CINXE.COM
Search results for: tooth extraction
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: tooth extraction</title> <meta name="description" content="Search results for: tooth extraction"> <meta name="keywords" content="tooth extraction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="tooth extraction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="tooth extraction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2131</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: tooth extraction</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2131</span> Effect of Honey on Rate of Healing of Socket after Tooth Extraction in Rabbits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deependra%20Prasad%20Sarraf">Deependra Prasad Sarraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Shrestha"> Ashish Shrestha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehul%20Rajesh%20Jaisani"> Mehul Rajesh Jaisani</a>, <a href="https://publications.waset.org/abstracts/search?q=Gajendra%20Prasad%20Rauniar"> Gajendra Prasad Rauniar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Honey is the worlds’ oldest known wound dressing. Its wound healing properties are not fully established till today. Concerns about antibiotic resistance, and a renewed interest in natural remedies have prompted the resurgence in the antimicrobial and wound healing properties of Honey. Evidence from animal studies and some trials has suggested that honey may accelerate wound healing in burns, infected wounds and open wounds. None of these reports have documented the effect of honey on the healing of socket after tooth extraction. Therefore, the present experimental study was planned to evaluate the efficacy of honey on the healing of socket after tooth extraction in rabbits. Materials and Methods: An experimental study was conducted in six New Zealand White rabbits. Extraction of first premolar tooth on both sides of the lower jaw was done under anesthesia produced by Ketamine and Xylazine followed by application of honey on one socket (test group) and normal saline (control group) in the opposite socket. The intervention was continued for two more days. On the 7th day, the biopsy was taken from the extraction site, and histopathological examination was done. Student’s t-test was used for comparison between the groups and differences were considered to be statistically significant at p-value less than 0.05. Results: There was a significant difference between control group and test group in terms of fibroblast proliferation (p = 0.0019) and bony trabeculae formation (p=0.0003). Inflammatory cells were also observed in both groups, and it was not significant (p=1.0). Overlying epithelium was hyperplastic in both the groups. Conclusion: The study showed that local application of honey promoted the rapid healing process particularly by increasing fibroblast proliferation and bony trabeculae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honey" title="honey">honey</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction%20wound" title=" extraction wound"> extraction wound</a>, <a href="https://publications.waset.org/abstracts/search?q=Nepal" title=" Nepal"> Nepal</a>, <a href="https://publications.waset.org/abstracts/search?q=healing" title=" healing"> healing</a> </p> <a href="https://publications.waset.org/abstracts/67176/effect-of-honey-on-rate-of-healing-of-socket-after-tooth-extraction-in-rabbits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2130</span> Comparison of Meshing Stiffness of Altered Tooth Sum Spur Gear Tooth with Different Pressure Angles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20K.%20Sachidananda">H. K. Sachidananda</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Raghunandana"> K. Raghunandana</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Shivamurthy"> B. Shivamurthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The estimation of gear tooth stiffness is important for finding the load distribution between the gear teeth when two consecutive sets of teeth are in contact. Based on dynamic model a C-program has been developed to compute mesh stiffness. By using this program position dependent mesh stiffness of spur gear tooth for various profile shifts have been computed for a fixed center distance and altering tooth-sum gearing (100 by ± 4%). It is found that the C-program using dynamic model is one of the rapid soft computing technique which helps in design of gears. The mesh tooth stiffness along the path of contact is studied for both 20° and 25° pressure angle gears at various profile shifts. Better tooth stiffness is noticed in case of negative alteration tooth-sum gears compared to standard and positive alteration tooth-sum gears. Also, in case of negative alteration tooth-sum gearing better mesh stiffness is noticed in 20° pressure angle when compared to 25°. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=altered%20tooth-sum%20gearing" title="altered tooth-sum gearing">altered tooth-sum gearing</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20fatigue" title=" bending fatigue"> bending fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20stiffness" title=" mesh stiffness"> mesh stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=spur%20gear" title=" spur gear"> spur gear</a> </p> <a href="https://publications.waset.org/abstracts/42914/comparison-of-meshing-stiffness-of-altered-tooth-sum-spur-gear-tooth-with-different-pressure-angles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2129</span> Optimization of Tooth Root Profile and Drive Side Pressure Angle to Minimize Bending Stress at Root of Asymmetric Spur Gear Tooth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyakant%20Vaghela">Priyakant Vaghela</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagdish%20Prajapati"> Jagdish Prajapati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bending stress at the root of the gear tooth is the very important criteria in gear design and it should be kept the minimum. Minimization of bending stress at the root of the gear tooth is a recent demand from industry. This paper presents an innovative approach to obtain minimum bending stress at the root of a tooth by optimizing tooth root profile and drive side pressure angle. Circular-filleted at the root of the tooth is widely used in the design. Circular fillet creates discontinuity at the root of the tooth. So, at root stress concentration occurs. In order to minimize stress concentration, an important criterion is a G2 continuity at the blending of the gear tooth. A Bezier curve is used with G2 continuity at the root of asymmetric spur gear tooth. The comparison has been done between normal and modified tooth using ANSYS simulation. Tooth root profile and drive side pressure angle are optimized to minimize bending stress at the root of the tooth of the asymmetric involute spur gear. Von Mises stress of optimized profile is analyzed and compared with normal profile symmetric gear. Von Mises stress is reducing by 31.27% by optimization of drive side pressure angle and root profile. Stress concentration of modified gear was significantly reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20spur%20gear%20tooth" title="asymmetric spur gear tooth">asymmetric spur gear tooth</a>, <a href="https://publications.waset.org/abstracts/search?q=G2%20continuity" title=" G2 continuity"> G2 continuity</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20angle" title=" pressure angle"> pressure angle</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20at%20the%20root%20of%20tooth" title=" stress concentration at the root of tooth"> stress concentration at the root of tooth</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20root%20stress" title=" tooth root stress"> tooth root stress</a> </p> <a href="https://publications.waset.org/abstracts/95043/optimization-of-tooth-root-profile-and-drive-side-pressure-angle-to-minimize-bending-stress-at-root-of-asymmetric-spur-gear-tooth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2128</span> Effects of Bleaching Procedures on Dentine Sensitivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suhayla%20Reda%20Al-Banai">Suhayla Reda Al-Banai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Problem Statement: Tooth whitening was used for over one hundred and fifty year. The question concerning the whiteness of teeth is a complex one since tooth whiteness will vary from individual to individual, dependent on age and culture, etc. Tooth whitening following treatment may be dependent on the type of whitening system used to whiten the teeth. There are a few side-effects to the process, and these include tooth sensitivity and gingival irritation. Some individuals may experience no pain or sensitivity following the procedure. Purpose: To systematically review the available published literature until 31st December 2021 to identify all relevant studies for inclusion and to determine whether there was any evidence demonstrating that the application of whitening procedures resulted in the tooth sensitivity. Aim: Systematically review the available published works of literature to identify all relevant studies for inclusion and to determine any evidence demonstrating that application of 10% & 15% carbamide peroxide in tooth whitening procedures resulted in tooth sensitivity. Material and Methods: Following a review of 70 relevant papers from searching both electronic databases (OVID MEDLINE and PUBMED) and hand searching of relevant written journals, 49 studies were identified, 42 papers were subsequently excluded, and 7 studies were finally accepted for inclusion. The extraction of data for inclusion was conducted by two reviewers. The main outcome measures were the methodology and assessment used by investigators to evaluate tooth sensitivity in tooth whitening studies. Results: The reported evaluation of tooth sensitivity during tooth whitening procedures was based on the subjective response of subjects rather than a recognized methodology for evaluating. One of the problems in evaluating was the lack of homogeneity in study design. Seven studies were included. The studies included essential features namely: randomized group, placebo controls, doubleblind and single-blind. Drop-out was obtained from two of included studies. Three of the included studies reported sensitivity at the baseline visit. Two of the included studies mentioned the exclusion