CINXE.COM

Search results for: chemical substances

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: chemical substances</title> <meta name="description" content="Search results for: chemical substances"> <meta name="keywords" content="chemical substances"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="chemical substances" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="chemical substances"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4995</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: chemical substances</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4995</span> Research on Thermal Runaway Reaction of Ammonium Nitrate with Incompatible Substances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weic-Ting%20Chen">Weic-Ting Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo-Ming%20Tseng"> Jo-Ming Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ammonium nitrate (AN) has caused many accidents in the world, which have caused a large number of people’s life and serious economic losses. In this study, the safety of the AN production process was discussed deeply, and the influence of incompatible substances was estimated according to the change of their heat value by mixing them with incompatible substances by thermal analysis techniques, and their safety parameters were calculated according to their kinetic parameters. In this study, differential scanning calorimeters (DSC) were applied for the temperature rise test and adiabatic thermal analysis in combination with the Advanced Reactive System Screening Tool (ARSST). The research results could contribute to the safety of the ammonium nitrate production process. Manufacturers can better understand the possibility of chemical heat release and the operating conditions that will cause a chemical reaction to be out of control when storing or adding new substances, so safety parameters were researched for these complex reactions. The results of this study will benefit the process of AN and the relevant staff, which also have safety protection in the working environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20nitrate" title="ammonium nitrate">ammonium nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=incompatible%20substances" title=" incompatible substances"> incompatible substances</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20scanning%20calorimeters" title=" differential scanning calorimeters"> differential scanning calorimeters</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20reactive%20system%20screening%20tool" title=" advanced reactive system screening tool"> advanced reactive system screening tool</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20parameters" title=" safety parameters"> safety parameters</a> </p> <a href="https://publications.waset.org/abstracts/162406/research-on-thermal-runaway-reaction-of-ammonium-nitrate-with-incompatible-substances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4994</span> Formation of Chemical Compound Layer at the Interface of Initial Substances A and B with Dominance of Diffusion of the A Atoms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavlo%20Selyshchev">Pavlo Selyshchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Akintunde"> Samuel Akintunde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A theoretical approach to consider formation of chemical compound layer at the interface between initial substances A and B due to the interfacial interaction and diffusion is developed. It is considered situation when speed of interfacial interaction is large enough and diffusion of A-atoms through AB-layer is much more then diffusion of B-atoms. Atoms from A-layer diffuse toward B-atoms and form AB-atoms on the surface of B-layer. B-atoms are assumed to be immobile. The growth kinetics of the AB-layer is described by two differential equations with non-linear coupling, producing a good fit to the experimental data. It is shown that growth of the thickness of the AB-layer determines by dependence of chemical reaction rate on reactants concentration. In special case the thickness of the AB-layer can grow linearly or parabolically depending on that which of processes (interaction or the diffusion) controls the growth. The thickness of AB-layer as function of time is obtained. The moment of time (transition point) at which the linear growth are changed by parabolic is found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phase%20formation" title="phase formation">phase formation</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20systems" title=" binary systems"> binary systems</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20reaction" title=" interfacial reaction"> interfacial reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=compound%20layers" title=" compound layers"> compound layers</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20kinetics" title=" growth kinetics"> growth kinetics</a> </p> <a href="https://publications.waset.org/abstracts/10901/formation-of-chemical-compound-layer-at-the-interface-of-initial-substances-a-and-b-with-dominance-of-diffusion-of-the-a-atoms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4993</span> The Use of Simulation Programs of Leakage of Harmful Substances for Crisis Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Barta">Jiří Barta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with simulation programs of spread of harmful substances. Air pollution has a direct impact on the quality of human life and environmental protection is currently a very hot topic. Therefore, the paper focuses on the simulation of release of harmful substances. The first part of article deals with perspectives and possibilities of implementation outputs of simulations programs into the system which is education and of practical training of the management staff during emergency events in the frame of critical infrastructure. The last part shows the practical testing and evaluation of simulation programs. Of the tested simulations software been selected Symos97. The tool offers advanced features for setting leakage. Gradually allows the user to model the terrain, location, and method of escape of harmful substances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Computer%20Simulation" title="Computer Simulation">Computer Simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Symos97" title=" Symos97"> Symos97</a>, <a href="https://publications.waset.org/abstracts/search?q=Spread" title=" Spread"> Spread</a>, <a href="https://publications.waset.org/abstracts/search?q=Simulation%20Software" title=" Simulation Software"> Simulation Software</a>, <a href="https://publications.waset.org/abstracts/search?q=Harmful%20Substances" title=" Harmful Substances"> Harmful Substances</a> </p> <a href="https://publications.waset.org/abstracts/38195/the-use-of-simulation-programs-of-leakage-of-harmful-substances-for-crisis-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4992</span> Modeling of Processes Running in Radical Clusters Formed by Ionizing Radiation with the Help of Continuous Petri Nets and Oxygen Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Barilla">J. Barilla</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lokaj%C3%AD%C4%8Dek"> M. Lokajíček</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Pisakov%C3%A1"> H. Pisaková</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Simr"> P. Simr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The final biological effect of ionizing particles may be influenced strongly by some chemical substances present in cells mainly in the case of low-LET radiation. The influence of oxygen may be particularly important because oxygen is always present in living cells. The corresponding processes are then running mainly in the chemical stage of radio biological mechanism. The radical clusters formed by densely ionizing ends of primary or secondary charged particles are mainly responsible for final biological effect. The damage effect depends then on radical concentration at a time when the cluster meets a DNA molecule. It may be strongly influenced by oxygen present in a cell as oxygen may act in different directions: at small concentration of it the interaction with hydrogen radicals prevails while at higher concentrations additional efficient oxygen radicals may be formed. The basic radical concentration in individual clusters diminishes, which is influenced by two parallel processes: chemical reactions and diffusion of corresponding clusters. The given simultaneous evolution may be modeled and analyzed well with the help of Continuous Petri nets. The influence of other substances present in cells during irradiation may be studied, too. Some results concerning the impact of oxygen content will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiobiological%20mechanism" title="radiobiological mechanism">radiobiological mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20phase" title=" chemical phase"> chemical phase</a>, <a href="https://publications.waset.org/abstracts/search?q=DSB%20formation" title=" DSB formation"> DSB formation</a>, <a href="https://publications.waset.org/abstracts/search?q=Petri%20nets" title=" Petri nets"> Petri nets</a> </p> <a href="https://publications.waset.org/abstracts/2417/modeling-of-processes-running-in-radical-clusters-formed-by-ionizing-radiation-with-the-help-of-continuous-petri-nets-and-oxygen-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4991</span> Investigating the Chemical Structure of Drinking Water in Domestic Areas of Kuwait by Appling GIS Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Al-Jabli">H. Al-Jabli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research on the presence of heavy metals and bromate in drinking water is of immense scientific significance due to the potential risks these substances pose to public health. These contaminants are subject to regulatory limits outlined by the National Primary Drinking Water Regulations. Through a comprehensive analysis involving the compilation of existing data and the collection of new data via water sampling in residential areas of Kuwait, the aim is to create detailed maps illustrating the spatial distribution of these substances. Furthermore, the investigation will utilize GRAPHER software to explore correlations