CINXE.COM
Search results for: aeronautical engineering
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: aeronautical engineering</title> <meta name="description" content="Search results for: aeronautical engineering"> <meta name="keywords" content="aeronautical engineering"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="aeronautical engineering" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="aeronautical engineering"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3069</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: aeronautical engineering</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3069</span> MMSE-Based Beamforming for Chip Interleaved CDMA in Aeronautical Mobile Radio Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sherif%20K.%20El%20Dyasti">Sherif K. El Dyasti</a>, <a href="https://publications.waset.org/abstracts/search?q=Esam%20A.%20Hagras"> Esam A. Hagras</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20E.%20El-Hennawy"> Adel E. El-Hennawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper addresses the performance of antenna array beam-forming on Chip-Interleaved Code Division Multiple Access (CI_CDMA) system based on Minimum Mean Square Error (MMSE) detector in aeronautical mobile radio channel. Multipath fading, Doppler shifts caused by the speed of the aircraft, and Multiple Access Interference (MAI) are the most important reasons that affect and reduce the performance of aeronautical system. In this paper, we suggested the CI-CDMA with antenna array to combat this fading and improve the bit error rate (BER) performance. We further evaluate the performance of the proposed system in the four standard scenarios in aeronautical mobile radio channel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeronautical%20channel" title="aeronautical channel">aeronautical channel</a>, <a href="https://publications.waset.org/abstracts/search?q=CI-CDMA" title=" CI-CDMA"> CI-CDMA</a>, <a href="https://publications.waset.org/abstracts/search?q=beamforming" title=" beamforming"> beamforming</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a>, <a href="https://publications.waset.org/abstracts/search?q=information" title=" information"> information</a> </p> <a href="https://publications.waset.org/abstracts/4095/mmse-based-beamforming-for-chip-interleaved-cdma-in-aeronautical-mobile-radio-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3068</span> A Case Study in Using the Can-Sized Satellite Platforms for Interdisciplinary Problem-Based Learning in Aeronautical and Electronic Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Johnson">Michael Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincenzo%20Oliveri"> Vincenzo Oliveri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work considers an interdisciplinary Problem-Based Learning (PBL) project developed by lecturers from the Aeronautical and Electronic and Computer Engineering departments at the University of Limerick. This “CANSAT” project utilises the CanSat can-sized satellite platform in order to allow students from aeronautical and electronic engineering to engage in a mixed format (online/face-to-face), interdisciplinary PBL assignment using a real-world platform and application. The project introduces students to the design, development, and construction of the CanSat system over the course of a single semester, enabling student(s) to apply their aeronautical and technical skills/capabilities to the realisation of a working CanSat system. In this case study, the CanSat kits are used to pivot the real-world, discipline-relevant PBL goal of designing, building, and testing the CanSat system with payload(s) from a traditional module-based setting to an online PBL setting. Feedback, impressions, benefits, and challenges identified through the semester are presented. Students found the project to be interesting and rewarding, with the interdisciplinary nature of the project appealing to them. Challenges and difficulties encountered are also addressed, with solutions developed between the students and facilitators to overcoming these discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=problem-based%20learning" title="problem-based learning">problem-based learning</a>, <a href="https://publications.waset.org/abstracts/search?q=interdisciplinary" title=" interdisciplinary"> interdisciplinary</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering" title=" engineering"> engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=CanSATs" title=" CanSATs"> CanSATs</a> </p> <a href="https://publications.waset.org/abstracts/143299/a-case-study-in-using-the-can-sized-satellite-platforms-for-interdisciplinary-problem-based-learning-in-aeronautical-and-electronic-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3067</span> Design of a Technology Transfer Scheme for the Aeronautical Sector in Alentejo-Andalusia </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Munuzuri">J. Munuzuri</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Onieva"> L. Onieva</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Guadix"> J. Guadix</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Cortes"> P. Cortes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aeronautical sector represents the main source of industrial development in the South of the Iberian Peninsula, with the establishment of key players like Embraer in Alentejo or Airbus in Andalusia. Subsequently, the economic promotion policies implemented in both neighbouring regions seek to consolidate a trans-border aeronautical cluster to gain critical mass and seek synergies between companies and research centres. The first step of the proposed scheme entails the identification of common interests shared by companies, technological centres and university research groups in both regions. This involves determining the specific type of activities carried out at the different companies established in the two regions (ranging from OEMs to SMEs) and also building a catalogue of available infrastructures and skills on the side of research centres and universities. The results of this first step reveal potential one-to-one partnerships, and also highlight the aggregate strengths and needs of the two regions within the aeronautical sector, taking into account both the current scenario and its expected evolution. The second step of the scheme focuses on the particularly relevant companies identified in the first step, and consists of the completion of in-depth technological audits liable to suggest potential development actions or R&D projects in those companies, counting when possible on the capabilities shown by other members of the cluster. These technological audits follow a three-round process aimed at identifying specific needs, validating those identifications and suggesting possible actions to be taken. The final objective of this methodology is to enhance the economic activity in the aeronautical sector in both regions, always with an innovative perspective. The success of the scheme should be measured in terms of partnerships created, R&D projects initiated, and spin-off companies generated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeronautical%20sector" title="aeronautical sector">aeronautical sector</a>, <a href="https://publications.waset.org/abstracts/search?q=technological%20audits" title=" technological audits"> technological audits</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20transfer" title=" technology transfer"> technology transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=trans-border%20cluster" title=" trans-border cluster"> trans-border cluster</a> </p> <a href="https://publications.waset.org/abstracts/96714/design-of-a-technology-transfer-scheme-for-the-aeronautical-sector-in-alentejo-andalusia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3066</span> A Semantic Registry to Support Brazilian Aeronautical Web Services Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADs%20Antonio%20de%20Almeida%20Rodriguez">Luís Antonio de Almeida Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Maria%20Parente%20de%20Oliveira"> José Maria Parente de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Ednelson%20Oliveira"> Ednelson Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last two decades, the world’s aviation authorities have made several attempts to create consensus about a global and accepted approach for applying semantics to web services registry descriptions. This problem has led communities to face a fat and disorganized infrastructure to describe aeronautical web services. It is usual for developers to implement ad-hoc connections among consumers and providers and manually create non-standardized service compositions, which need some particular approach to compose and semantically discover a desired web service. Current practices are not precise and tend to focus on lightweight specifications of some parts of the OWL-S and embed them into syntactic descriptions (SOAP artifacts and OWL language). It is necessary to have the ability to manage the use of both technologies. This paper presents an implementation of the ontology OWL-S that describes a Brazilian Aeronautical Web Service Registry, which makes it able to publish, advertise, make multi-criteria semantic discovery aligned with the ideas of the System