CINXE.COM

Search results for: monochromatic light

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: monochromatic light</title> <meta name="description" content="Search results for: monochromatic light"> <meta name="keywords" content="monochromatic light"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="monochromatic light" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="monochromatic light"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3764</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: monochromatic light</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3764</span> A Field Study of Monochromatic Light Effects on Antibody Responses to Newcastle Disease by HI Test and the Correlation with ELISA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mehrzad%20Pahlavani">Seyed Mehrzad Pahlavani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mozaffar%20Haji%20Jafari%20Anaraki"> Mozaffar Haji Jafari Anaraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayma%20Mohammadi"> Sayma Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A total of 34700 day-old broilers were exposed to green, blue and yellow light using a light-emitting diode system for 6 weeks to investigate the effects of light wave length on antibody responses to Newcastle disease by HI test and the correlation with ELISA. 3 poultry house broiler farms with the same conditions was selected and the lightening system of each was set according to the requirement. Blood samples were taken from 20 chicks on days 1, 24 and 46 and the Newcastle virus specific antibody was titered in serum using HI an ELISA test. On day 24, the probability value of more than 0/05 was observed in HI and ELISA tests of all groups while at the end of breeding period, the average HI serum antibody titer was more in the green light than the yellow one while the blue light was not significantly different from both. At the last titration, the green light has got the highest titer of Newcastle antibodies. There were no significant differences of Newcastle antibody titers between all groups and ages in broiler pullets in ELISA. According to the sampling and analysis of HI and ELISA serum tests, there were no significant relationships between all broiler pullets breeding in green, blue and yellow light on days 24 and 46 and the P-value was more than 0/05. It is suggested that the monochromatic light is effective on broilers immunity against Newcastle disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=monochromatic%20light" title="monochromatic light">monochromatic light</a>, <a href="https://publications.waset.org/abstracts/search?q=Newcastle%20disease" title=" Newcastle disease"> Newcastle disease</a>, <a href="https://publications.waset.org/abstracts/search?q=HI%20test" title=" HI test"> HI test</a>, <a href="https://publications.waset.org/abstracts/search?q=ELISA%20test" title=" ELISA test"> ELISA test</a> </p> <a href="https://publications.waset.org/abstracts/6039/a-field-study-of-monochromatic-light-effects-on-antibody-responses-to-newcastle-disease-by-hi-test-and-the-correlation-with-elisa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">657</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3763</span> Experimental Characterization of the Color Quality and Error Rate for an Red, Green, and Blue-Based Light Emission Diode-Fixture Used in Visible Light Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20F.%20Gutierrez">Juan F. Gutierrez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jesus%20M.%20Quintero"> Jesus M. Quintero</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20Sandoval"> Diego Sandoval</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An important feature of LED technology is the fast on-off commutation, which allows data transmission. Visible Light Communication (VLC) is a wireless method to transmit data with visible light. Modulation formats such as On-Off Keying (OOK) and Color Shift Keying (CSK) are used in VLC. Since CSK is based on three color bands uses red, green, and blue monochromatic LED (RGB-LED) to define a pattern of chromaticities. This type of CSK provides poor color quality in the illuminated area. This work presents the design and implementation of a VLC system using RGB-based CSK with 16, 8, and 4 color points, mixing with a steady baseline of a phosphor white-LED, to improve the color quality of the LED-Fixture. The experimental system was assessed in terms of the Color Rendering Index (CRI) and the Symbol Error Rate (SER). Good color quality performance of the LED-Fixture was obtained with an acceptable SER. The laboratory setup used to characterize and calibrate an LED-Fixture is described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VLC" title="VLC">VLC</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20lighting" title=" indoor lighting"> indoor lighting</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20quality" title=" color quality"> color quality</a>, <a href="https://publications.waset.org/abstracts/search?q=symbol%20error%20rate" title=" symbol error rate"> symbol error rate</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20shift%20keying" title=" color shift keying"> color shift keying</a> </p> <a href="https://publications.waset.org/abstracts/158336/experimental-characterization-of-the-color-quality-and-error-rate-for-an-red-green-and-blue-based-light-emission-diode-fixture-used-in-visible-light-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3762</span> Clinical Parameters Response to Low Level Laser Versus Monochromatic Near Infrared Photo Energy in Diabetic Patient with Peripheral Neuropathy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abeer%20Ahmed%20Abdehameed">Abeer Ahmed Abdehameed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Diabetic sensorimotor polyneuropathy (DSP) is one of the most common micro vascular complications of type 2 diabetes. Loss of sensation is thought to contribute to lake of static and dynamic stability and increased risk of falling. Purpose: The purpose of this study was to compare the effects of low level laser (LLL) and monochromatic near infrared photo energy (MIRE) on pain , cutaneous sensation, static stability and index of lower limb blood flow in diabetic with peripheral neuropathy. Methods: Forty subjects with diabetic peripheral neuropathy were recruited for study. They were divided into two groups: The ( MIRE) group that included (20) patients and (LLL) group included (20) patients. All patients in the study had been subjected to various physical assessment procedures including pain, cutaneous sensation, Doppler flow meter and static stability assessments. The baseline measurements were followed by treatment sessions that conducted twice a week for 6 successive weeks. Results: The statistical analysis of the data had revealed significant improvement of the pain in both groups, with significant improvement in cutaneous sensation and static balance in (MIRE) group compared to (LLL) group; on the other hand results showed no significant differences on lower limb blood flow in both groups. Conclusion: Low level laser and monochromatic near infrared therapy can improve painful symptoms in patients with diabetic neuropathy. On the other hand (MIRE) is useful in improving cutaneous sensation and static stability in patients with diabetic neuropathy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetic%20neuropathy" title="diabetic neuropathy">diabetic neuropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=doppler%20flow%20meter" title=" doppler