among different chemical parameters. By implementing rigorous scientific methodologies, the research will provide valuable insights for the Ministry of Electricity and Water and the Ministry of Health. These insights can inform evidence-based decision-making, facilitate the implementation of corrective measures, and support strategic planning for future infrastructure activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=bromate" title=" bromate"> bromate</a>, <a href="https://publications.waset.org/abstracts/search?q=ozonation" title=" ozonation"> ozonation</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a> </p> <a href="https://publications.waset.org/abstracts/178296/investigating-the-chemical-structure-of-drinking-water-in-domestic-areas-of-kuwait-by-appling-gis-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4990</span> Comparison of Risk Analysis Methodologies Through the Consequences Identification in Chemical Accidents Associated with Dangerous Flammable Goods Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Alfonso%20Res%C3%A9ndiz-Garc%C3%ADa">Daniel Alfonso Reséndiz-García</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Antonio%20Garc%C3%ADa-Villanueva"> Luis Antonio García-Villanueva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a result of the high industrial activity, which arises from the search to satisfy the needs of products and services for society, several chemical accidents have occurred, causing serious damage to different sectors: human, economic, infrastructure and environmental losses. Historically, with the study of this chemical accidents, it has been determined that the causes are mainly due to human errors (inexperienced personnel, negligence, lack of maintenance and deficient risk analysis). The industries have the aim to increase production and reduce costs. However, it should be kept in mind that the costs involved in risk studies, implementation of barriers and safety systems is much cheaper than paying for the possible damages that could occur in the event of an accident, without forgetting that there are things that cannot be replaced, such as human lives.Therefore, it is of utmost importance to implement risk studies in all industries, which provide information for prevention and planning. The aim of this study is to compare risk methodologies by identifying the consequences of accidents related to the storage of flammable, dangerous goods for decision making and emergency response.The methodologies considered in this study are qualitative and quantitative risk analysis and consequence analysis. The latter, by means of modeling software, which provides radius of affectation and the possible scope and magnitude of damages.By using risk analysis, possible scenarios of occurrence of chemical accidents in the storage of flammable substances are identified. Once the possible risk scenarios have been identified, the characteristics of the substances, their storage and atmospheric conditions are entered into the software.The results provide information that allows the implementation of prevention, detection, control, and combat elements for emergency response, thus having the necessary tools to avoid the occurrence of accidents and, if they do occur, to significantly reduce the magnitude of the damage.This study highlights the importance of risk studies applying tools that best suited to each case study. It also proves the importance of knowing the risk exposure of industrial activities for a better prevention, planning and emergency response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20accidents" title="chemical accidents">chemical accidents</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20response" title=" emergency response"> emergency response</a>, <a href="https://publications.waset.org/abstracts/search?q=flammable%20substances" title=" flammable substances"> flammable substances</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20analysis" title=" risk analysis"> risk analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/172937/comparison-of-risk-analysis-methodologies-through-the-consequences-identification-in-chemical-accidents-associated-with-dangerous-flammable-goods-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4989</span> Effects of Chemicals in Elderly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kuzu">Ali Kuzu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are about 800 thousand chemicals in our environment and the number is increasing more than a thousand every year. While most of these chemicals are used as components in various consumer products, some are faced as industrial waste in the environment. Unfortunately, many of these chemicals are hazardous and affect humans. According to the “International Program on Chemical Safety” of World Health Organization; Among the chronic health effects of chemicals, cancer is of major concern. Many substances have found in recent years to be carcinogenic in one or more species of laboratory animals. Especially with respect to long-term effects, the response to a chemical may vary, quantitatively or qualitatively, in different groups of individuals depending on predisposing conditions, such as nutritional status, disease status, current infection, climatic extremes, and genetic features, sex and age of the individuals. Understanding the response of such specific risk groups is an important area of toxicology research. People with age 65+ is defined as “aged (or elderly)”. The elderly population in the world is about 600 million, which corresponds to ~8 percent of the world population. While every 1 of each 4 people is aged in Japan, the elderly population is quite close to 20 percent in many developed countries. And elderly population in these countries is growing more rapidly than the total population. The negative effects of chemicals on elderly take an important place in health-care related issues in last decades. The aged population is more susceptible to the harmful effects of environmental chemicals. According to the poor health of the organ systems in elderly, the ability of their body to eliminate the harmful effects and chemical substances from their body is also poor. With the increasing life expectancy, more and more people will face problems associated with chemical residues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elderly" title="elderly">elderly</a>, <a href="https://publications.waset.org/abstracts/search?q=chemicals%E2%80%99%20effects" title=" chemicals’ effects"> chemicals’ effects</a>, <a href="https://publications.waset.org/abstracts/search?q=aged%20care" title=" aged care"> aged care</a>, <a href="https://publications.waset.org/abstracts/search?q=care%20need" title=" care need"> care need</a> </p> <a href="https://publications.waset.org/abstracts/17669/effects-of-chemicals-in-elderly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4988</span> The Impact of Ultrasonic Field to Increase the Biodegradability of Leachate from The Landfill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwarciak-Kozlowska%20A.">Kwarciak-Kozlowska A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Slawik-Dembiczak%20L."> Slawik-Dembiczak L.</a>, <a href="https://publications.waset.org/abstracts/search?q=Galwa-Widera%20M."> Galwa-Widera M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complex and variable during operation of the landfill leachate composition prevents the use of a single universal method of their purification. Due to the presence of difficult biodegradable these substances in the wastewater, cleaning of them often requires the use of biological methods (activated sludge or anaerobic digestion), also often supporting by physicochemical processes. Currently, more attention is paid to the development of unconventional methods of disposal of sewage m.in ultleniania advanced methods including the use of ultrasonic waves. It was assumed that the ultrasonic waves induce change in the structure of organic compounds and contribute to the acceleration of biodegradability, including refractive substances in the leachate, so that will increase the effectiveness of their treatment in biological processes. We observed a marked increase in BOD leachate when subjected to the action of utradźwięowego. Ratio BOD / COD was 27% higher compared to the value of this ratio for leachate nienadźwiękawianych. It was found that the process of sonification leachate clearly influenced the formation and release of aliphatic compounds. These changes suggest a possible violation of the chemical structure of organic compounds in the leachate thereby give compounds of the chemical structure more susceptible to biodegradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IR%20spectra" title="IR spectra">IR spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill%20leachate" title=" landfill leachate"> landfill leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20pollutants" title=" organic pollutants"> organic pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/17313/the-impact-of-ultrasonic-field-to-increase-the-biodegradability-of-leachate-from-the-landfill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4987</span> Study on Beta-Ray Detection System in Water Using a MCNP Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ki%20Hyun%20Park">Ki Hyun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hye%20Min%20Park"> Hye Min Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Ho%20Kim"> Jeong Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Jong%20Park"> Chan Jong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Koan%20Sik%20Joo"> Koan Sik Joo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the modern days, the use of radioactive substances is on the rise in the areas like chemical weaponry, industrial usage, and power plants. Although there are various technologies available to detect and monitor radioactive substances in the air, the technologies to detect underwater radioactive substances are scarce. In this study, computer simulation of the underwater detection system measuring beta-ray, a radioactive substance, has been done through MCNP. CaF₂, YAP(Ce) and YAG(Ce) have been used in the computer simulation to detect beta-ray as scintillator. Also, the source used in the computer simulation is Sr-90 and Y-90, both of