract-full" style="display: none;"> We perform a frequency-resolved analysis of electron dynamics in solids to obtain microscopic insight into linear and nonlinear optical phenomena. For the analysis, we first compute the electron dynamics under optical electric fields and evaluate the microscopic current density as a function of time and space. Subsequently, we perform the Fourier transformation on the microscopic current density and obtain the corresponding quantity in the frequency domain. The frequency-resolved microscopic current density provides insight into the microscopic electron dynamics in real-space at the frequency of linear and nonlinear optical responses. We apply frequency-resolved microscopic current density analysis to light-induced electron dynamics in aluminum, silicon, and diamond based on the first-principles electron dynamics simulation according to the time-dependent density functional theory. Consequently, the nature of delocalized electrons in metals and bound electrons in semiconductors and insulators is suitably captured by the developed scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05859v2-abstract-full').style.display = 'none'; document.getElementById('2302.05859v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.02004">arXiv:2301.02004</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.02004">pdf</a>, <a href="https://arxiv.org/format/2301.02004">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.15.1.029">10.21468/SciPostPhys.15.1.029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimizing Floquet engineering for non-equilibrium steady states with gradient-based methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Castro%2C+A">Alberto Castro</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.02004v3-abstract-short" style="display: inline;"> Non-equilibrium steady states are created when a periodically driven quantum system is also incoherently interacting with an environment -- as it is the case in most realistic situations. The notion of Floquet engineering refers to the manipulation of the properties of systems under periodic perturbations. Although it more frequently refers to the coherent states of isolated systems (or to the tra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02004v3-abstract-full').style.display = 'inline'; document.getElementById('2301.02004v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.02004v3-abstract-full" style="display: none;"> Non-equilibrium steady states are created when a periodically driven quantum system is also incoherently interacting with an environment -- as it is the case in most realistic situations. The notion of Floquet engineering refers to the manipulation of the properties of systems under periodic perturbations. Although it more frequently refers to the coherent states of isolated systems (or to the transient phase for states that are weakly coupled to the environment), it may sometimes be of more interest to consider the final steady states that are reached after decoherence and dissipation take place. In this work, we propose a computational method to find the multicolor periodic perturbations that lead to the final steady states that are optimal with respect to a given predefined metric, such as for example the maximization of the temporal average value of some observable. We exemplify the concept using a simple model for the nitrogen-vacancy center in diamond: the goal in this case is to find the driving periodic magnetic field that maximizes a time-averaged spin component. We show that, for example, this technique permits to prepare states whose spin values are forbidden in thermal equilibrium at any temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02004v3-abstract-full').style.display = 'none'; document.getElementById('2301.02004v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures. Changed the title. Added more background information to the introduction, added a handful of new references that have studied non-equilibrium steady states for various types of systems</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 15, 029 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.11483">arXiv:2212.11483</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.11483">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-022-01639-3">10.1038/s41567-022-01639-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Size-controlled quantum dots reveal the impact of intraband transitions on high-order harmonic generation in solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nakagawa%2C+K">Kotaro Nakagawa</a>, <a href="/search/physics?searchtype=author&amp;query=Hirori%2C+H">Hideki Hirori</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Tahara%2C+H">Hirokazu Tahara</a>, <a href="/search/physics?searchtype=author&amp;query=Sekiguchi%2C+F">Fumiya Sekiguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Yumoto%2C+G">Go Yumoto</a>, <a href="/search/physics?searchtype=author&amp;query=Saruyama%2C+M">Masaki Saruyama</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+R">Ryota Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Teranishi%2C+T">Toshiharu Teranishi</a>, <a href="/search/physics?searchtype=author&amp;query=Kanemitsu%2C+Y">Yoshihiko Kanemitsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.11483v1-abstract-short" style="display: inline;"> Since the discovery of high-order harmonic generation (HHG) in solids, much effort has been devoted to understanding its generation mechanism and both interband and intraband transitions are known to be essential. However, intraband transitions are affected by the electronic structure of a solid, and how they contribute to nonlinear carrier generation and HHG remains an open question. Here, we use&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11483v1-abstract-full').style.display = 'inline'; document.getElementById('2212.11483v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.11483v1-abstract-full" style="display: none;"> Since the discovery of high-order harmonic generation (HHG) in solids, much effort has been devoted to understanding its generation mechanism and both interband and intraband transitions are known to be essential. However, intraband transitions are affected by the electronic structure of a solid, and how they contribute to nonlinear carrier generation and HHG remains an open question. Here, we use mid-infrared laser pulses to study HHG in CdSe and CdS quantum dots (QDs), where quantum confinement can be used to control the intraband transitions. We find that both the HHG intensity per excited volume and the generated carrier density increase when the average QD size is increased from about 2 nm to 3 nm. We show that the reduction of the subband gap energy in larger QDs enhances intraband transitions, and this in turn increases the rate of photocarrier injection by coupling with interband transitions, resulting in enhanced HHG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11483v1-abstract-full').style.display = 'none'; document.getElementById('2212.11483v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 18, 874 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10251">arXiv:2209.10251</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10251">pdf</a>, <a href="https://arxiv.org/format/2209.10251">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.092003">10.1103/PhysRevD.106.092003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiple Coulomb Scattering of muons in Lithium Hydride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&amp;query=Tsenov%2C+R">R. Tsenov</a>, <a href="/search/physics?searchtype=author&amp;query=Vankova-Kirilova%2C+G">G. Vankova-Kirilova</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y+P">Y. P. Song</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J+Y">J. Y. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z+H">Z. H. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&amp;query=Chignoli%2C+F">F. Chignoli</a>, <a href="/search/physics?searchtype=author&amp;query=Mazza%2C+R">R. Mazza</a>, <a href="/search/physics?searchtype=author&amp;query=Palladino%2C+V">V. Palladino</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Orestano%2C+D">D. Orestano</a>, <a href="/search/physics?searchtype=author&amp;query=Tortora%2C+L">L. Tortora</a>, <a href="/search/physics?searchtype=author&amp;query=Kuno%2C+Y">Y. Kuno</a>, <a href="/search/physics?searchtype=author&amp;query=Sakamoto%2C+H">H. Sakamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+A">A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Ishimoto%2C+S">S. Ishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&amp;query=Sung%2C+C+K">C. K. Sung</a>, <a href="/search/physics?searchtype=author&amp;query=Filthaut%2C+F">F. Filthaut</a>, <a href="/search/physics?searchtype=author&amp;query=Fedorov%2C+M">M. Fedorov</a>, <a href="/search/physics?searchtype=author&amp;query=Jokovic%2C+D">D. Jokovic</a>, <a href="/search/physics?searchtype=author&amp;query=Maletic%2C+D">D. Maletic</a>, <a href="/search/physics?searchtype=author&amp;query=Savic%2C+M">M. Savic</a> , et al. (112 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10251v1-abstract-short" style="display: inline;"> Multiple Coulomb Scattering (MCS) is a well known phenomenon occurring when charged particles traverse materials. Measurements of muons traversing low $Z$ materials made in the MuScat experiment showed that theoretical models and simulation codes, such as GEANT4 (v7.0), over-estimated the scattering. The Muon Ionization Cooling Experiment (MICE) measured the cooling of a muon beam traversing a liq&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10251v1-abstract-full').style.display = 'inline'; document.getElementById('2209.10251v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10251v1-abstract-full" style="display: none;"> Multiple Coulomb Scattering (MCS) is a well known phenomenon occurring when charged particles traverse materials. Measurements of muons traversing low $Z$ materials made in the MuScat experiment showed that theoretical models and simulation codes, such as GEANT4 (v7.0), over-estimated the scattering. The Muon Ionization Cooling Experiment (MICE) measured the cooling of a muon beam traversing a liquid hydrogen or lithium hydride (LiH) energy absorber as part of a programme to develop muon accelerator facilities, such as a Neutrino Factory or a Muon Collider. The energy loss and MCS that occur in the absorber material are competing effects that alter the performance of the cooling channel. Therefore measurements of MCS are required in order to validate the simulations used to predict the cooling performance in future accelerator facilities. We report measurements made in the MICE apparatus of MCS using a LiH absorber and muons within the momentum range 160 to 245 MeV/c. The measured RMS scattering width is about 9% smaller than that predicted by the approximate formula proposed by the Particle Data Group. Data at 172, 200 and 240 MeV/c are compared to the GEANT4 (v9.6) default scattering model. These measurements show agreement with this more recent GEANT4 (v9.6) version over the range of incident muon momenta. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10251v1-abstract-full').style.display = 'none'; document.getElementById('2209.10251v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures, journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RAL-P-2022-001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.00788">arXiv:2205.00788</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.00788">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-34973-4">10.1038/s41467-022-34973-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controlling Floquet states on ultrashort time scales </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lucchini%2C+M">Matteo Lucchini</a>, <a href="/search/physics?searchtype=author&amp;query=Medeghini%2C+F">Fabio Medeghini</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Yingxuan Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Vismarra%2C+F">Federico Vismarra</a>, <a href="/search/physics?searchtype=author&amp;query=Borrego-Varillas%2C+R">Roc铆o Borrego-Varillas</a>, <a href="/search/physics?searchtype=author&amp;query=Crego%2C+A">Aurora Crego</a>, <a href="/search/physics?searchtype=author&amp;query=Frassetto%2C+F">Fabio Frassetto</a>, <a href="/search/physics?searchtype=author&amp;query=Poletto%2C+L">Luca Poletto</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=H%C3%BCbener%2C+H">Hannes H眉bener</a>, <a href="/search/physics?searchtype=author&amp;query=De+Giovannini%2C+U">Umberto De Giovannini</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+%C3%81">脕ngel Rubio</a>, <a href="/search/physics?searchtype=author&amp;query=Nisoli%2C+M">Mauro Nisoli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.00788v1-abstract-short" style="display: inline;"> The advent of ultrafast laser science offers the unique opportunity to combine Floquet engineering with extreme time resolution, further pushing the optical control of matter into the petahertz domain. However, what is the shortest driving pulse for which Floquet states can be realised remains an unsolved matter, thus limiting the application of Floquet theory to pulses composed by many optical cy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.00788v1-abstract-full').style.display = 'inline'; document.getElementById('2205.00788v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.00788v1-abstract-full" style="display: none;"> The advent of ultrafast laser science offers the unique opportunity to combine Floquet engineering with extreme time resolution, further pushing the optical control of matter into the petahertz domain. However, what is the shortest driving pulse for which Floquet states can be realised remains an unsolved matter, thus limiting the application of Floquet theory to pulses composed by many optical cycles. Here we ionized Ne atoms with few-femtosecond pulses of selected time duration and show that a Floquet state can be established already within 10 cycles of the driving field. For shorter pulses, down to 2 cycles, the finite lifetime of the driven state can still be explained using an analytical model based on Floquet theory. By demonstrating that the population of the Floquet sidebands can be controlled not only with the driving laser pulse intensity and frequency, but also by its duration, our results add a new lever to the toolbox of Floquet engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.00788v1-abstract-full').style.display = 'none'; document.getElementById('2205.00788v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.14157">arXiv:2204.14157</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.14157">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.033101">10.1103/PhysRevResearch.4.033101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Time- and angle-resolved photoelectron spectroscopy of strong-field light-dressed solids: prevalence of the adiabatic band picture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Neufeld%2C+O">Ofer Neufeld</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+W">Wenwen Mao</a>, <a href="/search/physics?searchtype=author&amp;query=H%C3%BCbener%2C+H">Hannes H眉bener</a>, <a href="/search/physics?searchtype=author&amp;query=Tancogne-Dejean%2C+N">Nicolas Tancogne-Dejean</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=De+Giovannini%2C+U">Umberto De Giovannini</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.14157v1-abstract-short" style="display: inline;"> In recent years, strong-field physics in condensed-matter was pioneered as a novel approach for controlling material properties through laser-dressing, as well as for ultrafast spectroscopy via nonlinear light-matter interactions (e.g. harmonic generation). A potential controversy arising from these advancements is that it is sometimes vague which band-picture should be used to interpret strong-fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.14157v1-abstract-full').style.display = 