CINXE.COM
An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models
<!DOCTYPE html> <html lang="en"> <head> <meta content="text/html; charset=utf-8" http-equiv="content-type"/> <title>An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models</title> <!--Generated on Sat Mar 15 16:14:35 2025 by LaTeXML (version 0.8.8) http://dlmf.nist.gov/LaTeXML/.--> <meta content="width=device-width, initial-scale=1, shrink-to-fit=no" name="viewport"/> <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/css/bootstrap.min.css" rel="stylesheet" type="text/css"/> <link href="/static/browse/0.3.4/css/ar5iv.0.7.9.min.css" rel="stylesheet" type="text/css"/> <link href="/static/browse/0.3.4/css/ar5iv-fonts.0.7.9.min.css" rel="stylesheet" type="text/css"/> <link href="/static/browse/0.3.4/css/latexml_styles.css" rel="stylesheet" type="text/css"/> <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/js/bootstrap.bundle.min.js"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/html2canvas/1.3.3/html2canvas.min.js"></script> <script src="/static/browse/0.3.4/js/addons_new.js"></script> <script src="/static/browse/0.3.4/js/feedbackOverlay.js"></script> <meta content="Failure characterization, LLM, failure-recovery, reliability, OpenAI, Anthropic, Character.AI, operational data analytics " lang="en" name="keywords"/> <base href="/html/2501.12469v2/"/></head> <body> <nav class="ltx_page_navbar"> <nav class="ltx_TOC"> <ol class="ltx_toclist"> <li class="ltx_tocentry ltx_tocentry_section"><a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S1" title="In An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">1 </span>Introduction</span></a></li> <li class="ltx_tocentry ltx_tocentry_section"> <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S2" title="In An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">2 </span>Anatomy of an LLM-service Incident: Model and Example</span></a> <ol class="ltx_toclist ltx_toclist_section"> <li class="ltx_tocentry ltx_tocentry_subsection"><a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S2.SS1" title="In 2. Anatomy of an LLM-service Incident: Model and Example ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">2.1 </span>Model and Real-World Example</span></a></li> <li class="ltx_tocentry ltx_tocentry_subsection"><a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S2.SS2" title="In 2. Anatomy of an LLM-service Incident: Model and Example ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">2.2 </span>LLM-Specific Terms and Metrics</span></a></li> </ol> </li> <li class="ltx_tocentry ltx_tocentry_section"> <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S3" title="In An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">3 </span>Dataset Collection and Preparation</span></a> <ol class="ltx_toclist ltx_toclist_section"> <li class="ltx_tocentry ltx_tocentry_subsection"><a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S3.SS1" title="In 3. Dataset Collection and Preparation ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">3.1 </span>Selection and Introduction of LLM Services</span></a></li> <li class="ltx_tocentry ltx_tocentry_subsection"><a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S3.SS2" title="In 3. Dataset Collection and Preparation ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">3.2 </span>Data Collection and Dataset Preparation</span></a></li> </ol> </li> <li class="ltx_tocentry ltx_tocentry_section"><a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S4" title="In An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">4 </span>Failure-Recovery Analysis</span></a></li> <li class="ltx_tocentry ltx_tocentry_section"> <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S5" title="In An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">5 </span>Failure Patterns Over Time</span></a> <ol class="ltx_toclist ltx_toclist_section"> <li class="ltx_tocentry ltx_tocentry_subsection"><a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S5.SS1" title="In 5. Failure Patterns Over Time ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">5.1 </span>Temporal Distributions</span></a></li> <li class="ltx_tocentry ltx_tocentry_subsection"><a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S5.SS2" title="In 5. Failure Patterns Over Time ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">5.2 </span>Auto-correlations</span></a></li> <li class="ltx_tocentry ltx_tocentry_subsection"><a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S5.SS3" title="In 5. Failure Patterns Over Time ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">5.3 </span>Service Availability Over Time</span></a></li> </ol> </li> <li class="ltx_tocentry ltx_tocentry_section"> <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S6" title="In An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">6 </span>Co-occurrence of Failures</span></a> <ol class="ltx_toclist ltx_toclist_section"> <li class="ltx_tocentry ltx_tocentry_subsection"><a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S6.SS1" title="In 6. Co-occurrence of Failures ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">6.1 </span>Co-occurrence of Outages</span></a></li> <li class="ltx_tocentry ltx_tocentry_subsection"><a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S6.SS2" title="In 6. Co-occurrence of Failures ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">6.2 </span>Impact Range of Incidents</span></a></li> </ol> </li> <li class="ltx_tocentry