criteria Conclusions: The results were inconclusive due to: Limited number of included studies, the study methodology, and evaluation of DS reported. Tooth whitening procedures adversely affect both hard and soft tissues in the oral cavity. Sideeffects are mild and transient in nature. Whitening solutions with greater than 10% carbamide peroxide causes more tooth sensitivity. Studies using nightguard vital bleaching with 10% carbamide peroxide reported two side effects tooth sensitivity and gingival irritation, although tooth sensitivity was more prevalent than gingival irritation <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dentine" title="dentine">dentine</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=bleaching" title=" bleaching"> bleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=carbamide%20peroxde" title=" carbamide peroxde"> carbamide peroxde</a> </p> <a href="https://publications.waset.org/abstracts/162878/effects-of-bleaching-procedures-on-dentine-sensitivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2127</span> Observation of the Orthodontic Tooth's Long-Term Movement Using Stereovision System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hao-Yuan%20Tseng">Hao-Yuan Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuan-Yang%20Chang"> Chuan-Yang Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying-Hui%20Chen"> Ying-Hui Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Che%20Chen"> Sheng-Che Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Han%20Chang"> Chih-Han Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orthodontic tooth treatment has demonstrated a high success rate in clinical studies. It has been agreed upon that orthodontic tooth movement is based on the ability of surrounding bone and periodontal ligament (PDL) to react to a mechanical stimulus with remodeling processes. However, the mechanism of the tooth movement is still unclear. Recent studies focus on the simple principle compression-tension theory while rare studies directly measure tooth movement. Therefore, tracking tooth movement information during orthodontic treatment is very important in clinical practice. The aim of this study is to investigate the mechanism responses of the tooth movement during the orthodontic treatments. A stereovision system applied to track the tooth movement of the patient with the stamp brackets. The system was established by two cameras with their relative position calibrate. And the orthodontic force measured by 3D printing model with the six-axis load cell to determine the initial force application. The result shows that the stereovision system accuracy revealed the measurement presents a maximum error less than 2%. For the study on patient tracking, the incisor moved about 0.9 mm during 60 days tracking, and half of movement occurred in the first few hours. After removing the orthodontic force in 100 hours, the distance between before and after position incisor tooth decrease 0.5 mm consisted with the release of the phenomenon. Using the stereovision system can accurately locate the three-dimensional position of the teeth and superposition of 3D coordinate system for all the data to integrate the complex tooth movement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orthodontic%20treatment" title="orthodontic treatment">orthodontic treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20movement" title=" tooth movement"> tooth movement</a>, <a href="https://publications.waset.org/abstracts/search?q=stereovision%20system" title=" stereovision system"> stereovision system</a>, <a href="https://publications.waset.org/abstracts/search?q=long-term%20tracking" title=" long-term tracking"> long-term tracking</a> </p> <a href="https://publications.waset.org/abstracts/45507/observation-of-the-orthodontic-tooths-long-term-movement-using-stereovision-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2126</span> Design and Tooth Contact Analysis of Face Gear Drive with Modified Tooth Surface in Helicopter Transmission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazumasa%20Kawasaki">Kazumasa Kawasaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Isamu%20Tsuji"> Isamu Tsuji</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Gunbara"> Hiroshi Gunbara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A face gear drive is actually composed of a spur or helical pinion that is in mesh with a face gear and transfers power and motion between intersecting or skew axes. Due to the peculiarity of the face gear drive in shunt and confluence drive, it shows potential advantages in the application in the helicopter transmission. The advantages of such applications are the possibility of the split of the torque that appears to be significant where a pinion drives two face gears to provide an accurate division of power and motion. This mechanism greatly reduces the weight and cost compared to conventional design. Therefore, this has been led to revived interest and the face gear drive has been utilized in substitution for bevel and hypoid gears in limited cases. The face gear drive with a spur or a helical pinion is newly designed in order to determine an effective meshing area under the design parameters and specific design dimensions. The face gear has two unique dimensions which control the face width of the tooth, and the outside and inside diameters of the face gear. On the other hand, it is necessary to modify the tooth surfaces of face gear drive in order to avoid the influences of alignment errors on the tooth contact patterns in practical use. In this case, the pinion tooth surfaces are usually modified in the conventional method. However, it is hard to control the tooth contact pattern intentionally and adjust the position of the pinion axis in meshing of the gear pair. Therefore, a method of the modification of the tooth surfaces of the face gear is proposed. Moreover, based on tooth contact analysis, the tooth contact pattern and transmission errors of the designed face gear drive are analyzed, and the influences of alignment errors on the tooth contact patterns and transmission errors are investigated. These results showed that the tooth contact patterns and transmission errors were controllable and the face gear drive which is insensitive to alignment errors can be obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alignment%20error" title="alignment error">alignment error</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20gear" title=" face gear"> face gear</a>, <a href="https://publications.waset.org/abstracts/search?q=gear%20design" title=" gear design"> gear design</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20transmission" title=" helicopter transmission"> helicopter transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20contact%20analysis" title=" tooth contact analysis"> tooth contact analysis</a> </p> <a href="https://publications.waset.org/abstracts/52629/design-and-tooth-contact-analysis-of-face-gear-drive-with-modified-tooth-surface-in-helicopter-transmission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2125</span> Effectiveness of Computer Video Games on the Levels of Anxiety of Children Scheduled for Tooth Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marji%20Umil">Marji Umil</a>, <a href="https://publications.waset.org/abstracts/search?q=Miane%20Karyle%20Urolaza"> Miane Karyle Urolaza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Winston%20Dale%20Uy"> Ian Winston Dale Uy</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Charle%20Magne%20Valdez"> John Charle Magne Valdez</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Elizabeth%20Valdez"> Karen Elizabeth Valdez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ervin%20Charles%20Valencia"> Ervin Charles Valencia</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheryleen%20Tan-Chua"> Cheryleen Tan-Chua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Distraction techniques can be successful in reducing the anxiety of children during medical procedures. Dental procedures, in particular, are associated with dental anxiety which has been identified as a significant and common problem in children, however, only limited studies were conducted to address such problem. Thus, this study determined the effectiveness of computer video games on the levels of anxiety of children between 5-12 years old scheduled for tooth extraction. Methods: A pre-test post-test quasi-experimental study was conducted involving 30 randomly-assigned subjects, 15 in the experimental and 15 in the control. Subjects in the experimental group played computer video games for a maximum of 15 minutes, however, no intervention was done on the control. The modified Yale Pre-operative Anxiety Scale (m-YPAS) with a Cronbach’s alpha of 0.9 was used to assess anxiety at two different points: upon arrival in the clinic (pre-test anxiety) and 15 minutes after the first measurement (post-test anxiety). Paired t-test and ANCOVA were used to analyze the gathered data. Results: Results showed that there is a significant difference between the pre-test and post-test anxiety scores of the control group (p=0.0002) which indicates an increased anxiety. A significant difference was also noted between the pre-test and post-test anxiety scores of the experimental group (p=0.0002) which indicates decreased anxiety. Comparatively, the experimental group showed lower anxiety score (p=<0.0001) than the control. Conclusion: The use of computer video games is effective in reducing the pre-operative anxiety among children and can be an alternative non-pharmacological management in giving pre-operative care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=play%20therapy" title="play therapy">play therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=preoperative%20anxiety" title=" preoperative anxiety"> preoperative anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20extraction" title=" tooth extraction"> tooth extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20games" title=" video games"> video games</a> </p> <a href="https://publications.waset.org/abstracts/21257/effectiveness-of-computer-video-games-on-the-levels-of-anxiety-of-children-scheduled-for-tooth-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2124</span> 3D Simulation of Orthodontic Tooth Movement in the Presence of Horizontal Bone Loss</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azin%20Zargham">Azin