Wide Information Management (SWIM) Program, and invoke web services within the Air Traffic Management context. The proposal’s best finding is a generic approach to describe semantic web services. The paper also presents a set of functional requirements to guide the ontology development and to compare them to the results to validate the implementation of the OWL-S Ontology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeronautical%20web%20services" title="aeronautical web services">aeronautical web services</a>, <a href="https://publications.waset.org/abstracts/search?q=OWL-S" title=" OWL-S"> OWL-S</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20web%20services%20discovery" title=" semantic web services discovery"> semantic web services discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=ontologies" title=" ontologies"> ontologies</a> </p> <a href="https://publications.waset.org/abstracts/161161/a-semantic-registry-to-support-brazilian-aeronautical-web-services-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3065</span> Aeronautical Noise Management inside an Aerodrome: Analysis of Sound Exposure on Aviation Professional’s Health</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Felipe%20Guatura%20da%20Silva">Rafael Felipe Guatura da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Luis%20Gomes%20da%20Silva"> José Luis Gomes da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Luiz%20Antonio"> Luiz Antonio</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferreira%20Perrone%20de%20Brito"> Ferreira Perrone de Brito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Noise can cause serious damage to human health, such as hearing loss, stress, irritability, fatigue, and others. Aviation is a place where your entire process should be work out with the utmost attention and commitment of human resources, thus the need to study the effects of noise in this sector, as aeronautical noise levels are high. This study aimed to evaluate the impact of noise pollution on the performance of professionals regarding the fatigue generated by aeronautical noise and time to noise exposure. The methodology used consists of measurements of sound pressure levels at 42 points of the aerodrome. The selected points are located inside the hangars and outside the airfield hangars. All points chosen are close to the professionals' work areas, seeking to identify the sound pressure levels to which they submitted. The other part of the research used the principle on the application of a self-report questionnaire to a sample of 207 people working inside the aerodrome. The 207 professionals surveyed consist of aircraft mechanics, pilots, maintenance managers, and administrative professionals. The questionnaire was intended to evaluate the knowledge that professionals have about health risks caused by sound exposure as well as to identify diseases that professionals have, and that may be associated with exposure to high levels of sound pressure. Preliminary results identify points with sound pressure levels of up to 91.7 dB, thus highlighting the need for the use of personal protective equipment that reduces noise exposure. It was also identified a large number of professionals who are bothered by the sound exposure and approximately 25% of professionals interviewed reported having a hearing disorder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeronautical%20noise" title="aeronautical noise">aeronautical noise</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20and%20health" title=" noise and health"> noise and health</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20management" title=" noise management"> noise management</a> </p> <a href="https://publications.waset.org/abstracts/113625/aeronautical-noise-management-inside-an-aerodrome-analysis-of-sound-exposure-on-aviation-professionals-health" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3064</span> Instruction Program for Human Factors in Maintenance, Addressed to the People Working in Colombian Air Force Aeronautical Maintenance Area to Strengthen Operational Safety </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Andres%20Rincon%20Barrera">Rafael Andres Rincon Barrera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Safety in global aviation plays a preponderant role in organizations that seek to avoid accidents in an attempt to preserve their most precious assets (the people and the machines). Human factors-based programs have shown to be effective in managing human-generated risks. The importance of training on human factors in maintenance has not been indifferent to the Colombian Air Force (COLAF). This research, which has a mixed quantitative, qualitative and descriptive approach, deals with its absence of structuring an instruction program in Human Factors in Aeronautical Maintenance, which serves as a tool to improve Operational Safety in the military air units of the COLAF. Research shows the trends and evolution of human factors programs in aeronautical maintenance through the analysis of a data matrix with 33 sources taken from different databases that are about the incorporation of these types of programs in the aeronautical industry in the last 20 years; as well as the improvements in the operational safety process that are presented after the implementation of these ones. Likewise, it compiles different normative guides in force from world aeronautical authorities for training in these programs, establishing a matrix of methodologies that may be applicable to develop a training program in human factors in maintenance. Subsequently, it illustrates the design, validation, and development of a human factors knowledge measurement instrument for maintenance at the COLAF that includes topics on Human Factors (HF), Safety Management System (SMS), and aeronautical maintenance regulations at the COLAF. With the information obtained, it performs the statistical analysis showing the aspects of knowledge and strengthening the staff for the preparation of the instruction program. Performing data triangulation based on the applicable methods and the weakest aspects found in the maintenance people shows a variable crossing from color coding, thus indicating the contents according to a training program for human factors in aeronautical maintenance, which are adjusted according to the competencies that are expected to be developed with the staff in a curricular format established by the COLAF. Among the most important findings are the determination that different authors are dealing with human factors in maintenance agrees that there is no standard model for its instruction and implementation, but that it must be adapted to the needs of the organization, that the Safety Culture in the Companies which incorporated programs on human factors in maintenance increased, that from the data obtained with the instrument for knowledge measurement of human factors in maintenance, the level of knowledge is MEDIUM-LOW with a score of 61.79%. And finally that there is an opportunity to improve Operational Safety for the COLAF through the implementation of the training program of human factors in maintenance for the technicians working in this area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Colombian%20air%20force" title="Colombian air force">Colombian air force</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20factors" title=" human factors"> human factors</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20culture" title=" safety culture"> safety culture</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20management%20system" title=" safety management system"> safety management system</a>, <a href="https://publications.waset.org/abstracts/search?q=triangulation" title=" triangulation"> triangulation</a> </p> <a href="https://publications.waset.org/abstracts/129285/instruction-program-for-human-factors-in-maintenance-addressed-to-the-people-working-in-colombian-air-force-aeronautical-maintenance-area-to-strengthen-operational-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3063</span> Dynamic Network Approach to Air Traffic Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Catia%20S.%20A.