ltx_tocentry_section"><a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S7" title="In An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">7 </span>Limitations and Validity</span></a></li> <li class="ltx_tocentry ltx_tocentry_section"><a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S8" title="In An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">8 </span>Related Work</span></a></li> <li class="ltx_tocentry ltx_tocentry_section"><a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S9" title="In An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">9 </span>Conclusion</span></a></li> </ol></nav> </nav> <div class="ltx_page_main"> <div class="ltx_page_content"> <article class="ltx_document ltx_authors_1line ltx_leqno"> <div class="ltx_para" id="p1"> <span class="ltx_ERROR undefined" id="p1.1">\useunder</span> <p class="ltx_p" id="p1.2"><span class="ltx_text ltx_ulem_uline" id="p1.2.1"></span><span class="ltx_text ltx_framed ltx_framed_underline" id="p1.2.2"></span> <span class="ltx_ERROR undefined" id="p1.2.3">\setcctype</span>by-nc</p> </div> <h1 class="ltx_title ltx_title_document">An Empirical Characterization of Outages and Incidents in <br class="ltx_break"/>Public Services for Large Language Models</h1> <div class="ltx_authors"> <span class="ltx_creator ltx_role_author"> <span class="ltx_personname">Xiaoyu Chu </span><span class="ltx_author_notes"> <span class="ltx_contact ltx_role_email"><a href="mailto:x.chu@vu.nl">x.chu@vu.nl</a> </span> <span class="ltx_contact ltx_role_affiliation"><span class="ltx_text ltx_affiliation_institution" id="id1.1.id1">Vrije Universiteit Amsterdam</span><span class="ltx_text ltx_affiliation_country" id="id2.2.id2">The Netherlands</span> </span></span></span> <span class="ltx_author_before">, </span><span class="ltx_creator ltx_role_author"> <span class="ltx_personname">Sacheendra Talluri </span><span class="ltx_author_notes"> <span class="ltx_contact ltx_role_email"><a href="mailto:s.talluri@vu.nl">s.talluri@vu.nl</a> </span> <span class="ltx_contact ltx_role_affiliation"><span class="ltx_text ltx_affiliation_institution" id="id3.1.id1">Vrije Universiteit Amsterdam</span><span class="ltx_text ltx_affiliation_country" id="id4.2.id2">The Netherlands</span> </span></span></span> <span class="ltx_author_before">, </span><span class="ltx_creator ltx_role_author"> <span class="ltx_personname">Qingxian Lu </span><span class="ltx_author_notes"> <span class="ltx_contact ltx_role_email"><a href="mailto:q.lu@student.vu.nl">q.lu@student.vu.nl</a> </span> <span class="ltx_contact ltx_role_affiliation"><span class="ltx_text ltx_affiliation_institution" id="id5.1.id1">Vrije Universiteit Amsterdam</span><span class="ltx_text ltx_affiliation_country" id="id6.2.id2">The Netherlands</span> </span></span></span> <span class="ltx_author_before"> and </span><span class="ltx_creator ltx_role_author"> <span class="ltx_personname">Alexandru Iosup </span><span class="ltx_author_notes"> <span class="ltx_contact ltx_role_email"><a href="mailto:a.iosup@vu.nl">a.iosup@vu.nl</a> </span> <span class="ltx_contact ltx_role_affiliation"><span class="ltx_text ltx_affiliation_institution" id="id7.1.id1">Vrije Universiteit Amsterdam</span><span class="ltx_text ltx_affiliation_country" id="id8.2.id2">The Netherlands</span> </span></span></span> </div> <div class="ltx_dates">(2025)</div> <div class="ltx_abstract"> <h6 class="ltx_title ltx_title_abstract">Abstract.</h6> <p class="ltx_p" id="id9.id1">People and businesses increasingly rely on public LLM services, such as ChatGPT, DALL·E, and Claude. Understanding their outages, and particularly measuring their failure-recovery processes, is becoming a stringent problem. However, only limited studies exist in this emerging area. Addressing this problem, in this work we conduct an empirical characterization of outages and failure-recovery in public LLM services. We collect and prepare datasets for 8 commonly used LLM services across 3 major LLM providers, including market-leads OpenAI and Anthropic. We conduct a detailed analysis of failure recovery statistical properties, temporal patterns, co-occurrence, and the impact range of outage-causing incidents. We make over 10 observations, among which: (1) Failures in OpenAI’s ChatGPT take longer to resolve but occur less frequently than those in Anthropic’s Claude; (2) OpenAI and Anthropic service failures exhibit strong weekly and monthly periodicity; and (3) OpenAI services offer better failure-isolation than Anthropic services. Our research explains LLM failure characteristics and thus enables optimization in building and using LLM systems. FAIR data and code are publicly available on <a class="ltx_ref ltx_url ltx_font_typewriter" href="https://zenodo.org/records/14018219" title="">https://zenodo.org/records/14018219</a> and <a class="ltx_ref ltx_url ltx_font_typewriter" href="https://github.com/atlarge-research/llm-service-analysis" title="">https://github.com/atlarge-research/llm-service-analysis</a>.