Zargham</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Rouhi"> Gholamreza Rouhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Allahyar%20Geramy"> Allahyar Geramy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most prevalent types of alveolar bone loss is horizontal bone loss (HBL) in which the bone height around teeth is reduced homogenously. In the presence of HBL the magnitudes of forces during orthodontic treatment should be altered according to the degree of HBL, in a way that without further bone loss, desired tooth movement can be obtained. In order to investigate the appropriate orthodontic force system in the presence of HBL, a three-dimensional numerical model capable of the simulation of orthodontic tooth movement was developed. The main goal of this research was to evaluate the effect of different degrees of HBL on a long-term orthodontic tooth movement. Moreover, the effect of different force magnitudes on orthodontic tooth movement in the presence of HBL was studied. Five three-dimensional finite element models of a maxillary lateral incisor with 0 mm, 1.5 mm, 3 mm, 4.5 mm and 6 mm of HBL were constructed. The long-term orthodontic tooth tipping movements were attained during a 4-weeks period in an iterative process through the external remodeling of the alveolar bone based on strains in periodontal ligament as the bone remodeling mechanical stimulus. To obtain long-term orthodontic tooth movement in each iteration, first the strains in periodontal ligament under a 1-N tipping force were calculated using finite element analysis. Then, bone remodeling and the subsequent tooth movement were computed in a post-processing software using a custom written program. Incisal edge, cervical, and apical area displacement in the models with different alveolar bone heights (0, 1.5, 3, 4.5, 6 mm bone loss) in response to a 1-N tipping force were calculated. Maximum tooth displacement was found to be 2.65 mm at the top of the crown of the model with a 6 mm bone loss. Minimum tooth displacement was 0.45 mm at the cervical level of the model with a normal bone support. Tooth tipping degrees of models in response to different tipping force magnitudes were also calculated for models with different degrees of HBL. Degrees of tipping tooth movement increased as force level was increased. This increase was more prominent in the models with smaller degrees of HBL. By using finite element method and bone remodeling theories, this study indicated that in the presence of HBL, under the same load, long-term orthodontic tooth movement will increase. The simulation also revealed that even though tooth movement increases with increasing the force, this increase was only prominent in the models with smaller degrees of HBL, and tooth models with greater degrees of HBL will be less affected by the magnitude of an orthodontic force. Based on our results, the applied force magnitude must be reduced in proportion of degree of HBL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20remodeling" title="bone remodeling">bone remodeling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20bone%20loss" title=" horizontal bone loss"> horizontal bone loss</a>, <a href="https://publications.waset.org/abstracts/search?q=orthodontic%20tooth%20movement." title=" orthodontic tooth movement."> orthodontic tooth movement.</a> </p> <a href="https://publications.waset.org/abstracts/38672/3d-simulation-of-orthodontic-tooth-movement-in-the-presence-of-horizontal-bone-loss" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2123</span> The Orthodontic Management of Multiple Tooth Agenesis with Macroglossia in Adult Patient: Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanuarti%20Retnaningrum">Yanuarti Retnaningrum</a>, <a href="https://publications.waset.org/abstracts/search?q=Cendrawasih%20A.%20Farmasyanti"> Cendrawasih A. Farmasyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuswahyuning"> Kuswahyuning</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orthodontists find challenges in treating patients who have cases of macroglossia and multiple tooth agenesis because difficulties in determining the causes, formulating a diagnosis and the potential for relapse after treatment. Definition of macroglossia is a tongue enlargement due to muscle hypertrophy, tumor or an endocrine disturbance. Macroglossia may cause many problems such as anterior proclination of upper and lower incisors, development of general diastema and anterior and/ or posterior open bite. Treatment for such patients with multiple tooth agenesis and macroglossia can be complex and must consider orthodontic and/or surgical interventions. This article discusses an orthodontic non surgical approach to a patient with a general diastema in both maxilla and mandible associated with multiple tooth agenesis and macroglossia. Fixed orthodontic therapy with straightwire appliance was used for space closure in anterior region of maxilla and mandible, also to create a space suitable for future prosthetic restoration. After 12 months treatment, stable and functional occlusal relationships was achieved, although still have edentulous area in both maxilla and mandible. At the end of the orthodontic treatment was obtained with correct overbite and overjet values. After removal of the brackets, a maxillary and mandibular removable retainer combine with artificial tooth were placed for retention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=general%20diastema" title="general diastema">general diastema</a>, <a href="https://publications.waset.org/abstracts/search?q=macroglossia" title=" macroglossia"> macroglossia</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20closure" title=" space closure"> space closure</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20agenesis" title=" tooth agenesis"> tooth agenesis</a> </p> <a href="https://publications.waset.org/abstracts/75723/the-orthodontic-management-of-multiple-tooth-agenesis-with-macroglossia-in-adult-patient-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2122</span> Worm Gearing Design Improvement by Considering Varying Mesh Stiffness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Elkholy">A. H. Elkholy</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Falah"> A. H. Falah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new approach has been developed to estimate the load share and stress distribution of worm gear sets. The approach is based upon considering the instantaneous tooth meshing stiffness where the worm gear drive was modelled as a series of spur gear slices, and each slice was analyzed separately using the well established formulae of spur gears. By combining the results obtained for all slices, the entire envolute worm gear set loading and stressing was obtained. The geometric modelling method presented, allows tooth elastic deformation and tooth root stresses of worm gear drives under different load conditions to be investigated. On the basis of the method introduced in this study, the instantaneous meshing stiffness and load share were obtained. In comparison with existing methods, this approach has both good analysis accuracy and less computing time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gear" title="gear">gear</a>, <a href="https://publications.waset.org/abstracts/search?q=load%2Fstress%20distribution" title=" load/stress distribution"> load/stress distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=worm" title=" worm"> worm</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel" title=" wheel"> wheel</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20stiffness" title=" tooth stiffness"> tooth stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20line" title=" contact line"> contact line</a> </p> <a href="https://publications.waset.org/abstracts/31502/worm-gearing-design-improvement-by-considering-varying-mesh-stiffness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2121</span> Development of the Squamate Egg Tooth on the Basis of Grass Snake Natrix natrix Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20%20Hermyt">Mateusz Hermyt</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Kaczmarek"> Pawel Kaczmarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Weronika%20Rupik"> Weronika Rupik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The egg tooth is a crucial structure during hatching of lizards and snakes. In contrast to birds, turtles, crocodiles, and monotremes, egg tooth of squamate reptiles is a true tooth sharing common features of structure and development with all the other teeth of vertebrates. The egg tooth; however, due to its function, exhibits structural differences in relation to regular teeth. External morphology seems to be important in the context of phylogenetic relationships within Squamata but up to date, there is scarce information concerning structure and development of the egg tooth at the submicroscopical level. In presented studies detailed analysis of the egg tooth development in grass snake has been performed with the usage of light (including fluorescent), transmission and scanning electron microscopy. Grass snake embryo’s heads have been used in our studies. Grass snake is common snake species occurring in most of Europe including Poland. The grass snake is characterized by the presence of single unpaired egg tooth (as in most squamates) in contrast to geckos and dibamids possessing paired egg teeth. Studies show changes occurring on the external morphology, tissue and cellular levels of differentiating egg tooth. The egg tooth during its development changes its curvature. Initially, faces directly downward and in the course of its differentiation, it gradually changes to rostro-ventral orientation. Additionally, it forms conical dentinal protrusions on the sides. Histological analysis showed that egg tooth development occurs in similar steps in relation to regular teeth. It undergoes initiation, bud, cap and bell morphological stages. Analyses focused on describing morphological changes in hard tissues (mainly dentin and predentin) of egg tooth and in cells which enamel organ consists of. It included: outer enamel epithelium, stratum intermedium, inner enamel epithelium, odontoblasts, and cells of dental pulp. All specimens used in the study were captured according to the Polish regulations concerning the protection of wild species. Permission was granted by the Local Ethics Commission in Katowice (41/2010; 87/2015) and the Regional Directorate for Environmental Protection in Katowice (WPN.6401.257.2015.DC). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hatching" title="hatching">hatching</a>, <a href="https://publications.waset.org/abstracts/search?q=organogenesis" title=" organogenesis"> organogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=reptile" title=" reptile"> reptile</a>, <a href="https://publications.waset.org/abstracts/search?q=Squamata" title=" Squamata"> Squamata</a> </p> <a href="https://publications.waset.org/abstracts/87266/development-of-the-squamate-egg-tooth-on-the-basis-of-grass-snake-natrix-natrix-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2120</span> Results of EPR Dosimetry Study of Population Residing in the Vicinity of the Uranium Mines and Uranium Processing Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Zhumadilov">K. Zhumadilov</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Kazymbet"> P. Kazymbet</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ivannikov"> A. Ivannikov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bakhtin"> M. Bakhtin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Akylbekov"> A. Akylbekov</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kadyrzhanov"> K. Kadyrzhanov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Morzabayev"> A. Morzabayev</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hoshi"> M. Hoshi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study is to evaluate the possible excess of dose received by uranium processing plant workers. The possible excess of dose of workers was evaluated with comparison with population pool (Stepnogorsk) and control pool (Astana city). The measured teeth samples were extracted according to medical indications. In total, twenty-seven tooth enamel samples were analyzed from the residents of Stepnogorsk city (180 km from Astana city, Kazakhstan). About 6 tooth samples were collected from the workers of uranium processing plant. The results of tooth enamel dose estimation show us small influence of working conditions to workers, the maximum excess dose is less than 100 mGy. This is pilot study of EPR dose estimation and for a final conclusion additional sample is required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EPR%20dose" title="EPR dose">EPR dose</a>, <a href="https://publications.waset.org/abstracts/search?q=workers" title=" workers"> workers</a>, <a href="https://publications.waset.org/abstracts/search?q=uranium%20mines" title=" uranium mines"> uranium mines</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20samples" title=" tooth samples"> tooth samples</a> </p> <a href="https://publications.waset.org/abstracts/2357/results-of-epr-dosimetry-study-of-population-residing-in-the-vicinity-of-the-uranium-mines-and-uranium-processing-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2119</span> The Environmental Effects of Amalgam Tooth Fillings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulsalam%20I.%20Rafida">Abdulsalam I. Rafida</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulhmid%20M.%20Alkout"> Abdulhmid M. Alkout</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdultif%20M.%20Alroba"> Abdultif M. Alroba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the heavy metal content in the saliva of persons with amalgam tooth fillings. For this purpose, samples of saliva have been collected based on two factors i.e. the number of amalgam fillings in the mouth (one, two or three fillings), and the time factor i.e. the time since the fillings have been in place (less than a year and more than a year). Samples of saliva have also been collected from persons with no amalgam tooth fillings for control. The samples that have been collected so far, have been examined for the basic heavy metal content featuring amalgam, which include mercury (Hg) and silver (Ag). However, all the above mentioned elements have been detected in the samples of saliva of the persons with amalgam tooth fillings, though with varying amounts depending on the number of fillings. Thus, for persons with only one filling the average quantities were found to be 0.00061 ppm and 0.033 ppm for Hg and Ag respectively. On the other hand for persons with two fillings the average quantities were found to be 0.0012 ppm and 0.029 ppm for each of the two elements respectively. However, in order to understand the chemical reactions associated with amalgam tooth fillings in the mouth, the material have been treated outside the mouth using some nutrient media. Those media included drinking water, fizzy drinks and hot tea. All three media have been found to contain the three elements after amalgam treatment. Yet, the fizzy drink medium was found to contain the highest levels of those elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amalgam" title="amalgam">amalgam</a>, <a href="https://publications.waset.org/abstracts/search?q=mercury" title=" mercury"> mercury</a>, <a href="https://publications.waset.org/abstracts/search?q=silver" title=" silver"> silver</a>, <a href="https://publications.waset.org/abstracts/search?q=fizzy%20drinks" title=" fizzy drinks"> fizzy drinks</a>, <a href="https://publications.waset.org/abstracts/search?q=media" title=" media"> media</a> </p> <a href="https://publications.waset.org/abstracts/3729/the-environmental-effects-of-amalgam-tooth-fillings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2118</span> Prevalence of Lower Third Molar Impactions and Angulations Among Yemeni Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khawlah%20Al-Khalidi">Khawlah Al-Khalidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prevalence of lower third molar impactions and angulations among Yemeni population The purpose of this study was to look into the prevalence of lower third molars in a sample of patients from Ibb University Affiliated Hospital, as well as to study and categorise their position by using Pell and Gregory classification, and to look into a possible correlation between their position and the indication for extraction. Materials and methods: This is a retrospective, observational study in which a sample of 200 patients from Ibb University Affiliated Hospital were studied, including patient record validation and orthopantomography performed in screening appointments in people aged 16 to 21. Results and discussion: Males make up 63% of the sample, while people aged 19 to 20 make up 41.2%. Lower third molars were found in 365 of the 365 instances examined, accounting for 91% of the sample under study. According to Pell and Gregory's categorisation, the most common position is IIB, with 37%, followed by IIA with 21%; less common classes are IIIA, IC, and IIIC, with 1%, 3%, and 3%, respectively. It was feasible to determine that 56% of the lower third molars in the sample were recommended for extraction during the screening consultation. Finally, there are differences in third molar location and angulation. There was, however, a link between the available space for third molar eruption and the need for tooth extraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lower%20third%20molar" title="lower third molar">lower third molar</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Pell%20and%20Gregory%20classification" title=" Pell and Gregory classification"> Pell and Gregory classification</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20third%20molar%20impaction" title=" lower third molar impaction"> lower third molar impaction</a> </p> <a href="https://publications.waset.org/abstracts/181945/prevalence-of-lower-third-molar-impactions-and-angulations-among-yemeni-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2117</span> Mechanisms of Ginger Bioactive Compounds Extract Using Soxhlet and Accelerated Water Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Azian">M. N. Azian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Ilia%20Anisa"> A. N. Ilia Anisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Iwai"> Y. Iwai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mechanism for extraction bioactive compounds from plant matrix is essential for optimizing the extraction process. As a benchmark technique, a soxhlet extraction has been utilized for discussing the mechanism and compared with an accelerated water extraction. The trends of both techniques show that the process involves extraction and degradation. The highest yields of 6-, 8-, 10-gingerols and 6-shogaol in soxhlet extraction were 13.948, 7.12, 10.312 and 2.306 mg/g, respectively. The optimum 6-, 8-, 10-gingerols and 6-shogaol extracted by the accelerated water extraction at 140oC were 68.97±3.95 mg/g at 3min, 18.98±3.04 mg/g at 5min, 5.167±2.35 mg/g at 3min and 14.57±6.27 mg/g at 3min, respectively. The effect of temperature at 3mins shows that the concentration of 6-shogaol increased rapidly as decreasing the recovery of 6-gingerol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanism" title="mechanism">mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger%20bioactive%20compounds" title=" ginger bioactive compounds"> ginger bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=soxhlet%20extraction" title=" soxhlet extraction"> soxhlet extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerated%20water%20extraction" title=" accelerated water extraction"> accelerated water extraction</a> </p> <a href="https://publications.waset.org/abstracts/9278/mechanisms-of-ginger-bioactive-compounds-extract-using-soxhlet-and-accelerated-water-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2116</span> Effect of Clinical Parameters on Strength of Reattached Tooth Fragment in Anterior Teeth: Systematic Review and Meta-Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Malhotra">Neeraj Malhotra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramya%20Shenoy"> Ramya Shenoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: To assess the effect of clinical parameters (bonding agent, preparation design & storage media) on the strength of reattached anterior tooth fragment. Methodology: This is a systematic review and meta-analysis for articles referred from MEDLINE, PUBMED, and GOOGLE SCHOLAR. The articles on tooth reattachment and clinical factors affecting fracture strength/bond strength/fracture resistance of the reattached tooth fragment in anterior teeth and published in English from 1999 to 2016 were included