CINXE.COM

Search results for: radial diffuser

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: radial diffuser</title> <meta name="description" content="Search results for: radial diffuser"> <meta name="keywords" content="radial diffuser"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="radial diffuser" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="radial diffuser"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 439</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: radial diffuser</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">439</span> Experimental Characterization and Modelling of Microfluidic Radial Diffusers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eric%20Chappel">Eric Chappel</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitry%20Dumont-Fillon"> Dimitry Dumont-Fillon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugo%20Musard"> Hugo Musard</a>, <a href="https://publications.waset.org/abstracts/search?q=Harald%20van%20Lintel"> Harald van Lintel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A microfluidic radial diffuser typically comprises a hole in a membrane, a small gap and pillar centred with the hole. The fluid is forced to flow radially in this gap between the membrane and the pillar. Such diffusers are notably used to form flow control valves, wherein several holes are machined into a flexible membrane progressively deflecting against pillars as the pressure increases. The fluidic modelling of such diffuser is made difficult by the presence of a transition region between the hole and the diffuser itself. An experimental investigation has been conducted using SOI wafers to form membranes with only one centred hole and Pyrex wafers for the substrate and pillars, both wafers being anodically bonded after alignment. A simple fluidic model accounting for the specific geometry of the diffuser is proposed and compared to experimental results. A good match is obtained, for Reynolds number in the range 0.5 to 35 using the analytical formula of a radial diffuser in the laminar regime with an effective inner radius that is 40% smaller than the real radius, in order to simulate correctly the flow constriction at the entrance of the diffuser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radial%20diffuser" title="radial diffuser">radial diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control%20valve" title=" flow control valve"> flow control valve</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title=" numerical modelling"> numerical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a> </p> <a href="https://publications.waset.org/abstracts/84032/experimental-characterization-and-modelling-of-microfluidic-radial-diffusers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">438</span> Lightweight High-Pressure Ratio Centrifugal Compressor for Vehicles-Investigation of Pipe Diffuser Designs by Means of CFD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eleni%20Ioannou">Eleni Ioannou</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascal%20Nucara"> Pascal Nucara</a>, <a href="https://publications.waset.org/abstracts/search?q=Keith%20Pullen"> Keith Pullen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject of this paper is the investigation of the best efficiency design of a compressor diffuser applied in new lightweight, ultra efficient micro-gas turbine engines for vehicles. The Computational Fluid Dynamics (CFD) results are obtained utilizing steady state simulations for a wedge and an &rdquo;oval&rdquo; type pipe diffuser in an effort to identify the beneficial effects of the pipe diffuser design. The basic flow features are presented with particular focus on the optimization of the pipe diffuser leading to higher efficiencies for the compressor stage. The optimised pipe diffuser is designed to exploit the 3D freedom enabled by Selective Laser Melting, hence purposely involves an investigation of geometric characteristics that do not follow the traditional diffuser concept. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20compressor" title=" centrifugal compressor"> centrifugal compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-gas%20turbine" title=" micro-gas turbine"> micro-gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=pipe%20diffuser" title=" pipe diffuser"> pipe diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=SLM" title=" SLM"> SLM</a>, <a href="https://publications.waset.org/abstracts/search?q=wedge%20diffuser" title=" wedge diffuser"> wedge diffuser</a> </p> <a href="https://publications.waset.org/abstracts/39107/lightweight-high-pressure-ratio-centrifugal-compressor-for-vehicles-investigation-of-pipe-diffuser-designs-by-means-of-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">437</span> Numerical Investigation of the Diffuser: Geometrical Parameters Effect on Flow Characteristics for Diffuser Augmented Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hany%20El%20Said%20Fawaz">Hany El Said Fawaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study deals with numerical simulation using a commercial package 'ANSYS FLUENT 14.5' for flow characteristics of a flanged diffuser wind turbine. Influence of geometrical parameters such as flange height, diffuser length, and expansion angle on the lift and drag performance were investigated. As the angle of expansion increases, a considerable flow acceleration through the diffuser occur at expansion angle ranged from 0° and 12° due to the presence of undisturbed streamlines. after that flow circulation is developed near the diffuser outlet and increase with increasing expansion angle which causes a negligible effect of expansion angle. The effect of diffuser length on flow behavior shows that when the diffuser length ratio is less than 1.25, flow acceleration is observed and increased with diffuser length ratio. After this value, the flow field at diffuser outlet is characterized by a recirculation zone. The diffuser flange has an impact effect of the flow behavior as a low pressure zone is developed behind the flange, while a high pressure zone is generated in front of it. As the flange height increase, the intensity of both low and high pressure regions increase which tend to accelerate the flow inside the diffuser till flange height ratio reaches to 0.75. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title="wind turbine">wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=flanged%20diffuser" title=" flanged diffuser"> flanged diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=expansion%20angle" title=" expansion angle"> expansion angle</a>, <a href="https://publications.waset.org/abstracts/search?q=diffuser%20length" title=" diffuser length"> diffuser length</a> </p> <a href="https://publications.waset.org/abstracts/76610/numerical-investigation-of-the-diffuser-geometrical-parameters-effect-on-flow-characteristics-for-diffuser-augmented-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">436</span> Viscous Flow Computations for the Diffuser Section of a Large Cavitation Tunnel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Y.%20Gurkan">Ahmet Y. Gurkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cagatay%20S.