'inline'; document.getElementById('2204.14157v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.14157v1-abstract-full" style="display: none;"> In recent years, strong-field physics in condensed-matter was pioneered as a novel approach for controlling material properties through laser-dressing, as well as for ultrafast spectroscopy via nonlinear light-matter interactions (e.g. harmonic generation). A potential controversy arising from these advancements is that it is sometimes vague which band-picture should be used to interpret strong-field experiments: the field-free bands, the adiabatic (instantaneous) field-dressed bands, Floquet bands, or some other intermediate picture. We here try to resolve this issue by performing &#39;theoretical experiments&#39; of time- and angle-resolved photoelectron spectroscopy (Tr-ARPES) for a strong-field laser-pumped solid, which should give access to the actual observable bands of the irradiated material. To our surprise, we find that the adiabatic band-picture survives quite well, up to high field intensities (~10^12 W/cm^2), and in a wide frequency range (driving wavelengths of 4000 to 800nm, with Keldysh parameters ranging up to ~7). We conclude that to first order, the adiabatic instantaneous bands should be the standard blueprint for interpreting ultrafast electron dynamics in solids when the field is highly off-resonant with characteristic energy scales of the material. We then discuss weaker effects of modifications of the bands beyond this picture that are non-adiabatic, showing that by using bi-chromatic fields the deviations from the standard picture can be probed with enhanced sensitivity. Our work outlines a clear band picture for the physics of strong-field interactions in solids, which should be useful for designing and analyzing strong-field experimental observables and also to formulate simpler semi-empirical models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.14157v1-abstract-full').style.display = 'none'; document.getElementById('2204.14157v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07649">arXiv:2203.07649</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07649">pdf</a>, <a href="https://arxiv.org/format/2203.07649">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.024313">10.1103/PhysRevB.106.024313 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Terahertz-induced high-order harmonic generation and nonlinear charge transport in graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mao%2C+W">Wenwen Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07649v2-abstract-short" style="display: inline;"> We theoretically study the THz-induced high-order harmonic generation (HHG) and nonlinear electric transport in graphene based on the quantum master equation with the relaxation time approximation. To obtain microscopic insight into the phenomena, we compare the results of the fully dynamical calculations with those under a quasi-static approximation, where the electronic system is approximated as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07649v2-abstract-full').style.display = 'inline'; document.getElementById('2203.07649v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07649v2-abstract-full" style="display: none;"> We theoretically study the THz-induced high-order harmonic generation (HHG) and nonlinear electric transport in graphene based on the quantum master equation with the relaxation time approximation. To obtain microscopic insight into the phenomena, we compare the results of the fully dynamical calculations with those under a quasi-static approximation, where the electronic system is approximated as a nonequilibrium steady state. As a result, we find that the THz-induced electron dynamics in graphene can be accurately modeled with the nonequilibrium steady-state at each instance. The population distribution analysis further clarifies that the THz-induced HHG in graphene originates from the reduction of effective conductivity due to a large displacement of electrons in the Brillouin zone. By comparing the present nonequilibrium picture with a thermodynamic picture, we explore the role of the nonequilibrium nature of electron dynamics on the extremely nonlinear optical and transport phenomena in graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07649v2-abstract-full').style.display = 'none'; document.getElementById('2203.07649v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 024313 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.03387">arXiv:2203.03387</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.03387">pdf</a>, <a href="https://arxiv.org/format/2203.03387">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Floquet engineering the band structure of materials with optimal control theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Castro%2C+A">Alberto Castro</a>, <a href="/search/physics?searchtype=author&amp;query=de+Giovannini%2C+U">Umberto de Giovannini</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shusuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=H%C3%BCbener%2C+H">Hannes H眉bener</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.03387v1-abstract-short" style="display: inline;"> We demonstrate that the electronic structure of a material can be deformed into Floquet pseudo-bands with arbitrarily tailored shapes. We achieve this goal with a novel combination of quantum optimal control theory and Floquet engineering. The power and versatility of this framework is demonstrated here by utilizing the independent-electron tight-binding description of the $蟺$ electronic system of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03387v1-abstract-full').style.display = 'inline'; document.getElementById('2203.03387v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.03387v1-abstract-full" style="display: none;"> We demonstrate that the electronic structure of a material can be deformed into Floquet pseudo-bands with arbitrarily tailored shapes. We achieve this goal with a novel combination of quantum optimal control theory and Floquet engineering. The power and versatility of this framework is demonstrated here by utilizing the independent-electron tight-binding description of the $蟺$ electronic system of graphene. We show several prototype examples focusing on the region around the K (Dirac) point of the Brillouin zone: creation of a gap with opposing flat valence and conduction bands, creation of a gap with opposing concave symmetric valence and conduction bands -- which would correspond to a material with an effective negative electron-hole mass --, or closure of the gap when departing from a modified graphene model with a non-zero field-free gap. We employ time periodic drives with several frequency components and polarizations, in contrast to the usual monochromatic fields, and use control theory to find the amplitudes of each component that optimize the shape of the bands as desired. In addition, we use quantum control methods to find realistic switch-on pulses that bring the material into the predefined stationary Floquet band structure, i.e. into a state in which the desired Floquet modes of the target bands are fully occupied, so that they should remain stroboscopically stationary, with long lifetimes, when the weak periodic drives are started. Finally, we note that although we have focused on solid state materials, the technique that we propose could be equally used for the Floquet engineering of ultracold atoms in optical lattices, and to other non-equilibrium dynamical and correlated systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03387v1-abstract-full').style.display = 'none'; document.getElementById('2203.03387v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.04226">arXiv:2202.04226</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.04226">pdf</a>, <a href="https://arxiv.org/format/2202.04226">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2516-1075/ac52df">10.1088/2516-1075/ac52df <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First-principles calculations for transient absorption of laser-excited magnetic materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.04226v1-abstract-short" style="display: inline;"> We investigate the modification in the optical properties of laser-excited bulk cobalt and nickel using the time-dependent density functional theory at a finite electron temperature. As a result of the first-principles simulation, a complex change in the photoabsorption of the magnetic materials is observed around the $M_{2,3}$ absorption edge. Based on the microscopic analysis, we clarify that th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04226v1-abstract-full').style.display = 'inline'; document.getElementById('2202.04226v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.04226v1-abstract-full" style="display: none;"> We investigate the modification in the optical properties of laser-excited bulk cobalt and nickel using the time-dependent density functional theory at a finite electron temperature. As a result of the first-principles simulation, a complex change in the photoabsorption of the magnetic materials is observed around the $M_{2,3}$ absorption edge. Based on the microscopic analysis, we clarify that this complex absorption change consists of the two following components: (i) the decrease in the photoabsorption in a narrow energy range around the $M_{2,3}$ edge, which reflects the blue shift of the absorption edge due to the light-induced demagnetization, and (ii) the increase in the photoabsorption in a wider range around the $M_{2,3}$ edge, which reflects the modification in the local-field effect due to the light-induced electron localization. The relation between the transient optical and magnetic properties may open a way to monitor ultrafast (de)magnetization and spin dynamics in magnetic materials via transient absorption spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04226v1-abstract-full').style.display = 'none'; document.getElementById('2202.04226v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Electronic Structure (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.10228">arXiv:2110.10228</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.10228">pdf</a>, <a href="https://arxiv.org/format/2110.10228">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> A Measurement of Proton, Deuteron, Triton and Alpha Particle Emission after Nuclear Muon Capture on Al, Si and Ti with the AlCap Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=AlCap+Collaboration"> AlCap Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Edmonds%2C+A">Andrew Edmonds</a>, <a href="/search/physics?searchtype=author&amp;query=Quirk%2C+J">John Quirk</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+M">Ming-Liang Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Alexander%2C+D">Damien Alexander</a>, <a href="/search/physics?searchtype=author&amp;query=Bernstein%2C+R+H">Robert H. Bernstein</a>, <a href="/search/physics?searchtype=author&amp;query=Daniel%2C+A">Aji Daniel</a>, <a href="/search/physics?searchtype=author&amp;query=Diociaiuti%2C+E">Eleonora Diociaiuti</a>, <a href="/search/physics?searchtype=author&amp;query=Donghia%2C+R">Raffaella Donghia</a>, <a href="/search/physics?searchtype=author&amp;query=Gillies%2C+E+L">Ewen L. Gillies</a>, <a href="/search/physics?searchtype=author&amp;query=Hungerford%2C+E+V">Ed V. Hungerford</a>, <a href="/search/physics?searchtype=author&amp;query=Kammel%2C+P">Peter Kammel</a>, <a href="/search/physics?searchtype=author&amp;query=Krikler%2C+B+E">Benjamin E. Krikler</a>, <a href="/search/physics?searchtype=author&amp;query=Kuno%2C+Y">Yoshitaka Kuno</a>, <a href="/search/physics?searchtype=author&amp;query=Lancaster%2C+M">Mark Lancaster</a>, <a href="/search/physics?searchtype=author&amp;query=Litchfield%2C+R+P">R. Phillip Litchfield</a>, <a href="/search/physics?searchtype=author&amp;query=Miller%2C+J+P">James P. Miller</a>, <a href="/search/physics?searchtype=author&amp;query=Palladino%2C+A">Anthony Palladino</a>, <a href="/search/physics?searchtype=author&amp;query=Repond%2C+J">Jose Repond</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+A">Akira Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Sarra%2C+I">Ivano Sarra</a>, <a href="/search/physics?searchtype=author&amp;query=Soleti%2C+S+R">Stefano Roberto Soleti</a>, <a href="/search/physics?searchtype=author&amp;query=Tishchenko%2C+V">Vladimir Tishchenko</a>, <a href="/search/physics?searchtype=author&amp;query=Tran%2C+N+H">Nam H. Tran</a>, <a href="/search/physics?searchtype=author&amp;query=Uchida%2C+Y">Yoshi Uchida</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.10228v3-abstract-short" style="display: inline;"> Heavy charged particles after nuclear muon capture are an important nuclear physics background to the muon-to-electron conversion experiments Mu2e and COMET, which will search for charged lepton flavor violation at an unprecedented level of sensitivity. The AlCap experiment measured the yield and energy spectra of protons, deuterons, tritons, and alpha particles emitted after the nuclear capture o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10228v3-abstract-full').style.display = 'inline'; document.getElementById('2110.10228v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.10228v3-abstract-full" style="display: none;"> Heavy charged particles after nuclear muon capture are an important nuclear physics background to the muon-to-electron conversion experiments Mu2e and COMET, which will search for charged lepton flavor violation at an unprecedented level of sensitivity. The AlCap experiment measured the yield and energy spectra of protons, deuterons, tritons, and alpha particles emitted after the nuclear capture of muons stopped in Al, Si, and Ti in the low energy range relevant for the muon-to-electron conversion experiments. Individual charged particle types were identified in layered silicon detector packages and their initial energy distributions were unfolded from the observed energy spectra. Detailed information on yields and energy spectra for all observed nuclei are presented in the paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10228v3-abstract-full').style.display = 'none'; document.getElementById('2110.10228v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.08202">arXiv:2107.08202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.08202">pdf</a>, <a href="https://arxiv.org/format/2107.08202">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Reconstruction of ultrafast exciton dynamics with a phase-retrieval algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Moio%2C+B">Bruno Moio</a>, <a href="/search/physics?searchtype=author&amp;query=Dolso%2C+G+L">Gian Luca Dolso</a>, <a href="/search/physics?searchtype=author&amp;query=Inzani%2C+G">Giacomo Inzani</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Palo%2C+N">Nicola Di Palo</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Borrego-Varillas%2C+R">Roc铆o Borrego-Varillas</a>, <a href="/search/physics?searchtype=author&amp;query=Nisoli%2C+M">Mauro Nisoli</a>, <a href="/search/physics?searchtype=author&amp;query=Lucchini%2C+M">Matteo Lucchini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.08202v1-abstract-short" style="display: inline;"> The first step to gain optical control over the ultrafast processes initiated by light in solids is a correct identification of the physical mechanisms at play. Among them, exciton formation has been identified as a crucial phenomenon which deeply affects the electro-optical properties of most semiconductors and insulators of technological interest. While recent experiments based on attosecond spe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08202v1-abstract-full').style.display = 'inline'; document.getElementById('2107.08202v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.08202v1-abstract-full" style="display: none;"> The first step to gain optical control over the ultrafast processes initiated by light in solids is a correct identification of the physical mechanisms at play. Among them, exciton formation has been identified as a crucial phenomenon which