flow meter"> doppler flow meter</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20level%20laser" title=" low level laser"> low level laser</a>, <a href="https://publications.waset.org/abstracts/search?q=monochromatic%20near%20infrared%20photo%20energy" title=" monochromatic near infrared photo energy"> monochromatic near infrared photo energy</a> </p> <a href="https://publications.waset.org/abstracts/31260/clinical-parameters-response-to-low-level-laser-versus-monochromatic-near-infrared-photo-energy-in-diabetic-patient-with-peripheral-neuropathy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3761</span> Influence of Wavelengths on Photosensitivity of Copper Phthalocyanine Based Photodetectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lekshmi%20Vijayan">Lekshmi Vijayan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Shreekrishna%20Kumar"> K. Shreekrishna Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We demonstrated an organic field effect transistor based photodetector using phthalocyanine as the active material that exhibited high photosensitivity under varying light wavelengths. The thermally grown SiO₂ layer on silicon wafer act as a substrate. The critical parameters, such as photosensitivity, responsivity and detectivity, are comparatively high and were 3.09, 0.98AW⁻¹ and 4.86 × 10¹⁰ Jones, respectively, under a bias of 5 V and a monochromatic illumination intensity of 4mW cm⁻². The photodetector has a linear I-V curve with a low dark current. On comparing photoresponse of copper phthalocyanine at four different wavelengths, 560 nm shows better photoresponse and the highest value of photosensitivity is also obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photodetector" title="photodetector">photodetector</a>, <a href="https://publications.waset.org/abstracts/search?q=responsivity" title=" responsivity"> responsivity</a>, <a href="https://publications.waset.org/abstracts/search?q=photosensitivity" title=" photosensitivity"> photosensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=detectivity" title=" detectivity"> detectivity</a> </p> <a href="https://publications.waset.org/abstracts/88804/influence-of-wavelengths-on-photosensitivity-of-copper-phthalocyanine-based-photodetectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3760</span> Thermal Conductivity and Optical Absorption of GaAsPN/GaP for Tandem Solar Cells: Effect of Rapid Thermal Annealing </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ilahi">S. Ilahi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Almosni"> S. Almosni</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Chouchene"> F. Chouchene</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Perrin"> M. Perrin</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Zelazna"> K. Zelazna</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Yacoubi"> N. Yacoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Kudraweic"> R. Kudraweic</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rale"> P. Rale</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Lombez"> L. Lombez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20F.%20%20Guillemoles"> J. F. Guillemoles</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Durand"> O. Durand</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Cornet"> C. Cornet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Great efforts have been dedicated to obtain high quality of GaAsPN. The properties of GaAsPN have played a great part on the development of solar cells devices based in Si substrate. The incorporation of N in GaAsPN that having a band gap around of 1.7 eV is of special interest in view of growing in Si substrate. In fact, post-growth and rapid thermal annealing (RTA) could be an effective way to improve the quality of the layer. Then, the influence of growth conditions and post-growth annealing on optical and thermal parameters is considered. We have used Photothermal deflection spectroscopy PDS to investigate the impact of rapid thermal annealing on thermal and optical properties of GaAsPN. In fact, the principle of the PDS consists to illuminate the sample by a modulated monochromatic light beam. Then, the absorbed energy is converted into heat through the nonradiative recombination process. The generated thermal wave propagates into the sample and surrounding media creating a refractive-index gradient giving rise to the deflection of a laser probe beam skimming the sample surface. The incident light is assumed to be uniform, and only the sample absorbs the light. In conclusion, the results are promising revealing an improvement in absorption coefficient and thermal conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GaAsPN%20absorber" title="GaAsPN absorber">GaAsPN absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=photothermal%20defelction%20technique%20PDS" title=" photothermal defelction technique PDS"> photothermal defelction technique PDS</a>, <a href="https://publications.waset.org/abstracts/search?q=photonics%20on%20silicon" title=" photonics on silicon"> photonics on silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/62722/thermal-conductivity-and-optical-absorption-of-gaaspngap-for-tandem-solar-cells-effect-of-rapid-thermal-annealing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3759</span> Constitutive Role of Light in Christian Sacred Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sokol%20Gojnik">Sokol Gojnik</a>, <a href="https://publications.waset.org/abstracts/search?q=Zorana%3B%20Gojnik"> Zorana; Gojnik</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor"> Igor </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Light is the central theme of sacred architecture of all religions and so of Christianity. The aim of this paper is to emphasize the inner sense of light and its constitutive role in Christian sacred architecture. The theme of light in Christian sacred architecture is fundamentally connected to its meaning and symbolism of light in Christian theology and liturgy. This fundamental connection is opening the space to the symbolic and theological comprehending of light which was present throughout the history of Christianity and which is lacking in contemporary sacred architecture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light" title="light">light</a>, <a href="https://publications.waset.org/abstracts/search?q=sacred%20architecture" title=" sacred architecture"> sacred architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=religious%20architecture" title=" religious architecture"> religious architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=phenomenology%20of%20architecture" title=" phenomenology of architecture"> phenomenology of architecture</a> </p> <a href="https://publications.waset.org/abstracts/80768/constitutive-role-of-light-in-christian-sacred-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3758</span> X-Ray Dynamical Diffraction &#039;Third Order Nonlinear Renninger Effect&#039;</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minas%20Balyan">Minas Balyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays X-ray nonlinear diffraction and nonlinear effects are investigated due to the presence of the third generation synchrotron sources and XFELs. X-ray third order nonlinear dynamical diffraction is considered as well. Using the nonlinear model of the usual visible light optics the third-order nonlinear Takagi’s equations for monochromatic waves