%20Koksal"> Cagatay S. Koksal</a>, <a href="https://publications.waset.org/abstracts/search?q=Cagri%20Aydin"> Cagri Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Oral%20Unal"> U. Oral Unal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper covers the viscous flow computations for the asymmetric diffuser section of a large, high-speed cavitation tunnel which will be constructed in Istanbul Technical University. The analyses were carried out by using the incompressible Reynold-Averaged-Navier-Stokes equations. While determining the diffuser geometry, a high quality, separation-free flow field with minimum energy loses was particularly aimed. The expansion angle has a critical role on the diffuser hydrodynamic performance. In order obtain a relatively short diffuser length, due to the constructive limitations, and hydrodynamic energy effectiveness, three diffuser sections with varying expansion angles for side and bottom walls were considered. A systematic study was performed to determine the most effective diffuser configuration. The results revealed that the inlet condition of the diffuser greatly affects its flow field. The inclusion of the contraction section in the computations substantially modified the flow topology in the diffuser. The effect of the diffuser flow on the test section flow characteristics was clearly observed. The influence of the introduction of small chamfers at the corners of the diffuser geometry is also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20diffuser" title="asymmetric diffuser">asymmetric diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=diffuser%20design" title=" diffuser design"> diffuser design</a>, <a href="https://publications.waset.org/abstracts/search?q=cavitation%20tunnel" title=" cavitation tunnel"> cavitation tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20flow" title=" viscous flow"> viscous flow</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title=" computational fluid dynamics (CFD)"> computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=rans" title=" rans"> rans</a> </p> <a href="https://publications.waset.org/abstracts/62078/viscous-flow-computations-for-the-diffuser-section-of-a-large-cavitation-tunnel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">435</span> Temperature Distribution Enhancement in a Conical Diffuser Fitted with Helical Screw-Tape with and without Center-Rod</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehan%20Sabah%20Shukri">Ehan Sabah Shukri</a>, <a href="https://publications.waset.org/abstracts/search?q=Wirachman%20Wisnoe"> Wirachman Wisnoe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature distribution investigation in a conical diffuser fitted with helical screw-tape with and without center-rod is studied numerically. A helical screw-tape is inserted in the diffuser to create swirl flow that helps to enhance the temperature distribution rate with inlet Reynolds number 4.3 x 104. Three pitch lengths ratios (Y/L = 0.153, 0.23 and 0.307) for the helical screw-tape with and without center-rod are simulated and compared. The geometry of the conical diffuser and the inlet condition for both arrangements are kept constant. Numerical findings show that the helical screw-tape inserts without center-rod perform significantly better than the helical tape inserts with center-rod in the conical diffuser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffuser" title="diffuser">diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20distribution" title=" temperature distribution"> temperature distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=pitch%20ratio" title=" pitch ratio"> pitch ratio</a> </p> <a href="https://publications.waset.org/abstracts/45021/temperature-distribution-enhancement-in-a-conical-diffuser-fitted-with-helical-screw-tape-with-and-without-center-rod" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">434</span> Lifetime Assessment of Highly Efficient Metal-Based Air-Diffuser through Accelerated Degradation Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinyoung%20Choi">Jinyoung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Ho%20Yoon"> Tae-Ho Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunmook%20Lee"> Sunmook Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Degradation of standard oxygen transfer efficiency (SOTE) with time was observed for the assessment of lifetime of metal-based air-diffuser, which displaced a polymer composite-based air-diffuser in order to attain a longer lifetime in the actual field. The degradation of air-diffuser occurred due to the failure of the formation of small and uniform air bubbles since the patterns formed on the disc of air-diffuser deteriorated and/or changed from their initial shapes while they were continuously exposed to the air blowing condition during the operation in the field. Therefore, the lifetime assessment of metal-based air-diffuser was carried out through an accelerated degradation test by accelerating the air-blowing conditions in 200 L/min, 300 L/min, and 400 L/min and the lifetime of normal operating condition at 120 L/min was predicted. It was found that Weibull distribution was the most proper one for describing the lifetime distribution of metal-based air-diffuser in the present study. The shape and scale parameters indicated that the accelerated blowing conditions were all within the acceleration domain. The lifetime was predicted by adopting inverse power model for a stress-life relationship and estimated to be B10=94,004 hrs with CL=95%. Acknowledgement: This work was financially supported by the Ministry of Trade, Industry and Energy (Grant number: N0001475). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerated%20degradation%20test" title="accelerated degradation test">accelerated degradation test</a>, <a href="https://publications.waset.org/abstracts/search?q=air-diffuser" title=" air-diffuser"> air-diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime%20assessment" title=" lifetime assessment"> lifetime assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=SOTE" title=" SOTE"> SOTE</a> </p> <a href="https://publications.waset.org/abstracts/64857/lifetime-assessment-of-highly-efficient-metal-based-air-diffuser-through-accelerated-degradation-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">562</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">433</span> 3D Numerical Simulation on Annular Diffuser Temperature Distribution Enhancement by Different Twist Arrangement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehan%20Sabah%20Shukri">Ehan Sabah Shukri</a>, <a href="https://publications.waset.org/abstracts/search?q=Wirachman%20Wisnoe"> Wirachman Wisnoe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of twist arrangement on the temperature distribution in an annular diffuser fitted with twisted rectangular hub is investigated. Different pitches (Y = 120 mm, 100 mm, 80 mm, and 60 mm) for the twist arrangements are simulated to be compared. The geometry of the annular diffuser and the inlet condition for the hub arrangements are kept constant. The result reveals that using twisted rectangular hub insert with different pitches will force the temperature to distribute in a circular direction. However, temperature distribution will be enhanced with the length pitch increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title="numerical simulation">numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=twist%20arrangement" title=" twist arrangement"> twist arrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=annular%20diffuser" title=" annular diffuser"> annular diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20distribution" title=" temperature distribution"> temperature distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20flow" title=" swirl flow"> swirl flow</a>, <a href="https://publications.waset.org/abstracts/search?q=pitches" title=" pitches"> pitches</a> </p> <a href="https://publications.waset.org/abstracts/12978/3d-numerical-simulation-on-annular-diffuser-temperature-distribution-enhancement-by-different-twist-arrangement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">432</span> Prediction of Turbulent Separated Flow in a Wind Tunel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Boukhadia">Karima Boukhadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the subsonic flow in an asymmetrical diffuser was simulated numerically using code CFX 11.0 and its generator of grid ICEM CFD. Two models of turbulence were tested: K- ε and K- ω SST. The results obtained showed that the K- ε model singularly over-estimates the speed value close to the wall and that the K- ω SST model is qualitatively in good agreement with the experimental results of Buice and Eaton 1997. They also showed that the separation and reattachment of the fluid on the tilted wall strongly depends on its angle of