them emitting only pure beta-ray. The distance between the source and the detector was shifted from 1mm to 10mm by 1 mm in the computer simulation. The result indicated that Sr-90 was impossible to measure below 1 mm since its emission energy is low while Y-90 was able to be measured up to 10mm underwater. In addition, the detector designed with CaF₂ had the highest efficiency among 3 scintillators used in the computer simulation. Since it was possible to verify the detectable range and the detection efficiency according to modeling through MCNP simulation, it is expected that such result will reduce the time and cost in building the actual beta-ray detector and evaluating its performances, thereby contributing the research and development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beta-ray" title="Beta-ray">Beta-ray</a>, <a href="https://publications.waset.org/abstracts/search?q=CaF%E2%82%82" title=" CaF₂"> CaF₂</a>, <a href="https://publications.waset.org/abstracts/search?q=detector" title=" detector"> detector</a>, <a href="https://publications.waset.org/abstracts/search?q=MCNP%20simulation" title=" MCNP simulation"> MCNP simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=scintillator" title=" scintillator"> scintillator</a> </p> <a href="https://publications.waset.org/abstracts/53352/study-on-beta-ray-detection-system-in-water-using-a-mcnp-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4986</span> Factors Influencing the Use of Psychoactive Substance among Senior Secondary Students in Ibadan South-West Local Government, Oyo State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olajumoke%20Temilola%20Fatimat">Olajumoke Temilola Fatimat</a>, <a href="https://publications.waset.org/abstracts/search?q=Fasasi%20Fausat%20Kikelomo"> Fasasi Fausat Kikelomo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishola%20Ganiyat%20Folasayo"> Ishola Ganiyat Folasayo</a>, <a href="https://publications.waset.org/abstracts/search?q=Omayeka%20Mary"> Omayeka Mary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Psychoactive substances are chemical substances that affect the normal functioning of the brain and cause changes in behavior, mood, and consciousness. Psychoactive substance abuse constitutes one of the most important risk–taking behavior among adolescents and young adults in secondary schools. The study, therefore, assessed the factors influencing the use of psychoactive substances among senior secondary students in Ibadan South–West Local Government Area, Oyo State. A descriptive non-experimental design was adopted; purposive and simple random sampling techniques were used to select 330 respondents, while questionnaires were used for data collection. The descriptive statistics of frequency count, percentages, inferential statistics of chi-square, and analysis of variance were used for the analysis. The results revealed that the majority of the respondents had heard of the term substance abuse before 226 (75.3%); it was also revealed that the majority of the respondents had good knowledge of psychoactive substances, 67.8%. There was no significant relationship between age and knowledge of psychoactive substances among senior secondary students, with a p-value of 0.199. The outcome of this study indicates that drug abuse is increasing day by day among secondary school students and may have greatly contributed to poor performance in examinations as well as undermining academic ability and performance among students. It was recommended that efforts should be made by the school authorities of the secondary schools in Ibadan South–West Local Government Area, Oyo State, and in Oyo State generally in collaboration with health personnel to educate adolescents on psychoactive substance abuse. This is to ensure that adolescents are adequately educated and updated on knowledge of psychoactive substance abuse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factors" title="factors">factors</a>, <a href="https://publications.waset.org/abstracts/search?q=influence" title=" influence"> influence</a>, <a href="https://publications.waset.org/abstracts/search?q=psychoactive%20substance" title=" psychoactive substance"> psychoactive substance</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20school" title=" secondary school"> secondary school</a> </p> <a href="https://publications.waset.org/abstracts/169171/factors-influencing-the-use-of-psychoactive-substance-among-senior-secondary-students-in-ibadan-south-west-local-government-oyo-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4985</span> The Knowledge and Attitude of Doping among Junior Athletes and Coaches in Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahadula%20I.%20P.%20Kumari">Mahadula I. P. Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasturiratne%20%20A."> Kasturiratne A.</a>, <a href="https://publications.waset.org/abstracts/search?q=De%20Silva%20AP"> De Silva AP</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doping refers to an athlete's use of banned substances as a method to improve training and performance in sports. It is known that some young athletes use banned substances in Sri Lanka without knowing their side effects and associated health risks. The main objective of this study was to describe the level of knowledge and attitude among junior athletes and coaches on doping in sports. This is a descriptive cross-sectional study. Four individual sports and six team sports were taken into the study. Schools were selected considering the results of the all-island school sports competitions 2017. Two hundred sixty-two female athletes, 290 male athletes and 30 coaches representing all sports counted into this study. The data collection method was a self-administered questionnaire and SPSS Version 21 was used for the data analysis. According to the result, 79% of athletes have heard of the term "doping," and 21% have never heard of it. This means these children have not been educated on doping. A number of questions were asked to study the level of knowledge of the coaches and players. Those who answered the questions correctly were given a mark. According to the marks, it is evident that the level of knowledge of the players and coaches is very low. All athletes and coaches do not accept the use of banned substances. This shows that athletes and coaches have a good attitude about winning without cheating. It was evident that athletes in athletics, weightlifting, rugby, and badminton had some level of knowledge about banned substances. All coaches stated that school athletes and coaches do not have sufficient knowledge of banned substances. And they should be made aware of it. This study has revealed that school/Junior athletes and coaches have limited knowledge of banned substances. School children and coaches need to be educated about banned substances and their harmful effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attitude" title="attitude">attitude</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge" title=" knowledge"> knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Lanka" title=" Sri Lanka"> Sri Lanka</a> </p> <a href="https://publications.waset.org/abstracts/141321/the-knowledge-and-attitude-of-doping-among-junior-athletes-and-coaches-in-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4984</span> New Teaching Tools for a Modern Representation of Chemical Bond in the Course of Food Science</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicola%20G.%20G.%20Cecca">Nicola G. G. Cecca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Italian IPSSEOAs, high schools that give a vocational education to students that will work in the field of Enogastronomy and Hotel Management, the course of Food Science allows the students to start and see food as a mixture of substances that they will transform during their profession. These substances are characterized not only by a chemical composition but also by a molecular structure that makes them nutritionally active. But the increasing number of new products proposed by Food Industry, the modern techniques of production and transformation, the innovative preparations required by customers have made many information reported in the most wide spread Food Science textbooks not up-to-date or too poor for the people who will work in catering sector. Often Authors offer information aged to Bohr’s Atomic Model and to the ‘Octet Rule’ proposed by G.N. Lewis to describe the Chemical Bond, without giving any reference to new as Orbital Atomic Model and Molecular Orbital Theory that, in the meantime, start to be old themselves. Furthermore, this antiquated information precludes an easy understanding of a wide range of properties of nutritive substances and many reactions in which the food constituents are involved. In this paper, our attention is pointed out to use GEOMAG™ to represent the dynamics with which the chemical bond is formed during the synthesis of the molecules. GEOMAG™ is a toy, produced by the Swiss Company Geomagword S.A., pointed to stimulate in children, aged between 6-10 years, their fantasy and their handling ability and constituted by metallic spheres and metallic magnetic bars coated by coloured plastic materials. The simulation carried out with GEOMAG™ is based on the similitude existing between the Coulomb’s force and the magnetic attraction’s force and in particular between the formulae with which they are calculated. The electrostatic force (F in Newton) that allows the formation of the chemical bond can be calculated by mean Fc = kc q1 q2/d2 where: q1 e q2 are the charge of particles [in Coulomb], d is the distance between the particles [in meters] and kc is the Coulomb’s constant. It is surprising to observe that the attraction’s force (Fm) acting between the magnetic extremities of GEOMAG™ used to simulate the chemical bond can be calculated in the same way by using the formula Fm = km m1 m2/d2 where: m1 e m2 represent the strength of the poles [A•m], d is the distance between the particles [m], km = μ/4π in which μ is the magnetic permeability of medium [N•A-2]. The magnetic attraction can be tested by students by trying to keep the magnetic elements of GEOMAG™ separate by hands or trying to measure by mean an appropriate dynamometric system. Furthermore, by using a dynamometric system to measure the magnetic attraction between the GEOMAG™ elements is possible draw a graphic F=f(d) to verify that the curve obtained during the simulation is very similar to that one hypnotized, around the 1920’s by Linus Pauling to describe the formation of H2+ in according with Molecular Orbital Theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20bond" title="chemical bond">chemical bond</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20orbital%20theory" title=" molecular orbital theory"> molecular orbital theory</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20force" title=" magnetic attraction force"> magnetic attraction force</a>, <a href="https://publications.waset.org/abstracts/search?q=GEOMAG%E2%84%A2" title=" GEOMAG™"> GEOMAG™</a> </p> <a href="https://publications.waset.org/abstracts/42544/new-teaching-tools-for-a-modern-representation-of-chemical-bond-in-the-course-of-food-science" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4983</span> Non Chemical-Based Natural Products in the Treatment and Control of Disease in Fish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Albert%20P.