%20Sima">Catia S. A. Sima</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bousson"> K. Bousson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Congestion in the Terminal Maneuvering Areas (TMAs) of larger airports impacts all aspects of air traffic flow, not only at national level but may also induce arrival delays at international level. Hence, there is a need to monitor appropriately the air traffic flow in TMAs so that efficient decisions may be taken to manage their occupancy rates. It would be desirable to physically increase the existing airspace to accommodate all existing demands, but this question is entirely utopian and, given this possibility, several studies and analyses have been developed over the past decades to meet the challenges that have arisen due to the dizzying expansion of the aeronautical industry. The main objective of the present paper is to propose concepts to manage and reduce the degree of uncertainty in the air traffic operations, maximizing the interest of all involved, ensuring a balance between demand and supply, and developing and/or adapting resources that enable a rapid and effective adaptation of measures to the current context and the consequent changes perceived in the aeronautical industry. A central task is to emphasize the increase in air traffic flow management capacity to the present day, taking into account not only a wide range of methodologies but also equipment and/or tools already available in the aeronautical industry. The efficient use of these resources is crucial as the human capacity for work is limited and the actors involved in all processes related to air traffic flow management are increasingly overloaded and, as a result, operational safety could be compromised. The methodology used to answer and/or develop the issues listed above is based on the advantages promoted by the application of Markov Chain principles that enable the construction of a simplified model of a dynamic network that describes the air traffic flow behavior anticipating their changes and eventual measures that could better address the impact of increased demand. Through this model, the proposed concepts are shown to have potentials to optimize the air traffic flow management combined with the operation of the existing resources at each moment and the circumstances found in each TMA, using historical data from the air traffic operations and specificities found in the aeronautical industry, namely in the Portuguese context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20traffic%20flow" title="air traffic flow">air traffic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=terminal%20maneuvering%20area" title=" terminal maneuvering area"> terminal maneuvering area</a>, <a href="https://publications.waset.org/abstracts/search?q=TMA" title=" TMA"> TMA</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20traffic%20management" title=" air traffic management"> air traffic management</a>, <a href="https://publications.waset.org/abstracts/search?q=ATM" title=" ATM"> ATM</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20chains" title=" Markov chains"> Markov chains</a> </p> <a href="https://publications.waset.org/abstracts/113066/dynamic-network-approach-to-air-traffic-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3062</span> Cognitive Radio in Aeronautic: Comparison of Some Spectrum Sensing Technics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelkhalek%20Bouchikhi">Abdelkhalek Bouchikhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Elyes%20Benmokhtar"> Elyes Benmokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastien%20Saletzki"> Sebastien Saletzki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aeronautical field is experiencing issues with RF spectrum congestion due to the constant increase in the number of flights, aircrafts and telecom systems on board. In addition, these systems are bulky in size, weight and energy consumption. The cognitive radio helps particularly solving the spectrum congestion issue by its capacity to detect idle frequency channels then, allowing an opportunistic exploitation of the RF spectrum. The present work aims to propose a new use case for aeronautical spectrum sharing and to study the performances of three different detection techniques: energy detector, matched filter and cyclostationary detector within the aeronautical use case. The spectrum in the proposed cognitive radio is allocated dynamically where each cognitive radio follows a cognitive cycle. The spectrum sensing is a crucial step. The goal of the sensing is gathering data about the surrounding environment. Cognitive radio can use different sensors: antennas, cameras, accelerometer, thermometer, etc. In IEEE 802.22 standard, for example, a primary user (PU) has always the priority to communicate. When a frequency channel witch used by the primary user is idle, the secondary user (SU) is allowed to transmit in this channel. The Distance Measuring Equipment (DME) is composed of a UHF transmitter/receiver (interrogator) in the aircraft and a UHF receiver/transmitter on the ground. While the future cognitive radio will be used jointly to alleviate the spectrum congestion issue in the aeronautical field. LDACS, for example, is a good candidate; it provides two isolated data-links: ground-to-air and air-to-ground data-links. The first contribution of the present work is a strategy allowing sharing the L-band. The adopted spectrum sharing strategy is as follow: the DME will play the role of PU which is the licensed user and the LDACS1 systems will be the SUs. The SUs could use the L-band channels opportunely as long as they do not causing harmful interference signals which affect the QoS of the DME system. Although the spectrum sensing is a key step, it helps detecting holes by determining whether the primary signal is present or not in a given frequency channel. A missing detection on primary user presence creates interference between PU and SU and will affect seriously the QoS of the legacy radio. In this study, first brief definitions, concepts and the state of the art of cognitive radio will be presented. Then, a study of three communication channel detection algorithms in a cognitive radio context is carried out. The study is made from the point of view of functions, material requirements and signal detection capability in the aeronautical field. Then, we presented a modeling of the detection problem by three different methods (energy, adapted filter, and cyclostationary) as well as an algorithmic description of these detectors is done. Then, we study and compare the performance of the algorithms. Simulations were carried out using MATLAB software. We analyzed the results based on ROCs curves for SNR between -10dB and 20dB. The three detectors have been tested with a synthetics and real world signals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeronautic" title="aeronautic">aeronautic</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=surveillance%20systems" title=" surveillance systems"> surveillance systems</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title=" cognitive radio"> cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing" title=" spectrum sensing"> spectrum sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20defined%20radio" title=" software defined radio"> software defined radio</a> </p> <a href="https://publications.waset.org/abstracts/100385/cognitive-radio-in-aeronautic-comparison-of-some-spectrum-sensing-technics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3061</span> Reverse Engineering of a Secondary Structure of a Helicopter: A Study Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jose%20Daniel%20Giraldo%20Arias">Jose Daniel Giraldo Arias</a>, <a href="https://publications.waset.org/abstracts/search?q=Camilo%20Rojas%20Gomez"> Camilo Rojas Gomez</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Villegas%20Delgado"> David Villegas Delgado</a>, <a href="https://publications.waset.org/abstracts/search?q=Gullermo%20Idarraga%20Alarcon"> Gullermo Idarraga Alarcon</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Meza%20Meza"> Juan Meza Meza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reverse engineering processes are widely used in the industry with the main goal to determine the materials and the manufacture used to produce a component. There are a lot of characterization techniques and computational tools that are used in order to get this information. A study case of a reverse engineering applied to a secondary sandwich- hybrid type structure used in a helicopter is presented. The methodology used consists of five main steps, which can be applied to any other similar component: Collect information about the service conditions of the part, disassembly and dimensional characterization, functional characterization, material properties characterization and manufacturing processes characterization, allowing to obtain all the supports of the traceability of the materials and processes of the aeronautical products that ensure their airworthiness. A detailed explanation of each step is covered. Criticality and comprehend the functionalities of each part, information of the state of the art and information obtained from interviews with the technical groups of the helicopter’s operators were analyzed,3D optical scanning technique, standard and advanced materials characterization techniques and finite element simulation allow to obtain all the characteristics of the materials used in the manufacture of the component. It was found that most of the materials are quite common in the aeronautical industry, including Kevlar, carbon, and glass fibers, aluminum honeycomb core, epoxy resin and epoxy adhesive. The stacking sequence and volumetric fiber fraction are a critical issue for the mechanical behavior; a digestion acid method was used for this purpose. This also helps in the determination of the manufacture technique which for this case was Vacuum Bagging. Samples of the material were manufactured and submitted to mechanical and environmental tests. These results were compared with those obtained during reverse engineering, which allows concluding that the materials and manufacture were correctly determined. Tooling for the manufacture was designed and manufactured according to the geometry and manufacture process requisites. The part was manufactured and the mechanical, and environmental tests required were also performed. Finally, a geometric characterization and non-destructive techniques allow verifying the quality of the part. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20engineering" title="reverse engineering">reverse engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich-structured%20composite%20parts" title=" sandwich-structured composite parts"> sandwich-structured composite parts</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter" title=" helicopter"> helicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=prototype" title=" prototype"> prototype</a> </p> <a href="https://publications.waset.org/abstracts/55501/reverse-engineering-of-a-secondary-structure-of-a-helicopter-a-study-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3060</span> Fully Instrumented Small-Scale Fire Resistance Benches for Aeronautical Composites Assessment </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabienne%20Samyn">Fabienne Samyn</a>, <a href="https://publications.waset.org/abstracts/search?q=Pauline%20Tranchard"> Pauline Tranchard</a>, <a href="https://publications.waset.org/abstracts/search?q=Sophie%20Duquesne"> Sophie Duquesne</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilie%20Goncalves"> Emilie Goncalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Estebe"> Bruno Estebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Serge%20Boubigot"> Serge Boubigot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stringent fire safety regulations are enforced in the aeronautical industry due to the consequences that potential fire event on an aircraft might imply. This is so much true that the fire issue is considered right from the design of the aircraft structure. Due to the incorporation of an increasing amount of polymer matrix composites in replacement of more conventional materials like metals, the nature of the fire risks is changing. The choice of materials used is consequently of prime importance as well as the evaluation of its resistance to fire. The fire testing is mostly done using the so-called certification tests according to standards such as the ISO2685:1998(E). The latter describes a protocol to evaluate the fire resistance of structures located in fire zone (ability to withstand fire for 5min). The test consists in exposing an at least 300x300mm² sample to an 1100°C propane flame with a calibrated heat flux of 116kW/m². This type of test is time-consuming, expensive and gives access to limited information in terms of fire behavior of the materials (pass or fail test). Consequently, it can barely be used for material development purposes. In this context, the laboratory UMET in collaboration with industrial partners has developed a horizontal and a vertical small-scale instrumented fire benches for the characterization of the fire behavior of composites. The benches using smaller samples (no more than 150x150mm²) enables to cut downs costs and hence to increase sampling throughput. However, the main added value of our benches is the instrumentation used to collect useful information to understand the behavior of the materials. Indeed, measurements of the sample backside temperature are performed using IR camera in both configurations. In addition, for the vertical set up, a complete characterization of the degradation process, can be achieved via mass loss measurements and quantification of the gasses released during the tests. These benches have been used to characterize and study the fire behavior of aeronautical carbon/epoxy composites. The horizontal set up has been used in particular to study the performances and durability of protective intumescent coating on 2mm thick 2D laminates. The efficiency of this approach has been validated, and the optimized coating thickness has been determined as well as the performances after aging. Reductions of the performances after aging were attributed to the migration of some of the coating additives. The vertical set up has enabled to investigate the degradation process of composites under fire. An isotropic and a unidirectional 4mm thick laminates have been characterized using the bench and post-fire analyses. The mass loss measurements and the gas phase analyses of both composites do not present significant differences unlike the temperature profiles in the thickness of the samples. The differences have been attributed to differences of thermal conductivity as well as delamination that is much more pronounced for the isotropic composite (observed on the IR-images). This has been confirmed by X-ray microtomography. The developed benches have proven to be valuable tools to develop fire safe composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeronautical%20carbon%2Fepoxy%20composite" title="aeronautical carbon/epoxy composite">aeronautical carbon/epoxy composite</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=intumescent%20coating" title=" intumescent coating"> intumescent coating</a>, <a href="https://publications.waset.org/abstracts/search?q=small-scale%20%E2%80%98ISO%202685%20like%E2%80%99%20fire%20resistance%20test" title=" small-scale ‘ISO 2685 like’ fire resistance test"> small-scale ‘ISO 2685 like’ fire resistance test</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20microtomography" title=" X-ray microtomography"> X-ray microtomography</a> </p> <a href="https://publications.waset.org/abstracts/58907/fully-instrumented-small-scale-fire-resistance-benches-for-aeronautical-composites-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3059</span> The Qualification and Quality of Space Sciences and Space Engineering Education in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatice%20Canan%20Gungor">Hatice Canan Gungor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Akdemir"> Ahmet Akdemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fields of engineering and technological sciences are increasing in quality and quantity day by day all over the world. Countries have to follow, implement and adapt these developments in order to economical empowerments. In our era, it's possible to follow the rapidly developing technology and to produce new technologies by inquisitive, curious, numerical thinking individuals who can show several approaches to problem solving. In this case, countries should develop te result oriented and need-focused curriculums in university education. As in the whole world, there are more space studies in our country as well. Universities should undertake the task of supply the need for staff of this technological race. In this context, questions about the purpose, content and learning outcomes of the space sciences and space engineering departments in our country will be researched answers to reveal the characteristic of this section. In this study, it was determined in which universities the space engineering and the departments of basic sciences educate with formal education and the contents of this education, and the universities were compared with each other as of 2017. In our country three universities provide Aeronautical and Aerospace Engineering, two universities provide Space Sciences and Technologies, two universities provide Aerospace Engineering, two universities provide Aeronautics and Astronautics Engineering education. In all universities, specialized courses are taught after basic engineering education. But the question that needs to be answered is, do the lessons benefit in practice? The answer of this question will reveal the quality of the education. This paper suggests that surveys be conducted to search for the answer to this question. It's thought to be the base for the next works. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=education" title="education">education</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20engineering" title=" space engineering"> space engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20science" title=" space science"> space science</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20systems" title=" quality of systems"> quality of systems</a> </p> <a href="https://publications.waset.org/abstracts/71485/the-qualification-and-quality-of-space-sciences-and-space-engineering-education-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3058</span> Construction of a Desktop Arduino Controlled Propeller Test Stand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brian%20Kozak">Brian Kozak</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Ferguson"> Ryan Ferguson</a>, <a href="https://publications.waset.org/abstracts/search?q=Evan%20Hockeridge"> Evan Hockeridge </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerospace engineering and aeronautical engineering students studying propulsion often learn about propellers and their importance in aviation propulsion. In order to reinforce concepts introduced in the classroom, laboratory projects are used. However, to test a full scale propeller, an engine mounted on a test stand must be used. This engine needs to be enclosed in a test cell for appropriated safety requirements, is expensive to operate, and requires a significant amount of time to change propellers. In order to decrease costs and time requirements, the authors designed and built an electric motor powered desktop Arduino controlled test stand. This test stand is used to enhance student understanding of propeller size and pitch on thrust. The test stand