inclination and that the length of the zone of separation increases with the angle of inclination of the lower wall of the diffuser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20diffuser" title="asymmetric diffuser">asymmetric diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a>, <a href="https://publications.waset.org/abstracts/search?q=reattachment" title=" reattachment"> reattachment</a>, <a href="https://publications.waset.org/abstracts/search?q=tilt%20angle" title=" tilt angle"> tilt angle</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20zone" title=" separation zone"> separation zone</a> </p> <a href="https://publications.waset.org/abstracts/26379/prediction-of-turbulent-separated-flow-in-a-wind-tunel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">431</span> Flow Behavior and Performances of Centrifugal Compressor Stage Vaneless Diffusers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.Galerkin">Y.Galerkin</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Solovieva"> O. Solovieva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow parameters are calculated in vaneless diffusers with relative width 0,014 – 0,10 constant along radii. Inlet flow angles and similarity criteria were varied. Information about flow structure is presented – meridian streamlines configuration, information on flow full development, flow separation. Polytrophic efficiency, loss and recovery coefficient are used to compare diffusers’ effectiveness. The sample of narrow diffuser optimization by conical walls application is presented. Three tampered variants of a wide diffuser are compared too. The work is made in the R&D laboratory “Gas dynamics of turbo machines” of the TU SPb. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vaneless%20diffuser" title="vaneless diffuser">vaneless diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20width" title=" relative width"> relative width</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20angle" title=" flow angle"> flow angle</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20separation" title=" flow separation"> flow separation</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20coefficient" title=" loss coefficient"> loss coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20criteria" title=" similarity criteria"> similarity criteria</a> </p> <a href="https://publications.waset.org/abstracts/15996/flow-behavior-and-performances-of-centrifugal-compressor-stage-vaneless-diffusers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">430</span> Extrudate Swell under the Effect of Radial Flow and Intrinsic Factors to the Polymer Upstream of the Die</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hela%20Krir">Hela Krir</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhak%20Ayadi"> Abdelhak Ayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chedly%20Bradaii"> Chedly Bradaii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of both intrinsic factors, elastic energy and memory effect, and radial flow on the appearance and the evolution of the extrudate swelling are investigated in the present work. The experiments have been performed with linear polydimethylsiloxane (PDMS) via a capillary rheometer in which a convergent radial flow was created upstream the contraction. The correspondence between the effects of radial flow, entry elastic stored energy and memory effect is discussed. In particular, as the influence of the considered radial flow, extrudate photographs showed that when the gap ratio is reduced, the extrudate swell is lessened than what it is when radial flow geometry is not installed. Moreover, with a narrower gap, the polymer stores less energy during its passage through the die which implies a lower extrudate swelling at the outlet of the die. Results previously mentioned may be related both to shear and elongational components of radial flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20energy" title="elastic energy">elastic energy</a>, <a href="https://publications.waset.org/abstracts/search?q=extrudate%20swell" title=" extrudate swell"> extrudate swell</a>, <a href="https://publications.waset.org/abstracts/search?q=memory%20effect" title=" memory effect"> memory effect</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20flow" title=" radial flow"> radial flow</a> </p> <a href="https://publications.waset.org/abstracts/87319/extrudate-swell-under-the-effect-of-radial-flow-and-intrinsic-factors-to-the-polymer-upstream-of-the-die" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">429</span> Calculation the Left Ventricle Wall Radial Strain and Radial SR Using Tagged Magnetic Resonance Imaging Data (tMRI)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Alenezy">Mohammed Alenezy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The function of cardiac motion can be used as an indicator of the heart abnormality by evaluating longitudinal, circumferential, and Radial Strain of the left ventricle. In this paper, the Radial Strain and SR is studied using tagged MRI (tMRI) data during the cardiac cycle on the mid-ventricle level of the left ventricle. Materials and methods: The short-axis view of the left ventricle of five healthy human (three males and two females) and four healthy male rats were imaged using tagged magnetic resonance imaging (tMRI) technique covering the whole cardiac cycle on the mid-ventricle level. Images were processed using Image J software to calculate the left ventricle wall Radial Strain and radial SR. The left ventricle Radial Strain and radial SR were calculated at the mid-ventricular level during the cardiac cycle. The peak Radial Strain for the human and rat heart was 40.7±1.44, and 46.8±0.68 respectively, and it occurs at 40% of the cardiac cycle for both human and rat heart. The peak diastolic and systolic radial SR for human heart was -1.78 s-1 ± 0.02 s-1 and 1.10±0.08 s-1 respectively, while for rat heart it was -5.16± 0.23s-1 and 4.25±0.02 s-1 respectively. Conclusion: This results show the ability of the tMRI data to characterize the cardiac motion during the cardiac cycle including diastolic and systolic phases which can be used as an indicator of the cardiac dysfunction by estimating the left ventricle Radial Strain and radial SR at different locations of the cardiac tissue. This study approves the validity of the tagged MRI data to describe accurately the cardiac radial motion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=left%20ventricle" title="left ventricle">left ventricle</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20strain" title=" radial strain"> radial strain</a>, <a href="https://publications.waset.org/abstracts/search?q=tagged%20MRI" title=" tagged MRI"> tagged MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiac%20cycle" title=" cardiac cycle"> cardiac cycle</a> </p> <a href="https://publications.waset.org/abstracts/21036/calculation-the-left-ventricle-wall-radial-strain-and-radial-sr-using-tagged-magnetic-resonance-imaging-data-tmri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">428</span> Rotor Radial Vent Pumping in Large Synchronous Electrical Machines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darren%20Camilleri">Darren Camilleri</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Rolston"> Robert Rolston</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rotor radial vents make use of the pumping effect to increase airflow through the active material thus reduce hotspot temperatures. The effect of rotor radial pumping in synchronous machines has been studied previously. This paper presents the findings of previous studies and builds upon their theories using a parametric numerical approach to investigate the rotor radial pumping effect. The pressure head generated by the poles and radial vent flow-rate were identified as important factors in maximizing the benefits of the pumping effect. The use of Minitab and ANSYS Workbench to investigate the key performance characteristics of radial pumping through a Design of Experiments (DOE) was