for final review. Results: Out of 120 shortlisted articles, 28 articles were included for the systematic review and meta-analysis based on 3 clinical parameters i.e. bonding agent, tooth preparation design & storage media. Forest plot & funnel plots were generated based on individual clinical parameter and their effect on strength of reattached anterior tooth fragment. Results based on analysis suggest combination of both conclusive evidence favoring the experimental group as well as in-conclusive evidence for individual parameter. Conclusion: There is limited evidence as there are fewer articles supporting each parameter in human teeth. Bonding agent had showed better outcome in selected studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bonding%20agent" title="bonding agent">bonding agent</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20strength" title=" bond strength"> bond strength</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20strength" title=" fracture strength"> fracture strength</a>, <a href="https://publications.waset.org/abstracts/search?q=preparation%20design" title=" preparation design"> preparation design</a>, <a href="https://publications.waset.org/abstracts/search?q=reattachment" title=" reattachment"> reattachment</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20media" title=" storage media"> storage media</a> </p> <a href="https://publications.waset.org/abstracts/80832/effect-of-clinical-parameters-on-strength-of-reattached-tooth-fragment-in-anterior-teeth-systematic-review-and-meta-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2115</span> The Inhibition of Relapse of Orthodontic Tooth Movement by NaF Administration in Expressions of TGF-β1, Runx2, Alkaline Phosphatase and Microscopic Appearance of Woven Bone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Sutjiati">R. Sutjiati</a>, <a href="https://publications.waset.org/abstracts/search?q=Rubianto"> Rubianto</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20B.%20Narmada"> I. B. Narmada</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20K.%20Sudiana"> I. K. Sudiana</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Rahayu"> R. P. Rahayu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prevalence of post-treatment relapse in orthodontics in the community is high enough; therefore, relapses in orthodontic treatment must be prevented well. The aim of this study is to experimentally test the inhibition of relapse of orthodontics tooth movement in NaF of expression TGF-β1, Runx2, alkaline phosphatase (ALP) and microscopic of woven bone. The research method used was experimental laboratory research involving 30 rats, which were divided into three groups. Group A: rats were not given orthodontic tooth movement and without NaF. Group B: rats were given orthodontic tooth movement and without 11.5 ppm by topical application. Group C: rats were given orthodontic tooth movement and 11.75 ppm by topical application. Orthodontic tooth movement was conducted by applying ligature wires of 0.02 mm in diameter on the molar-1 (M-1) of left permanent maxilla and left insisivus of maxilla. Immunohistochemical examination was conducted to calculate the number of osteoblast to determine TGF β1, Runx2, ALP and haematoxylin to determine woven bone on day 7 and day 14. Results: It was shown that administrations of Natrium Fluoride topical application proved effective to increase the expression of TGF-β1, Runx2, ALP and to increase woven bone in the tension area greater than administration without natrium fluoride topical application (p < 0.05), except the expression of ALP on day 7 and day 14 which was significant. The results of the study show that NaF significantly increases the expressions of TGF-β1, Runx2, ALP and woven bone. The expression of the variables enhanced on day 7 compared on that on day 14, except ALP. Thus, it can be said that the acceleration of woven bone occurs on day 7. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TGF-%CE%B21" title="TGF-β1">TGF-β1</a>, <a href="https://publications.waset.org/abstracts/search?q=Runx2" title=" Runx2"> Runx2</a>, <a href="https://publications.waset.org/abstracts/search?q=ALP" title=" ALP"> ALP</a>, <a href="https://publications.waset.org/abstracts/search?q=woven%20bone" title=" woven bone"> woven bone</a>, <a href="https://publications.waset.org/abstracts/search?q=natrium%20fluoride" title=" natrium fluoride"> natrium fluoride</a> </p> <a href="https://publications.waset.org/abstracts/68483/the-inhibition-of-relapse-of-orthodontic-tooth-movement-by-naf-administration-in-expressions-of-tgf-v1-runx2-alkaline-phosphatase-and-microscopic-appearance-of-woven-bone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2114</span> Comparison with Mechanical Behaviors of Mastication in Teeth Movement Cases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Yong%20Park">Jae-Yong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeo-Kyeong%20Lee"> Yeo-Kyeong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee-Sun%20Kim"> Hee-Sun Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: This study aims at investigating the mechanical behaviors of mastication, according to various teeth movement. There are three masticatory cases which are general case and 2 cases of teeth movement. General case includes the common arrange of all teeth and 2 cases of teeth movement are that one is the half movement location case of molar teeth in no. 14 tooth seat after extraction of no. 14 tooth and the other is no. 14 tooth seat location case of molar teeth after extraction in the same case before. Materials and Methods: In order to analyze these cases, 3 dimensional finite element (FE) model of the skull were generated based on computed tomography images, 964 dicom files of 38 year old male having normal occlusion status. An FE model in general occlusal case was used to develop CAE procedure. This procedure was applied to FE models in other occlusal cases. The displacement controls according to loading condition were applied effectively to simulate occlusal behaviors in all cases. From the FE analyses, von Mises stress distribution of skull and teeth was observed. The von Mises stress, effective stress, had been widely used to determine the absolute stress value, regardless of stress direction and yield characteristics of materials. Results: High stress was distributed over the periodontal area of mandible under molar teeth when the mandible was transmitted to the coronal-apical direction in the general occlusal case. According to the stress propagation from teeth to cranium, stress distribution decreased as the distribution propagated from molar teeth to infratemporal crest of the greater wing of the sphenoid bone and lateral pterygoid plate in general case. In 2 cases of teeth movement, there were observed that high stresses were distributed over the periodontal area of mandible under teeth where they are located under the moved molar teeth in cranium. Conclusion: The predictions of the mechanical behaviors of general case and 2 cases of teeth movement during the masticatory process were investigated including qualitative validation. The displacement controls as the loading condition were applied effectively to simulate occlusal behaviors in 2 cases of teeth movement of molar teeth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cranium" title="cranium">cranium</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mandible" title=" mandible"> mandible</a>, <a href="https://publications.waset.org/abstracts/search?q=masticatory%20action" title=" masticatory action"> masticatory action</a>, <a href="https://publications.waset.org/abstracts/search?q=occlusal%20force" title=" occlusal force"> occlusal force</a> </p> <a href="https://publications.waset.org/abstracts/37030/comparison-with-mechanical-behaviors-of-mastication-in-teeth-movement-cases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2113</span> Age Estimation from Upper Anterior Teeth by Pulp/Tooth Ratio Using Peri-Apical X-Rays among Egyptians</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Mohamed%20Magdy%20Badr%20El%20Dine">Fatma Mohamed Magdy Badr El Dine</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20Mohamed%20Abd%20Allah"> Amr Mohamed Abd Allah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Age estimation of individuals is one of the crucial steps in forensic practice. Different traditional methods rely on the length of the diaphysis of long bones of limbs, epiphyseal-diaphyseal union, fusion of the primary ossification centers as well as dental eruption. However, there is a growing need for the development of precise and reliable methods to estimate age, especially in cases where dismembered corpses, burnt bodies, purified or fragmented parts are recovered. Teeth are the hardest and indestructible structure in the human body. In recent years, assessment of pulp/tooth area ratio, as an indirect quantification of secondary dentine deposition has received a considerable attention. However, scanty work has been done in Egypt in terms of applicability of pulp/tooth ratio for age estimation. Aim of the Work: The present work was designed to assess the Cameriere’s method for age estimation from pulp/tooth ratio of maxillary canines, central and lateral incisors among a sample from Egyptian population. In addition, to formulate regression equations to be used as population-based standards for age determination. Material and Methods: The present study was conducted on 270 peri-apical X-rays of maxillary canines, central and lateral incisors (collected from 131 males and 139 females aged between 19 and 52 years). The pulp and tooth areas were measured using the Adobe Photoshop software program and the pulp/tooth area ratio was computed. Linear regression equations were determined separately for canines, central and lateral incisors. Results: A significant correlation was recorded between the pulp/tooth area ratio and the chronological age. The linear regression analysis revealed a coefficient of determination (R² = 0.824 for canine, 0.588 for central incisor and 0.737 for lateral incisor teeth). Three regression equations were derived. Conclusion: As a conclusion, the pulp/tooth ratio is a useful technique for estimating age among Egyptians. Additionally, the regression equation derived from canines gave better result than the incisors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age%20determination" title="age