</p> </div> <div class="ltx_keywords">Failure characterization, LLM, failure-recovery, reliability, OpenAI, Anthropic, Character.AI, operational data analytics </div> <span class="ltx_note ltx_note_frontmatter ltx_role_copyright" id="id1"><sup class="ltx_note_mark">†</sup><span class="ltx_note_outer"><span class="ltx_note_content"><sup class="ltx_note_mark">†</sup><span class="ltx_note_type">copyright: </span>cc</span></span></span><span class="ltx_note ltx_note_frontmatter ltx_role_journalyear" id="id2"><sup class="ltx_note_mark">†</sup><span class="ltx_note_outer"><span class="ltx_note_content"><sup class="ltx_note_mark">†</sup><span class="ltx_note_type">journalyear: </span>2025</span></span></span><span class="ltx_note ltx_note_frontmatter ltx_role_copyright" id="id3"><sup class="ltx_note_mark">†</sup><span class="ltx_note_outer"><span class="ltx_note_content"><sup class="ltx_note_mark">†</sup><span class="ltx_note_type">copyright: </span>cc</span></span></span><span class="ltx_note ltx_note_frontmatter ltx_role_conference" id="id4"><sup class="ltx_note_mark">†</sup><span class="ltx_note_outer"><span class="ltx_note_content"><sup class="ltx_note_mark">†</sup><span class="ltx_note_type">conference: </span>Proceedings of the 16th ACM/SPEC International Conference on Performance Engineering; May 5–9, 2025; Toronto, ON, Canada</span></span></span><span class="ltx_note ltx_note_frontmatter ltx_role_booktitle" id="id5"><sup class="ltx_note_mark">†</sup><span class="ltx_note_outer"><span class="ltx_note_content"><sup class="ltx_note_mark">†</sup><span class="ltx_note_type">booktitle: </span>Proceedings of the 16th ACM/SPEC International Conference on Performance Engineering (ICPE ’25), May 5–9, 2025, Toronto, ON, Canada</span></span></span><span class="ltx_note ltx_note_frontmatter ltx_role_doi" id="id6"><sup class="ltx_note_mark">†</sup><span class="ltx_note_outer"><span class="ltx_note_content"><sup class="ltx_note_mark">†</sup><span class="ltx_note_type">doi: </span>10.1145/3676151.3719372</span></span></span><span class="ltx_note ltx_note_frontmatter ltx_role_isbn" id="id7"><sup class="ltx_note_mark">†</sup><span class="ltx_note_outer"><span class="ltx_note_content"><sup class="ltx_note_mark">†</sup><span class="ltx_note_type">isbn: </span>979-8-4007-1073-5/2025/05</span></span></span><span class="ltx_note ltx_note_frontmatter ltx_role_ccs" id="id8"><sup class="ltx_note_mark">†</sup><span class="ltx_note_outer"><span class="ltx_note_content"><sup class="ltx_note_mark">†</sup><span class="ltx_note_type">ccs: </span>Computer systems organization Reliability</span></span></span> <section class="ltx_section" id="S1"> <h2 class="ltx_title ltx_title_section"> <span class="ltx_tag ltx_tag_section">1. </span>Introduction</h2> <figure class="ltx_figure" id="S1.F1"><img alt="Refer to caption" class="ltx_graphics ltx_centering ltx_img_landscape" height="475" id="S1.F1.g1" src="x1.png" width="830"/> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S1.F1.2.1.1" style="font-size:90%;">Figure 1</span>. </span><span class="ltx_text" id="S1.F1.3.2" style="font-size:90%;">Monthly website visits, outages, and incidents for ChatGPT. Vertical axis: (left) number of website visits in billions; (right) monthly outage and incident counts. Data: website visits <cite class="ltx_cite ltx_citemacro_citep">(Pro, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib45" title="">2024</a>)</cite>, outages (<a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S2.T3" title="In 2.2. LLM-Specific Terms and Metrics ‣ 2. Anatomy of an LLM-service Incident: Model and Example ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Table</span> <span class="ltx_text ltx_ref_tag">3</span></a>), and incidents (<a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S2.T4" title="In 2.2. LLM-Specific Terms and Metrics ‣ 2. Anatomy of an LLM-service Incident: Model and Example ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Table</span> <span class="ltx_text ltx_ref_tag">4</span></a>).</span></figcaption> </figure> <div class="ltx_para" id="S1.p1"> <p class="ltx_p" id="S1.p1.1">In the past 5 years, increased availability of data and computation enabled Large Language Models (LLMs) to support scientists, businesses, and general users in a wide range of applications, such as coding <cite class="ltx_cite ltx_citemacro_citep">(Vaithilingam et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib60" title="">2022</a>; Liu et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib38" title="">2023</a>)</cite>, image generation <cite class="ltx_cite ltx_citemacro_citep">(Koh et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib33" title="">2023</a>; Lu et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib39" title="">2023</a>)</cite>, and general problem-solving <cite class="ltx_cite ltx_citemacro_citep">(Yang et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib67" title="">2024</a>; Wang et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib62" title="">2024b</a>)</cite>. Hundreds of millions of users rely increasingly on public LLM services such as ChatGPT <cite class="ltx_cite ltx_citemacro_citep">(Reuters, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib49" title="">2024b</a>)</cite>, DALL·E <cite class="ltx_cite ltx_citemacro_citep">(Hub, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib26" title="">2022</a>)</cite>, and Claude <cite class="ltx_cite ltx_citemacro_citep">(Reuters, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib48" title="">2024a</a>)</cite>. Understanding service outages, and how incidents leading to them are addressed, is essential to enhancing the fault tolerance and quality of service (QoS) of LLM systems. However, relatively little data and no peer-reviewed studies exist in this rapidly emerging area. Addressing this problem, and complementing studies that focus on LLM resource utilization <cite class="ltx_cite ltx_citemacro_citep">(Hu et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib25" title="">2024</a>; Wang et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib63" title="">2024a</a>)</cite> and user satisfaction <cite class="ltx_cite ltx_citemacro_citep">(Wang et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib62" title="">2024b</a>)</cite>, in this work we conduct the first data-driven, empirical characterization of outages and incidents in public LLM services. We conduct three classes of analysis on long-term datasets we collect from 8 public LLM services from OpenAI, Anthropic, and Character.AI.