%20Ekanem">Albert P. Ekanem</a>, <a href="https://publications.waset.org/abstracts/search?q=Austin%20I.%20Obiekezie"> Austin I. Obiekezie</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20X.%20Ntia"> Elizabeth X. Ntia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Some African plants and bile from animals have shown efficacies in the treatment and control of diseases in farmed fish. The background of the study is based on the fact the African rain forest is blessed with the abundance of medicinal plants that should be investigated for their use in the treatment of diseases. The significance of the study is informed by the fact that chemical-based substances accumulate in the tissues of food fish, thereby reducing the food values of such products and moreover, the continuous use of chemotherapeutics in the aquatic environments tends to degrade the affected environment. Methodology: Plants and animal products were extracted, purified and applied under in vitro and in vivo conditions to the affected organisms. Effective plants and bills were analyzed for biologically active substances responsible for the activities by both qualitative and HPLC methods. Results: Extracts of Carica papaya and Mucuna pruriens were effective in the treatment of Ichthyophthiriasis in goldfish (Carassius auratus auratus) with high host tolerance. Similarly, ectoparasitic monogeneans were effectively dislodged from the gills and skin of goldfish by the application of extracts of Piper guineense at therapeutic concentrations. Artemesia annua with known antimalarial activities in human was also effective against fish monogenean parasites of Clarias gariepinus in a concentration-related manner without detriments to the host. Effective antibacterial activities against Aeromonas and Pseudomonas diseases of the African catfish (Heterobranchus longifilis) were demonstrated in some plants such as Phylanthus amarus, Allium sativum, A. annua, and Citrus lemon. Bile from some animals (fish, goat, chicken, cow, and pig) showed great antibacterial activities against some gastrointestinal bacterial pathogens of fish. Conclusions: African plants and some animal bile have shown potential promise in the treatment of diseases in fish and other aquatic animals. The use of chemical-based substances for control of diseases in the aquatic environments should be restricted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control" title="control">control</a>, <a href="https://publications.waset.org/abstracts/search?q=diseases" title=" diseases"> diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/23590/non-chemical-based-natural-products-in-the-treatment-and-control-of-disease-in-fish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4982</span> Non Chemical-Based Natural Products in the Treatment and Control of Fish Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Albert%20P.%20Ekanem">Albert P. Ekanem</a>, <a href="https://publications.waset.org/abstracts/search?q=Austin%20I.%20Obiekezie"> Austin I. Obiekezie</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20X.%20Ntia"> Elizabeth X. Ntia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Some African plants and bile from animals have shown efficacies in the treatment and control of diseases in farmed fish. The background of the study is based on the fact the African rain forest is blessed with abundance of medicinal plants that should be investigated for their use in the treatment of diseases. The significance of the study is informed by the fact that chemical-based substances accumulates in the tissues of food fish, thereby reducing the food values of such products and moreover, the continuous use of chemotherapeutants in the aquatic environments tends to degrades the affected environment. Methodology: Plants and animal products were extracted, purified and applied under in vitro and in vivo conditions to the affected organisms. Effective plants and biles were analyzed for active biological substances responsible for the activities by both qualitative and HPLC methods. Results: Extracts of Carica papaya and Mucuna pruriens were effective in the treatment of Ichthyophthiriasis in goldfish (Carassius auratus auratus) with high host tolerance. Similarly, ectoparasitic monogeneans were effectively dislodged from the gills and skin of goldfish by the application of extracts of Piper guineense at therapeutic concentrations. Artemesia annua with known antimalarial activities in human was also effective against fish monogenean parasites of Clarias gariepinus in a concentration related manner without detriments to the host. Effective antibacterial activities against Aeromonas and Pseudomonas diseases of the African catfish (Heterobranchus longifilis) were demonstrated in some plants such as Phylanthus amarus, Allium sativum, A. annua, and Citrus lemon. Bile from some animals (fish, goat, chicken, cow, and pig) showed great antibacterial activities against some gastrointestinal bacterial pathogens of fish. Conclusions: African plants and some animal bile have shown potential promise in the treatment of diseases in fish and other aquatic animals. The use of chemical-based substances for control of diseases in the aquatic environments should be restricted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control" title="control">control</a>, <a href="https://publications.waset.org/abstracts/search?q=diseases" title=" diseases"> diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20products" title=" natural products"> natural products</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/26090/non-chemical-based-natural-products-in-the-treatment-and-control-of-fish-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4981</span> Repeatable Surface Enhanced Raman Spectroscopy Substrates from SERSitive for Wide Range of Chemical and Biological Substances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20Ksiezopolska-Gocalska">Monika Ksiezopolska-Gocalska</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Albrycht"> Pawel Albrycht</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Holyst"> Robert Holyst</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface Enhanced Raman Spectroscopy (SERS) is a technique used to analyze very low concentrations of substances in solutions, even in aqueous solutions - which is its advantage over IR. This technique can be used in the pharmacy (to check the purity of products); forensics (whether at a crime scene there were any illegal substances); or medicine (serving as a medical test) and lots more. Due to the high potential of this technique, its increasing popularity in analytical laboratories, and simultaneously - the absence of appropriate platforms enhancing the SERS signal (crucial to observe the Raman effect at low analyte concentration in solutions (1 ppm)), we decided to invent our own SERS platforms. As an enhancing layer, we have chosen gold and silver nanoparticles, because these two have the best SERS properties, and each has an affinity for the other kind of particles, which increases the range of research capabilities. The next step was to commercialize them, which resulted in the creation of the company ‘SERSitive.eu’ focusing on production of highly sensitive (Ef = 10⁵ – 10⁶), homogeneous and reproducible (70 - 80%) substrates. SERStive SERS substrates are made using the electrodeposition of silver or silver-gold nanoparticles technique. Thanks to a very detailed analysis of data based on studies optimizing such parameters as deposition time, temperature of the reaction solution, applied potential, used reducer, or reagent concentrations using a standardized compound - p-mercaptobenzoic acid (PMBA) at a concentration of 10⁻⁶ M, we have developed a high-performance process for depositing precious metal nanoparticles on the surface of ITO glass. In order to check a quality of the SERSitive platforms, we examined the wide range of the chemical compounds and the biological substances. Apart from analytes that have great affinity to the metal surfaces (e.g. PMBA) we obtained very good results for those fitting less the SERS measurements. Successfully we received intensive, and what’s more important - very repetitive spectra for; amino acids (phenyloalanine, 10⁻³ M), drugs (amphetamine, 10⁻⁴ M), designer drugs (cathinone derivatives, 10⁻³ M), medicines and ending with bacteria (Listeria, Salmonella, Escherichia coli) and fungi. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=SERS" title=" SERS"> SERS</a>, <a href="https://publications.waset.org/abstracts/search?q=SERS%20applications" title=" SERS applications"> SERS applications</a>, <a href="https://publications.waset.org/abstracts/search?q=SERS%20substrates" title=" SERS substrates"> SERS substrates</a>, <a href="https://publications.waset.org/abstracts/search?q=SERSitive" title=" SERSitive"> SERSitive</a> </p> <a href="https://publications.waset.org/abstracts/86926/repeatable-surface-enhanced-raman-spectroscopy-substrates-from-sersitive-for-wide-range-of-chemical-and-biological-substances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4980</span> The Use of Substances and Sports Performance among Youth: Implications for Lagos State Sports</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osifeko%20Olalekan%20Remigious">Osifeko Olalekan Remigious</a>, <a href="https://publications.waset.org/abstracts/search?q=Adesanya%20Adebisi%20Joseph"> Adesanya Adebisi Joseph</a>, <a href="https://publications.waset.org/abstracts/search?q=Omolade%20Akinmade%20Olatunde"> Omolade Akinmade Olatunde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The focus of this study was to determine the factors associated with the use of substances for sport performance of youth in Lagos state sport. Questionnaire was the instrument used for the study. Descriptive research method was used. The estimated population for the study was 2000 sport men and women. The sample size was 200 respondents for purposive sampling techniques were used. The instrument was validated in it content and constructs value. The instrument was administered with the assistance of the coaches. Same 200 copies administered were returned. The data obtained was analysed using simple percentage and chi-square (x2) for stated hypothesis at 0.05 level of significance. The finding reveal that sport injuries exercise induced and anaphylaxis and asthma and feeling of loss of efficacy associated with alcohol used on sport performance among the users of substances. Alcohol users are recommended to partake in sport like swimming, basketball and volleyball because they have space of time for resting while at play. Government should be fully in charge of the health of sport men and women. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=implications" title="implications">implications</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagos%20state" title=" Lagos state"> Lagos state</a>, <a href="https://publications.waset.org/abstracts/search?q=substances" title=" substances"> substances</a>, <a href="https://publications.waset.org/abstracts/search?q=sports%20performance" title=" sports performance"> sports performance</a>, <a href="https://publications.waset.org/abstracts/search?q=youth" title=" youth"> youth</a> </p> <a href="https://publications.waset.org/abstracts/35803/the-use-of-substances-and-sports-performance-among-youth-implications-for-lagos-state-sports" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">580</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4979</span> Wastewater Treatment by Modified Bentonite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mecabih%20Zohra">Mecabih Zohra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is such an important element of many manufacturing processes which that use a big amount of chemical substances, It is likely to cause it contamination of water returning to rivers by industrial discharged. These contaminants can be a high in suspended solid and chemical oxygen demand. In this study, urban wastewater of sidi bel abbes city (Algeria) was treated by adsorption using modified bentonite from Magnia (Algeria) by conducting batch experiments to investigate its equilibrium characteristics and kinetics. Purified bentonite is characterized by; CEC, XRF, BET, FITR, XRD, SEM and 27Al spectroscopy. The results showed the removal of suspended solids exceeds 98.47% and COD up to 99.52%, and regarding of sorption efficiencies (qm), the maximum COD sorption efficiencies (qm) calculated using the Langmuir model is 156.23, 64.47 and 17.19 mg/g respectively, for a pH range of 4 to 9. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=COD" title=" COD"> COD</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/168584/wastewater-treatment-by-modified-bentonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4978</span> Wastewater Treatment by Modified Bentonite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mecabih%20Zohra">Mecabih Zohra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is such an important element of many manufacturing processes which that use a big amount of chemical substances, It is likely to cause it contamination of water returning to rivers by industrial discharged. These contaminants can be a high in suspended solid and chemical oxygen demand. In this study, urban wastewater of sidi bel abbes city (Algeria) was treated by adsorption using modified bentonite from Magnia (Algeria) by conducting batch experiments to investigate its equilibrium characteristics and kinetics. Purified bentonite is characterized by; CEC, XRF, BET, FITR, XRD, SEM and 27Al spectroscopy. The results showed the removal of suspended solids exceeds 98.47% and COD up to 99.52%, and regarding of sorption efficiencies (qm), the maximum COD sorption efficiencies (qm) calculated using the Langmuir model is 156.23, 64.47 and 17.19 mg/g respectively, for a pH range of 4 to 9. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=COD" title=" COD"> COD</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/168586/wastewater-treatment-by-modified-bentonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4977</span> Use of Nanosensors in Detection and Treatment of HIV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Obeidullah%20Abrar">Sayed Obeidullah Abrar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanosensor is the combination of two terms nanoparticles and sensors. These are chemical or physical sensor constructed using nanoscale components, usually microscopic or submicroscopic in size. These sensors are very sensitive and can detect single virus particle or even very low concentrations of substances that could be potentially harmful. Nanosensors have a large scope of research especially in the field of medical sciences, military applications, pharmaceuticals etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HIV%2FAIDS" title="HIV/AIDS">HIV/AIDS</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosensors" title=" nanosensors"> nanosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA" title=" RNA"> RNA</a> </p> <a href="https://publications.waset.org/abstracts/22678/use-of-nanosensors-in-detection-and-treatment-of-hiv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4976</span> A Study on the Chemical Composition of Kolkheti&#039;s Sphagnum Peat Peloids to Evaluate the Perspective of Use in Medical Practice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al.%20Tsertsvadze.%20L.%20Ebralidze">Al. Tsertsvadze. L. Ebralidze</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Matchutadze.%20D.%20Berashvili"> I. Matchutadze. D. Berashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bakuridze"> A. Bakuridze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Peatlands are landscape elements, they are formed over a very long period by physical, chemical, biologic, and geologic processes. In the moderate zone of Caucasus, the Kolkheti lowlands are distinguished by the diversity of relictual plants, a high degree of endemism, orographic, climate, landscape, and other characteristics of high levels of biodiversity. The unique properties of the Kolkheti region lead to the formation of special, so-called, endemic peat peloids. The composition and properties of peloids strongly depend on peat-forming plants. Peat is considered a unique complex of raw materials, which can be used in different fields of the industry: agriculture, metallurgy, energy, biotechnology, chemical industry, health care. They are formed in permanent wetland areas. As a result of decay, higher plants remain in the anaerobic area, with the participation of microorganisms. Peat mass absorbs soil and groundwater. Peloids are predominantly rich with humic substances, which are characterized by high biological activity. Humic acids stimulate enzymatic activity, regenerative processes, and have anti-inflammatory activity. Objects of the research were Kolkheti peat peloids (Ispani, Anaklia, Churia, Chirukhi, Peranga) possessing different formation phases. Due to specific physical and chemical properties of research objects, the aim of the research was to develop analytical methods in order to study the chemical composition of the objects. The research was held using modern instrumental methods of analysis: Ultraviolet-visible spectroscopy and Infrared spectroscopy, Scanning Electron Microscopy, Centrifuge, dry oven, Ultraturax, pH meter, fluorescence spectrometer, Gas chromatography-mass spectrometry (GC-MS/MS), Gas chromatography. Based on the research ration between organic and inorganic substances, the spectrum of micro and macro elements, also the content of minerals was determined. The content of organic nitrogen was determined using the Kjeldahl method. The total composition of amino acids was studied by a spectrophotometric method using standard solutions of glutamic and aspartic acids. Fatty acid was determined using GC (Gas chromatography). Based on the obtained results, we can conclude that the method is valid to identify fatty acids in the research objects. The content of organic substances in the research objects was held using GC-MS. Using modern instrumental methods of analysis, the chemical composition of research objects was studied. Each research object is predominantly reached with a broad spectrum of organic (fatty acids, amino acids, carbocyclic and heterocyclic compounds, organic acids and their esters, steroids) and inorganic (micro and macro elements, minerals) substances. Modified methods used in the presented research may be utilized for the evaluation of cosmetological balneological and pharmaceutical means prepared on the base of Kolkheti's Sphagnum Peat Peloids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modern%20analytical%20methods" title="modern analytical methods">modern analytical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20resources" title=" natural resources"> natural resources</a>, <a href="https://publications.waset.org/abstracts/search?q=peat" title=" peat"> peat</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry" title=" chemistry"> chemistry</a> </p> <a href="https://publications.waset.org/abstracts/109260/a-study-on-the-chemical-composition-of-kolkhetis-sphagnum-peat-peloids-to-evaluate-the-perspective-of-use-in-medical-practice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4975</span> Investigating the Effect of the Psychoactive Substances Act 2016 on the Incidence of Adverse Medical Events in Her Majesty’s Prison (HMP) Leeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hayley%20Boal">Hayley Boal</a>, <a