described. CFD results were compared with theoretical calculations. A correlation for each response variable was derived through a statistical analysis. Findings confirmed the strong dependence of radial vent length on vent pressure head, and radial vent cross-sectional area was proved to be significant in maximising radial vent flow rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling" title=" cooling"> cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20machines" title=" electrical machines"> electrical machines</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a> </p> <a href="https://publications.waset.org/abstracts/41880/rotor-radial-vent-pumping-in-large-synchronous-electrical-machines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">427</span> CFD Modeling and Optimization of Gas Cyclone Separator for Performance Improvement </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Beit%20Saeid">N. Beit Saeid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cyclones are used in the field of air industrial gases pollution and control the pollution with centrifugal forces that is generated with spatial geometry of the cyclone. Their simple design, low capital and maintenance costs and adaptability to a wide range of operating conditions have made cyclones one of the most widely used industrial dust collectors. Their cost of operation is proportional to the fan energy required to overcome their pressure drop. Optimized geometry of outlet diffuser of the cyclones potentially could reduce exit pressure losses without affecting collection efficiency. Three rectangular outlets and a radial outlet with a variable opening had been analyzed on two cyclones. Pressure drop was investigated for inlet velocities from about 10 to 20 m s−1. The radial outlet reduced cyclone pressure drop by between 8.7 and 11.9 percent when its exit area was equal to the flow area of the cyclone vortex finder or gas exit. A simple payback based on avoided energy costs was estimated to be between 3600 and 5000 h, not including installation cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclone" title="cyclone">cyclone</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/34559/cfd-modeling-and-optimization-of-gas-cyclone-separator-for-performance-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">426</span> Unusual High Origin and Superficial Course of Radial Artery: A Case Report with Embryological Explanation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anasuya%20Ghosh">Anasuya Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhramoy%20Chaudhury"> Subhramoy Chaudhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During routine cadaveric dissection at gross anatomy lab of our institution, a radial artery was found with unusual origin and superficial course. Normally the radial artery takes its origin as one of the terminal branches of brachial artery at the level of the neck of radius. It usually lies along the lateral border of fore arm deep to the brachioradialis muscle. While dissecting a 72-year-old Caucasian female cadaver, it was found that the right sided radial artery originated from the upper part of brachial artery of arm, 2 cm below the lower border of teres major muscle, from the lateral aspect of brachial artery. Then the radial artery superficially crossed the brachial artery and median nerve from lateral to medial direction and rested superficially at the cubital fossa. Embryologically, it can be explained as a failure of disappearance, or abnormal persistence of some insignificant embryonic vessels may give rise to this kind of vascular anomalies. As radial artery is one of the most important upper limb arteries, its variation and related complications are clinically significant. This unusual origin and course of radial artery should be kept in mind by all healthcare providers including surgeons and radiologists during routine venipuncture, orthopedic and plastic surgeries of arm, coronary angiographic procedures in radial approach etc. to prevent unwanted complications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brachial%20artery%20anomalies" title="brachial artery anomalies">brachial artery anomalies</a>, <a href="https://publications.waset.org/abstracts/search?q=brachio-radial%20artery" title=" brachio-radial artery"> brachio-radial artery</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20origin%20radial%20artery" title=" high origin radial artery"> high origin radial artery</a>, <a href="https://publications.waset.org/abstracts/search?q=superficial%20radial%20artery" title=" superficial radial artery"> superficial radial artery</a> </p> <a href="https://publications.waset.org/abstracts/72764/unusual-high-origin-and-superficial-course-of-radial-artery-a-case-report-with-embryological-explanation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">425</span> CFD Simulation Research on a Double Diffuser for Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Skiba">Krzysztof Skiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Zdzislaw%20Kaminski"> Zdzislaw Kaminski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind power is based on a variety of construction solutions to convert wind energy into electrical energy. These constructions are constrained by the correlation between their energy conversion efficiency and the area they occupy. Their energy conversion efficiency can be improved by wind tunnel tests of a rotor as a diffuser to optimize shapes of aerodynamic elements, to adapt these elements to changing conditions and to increase airflow intensity. This paper discusses the results of computer simulations and aerodynamic analyzes of this innovative diffuser design. The research aims at determining the aerodynamic phenomena triggered by the airflow inside this construction, and developing a design to improve the efficiency of the wind turbine. The research results enable us to design a diffuser with a double Venturi nozzle and specially shaped blades. The design of this type uses Bernoulli’s law on the behavior of the flowing medium in the tunnel of a decreasing diameter. The air flowing along the tunnel changes its velocity so the rotor inside such a decreased tunnel diameter rotates faster in this airflow than does the wind outside this tunnel, which makes the turbine more efficient. Additionally, airflow velocity is improved by applying aerodynamic rings with extended trailing edges to achieve controlled turbulent vortices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title="wind turbine">wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=cfd" title=" cfd"> cfd</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/50081/cfd-simulation-research-on-a-double-diffuser-for-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">424</span> Measurements of Radial Velocity in Fixed Fluidized Bed for Fischer-Tropsch Synthesis Using LDV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaolai%20Zhang">Xiaolai Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiwen%20Sun"> Qiwen Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Weixin%20Qian"> Weixin Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High temperature Fischer-Tropsch synthesis process use fixed fluidized bed as a reactor. In order to understand the flow behavior in the fluidized bed better, the research of how the radial velocity affect the entire flow field is necessary. Laser Doppler Velocimetry (LDV) was used to study the radial velocity distribution along the diameter direction of the cross-section of the particle in a fixed fluidized bed. The velocity in the cross-section is fluctuating within a small range. The direction of the speed is a random phenomenon. In addition to r/R is 1, the axial velocity are more than 6 times of the radial velocity, the radial velocity has little impact on the axial velocity in a fixed fluidized bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fischer-Tropsch%20synthesis" title="Fischer-Tropsch synthesis">Fischer-Tropsch synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Fixed%20fluidized%20bed" title=" Fixed