</p> </div> <div class="ltx_para" id="S1.p2"> <p class="ltx_p" id="S1.p2.1">The reliability of public LLM services is becoming increasingly important, as service failures can severely erode user experience and cause substantial financial losses under the competitive market. Driven by demand and market strategy, public LLM providers compete intensely, investing over $ 40 billion in 2024 <cite class="ltx_cite ltx_citemacro_citep">(IDC, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib27" title="">2024</a>)</cite>. Failures quickly affect many users and become highly visible, as the user cohort has already reached a global scale. For example, the launch of ChatGPT marked a major breakthrough in LLM applications <cite class="ltx_cite ltx_citemacro_citep">(Roumeliotis and Tselikas, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib51" title="">2023</a>)</cite> and set a user-adoption record, with 100 million monthly active users within 2 months after its 2022 launch <cite class="ltx_cite ltx_citemacro_citep">(Reuters, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib47" title="">2023</a>)</cite>.</p> </div> <div class="ltx_para" id="S1.p3"> <p class="ltx_p" id="S1.p3.1">Although service reliability is important, users still frequently encounter issues with LLM services. For example, users report to DownDetector many login failures, request errors, and high response latency when using ChatGPT <cite class="ltx_cite ltx_citemacro_citep">(DownDetector, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib16" title="">2024</a>)</cite>. <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S1.F1" title="In 1. Introduction ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Figure</span> <span class="ltx_text ltx_ref_tag">1</span></a> shows the monthly website visits <cite class="ltx_cite ltx_citemacro_citep">(Pro, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib45" title="">2024</a>)</cite>, and outages and incidents for ChatGPT as reported by OpenAI. As ChatGPT’s monthly web visits grow dramatically, the number of its outages and especially incidents also exhibit an upward trend. Thus, significant LLM failures continuously occur, decreasing user satisfaction and potentially causing financial loss, making reliable LLM services a challenge.</p> </div> <div class="ltx_para" id="S1.p4"> <p class="ltx_p" id="S1.p4.1">Understanding dependability aspects can help improve systems especially when the workload characteristics are also understood. Previous work already provides system-level workload characteristics for the workloads of machine learning <cite class="ltx_cite ltx_citemacro_citep">(Chu et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib15" title="">2023</a>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib14" title="">2024</a>; Versluis et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib61" title="">2023</a>)</cite>, deep learning <cite class="ltx_cite ltx_citemacro_citep">(Li et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib35" title="">2022</a>)</cite>, big data <cite class="ltx_cite ltx_citemacro_citep">(Talluri et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib54" title="">2019</a>)</cite>, and more general clouds <cite class="ltx_cite ltx_citemacro_citep">(Reiss et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib46" title="">2012</a>)</cite>. Recently, LLM workloads have received attention as well <cite class="ltx_cite ltx_citemacro_citep">(Hu et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib25" title="">2024</a>; Wang et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib63" title="">2024a</a>)</cite>. What remains unaddressed in characterizing the failures of LLM.</p> </div> <div class="ltx_para" id="S1.p5"> <p class="ltx_p" id="S1.p5.1">We identify and address in this work two main challenges in understanding how public LLM services currently fail. First, <span class="ltx_text ltx_font_bold" id="S1.p5.1.1">no longitudinal service failure data currently exists</span>. Ideally, the community would have access to a large number of similarly curated datasets that capture LLM-service failures, under the same failure model, over long periods of time. There are some efforts to provide available LLM workloads, such as BurstGPT <cite class="ltx_cite ltx_citemacro_citep">(Wang et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib63" title="">2024a</a>)</cite> and AcmeTrace <cite class="ltx_cite ltx_citemacro_citep">(Hu et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib25" title="">2024</a>)</cite>, but they each focus on one LLM service, and none provides service failure data for it. Second, <span class="ltx_text ltx_font_bold" id="S1.p5.1.2">no comprehensive analysis of failures in public LLM services currently exists</span>. At this stage in the scientific area, such an analysis would ideally be data-driven, and include for example general characteristics of failures, such as Mean Time Between Failures (MTBF) and To Recovery (MTTR) from classical dependability analysis <cite class="ltx_cite ltx_citemacro_citep">(Avizienis et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib10" title="">2004</a>)</cite>, and also of the time spent in various stages of the recovery-process specific to LLM operations; a temporal analysis of failures; and an analysis of failure cascades (co-occurrences). Such kinds of analysis would enable future research into models, and future theoretical and practical studies of LLM systems.