href="https://publications.waset.org/abstracts/search?q=Chloe%20Bromley"> Chloe Bromley</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Fairfield"> John Fairfield</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Novel Psychoactive Substances (NPS) are synthetic compounds designed to reproduce effects of illicit drugs. Cheap, potent, and readily available on UK highstreets from so-called ‘head shops’, in recent years their use has surged and with it have emerged side effects including seizures, aggression, palpitations, coma, and death. Rapid development of new substances has vastly outpaced pre-existing drug legislation but the Psychoactive Substances Act 2016 rendered all but tobacco, alcohol, and amyl nitrates, illegal. Drug use has long been rife within prisons, but the absence of a reliable screening tool alongside the availability of NPS makes them ideal for prison use. Here we examine the occurrence of NPS-related adverse side effects within HMP Leeds, comparing May-September of 2015 and 2017 using daily reports distributed amongst prison staff summarising medical and behavioural incidents of the previous day. There was a statistically-significant rise of over 200% in the use of NPS between 2015 and 2017: 0.562 and 1.149 incidents per day respectively. In 2017, 38.46% incidents required ambulances, fallen from 51.02% in 2015. Although the most common descriptions in both years were ‘seizure’ and ‘unresponsive’, by 2017 ‘inhalation by staff’ had emerged. Patterns of NPS consumption mirrored the prison regime, peaking when cell doors opened, and prisoners could socialise. Despite limited data, the Psychoactive Substances Act has clearly been an insufficient deterrent to the prison population; more must be done to understand and address substance misuse in prison. NPS remains a significant risk to prisoners’ health and wellbeing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=legislation" title="legislation">legislation</a>, <a href="https://publications.waset.org/abstracts/search?q=novel%20psychoactive%20substances" title=" novel psychoactive substances"> novel psychoactive substances</a>, <a href="https://publications.waset.org/abstracts/search?q=prison" title=" prison"> prison</a>, <a href="https://publications.waset.org/abstracts/search?q=spice" title=" spice"> spice</a> </p> <a href="https://publications.waset.org/abstracts/83200/investigating-the-effect-of-the-psychoactive-substances-act-2016-on-the-incidence-of-adverse-medical-events-in-her-majestys-prison-hmp-leeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4974</span> A Combinatorial Approach of Treatment for Landfill Leachate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anusha%20Atmakuri">Anusha Atmakuri</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20D.%20Tyagi"> R. D. Tyagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Drogui"> Patrick Drogui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Landfilling is the most familiar and easy way to dispose solid waste. Landfill is generally received via wastes from municipal near to a landfill. The waste collected is from commercial, industrial, and residential areas and many more. Landfill leachate (LFL) is formed when rainwater passes through the waste placed in landfills and consists of several dissolved organic materials, for instance, aquatic humic substances (AHS), volatile fatty acids (VFAs), heavy metals, inorganic macro components, and xenobiotic organic matters, highly toxic to the environment. These components of LFL put a load on it, hence it necessitates the treatment of LFL prior to its discharge into the environment. Various methods have been used to treat LFL over the years, such as physical, chemical, biological, physicochemical, electrical, and advanced oxidation methods. This study focuses on the combination of biological and electrochemical methods- extracellular polymeric substances and electrocoagulation(EC). The coupling of electro-coagulation process with extracellular polymeric substances (EPS) (as flocculant) as pre and\or post treatment strategy provides efficient and economical process for the decontamination of landfill leachate contaminated with suspended matter, metals (e.g., Fe, Mn) and ammonical nitrogen. Electro-coagulation and EPS mediated coagulation approach could be an economically viable for the treatment of landfill leachate, along with possessing several other advantages over several other methods. This study utilised waste substrates such as activated sludge, crude glycerol and waste cooking oil for the production of EPS using fermentation technology. A comparison of different scenarios for the treatment of landfill leachate is presented- such as using EPS alone as bioflocculant, EPS and EC with EPS being the 1st stage, and EPS and EC with EC being the 1st stage. The work establishes the use of crude EPS as a bioflocculant for the treatment of landfill leachate and wastewater from a site near a landfill, along with EC being successful in removal of some major pollutants such as COD, turbidity, total suspended solids. A combination of these two methods is to be explored more for the complete removal of all pollutants from landfill leachate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landfill%20leachate" title="landfill leachate">landfill leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20polymeric%20substances" title=" extracellular polymeric substances"> extracellular polymeric substances</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title=" electrocoagulation"> electrocoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=bioflocculant." title=" bioflocculant."> bioflocculant.</a> </p> <a href="https://publications.waset.org/abstracts/166716/a-combinatorial-approach-of-treatment-for-landfill-leachate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4973</span> Determination of Biofilm Formation in Different Clinical Candida Species and Investigation of Effects of Some Plant Substances on These Biofilms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulcan%20Sahal">Gulcan Sahal</a>, <a href="https://publications.waset.org/abstracts/search?q=Isil%20Seyis%20Bilkay"> Isil Seyis Bilkay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Candida species which often exist as commensal microorganisms in healthy individuals are major causes of important infections, especially in AIDS and immunocompromised patients, by means of their biofilm formation abilities. Therefore, in this study, determination of biofilm formation in different clinical strains of Candida species, investigation of strong biofilm forming Candida strains, examination of clinical information of each strong and weak biofilm forming Candida strains and investigation of some plant substances’ effects on biofilm formation of strong biofilm forming strains were aimed. In this respect, biofilm formation of Candida strains was analyzed via crystal violet binding assay. According to our results, biofilm levels of strains belong to different Candida species were different from each other. Additionally, it is also found that some plant substances effect biofilm formation. All these results indicate that, as well as C. albicans strains, other non-albicans Candida species also emerge as causative agents of infections and have biofilm formation abilities. In addition, usage of some plant substances in different concentrations may provide a new treatment against biofilm related Candida infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-biofilm" title="anti-biofilm">anti-biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm%20formation" title=" biofilm formation"> biofilm formation</a>, <a href="https://publications.waset.org/abstracts/search?q=Candida%20species" title=" Candida species"> Candida species</a>, <a href="https://publications.waset.org/abstracts/search?q=biosystems%20engineering" title=" biosystems engineering"> biosystems engineering</a> </p> <a href="https://publications.waset.org/abstracts/8322/determination-of-biofilm-formation-in-different-clinical-candida-species-and-investigation-of-effects-of-some-plant-substances-on-these-biofilms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4972</span> HPLC-UV Screening of Legal (Caffeine and Yohimbine) and Illegal (Ephedrine and Sibutramine) Substances from Weight Loss Dietary Supplements for Athletes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amelia%20Tero-Vescan">Amelia Tero-Vescan</a>, <a href="https://publications.waset.org/abstracts/search?q=Camil-Eugen%20Vari"> Camil-Eugen Vari</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Ciulea"> Laura Ciulea</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Filip"> Cristina Filip</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Imre"> Silvia Imre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A HPLC –UV method for the identification of ephedrine (EPH), sibutramine (SB), yohimbine (Y) and caffeine (CF) was developed. Separation was performed on a Kromasil 100-RP8, 150 mm x 4.6 mm, 5 mm column equipped with a precolumn Kromasil RP 8. Mobile phase was a gradient of 80-35 % sodium dihydrogen phosphate pH=5 with NH4OH and acetonitrile over 15 minutes time of analysis. Based on the responses of 113 athletes about dietary supplements (DS) consumed for "fat burning" and weight loss which have a legal status in Romania, 28 supplements have been selected and investigated for their content in CF, Y, legal substances, and SB, EPH (prohibited substances in DS). The method allows quantitative determination of the four substances in a short analysis time and with minimum cost. The presence of SB and EPH in the analyzed DS was not detected while the content in CF and Y considering the dosage recommended by the manufacturer does not affect the health of the consumers. DS labeling (plant extracts with CF and Y content) allows manufacturers to avoid declaring correct and exact amounts per pharmaceutical form (pure CF or equivalent and Y, respectively). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dietary%20supplements" title="dietary supplements">dietary supplements</a>, <a href="https://publications.waset.org/abstracts/search?q=sibutramine" title=" sibutramine"> sibutramine</a>, <a href="https://publications.waset.org/abstracts/search?q=ephedrine" title=" ephedrine"> ephedrine</a>, <a href="https://publications.waset.org/abstracts/search?q=yohimbine" title=" yohimbine"> yohimbine</a>, <a href="https://publications.waset.org/abstracts/search?q=caffeine" title=" caffeine"> caffeine</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a> </p> <a href="https://publications.waset.org/abstracts/2518/hplc-uv-screening-of-legal-caffeine-and-yohimbine-and-illegal-ephedrine-and-sibutramine-substances-from-weight-loss-dietary-supplements-for-athletes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4971</span> Adapting the Chemical Reaction Optimization Algorithm to the Printed Circuit Board Drilling Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taisir%20Eldos">Taisir Eldos</a>, <a href="https://publications.waset.org/abstracts/search?q=Aws%20Kanan"> Aws Kanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Nazih"> Waleed Nazih</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Khatatbih"> Ahmad Khatatbih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical Reaction Optimization (CRO) is an optimization metaheuristic inspired by the nature of chemical reactions as a natural process of transforming the substances from unstable to stable states. Starting with some unstable molecules with excessive energy, a sequence of interactions takes the set to a state of minimum energy. Researchers reported successful application of the algorithm in solving some engineering problems, like the quadratic assignment problem, with superior performance when compared with other optimization algorithms. We adapted this optimization algorithm to the Printed Circuit Board Drilling Problem (PCBDP) towards reducing the drilling time and hence improving the PCB manufacturing throughput. Although the PCBDP can be viewed as instance of the popular Traveling Salesman Problem (TSP), it has some characteristics that would require special attention to the transactions that explore the solution landscape. Experimental test results using the standard CROToolBox are not promising for practically sized problems, while it could find optimal solutions for artificial problems and small benchmarks as a proof of concept. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20algorithms" title="evolutionary algorithms">evolutionary algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20reaction%20optimization" title=" chemical reaction optimization"> chemical reaction optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman" title=" traveling salesman"> traveling salesman</a>, <a href="https://publications.waset.org/abstracts/search?q=board%20drilling" title=" board drilling"> board drilling</a> </p> <a href="https://publications.waset.org/abstracts/20797/adapting-the-chemical-reaction-optimization-algorithm-to-the-printed-circuit-board-drilling-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4970</span> Indigenous Hair Treatment in Abyssinia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Makda%20Yeshitela%20Kifele">Makda Yeshitela Kifele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hair treatment prevents the hair from loss of volume, changing colour, and damaging its properties of the hair. Hair is the beauty of human beings that makes people beautiful and takes the other hearts to see them and to give them an appreciation for their effort to treat their hair and save it from damage. There are different methods to protect human hair from loss and damage that influence human psychology better than the problems. Chemicals products are available in the world that keeps safely the hair and provide beauty for the hair. But chemical products have side effects and are not cost-effective. Even some of the chemicals are allergic for users and left some changes in the hair. Indigenous hair treatment is an effective method that reduces the bad effects and the problems of the chemical that are lefts in human being’slife. Indigenous hair treatment can treat the hair safely and effectively that does not have much effect or spots in the human hair the users rather, it improves some attributes of the hair such that shine, quality, quantity improvements, length, and flexibility can be modified by these indigenous treatments. Rate is the local plant that plays a significant role in hair treatment. Rate is the local plant that can be available everywhere in the country, and anybody can be used for hair treatments. For this research, 50 women are identified as sample populations with different hair characteristics. The treatments were collected from the fields and squeezed into the pots to be prepared as specimens. The squeezed plants were deposited in the refrigerator for three days with some amounts of salts to prevent some bacteria. Chemical analysis has been done to sort out some detrimental substances. So the result showed that there are no detrimental substances that affect the hair properties and the health of the users. The sample population used the oil for one month without any other oily cosmetics that disturbs the treatment. The output is very effective and brings shining the hair, preventing greying of the hair, showing fast-growing, increasing the volume of the hair, and becoming flexible and curly, straight hair, thicker, and with no allergic effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indigenous" title="indigenous">indigenous</a>, <a href="https://publications.waset.org/abstracts/search?q=chemicals" title=" chemicals"> chemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=curly" title=" curly"> curly</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/158660/indigenous-hair-treatment-in-abyssinia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4969</span> Association between Attention Deficit Hyperactivity Disorder Medication, Cannabis, and Nicotine Use, Mental Distress, and Other Psychoactive Substances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Scott">Nicole Scott</a>, <a href="https://publications.waset.org/abstracts/search?q=Emily%20Dwyer"> Emily Dwyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Cara%20Patrissy"> Cara Patrissy</a>, <a href="https://publications.waset.org/abstracts/search?q=Samantha%20Bonventre"> Samantha Bonventre</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Begdache"> Lina Begdache</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Across North America, the use and abuse of Attention Deficit Hyperactivity Disorder (ADHD) medication, cannabis, nicotine, and other psychoactive substances across college campuses have become an increasingly prevalent problem. Students frequently use these substances to aid their studying or deal with their mental health issues. However, it is still unknown what psychoactive substances are likely to be abused when college students illicitly use ADHD medication. In addition, it is not clear which psychoactive substance is associated with mental distress. Thus, the purpose of this study is to fill these gaps by assessing the use of different psychoactive substances when illicit ADHD medication is used; and how this association relates to mental stress. A total of 702 undergraduate students from different college campuses in the U.S. completed an anonymous survey distributed online. Data were self-reported on demographics, the use of ADHD medications, cannabis, nicotine, other psychoactive drugs, and mental distress, and feelings and opinions on the use of illicit study drugs were all included in the survey. Mental distress was assessed using the Kessler Psychological Distress 6 Scale. Data were analyzed in SPSS, Version 25.0, using Pearson’s Correlation Coefficient. Our results show that use of ADHD medication, cannabis use (non-frequent and very frequent), and nicotine use (non-frequent and very frequent), there were both statistically significant positive and negative correlations to specific psychoactive substances and their corresponding frequencies. Along the same lines, ADHD medication, cannabis use (non-frequent and very frequent), and nicotine use (non-frequent and very frequent) had statistically significant positive and negative correlations to specific mental distress experiences. As these findings are combined, a vicious loop can initiate a cycle where individuals who abuse psychoactive substances may or may not be inclined to use other psychoactive substances. This may later inhibit brain functions in those main areas of the brain stem, amygdala, and prefrontal cortex where this vicious cycle may or may not impact their mental distress. Addressing the impact of study drug abuse and its potential to be associated with further substance abuse may provide an educational framework and support proactive approaches to promote awareness among college students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stimulant" title="stimulant">stimulant</a>, <a href="https://publications.waset.org/abstracts/search?q=depressant" title=" depressant"> depressant</a>, <a href="https://publications.waset.org/abstracts/search?q=nicotine" title=" nicotine"> nicotine</a>, <a href="https://publications.waset.org/abstracts/search?q=ADHD%20medication" title=" ADHD medication"> ADHD medication</a>, <a href="https://publications.waset.org/abstracts/search?q=psychoactive%20substances" title=" psychoactive substances"> psychoactive substances</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20health" title=" mental health"> mental health</a>, <a href="https://publications.waset.org/abstracts/search?q=illicit" title=" illicit"> illicit</a>, <a href="https://publications.waset.org/abstracts/search?q=ecstasy" title=" ecstasy"> ecstasy</a>, <a href="https://publications.waset.org/abstracts/search?q=adrenochrome" title=" adrenochrome"> adrenochrome</a> </p> <a href="https://publications.waset.org/abstracts/162965/association-between-attention-deficit-hyperactivity-disorder-medication-cannabis-and-nicotine-use-mental-distress-and-other-psychoactive-substances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4968</span> Challenges and Pedagogical Strategies in Teaching Chemical Bonding: Perspectives from Moroccan Educators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Atibi">Sara Atibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Azzeddine%20Atibi"> Azzeddine Atibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salim%20Ahmed"> Salim Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Khadija%20El%20Kababi"> Khadija El Kababi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of