determination">age determination</a>, <a href="https://publications.waset.org/abstracts/search?q=canines" title=" canines"> canines</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20incisors" title=" central incisors"> central incisors</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20incisors" title=" lateral incisors"> lateral incisors</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%2Ftooth%20ratio" title=" pulp/tooth ratio"> pulp/tooth ratio</a> </p> <a href="https://publications.waset.org/abstracts/83832/age-estimation-from-upper-anterior-teeth-by-pulptooth-ratio-using-peri-apical-x-rays-among-egyptians" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2112</span> Design Improvement of Worm Gearing for Better Energy Utilization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elkholy">Ahmed Elkholy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most power transmission cases use gearing in general, and worm gearing, in particular for energy utilization. Therefore, designing gears for minimum weight and maximum power transmission is the main target of this study. In this regard, a new approach has been developed to estimate the load share and stress distribution of worm gear sets. The approach is based upon considering the instantaneous tooth meshing stiffness where the worm gear drive was modelled as a series of spur gear slices, and each slice was analyzed separately using a well-established criteria. By combining the results obtained for all slices, the entire worm gear set loading and stressing was determined. The geometric modelling method presented, allows tooth elastic deformation and tooth root stresses of worm gear drives under different load conditions to be investigated. On the basis of the method introduced in this study, the instantaneous meshing stiffness and load share were obtained. In comparison with existing methods, this approach has both good analytical accuracy and less computing time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gear" title="gear">gear</a>, <a href="https://publications.waset.org/abstracts/search?q=load%2Fstress%20distribution" title=" load/stress distribution"> load/stress distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=worm" title=" worm"> worm</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel" title=" wheel"> wheel</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20stiffness" title=" tooth stiffness"> tooth stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20line" title=" contact line"> contact line</a> </p> <a href="https://publications.waset.org/abstracts/63727/design-improvement-of-worm-gearing-for-better-energy-utilization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2111</span> Radiographic Predictors of Mandibular Third Molar Extraction Difficulties under General Anaesthetic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolyn%20Whyte">Carolyn Whyte</a>, <a href="https://publications.waset.org/abstracts/search?q=Tina%20Halai"> Tina Halai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonita%20Koshal"> Sonita Koshal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: There are many methods available to assess the potential difficulty of third molar surgery. This study investigated various factors to assess whether they had a bearing on the difficulties encountered. Study design: A retrospective study was completed of 62 single mandibular third molar teeth removed under day case general anaesthesia between May 2016 and August 2016 by 3 consultant oral surgeons. Method: Data collection was by examining the OPG radiographs of each tooth and recording the necessary data. This was depth of impaction, angulation, bony impaction, point of application in relation to second molar, root morphology, Pell and Gregory classification and Winters Lines. This was completed by one assessor and verified by another. Information on medical history, anxiety, ethnicity and age were recorded. Case notes and surgical entries were examined for any difficulties encountered. Results: There were 5 cases which encountered surgical difficulties which included fracture of root apices (3) which were left in situ, prolonged bleeding (1) and post-operative numbness >6 months(1). Four of the 5 cases had Pell and Gregory classification as (B) where the occlusal plane of the impacted tooth is between the occlusal plane and the cervical line of the adjacent tooth. 80% of cases had the point of application as either coronal or apical one third (1/3) in relation to the second molar. However, there was variability in all other aspects of assessment in predicting difficulty of removal. Conclusions: Of the cases which encountered difficulties they all had at least one predictor of potential complexity but these varied case by case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impaction" title="impaction">impaction</a>, <a href="https://publications.waset.org/abstracts/search?q=mandibular%20third%20molar" title=" mandibular third molar"> mandibular third molar</a>, <a href="https://publications.waset.org/abstracts/search?q=radiographic%20assessment" title=" radiographic assessment"> radiographic assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=surgical%20removal" title=" surgical removal"> surgical removal</a> </p> <a href="https://publications.waset.org/abstracts/58983/radiographic-predictors-of-mandibular-third-molar-extraction-difficulties-under-general-anaesthetic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2110</span> Direct Drive Double Fed Wind Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vlado%20Ostovic">Vlado Ostovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An electric machine topology characterized by single tooth winding in both stator and rotor is presented. The proposed machine is capable of operating as a direct drive double fed wind generator (DDDF, D3F) because it requires no gearbox and only a reduced-size converter. A wind turbine drive built around a D3F generator is cheaper to manufacture, requires less maintenance, and has a higher energy yield than its conventional counterparts. The single tooth wound generator of a D3F turbine has superb volume utilization and lower stator I2R losses due to its extremely short-end windings. Both stator and rotor of a D3F generator can be manufactured in segments, which simplifies its assembly and transportation to the site, and makes production cheaper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20drive" title="direct drive">direct drive</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20fed%20generator" title=" double fed generator"> double fed generator</a>, <a href="https://publications.waset.org/abstracts/search?q=gearbox" title=" gearbox"> gearbox</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20generators" title=" permanent magnet generators"> permanent magnet generators</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20tooth%20winding" title=" single tooth winding"> single tooth winding</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20power" title=" wind power"> wind power</a> </p> <a href="https://publications.waset.org/abstracts/152197/direct-drive-double-fed-wind-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2109</span> Hydroxyapatite Based Porous Scaffold for Tooth Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pakize%20Neslihan%20Tasl%C4%B1">Pakize Neslihan Taslı</a>, <a href="https://publications.waset.org/abstracts/search?q=Alev%20Cumbul"> Alev Cumbul</a>, <a href="https://publications.waset.org/abstracts/search?q=Gul%20Merve%20Yalc%C4%B1n"> Gul Merve Yalcın</a>, <a href="https://publications.waset.org/abstracts/search?q=Fikrettin%20Sahin"> Fikrettin Sahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A key experimental trial in the regeneration of large oral and craniofacial defects is the neogenesis of osseous and ligamentous interfacial structures. Currently, oral regenerative medicine strategies are unpredictable for repair of tooth supporting tissues destroyed as a consequence of trauma, chronic infection or surgical resection. A different approach combining the gel-casting method with Hydroxy Apatite HA-based scaffold and different cell lineages as a hybrid system leads to successively mimic the early stage of tooth development, in vitro. HA is widely accepted as a bioactive material for guided bone and tooth regeneration. In this study, it was reported that, HA porous scaffold preparation, characterization and evaluation of structural and chemical properties. HA is the main factor that exists in tooth and it is in harmony with structural, biological, and mechanical characteristics. Here, this study shows mimicking immature tooth at the late bell stage design and construction of HA scaffolds for cell transplantation of human Adipose Stem Cells (hASCs), human Bone Marrow Stem Cells (hBMSCs) and Gingival Epitelial cells for the formation of human tooth dentin-pulp-enamel complexes in vitro. Scaffold characterization was demonstrated by SEM, FTIR and pore size and density measurements. The biological contraction of dental tissues against each other was demonstrated by mRNA gene expressions, histopatologic observations and protein release profile by ELISA tecnique. The tooth shaped constructs with a pore size ranging from 150 to 300 µm arranged by gathering right amounts of materials provide interconnected macro-porous structure. The newly formed tissue like structures that grow and integrate within the HA designed constructs forming tooth cementum like tissue, pulp and bone structures. These findings are important as they emphasize the potential biological effect of the hybrid scaffold system. In conclusion, this in vitro study clearly demonstrates that designed 3D scaffolds shaped as a immature tooth at the late bell stage were essential to form enamel-dentin-pulp interfaces with an appropriate cell and biodegradable material combination. The biomimetic architecture achieved here is providing a promising platform for dental tissue engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tooth%20regeneration" title="tooth regeneration">tooth regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=adipose%20stem%20cells" title=" adipose stem cells"> adipose stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite%20tooth%20engineering" title=" hydroxyapatite tooth engineering"> hydroxyapatite tooth engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20scaffold" title=" porous scaffold"> porous scaffold</a> </p> <a href="https://publications.waset.org/abstracts/54703/hydroxyapatite-based-porous-scaffold-for-tooth-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2108</span> Analytical Study of Cobalt(II) and Nickel(II) Extraction with Salicylidene O-, M-, and P-Toluidine in Chloroform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sana%20Almi">Sana Almi</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Barkat"> Djamel Barkat </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The solvent extraction of cobalt (II) and nickel (II) from aqueous sulfate solutions were investigated with the analytical methods of slope analysis using salicylidene aniline and the three isomeric o-, m- and p-salicylidene toluidine diluted with chloroform at 25°C. By a statistical analysis of the extraction data, it was concluded that the extracted species are CoL2 with CoL2(HL) and NiL2 (HL denotes HSA, HSOT, HSMT, and HSPT). The extraction efficiency of Co(II) was higher than Ni(II). This tendency is confirmed from numerical extraction constants for each metal cations. The best extraction was according to the following order: HSMT > HSPT > HSOT > HSA for Co2+ and Ni2+. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title="solvent extraction">solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%28II%29" title=" nickel(II)"> nickel(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt%28II%29" title=" cobalt(II)"> cobalt(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=salicylidene%20aniline" title=" salicylidene aniline"> salicylidene aniline</a>, <a href="https://publications.waset.org/abstracts/search?q=o-" title=" o-"> o-</a>, <a href="https://publications.waset.org/abstracts/search?q=m-" title=" m-"> m-</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20p-salicylidene%20toluidine" title=" and p-salicylidene toluidine"> and p-salicylidene toluidine</a> </p> <a href="https://publications.waset.org/abstracts/21677/analytical-study-of-cobaltii-and-nickelii-extraction-with-salicylidene-o-m-and-p-toluidine-in-chloroform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2107</span> Dealing with the Spaces: Ultra Conservative Approach from Childhood to Adulthood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Firouzmandi">Maryam Firouzmandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Moosa%20Miri"> Moosa Miri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Common reasons for early tooth loss are trauma, extraction due to caries or periodontal disease and congenital missing. The remaining space after tooth loss may cause functional and esthetic problems. Therefore restorative dentists should attempt to manage these spaces using conservative methods. The goal is to restore the lost esthetic and function, prevent phonetic, self-esteem and personality problems and tongue habits. Preserving alveolar bone is also of great importance during the growth stage. Purpose: When deciding about the management of the missing tooth, space implants are contradicted until the completion of dentoalveolar development. Even in adulthood, due to systemic or periodontal problems or biological and economic issues, the implant might not be indicated. In this article, the alternative conservative restorative methods of space maintenance are going to be discussed. Essix retainers are made chair-side as easy as forming a custom bleaching tray with some modifications. They are esthetically acceptable and not expensive. These temporaries provide support for the lips but could not be used during function. Mini-screw-supported temporaries are another option for maintaining the space, especially after orthodontic treatment when there is a time lag between the termination of orthodontic treatment and definitive restoration. Two techniques will be presented for this kind of restoration: Denture tooth pontic or a composite crown. The benefits are alveolar bone preservation, Physiologic pressure on the alveolar ridge to increase its density and even can be retained until the completion of the definitive treatment. Bonded fixed partial denture includes Maryland bridge, fiber-reinforced composite bridge, resin-bonded bridge, and ceramic bonded bridge. These types of bridges are recommended to be used after a pubertal growth spurt and a recent meta-analysis considered their clinical success similar to conventional FDPs and implant-supported crowns. However, they have several advantages that are going to be discussed by presenting some clinical examples. Practical instruction on how to construct an FRC bridge and a novel chair-side Maryland bridge will be given by means of clinical cases. Clinical relevance: minimally invasive options should always be considered and destruction of healthy enamel and dentin during the preparation phase should be avoided as much as possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tooth%20missing" title="tooth missing">tooth missing</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber-reinforced%20composite" title=" fiber-reinforced composite"> fiber-reinforced composite</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryland" title=" Maryland"> Maryland</a>, <a href="https://publications.waset.org/abstracts/search?q=Essix%20retainers" title=" Essix retainers"> Essix retainers</a>, <a href="https://publications.waset.org/abstracts/search?q=screw-retained%20restoration" title=" screw-retained restoration"> screw-retained restoration</a> </p> <a href="https://publications.waset.org/abstracts/141986/dealing-with-the-spaces-ultra-conservative-approach-from-childhood-to-adulthood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2106</span> Extraction of Essential Oil From Orange Peels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aayush%20Bhisikar">Aayush Bhisikar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Rajas"> Neha Rajas</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Bhingare"> Aditya Bhingare</a>, <a href="https://publications.waset.org/abstracts/search?q=Samarth%20Bhandare"> Samarth Bhandare</a>, <a href="https://publications.waset.org/abstracts/search?q=Amruta%20Amrurkar"> Amruta Amrurkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orange peels are currently thrown away as garbage in India after orange fruits' edible components are consumed. However, the nation depends on important essential oils for usage in companies that produce goods, including food, beverages, cosmetics, and medicines. This study was conducted to show how to effectively use it. By using various extraction techniques, orange peel is used in the creation of essential oils. Stream distillation, water distillation, and solvent extraction were the techniques taken into consideration in this paper. Due to its relative prevalence among the extraction techniques, Design Expert 7.0 was used to plan an experimental run for solvent extraction. Oil was examined to ascertain its physical and chemical characteristics after extraction. It was determined from the outcomes that the orange peels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orange%20peels" title="orange peels">orange peels</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=distillation" title=" distillation"> distillation</a> </p> <a href="https://publications.waset.org/abstracts/173039/extraction-of-essential-oil-from-orange-peels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2105</span> Extraction of Essential Oil from Orange Peels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Rajas">Neha Rajas</a>, <a href="https://publications.waset.org/abstracts/search?q=Aayush%20Bhisikar"> Aayush Bhisikar</a>, <a href="https://publications.waset.org/abstracts/search?q=Samarth%20Bhandare"> Samarth Bhandare</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Bhingare"> Aditya Bhingare</a>, <a href="https://publications.waset.org/abstracts/search?q=Amruta%20Amrutkar"> Amruta Amrutkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orange peels are currently thrown away as garbage in India after orange fruits' edible components are consumed. However, the nation depends on important essential oils for usage in companies that produce goods, including food, beverages, cosmetics, and medicines. This study was conducted to show how to effectively use it. By using various extraction techniques, orange peel is used in the creation of essential oils. Stream distillation, water distillation, and solvent extraction were the techniques taken into consideration in this paper. Due to its relative prevalence among the extraction techniques, Design Expert 7.0 was used to plan an experimental run for solvent extraction. Oil was examined to ascertain its physical and chemical characteristics after extraction. It was determined from the outcomes that the orange peels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orange%20peels" title="orange peels">orange peels</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=distillation" title=" distillation"> distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a> </p> <a href="https://publications.waset.org/abstracts/173321/extraction-of-essential-oil-from-orange-peels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2104</span> Persistent Bacteremia in Cases of Endodontic Re-Treatments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilma%20Robo">Ilma Robo</a>, <a href="https://publications.waset.org/abstracts/search?q=Manola%20Kelmendi"> Manola Kelmendi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kleves%20Elezi"> Kleves Elezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nevila%20Alliu"> Nevila Alliu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most important stage in deciding whether to re-treat or not endodontically is to find the reason for the clinical in-success. Therefore, endodontic re-treatment aims to eliminate the etiology of the pathology, where the main ones are the bacteria remaining in the inter-radicular spaces or the presence of other irritants that can be not only bacterial toxins but also the elements that keep the batteries fixed or extra-canal toxins such as extraction outside the apex of the canal filling. Shortcomings of endodontic treatment can be corrected, if possible, only with endodontic re-treatment that is initially attempted orthograde, and if clinical endodontic success is not achieved again, it can be performed retrograde or surgically. The elements that do not help in