</p> </div> <div class="ltx_para" id="S1.p6"> <p class="ltx_p" id="S1.p6.1">Addressing both main challenges, this research aims to provide a thorough empirical characterization of LLM service failures, using data from official outages and incident reports, which are the two types of information self-disclosed by LLM service providers when significant failures occur. Our contribution is manyfold: </p> </div> <div class="ltx_para" id="S1.p7"> <ol class="ltx_enumerate" id="S1.I1"> <li class="ltx_item" id="S1.I1.i1" style="list-style-type:none;"> <span class="ltx_tag ltx_tag_item">(i)</span> <div class="ltx_para" id="S1.I1.i1.p1"> <p class="ltx_p" id="S1.I1.i1.p1.1">We summarize the de facto industry standard for modeling LLM-service outages and exemplify the anatomy of an outage (<a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S2" title="2. Anatomy of an LLM-service Incident: Model and Example ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Section</span> <span class="ltx_text ltx_ref_tag">2</span></a>);</p> </div> </li> <li class="ltx_item" id="S1.I1.i2" style="list-style-type:none;"> <span class="ltx_tag ltx_tag_item">(ii)</span> <div class="ltx_para" id="S1.I1.i2.p1"> <p class="ltx_p" id="S1.I1.i2.p1.1">We collect outage and incident data for 8 LLM services, and prepare the corresponding LLM-failure datasets (<a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S3" title="3. Dataset Collection and Preparation ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Section</span> <span class="ltx_text ltx_ref_tag">3</span></a>). This study covers representative, commonly used LLM services, across 3 LLM-service providers;</p> </div> </li> <li class="ltx_item" id="S1.I1.i3" style="list-style-type:none;"> <span class="ltx_tag ltx_tag_item">(iii)</span> <div class="ltx_para" id="S1.I1.i3.p1"> <p class="ltx_p" id="S1.I1.i3.p1.1">We analyze the failure characteristics of 8 LLM services (<a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S4" title="4. Failure-Recovery Analysis ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Section</span> <span class="ltx_text ltx_ref_tag">4</span></a>). We analyze the MTTR and MTBF by provider and by service, the time spent in various stages of the recovery process, and quantify empirically the model parameters;</p> </div> </li> <li class="ltx_item" id="S1.I1.i4" style="list-style-type:none;"> <span class="ltx_tag ltx_tag_item">(iv)</span> <div class="ltx_para" id="S1.I1.i4.p1"> <p class="ltx_p" id="S1.I1.i4.p1.1">We analyze LLM service failures over time (<a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S5" title="5. Failure Patterns Over Time ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Section</span> <span class="ltx_text ltx_ref_tag">5</span></a>). We explore service availability over hourly and daily intervals, identify various diurnal and weekly patterns, and investigate auto-correlations;</p> </div> </li> <li class="ltx_item" id="S1.I1.i5" style="list-style-type:none;"> <span class="ltx_tag ltx_tag_item">(v)</span> <div class="ltx_para" id="S1.I1.i5.p1"> <p class="ltx_p" id="S1.I1.i5.p1.1">We analyze the co-occurrence of failures (<a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S6" title="6. Co-occurrence of Failures ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Section</span> <span class="ltx_text ltx_ref_tag">6</span></a>). Specifically, we analyze the co-occurrence of failures per provider, and of pairs of services across providers;</p> </div> </li> <li class="ltx_item" id="S1.I1.i6" style="list-style-type:none;"> <span class="ltx_tag ltx_tag_item">(vi)</span> <div class="ltx_para" id="S1.I1.i6.p1"> <p class="ltx_p" id="S1.I1.i6.p1.1">We follow the principles of open science and release the datasets and software as open, FAIR artifacts to enable reproducibility and further research.</p> </div> </li> </ol> </div> </section> <section class="ltx_section" id="S2"> <h2 class="ltx_title ltx_title_section"> <span class="ltx_tag ltx_tag_section">2. </span>Anatomy of an LLM-service Incident: Model and Example</h2> <div class="ltx_para" id="S2.p1"> <p class="ltx_p" id="S2.p1.1">We present in this section a model, coupled with an example, of how an LLM-service incident occurs, affects actual users, and is managed by the LLM-service provider.</p> </div> <figure class="ltx_figure" id="S2.F2"><img alt="Refer to caption" class="ltx_graphics ltx_centering ltx_img_landscape" height="515" id="S2.F2.g1" src="x2.png" width="830"/> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S2.F2.2.1.1" style="font-size:90%;">Figure 2</span>. </span><span class="ltx_text" id="S2.F2.3.2" style="font-size:90%;">Visualization of the failure-recovery model with user reports of a selected ChatGPT incident, UDT time.