deeply affects the electro-optical properties of most semiconductors and insulators of technological interest. While recent experiments based on attosecond spectroscopy techniques have demonstrated the possibility to observe the early-stage exciton dynamics, the description of the underlying exciton properties remains non-trivial. In this work we propose a new method called extended Ptychographic Iterative engine for eXcitons (ePIX), capable of reconstructing the main physical properties which determine the evolution of the quasi-particle with no prior knowledge of the exact relaxation dynamics or the pump temporal characteristics. By demonstrating its accuracy even when the exciton dynamics is comparable to the pump pulse duration, ePIX is established as a powerful approach to widen our knowledge of solid-state physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08202v1-abstract-full').style.display = 'none'; document.getElementById('2107.08202v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.01094">arXiv:2107.01094</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.01094">pdf</a>, <a href="https://arxiv.org/format/2107.01094">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Conditional wavefunction theory: a unified treatment of molecular structure and nonadiabatic dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Albareda%2C+G">Guillermo Albareda</a>, <a href="/search/physics?searchtype=author&amp;query=Lively%2C+K">Kevin Lively</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Kelly%2C+A">Aaron Kelly</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.01094v2-abstract-short" style="display: inline;"> We demonstrate that a conditional wavefunction theory enables a unified and efficient treatment of the equilibrium structure and nonadiabatic dynamics of correlated electron-ion systems. The conditional decomposition of the many-body wavefunction formally recasts the full interacting wavefunction of a closed system as a set of lower dimensional (conditional) coupled `slices&#39;. We formulate a variat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.01094v2-abstract-full').style.display = 'inline'; document.getElementById('2107.01094v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.01094v2-abstract-full" style="display: none;"> We demonstrate that a conditional wavefunction theory enables a unified and efficient treatment of the equilibrium structure and nonadiabatic dynamics of correlated electron-ion systems. The conditional decomposition of the many-body wavefunction formally recasts the full interacting wavefunction of a closed system as a set of lower dimensional (conditional) coupled `slices&#39;. We formulate a variational wavefunction ansatz based on a set of conditional wavefunction slices, and demonstrate its accuracy by determining the structural and time-dependent response properties of the hydrogen molecule. We then extend this approach to include time-dependent conditional wavefunctions, and address paradigmatic nonequilibrium processes including strong-field molecular ionization, laser driven proton transfer, and Berry phase effects induced by a conical intersection. This work paves the road for the application of conditional wavefunction theory in equilibrium and out of equilibrium ab-initio molecular simulations of finite and extended systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.01094v2-abstract-full').style.display = 'none'; document.getElementById('2107.01094v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.05813">arXiv:2106.05813</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.05813">pdf</a>, <a href="https://arxiv.org/format/2106.05813">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/08/P08046">10.1088/1748-0221/16/08/P08046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performance of the MICE diagnostic system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+MICE+collaboration"> The MICE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&amp;query=Tsenov%2C+R">R. Tsenov</a>, <a href="/search/physics?searchtype=author&amp;query=Vankova-Kirilova%2C+G">G. Vankova-Kirilova</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y+P">Y. P. Song</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J+Y">J. Y. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z+H">Z. H. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&amp;query=Chignoli%2C+F">F. Chignoli</a>, <a href="/search/physics?searchtype=author&amp;query=Mazza%2C+R">R. Mazza</a>, <a href="/search/physics?searchtype=author&amp;query=Palladino%2C+V">V. Palladino</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Orestano%2C+D">D. Orestano</a>, <a href="/search/physics?searchtype=author&amp;query=Tortora%2C+L">L. Tortora</a>, <a href="/search/physics?searchtype=author&amp;query=Kuno%2C+Y">Y. Kuno</a>, <a href="/search/physics?searchtype=author&amp;query=Sakamoto%2C+H">H. Sakamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+A">A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Ishimoto%2C+S">S. Ishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&amp;query=Sung%2C+C+K">C. K. Sung</a>, <a href="/search/physics?searchtype=author&amp;query=Filthaut%2C+F">F. Filthaut</a>, <a href="/search/physics?searchtype=author&amp;query=Fedorov%2C+M">M. Fedorov</a>, <a href="/search/physics?searchtype=author&amp;query=Jokovic%2C+D">D. Jokovic</a>, <a href="/search/physics?searchtype=author&amp;query=Maletic%2C+D">D. Maletic</a> , et al. (113 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.05813v2-abstract-short" style="display: inline;"> Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams of a neutrino factory and for multi-TeV lepton-antilepton collisions at a muon collider. The international Muon Ionization Cooling Experiment (MICE) has demonstrated the principle of ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05813v2-abstract-full').style.display = 'inline'; document.getElementById('2106.05813v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.05813v2-abstract-full" style="display: none;"> Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams of a neutrino factory and for multi-TeV lepton-antilepton collisions at a muon collider. The international Muon Ionization Cooling Experiment (MICE) has demonstrated the principle of ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. This paper documents the performance of the detectors used in MICE to measure the muon-beam parameters, and the physical properties of the liquid hydrogen energy absorber during running. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05813v2-abstract-full').style.display = 'none'; document.getElementById('2106.05813v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RAL-P-2021-001 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2021 JINST 16 P08046 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.02316">arXiv:2106.02316</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.02316">pdf</a>, <a href="https://arxiv.org/format/2106.02316">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.165756">10.1016/j.nima.2021.165756 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Test of a small prototype of the COMET cylindrical drift chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+C">C. Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+T+S">T. S. Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Kuno%2C+Y">Y. Kuno</a>, <a href="/search/physics?searchtype=author&amp;query=Moritsu%2C+M">M. Moritsu</a>, <a href="/search/physics?searchtype=author&amp;query=Nakazawa%2C+Y">Y. Nakazawa</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+A">A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Sakamoto%2C+H">H. Sakamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Tran%2C+N+H">N. H. Tran</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+M+L">M. L. Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Yoshida%2C+H">H. Yoshida</a>, <a href="/search/physics?searchtype=author&amp;query=Yamane%2C+T">T. Yamane</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">J. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.02316v2-abstract-short" style="display: inline;"> The performance of a small prototype of a cylindrical drift chamber (CDC) used in the COMET Phase-I experiment was studied by using an electron beam. The prototype chamber was constructed with alternating all-stereo wire configuration and operated with the He-iC$_{4}$H$_{10}$ (90/10) gas mixture without a magnetic field. The drift space-time relation, drift velocity, d$E$/d$x$ resolution, hit effi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.02316v2-abstract-full').style.display = 'inline'; document.getElementById('2106.02316v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.02316v2-abstract-full" style="display: none;"> The performance of a small prototype of a cylindrical drift chamber (CDC) used in the COMET Phase-I experiment was studied by using an electron beam. The prototype chamber was constructed with alternating all-stereo wire configuration and operated with the He-iC$_{4}$H$_{10}$ (90/10) gas mixture without a magnetic field. The drift space-time relation, drift velocity, d$E$/d$x$ resolution, hit efficiency, and spatial resolution as a function of distance from the wire were investigated. The average spatial resolution of 150 $渭$m with the hit efficiency of 99% was obtained at applied voltages higher than 1800 V. We have demonstrated that the design and gas mixture of the prototype match the operation of the COMET CDC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.02316v2-abstract-full').style.display = 'none'; document.getElementById('2106.02316v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 14 figures, published in Nucl. Inst. Meth. A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instrum. Methods A 1015 (2021) 165756 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.11969">arXiv:2103.11969</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.11969">pdf</a>, <a href="https://arxiv.org/format/2103.11969">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ac03d0">10.1088/1367-2630/ac03d0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear electric conductivity and THz-induced charge transport in graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.11969v2-abstract-short" style="display: inline;"> Based on the quantum master equation approach, the nonlinear electric conductivity of graphene is investigated under static electric fields for various chemical potential shifts. The simulation results show that, as the field strength increases, the effective conductivity is firstly suppressed, reflecting the depletion of effective carriers due to the large displacement in the Brillouin zone cause&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.11969v2-abstract-full').style.display = 'inline'; document.getElementById('2103.11969v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.11969v2-abstract-full" style="display: none;"> Based on the quantum master equation approach, the nonlinear electric conductivity of graphene is investigated under static electric fields for various chemical potential shifts. The simulation results show that, as the field strength increases, the effective conductivity is firstly suppressed, reflecting the depletion of effective carriers due to the large displacement in the Brillouin zone caused by the strong field. Then, as the field strength exceeds $1$~MV/m, the effective conductivity increases, overcoming the carrier depletion via the Landau--Zener tunneling process. Based on the nonlinear behavior of the conductivity, the charge transport induced by few-cycle THz pulses is studied to elucidate the ultrafast control of electric current in matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.11969v2-abstract-full').style.display = 'none'; document.getElementById('2103.11969v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 23 063047 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.11313">arXiv:2101.11313</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.11313">pdf</a>, <a href="https://arxiv.org/format/2101.11313">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2105618118">10.1073/pnas.2105618118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Ferroelectric Photo-Groundstate of SrTiO$_3$: Cavity Materials Engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Latini%2C+S">Simone Latini</a>, <a href="/search/physics?searchtype=author&amp;query=Shin%2C+D">Dongbin Shin</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%A4fer%2C+C">Christian Sch盲fer</a>, <a href="/search/physics?searchtype=author&amp;query=De+Giovannini%2C+U">Umberto De Giovannini</a>, <a href="/search/physics?searchtype=author&amp;query=H%C3%BCbener%2C+H">Hannes H眉bener</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.11313v1-abstract-short" style="display: inline;"> Optical cavities confine light on a small region in space which can result in a strong coupling of light with materials inside the cavity. This gives rise to new states where quantum fluctuations of light and matter can alter the properties of the material altogether. Here we demonstrate, based on first principles calculations, that such light-matter coupling induces a change of the collective pha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11313v1-abstract-full').style.display = 'inline'; document.getElementById('2101.11313v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.11313v1-abstract-full" style="display: none;"> Optical cavities confine light on a small region in space which can result in a strong coupling of light with materials inside the cavity. This gives rise to new states where quantum fluctuations of light and matter can alter the properties of the material altogether. Here we demonstrate, based on first principles calculations, that such light-matter coupling induces a change of the collective phase from quantum paraelectric to ferroelectric in the SrTiO$_3$ groundstate, which has thus far only been achieved in out-of-equilibrium strongly excited conditions[1, 2]. This is a light-matter-hybrid groundstate which can only exist because of the coupling to the vacuum fluctuations of light, a &#34;photo-groundstate&#34;. The phase transition is accompanied by changes in the crystal structure, showing that fundamental groundstate properties of materials can be controlled via strong light-matter coupling. Such a control of quantum states enables the tailoring of materials properties or even the design of novel materials purely by exposing them to confined light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11313v1-abstract-full').style.display = 'none'; document.getElementById('2101.11313v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.03007">arXiv:2101.03007</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.03007">pdf</a>, <a href="https://arxiv.org/format/2101.03007">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpclett.1c00073">10.1021/acs.jpclett.1c00073 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulating Vibronic Spectra without Born-Oppenheimer Surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lively%2C+K">Kevin Lively</a>, <a href="/search/physics?searchtype=author&amp;query=Albareda%2C+G">Guillermo Albareda</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Kelly%2C+A">Aaron Kelly</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.03007v1-abstract-short" style="display: inline;"> We show how vibronic spectra in molecular systems can be simulated in an efficient and accurate way using first principles approaches without relying on the explicit use of multiple Born-Oppenheimer potential energy surfaces. We demonstrate and analyse the performance of mean field and beyond mean field dynamics techniques for the \ch{H_2} molecule in one-dimension, in the later case capturing the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03007v1-abstract-full').style.display = 'inline'; document.getElementById('2101.03007v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.03007v1-abstract-full" style="display: none;"> We show how vibronic spectra in molecular systems can