and the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses are obtained by the author in previous papers. The obtained equations show, that even if the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero (forbidden reflection), the dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus, in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well-known Renninger effect takes place. In this work, the 'third order nonlinear Renninger effect' is considered theoretically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bragg%20diffraction" title="Bragg diffraction">Bragg diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20Takagi%E2%80%99s%20equations" title=" nonlinear Takagi’s equations"> nonlinear Takagi’s equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20Renninger%20effect" title=" nonlinear Renninger effect"> nonlinear Renninger effect</a>, <a href="https://publications.waset.org/abstracts/search?q=third%20order%20nonlinearity" title=" third order nonlinearity"> third order nonlinearity</a> </p> <a href="https://publications.waset.org/abstracts/55035/x-ray-dynamical-diffraction-third-order-nonlinear-renninger-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3757</span> A Study of Light in Zoroastrianism and Ancient Iranian Traditions: A Case of Mathnavi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farideh%20Aramideh">Farideh Aramideh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this essay is to study the light in Zoroastrianism, and Masnavi by Rumi. The use of light goes back to thousand years B.C. the light in the legacy of ancient Iranian wisdom has been used in Mithraism, Zurvanism, Zoroastrianism and Manichaean religion and spirituality has been emanated in the world through the light. Ontology and angelology and the sacredness of fire in Zoroastrianism have been interpreted according to the concept of light. The ruling atmosphere on mazdaism world is the world which is full of light and angels, and light is one of the basis of worldview in ancient Iranian mysticism, especially Zoroastrianism and Manichaean, continued widely in Islamic mysticism, and also it always provokes discussions among scholars and mystics especially Iranian mystics. Light and fire are used as the signs and symbols of God's existence, The Shining lights emanated from the sacred essence of God, knowledge, and mysticism, love, discovering the wisdom and a way to God. Rumi speaks eloquently about light in Masnavi, and by using the light; he could render his readers the fundamental mystic subjects such as the true existence of God, the verity of prophets and saints, intuition of God, spiritual states of union with God and abiding in God, which are the most complicated mystic terms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zoroastrianism" title="zoroastrianism">zoroastrianism</a>, <a href="https://publications.waset.org/abstracts/search?q=myticims" title=" myticims"> myticims</a>, <a href="https://publications.waset.org/abstracts/search?q=Masnavi" title=" Masnavi"> Masnavi</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a> </p> <a href="https://publications.waset.org/abstracts/35928/a-study-of-light-in-zoroastrianism-and-ancient-iranian-traditions-a-case-of-mathnavi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3756</span> Comparative Transcriptome Profiling of Low Light Tolerant and Sensitive Rice Varieties Induced by Low Light Stress at Active Tillering Stage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darshan%20Panda">Darshan Panda</a>, <a href="https://publications.waset.org/abstracts/search?q=Lambodar%20Behera"> Lambodar Behera</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Baig"> M. J. Baig</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhanshu%20Sekhar"> Sudhanshu Sekhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low light intensity is a significant limitation for grain yield and quality in rice. However, yield is not significantly reduced in low-light tolerant rice varieties. The work, therefore, planned for comparative transcriptome profiling under low light stress to decipher the genes involved and molecular mechanism of low light tolerance in rice. At the active tillering stage, 50% low light exposure for one day, three days, and five days were given to Swarnaprabha (low light tolerant) and IR8 (low light sensitive) rice varieties. Illumina (HiSeq) platform was used for transcriptome sequencing. A total of 6,652 and 12,042 genes were differentially expressed due to low light intensity in Swarnaprabha and IR8, respectively, as compared to control. CAB, LRP, SBPase, MT15, TF PCL1, and Photosystem I & II complex related gene expressions were mostly increased in Swarnaprabha upon the longer duration of low light exposure, which was not found in IR8 as compared to control. Their expressions were validated by qRT-PCR. The overall study suggested that the maintenance of grain yield in the tolerant variety under low light might be the result of accelerated expression of the genes, which enable the plant to keep the photosynthetic processes moving at the same pace even under low light. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice" title="rice">rice</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20light" title=" low light"> low light</a>, <a href="https://publications.waset.org/abstracts/search?q=photosynthesis" title=" photosynthesis"> photosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/141335/comparative-transcriptome-profiling-of-low-light-tolerant-and-sensitive-rice-varieties-induced-by-low-light-stress-at-active-tillering-stage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3755</span> The Problem of Now in Special Relativity Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mogens%20Frank%20Mikkelsen">Mogens Frank Mikkelsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Special Relativity Theory (SRT) includes only one characteristic of light, the speed is equal to all observers, and by excluding other relevant characteristics of light, the common interpretation of SRT should be regarded as merely an approximative theory. By rethinking the iconic double light cones, a revised version of SRT can be developed. The revised concept of light cones acknowledges an asymmetry of past and future light cones and introduced a concept of the extended past to explain the predictions as something other than the future. Combining this with the concept of photon-paired events, led to the inference that Special Relativity theory can support the existence of Now. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=relativity" title="relativity">relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20cone" title=" light cone"> light cone</a>, <a href="https://publications.waset.org/abstracts/search?q=Minkowski" title=" Minkowski"> Minkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=time" title=" time"> time</a> </p> <a href="https://publications.waset.org/abstracts/168891/the-problem-of-now-in-special-relativity-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3754</span> A New Car-Following Model with Consideration of the Brake Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiyuan%20Tang">Zhiyuan Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Zhang"> Ju Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenyuan%20Wu"> Wenyuan Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, a car-following model with consideration of the status of the brake light is proposed. The numerical results show that the stability of the traffic flow is improved. The ability of the brake light to reduce car accident is also showed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brake%20light" title="brake light">brake light</a>, <a href="https://publications.waset.org/abstracts/search?q=car-following%20model" title=" car-following model"> car-following model</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow" title=" traffic flow"> traffic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20planning" title=" regional planning"> regional planning</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation" title=" transportation"> transportation</a> </p> <a href="https://publications.waset.org/abstracts/28404/a-new-car-following-model-with-consideration-of-the-brake-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">579</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3753</span> Amorphous Silicon-Based PINIP Structure for Human-Like Photosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng-Chuan%20Hsu">Sheng-Chuan Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because the existing structure of ambient light sensor is most silicon photodiode device, it is extremely sensitive in the red and infrared regions. Even though the IR-Cut filter had added, it still cannot completely eliminate the influence of infrared light, and the spectral response of infrared light was stronger than that of the human eyes. Therefore, it is not able to present the vision spectrum of the human eye reacts with the ambient light. Then it needs to consider that the human eye feels the spectra that show significant differences between light and dark place. Consequently, in practical applications, we must create and develop advanced device of human-like photosensor which can solve these problems of ambient light sensor and let cognitive lighting system to provide suitable light to achieve the goals of vision spectrum of human eye and save energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20light%20sensor" title="ambient light sensor">ambient light sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=vision%20spectrum" title=" vision spectrum"> vision spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20lighting%20system" title=" cognitive lighting system"> cognitive lighting system</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20eye" title=" human eye"> human eye</a> </p> <a href="https://publications.waset.org/abstracts/52063/amorphous-silicon-based-pinip-structure-for-human-like-photosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3752</span> Enhanced Traffic Light Detection Method Using Geometry Information</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changhwan%20Choi">Changhwan Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongwan%20Park"> Yongwan Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a method that allows faster and more accurate detection of traffic lights by a vision sensor during driving, DGPS is used to obtain physical location of a traffic light, extract from the image information of the vision sensor only the traffic light area at this location and ascertain if the sign is in operation and determine its form. This method can solve the problem in existing research where low visibility at night or reflection under bright light makes it difficult to recognize the form of traffic light, thus making driving unstable. We compared our success rate of traffic light recognition in day and night road environments. Compared to previous researches, it showed similar performance during the day but 50% improvement at night. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20light" title="traffic light">traffic light</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20vehicle" title=" intelligent vehicle"> intelligent vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=night" title=" night"> night</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=DGPS" title=" DGPS"> DGPS</a> </p> <a href="https://publications.waset.org/abstracts/11840/enhanced-traffic-light-detection-method-using-geometry-information" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3751</span> Stray Light Reduction Methodology by a Sinusoidal Light Modulation and Three-Parameter Sine Curve Fitting Algorithm for a Reflectance Spectrometer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hung%20Chih%20Hsieh">Hung Chih Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Hao%20Chang"> Cheng Hao Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun%20Hsiang%20Chang"> Yun Hsiang Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Lin%20Chang"> Yu Lin Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the applications of the spectrometer, the stray light that comes from the environment affects the measurement results a lot. Hence, environment and instrument quality control for the stray reduction is critical for the spectral reflectance measurement. In this paper, a simple and practical method has been developed to correct a spectrometer's response for measurement errors arising from the environment's and instrument's stray light. A sinusoidal modulated light intensity signal was incident on a tested sample, and then the reflected light was collected by the spectrometer. Since a sinusoidal signal modulated the incident light, the reflected light also had a modulated frequency which was the same as the incident signal. Using the three-parameter sine curve fitting algorithm, we can extract the primary reflectance signal from the total measured signal, which contained the primary reflectance signal and the stray light from the environment. The spectra similarity between the extracted spectra by this proposed method with extreme environment stray light is 99.98% similar to the spectra without the environment's stray light. This result shows that we can measure the reflectance spectra without the affection of the environment's stray light. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectrometer" title="spectrometer">spectrometer</a>, <a href="https://publications.waset.org/abstracts/search?q=stray%20light" title=" stray light"> stray light</a>, <a href="https://publications.waset.org/abstracts/search?q=three-parameter%20sine%20curve%20fitting" title=" three-parameter sine curve fitting"> three-parameter sine curve fitting</a>, <a href="https://publications.waset.org/abstracts/search?q=spectra%20extraction" title=" spectra extraction"> spectra extraction</a> </p> <a href="https://publications.waset.org/abstracts/138998/stray-light-reduction-methodology-by-a-sinusoidal-light-modulation-and-three-parameter-sine-curve-fitting-algorithm-for-a-reflectance-spectrometer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3750</span> Light-Scattering Characteristics of Ordered Arrays Nobel Metal Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yassine%20Ait-El-Aoud">Yassine Ait-El-Aoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Okomoto"> Michael Okomoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20M.%20Luce"> Andrew M. Luce</a>, <a href="https://publications.waset.org/abstracts/search?q=Alkim%20Akyurtlu"> Alkim Akyurtlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20M.