</span></figcaption> </figure> <section class="ltx_subsection" id="S2.SS1"> <h3 class="ltx_title ltx_title_subsection"> <span class="ltx_tag ltx_tag_subsection">2.1. </span>Model and Real-World Example</h3> <div class="ltx_para" id="S2.SS1.p1"> <p class="ltx_p" id="S2.SS1.p1.1">A failure-recovery process not only leads to addressing a system failure, but also shows a complete story of how the system experienced the (cascading) failure and provides insights to track and improve the system and services affected by it <cite class="ltx_cite ltx_citemacro_citep">(Gamell et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib17" title="">2014</a>)</cite>.</p> </div> <div class="ltx_para" id="S2.SS1.p2"> <p class="ltx_p" id="S2.SS1.p2.1">Industry leads, such as OpenAI and Anthropic, report availability data built around a de facto standard model of their failure-recovery process. Acting as a tutorial, this section summarizes this industry model and exemplifies it through an actual incident. The example considers both data self-reported by the LLM service provider, OpenAI, and data reported by users experiencing the incident; analyzing user-reported data across all incidents studied here is useful but outside the scope of this article.</p> </div> <div class="ltx_para" id="S2.SS1.p3"> <p class="ltx_p" id="S2.SS1.p3.1"><span class="ltx_text ltx_font_bold" id="S2.SS1.p3.1.1">Selection of the incident.</span> We selected the real-world incident in which a major outage happened with the ChatGPT LLM service on April 10, 2024; this is the first major incident since, on April 1, OpenAI enabled free-to-use access to ChatGPT without signup, effectively opening up ChatGPT trials for everyone <cite class="ltx_cite ltx_citemacro_citep">(OpenAI, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib42" title="">2024b</a>)</cite>. OpenAI reported the April 10 incident with complete details about all the stages of its failure-recovery process <cite class="ltx_cite ltx_citemacro_citep">(OpenAI, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib41" title="">2024a</a>)</cite>, which is only done for significant incidents that require many local resources to address. In parallel with OpenAI team’s efforts to identify and resolve the incident, we recorded two other data sources. First, users reported problems using the ChatGPT service on DownDetector <cite class="ltx_cite ltx_citemacro_citep">(Archive, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib8" title="">2024</a>)</cite>; user-reported failures of public services are increasingly used to check the truthfulness and completeness of self-reported failure reports <cite class="ltx_cite ltx_citemacro_citep">(Talluri et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib55" title="">2021</a>)</cite>, but so far they have not been used in peer-reviewed studies of LLM services. We also recorded reports about this outage from news media across the technical and political spectrum, such as Fox <cite class="ltx_cite ltx_citemacro_citep">(York, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib68" title="">2024</a>)</cite>.</p> </div> <figure class="ltx_table" id="S2.T1"> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_table"><span class="ltx_text" id="S2.T1.30.1.1" style="font-size:90%;">Table 1</span>. </span><span class="ltx_text" id="S2.T1.31.2" style="font-size:90%;">Parameters and, below the double line, output metrics of the failure-recovery model proposed in this work.</span></figcaption> <div class="ltx_inline-block ltx_align_center ltx_transformed_outer" id="S2.T1.28" style="width:433.6pt;height:167.4pt;vertical-align:-0.0pt;"><span class="ltx_transformed_inner" style="transform:translate(-86.3pt,33.3pt) scale(0.715402708124752,0.715402708124752) ;"> <table class="ltx_tabular ltx_align_middle" id="S2.T1.28.28"> <tr class="ltx_tr" id="S2.T1.28.28.29"> <td class="ltx_td ltx_align_left ltx_border_tt" id="S2.T1.28.28.29.1"><span class="ltx_text ltx_font_bold" id="S2.T1.28.28.29.1.1">ID</span></td> <td class="ltx_td ltx_align_left ltx_border_tt" id="S2.T1.28.28.29.2"><span class="ltx_text ltx_font_bold" id="S2.T1.28.28.29.2.1">Name</span></td> <td class="ltx_td ltx_align_left ltx_border_tt" id="S2.T1.28.28.29.3"><span class="ltx_text ltx_font_bold" id="S2.T1.28.28.29.3.1">Definition</span></td> </tr> <tr class="ltx_tr" id="S2.T1.1.1.1"> <td class="ltx_td ltx_align_left ltx_border_t" id="S2.T1.1.1.1.1"><math alttext="S_{1}" class="ltx_Math" display="inline" id="S2.T1.1.1.1.1.m1.1"><semantics id="S2.T1.1.1.1.1.m1.1a"><msub id="S2.T1.1.1.1.1.m1.1.1" xref="S2.T1.1.1.1.1.m1.1.1.cmml"><mi id="S2.T1.1.1.1.1.m1.1.1.2" xref="S2.T1.1.1.1.1.m1.1.1.2.cmml">S</mi><mn id="S2.T1.1.1.1.1.m1.1.1.3" xref="S2.T1.1.1.1.1.m1.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T1.1.1.1.1.m1.1b"><apply id="S2.T1.1.1.1.1.m1.1.1.cmml" xref="S2.T1.1.1.1.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T1.1.1.1.1.m1.1.1.1.cmml" xref="S2.T1.1.1.1.1.m1.1.1">subscript</csymbol><ci id="S2.T1.1.1.1.1.m1.1.1.2.cmml" xref="S2.T1.1.1.1.1.m1.1.1.2">𝑆</ci><cn id="S2.T1.1.1.1.1.m1.1.1.3.cmml" type="integer" xref="S2.T1.1.1.1.1.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.1.1.1.1.m1.1c">S_{1}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.1.1.1.1.m1.1d">italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left ltx_border_t" id="S2.T1.1.1.1.2">Investigating Status</td> <td class="ltx_td ltx_align_left ltx_border_t" id="S2.T1.1.1.1.3">The operational team has started investigating an incident.</td> </tr> <tr class="ltx_tr" id="S2.T1.2.2.2"> <td class="ltx_td ltx_align_left" id="S2.T1.2.2.2.1"><math alttext="S_{2}" class="ltx_Math" display="inline" id="S2.T1.2.2.2.1.m1.1"><semantics id="S2.T1.2.2.2.1.m1.1a"><msub id="S2.T1.2.2.2.1.m1.1.1" xref="S2.T1.2.2.2.1.m1.1.1.cmml"><mi id="S2.T1.2.2.2.1.m1.1.1.2" xref="S2.T1.2.2.2.1.m1.1.1.2.cmml">S</mi><mn id="S2.T1.2.2.2.1.m1.1.1.3" xref="S2.T1.2.2.2.1.m1.1.1.3.cmml">2</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T1.2.2.2.1.m1.1b"><apply id="S2.T1.2.2.2.1.m1.1.1.cmml" xref="S2.T1.2.2.2.