fluidized bed"> Fixed fluidized bed</a>, <a href="https://publications.waset.org/abstracts/search?q=LDV" title=" LDV"> LDV</a>, <a href="https://publications.waset.org/abstracts/search?q=Velocity" title=" Velocity"> Velocity</a> </p> <a href="https://publications.waset.org/abstracts/24993/measurements-of-radial-velocity-in-fixed-fluidized-bed-for-fischer-tropsch-synthesis-using-ldv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">423</span> Evaluation of Carbon Dioxide Pressure through Radial Velocity Difference in Arterial Blood Modeled by Drift Flux Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Rima%20Cheniti">Aicha Rima Cheniti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Besbes"> Hatem Besbes</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Haggege"> Joseph Haggege</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Sintes"> Christophe Sintes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we are interested to determine the carbon dioxide pressure in the arterial blood through radial velocity difference. The blood was modeled as a two phase mixture (an aqueous carbon dioxide solution with carbon dioxide gas) by Drift flux model and the Young-Laplace equation. The distributions of mixture velocities determined from the considered model permitted the calculation of the radial velocity distributions with different values of mean mixture pressure and the calculation of the mean carbon dioxide pressure knowing the mean mixture pressure. The radial velocity distributions are used to deduce a calculation method of the mean mixture pressure through the radial velocity difference between two positions which is measured by ultrasound. The mean carbon dioxide pressure is then deduced from the mean mixture pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mean%20carbon%20dioxide%20pressure" title="mean carbon dioxide pressure">mean carbon dioxide pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20mixture%20pressure" title=" mean mixture pressure"> mean mixture pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20velocity" title=" mixture velocity"> mixture velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20velocity%20difference" title=" radial velocity difference"> radial velocity difference</a> </p> <a href="https://publications.waset.org/abstracts/51601/evaluation-of-carbon-dioxide-pressure-through-radial-velocity-difference-in-arterial-blood-modeled-by-drift-flux-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">422</span> Nonuniformity of the Piston Motion in a Radial Aircraft Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Pietrykowski">K. Pietrykowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bialy"> M. Bialy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Duk"> M. Duk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main disadvantages of radial engines is non-uniformity of operating cycles of each cylinder. This paper discusses the results of the kinematic analysis of pistons motion of the ASz-62IR radial engine. The ASz-62IR engine is produced in Poland and mounted in the M-18 Dromader and the An-2. The results are shown as the courses of the motion of the pistons. The discrepancies in the courses for individual pistons can result in different masses of the charge to fill the cylinders. Besides, pistons acceleration of individual cylinders is different, which triggers an additional vibration in the engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonuniformity" title="nonuniformity">nonuniformity</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic%20analysis" title=" kinematic analysis"> kinematic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=piston%20motion" title=" piston motion"> piston motion</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20engine" title=" radial engine"> radial engine</a> </p> <a href="https://publications.waset.org/abstracts/49925/nonuniformity-of-the-piston-motion-in-a-radial-aircraft-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">421</span> Modelling of Cavity Growth in Underground Coal Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Aghalayam">Preeti Aghalayam</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay%20Shah"> Jay Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Underground coal gasification (UCG) is the in-situ gasification of unmineable coals to produce syngas. In UCG, gasifying agents are injected into the coal seam, and a reactive cavity is formed due to coal consumption. The cavity formed is typically hemispherical, and this report consists of the MATLAB model of the UCG cavity to predict the composition of the output gases. There are seven radial and two time-variant ODEs. A MATLAB solver (ode15s) is used to solve the radial ODEs from the above equations. Two for-loops are implemented in the model, i.e., one for time variations and another for radial variation. In the time loop, the radial odes are solved using the MATLAB solver. The radial loop is nested inside the time loop, and the density odes are numerically solved using the Euler method. The model is validated by comparing it with the literature results of laboratory-scale experiments. The model predicts the radial and time variation of the product gases inside the cavity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gasification%20agent" title="gasification agent">gasification agent</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB%20model" title=" MATLAB model"> MATLAB model</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20coal%20gasification%20%28UCG%29" title=" underground coal gasification (UCG)"> underground coal gasification (UCG)</a> </p> <a href="https://publications.waset.org/abstracts/142719/modelling-of-cavity-growth-in-underground-coal-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">420</span> Thermal Performance of Radial Heat Sinks for LED Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jongchul%20Park">Jongchul Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Byon"> Chan Byon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the thermal performance of radial heat sinks for LED applications is investigated numerically and experimentally. The effect of geometrical parameters such as inner radius, fin height, fin length, and fin spacing, as well as the Elenbaas number, is considered. In addition, the effects of augmentation of concentric ring, perforation, and duct are extensively explored in order to enhance the thermal performance of conventional radial heat sink. The results indicate that the Elenbaas number and the fin radius have a significant effect on the thermal performance of the heat sink. The concentric ring affects the performance much, but the degree of affection is highly dependent on the orientation. The perforation always brings about higher thermal performance. The duct can effectively prevent the bypass of the natural convection flow, which in turn reduces the thermal resistance of the radial heat sink significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20heat%20sink" title=" radial heat sink"> radial heat sink</a>, <a href="https://publications.waset.org/abstracts/search?q=LED" title=" LED"> LED</a>, <a href="https://publications.waset.org/abstracts/search?q=Elenbaas" title=" Elenbaas"> Elenbaas</a> </p> <a href="https://publications.waset.org/abstracts/36553/thermal-performance-of-radial-heat-sinks-for-led-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">419</span> An Experimental Study of Diffuser-Enhanced Propeller Hydrokinetic Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matheus%20Nunes">Matheus Nunes</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Mendes"> Rafael Mendes</a>, <a href="https://publications.waset.org/abstracts/search?q=Taygoara%20Felamingo%20Oliveira"> Taygoara Felamingo Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Brasil%20Junior"> Antonio Brasil Junior</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind tunnel experiments of horizontal axis propeller hydrokinetic turbines