%20Osgood%20III"> Richard M. Osgood III</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Light scattering of metal nanoparticles (NPs) has a unique, and technologically important effect on enhancing light absorption in substrates because most of the light scatters into the substrate near the localized plasmon resonance of the NPs. The optical response, such as the resonant frequency and forward- and backward-scattering, can be tuned to trap light over a certain spectral region by adjusting the nanoparticle material size, shape, aggregation state, Metallic vs. insulating state, as well as local environmental conditions. In this work, we examined the light scattering characteristics of ordered arrays of metal nanoparticles and the light trapping, in order to enhance absorption, by measuring the forward- and backward-scattering using a UV/VIS/NIR spectrophotometer. Samples were fabricated using the popular self-assembly process method: dip coating, combined with nanosphere lithography. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dip%20coating" title="dip coating">dip coating</a>, <a href="https://publications.waset.org/abstracts/search?q=light-scattering" title=" light-scattering"> light-scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20nanoparticles" title=" metal nanoparticles"> metal nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosphere%20lithography" title=" nanosphere lithography"> nanosphere lithography</a> </p> <a href="https://publications.waset.org/abstracts/58313/light-scattering-characteristics-of-ordered-arrays-nobel-metal-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3749</span> Removal of Oxytetracycline Using Sonophotocatalysis: Parametric Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouafia-Chergui%20Sou%C3%A2d">Bouafia-Chergui Souâd</a>, <a href="https://publications.waset.org/abstracts/search?q=Chabani%20Malika"> Chabani Malika</a>, <a href="https://publications.waset.org/abstracts/search?q=Bensmaili%20Aicha"> Bensmaili Aicha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water treatment and especially, medicament pollutants are nowadays important problems. Degradation of oxytetracycline was carried out using combined process of low-frequency ultrasound (US), ultraviolet irradiation and a catalyst. The effectiveness of the coupled processes has been evaluated by studying the effects of various operating parameters including initial OTC concentration, solution pH and catalyst mass. For the photolysis process, the monochromatic ultraviolet light wavelength utilized was 365 nm. The sonolysis experiments were performed with ultrasound at a frequency of 40 kHz. The heterogeneous photocatalysis was studied in the presence of TiO2. The processes were employed individually, and simultaneously to examine the details of the processes and to investigate the contribution of each process. Low UV intensity (12W), low pH and high mass of TiO2 conditions enhanced the sono-photocatalytic degradation of OTC. The results showed that the individual contribution sonochemical and photochemical reactions are very low, however, their coupling increases the degradation rate of 8 times compared to photolysis and 2 times compared to sonolysis. There is a synergistic effect between the two modes of radiation, UV and U.S. leading to 82.04% degradation yield. An application of these combined processes on the treatment of a real pharmaceutical wastewater was examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sonolysis" title="sonolysis">sonolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20process" title=" combined process"> combined process</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic" title=" antibiotic"> antibiotic</a> </p> <a href="https://publications.waset.org/abstracts/42492/removal-of-oxytetracycline-using-sonophotocatalysis-parametric-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3748</span> A Reading Light That Can Adjust Indoor Light Intensity According to the Activity and Person for Improve Indoor Visual Comfort of Occupants and Tested using Post-occupancy Evaluation Techniques for Sri Lankan Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.T.P.%20De%20Silva">R.T.P. De Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20K.%20Wijayasiriwardhane"> T. K. Wijayasiriwardhane</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Jayawardena"> B. Jayawardena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most people nowadays spend their time indoor environment. Because of that, a quality indoor environment needs for them. This study was conducted to identify how to improve indoor visual comfort using a personalized light system. Light intensity, light color, glare, and contrast are the main facts that affect visual comfort. The light intensity which needs to perform a task is changed according to the task. Using necessary light intensity and we can improve the visual comfort of occupants. The hue can affect the emotions of occupants. The preferred light colors and intensity change according to the occupant's age and gender. The research was conducted to identify is there any relationship between personalization and visual comfort. To validate this designed an Internet of Things-based reading light. This light can work according to the standard light levels and personalized light levels. It also can measure the current light intensity of the environment and maintain continuous light levels according to the task. The test was conducted by using 25 undergraduates, and 5school students, and 5 adults. The feedbacks are gathered using Post-occupancy evaluation (POE) techniques. Feedbacks are gathered in three steps, It was done without any light control, with standard light level, and with personalized light level Users had to spend 10 minutes under each condition. After finishing each step, collected their feedbacks. According to the result gathered, 94% of participants rated a personalized light system as comfort for them. The feedbacks show stay under continuous light level help to keep their concentrate. Future research can be conducted on how the color of indoor light can affect for indoor visual comfort of occupants using a personalized light system. Further proposed IoT based can improve to change the light colors according to the user's preference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20environment%20quality" title="indoor environment quality">indoor environment quality</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things%20based%20light%20system" title=" internet of things based light system"> internet of things based light system</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20occupancy%20evaluation" title=" post occupancy evaluation"> post occupancy evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20comfort" title=" visual comfort"> visual comfort</a> </p> <a href="https://publications.waset.org/abstracts/144243/a-reading-light-that-can-adjust-indoor-light-intensity-according-to-the-activity-and-person-for-improve-indoor-visual-comfort-of-occupants-and-tested-using-post-occupancy-evaluation-techniques-for-sri-lankan-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3747</span> DBN-Based Face Recognition System Using Light Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bing%20Gu">Bing Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract—Most of Conventional facial recognition systems are based on image features, such as LBP, SIFT. Recently some DBN-based 2D facial recognition systems have been proposed. However, we find there are few DBN-based 3D facial recognition system and relative researches. 