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T1.2.2.2.1.m1.1.1.1.cmml" xref="S2.T1.2.2.2.1.m1.1.1">subscript</csymbol><ci id="S2.T1.2.2.2.1.m1.1.1.2.cmml" xref="S2.T1.2.2.2.1.m1.1.1.2">𝑆</ci><cn id="S2.T1.2.2.2.1.m1.1.1.3.cmml" type="integer" xref="S2.T1.2.2.2.1.m1.1.1.3">2</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.2.2.2.1.m1.1c">S_{2}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.2.2.2.1.m1.1d">italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left" id="S2.T1.2.2.2.2">Identified Status</td> <td class="ltx_td ltx_align_left" id="S2.T1.2.2.2.3">The issues have been identified.</td> </tr> <tr class="ltx_tr" id="S2.T1.3.3.3"> <td class="ltx_td ltx_align_left" id="S2.T1.3.3.3.1"><math alttext="S_{3}" class="ltx_Math" display="inline" id="S2.T1.3.3.3.1.m1.1"><semantics id="S2.T1.3.3.3.1.m1.1a"><msub id="S2.T1.3.3.3.1.m1.1.1" xref="S2.T1.3.3.3.1.m1.1.1.cmml"><mi id="S2.T1.3.3.3.1.m1.1.1.2" xref="S2.T1.3.3.3.1.m1.1.1.2.cmml">S</mi><mn id="S2.T1.3.3.3.1.m1.1.1.3" xref="S2.T1.3.3.3.1.m1.1.1.3.cmml">3</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T1.3.3.3.1.m1.1b"><apply id="S2.T1.3.3.3.1.m1.1.1.cmml" xref="S2.T1.3.3.3.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T1.3.3.3.1.m1.1.1.1.cmml" xref="S2.T1.3.3.3.1.m1.1.1">subscript</csymbol><ci id="S2.T1.3.3.3.1.m1.1.1.2.cmml" xref="S2.T1.3.3.3.1.m1.1.1.2">𝑆</ci><cn id="S2.T1.3.3.3.1.m1.1.1.3.cmml" type="integer" xref="S2.T1.3.3.3.1.m1.1.1.3">3</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.3.3.3.1.m1.1c">S_{3}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.3.3.3.1.m1.1d">italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left" id="S2.T1.3.3.3.2">Monitoring Status</td> <td class="ltx_td ltx_align_left" id="S2.T1.3.3.3.3">A fix has been implemented and the operational team started monitoring the results.</td> </tr> <tr class="ltx_tr" id="S2.T1.4.4.4"> <td class="ltx_td ltx_align_left" id="S2.T1.4.4.4.1"><math alttext="S_{4}" class="ltx_Math" display="inline" id="S2.T1.4.4.4.1.m1.1"><semantics id="S2.T1.4.4.4.1.m1.1a"><msub id="S2.T1.4.4.4.1.m1.1.1" xref="S2.T1.4.4.4.1.m1.1.1.cmml"><mi id="S2.T1.4.4.4.1.m1.1.1.2" xref="S2.T1.4.4.4.1.m1.1.1.2.cmml">S</mi><mn id="S2.T1.4.4.4.1.m1.1.1.3" xref="S2.T1.4.4.4.1.m1.1.1.3.cmml">4</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T1.4.4.4.1.m1.1b"><apply id="S2.T1.4.4.4.1.m1.1.1.cmml" xref="S2.T1.4.4.4.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T1.4.4.4.1.m1.1.1.1.cmml" xref="S2.T1.4.4.4.1.m1.1.1">subscript</csymbol><ci id="S2.T1.4.4.4.1.m1.1.1.2.cmml" xref="S2.T1.4.4.4.1.m1.1.1.2">𝑆</ci><cn id="S2.T1.4.4.4.1.m1.1.1.3.cmml" type="integer" xref="S2.T1.4.4.4.1.m1.1.1.3">4</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.4.4.4.1.m1.1c">S_{4}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.4.4.4.1.m1.1d">italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left" id="S2.T1.4.4.4.2">Resolved Status</td> <td class="ltx_td ltx_align_left" id="S2.T1.4.4.4.3">The incident has been resolved.</td> </tr> <tr class="ltx_tr" id="S2.T1.5.5.5"> <td class="ltx_td ltx_align_left" id="S2.T1.5.5.5.1"><math alttext="S_{5}" class="ltx_Math" display="inline" id="S2.T1.5.5.5.1.m1.1"><semantics id="S2.T1.5.5.5.1.m1.1a"><msub id="S2.T1.5.5.5.1.m1.1.1" xref="S2.T1.5.5.5.1.m1.1.1.cmml"><mi id="S2.T1.5.5.5.1.m1.1.1.2" xref="S2.T1.5.5.5.1.m1.1.1.2.cmml">S</mi><mn id="S2.T1.5.5.5.1.m1.1.1.3" xref="S2.T1.5.5.5.1.m1.1.1.3.cmml">5</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T1.5.5.5.1.m1.1b"><apply id="S2.T1.5.5.5.1.m1.1.1.cmml" xref="S2.T1.5.5.5.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T1.5.5.5.1.m1.1.1.1.cmml" xref="S2.T1.5.5.5.1.m1.1.1">subscript</csymbol><ci id="S2.T1.5.5.5.1.m1.1.1.2.cmml" xref="S2.T1.5.5.5.1.m1.1.1.2">𝑆</ci><cn id="S2.T1.5.5.5.1.m1.1.1.3.cmml" type="integer" xref="S2.T1.5.5.5.1.m1.1.1.3">5</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.5.5.5.1.m1.1c">S_{5}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.5.5.5.1.m1.1d">italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left" id="S2.T1.5.5.5.2">Postmortem Status</td> <td class="ltx_td ltx_align_left" id="S2.T1.5.5.5.3">A summary of the incident after it has been resolved.</td> </tr> <tr class="ltx_tr" id="S2.T1.8.8.8"> <td class="ltx_td ltx_align_left ltx_border_t" id="S2.T1.6.6.6.1"><math alttext="P_{I}" class="ltx_Math" display="inline" id="S2.T1.6.6.6.1.m1.1"><semantics id="S2.T1.6.6.6.1.m1.1a"><msub id="S2.T1.6.6.6.1.m1.1.1" xref="S2.T1.6.6.6.1.m1.1.1.cmml"><mi id="S2.T1.6.6.6.1.m1.1.1.2" xref="S2.T1.6.6.6.1.m1.1.1.2.cmml">P</mi><mi id="S2.T1.6.6.6.1.m1.1.1.3" xref="S2.T1.6.6.6.1.m1.1.1.3.cmml">I</mi></msub><annotation-xml encoding="MathML-Content" id="S2.T1.6.6.6.1.m1.1b"><apply id="S2.T1.6.6.6.1.m1.1.1.cmml" xref="S2.T1.6.6.6.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T1.6.6.6.1.m1.1.1.1.cmml" xref="S2.T1.6.6.6.1.m1.1.1">subscript</csymbol><ci id="S2.T1.6.6.6.1.m1.1.1.2.cmml" xref="S2.T1.6.6.6.1.m1.1.1.2">𝑃</ci><ci id="S2.T1.6.6.6.1.m1.1.1.3.cmml" xref="S2.T1.6.6.6.1.m1.1.1.3">𝐼</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.6.6.6.1.m1.1c">P_{I}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.6.6.6.1.m1.1d">italic_P start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left ltx_border_t" id="S2.T1.8.8.8.4">Investigating Period</td> <td class="ltx_td ltx_align_left ltx_border_t" id="S2.T1.8.8.8.3">From <math alttext="S_{1}" class="ltx_Math" display="inline" id="S2.T1.7.7.7.2.m1.1"><semantics id="S2.T1.7.7.7.2.m1.1a"><msub id="S2.T1.7.7.7.2.m1.1.1" xref="S2.T1.7.7.7.2.m1.1.1.cmml"><mi id="S2.T1.7.7.7.2.m1.1.1.2" xref="S2.T1.7.7.7.2.m1.1.1.2.cmml">S</mi><mn id="S2.T1.7.7.7.2.m1.1.1.3" xref="S2.T1.7.7.7.2.m1.