model were carried out, in order to determine the performance behavior for different configurations and operational range. The present experiments introduce the use of two different geometries of rear diffusers to enhance the performance of the free flow machine. The present paper reports an increase of the power coefficient about 50%-80%. It represents an important feature that has to be taken into account in the design of this kind of machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffuser-enhanced%20turbines" title="diffuser-enhanced turbines">diffuser-enhanced turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrokinetic%20turbine" title=" hydrokinetic turbine"> hydrokinetic turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20experiments" title=" wind tunnel experiments"> wind tunnel experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20hydro" title=" micro hydro"> micro hydro</a> </p> <a href="https://publications.waset.org/abstracts/77392/an-experimental-study-of-diffuser-enhanced-propeller-hydrokinetic-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">418</span> The Effect of Swirl on the Flow Distribution in Automotive Exhaust Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr%20J.%20Skusiewicz">Piotr J. Skusiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnathan%20Saul"> Johnathan Saul</a>, <a href="https://publications.waset.org/abstracts/search?q=Ijhar%20Rusli"> Ijhar Rusli</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Aleksandrova"> Svetlana Aleksandrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen.%20F.%20Benjamin"> Stephen. F. Benjamin</a>, <a href="https://publications.waset.org/abstracts/search?q=Miroslaw%20Gall"> Miroslaw Gall</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Pierson"> Steve Pierson</a>, <a href="https://publications.waset.org/abstracts/search?q=Carol%20A.%20Roberts"> Carol A. Roberts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of turbocharging in automotive engines leads to swirling flow entering the catalyst. The behaviour of this type of flow within the catalyst has yet to be adequately documented. This work discusses the effect of swirling flow on the flow distribution in automotive exhaust catalysts. Compressed air supplied to a moving-block swirl generator allowed for swirling flow with variable intensities to be generated. Swirl intensities were measured at the swirl generator outlet using single-sensor hot-wire probes. The swirling flow was fed into diffusers with total angles of 10°, 30° and 180°. Downstream of the diffusers, a wash-coated diesel oxidation catalyst (DOC) of length 143.8 mm, diameter 76.2 mm and nominal cell density of 400 cpsi was fitted. Velocity profiles were measured at the outlet sleeve about 30 mm downstream of the monolith outlet using single-sensor hot-wire probes. Wall static pressure was recorded using a multi-tube manometer connected to pressure taps positioned along the diffuser walls. The results show that as swirl is increased, more of the flow is directed towards the diffuser walls. The velocity decreases around the centre-line and maximum velocities are observed close to the outer radius of the monolith for all flow rates. At the maximum swirl intensity, reversed flow was recorded near the centre of the monolith. Wall static pressure measurements in the 180° diffuser indicated no pressure recovery as the flow enters the diffuser. This is indicative of flow separation at the inlet to the diffuser. To gain insight into the flow structure, CFD simulations have been performed for the 180° diffuser for a flow rate of 63 g/s. The geometry of the model consists of the complete assembly from the upstream swirl generator to the outlet sleeve. Modelling of the flow in the monolith was achieved using the porous medium approach, where the monolith with parallel flow channels is modelled as a porous medium that resists the flow. A reasonably good agreement was achieved between the experimental and CFD results downstream of the monolith. The CFD simulations allowed visualisation of the separation zones and central toroidal recirculation zones that occur within the expansion region at certain swirl intensities which are highlighted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalyst" title="catalyst">catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=diffuser" title=" diffuser"> diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=hot-wire%20anemometry" title=" hot-wire anemometry"> hot-wire anemometry</a>, <a href="https://publications.waset.org/abstracts/search?q=swirling%20flow" title=" swirling flow"> swirling flow</a> </p> <a href="https://publications.waset.org/abstracts/58060/the-effect-of-swirl-on-the-flow-distribution-in-automotive-exhaust-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">417</span> Temperature Distribution Simulation of Divergent Fluid Flow with Helical Arrangement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehan%20Sabah%20Shukri">Ehan Sabah Shukri</a>, <a href="https://publications.waset.org/abstracts/search?q=Wirachman%20Wisnoe"> Wirachman Wisnoe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical study is performed to investigate the temperature distribution in an annular diffuser fitted with helical tape hub. Different pitches (Y = 20 mm, and Y = 30 mm) for the helical tape are studied with different heights (H = 20 mm, 22 mm, and 24 mm) to be compared. The geometry of the annular diffuser and the inlet condition for both hub arrangements are kept constant. The result obtains that using helical tape insert with different pitches and different heights will force the temperature to distribute in a helical direction; however the use of helical tape hub with height (H = 22 mm) for both pitches enhance the temperature distribution in a good manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helical%20tape" title="helical tape">helical tape</a>, <a href="https://publications.waset.org/abstracts/search?q=divergent%20fluid%20flow" title=" divergent fluid flow"> divergent fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20distribution" title=" temperature distribution"> temperature distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20flow" title=" swirl flow"> swirl flow</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/12774/temperature-distribution-simulation-of-divergent-fluid-flow-with-helical-arrangement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">416</span> Investigation and Perfection of Centrifugal Compressor Stages by CFD Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Galerkin">Y. Galerkin</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Marenina"> L. Marenina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stator elements «Vane diffuser + crossover + return channel» of stages with different specific speed were investigated by CFD calculations. The regime parameter was introduced to present efficiency and loss coefficient performance of all elements together. Flow structure demonstrated advantages and disadvantages of design. Flow separation in crossovers was eliminated by its shape modification. Efficiency increased visibly. Calculated CFD performances are in acceptable correlation with predicted ones by engineering design method. The information obtained is useful for design method better calibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vane%20diffuser" title="vane diffuser">vane diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20channel" title=" return channel"> return channel</a>, <a href="https://publications.waset.org/abstracts/search?q=crossover" title=" crossover"> crossover</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20coefficient" title=" loss coefficient"> loss coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=inlet%20flow%20angle" title=" inlet flow angle"> inlet flow angle</a> </p> <a href="https://publications.waset.org/abstracts/16297/investigation-and-perfection-of-centrifugal-compressor-stages-by-cfd-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">415</span> Assessment of Hypersaline Outfalls via Computational Fluid Dynamics Simulations: A Case Study of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mitchell%20J.