be simulated in an efficient and accurate way using first principles approaches without relying on the explicit use of multiple Born-Oppenheimer potential energy surfaces. We demonstrate and analyse the performance of mean field and beyond mean field dynamics techniques for the \ch{H_2} molecule in one-dimension, in the later case capturing the vibronic structure quite accurately, including quantum Franck-Condon effects. In a practical application of this methodology we simulate the absorption spectrum of benzene in full dimensionality using time-dependent density functional theory at the multi-trajectory mean-field level, finding good qualitative agreement with experiment. These results show promise for future applications of this methodology in capturing phenomena associated with vibronic coupling in more complex molecular, and potentially condensed phase systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03007v1-abstract-full').style.display = 'none'; document.getElementById('2101.03007v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.01677">arXiv:2011.01677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.01677">pdf</a>, <a href="https://arxiv.org/format/2011.01677">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> First-principles calculations for attosecond electron dynamics in solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.01677v1-abstract-short" style="display: inline;"> Nonequilibrium electron dynamics in solids is an important subject from both fundamental and technological points of view. The recent development of laser technology has enabled us to study ultrafast electron dynamics in the time domain. First-principles calculation is a powerful tool for analyzing such complex electron dynamics and clarifying the physics behind the experimental observation. In th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01677v1-abstract-full').style.display = 'inline'; document.getElementById('2011.01677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.01677v1-abstract-full" style="display: none;"> Nonequilibrium electron dynamics in solids is an important subject from both fundamental and technological points of view. The recent development of laser technology has enabled us to study ultrafast electron dynamics in the time domain. First-principles calculation is a powerful tool for analyzing such complex electron dynamics and clarifying the physics behind the experimental observation. In this article, we review the recent development of the first-principles calculation for light-induced electron dynamics in solids by revising its application to recent attosecond experiments. The electron dynamics calculations offer an accurate description of static and transient optical properties of solids and provide physics insight into light-induced electron dynamics. Furthermore, the microscopic decomposition of transient properties of nonequilibrium systems has been developed to extract microscopic information from the simulation results. The first-principles analysis opened a novel path to analyze the nonequilibrium electron dynamics in matter and to provide the fundamental understanding complementarily with the sophisticated experimental technique. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01677v1-abstract-full').style.display = 'none'; document.getElementById('2011.01677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.06275">arXiv:2010.06275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.06275">pdf</a>, <a href="https://arxiv.org/format/2010.06275">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.L041408">10.1103/PhysRevB.103.L041408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-order harmonic generation in graphene: nonlinear coupling of intra and interband transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Hirori%2C+H">Hideki Hirori</a>, <a href="/search/physics?searchtype=author&amp;query=Sanari%2C+Y">Yasuyuki Sanari</a>, <a href="/search/physics?searchtype=author&amp;query=Kanemitsu%2C+Y">Yoshihiko Kanemitsu</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.06275v1-abstract-short" style="display: inline;"> We investigate high-order harmonic generation (HHG) in graphene with a quantum master equation approach. The simulations reproduce the observed enhancement in HHG in graphene under elliptically polarized light [N. Yoshikawa et al, Science 356, 736 (2017)]. On the basis of a microscopic decomposition of the emitted high-order harmonics, we find that the enhancement in HHG originates from an intrica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.06275v1-abstract-full').style.display = 'inline'; document.getElementById('2010.06275v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.06275v1-abstract-full" style="display: none;"> We investigate high-order harmonic generation (HHG) in graphene with a quantum master equation approach. The simulations reproduce the observed enhancement in HHG in graphene under elliptically polarized light [N. Yoshikawa et al, Science 356, 736 (2017)]. On the basis of a microscopic decomposition of the emitted high-order harmonics, we find that the enhancement in HHG originates from an intricate nonlinear coupling between the intraband and interband transitions that are respectively induced by perpendicular electric field components of the elliptically polarized light. Furthermore, we reveal that contributions from different excitation channels destructively interfere with each other. This finding suggests a path to potentially enhance the HHG by blocking a part of the channels and canceling the destructive interference through band-gap or chemical potential manipulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.06275v1-abstract-full').style.display = 'none'; document.getElementById('2010.06275v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 041408 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.16008">arXiv:2006.16008</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.16008">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-21345-7">10.1038/s41467-021-21345-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unravelling the intertwined atomic and bulk nature of localised excitons by attosecond spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lucchini%2C+M">Matteo Lucchini</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Lucarelli%2C+G+D">Giacinto D. Lucarelli</a>, <a href="/search/physics?searchtype=author&amp;query=Moio%2C+B">Bruno Moio</a>, <a href="/search/physics?searchtype=author&amp;query=Inzani%2C+G">Giacomo Inzani</a>, <a href="/search/physics?searchtype=author&amp;query=Borrego-Varillas%2C+R">Roc铆o Borrego-Varillas</a>, <a href="/search/physics?searchtype=author&amp;query=Frassetto%2C+F">Fabio Frassetto</a>, <a href="/search/physics?searchtype=author&amp;query=Poletto%2C+L">Luca Poletto</a>, <a href="/search/physics?searchtype=author&amp;query=H%C3%BCbener%2C+H">Hannes H眉bener</a>, <a href="/search/physics?searchtype=author&amp;query=De+Giovannini%2C+U">Umberto De Giovannini</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a>, <a href="/search/physics?searchtype=author&amp;query=Nisoli%2C+M">Mauro Nisoli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.16008v1-abstract-short" style="display: inline;"> The electro-optical properties of most semiconductors and insulators of technological interest are dominated by the presence of electron-hole quasiparticles called excitons. The manipulation of these hydrogen-like quasi-particles in dielectrics, has received great interest under the name excitonics that is expected to be of great potential for a variety of applications, including optoelectronics a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16008v1-abstract-full').style.display = 'inline'; document.getElementById('2006.16008v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.16008v1-abstract-full" style="display: none;"> The electro-optical properties of most semiconductors and insulators of technological interest are dominated by the presence of electron-hole quasiparticles called excitons. The manipulation of these hydrogen-like quasi-particles in dielectrics, has received great interest under the name excitonics that is expected to be of great potential for a variety of applications, including optoelectronics and photonics. A crucial step for such exploitation of excitons in advanced technological applications is a detailed understanding of their dynamical nature. However, the ultrafast processes unfolding on few-femtosecond and attosecond time scales, of primary relevance in view of the desired extension of electronic devices towards the petahertz regime, remain largely unexplored. Here we apply attosecond transient reflection spectroscopy in a sequential two-foci geometry and observe sub-femtosecond dynamics of a core-level exciton in bulk MgF$_2$ single crystals. With our unique setup, we can access absolute phase delays which allow for an unambiguous comparison with theoretical calculations based on the Wannier-Mott model. Our results show that excitons surprisingly exhibit a dual atomic- and solid-like character which manifests itself on different time scales. While the former is responsible for a femtosecond optical Stark effect, the latter dominates the attosecond excitonic response and originates by the interaction with the crystal. Further investigation of the role of exciton localization proves that the bulk character persists also for strongly localised quasi-particles and allows us to envision a new route to control exciton dynamics in the close-to-petahertz regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16008v1-abstract-full').style.display = 'none'; document.getElementById('2006.16008v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.09049">arXiv:2004.09049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.09049">pdf</a>, <a href="https://arxiv.org/format/2004.09049">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.033333">10.1103/PhysRevResearch.2.033333 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Role of electron scattering on the high-order harmonic generation from solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chang-Ming Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Tancogne-Dejean%2C+N">Nicolas Tancogne-Dejean</a>, <a href="/search/physics?searchtype=author&amp;query=Altarelli%2C+M">Massimo Altarelli</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.09049v1-abstract-short" style="display: inline;"> We extend the semi-classical trajectory description for the high-order harmonic generation~(HHG) from solids by integrating the effect of electron-scattering. Comparing the extended semi-classical trajectory model with a one-dimensional quantum mechanical simulation, we find that the multi-plateau feature of the HHG spectrum is formed by Umklapp scattering under the electron-hole acceleration dyna&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09049v1-abstract-full').style.display = 'inline'; document.getElementById('2004.09049v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.09049v1-abstract-full" style="display: none;"> We extend the semi-classical trajectory description for the high-order harmonic generation~(HHG) from solids by integrating the effect of electron-scattering. Comparing the extended semi-classical trajectory model with a one-dimensional quantum mechanical simulation, we find that the multi-plateau feature of the HHG spectrum is formed by Umklapp scattering under the electron-hole acceleration dynamics by laser fields. Furthermore, by tracing the scattered trajectories in real-space, the model fairly describes the emitted photon energy and the emission timing of the HHG even in the higher plateau regions. We further consider the loss of trajectories by scattering processes with a mean-free-path approximation and evaluate the HHG cutoff energy as a function of laser wavelength. As a result, we find that the trajectory loss by scattering causes the wavelength independence of the HHG from solids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09049v1-abstract-full').style.display = 'none'; document.getElementById('2004.09049v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 033333 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.07921">arXiv:1912.07921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.07921">pdf</a>, <a href="https://arxiv.org/format/1912.07921">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5142502">10.1063/1.5142502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tancogne-Dejean%2C+N">Nicolas Tancogne-Dejean</a>, <a href="/search/physics?searchtype=author&amp;query=Oliveira%2C+M+J+T">Micael J. T. Oliveira</a>, <a href="/search/physics?searchtype=author&amp;query=Andrade%2C+X">Xavier Andrade</a>, <a href="/search/physics?searchtype=author&amp;query=Appel%2C+H">Heiko Appel</a>, <a href="/search/physics?searchtype=author&amp;query=Borca%2C+C+H">Carlos H. Borca</a>, <a href="/search/physics?searchtype=author&amp;query=Breton%2C+G+L">Guillaume Le Breton</a>, <a href="/search/physics?searchtype=author&amp;query=Buchholz%2C+F">Florian Buchholz</a>, <a href="/search/physics?searchtype=author&amp;query=Castro%2C+A">Alberto Castro</a>, <a href="/search/physics?searchtype=author&amp;query=Corni%2C+S">Stefano Corni</a>, <a href="/search/physics?searchtype=author&amp;query=Correa%2C+A+A">Alfredo A. Correa</a>, <a href="/search/physics?searchtype=author&amp;query=De+Giovannini%2C+U">Umberto De Giovannini</a>, <a href="/search/physics?searchtype=author&amp;query=Delgado%2C+A">Alain Delgado</a>, <a href="/search/physics?searchtype=author&amp;query=Eich%2C+F+G">Florian G. Eich</a>, <a href="/search/physics?searchtype=author&amp;query=Flick%2C+J">Johannes Flick</a>, <a href="/search/physics?searchtype=author&amp;query=Gil%2C+G">Gabriel Gil</a>, <a href="/search/physics?searchtype=author&amp;query=Gomez%2C+A">Adri谩n Gomez</a>, <a href="/search/physics?searchtype=author&amp;query=Helbig%2C+N">Nicole Helbig</a>, <a href="/search/physics?searchtype=author&amp;query=H%C3%BCbener%2C+H">Hannes H眉bener</a>, <a href="/search/physics?searchtype=author&amp;query=Jest%C3%A4dt%2C+R">Ren茅 Jest盲dt</a>, <a href="/search/physics?searchtype=author&amp;query=Jornet-Somoza%2C+J">Joaquim Jornet-Somoza</a>, <a href="/search/physics?searchtype=author&amp;query=Larsen%2C+A+H">Ask H. Larsen</a>, <a href="/search/physics?searchtype=author&amp;query=Lebedeva%2C+I+V">Irina V. Lebedeva</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%BCders%2C+M">Martin L眉ders</a>, <a href="/search/physics?searchtype=author&amp;query=Marques%2C+M+A+L">Miguel A. L. Marques</a>, <a href="/search/physics?searchtype=author&amp;query=Ohlmann%2C+S+T">Sebastian T. Ohlmann</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.07921v1-abstract-short" style="display: inline;"> Over the last years extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short time and atomic scales with a high-degree of precision. An appealing and challenging route towards engineering materials with tailored properties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07921v1-abstract-full').style.display = 'inline'; document.getElementById('1912.07921v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.07921v1-abstract-full" style="display: none;"> Over the last years extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short time and atomic scales with a high-degree of precision. An appealing and challenging route towards engineering materials with tailored properties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a state-of-the-art ab initio computer simulation tool that enables a reliable and accurate simulation of light-induced changes in the physical and chemical properties of complex systems is of utmost importance. The first principles real-space-based Octopus project was born with that idea in mind, providing an unique framework allowing to describe non-equilibrium phenomena in molecular complexes, low dimensional materials, and extended systems by accounting for electronic, ionic, and photon quantum mechanical effects within a generalized time-dependent density functional theory framework. The present article aims to present the new features that have been implemented over the last few years, including technical developments related to performance and massive parallelism. We also describe the major theoretical developments to address ultrafast light-driven processes, like the new theoretical framework of quantum electrodynamics density-functional formalism (QEDFT) for the description of novel light-matter hybrid states. Those advances, and other being released soon as part of the Octopus package, will enable the scientific community to simulate and characterize spatial and time-resolved spectroscopies, ultrafast phenomena in molecules and materials, and new emergent states of matter (QED-materials). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07921v1-abstract-full').style.display = 'none'; document.getElementById('1912.07921v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 152, 124119 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.03176">arXiv:1912.03176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.03176">pdf</a>, <a href="https://arxiv.org/format/1912.03176">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6455/abb127">10.1088/1361-6455/abb127 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Floquet states in dissipative open quantum systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">S. A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=De+Giovannini%2C+U">U. De Giovannini</a>, <a href="/search/physics?searchtype=author&amp;query=Aeschlimann%2C+S">S. Aeschlimann</a>, <a href="/search/physics?searchtype=author&amp;query=Gierz%2C+I">I. Gierz</a>, <a href="/search/physics?searchtype=author&amp;query=H%C3%BCbener%2C+H">H. H眉bener</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">A. Rubio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.03176v2-abstract-short" style="display: inline;"> We theoretically investigate basic properties of nonequilibrium steady states of periodically-driven open quantum systems based on the full solution of the Maxwell-Bloch equation. In a resonantly driving condition, we find that the transverse relaxation, also known as decoherence, significantly destructs the formation of Floquet states while the longitudinal relaxation does not directly affect it.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.03176v2-abstract-full').style.display = 'inline'; document.getElementById('1912.03176v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.03176v2-abstract-full" style="display: none;"> We theoretically investigate basic properties of nonequilibrium steady states of periodically-driven open quantum systems based on the full solution of the Maxwell-Bloch equation. In a resonantly driving condition, we find that the transverse relaxation, also known as decoherence, significantly destructs the formation of Floquet states while the longitudinal relaxation does not directly affect it. Furthermore, by evaluating the quasienergy spectrum of the nonequilibrium steady states, we demonstrate that the Rabi splitting can be observed as long as the decoherence time is as short as one third of the Rabi-cycle. Moreover, we find that Floquet states can be formed even under significant dissipation when the decoherence time is substantially shorter than the cycle of driving, once the driving field strength becomes strong enough. In an off-resonant condition, we demonstrate that the Floquet states can be realized even in weak field regimes because the system is not excited and the decoherence mechanism is not activated. Once the field strength becomes strong enough, the system can be excited by nonlinear processes and the decoherence process becomes active. As a result, the Floquet states are significantly disturbed by the environment even in the off-resonant condition. Thus, we show here that the suppression of heating is a key condition for the realization of Floquet states in both on and off-resonant conditions not only because it prevents material damage but also because it contributes to preserving coherence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.03176v2-abstract-full').style.display = 'none'; document.getElementById('1912.03176v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.01742">arXiv:1912.01742</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.01742">pdf</a>, <a href="https://arxiv.org/format/1912.01742">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2019.163247">10.1016/j.nima.2019.163247 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiation hardness study for the COMET Phase-I electronics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nakazawa%2C+Y">Yu Nakazawa</a>, <a href="/search/physics?searchtype=author&amp;query=Fujii%2C+Y">Yuki Fujii</a>, <a href="/search/physics?searchtype=author&amp;query=Gillies%2C+E">Ewen Gillies</a>, <a href="/search/physics?searchtype=author&amp;query=Hamada%2C+E">Eitaro Hamada</a>, <a href="/search/physics?searchtype=author&amp;query=Igarashi%2C+Y">Youichi Igarashi</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+M">MyeongJae Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Moritsu%2C+M">Manabu Moritsu</a>, <a href="/search/physics?searchtype=author&amp;query=Matsuda%2C+Y">Yugo Matsuda</a>, <a href="/search/physics?searchtype=author&amp;query=Miyazaki%2C+Y">Yuta Miyazaki</a>, <a href="/search/physics?searchtype=author&amp;query=Nakai%2C+Y">Yuki Nakai</a>, <a href="/search/physics?searchtype=author&amp;query=Natori%2C+H">Hiroaki Natori</a>, <a href="/search/physics?searchtype=author&amp;query=Oishi%2C+K">Kou Oishi</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+A">Akira Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Uchida%2C+Y">Yoshi Uchida</a>, <a href="/search/physics?searchtype=author&amp;query=Ueno%2C+K">Kazuki Ueno</a>, <a href="/search/physics?searchtype=author&amp;query=Yamaguchi%2C+H">Hiroshi Yamaguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Yeo%2C+B">BeomKi Yeo</a>, <a href="/search/physics?searchtype=author&amp;query=Yoshida%2C+H">Hisataka Yoshida</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.01742v2-abstract-short" style="display: inline;"> Radiation damage on front-end readout and trigger electronics is an important issue in the COMET Phase-I experiment at J-PARC, which plans to search for the neutrinoless transition of a muon to an electron. To produce an intense muon beam, a high-power proton beam impinges on a graphite target, resulting in a high-radiation environment. We require radiation tolerance to a total dose of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01742v2-abstract-full').style.display = 'inline'; document.getElementById('1912.01742v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.01742v2-abstract-full" style="display: none;"> Radiation damage on front-end readout and trigger electronics is an important issue in the COMET Phase-I experiment at J-PARC, which plans to search for the neutrinoless transition of a muon to an electron. To produce an intense muon beam, a high-power proton beam impinges on a graphite target, resulting in a high-radiation environment. We require radiation tolerance to a total dose of $1.0\,\mathrm{kGy}$ and $1\,\mathrm{MeV}$ equivalent neutron fluence of $1.0\times10^{12}\,\mathrm{n_{eq}\,cm^{-2}}$ including a safety factor of 5 over the duration of the physics measurement. The use of commercially-available electronics components which have high radiation tolerance, if such components can be secured, is desirable in such an environment. The radiation hardness of commercial electronic components has been evaluated in gamma-ray and neutron irradiation tests. As results of these tests, voltage regulators, ADCs, DACs, and several other components were found to have enough tolerance to both gamma-ray and neutron irradiation at the level we require. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01742v2-abstract-full').style.display = 'none'; document.getElementById('1912.01742v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.08166">arXiv:1908.08166</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.08166">pdf</a>, <a href="https://arxiv.org/format/1908.08166">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2020.163749">10.1016/j.nima.2020.163749 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear Isotope Production by Ordinary Muon Capture Reaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hashim%2C+I+H">I. H. Hashim</a>, <a href="/search/physics?searchtype=author&amp;query=Ejiri%2C+H">H. Ejiri</a>, <a href="/search/physics?searchtype=author&amp;query=Othman%2C+F">F. Othman</a>, <a href="/search/physics?searchtype=author&amp;query=Ibrahim%2C+F">F. Ibrahim</a>, <a href="/search/physics?searchtype=author&amp;query=Soberi%2C+F">F. Soberi</a>, <a href="/search/physics?searchtype=author&amp;query=Ghani%2C+N+N+A+M+A">N. N. A. M. A. Ghani</a>, <a href="/search/physics?searchtype=author&amp;query=Shima%2C+T">T. Shima</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+A">A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Ninomiya%2C+K">K. Ninomiya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.08166v3-abstract-short" style="display: inline;"> Muon capture isotope production (MuCIP) using negative ordinary muon capture reactions (OMC) is used to efficiently produce various kinds of nuclear isotopes for both fundamental and applied science studies. The large capture probability of muon into a nucleus, together with the high intensity muon beam, make it possible to produce nuclear isotopes in the order of 10^{9-10} per second depending on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.08166v3-abstract-full').style.display = 'inline'; document.getElementById('1908.08166v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.08166v3-abstract-full" style="display: none;"> Muon capture isotope production (MuCIP) using negative ordinary muon capture reactions (OMC) is used to efficiently produce various kinds of nuclear isotopes for both fundamental and applied science studies. The large capture probability of muon into a nucleus, together with the high intensity muon beam, make it possible to produce nuclear isotopes in the order of 10^{9-10} per second depending on the muon beam intensity. Radioactive isotopes (RIs) produced by MuCIP are complementary to those produced by photon and neutron capture reactions and are used for various science and technology applications. MuCIP on ^{Nat}Mo by using the RCNP MuSIC \muon beam is presented to demonstrate the feasibility of MuCIP. Nuclear isotopes produced by MuCIP are evaluated by using a pre-equilibrium (PEQ) and equilibrium (EQ) proton neutron emission model. Radioactive $^{99}$Mo isotopes and the metastable ^{99m}Tc isotopes, which are used extensively in medical science, are produced by MuCIP on ^{Nat}Mo and ^{100}Mo. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.08166v3-abstract-full').style.display = 'none'; document.getElementById('1908.08166v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.08562">arXiv:1907.08562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.08562">pdf</a>, <a href="https://arxiv.org/format/1907.08562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> First demonstration of ionization cooling by the Muon Ionization Cooling Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&amp;query=Tsenov%2C+R">R. Tsenov</a>, <a href="/search/physics?searchtype=author&amp;query=Vankova-Kirilova%2C+G">G. Vankova-Kirilova</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y+P">Y. P. Song</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J+Y">J. Y. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z+H">Z. H. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&amp;query=Chignoli%2C+F">F. Chignoli</a>, <a href="/search/physics?searchtype=author&amp;query=Mazza%2C+R">R. Mazza</a>, <a href="/search/physics?searchtype=author&amp;query=Palladino%2C+V">V. Palladino</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Orestano%2C+D">D. Orestano</a>, <a href="/search/physics?searchtype=author&amp;query=Tortora%2C+L">L. Tortora</a>, <a href="/search/physics?searchtype=author&amp;query=Kuno%2C+Y">Y. Kuno</a>, <a href="/search/physics?searchtype=author&amp;query=Sakamoto%2C+H">H. Sakamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+A">A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Ishimoto%2C+S">S. Ishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&amp;query=Sung%2C+C+K">C. K. Sung</a>, <a href="/search/physics?searchtype=author&amp;query=Filthaut%2C+F">F. Filthaut</a>, <a href="/search/physics?searchtype=author&amp;query=Jokovic%2C+D">D. Jokovic</a>, <a href="/search/physics?searchtype=author&amp;query=Maletic%2C+D">D. Maletic</a>, <a href="/search/physics?searchtype=author&amp;query=Savic%2C+M">M. Savic</a>, <a href="/search/physics?searchtype=author&amp;query=Jovancevic%2C+N">N. Jovancevic</a> , et al. (110 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.08562v1-abstract-short" style="display: inline;"> High-brightness muon beams of energy comparable to those produced by state-of-the-art electron, proton and ion accelerators have yet to be realised. Such beams have the potential to carry the search for new phenomena in lepton-antilepton collisions to extremely high energy and also to provide uniquely well-characterised neutrino beams. A muon beam may be created through the decay of pions produced&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08562v1-abstract-full').style.display = 'inline'; document.getElementById('1907.08562v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.08562v1-abstract-full" style="display: none;"> High-brightness muon beams of energy comparable to those produced by state-of-the-art electron, proton and ion accelerators have yet to be realised. Such beams have the potential to carry the search for new phenomena in lepton-antilepton collisions to extremely high energy and also to provide uniquely well-characterised neutrino beams. A muon beam may be created through the decay of pions produced in the interaction of a proton beam with a target. To produce a high-brightness beam from such a source requires that the phase space volume occupied by the muons be reduced (cooled). Ionization cooling is the novel technique by which it is proposed to cool the beam. The Muon Ionization Cooling Experiment collaboration has constructed a section of an ionization cooling cell and used it to provide the first demonstration of ionization cooling. We present these ground-breaking measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08562v1-abstract-full').style.display = 'none'; document.getElementById('1907.08562v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages and 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RAL-P-2019-003 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.00183">arXiv:1907.00183</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.00183">pdf</a>, <a href="https://arxiv.org/format/1907.00183">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.101.012510">10.1103/PhysRevA.101.012510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exact exchange-correlation potential of effectively interacting Kohn-Sham systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.00183v2-abstract-short" style="display: inline;"> Aiming to combine density functional theory (DFT) and wavefunction theory, we study a mapping from the many-body interacting system to an effectively-interacting Kohn-Sham system instead of a non-interacting Kohn-Sham system. Because a ground state of effectively-interacting systems requires having a solution for the correlated many-body wavefunctions, this provides a natural framework to many-bod&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.00183v2-abstract-full').style.display = 'inline'; document.getElementById('1907.00183v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.00183v2-abstract-full" style="display: none;"> Aiming to combine density functional theory (DFT) and wavefunction theory, we study a mapping from the many-body interacting system to an effectively-interacting Kohn-Sham system instead of a non-interacting Kohn-Sham system. Because a ground state of effectively-interacting systems requires having a solution for the correlated many-body wavefunctions, this provides a natural framework to many-body wavefunction theories such as the configuration interaction and the coupled cluster method in the formal theoretical framework of DFT. Employing simple one-dimensional two-electron systems -- namely, the one-dimensional helium atom, hydrogen molecule and heteronuclear diatomic molecule -- we investigate properties of many-body wavefunctions and exact exchange-correlation potentials of effectively-interacting Kohn-Sham systems. As a result, we find that the asymptotic behavior of the exact exchange-correlation potential can be controlled by optimizing that of the effective interaction. Furthermore, the typical features of the exact non-interacting Kohn-Sham system, namely a spiky feature and a step feature in the exchange-correlation potential for the molecular dissociation limit can be suppressed by a proper choice of the effective interaction. These findings open a possibility to construct numerically robust and efficient exchange-correlation potentials and functionals based on the effectively-interacting Kohn-Sham scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.00183v2-abstract-full').style.display = 'none'; document.getElementById('1907.00183v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.12981">arXiv:1905.12981</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.12981">pdf</a>, <a href="https://arxiv.org/format/1905.12981">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ab3acf">10.1088/1367-2630/ab3acf <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Light-induced anomalous Hall effect in massless Dirac fermion systems and topological insulators with dissipation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">S. A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+P">P. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Sentef%2C+M+A">M. A. Sentef</a>, <a href="/search/physics?searchtype=author&amp;query=De+Giovannini%2C+U">U. De Giovannini</a>, <a href="/search/physics?searchtype=author&amp;query=H%C3%BCbener%2C+H">H. H眉bener</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">A. Rubio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.12981v3-abstract-short" style="display: inline;"> Employing the quantum Liouville equation with phenomenological dissipation, we investigate the transport properties of massless and massive Dirac fermion systems that mimics graphene and topological insulators, respectively. The massless Dirac fermion system does not show an intrinsic Hall effect, but it shows a Hall current under the presence of circularly-polarized laser fields as a nature of a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.12981v3-abstract-full').style.display = 'inline'; document.getElementById('1905.12981v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.12981v3-abstract-full" style="display: none;"> Employing the quantum Liouville equation with phenomenological dissipation, we investigate the transport properties of massless and massive Dirac fermion systems that mimics graphene and topological insulators, respectively. The massless Dirac fermion system does not show an intrinsic Hall effect, but it shows a Hall current under the presence of circularly-polarized laser fields as a nature of a optically-driven nonequilibrium state. Based on the microscopic analysis, we find that the light-induced Hall effect mainly originates from the imbalance of photocarrier distribution in momentum space although the emergent Floquet-Berry curvature also has a non-zero contribution. We further compute the Hall transport property of the massive Dirac fermion system with an intrinsic Hall effect in order to investigate the interplay of the intrinsic topological contribution and the extrinsic light-induced population contribution. As a result, we find that the contribution from the photocarrier population imbalance becomes significant in the strong field regime and it overcomes the intrinsic contribution. This finding clearly demonstrates that intrinsic transport properties of materials can be overwritten by external driving and may open a way to ultrafast optical-control of transport properties of materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.12981v3-abstract-full').style.display = 'none'; document.getElementById('1905.12981v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 21 093005 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.04508">arXiv:1905.04508</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.04508">pdf</a>, <a href="https://arxiv.org/format/1905.04508">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.214302">10.1103/PhysRevB.99.214302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microscopic theory for the light-induced anomalous Hall effect in graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">S. A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=McIver%2C+J+W">J. W. McIver</a>, <a href="/search/physics?searchtype=author&amp;query=Nuske%2C+M">M. Nuske</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+P">P. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Jotzu%2C+G">G. Jotzu</a>, <a href="/search/physics?searchtype=author&amp;query=Schulte%2C+B">B. Schulte</a>, <a href="/search/physics?searchtype=author&amp;query=H%C3%BCbener%2C+H">H. H眉bener</a>, <a href="/search/physics?searchtype=author&amp;query=De+Giovannini%2C+U">U. De Giovannini</a>, <a href="/search/physics?searchtype=author&amp;query=Mathey%2C+L">L. Mathey</a>, <a href="/search/physics?searchtype=author&amp;query=Sentef%2C+M+A">M. A. Sentef</a>, <a href="/search/physics?searchtype=author&amp;query=Cavalleri%2C+A">A. Cavalleri</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">A. Rubio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.04508v1-abstract-short" style="display: inline;"> We employ a quantum Liouville equation with relaxation to model the recently observed anomalous Hall effect in graphene irradiated by an ultrafast pulse of circularly polarized light. In the weak-field regime, we demonstrate that the Hall effect originates from an asymmetric population of photocarriers in the Dirac bands. By contrast, in the strong-field regime, the system is driven into a non-equ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04508v1-abstract-full').style.display = 'inline'; document.getElementById('1905.04508v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.04508v1-abstract-full" style="display: none;"> We employ a quantum Liouville equation with relaxation to model the recently observed anomalous Hall effect in graphene irradiated by an ultrafast pulse of circularly polarized light. In the weak-field regime, we demonstrate that the Hall effect originates from an asymmetric population of photocarriers in the Dirac bands. By contrast, in the strong-field regime, the system is driven into a non-equilibrium steady state that is well-described by topologically non-trivial Floquet-Bloch bands. Here, the anomalous Hall current originates from the combination of a population imbalance in these dressed bands together with a smaller anomalous velocity contribution arising from their Berry curvature. This robust and general finding enables the simulation of electrical transport from light-induced Floquet-Bloch bands in an experimentally relevant parameter regime and creates a pathway to designing ultrafast quantum devices with Floquet-engineered transport properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04508v1-abstract-full').style.display = 'none'; document.getElementById('1905.04508v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 214302 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.09018">arXiv:1812.09018</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.09018">pdf</a>, <a href="https://arxiv.org/format/1812.09018">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptz125">10.1093/ptep/ptz125 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> COMET Phase-I Technical Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+COMET+Collaboration"> The COMET Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abramishvili%2C+R">R. Abramishvili</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Akhmetshin%2C+R+R">R. R. Akhmetshin</a>, <a href="/search/physics?searchtype=author&amp;query=Allin%2C+A">A. Allin</a>, <a href="/search/physics?searchtype=author&amp;query=Ang%C3%A9lique%2C+J+C">J. C. Ang茅lique</a>, <a href="/search/physics?searchtype=author&amp;query=Anishchik%2C+V">V. Anishchik</a>, <a href="/search/physics?searchtype=author&amp;query=Aoki%2C+M">M. Aoki</a>, <a href="/search/physics?searchtype=author&amp;query=Aznabayev%2C+D">D. Aznabayev</a>, <a href="/search/physics?searchtype=author&amp;query=Bagaturia%2C+I">I. Bagaturia</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+G">G. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bauer%2C+D">D. Bauer</a>, <a href="/search/physics?searchtype=author&amp;query=Baygarashev%2C+D">D. Baygarashev</a>, <a href="/search/physics?searchtype=author&amp;query=Bondar%2C+A+E">A. E. Bondar</a>, <a href="/search/physics?searchtype=author&amp;query=C%C3%A2rloganu%2C+C">C. C芒rloganu</a>, <a href="/search/physics?searchtype=author&amp;query=Carniol%2C+B">B. Carniol</a>, <a href="/search/physics?searchtype=author&amp;query=Chau%2C+T+T">T. T. Chau</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J+K">J. K. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+J">S. J. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheung%2C+Y+E">Y. E. Cheung</a>, <a href="/search/physics?searchtype=author&amp;query=da+Silva%2C+W">W. da Silva</a>, <a href="/search/physics?searchtype=author&amp;query=Dauncey%2C+P+D">P. D. Dauncey</a>, <a href="/search/physics?searchtype=author&amp;query=Densham%2C+C">C. Densham</a>, <a href="/search/physics?searchtype=author&amp;query=Devidze%2C+G">G. Devidze</a> , et al. (170 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.09018v3-abstract-short" style="display: inline;"> The Technical Design for the COMET Phase-I experiment is presented in this paper. COMET is an experiment at J-PARC, Japan, which will search for neutrinoless conversion of muons into electrons in the field of an aluminium nucleus ($渭-e$ conversion, $渭^- N \to e^- N$); a lepton flavor violating process. The experimental sensitivity goal for this process in the Phase-I experiment is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.09018v3-abstract-full').style.display = 'inline'; document.getElementById('1812.09018v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.09018v3-abstract-full" style="display: none;"> The Technical Design for the COMET Phase-I experiment is presented in this paper. COMET is an experiment at J-PARC, Japan, which will search for neutrinoless conversion of muons into electrons in the field of an aluminium nucleus ($渭-e$ conversion, $渭^- N \to e^- N$); a lepton flavor violating process. The experimental sensitivity goal for this process in the Phase-I experiment is $3.1\times10^{-15}$, or 90 % upper limit of branching ratio of $7\times 10^{-15}$, which is a factor of 100 improvement over the existing limit. The expected number of background events is 0.032. To achieve the target sensitivity and background level, the 3.2 kW 8 GeV proton beam from J-PARC will be used. Two types of detectors, CyDet and StrECAL, will be used for detecting the \mue conversion events, and for measuring the beam-related background events in view of the Phase-II experiment, respectively. Results from simulation on signal and background estimations are also described. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.09018v3-abstract-full').style.display = 'none'; document.getElementById('1812.09018v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A minor correction applied in Eq. 3</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Progress of Theoretical and Experimental Physics, Volume 2020, Issue 3, March 2020, 033C01 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.00801">arXiv:1811.00801</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.00801">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-019-0602-9">10.1038/s41567-019-0602-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Attosecond screening dynamics mediated by electron-localization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Volkov%2C+M">M. Volkov</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">S. A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Schlaepfer%2C+F">F. Schlaepfer</a>, <a href="/search/physics?searchtype=author&amp;query=Kasmi%2C+L">L. Kasmi</a>, <a href="/search/physics?searchtype=author&amp;query=Hartmann%2C+N">N. Hartmann</a>, <a href="/search/physics?searchtype=author&amp;query=Lucchini%2C+M">M. Lucchini</a>, <a href="/search/physics?searchtype=author&amp;query=Gallmann%2C+L">L. Gallmann</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">A. Rubio</a>, <a href="/search/physics?searchtype=author&amp;query=Keller%2C+U">U. Keller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.00801v2-abstract-short" style="display: inline;"> Transition metals with their densely confined and strongly coupled valence electrons are key constituents of many materials with unconventional properties, such as high-Tc superconductors, Mott insulators and transition-metal dichalcogenides. Strong electron interaction offers a fast and efficient lever to manipulate their properties with light, creating promising potential for next-generation ele&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00801v2-abstract-full').style.display = 'inline'; document.getElementById('1811.00801v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.00801v2-abstract-full" style="display: none;"> Transition metals with their densely confined and strongly coupled valence electrons are key constituents of many materials with unconventional properties, such as high-Tc superconductors, Mott insulators and transition-metal dichalcogenides. Strong electron interaction offers a fast and efficient lever to manipulate their properties with light, creating promising potential for next-generation electronics. However, the underlying dynamics is a fast and intricate interplay of polarization and screening effects, which is poorly understood. It is hidden below the femtosecond timescale of electronic thermalization, which follows the light-induced excitation. Here, we investigate the many-body electron dynamics in transition metals before thermalization sets in. We combine the sensitivity of intra-shell transitions to screening effects with attosecond time resolution to uncover the interplay of photo-absorption and screening. First-principles time-dependent calculations allow us to assign our experimental observations to ultrafast electronic localization on d-orbitals. The latter modifies the whole electronic structure as well as the collective dynamic response of the system on a timescale much faster than the light-field cycle. Our results demonstrate a possibility for steering the electronic properties of solids prior to electron thermalization, suggesting that the ultimate speed of electronic phase transitions is limited only by the duration of the controlling laser pulse. Furthermore, external control of the local electronic density serves as a fine tool for testing state-of-the art models of electron-electron interactions. We anticipate our study to facilitate further investigations of electronic phase transitions, laser-metal interactions and photo-absorption in correlated electron systems on its natural timescale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00801v2-abstract-full').style.display = 'none'; document.getElementById('1811.00801v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.13224">arXiv:1810.13224</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.13224">pdf</a>, <a href="https://arxiv.org/format/1810.13224">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-019-6674-y">10.1140/epjc/s10052-019-6674-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First particle-by-particle measurement of emittance in the Muon Ionization Cooling Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+MICE+Collaboration"> The MICE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adey%2C+D">D. Adey</a>, <a href="/search/physics?searchtype=author&amp;query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&amp;query=Barber%2C+G">G. Barber</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Bayes%2C+R">R. Bayes</a>, <a href="/search/physics?searchtype=author&amp;query=Bayliss%2C+V">V. Bayliss</a>, <a href="/search/physics?searchtype=author&amp;query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&amp;query=Blackmore%2C+V">V. Blackmore</a>, <a href="/search/physics?searchtype=author&amp;query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&amp;query=Boehm%2C+J">J. Boehm</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&amp;query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&amp;query=Booth%2C+C+N">C. N. Booth</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Boyd%2C+S">S. Boyd</a>, <a href="/search/physics?searchtype=author&amp;query=Bradshaw%2C+T+W">T. W. Bradshaw</a>, <a href="/search/physics?searchtype=author&amp;query=Bross%2C+A+D">A. D. Bross</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+C">C. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Coney%2C+L">L. Coney</a>, <a href="/search/physics?searchtype=author&amp;query=Charnley%2C+G">G. Charnley</a>, <a href="/search/physics?searchtype=author&amp;query=Chatzitheodoridis%2C+G+T">G. T. Chatzitheodoridis</a>, <a href="/search/physics?searchtype=author&amp;query=Chignoli%2C+F">F. Chignoli</a>, <a href="/search/physics?searchtype=author&amp;query=Chung%2C+M">M. Chung</a> , et al. (111 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.13224v3-abstract-short" style="display: inline;"> The Muon Ionization Cooling Experiment (MICE) collaboration seeks to demonstrate the feasibility of ionization cooling, the technique by which it is proposed to cool the muon beam at a future neutrino factory or muon collider. The emittance is measured from an ensemble of muons assembled from those that pass through the experiment. A pure muon ensemble is selected using a particle-identification s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.13224v3-abstract-full').style.display = 'inline'; document.getElementById('1810.13224v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.13224v3-abstract-full" style="display: none;"> The Muon Ionization Cooling Experiment (MICE) collaboration seeks to demonstrate the feasibility of ionization cooling, the technique by which it is proposed to cool the muon beam at a future neutrino factory or muon collider. The emittance is measured from an ensemble of muons assembled from those that pass through the experiment. A pure muon ensemble is selected using a particle-identification system that can reject efficiently both pions and electrons. The position and momentum of each muon are measured using a high-precision scintillating-fibre tracker in a 4\,T solenoidal magnetic field. This paper presents the techniques used to reconstruct the phase-space distributions and reports the first particle-by-particle measurement of the emittance of the MICE Muon Beam as a function of muon-beam momentum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.13224v3-abstract-full').style.display = 'none'; document.getElementById('1810.13224v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.06500">arXiv:1810.06500</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.06500">pdf</a>, <a href="https://arxiv.org/format/1810.06500">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5068711">10.1063/1.5068711 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear polarization evolution using time-dependent density functional theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Uemoto%2C+M">Mitsuharu Uemoto</a>, <a href="/search/physics?searchtype=author&amp;query=Kuwabara%2C+Y">Yuki Kuwabara</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Yabana%2C+K">Kazuhiro Yabana</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.06500v2-abstract-short" style="display: inline;"> We propose a theoretical and computational approach to investigate temporal behavior of a nonlinear polarization in perturbative regime induced by an intense and ultrashort pulsed electric field. First-principles time-dependent density functional theory is employed to describe the electron dynamics. Temporal evolution of third-order nonlinear polarization is extracted from a few calculations of el&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.06500v2-abstract-full').style.display = 'inline'; document.getElementById('1810.06500v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.06500v2-abstract-full" style="display: none;"> We propose a theoretical and computational approach to investigate temporal behavior of a nonlinear polarization in perturbative regime induced by an intense and ultrashort pulsed electric field. First-principles time-dependent density functional theory is employed to describe the electron dynamics. Temporal evolution of third-order nonlinear polarization is extracted from a few calculations of electron dynamics induced by pulsed electric fields with the same time profile but different amplitudes. We discuss characteristic features of the nonlinear polarization evolution as well as an extraction of nonlinear susceptibilities and time delays by fitting the polarization. We also carry out a decomposition of temporal and spatial changes of the electron density in power series with respect to the field amplitude. It helps to get insight into the origin of the nonlinear polarization in atomic scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.06500v2-abstract-full').style.display = 'none'; document.getElementById('1810.06500v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.01408">arXiv:1809.01408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.01408">pdf</a>, <a href="https://arxiv.org/format/1809.01408">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/app8101777">10.3390/app8101777 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ab initio simulation of attosecond transient absorption spectroscopy in two-dimensional materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=H%C3%BCbener%2C+H">Hannes H眉bener</a>, <a href="/search/physics?searchtype=author&amp;query=De+Giovannini%2C+U">Umberto De Giovannini</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.01408v1-abstract-short" style="display: inline;"> We extend the first-principles analysis of attosecond transient absorption spectroscopy to two-dimensional materials. As an example of two-dimensional materials, we apply the analysis to monolayer hexagonal boron nitride (h-BN) and compute its transient optical properties under intense few-cycle infrared laser pulses. Nonadiabatic features are observed in the computed transient absorption spectra.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.01408v1-abstract-full').style.display = 'inline'; document.getElementById('1809.01408v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.01408v1-abstract-full" style="display: none;"> We extend the first-principles analysis of attosecond transient absorption spectroscopy to two-dimensional materials. As an example of two-dimensional materials, we apply the analysis to monolayer hexagonal boron nitride (h-BN) and compute its transient optical properties under intense few-cycle infrared laser pulses. Nonadiabatic features are observed in the computed transient absorption spectra. To elucidate the microscopic origin of these features, we analyze the electronic structure of h-BN with density functional theory and investigate the dynamics of specific energy bands with a simple two-band model. Finally, we find that laser-induced intraband transitions play a significant role in the transient absorption even for the two-dimensional material and that the nonadiabatic features are induced by the dynamical Franz-Keldysh effect with an anomalous band dispersion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.01408v1-abstract-full').style.display = 'none'; document.getElementById('1809.01408v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.01404">arXiv:1804.01404</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.01404">pdf</a>, <a href="https://arxiv.org/format/1804.01404">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2018.09.018">10.1016/j.cpc.2018.09.018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SALMON: Scalable Ab-initio Light-Matter simulator for Optics and Nanoscience </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Noda%2C+M">Masashi Noda</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Hirokawa%2C+Y">Yuta Hirokawa</a>, <a href="/search/physics?searchtype=author&amp;query=Uemoto%2C+M">Mitsuharu Uemoto</a>, <a href="/search/physics?searchtype=author&amp;query=Takeuchi%2C+T">Takashi Takeuchi</a>, <a href="/search/physics?searchtype=author&amp;query=Yamada%2C+S">Shunsuke Yamada</a>, <a href="/search/physics?searchtype=author&amp;query=Yamada%2C+A">Atsushi Yamada</a>, <a href="/search/physics?searchtype=author&amp;query=Shinohara%2C+Y">Yasushi Shinohara</a>, <a href="/search/physics?searchtype=author&amp;query=Yamaguchi%2C+M">Maiku Yamaguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Iida%2C+K">Kenji Iida</a>, <a href="/search/physics?searchtype=author&amp;query=Floss%2C+I">Isabella Floss</a>, <a href="/search/physics?searchtype=author&amp;query=Otobe%2C+T">Tomohito Otobe</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+K">Kyung-Min Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Ishimura%2C+K">Kazuya Ishimura</a>, <a href="/search/physics?searchtype=author&amp;query=Boku%2C+T">Taisuke Boku</a>, <a href="/search/physics?searchtype=author&amp;query=Bertsch%2C+G+F">George F. Bertsch</a>, <a href="/search/physics?searchtype=author&amp;query=Nobusada%2C+K">Katsuyuki Nobusada</a>, <a href="/search/physics?searchtype=author&amp;query=Yabana%2C+K">Kazuhiro Yabana</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.01404v1-abstract-short" style="display: inline;"> SALMON (Scalable Ab-initio Light-Matter simulator for Optics and Nanoscience, http://salmon-tddft.jp) is a software package for the simulation of electron dynamics and optical properties of molecules, nanostructures, and crystalline solids based on first-principles time-dependent density functional theory. The core part of the software is the real-time, real-space calculation of the electron dynam&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.01404v1-abstract-full').style.display = 'inline'; document.getElementById('1804.01404v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.01404v1-abstract-full" style="display: none;"> SALMON (Scalable Ab-initio Light-Matter simulator for Optics and Nanoscience, http://salmon-tddft.jp) is a software package for the simulation of electron dynamics and optical properties of molecules, nanostructures, and crystalline solids based on first-principles time-dependent density functional theory. The core part of the software is the real-time, real-space calculation of the electron dynamics induced in molecules and solids by an external electric field solving the time-dependent Kohn-Sham equation. Using a weak instantaneous perturbing field, linear response properties such as polarizabilities and photoabsorptions in isolated systems and dielectric functions in periodic systems are determined. Using an optical laser pulse, the ultrafast electronic response that may be highly nonlinear in the field strength is investigated in time domain. The propagation of the laser pulse in bulk solids and thin films can also be included in the simulation via coupling the electron dynamics in many microscopic unit cells using Maxwell&#39;s equations describing the time evolution of the electromagnetic fields. The code is efficiently parallelized so that it may describe the electron dynamics in large systems including up to a few thousand atoms. The present paper provides an overview of the capabilities of the software package showing several sample calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.01404v1-abstract-full').style.display = 'none'; document.getElementById('1804.01404v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.08619">arXiv:1802.08619</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.08619">pdf</a>, <a href="https://arxiv.org/format/1802.08619">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjb/e2018-90108-7">10.1140/epjb/e2018-90108-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First-principles simulations for attosecond photoelectron spectroscopy based on time-dependent density functional theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=H%C3%BCbener%2C+H">Hannes H眉bener</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a>, <a href="/search/physics?searchtype=author&amp;query=De+Giovannini%2C+U">Umberto De Giovannini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.08619v1-abstract-short" style="display: inline;"> We develop a first-principles simulation method for attosecond time-resolved photoelectron spectroscopy. This method enables us to directly simulate the whole experimental processes, including excitation, emission and detection on equal footing. To examine the performance of the method, we use it to compute the reconstruction of attosecond beating by interference of two-photon transitions (RABBITT&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.08619v1-abstract-full').style.display = 'inline'; document.getElementById('1802.08619v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.08619v1-abstract-full" style="display: none;"> We develop a first-principles simulation method for attosecond time-resolved photoelectron spectroscopy. This method enables us to directly simulate the whole experimental processes, including excitation, emission and detection on equal footing. To examine the performance of the method, we use it to compute the reconstruction of attosecond beating by interference of two-photon transitions (RABBITT) experiments of gas-phase Argon. The computed RABBITT photoionization delay is in very good agreement with recent experimental results from [Kl眉nder et al, Phys. Rev. Lett. 106 143002 (2011)] and [Gu茅not et al, Phys. Rev. A 85 053424 (2012)]. This indicates the significance of a fully-consistent theoretical treatment of the whole measurement process to properly describe experimental observables in attosecond photoelectron spectroscopy. The present framework opens the path to unravel the microscopic processes underlying RABBITT spectra in more complex materials and nanostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.08619v1-abstract-full').style.display = 'none'; document.getElementById('1802.08619v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.08197">arXiv:1711.08197</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.08197">pdf</a>, <a href="https://arxiv.org/format/1711.08197">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.134308">10.1103/PhysRevB.97.134308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coupled forward-backward trajectory approach for non-equilibrium electron-ion dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Kelly%2C+A">Aaron Kelly</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.08197v2-abstract-short" style="display: inline;"> We introduce a simple ansatz for the wavefunction of a many-body system based on coupled forward and backward-propagating semiclassical trajectories. This method is primarily aimed at, but not limited to, treating nonequilibrium dynamics in electron-phonon systems. The time-evolution of the system is obtained from the Euler-Lagrange variational principle, and we show that this ansatz yields Ehrenf&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.08197v2-abstract-full').style.display = 'inline'; document.getElementById('1711.08197v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.08197v2-abstract-full" style="display: none;"> We introduce a simple ansatz for the wavefunction of a