3D facial images include all the individual biometric information. We can use these information to build more accurate features, So we present our DBN-based face recognition system using Light Field. We can see Light Field as another presentation of 3D image, and Light Field Camera show us a way to receive a Light Field. We use the commercially available Light Field Camera to act as the collector of our face recognition system, and the system receive a state-of-art performance as convenient as conventional 2D face recognition system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DBN" title="DBN">DBN</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title=" face recognition"> face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20field" title=" light field"> light field</a>, <a href="https://publications.waset.org/abstracts/search?q=Lytro" title=" Lytro"> Lytro</a> </p> <a href="https://publications.waset.org/abstracts/10821/dbn-based-face-recognition-system-using-light-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3746</span> Differential Signaling Spread-Spectrum Modulation of the In-Door LED Visible Light Wireless Communications using Mobile-Phone Camera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shih-Hao%20Chen">Shih-Hao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Wai%20Chow"> Chi-Wai Chow</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visible light communication combined with spread spectrum modulation is demonstrated in this study. Differential signaling method also ensures the proposed system that can support high immunity to ambient light interference. Experiment result shows the proposed system has 6 dB gain comparing with the original On-Off Keying modulation scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Visible%20Light%20Communication%20%28VLC%29" title="Visible Light Communication (VLC)">Visible Light Communication (VLC)</a>, <a href="https://publications.waset.org/abstracts/search?q=Spread%20Spectrum%20Modulation%20%28SSM%29" title=" Spread Spectrum Modulation (SSM)"> Spread Spectrum Modulation (SSM)</a>, <a href="https://publications.waset.org/abstracts/search?q=On-Off%20Keying" title=" On-Off Keying"> On-Off Keying</a>, <a href="https://publications.waset.org/abstracts/search?q=visible%20light%20communication" title=" visible light communication "> visible light communication </a> </p> <a href="https://publications.waset.org/abstracts/15447/differential-signaling-spread-spectrum-modulation-of-the-in-door-led-visible-light-wireless-communications-using-mobile-phone-camera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3745</span> Impact of Light Intensity, Illumation Strategy and Self-Shading on Sustainable Algal Growth in Photo Bioreactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amritanshu%20Shriwastav">Amritanshu Shriwastav</a>, <a href="https://publications.waset.org/abstracts/search?q=Purnendu%20Bose">Purnendu Bose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Algal photo bioreactors were operated at incident light intensities of 0.24, 2.52 and 5.96 W L-1 to determine the impact of light on algal growth. Low specific Chlorophyll-a content of algae was a strong indicator of light induced stress on algal cells. It was concluded that long term operation of photo bioreactors in the continuous illumination mode was infeasible under the range of incident light intensities examined and provision of a dark period after each light period was necessary for algal cells to recover from light-induced stress. Long term operation of photo bioreactors in the intermittent illumination mode was however possible at light intensities of 0.24 and 2.52 W L-1. Further, the incident light intensity in the photo bioreactors was found to decline exponentially with increase in algal concentration in the reactor due to algal ‘self-shading’. This may be an important determinant for photo bioreactor performance at higher algal concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Algae" title="Algae">Algae</a>, <a href="https://publications.waset.org/abstracts/search?q=algal%20growth" title=" algal growth"> algal growth</a>, <a href="https://publications.waset.org/abstracts/search?q=photo%20bioreactor" title=" photo bioreactor"> photo bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=photo-inhibition" title=" photo-inhibition"> photo-inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%98self-shading%E2%80%99" title=" ‘self-shading’"> ‘self-shading’</a> </p> <a href="https://publications.waset.org/abstracts/1521/impact-of-light-intensity-illumation-strategy-and-self-shading-on-sustainable-algal-growth-in-photo-bioreactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3744</span> Time Efficient Color Coding for Structured-Light 3D Scanner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Hao%20Huang">Po-Hao Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Ju%20Chiang"> Pei-Ju Chiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The structured light 3D scanner is commonly used for measuring the 3D shape of an object. Through projecting designed light patterns on the object, deformed patterns can be obtained and used for the geometric shape reconstruction. At present, Gray code is the most reliable and commonly used light pattern in the structured light 3D scanner. However, the trade-off between scanning efficiency and accuracy is a long-standing and challenging problem. The design of light patterns plays a significant role in the scanning efficiency and accuracy. Thereby, we proposed a novel encoding method integrating color information and Gray-code to improve the scanning efficiency. We will demonstrate that with the proposed method, the scanning time can be reduced to approximate half of the one needed by Gray-code without reduction of precision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gray-code" title="gray-code">gray-code</a>, <a href="https://publications.waset.org/abstracts/search?q=structured%20light%20scanner" title=" structured light scanner"> structured light scanner</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20shape%20acquisition" title=" 3D shape acquisition"> 3D shape acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20reconstruction" title=" 3D reconstruction"> 3D reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/33773/time-efficient-color-coding-for-structured-light-3d-scanner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3743</span> Traffic Light Detection Using Image Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaishnavi%20Shivde">Vaishnavi Shivde</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrishti%20Sinha"> Shrishti Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Trapti%20Mishra"> Trapti Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20light%20detection" title="traffic light detection">traffic light detection</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a> </p> <a href="https://publications.waset.org/abstracts/137254/traffic-light-detection-using-image-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3742</span> An Exploration of Lighting Quality on Sleep Quality of Children in Elementary Schools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Boubekri">Mohamed Boubekri</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristen%20%20Bub"> Kristen Bub</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaewook%20Lee"> Jaewook Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kate%20Kurry"> Kate Kurry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we explored the impact of light, particularly daylight on sleep time and quality of elementary school children. Sleep actigraphy was used to measure objectively sleep time and sleep efficiency. Our data show a good correlation between light levels and sleep. In some cases, differences of up to 36 minutes were found between students in low light levels and those in high light level classrooms. We recommend, therefore, that classroom design need to pay attention to the daily daylight exposures elementary school children are receiving. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light" title="light">light</a>, <a href="https://publications.waset.org/abstracts/search?q=daylight" title=" daylight"> daylight</a>, <a href="https://publications.waset.org/abstracts/search?q=actigraphy" title=" actigraphy"> actigraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep" title=" sleep"> sleep</a>, <a href="https://publications.waset.org/abstracts/search?q=circadian%20rhythm" title=" circadian rhythm"> circadian rhythm</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20architecture" title=" sustainable architecture"> sustainable architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=elementary%20school" title=" elementary school"> elementary school</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a> </p> <a href="https://publications.waset.org/abstracts/116236/an-exploration-of-lighting-quality-on-sleep-quality-of-children-in-elementary-schools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3741</span> Durability of Light-Weight Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rudolf%20Hela">Rudolf Hela</a>, <a href="https://publications.waset.org/abstracts/search?q=Michala%20Hubertova"> Michala Hubertova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper focuses on research of durability and lifetime of dense light-weight concrete with artificial light-weight aggregate Liapor exposed to various types of aggressive environment. Experimental part describes testing of designed concrete of various strength classes and volume weights exposed to cyclical freezing, frost and chemical de-icers and various types of chemically aggressive environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggressive%20environment" title="aggressive environment">aggressive environment</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=physical-mechanical%20properties" title=" physical-mechanical properties"> physical-mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=light-weight%20concrete" title=" light-weight concrete"> light-weight concrete</a> </p> <a href="https://publications.waset.org/abstracts/2400/durability-of-light-weight-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3740</span> The Application on Interactivity of Light in New Media Art</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yansong%20Chen">Yansong Chen </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the age of media convergence, new media technology is constantly impacting, changing, and even reshaping the limits of Art. From the technological ontology of the new media art, the concept of interaction design has always been dominated by I/O (Input/Output) systems through the ages, which ignores the content of systems and kills the aura of art. Light, as a fusion media, basically comes from the extension of some human feelings and can be the content of the input or the effect of output. In this paper, firstly, on the basis of literature review, the interaction characteristics research was conducted on light. Secondly, starting from discourse patterns of people and machines, people and people, people, and imagining things, we propose three light modes: object-oriented interaction, Immersion interaction, Tele-Presence interaction. Finally, this paper explains how to regain the aura of art through light elements in new media art and understand multiple levels of 'Interaction design'. In addition, the new media art, especially the light-based interaction art, enriches the language patterns and motivates emerging art forms to be more widespread and popular, which achieves its aesthetics growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=new%20media%20art" title="new media art">new media art</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20design" title=" interaction design"> interaction design</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20art" title=" light art"> light art</a>, <a href="https://publications.waset.org/abstracts/search?q=immersion" title=" immersion"> immersion</a> </p> <a href="https://publications.waset.org/abstracts/114388/the-application-on-interactivity-of-light-in-new-media-art" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3739</span> Visual Search Based Indoor Localization in Low Light via RGB-D Camera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yali%20Zheng">Yali Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Peipei%20Luo"> Peipei Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinan%20Chen"> Shinan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiasheng%20Hao"> Jiasheng Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Cheng"> Hong Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20navigation" title="indoor navigation">indoor navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20light" title=" low light"> low light</a>, <a href="https://publications.waset.org/abstracts/search?q=RGB-D%20camera" title=" RGB-D camera"> RGB-D camera</a>, <a href="https://publications.waset.org/abstracts/search?q=vision%20based" title=" vision based"> vision based</a> </p> <a href="https://publications.waset.org/abstracts/66057/visual-search-based-indoor-localization-in-low-light-via-rgb-d-camera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3738</span> A Simple Light-Outcoupling Enhancement Method for Organic Light-Emitting Diodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ho-Nyeon%20Lee">Ho-Nyeon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose to use a gradual-refractive-index dielectric (GRID) as a simple and efficient light-outcoupling method for organic light-emitting diodes (OLEDs). Using the simple GRIDs, we could improve the light outcoupling efficiency of OLEDs rather than relying on difficult nano-patterning processes. Through numerical simulations using a finite-difference time-domain (FDTD) method, the feasibility of the GRID structure was examined and the design parameters were extracted. The outcoupling enhancement effects due to the GRIDs were proved through severe experimental works. The GRIDs were adapted to bottom-emission OLEDs and top-emission OLEDs. For bottom-emission OLEDs, the efficiency was improved more than 20%, and for top-emission OLEDs, more than 40%. The detailed numerical and experimental results will be presented at the conference site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=GRID" title=" GRID"> GRID</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20outcoupling" title=" light outcoupling"> light outcoupling</a>, <a href="https://publications.waset.org/abstracts/search?q=OLED" title=" OLED"> OLED</a> </p> <a href="https://publications.waset.org/abstracts/37501/a-simple-light-outcoupling-enhancement-method-for-organic-light-emitting-diodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3737</span> Spectra Analysis in Sunset Color Demonstrations with a White-Color LED as a Light Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Makoto%20Hasegawa">Makoto Hasegawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Seika%20Tokumitsu"> Seika Tokumitsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spectra of light beams emitted from white-color LED torches are different from those of conventional electric torches. In