%20Baum">Mitchell J. Baum</a>, <a href="https://publications.waset.org/abstracts/search?q=Badin%20Gibbes"> Badin Gibbes</a>, <a href="https://publications.waset.org/abstracts/search?q=Greg%20Collecutt"> Greg Collecutt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study details a three-dimensional field-scale numerical investigation conducted for the Gold Coast Desalination Plant (GCDP) offshore multiport brine diffuser. Quantitative assessment of diffuser performance with regard to trajectory, dilution and mapping of seafloor concentration distributions was conducted for 100% plant operation. The quasi-steady Computational Fluid Dynamics (CFD) simulations were performed using the Reynolds averaged Navier-Stokes equations with a k-ω shear stress transport turbulence closure scheme. The study compliments a field investigation, which measured brine plume characteristics under similar conditions. CFD models used an iterative mesh in a domain with dimensions 400 m long, 200 m wide and an average depth of 24.2 m. Acoustic Doppler current profiler measurements conducted in the companion field study exhibited considerable variability over the water column. The effect of this vertical variability on simulated discharge outcomes was examined. Seafloor slope was also accommodated into the model. Ambient currents varied predominantly in the longshore direction – perpendicular to the diffuser structure. Under these conditions, the alternating port orientation of the GCDP diffuser resulted in simultaneous subjection to co-propagating and counter-propagating ambient regimes. Results from quiescent ambient simulations suggest broad agreement with empirical scaling arguments traditionally employed in design and regulatory assessments. Simulated dynamic ambient regimes showed the influence of ambient crossflow upon jet trajectory, dilution and seafloor concentration is significant. The effect of ambient flow structure and the subsequent influence on jet dynamics is discussed, along with the implications for using these different simulation approaches to inform regulatory decisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=field-scale%20simulation" title=" field-scale simulation"> field-scale simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=multiport%20brine%20diffuser" title=" multiport brine diffuser"> multiport brine diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=negatively%20buoyant%20jet" title=" negatively buoyant jet"> negatively buoyant jet</a> </p> <a href="https://publications.waset.org/abstracts/61222/assessment-of-hypersaline-outfalls-via-computational-fluid-dynamics-simulations-a-case-study-of-the-gold-coast-desalination-plant-offshore-multiport-brine-diffuser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">414</span> Design and Evaluation on Sierpinski-Triangle Acoustic Diffusers Based on Fractal Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lingge%20Tan">Lingge Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongpeng%20Xu"> Hongpeng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jieun%20Yang"> Jieun Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Maarten%20Hornikx"> Maarten Hornikx</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acoustic diffusers are important components in enhancing the quality of room acoustics. This paper provides a type of modular diffuser based on the Sierpinski Triangle of the plane and combines it with fractal theory to expand the effective frequency range. In numerical calculations and full-scale model experiments, the effect of fractal design elements on normal-incidence diffusion coefficients is examined. It is demonstrated the reasonable times of iteration of modules is three, and the coverage density is 58.4% in the design frequency from 125Hz to 4kHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20diffuser" title="acoustic diffuser">acoustic diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal" title=" fractal"> fractal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sierpinski-triangle" title=" Sierpinski-triangle"> Sierpinski-triangle</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20coefficient" title=" diffusion coefficient"> diffusion coefficient</a> </p> <a href="https://publications.waset.org/abstracts/132869/design-and-evaluation-on-sierpinski-triangle-acoustic-diffusers-based-on-fractal-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">413</span> Performance Assessment of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser during ‘Hot Standby’ Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Baum">M. J. Baum</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Gibbes"> B. Gibbes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Grinham"> A. Grinham</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Albert"> S. Albert</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Gale"> D. Gale</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Fisher"> P. Fisher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alongside the rapid expansion of Seawater Reverse Osmosis technologies there is a concurrent increase in the production of hypersaline brine by-products. To minimize environmental impact, these by-products are commonly disposed into open-coastal environments via submerged diffuser systems as inclined dense jet outfalls. Despite the widespread implementation of this process, diffuser designs are typically based on small-scale laboratory experiments under idealistic quiescent conditions. Studies concerning diffuser performance in the field are limited. A set of experiments were conducted to assess the near field characteristics of brine disposal at the Gold Coast Desalination Plant offshore multiport diffuser. The aim of the field experiments was to determine the trajectory and dilution characteristics of the plume under various discharge configurations with production ranging 66 – 100% of plant operative capacity. The field monitoring system employed an unprecedented static array of temperature and electrical conductivity sensors in a three-dimensional grid surrounding a single diffuser port. Complimenting these measurements, Acoustic Doppler Current Profilers were also deployed to record current variability over the depth of the water column and wave characteristics. Recorded data suggested the open-coastal environment was highly active over the experimental duration with ambient velocities ranging 0.0 – 0.5 m∙s<sup>-1</sup>, with considerable variability over the depth of the water column observed. Variations in background electrical conductivity corresponding to salinity fluctuations of ± 1.7 g∙kg<sup>-1</sup> were also observed. Increases in salinity were detected during plant operation and appeared to be most pronounced 10 – 30 m from the diffuser, consistent with trajectory predictions described by existing literature. Plume trajectories and respective dilutions extrapolated from salinity data are compared with empirical scaling arguments. Discharge properties were found to adequately correlate with modelling projections. Temporal and spatial variation of background processes and their subsequent influence upon discharge outcomes are discussed with a view to incorporating the influence of waves and ambient currents in the design of brine outfalls into the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brine%20disposal" title="brine disposal">brine disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20study" title=" field study"> field study</a>, <a href="https://publications.waset.org/abstracts/search?q=negatively%20buoyant%20discharge" title=" negatively buoyant discharge"> negatively buoyant discharge</a> </p> <a href="https://publications.waset.org/abstracts/60323/performance-assessment-of-the-gold-coast-desalination-plant-offshore-multiport-brine-diffuser-during-hot-standby-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">412</span> Validation