can accommodate propellers up to 25 centimeters in diameter. The code computer allowed for the motor speed to be increased or decreased by 1% per second. Outputs that are measured are thrust, motor rpm, amperes, voltage, and motor temperature. These data are exported as a .CVS file and can be imported into a graphing program for data analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arduino" title="Arduino">Arduino</a>, <a href="https://publications.waset.org/abstracts/search?q=Laboratory%20Project" title=" Laboratory Project"> Laboratory Project</a>, <a href="https://publications.waset.org/abstracts/search?q=Test%20stand" title=" Test stand"> Test stand</a>, <a href="https://publications.waset.org/abstracts/search?q=Propeller" title=" Propeller"> Propeller</a> </p> <a href="https://publications.waset.org/abstracts/122938/construction-of-a-desktop-arduino-controlled-propeller-test-stand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3057</span> An Approximation Algorithm for the Non Orthogonal Cutting Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ouafi">R. Ouafi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ouafi"> F. Ouafi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the problem of cutting a rectangular material entity into smaller sub-entities of trapezoidal forms with minimum waste of the material. This problem will be denoted TCP (Trapezoidal Cutting Problem). The TCP has many applications in manufacturing processes of various industries: pipe line design (petro chemistry), the design of airfoil (aeronautical) or cuts of the components of textile products. We introduce an orthogonal build to provide the optimal horizontal and vertical homogeneous strips. In this paper we develop a general heuristic search based upon orthogonal build. By solving two one-dimensional knapsack problems, we combine the horizontal and vertical homogeneous strips to give a non orthogonal cutting pattern. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combinatorial%20optimization" title="combinatorial optimization">combinatorial optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20problem" title=" cutting problem"> cutting problem</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic" title=" heuristic"> heuristic</a> </p> <a href="https://publications.waset.org/abstracts/19497/an-approximation-algorithm-for-the-non-orthogonal-cutting-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3056</span> Mechanical Characteristics on Fatigue Crack Propagation in Aluminum Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Chellil">A. Chellil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nour"> A. Nour</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lecheb"> S. Lecheb </a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mechakra"> H. Mechakra</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Addar"> L. Addar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kebir"> H. Kebir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper present a mechanical characteristics on fatigue crack propagation in Aluminium Plate based on strain and stress distribution using the abaqus software. The changes in shear strain and stress distribution during the fatigue cycle with crack growth is identified. In progressive crack in the strain distribution and the stress is increase in the critical zone. Numerical Modal analysis of the model developed, prove that the Eigen frequencies of aluminium plate were decreased after cracking, and this reduce is nonlinear. These results can provide a reference for analysts and designers of aluminium alloys in aeronautical systems. Therefore, the modal analysis is an important factor for monitoring the aeronautic structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloys" title="aluminum alloys">aluminum alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=plate" title=" plate"> plate</a>, <a href="https://publications.waset.org/abstracts/search?q=crack" title=" crack"> crack</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure "> failure </a> </p> <a href="https://publications.waset.org/abstracts/5667/mechanical-characteristics-on-fatigue-crack-propagation-in-aluminum-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3055</span> Construction of Wind Tunnel for Aerodynamic </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmo%20Thiago%20Lins%20C%C3%B6uras%20Ford">Elmo Thiago Lins Cöuras Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Alessandra%20Carvalho%20do%20Vale"> Valentina Alessandra Carvalho do Vale</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Ubiragi%20de%20Lima%20Mendes"> José Ubiragi de Lima Mendes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the aerodynamics is related to the improvement in the acting of airplanes and automobiles with the objective of being reduced the effect of the attrition of the air on structures, providing larger speeds and smaller consumption of fuel. The application of the knowledge of the aerodynamics not more limits to the aeronautical and automobile industries. In that way, being tried the new demands with relationship to the aerodynamic study in the most several areas of the engineering, this work presents the stages of the project and construction of a wind tunnel for application in aerodynamic rehearsals. Among the several configurations of existent wind tunnels, opted to build open circuit, due to smaller construction complexity and installation; operational simplicity and cost reduced. Belonging to the type blower, to take advantage of a larger efficiency of the motor; and with diffusion so that flowed him of air it wins speed before reaching the section of rehearsals. The guidelines for project were: didactic practices: study of the layer it limits and analyze of the drainages on proof bodies with different geometries. For the pressure variation in the test section a connected manometer used a pitot tube. Quantitative and qualitative results showed to be satisfactory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title="wind tunnel">wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title=" aerodynamics"> aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=air" title=" air"> air</a>, <a href="https://publications.waset.org/abstracts/search?q=airplane" title=" airplane"> airplane</a> </p> <a href="https://publications.waset.org/abstracts/18670/construction-of-wind-tunnel-for-aerodynamic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3054</span> Mechanism to Optimize Landing Distance in Order to Minimize Tyre Wear during Braking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20V.%20H.%20De%20Soysa">H. V. H. De Soysa</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20D.%20Hiripitiya"> N. D. Hiripitiya</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20U.%20Thrimavithana"> H. S. U. Thrimavithana</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20Epitawala"> B. R. Epitawala</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20D.%20D.%20Kuruppu"> K. A. D. D. Kuruppu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20J.%20K.%20Lokupathirage"> D. J. K. Lokupathirage</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was based on developing a mechanism in order to optimize the landing distance. Short distance braking and long distance braking may cause several issues for the aircraft including tyre wearing. The worst case occurs with short distance landing. The issues related to short distance landing were identified after conducting interviews with pilots, aeronautical engineers and technicians. A model was constructed in order to optimize the landing distance. The device started to function at the point where the main wheels of the aircraft touchdown the runway. It was found that implementing this device to the aircraft benefits to optimize the landing distance. This could lead to rectifying several issues occurred due to improper braking distances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism" title=" mechanism"> mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=optimize%20landing%20distance" title=" optimize landing distance"> optimize landing distance</a>, <a href="https://publications.waset.org/abstracts/search?q=runway" title=" runway"> runway</a> </p> <a href="https://publications.waset.org/abstracts/57454/mechanism-to-optimize-landing-distance-in-order-to-minimize-tyre-wear-during-braking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3053</span> Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bennoud">S. Bennoud</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zergoug"> M. Zergoug</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models. The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces. The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations. In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eddy%20current" title="eddy current">eddy current</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20destructive%20testing" title=" non destructive testing"> non destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a> </p> <a href="https://publications.waset.org/abstracts/7187/modeling-and-simulation-for-3d-eddy-current-testing-in-conducting-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3052</span> Breaking Stress Criterion that Changes Everything We Know About Materials