this direction are the anatomical deformations in the canal network of the tooth roots, in the presence of the delta at the apex of the tooth root, in the isthmuses present, all of which can be explained by the endodontic canal anatomical morphology. Actually, even if the causative endodontic bacteria remains isolated and without an exit in the healthy periodontal tissues, then this can also be a clinical endodontic success, regardless of the fact that the endodontic isolation occurred only in the exits such as the apex or the accessory canals. Clinical endodontic in-success occurs only when bacterial residues emerge or provide an exit in the healthy periradicular tissues or along the entire length of the canal where the accessory canals exit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endodontic%20success" title="endodontic success">endodontic success</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20foecalis" title=" E. foecalis"> E. foecalis</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20diode" title=" laser diode"> laser diode</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=antiseptic" title=" antiseptic"> antiseptic</a> </p> <a href="https://publications.waset.org/abstracts/187314/persistent-bacteremia-in-cases-of-endodontic-re-treatments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2103</span> Adjustment of the Level of Vibrational Force on Targeted Teeth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Akbari">Amin Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongcai%20Wang"> Dongcai Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Huiru%20Li"> Huiru Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoping%20Du"> Xiaoping Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Chen"> Jie Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of vibrational force (VF) on accelerating orthodontic tooth movement depends on the level of delivered stimulation to the tooth in terms of peak load (PL), which requires contacts between the tooth and the VF device. A personalized device ensures the contacts, but the resulting PL distribution on the teeth is unknown. Furthermore, it is unclear whether the PL on particular teeth can be adjusted to the prescribed values. The objective of this study was to investigate the efficacy of apersonalized VF device in controlling the level of stimulation on two teeth, the mandibular canines and 2nd molars. A 3-D finite element (FE) model of human dentition, including teeth, PDL, and alveolar bone, was created from the cone beam computed tomography images of an anonymous subject. The VF was applied to the teeth through a VFdevice consisting of a mouthpiece with engraved tooth profile of the subject and a VF source that applied 0.3 N force with the frequency of 30 Hz. The dentition and mouthpiece were meshed using 10-node tetrahedral elements. Interface elements were created at the interfaces between the teeth and the mouthpiece. The upper and lower teeth bite on the mouthpiece to receive the vibration. The depth of engraved individual tooth profile could be adjusted, which was accomplished by adding a layer of material as an interference or removing a layer of material as a clearance to change the PL on the tooth. The interference increases the PL while the clearance decreases it. Fivemouthpiece design cases were simulated, which included a mouthpiece without interference/clearance; the mouthpieces with bilateral interferences on both mandibular canines and 2nd molars with magnitudes of 0.1, 0.15, and 0.2-mm, respectively; and mouthpiece with bilateral 0.3-mm clearances on the four teeth. Then, the force distributions on the entire dentition were compared corresponding to these adjustments. The PL distribution on the teeth is uneven when there is no interference or clearance. Among all teeth, the anterior segment receives the highest level of PL. Adding 0.1, 0.15, and 0.2-mm interferences to the canines and 2nd molars bilaterally leads to increase of the PL on the canines by 10, 62, and 73 percent and on the 2nd molar by 14, 55, and 87 percent, respectively. Adding clearances to the canines and 2nd molars by removing the contactsbetween these teeth and the mouthpiece results in zero PL on them. Moreover, introducing interference to mandibular canines and 2nd molarsredistributes the PL on the entireteeth. The share of the PL on the anterior teeth are reduced. The use of the personalized mouthpiece ensures contactsof the teeth to the mouthpiece so that all teeth can be stimulated. However, the PL distribution is uneven. Adding interference between a tooth and the mouthpiece increases the PL while introducing clearance decreases the PL. As a result, the PL is redistributed. This study confirms that the level of VF stimulation on the individual tooth can be adjusted to a prescribed value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=orthodontic%20treatment" title=" orthodontic treatment"> orthodontic treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20analysis" title=" stress analysis"> stress analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20movement" title=" tooth movement"> tooth movement</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrational%20force" title=" vibrational force"> vibrational force</a> </p> <a href="https://publications.waset.org/abstracts/144237/adjustment-of-the-level-of-vibrational-force-on-targeted-teeth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2102</span> Peer Group Approach: An Oral Health Intervention from Children for Children at Primary School in Klungkung, Bali, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Regina%20Tedjasulaksana">Regina Tedjasulaksana</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Martina%20Nahak"> Maria Martina Nahak</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Gede%20Agung"> A. A. Gede Agung</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%20Made%20Widhiasti"> Ni Made Widhiasti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strategic effort to realize the empowerment of community in school is through the peer group approach so that it needs to choose the students who are trained as the’ little dentist’ in order to have the cognitive and skills to participate in the school dental health effort (UKGS) program, such as providing oral health education to the other students. Aim: To assessed the effectiveness of peer group approach to enhance the oral health knowledge level of schoolchildren at primary school in Klungkung, Bali. Methods: Experimental study using the pre-post test without control group design. The differences of knowledge levels, tooth brushing behavior and oral hygiene status (using PHP-M index) of 10 students before and after trained as the little dentists were analyzed using paired t-test. The correlations between knowledge level and tooth brushing behavior and correlations between tooth brushing behavior and oral hygiene before and after trained as the little dentists were analyzed using Spearman. Furthermore, the trained little dentists provide oral health education to 102 students of grade 1 to 5 at their school once a week for 3 months. The students’ knowledge level scores of each grade were taken every 21 days as many as three times The difference of it was analyzed using Repeated Measured. Result: The mean scores among all little dentists before and after training for each of knowledge level were each 63.05 + 5.62 and 85.00 + 7.81, tooth brushing behavior were each 31.00 + 14.49 and 100.00 + 0.00 and oral hygiene status using PHP-M index were each 32.80 + 10.17 and 11.40 + 8.01. The knowledge level, tooth brushing behavior and oral hygiene status of 10 students before and after trained as the little dentists were different significantly (p<0.05). Before and after trained as the little dentists it showed that significant correlations between knowledge level with tooth brushing behavior (p<0.05) and significant correlations between tooth brushing behavior and oral hygiene (p<0.05). The mean scores of knowledge level among all students before (pre-test) and after (post-test (1),(2),(3)) getting oral health education from little dentists for each, of grade 1 were 40.00 + 17.97; 67.85 + 18.88; 81.72 +26.48 and 70.00 + 22.87, grade 2 were 40.00 + 17.97; 67.85 + 18.88; 81.72 + 26.48 and 70.00 + 22.87, grade 3 were 65.83 + 23.94; 72.50 + 26.08; 80.41 + 24.93 and 83.75 + 19.74, grade 4 were 88.57 + 12.92; 90.71 + 9.97; 92.85 + 10.69 and 93.57 + 6.33 and grade 5 were 86.66 + 13.40; 93.33 + 9.16; 94.16 + 10.17 and 98.33 + 4.81. The students’ knowledge level of grade 1,2 and 3 before and after getting oral health education from little dentists showed significant different (p<0.05), meanwhile there was no significant different on grade 4 and 5 (p<0.05) although mean scores showed an increase. Conclusion: Peer group approach can be used to enhance the oral health knowledge level of schoolchildren at primary school in Klungkung, Bali. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20dentists" title="small dentists">small dentists</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20health" title=" oral health"> oral health</a>, <a href="https://publications.waset.org/abstracts/search?q=peer%20group%20approach" title=" peer group approach"> peer group approach</a>, <a href="https://publications.waset.org/abstracts/search?q=school%20children" title=" school children"> school children</a> </p> <a href="https://publications.waset.org/abstracts/41431/peer-group-approach-an-oral-health-intervention-from-children-for-children-at-primary-school-in-klungkung-bali-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20extraction&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20extraction&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20extraction&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20extraction&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20extraction&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20extraction&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20extraction&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20extraction&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20extraction&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20extraction&page=71">71</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20extraction&page=72">72</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20extraction&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>