chemical bonding is fundamental in chemistry education, ubiquitous in school curricula, and essential to numerous topics in the field. Mastery of this concept enables students to predict and explain the physical and chemical properties of substances. However, chemical bonding is often regarded as one of the most complex concepts for secondary and higher education students to comprehend, due to the underlying complex theory and the use of abstract models. Teachers also encounter significant challenges in conveying this concept effectively. This study aims to identify the difficulties and alternative conceptions faced by Moroccan secondary school students in learning about chemical bonding, as well as the pedagogical strategies employed by teachers to overcome these obstacles. A survey was conducted involving 150 Moroccan secondary school physical science teachers, using a structured questionnaire comprising closed, open-ended, and multiple-choice questions. The results reveal frequent student misconceptions, such as the octet rule, molecular geometry, and molecular polarity. Contributing factors to these misconceptions include the abstract nature of the concepts, the use of models, and teachers' difficulties in explaining certain aspects of chemical bonding. The study proposes improvements for teaching chemical bonding, such as integrating information and communication technologies (ICT), diversifying pedagogical tools, and considering students' pre-existing conceptions. These recommendations aim to assist teachers, curriculum developers, and textbook authors in making chemistry more accessible and in addressing students' misconceptions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20bonding" title="chemical bonding">chemical bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20conceptions" title=" alternative conceptions"> alternative conceptions</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry%20education" title=" chemistry education"> chemistry education</a>, <a href="https://publications.waset.org/abstracts/search?q=pedagogical%20strategies" title=" pedagogical strategies"> pedagogical strategies</a> </p> <a href="https://publications.waset.org/abstracts/188546/challenges-and-pedagogical-strategies-in-teaching-chemical-bonding-perspectives-from-moroccan-educators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4967</span> Chemistry and Biological Activity of Feed Additive for Poultry Farming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malkhaz%20Jokhadze">Malkhaz Jokhadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Vakhtang%20Mshvildadze"> Vakhtang Mshvildadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Levan%20Makaradze"> Levan Makaradze</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterine%20Mosidze"> Ekaterine Mosidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Salome%20Barbaqadze"> Salome Barbaqadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Murtazashvili"> Mariam Murtazashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Dali%20Berashvili"> Dali Berashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Koba%20sivsivadze"> Koba sivsivadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Lasha%20Bakuridze"> Lasha Bakuridze</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliosha%20Bakuridze"> Aliosha Bakuridze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Essential oils are one of the most important groups of biologically active substances present in plants. Due to the chemical diversity of components, essential oils and their preparations have a wide spectrum of pharmacological action. They have bactericidal, antiviral, fungicidal, antiprotozoal, anti-inflammatory, spasmolytic, sedative and other activities. They are expectorant, spasmolytic, sedative, hypotensive, secretion enhancing, antioxidant remedies. Based on preliminary pharmacological studies, we have developed a formulation called &ldquo;Phytobiotic&rdquo; containing essential oils, a feed additive for poultry as an alternative to antibiotics. Phytobiotic is a water-soluble powder containing a composition of essential oils of thyme, clary, monarda and auxiliary substances: dry extract of liquorice and inhalation lactose. On this stage of research, the goal was to study the chemical composition of provided phytobiotic, identify the main substances and determine their quantity, investigate the biological activity of phytobiotic through <em>in vitro</em> and <em>in vivo</em> studies. Using gas chromatography-mass spectrometry, 38 components were identified in phytobiotic, representing acyclic-, monocyclic-, bicyclic-, and sesquiterpenes. Together with identification of main active substances, their quantitative content was determined, including acyclic terpene alcohol &beta;-linalool, acyclic terpene ketone linalyl acetate, monocyclic terpenes: D-limonene and &gamma;-terpinene, monocyclic aromatic terpene thymol. Provided phytobiotic has pronounced and at the same time broad spectrum of antibacterial activity. In the cell model, phytobiotic showed weak antioxidant activity, and it was stronger in the ORAC (chemical model) tests. Meanwhile anti-inflammatory activity was also observed. When fowls were supplied feed enriched with phytobiotic, it was observed that gained weight of the chickens in the experimental group exceeded the same data for the control group during the entire period of the experiment. The survival rate of broilers in the experimental group during the growth period was 98% compared to -94% in the control group. As a result of conducted researches probable four different mechanisms which are important for the action of phytobiotics were identified: sensory, metabolic, antioxidant and antibacterial action. General toxic, possible local irritant and allergenic effects of phytobiotic were also investigated. Performed assays proved that formulation is safe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clary" title="clary">clary</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=monarda" title=" monarda"> monarda</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry" title=" poultry"> poultry</a>, <a href="https://publications.waset.org/abstracts/search?q=phytobiotics" title=" phytobiotics"> phytobiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=thyme" title=" thyme"> thyme</a> </p> <a href="https://publications.waset.org/abstracts/134867/chemistry-and-biological-activity-of-feed-additive-for-poultry-farming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4966</span> Method of Estimating Absolute Entropy of Municipal Solid Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francis%20Chinweuba%20Eboh">Francis Chinweuba Eboh</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Ahlstr%C3%B6m"> Peter Ahlström</a>, <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Richards"> Tobias Richards</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Entropy, as an outcome of the second law of thermodynamics, measures the level of irreversibility associated with any process. The identification and reduction of irreversibility in the energy conversion process helps to improve the efficiency of the system. The entropy of pure substances known as absolute entropy is determined at an absolute reference point and is useful in the thermodynamic analysis of chemical reactions; however, municipal solid waste (MSW) is a structurally complicated material with unknown absolute entropy. In this work, an empirical model to calculate the absolute entropy of MSW based on the content of carbon, hydrogen, oxygen, nitrogen, sulphur, and chlorine on a dry ash free basis (daf) is presented. The proposed model was derived from 117 relevant organic substances which represent the main constituents in MSW with known standard entropies using statistical analysis. The substances were divided into different waste fractions; namely, food, wood/paper, textiles/rubber and plastics waste and the standard entropies of each waste fraction and for the complete mixture were calculated. The correlation of the standard entropy of the complete waste mixture derived was found to be s<sup>o</sup><strong><sub>msw</sub></strong>= 0.0101C + 0.0630H + 0.0106O + 0.0108N + 0.0155S + 0.0084Cl (kJ.K<sup>-1</sup>.kg) and the present correlation can be used for estimating the absolute entropy of MSW by using the elemental compositions of the fuel within the range of 10.3% <strong>&le;</strong>&nbsp;C <strong>&le; </strong>95.1%, 0.0% <strong>&le;</strong>&nbsp;H <strong>&le;</strong>&nbsp;14.3%, 0.0% <strong>&le;</strong>&nbsp;O <strong>&le;</strong>&nbsp;71.1%, 0.0 <strong>&le;</strong>&nbsp;N <strong>&le;</strong>&nbsp;66.7%, 0.0% <strong>&le;</strong>&nbsp;S <strong>&le;</strong>&nbsp;42.1%, 0.0% <strong>&le;</strong>&nbsp;Cl <strong>&le;</strong>&nbsp;89.7%. The model is also applicable for the efficient modelling of a combustion system in a waste-to-energy plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absolute%20entropy" title="absolute entropy">absolute entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=irreversibility" title=" irreversibility"> irreversibility</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste" title=" municipal solid waste"> municipal solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=waste-to-energy" title=" waste-to-energy"> waste-to-energy</a> </p> <a href="https://publications.waset.org/abstracts/48288/method-of-estimating-absolute-entropy-of-municipal-solid-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20substances&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20substances&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20substances&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20substances&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20substances&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20substances&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20substances&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20substances&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20substances&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20substances&amp;page=166">166</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20substances&amp;page=167">167</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20substances&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10