many-body system based on coupled forward and backward-propagating semiclassical trajectories. This method is primarily aimed at, but not limited to, treating nonequilibrium dynamics in electron-phonon systems. The time-evolution of the system is obtained from the Euler-Lagrange variational principle, and we show that this ansatz yields Ehrenfest mean field theory in the limit that the forward and backward trajectories are orthogonal, and in the limit that they coalesce. We investigate accuracy and performance of this method by simulating electronic relaxation in the spin-boson model and the Holstein model. Although this method involves only pairs of semiclassical trajectories, it shows a substantial improvement over mean field theory, capturing quantum coherence of nuclear dynamics as well as electron-nuclear correlations. This improvement is particularly evident in nonadiabatic systems, where the accuracy of this coupled trajectory method extends well beyond the perturbative electron-phonon coupling regime. This approach thus provides an attractive route forward to the ab-initio description of relaxation processes, such as thermalization, in condensed phase systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.08197v2-abstract-full').style.display = 'none'; document.getElementById('1711.08197v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 134308 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.10707">arXiv:1705.10707</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.10707">pdf</a>, <a href="https://arxiv.org/format/1705.10707">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.97.011401">10.1103/PhysRevA.97.011401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ab-initio multi-scale simulation of high-harmonic generation in solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Floss%2C+I">Isabella Floss</a>, <a href="/search/physics?searchtype=author&amp;query=Lemell%2C+C">Christoph Lemell</a>, <a href="/search/physics?searchtype=author&amp;query=Wachter%2C+G">Georg Wachter</a>, <a href="/search/physics?searchtype=author&amp;query=Smejkal%2C+V">Valerie Smejkal</a>, <a href="/search/physics?searchtype=author&amp;query=Burgd%C3%B6rfer%2C+J">Joachim Burgd枚rfer</a>, <a href="/search/physics?searchtype=author&amp;query=Tong%2C+X">Xiao-Min Tong</a>, <a href="/search/physics?searchtype=author&amp;query=Yabana%2C+K">Kazuhiro Yabana</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.10707v3-abstract-short" style="display: inline;"> High-harmonic generation by a highly non-linear interaction of infrared laser fields with matter allows for the generation of attosecond pulses in the XUV spectral regime. This process, well established for atoms, has been recently extended to the condensed phase. Remarkably well pronounced harmonics up to order ~30 have been observed for dielectrics. We present the first ab-initio multi-scale sim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10707v3-abstract-full').style.display = 'inline'; document.getElementById('1705.10707v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.10707v3-abstract-full" style="display: none;"> High-harmonic generation by a highly non-linear interaction of infrared laser fields with matter allows for the generation of attosecond pulses in the XUV spectral regime. This process, well established for atoms, has been recently extended to the condensed phase. Remarkably well pronounced harmonics up to order ~30 have been observed for dielectrics. We present the first ab-initio multi-scale simulation of solid-state high-harmonic generation. We find that mesoscopic effects of the extended system, in particular the realistic sampling of the entire Brillouin zone, the pulse propagation in the dense medium, and the inhomogeneous illumination of the crystal have a strong effect on the formation of clean harmonic spectra. Our results provide a novel explanation for the formation of clean harmonics and have implications for a wide range of non-linear optical processes in dense media. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10707v3-abstract-full').style.display = 'none'; document.getElementById('1705.10707v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 97, 011401 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.06555">arXiv:1612.06555</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.06555">pdf</a>, <a href="https://arxiv.org/ps/1612.06555">ps</a>, <a href="https://arxiv.org/format/1612.06555">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Theory for the electron excitation in dielectrics under an intense circularly polarized laser field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Otobe%2C+T">T. Otobe</a>, <a href="/search/physics?searchtype=author&amp;query=Shinohara%2C+Y">Y. Shinohara</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">S. A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Yabana%2C+K">K. Yabana</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.06555v1-abstract-short" style="display: inline;"> We report a Keldysh-like model for the electron transition rate in dielectrics under an intense circularly polarized laser. We assume a parabolic two-band system and the Houston function as the time-dependent wave function of the valence and conduction bands. Our formula reproduces the experimental result for the ratio of the excitation rate between linear and circular polarizations for $伪$-quartz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.06555v1-abstract-full').style.display = 'inline'; document.getElementById('1612.06555v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.06555v1-abstract-full" style="display: none;"> We report a Keldysh-like model for the electron transition rate in dielectrics under an intense circularly polarized laser. We assume a parabolic two-band system and the Houston function as the time-dependent wave function of the valence and conduction bands. Our formula reproduces the experimental result for the ratio of the excitation rate between linear and circular polarizations for $伪$-quartz. This formula can be easily introduced into simulations of nanofabrication using an intense circularly polarized laser. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.06555v1-abstract-full').style.display = 'none'; document.getElementById('1612.06555v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.07850">arXiv:1610.07850</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.07850">pdf</a>, <a href="https://arxiv.org/format/1610.07850">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.20.030101">10.1103/PhysRevAccelBeams.20.030101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MuSIC: delivering the world&#39;s most intense muon beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cook%2C+S">S. Cook</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Arcy%2C+R">R. D&#39;Arcy</a>, <a href="/search/physics?searchtype=author&amp;query=Edmonds%2C+A">A. Edmonds</a>, <a href="/search/physics?searchtype=author&amp;query=Fukuda%2C+M">M. Fukuda</a>, <a href="/search/physics?searchtype=author&amp;query=Hatanaka%2C+K">K. Hatanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Hino%2C+Y">Y. Hino</a>, <a href="/search/physics?searchtype=author&amp;query=Kuno%2C+Y">Y. Kuno</a>, <a href="/search/physics?searchtype=author&amp;query=Lancaster%2C+M">M. Lancaster</a>, <a href="/search/physics?searchtype=author&amp;query=Mori%2C+Y">Y. Mori</a>, <a href="/search/physics?searchtype=author&amp;query=Ogitsu%2C+T">T. Ogitsu</a>, <a href="/search/physics?searchtype=author&amp;query=Sakamoto%2C+H">H. Sakamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+A">A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Tran%2C+N+H">N. H. Tran</a>, <a href="/search/physics?searchtype=author&amp;query=Truong%2C+N+M">N. M. Truong</a>, <a href="/search/physics?searchtype=author&amp;query=Wing%2C+M">M. Wing</a>, <a href="/search/physics?searchtype=author&amp;query=Yamamoto%2C+A">A. Yamamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Yoshida%2C+M">M. Yoshida</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.07850v1-abstract-short" style="display: inline;"> A new muon beamline, muon science innovative channel (MuSIC), was set up at the Research Centre for Nuclear Physics (RCNP), Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-cap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.07850v1-abstract-full').style.display = 'inline'; document.getElementById('1610.07850v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.07850v1-abstract-full" style="display: none;"> A new muon beamline, muon science innovative channel (MuSIC), was set up at the Research Centre for Nuclear Physics (RCNP), Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid the first $36^\circ$ of the curved muon transport line was commissioned and the muon flux was measured. In order to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon beamline. Two stations of plastic scintillators located upstream and downstream from the muon target were used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively-charged muons, the X-ray spectrum yielded by muonic atoms in the target were measured in a germanium detector. Measurements, at a proton beam current of 6 pA, yielded $(10.4 \pm 2.7) \times 10^5$ muons per Watt of proton beam power ($渭^+$ and $渭^-$), far in excess of other facilities. At full beam power (400 W), this implies a rate of muons of $(4.2 \pm 1.1) \times 10^8$ muons s$^{-1}$, amongst the highest in the world. The number of $渭^-$ measured was about a factor of 10 lower, again by far the most efficient muon beam produced. The set up is a prototype for future experiments requiring a high-intensity muon beam, such as a muon collider or neutrino factory, or the search for rare muon decays which would be a signature for phenomena beyond the Standard Model of particle physics. Such a muon beam can also be used in other branches of physics, nuclear and condensed matter, as well as other areas of scientific research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.07850v1-abstract-full').style.display = 'none'; document.getElementById('1610.07850v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures, submitted to Phys. Rev. ST-Acc. Beams</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.05156">arXiv:1507.05156</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.05156">pdf</a>, <a href="https://arxiv.org/ps/1507.05156">ps</a>, <a href="https://arxiv.org/format/1507.05156">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4937379">10.1063/1.4937379 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear electronic excitations in crystalline solids using meta-generalized gradient approximation and hybrid functional in time-dependent density functional theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Taniguchi%2C+Y">Yasutaka Taniguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Shinohara%2C+Y">Yasushi Shinohara</a>, <a href="/search/physics?searchtype=author&amp;query=Yabana%2C+K">Kazuhiro Yabana</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.05156v1-abstract-short" style="display: inline;"> We develop numerical methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta generalized gradient approximation (meta-GGA) proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional proposed by Heyd, Scu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.05156v1-abstract-full').style.display = 'inline'; document.getElementById('1507.05156v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.05156v1-abstract-full" style="display: none;"> We develop numerical methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta generalized gradient approximation (meta-GGA) proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt a predictor-corrector step for stable time-evolution. Since energy functional is not known for the TB-mBJ potential, we propose a method to evaluate electronic excitation energy without referring to the energy functional. Calculations using the HSE hybrid functional is computationally expensive due to the nonlocal Fock-like term. We develop a computational method for the operation of the Fock-like term in Fourier space, for which we employ massively parallel computers equipped with graphic processing units. To demonstrate significances of utilizing potentials providing correct band gap energies, we compare electronic excitations induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: results using TB-mBJ and HSE are close to each other, while the excitation of the LDA calculation is more intensive than the others. At high laser intensities close to a damage threshold, we have found that electronic excitation energies are similar among the three cases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.05156v1-abstract-full').style.display = 'none'; document.getElementById('1507.05156v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 143, 224116 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.05857">arXiv:1505.05857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.05857">pdf</a>, <a href="https://arxiv.org/ps/1505.05857">ps</a>, <a href="https://arxiv.org/format/1505.05857">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.92.061403">10.1103/PhysRevA.92.061403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of molecular dipole excitations by attosecond self-streaking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wachter%2C+G">Georg Wachter</a>, <a href="/search/physics?searchtype=author&amp;query=Nagele%2C+S">Stefan Nagele</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Pazourek%2C+R">Renate Pazourek</a>, <a href="/search/physics?searchtype=author&amp;query=Wais%2C+M">Michael Wais</a>, <a href="/search/physics?searchtype=author&amp;query=Lemell%2C+C">Christoph Lemell</a>, <a href="/search/physics?searchtype=author&amp;query=Tong%2C+X">Xiao-Min Tong</a>, <a href="/search/physics?searchtype=author&amp;query=Yabana%2C+K">Kazuhiro Yabana</a>, <a href="/search/physics?searchtype=author&amp;query=Burgd%C3%B6rfer%2C+J">Joachim Burgd枚rfer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.05857v1-abstract-short" style="display: inline;"> We propose a protocol to probe the ultrafast evolution and dephasing of coherent electronic excitation in molecules in the time domain by the intrinsic streaking field generated by the molecule itself. Coherent electronic motion in the endohedral fullerene \Necsixty~is initiated by a moderately intense femtosecond UV-VIS pulse leading to coherent oscillations of the molecular dipole moment that pe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.05857v1-abstract-full').style.display = 'inline'; document.getElementById('1505.05857v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.05857v1-abstract-full" style="display: none;"> We propose a protocol to probe the ultrafast evolution and dephasing of coherent electronic excitation in molecules in the time domain by the intrinsic streaking field generated by the molecule itself. Coherent electronic motion in the endohedral fullerene \Necsixty~is initiated by a moderately intense femtosecond UV-VIS pulse leading to coherent oscillations of the molecular dipole moment that persist after the end of the laser pulse. The resulting time-dependent molecular near-field is probed through the momentum modulation of photoemission from the central neon atom by a time-delayed attosecond XUV pulse. Our ab-initio time-dependent density functional theory and classical trajectory simulations predict that this self-streaking signal accurately traces the molecular dipole oscillations in real time. We discuss the underlying processes and give an analytical model that captures the essence of our ab-initio simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.05857v1-abstract-full').style.display = 'none'; document.getElementById('1505.05857v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 92, 061403 (2015) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Sato%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Sato%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sato%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10