of the X-Ray Densitometry Method for Radial Density Pattern Determination of Acacia seyal var. seyal Tree Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanadi%20Mohamed%20Shawgi%20Gamal">Hanadi Mohamed Shawgi Gamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Claus%20Thomas%20Bues"> Claus Thomas Bues</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood density is a variable influencing many of the technological and quality properties of wood. Understanding the pattern of wood density radial variation is important for its end-use. The X-ray technique, traditionally applied to softwood species to assess the wood quality properties, due to its simple and relatively uniform wood structure. On the other hand, very limited information is available about the validation of using this technique for hardwood species. The suitability of using the X-ray technique for the determination of hardwood density has a special significance in countries like Sudan, where only a few timbers are well known. This will not only save the time consumed by using the traditional methods, but it will also enhance the investigations of the great number of the lesser known species, the thing which will fill the huge cap of lake information of hardwood species growing in Sudan. The current study aimed to evaluate the validation of using the X-ray densitometry technique to determine the radial variation of wood density of Acacia seyal var. seyal. To this, a total of thirty trees were collected randomly from four states in Sudan. The wood density radial trend was determined using the basic density as well as density obtained by the X-ray densitometry method in order to assess the validation of X-ray technique in wood density radial variation determination. The results showed that the pattern of radial trend of density obtained by X-ray technique is very similar to that achieved by basic density. These results confirmed the validation of using the X-ray technique for Acacia seyal var. seyal density radial trend determination. It also promotes the suitability of using this method in other hardwood species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=x-ray%20densitometry" title="x-ray densitometry">x-ray densitometry</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20density" title=" wood density"> wood density</a>, <a href="https://publications.waset.org/abstracts/search?q=Acacia%20seyal%20var.%20seyal" title=" Acacia seyal var. seyal"> Acacia seyal var. seyal</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20variation" title=" radial variation"> radial variation</a> </p> <a href="https://publications.waset.org/abstracts/127038/validation-of-the-x-ray-densitometry-method-for-radial-density-pattern-determination-of-acacia-seyal-var-seyal-tree-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">411</span> Solution of the Nonrelativistic Radial Wave Equation of Hydrogen Atom Using the Green&#039;s Function Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20U.%20Rahman">F. U. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Q.%20Zhang"> R. Q. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to develop a systematic numerical technique which can be easily extended to many-body problem. The Lippmann Schwinger equation (integral form of the Schrodinger wave equation) is solved for the nonrelativistic radial wave of hydrogen atom using iterative integration scheme. As the unknown wave function appears on both sides of the Lippmann Schwinger equation, therefore an approximate wave function is used in order to solve the equation. The Green’s function is obtained by the method of Laplace transform for the radial wave equation with excluded potential term. Using the Lippmann Schwinger equation, the product of approximate wave function, the Green’s function and the potential term is integrated iteratively. Finally, the wave function is normalized and plotted against the standard radial wave for comparison. The outcome wave function converges to the standard wave function with the increasing number of iteration. Results are verified for the first fifteen states of hydrogen atom. The method is efficient and consistent and can be applied to complex systems in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Green%E2%80%99s%20function" title="Green’s function">Green’s function</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20atom" title=" hydrogen atom"> hydrogen atom</a>, <a href="https://publications.waset.org/abstracts/search?q=Lippmann%20Schwinger%20equation" title=" Lippmann Schwinger equation"> Lippmann Schwinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20wave" title=" radial wave"> radial wave</a> </p> <a href="https://publications.waset.org/abstracts/42682/solution-of-the-nonrelativistic-radial-wave-equation-of-hydrogen-atom-using-the-greens-function-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">410</span> Investigation of Changes of Physical Properties of the Poplar Wood in Radial and Longitudinal Axis at Chaaloos Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Veisi">Afshin Veisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the physical properties of wood in poplar wood (Populous sp.) were analyzed in longitudinal and radial directions of the stem. Three Populous Alba tree were cut in chaloos zone and from each tree, 3 discs were selected at 130cm, half of tree and under of crown. The test samples from pith to bark (heartwood to sapwood) were prepared from these discs for measuring the involved properties such as, wet, dry and critical specific gravity, porosity, volume shrinkage and swelling based on the ASTM standard, and data in two radial and longitudinal directions in the trank were statistically analyzed. Such as, variations of wet, dry and critical specific gravity had in radial direction respectively: irregular increase, increase and increase, and in longitudinal direction respectively: irregular decrease, irregular increase and increase. Results of variations to moisture content and porosity show that in radial direction respectively: irregular increasing and decreasing, and in longitudinal direction from down to up respectively: irregular decreasing and stability. Volume shrinkage and swelling variations show in radial direction irregular and in longitudinal axial regular decreasing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poplar%20wood" title="poplar wood">poplar wood</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title=" physical properties"> physical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage" title=" shrinkage"> shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=swelling" title=" swelling"> swelling</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20specific%20gravity" title=" critical specific gravity"> critical specific gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20specific%20gravity" title=" wet specific gravity"> wet specific gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20specific%20gravity" title=" dry specific gravity"> dry specific gravity</a> </p> <a href="https://publications.waset.org/abstracts/49391/investigation-of-changes-of-physical-properties-of-the-poplar-wood-in-radial-and-longitudinal-axis-at-chaaloos-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20diffuser&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20diffuser&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20diffuser&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20diffuser&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20diffuser&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20diffuser&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20diffuser&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20diffuser&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20diffuser&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20diffuser&amp;page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20diffuser&amp;page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20diffuser&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10