order to confirm if white-color LED torches can be used as light sources for popular sunset color demonstrations in spite of such differences, spectra of travelled light beams and scattered light beams with each of a white-color LED torch (composed of a blue LED and yellow-color fluorescent material) and a conventional electric torch as a light source were measured and compared with each other in a 50 cm-long water tank for sunset color demonstration experiments. Suspension liquid was prepared from acryl-emulsion and tap-water in the water tank, and light beams from the white-color LED torch or the conventional electric torch were allowed to travel in this suspension liquid. Sunset-like color was actually observed when the white-color LED torch was used as the light source in sunset color demonstrations. However, the observed colors when viewed with naked eye look slightly different from those obtainable with the conventional electric torch. At the same time, with the white-color LED, changes in colors in short to middle wavelength regions were recognized with careful observations. From those results, white-color LED torches are confirmed to be applicable as light sources in sunset color demonstrations, although certain attentions have to be paid. Further advanced classes will be successfully performed with white-color LED torches as light sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blue%20sky%20demonstration" title="blue sky demonstration">blue sky demonstration</a>, <a href="https://publications.waset.org/abstracts/search?q=sunset%20color%20demonstration" title=" sunset color demonstration"> sunset color demonstration</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20LED%20torch" title=" white LED torch"> white LED torch</a>, <a href="https://publications.waset.org/abstracts/search?q=physics%20education" title=" physics education"> physics education</a> </p> <a href="https://publications.waset.org/abstracts/47625/spectra-analysis-in-sunset-color-demonstrations-with-a-white-color-led-as-a-light-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3736</span> Synergistic Impacts and Optimization of Gas Flow Rate, Concentration of CO2, and Light Intensity on CO2 Biofixation in Wastewater Medium by Chlorella vulgaris</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Arkoazi">Ahmed Arkoazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Znad"> Hussein Znad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjeet%20Utikar"> Ranjeet Utikar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synergistic impact and optimization of gas flow rate, concentration of CO<sub>2</sub>, and light intensity on CO<sub>2</sub> biofixation rate were investigated using wastewater as a medium to cultivate <em>Chlorella vulgaris</em> under different conditions (gas flow rate 1-8 L/min), CO<sub>2</sub> concentration (0.03-7%), and light intensity (150-400 &micro;mol/m<sup>2</sup>.s)). Response Surface Methodology and Box-Behnken experimental Design were applied to find optimum values for gas flow rate, CO<sub>2</sub> concentration, and light intensity. The optimum values of the three independent variables (gas flow rate, concentration of CO<sub>2</sub>, and light intensity) and desirability were 7.5 L/min, 3.5%, and 400 &micro;mol/m<sup>2</sup>.s, and 0.904, respectively. The highest amount of biomass produced and CO<sub>2</sub> biofixation rate at optimum conditions were 5.7 g/L, 1.23 gL<sup>-1</sup>d<sup>-1</sup>, respectively. The synergistic effect between gas flow rate and concentration of CO<sub>2</sub>, and between gas flow rate and light intensity was significant on the three responses, while the effect between CO<sub>2</sub> concentration and light intensity was less significant on CO<sub>2</sub> biofixation rate. The results of this study could be highly helpful when using microalgae for CO<sub>2</sub> biofixation in wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubble%20column%20reactor" title="bubble column reactor">bubble column reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20holdup" title=" gas holdup"> gas holdup</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=sparger" title=" sparger"> sparger</a> </p> <a href="https://publications.waset.org/abstracts/112244/synergistic-impacts-and-optimization-of-gas-flow-rate-concentration-of-co2-and-light-intensity-on-co2-biofixation-in-wastewater-medium-by-chlorella-vulgaris" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3735</span> Reducing Energy Consumption in Architectural Spaces by Optimizing Natural Light Transmission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Javid">Parisa Javid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In architecture, daylight contributes to humans' mental and physical well-being and reduces the consumption of fossil fuels. Accordingly, Iran's rich architecture has valuable achievements and experiences that should be recognized and introduced to the Iranian and international architecture communities. There are many ways to reduce energy consumption in buildings, but electricity accounts for a large part of that consumption. Lighting up spaces with natural light is a significant factor in reducing energy consumption and preventing electricity dissipation. Aside from being expensive, electric lighting systems cause excessive heat and physical injury (eyes). This study is based on library records and documents. Modern lighting systems are used to reduce energy consumption in the interior of a building to allow for optimal transmission of natural light. It discusses how to use natural light in architecture and the benefits of natural light in buildings. Solar energy can be used more efficiently, and electrical power can be saved in residential, administrative, commercial, and educational buildings by using new methods such as light tubes and mirror directors. Modern lighting systems, natural light, and reduced energy consumption are keywords for these systems, which quickly return their investment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modern%20lighting%20systems" title="modern lighting systems">modern lighting systems</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20light" title=" natural light"> natural light</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20energy%20consumption" title=" reduced energy consumption"> reduced energy consumption</a> </p> <a href="https://publications.waset.org/abstracts/150538/reducing-energy-consumption-in-architectural-spaces-by-optimizing-natural-light-transmission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monochromatic%20light&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monochromatic%20light&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monochromatic%20light&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monochromatic%20light&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monochromatic%20light&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monochromatic%20light&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monochromatic%20light&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monochromatic%20light&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monochromatic%20light&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monochromatic%20light&amp;page=125">125</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monochromatic%20light&amp;page=126">126</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monochromatic%20light&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10