Failure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Nour%20El%20Hajj">Ali Nour El Hajj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The perennial deficiencies of the failure models in the materials field have profoundly and significantly impacted all associated technical fields that depend on accurate failure predictions. Many preeminent and well-known scientists from an earlier era of groundbreaking discoveries attempted to solve the issue of material failure. However, a thorough understanding of material failure has been frustratingly elusive. Objective: The heart of this study is the presentation of a methodology that identifies a newly derived one-parameter criterion as the only general failure theory for noncompressible, homogeneous, and isotropic materials subjected to multiaxial states of stress and various boundary conditions, providing the solution to this longstanding problem. This theory is the counterpart and companion piece to the theory of elasticity and is in a formalism that is suitable for broad application. Methods: Utilizing advanced finite-element analysis, the maximum internal breaking stress corresponding to the maximum applied external force is identified as a unified and universal material failure criterion for determining the structural capacity of any system, regardless of its geometry or architecture. Results: A comparison between the proposed criterion and methodology against design codes reveals that current provisions may underestimate the structural capacity by 2.17 times or overestimate the capacity by 2.096 times. It also shows that existing standards may underestimate the structural capacity by 1.4 times or overestimate the capacity by 2.49 times. Conclusion: The proposed failure criterion and methodology will pave the way for a new era in designing unconventional structural systems composed of unconventional materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure%20criteria" title="failure criteria">failure criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20theory" title=" strength theory"> strength theory</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20mechanics" title=" failure mechanics"> failure mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20mechanics" title=" materials mechanics"> materials mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20mechanics" title=" rock mechanics"> rock mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20strength" title=" concrete strength"> concrete strength</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-element%20analysis" title=" finite-element analysis"> finite-element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20engineering" title=" mechanical engineering"> mechanical engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=aeronautical%20engineering" title=" aeronautical engineering"> aeronautical engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering" title=" civil engineering"> civil engineering</a> </p> <a href="https://publications.waset.org/abstracts/167552/breaking-stress-criterion-that-changes-everything-we-know-about-materials-failure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3051</span> Effect of Political and Social Context in Libya on Accounting Information System to Meet Development Needs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bubaker%20F.%20Shareia">Bubaker F. Shareia</a>, <a href="https://publications.waset.org/abstracts/search?q=Almuetaz%20R.%20Boubakr"> Almuetaz R. Boubakr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to show how Libya’s legal, economic, political, social, and cultural systems have shaped Libyan development. This will provide a background to develop an understanding of the current role of the accounting information system in Libya and the challenges facing the design of the aeronautical information system to meet the development needs of Libya. Our knowledge of the unified economic operating systems of the world paves the way for the economic development of every developing country. In order to achieve this understanding, every developing country should be provided with a high-efficiency communications system in order to be able to interact globally. From the point of view of the theory of globalization, Libya's understanding of its socio-economic and political systems is vital in order to be able to adopt and apply accounting techniques that will assist in the economic development of Libya. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accounting" title="accounting">accounting</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20development" title=" economic development"> economic development</a>, <a href="https://publications.waset.org/abstracts/search?q=globalisation%20theory" title=" globalisation theory"> globalisation theory</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20system" title=" information system"> information system</a> </p> <a href="https://publications.waset.org/abstracts/71921/effect-of-political-and-social-context-in-libya-on-accounting-information-system-to-meet-development-needs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3050</span> Effect of Incremental Forming Parameters on Titanium Alloys Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Homola">P. Homola</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Novakova"> L. Novakova</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Kafka"> V. Kafka</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Oscoz"> M. P. Oscoz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shear spinning is closely related to the asymmetric incremental sheet forming (AISF) that could significantly reduce costs incurred by the fabrication of complex aeronautical components with a minimal environmental impact. The spinning experiments were carried out on commercially pure titanium (Ti-Gr2) and Ti-6Al-4V (Ti-Gr5) alloy. Three forming modes were used to characterize the titanium alloys properties from the point of view of different spinning parameters. The structure and properties of the materials were assessed by means of metallographic analyses and micro-hardness measurements. The highest value wall angle failure limit was achieved using spinning parameters mode for both materials. The feed rate effect was observed only in the samples from the Ti-Gr2 material, when a refinement of the grain microstructure with lower feed rate and higher tangential speed occurred. Ti-Gr5 alloy exhibited a decrease of the micro-hardness at higher straining due to recovery processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=incremental%20forming" title="incremental forming">incremental forming</a>, <a href="https://publications.waset.org/abstracts/search?q=metallography" title=" metallography"> metallography</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20spinning" title=" shear spinning"> shear spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a> </p> <a href="https://publications.waset.org/abstracts/4222/effect-of-incremental-forming-parameters-on-titanium-alloys-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3049</span> Tribological Characterization of Composites Based on Epoxy Resin Filled with Tailings of Scheelite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clarissa%20D.%20M.%20O.%20Guimaraes">Clarissa D. M. O. Guimaraes</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariza%20C.%20M.%20Fernandes"> Mariza C. M. Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20R.%20V.%20Diaz"> Francisco R. V. Diaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliana%20R.%20Souza"> Juliana R. Souza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of mineral fillers in the preparation of organic matrix composites can be an efficient alternative in minimizing the environmental damage generated in passive mineral beneficiation processes. In addition, it may represent a new material option for wind, construction, and aeronautical industries, for example. In this sense, epoxy resin composites with Tailings of Scheelite (TS) were developed. The composites were manufactured with 5%, 10% and 20% of TS in volume percentage, homogenized by mechanical mixing and molded in a silicon mold. In order to make the tribological evaluation, pin on disk tests were performed to analyze coefficient of friction and wear. The wear mechanisms were identified by SEM (scanning electron microscope) images. The coefficient of friction had a tendency to decrease with increasing amount of filler. The wear tends to increase with increasing amount of filler, although it exhibits a similar wear behavior. The results suggest characteristics that are potential used in many tribological applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composites" title="composites">composites</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20filler" title=" mineral filler"> mineral filler</a>, <a href="https://publications.waset.org/abstracts/search?q=tailings%20of%20scheelite" title=" tailings of scheelite"> tailings of scheelite</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a> </p> <a href="https://publications.waset.org/abstracts/106011/tribological-characterization-of-composites-based-on-epoxy-resin-filled-with-tailings-of-scheelite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3048</span> Modeling of the Friction Behavior of Carbon/Epoxy Prepreg Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Aveiga">David Aveiga</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Gonzalez"> Carlos Gonzalez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermoforming of pre-impregnated composites (prepreg) is the most employed process to build high-performance composite structures due to their visible advantage over alternative manufacturing techniques. This method allows easy shape moulding with a simple manufacturing system and a more refined outcome. The achievement of complex geometries can be exposed to undesired defects such as wrinkles. It is known that interply and ply-mould sliding behavior governs this defect generation. This work analyses interply and ply-mould friction coefficients for UD AS4/8552 Carbon/Epoxy prepreg. Friction coefficients are determined by a pull-out test method considering actual velocity, pressure and temperature conditions employed in a thermoforming process of an aeronautical composite component. A Stribeck curve is then constructed to find a mathematical expression that relates all the friction coefficients with the test variables through the Hersey number parameter. Two expressions are proposed to model ply-ply and ply-tool friction behaviors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction" title="friction">friction</a>, <a href="https://publications.waset.org/abstracts/search?q=prepreg%20composite" title=" prepreg composite"> prepreg composite</a>, <a href="https://publications.waset.org/abstracts/search?q=stribeck%20curve" title=" stribeck curve"> stribeck curve</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoforming." title=" thermoforming."> thermoforming.</a> </p> <a href="https://publications.waset.org/abstracts/141837/modeling-of-the-friction-behavior-of-carbonepoxy-prepreg-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3047</span> Investigation on the Properties of Particulate Reinforced AA2014 Metal Matrix Composite Materials Produced by Vacuum Infiltration Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isil%20Kerti">Isil Kerti</a>, <a href="https://publications.waset.org/abstracts/search?q=Onur%20Okur"> Onur Okur</a>, <a href="https://publications.waset.org/abstracts/search?q=Sibel%20Daglilar"> Sibel Daglilar</a>, <a href="https://publications.waset.org/abstracts/search?q=Recep%20Calin"> Recep Calin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particulate reinforced aluminium matrix composites have gained more importance in automotive, aeronautical and defense industries due to their specific properties like as low density, high strength and stiffness, good fatigue strength, dimensional stability at high temperature and acceptable tribological properties. In this study, 2014 Aluminium alloy used as a matrix material and B₄C and SiC were selected as reinforcements components. For production of composites materials, vacuum infiltration method was used. In the experimental studies, the reinforcement volume ratios were defined by mixing as totally 10% B₄C and SiC. Aging treatment (T6) was applied to the specimens. The effect of T6 treatment on hardness was determined by using Brinell hardness test method. The effects of the aging treatment on microstructure and chemical structure were analysed by making XRD, SEM and EDS analysis on the specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20matrix%20composite" title="metal matrix composite">metal matrix composite</a>, <a href="https://publications.waset.org/abstracts/search?q=vacumm%20infiltration%20method" title=" vacumm infiltration method"> vacumm infiltration method</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20metal%20matrix" title=" aluminum metal matrix"> aluminum metal matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20feature" title=" mechanical feature"> mechanical feature</a> </p> <a href="https://publications.waset.org/abstracts/81221/investigation-on-the-properties-of-particulate-reinforced-aa2014-metal-matrix-composite-materials-produced-by-vacuum-infiltration-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3046</span> Flutter Control Analysis of an Aircraft Wing Using Carbon Nanotubes Reinforced Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timothee%20Gidenne">Timothee Gidenne</a>, <a href="https://publications.waset.org/abstracts/search?q=Xia%20Pinqi"> Xia Pinqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an investigation of the use of carbon nanotubes (CNTs) reinforced polymer as an actuator for an active flutter suppression to counter the flutter phenomena is conducted. The goal of this analysis is to establish a link between the behavior of the control surface and the actuators to demonstrate the veracity of using such a suppression system for the aeronautical field. A preliminary binary flutter model using simplified unsteady aerodynamics is developed to study the behavior of the wing while reaching the flutter speed and when the control system suppresses the flutter phenomena. The Timoshenko beam theory for bilayer materials is used to match the response of the control surface with the CNTs reinforced polymer (CNRP) actuators. According to Timoshenko theory, results show a good and realistic response for such a purpose. Even if the results are still preliminary, they show evidence of the potential use of CNRP for control surface actuation for the small-scale and lightweight system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actuators" title="actuators">actuators</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroelastic" title=" aeroelastic"> aeroelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroservoelasticity" title=" aeroservoelasticity"> aeroservoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=flutter" title=" flutter"> flutter</a>, <a href="https://publications.waset.org/abstracts/search?q=flutter%20suppression" title=" flutter suppression"> flutter suppression</a> </p> <a href="https://publications.waset.org/abstracts/114981/flutter-control-analysis-of-an-aircraft-wing-using-carbon-nanotubes-reinforced-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3045</span> Study of the Influence of Hole Topology on Crack Propagation Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hallan%20Moura%20Ladeira">Hallan Moura Ladeira</a>, <a href="https://publications.waset.org/abstracts/search?q=Carla%20Tatiana%20Mota%20Anflor"> Carla Tatiana Mota Anflor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drilling process for bolted or riveted joints of components is very common in the naval, aeronautical, mechanical, and civil industries. In this context, the present work aims to study, through computer simulation, the influence of hole geometry (through, chamfered, and rounded) on crack propagation when submitted to static and dynamic loads. For the static crack evaluation, failure was considered when the stress intensity factor (FIT) exceeds the fracture toughness of the material (KIc). In the case of fatigue, the condition of the small crack tip plastification zone and the Paris Law were considered for determining region II of the dadN x ΔK curve. Initially, a parametric analysis of the hole geometry was performed to obtain a topology that would result in less discontinuity of the stress field and, consequently, less influence on static crack growth. The best performing topology was then used to study the fatigue crack growth rate considering the Paris Law. The numerical tests were performed on a 7075-T6 aluminum specimen resulting in dadN x ΔK curves in good agreement with the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=holes" title="holes">holes</a>, <a href="https://publications.waset.org/abstracts/search?q=cracks" title=" cracks"> cracks</a>, <a href="https://publications.waset.org/abstracts/search?q=loading" title=" loading"> loading</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title=" fracture toughness"> fracture toughness</a> </p> <a href="https://publications.waset.org/abstracts/157384/study-of-the-influence-of-hole-topology-on-crack-propagation-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3044</span> Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20Bani-Khaled">Mohammad A. Bani-Khaled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coupled%20dynamics" title="coupled dynamics">coupled dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20complexity" title=" geometric complexity"> geometric complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=proper%20orthogonal%20decomposition%20%28POD%29" title=" proper orthogonal decomposition (POD)"> proper orthogonal decomposition (POD)</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20walled%20beams" title=" thin walled beams"> thin walled beams</a> </p> <a href="https://publications.waset.org/abstracts/22175/extracting-the-coupled-dynamics-in-thin-walled-beams-from-numerical-data-bases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3043</span> HEXAFLY-INT Project: Design of a High Speed Flight Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Di%20Benedetto">S. Di Benedetto</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Di%20Donato"> M. P. Di Donato</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rispoli"> A. Rispoli</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Cardone"> S. Cardone</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Riehmer"> J. Riehmer</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Steelant"> J. Steelant</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Vecchione"> L. Vecchione</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thanks to a coordinated funding by the European Space Agency (ESA) and the European Commission (EC) within the 7th framework program, the High-Speed Experimental Fly Vehicles – International (HEXAFLY-INT) project is aimed at the flight validation of hypersonics technologies enabling future trans-atmospheric flights. The project, which is currently involving partners from Europe, Russian Federation and Australia operating under ESA/ESTEC coordination, will achieve the goal of designing, manufacturing, assembling and flight testing an unpowered high speed vehicle in a glider configuration by 2018. The main technical challenges of the project are specifically related to the design of the vehicle gliding configuration and to the complexity of integrating breakthrough technologies with standard aeronautical technologies, e.g. high temperature protection system and airframe cold structures. Also, the sonic boom impact, which is one of the environmental challenges of the high speed flight, will be assessed. This paper provides a comprehensive and detailed update on all the current projects activities carried out to date on both the vehicle and mission design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20testing" title=" flight testing"> flight testing</a>, <a href="https://publications.waset.org/abstracts/search?q=HEXAFLY-INT" title=" HEXAFLY-INT"> HEXAFLY-INT</a>, <a href="https://publications.waset.org/abstracts/search?q=hypersonics" title=" hypersonics"> hypersonics</a> </p> <a href="https://publications.waset.org/abstracts/47398/hexafly-int-project-design-of-a-high-speed-flight-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3042</span> Effect of Single Overload Ratio and Stress Ratio on Fatigue Crack Growth </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Benachour">M. Benachour</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benachour"> N. Benachour</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Benguediab"> M. Benguediab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, variation of cyclic loading effect on fatigue crack growth is studied. This study is performed on 2024 T351 and 7050-T74 aluminum alloys, used in aeronautical structures. The propagation model used in this study is NASGRO model. In constant amplitude loading (CA), the effect of stress ratio has been investigated. Fatigue life and fatigue crack growth rate were affected by this factor. Results showed an increasing in fatigue crack growth rates (FCGRs) with increasing stress ratio. Variable amplitude loading (VAL) can take many forms i.e with a single overload, overload band etc. The shape of these loads affects strongly the fracture life and FCGRs. The application of a single overload (ORL) decrease the FCGR and increase the delay crack length caused by the formation of a larger plastic zone compared to the plastic zone due without VAL. The fatigue behavior of the both material under single overload has been compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20crack%20growth" title="fatigue crack growth">fatigue crack growth</a>, <a href="https://publications.waset.org/abstracts/search?q=overload%20ratio" title=" overload ratio"> overload ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20ratio" title=" stress ratio"> stress ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20willenborg%20model" title=" generalized willenborg model"> generalized willenborg model</a>, <a href="https://publications.waset.org/abstracts/search?q=retardation" title=" retardation"> retardation</a>, <a href="https://publications.waset.org/abstracts/search?q=al-alloys" title=" al-alloys"> al-alloys</a> </p> <a href="https://publications.waset.org/abstracts/3037/effect-of-single-overload-ratio-and-stress-ratio-on-fatigue-crack-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3041</span> A Macroeconomic Analysis of Defense Industry: Comparisons, Trends and Improvements in Brazil and in the World</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Fajardo">J. Fajardo</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Guerra"> J. Guerra</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Gonzales"> E. Gonzales</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper will outline a study of Brazil's industrial base of defense (IDB), through a bibliographic research method, combined with an analysis of macroeconomic data from several available public data platforms. This paper begins with a brief study about Brazilian national industry, including analyzes of productivity, income, outcome and jobs. Next, the research presents a study on the defense industry in Brazil, presenting the main national companies that operate in the aeronautical, army and naval branches. After knowing the main points of the Brazilian defense industry, data on the productivity of the defense industry of the main countries and competing companies of the Brazilian industry were analyzed, in order to summarize big cases in Brazil with a comparative analysis. Concerned the methodology, were used bibliographic research and the exploration of historical data series, in order to analyze information, to get trends and to make comparisons along the time. The research is finished with the main trends for the development of the Brazilian defense industry, comparing the current situation with the point of view of several countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economics%20of%20defence" title="economics of defence">economics of defence</a>, <a href="https://publications.waset.org/abstracts/search?q=industry" title=" industry"> industry</a>, <a href="https://publications.waset.org/abstracts/search?q=trends" title=" trends"> trends</a>, <a href="https://publications.waset.org/abstracts/search?q=market" title=" market"> market</a> </p> <a href="https://publications.waset.org/abstracts/99239/a-macroeconomic-analysis-of-defense-industry-comparisons-trends-and-improvements-in-brazil-and-in-the-world" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3040</span> A New Computational Tool for Noise Prediction of Rotating Surfaces (FACT)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Vieira">Ana Vieira</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Lau"> Fernando Lau</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Pedro%20Mort%C3%A1gua"> João Pedro Mortágua</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADs%20Cruz"> Luís Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Santos"> Rui Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The air transport impact on environment is more than ever a limitative obstacle to the aeronautical industry continuous growth. Over the last decades, considerable effort has been carried out in order to obtain quieter aircraft solutions, whether by changing the original design or investigating more silent maneuvers. The noise propagated by rotating surfaces is one of the most important sources of annoyance, being present in most aerial vehicles. Bearing this is mind, CEIIA developed a new computational chain for noise prediction with in-house software tools to obtain solutions in relatively short time without using excessive computer resources. This work is based on the new acoustic tool, which aims to predict the rotor noise generated during steady and maneuvering flight, making use of the flexibility of the C language and the advantages of GPU programming in terms of velocity. The acoustic tool is based in the Formulation 1A of Farassat, capable of predicting two important types of noise: the loading and thickness noise. The present work describes the most important features of the acoustic tool, presenting its most relevant results and framework analyses for helicopters and UAV quadrotors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotor%20noise" title="rotor noise">rotor noise</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20tool" title=" acoustic tool"> acoustic tool</a>, <a href="https://publications.waset.org/abstracts/search?q=GPU%20Programming" title=" GPU Programming"> GPU Programming</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV%20noise" title=" UAV noise"> UAV noise</a> </p> <a href="https://publications.waset.org/abstracts/16738/a-new-computational-tool-for-noise-prediction-of-rotating-surfaces-fact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20engineering&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20engineering&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20engineering&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20engineering&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20engineering&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20engineering&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20engineering&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20engineering&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20engineering&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20engineering&page=102">102</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20engineering&page=103">103</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20engineering&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>