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T1.7.7.7.2.m1.1b"><apply id="S2.T1.7.7.7.2.m1.1.1.cmml" xref="S2.T1.7.7.7.2.m1.1.1"><csymbol cd="ambiguous" id="S2.T1.7.7.7.2.m1.1.1.1.cmml" xref="S2.T1.7.7.7.2.m1.1.1">subscript</csymbol><ci id="S2.T1.7.7.7.2.m1.1.1.2.cmml" xref="S2.T1.7.7.7.2.m1.1.1.2">𝑆</ci><cn id="S2.T1.7.7.7.2.m1.1.1.3.cmml" type="integer" xref="S2.T1.7.7.7.2.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.7.7.7.2.m1.1c">S_{1}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.7.7.7.2.m1.1d">italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math> to <math alttext="S_{2}" class="ltx_Math" display="inline" id="S2.T1.8.8.8.3.m2.1"><semantics id="S2.T1.8.8.8.3.m2.1a"><msub id="S2.T1.8.8.8.3.m2.1.1" xref="S2.T1.8.8.8.3.m2.1.1.cmml"><mi id="S2.T1.8.8.8.3.m2.1.1.2" xref="S2.T1.8.8.8.3.m2.1.1.2.cmml">S</mi><mn id="S2.T1.8.8.8.3.m2.1.1.3" xref="S2.T1.8.8.8.3.m2.1.1.3.cmml">2</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T1.8.8.8.3.m2.1b"><apply id="S2.T1.8.8.8.3.m2.1.1.cmml" xref="S2.T1.8.8.8.3.m2.1.1"><csymbol cd="ambiguous" id="S2.T1.8.8.8.3.m2.1.1.1.cmml" xref="S2.T1.8.8.8.3.m2.1.1">subscript</csymbol><ci id="S2.T1.8.8.8.3.m2.1.1.2.cmml" xref="S2.T1.8.8.8.3.m2.1.1.2">𝑆</ci><cn id="S2.T1.8.8.8.3.m2.1.1.3.cmml" type="integer" xref="S2.T1.8.8.8.3.m2.1.1.3">2</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.8.8.8.3.m2.1c">S_{2}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.8.8.8.3.m2.1d">italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT</annotation></semantics></math>, showing the time from observing to identifying the issues.</td> </tr> <tr class="ltx_tr" id="S2.T1.11.11.11"> <td class="ltx_td ltx_align_left" id="S2.T1.9.9.9.1"><math alttext="P_{R}" class="ltx_Math" display="inline" id="S2.T1.9.9.9.1.m1.1"><semantics id="S2.T1.9.9.9.1.m1.1a"><msub id="S2.T1.9.9.9.1.m1.1.1" xref="S2.T1.9.9.9.1.m1.1.1.cmml"><mi id="S2.T1.9.9.9.1.m1.1.1.2" xref="S2.T1.9.9.9.1.m1.1.1.2.cmml">P</mi><mi id="S2.T1.9.9.9.1.m1.1.1.3" xref="S2.T1.9.9.9.1.m1.1.1.3.cmml">R</mi></msub><annotation-xml encoding="MathML-Content" id="S2.T1.9.9.9.1.m1.1b"><apply id="S2.T1.9.9.9.1.m1.1.1.cmml" xref="S2.T1.9.9.9.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T1.9.9.9.1.m1.1.1.1.cmml" xref="S2.T1.9.9.9.1.m1.1.1">subscript</csymbol><ci id="S2.T1.9.9.9.1.m1.1.1.2.cmml" xref="S2.T1.9.9.9.1.m1.1.1.2">𝑃</ci><ci id="S2.T1.9.9.9.1.m1.1.1.3.cmml" xref="S2.T1.9.9.9.1.m1.1.1.3">𝑅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.9.9.9.1.m1.1c">P_{R}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.9.9.9.1.m1.1d">italic_P start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left" id="S2.T1.11.11.11.4">Repairing Period</td> <td class="ltx_td ltx_align_left" id="S2.T1.11.11.11.3">From <math alttext="S_{2}" class="ltx_Math" display="inline" id="S2.T1.10.10.10.2.m1.1"><semantics id="S2.T1.10.10.10.2.m1.1a"><msub id="S2.T1.10.10.10.2.m1.1.1" xref="S2.T1.10.10.10.2.m1.1.1.cmml"><mi id="S2.T1.10.10.10.2.m1.1.1.2" xref="S2.T1.10.10.10.2.m1.1.1.2.cmml">S</mi><mn id="S2.T1.10.10.10.2.m1.1.1.3" xref="S2.T1.10.10.10.2.m1.1.1.3.cmml">2</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T1.10.10.10.2.m1.1b"><apply id="S2.T1.10.10.10.2.m1.1.1.cmml" xref="S2.T1.10.10.10.2.m1.1.1"><csymbol cd="ambiguous" id="S2.T1.10.10.10.2.m1.1.1.1.cmml" xref="S2.T1.10.10.10.2.m1.1.1">subscript</csymbol><ci id="S2.T1.10.10.10.2.m1.1.1.2.cmml" xref="S2.T1.10.10.10.2.m1.1.1.2">𝑆</ci><cn id="S2.T1.10.10.10.2.m1.1.1.3.cmml" type="integer" xref="S2.T1.10.10.10.2.m1.1.1.3">2</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.10.10.10.2.m1.1c">S_{2}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.10.10.10.2.m1.1d">italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT</annotation></semantics></math> to <math alttext="S_{3}" class="ltx_Math" display="inline" id="S2.T1.11.11.11.3.m2.1"><semantics id="S2.T1.11.11.11.3.m2.1a"><msub id="S2.T1.11.11.11.3.m2.1.1" xref="S2.T1.11.11.11.3.m2.1.1.cmml"><mi id="S2.T1.11.11.11.3.m2.1.1.2" xref="S2.T1.11.11.11.3.m2.1.1.2.cmml">S</mi><mn id="S2.T1.11.11.11.3.m2.1.1.3" xref="S2.T1.11.11.11.3.m2.1.1.3.cmml">3</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T1.11.11.11.3.m2.1b"><apply id="S2.T1.11.11.11.3.m2.1.1.cmml" xref="S2.T1.11.11.11.3.m2.1.1"><csymbol cd="ambiguous" id="S2.T1.11.11.11.3.m2.1.1.1.cmml" xref="S2.T1.11.11.11.3.m2.1.1">subscript</csymbol><ci id="S2.T1.11.11.11.3.m2.1.1.2.cmml" xref="S2.T1.11.11.11.3.m2.1.1.2">𝑆</ci><cn id="S2.T1.11.11.11.3.m2.1.1.3.cmml" type="integer" xref="S2.T1.11.11.11.3.m2.1.1.3">3</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.11.11.11.3.m2.1c">S_{3}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.11.11.11.3.m2.1d">italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT</annotation></semantics></math>, showing the time to repair the issues.</td> </tr> <tr class="ltx_tr" id="S2.T1.14.14.14"> <td class="ltx_td ltx_align_left" id="S2.T1.12.12.12.1"><math alttext="P_{C}" class="ltx_Math" display="inline" id="S2.T1.12.12.12.1.m1.1"><semantics id="S2.T1.12.12.12.1.m1.1a"><msub id="S2.T1.12.12.12.1.m1.1.1" xref="S2.T1.12.12.12.1.m1.1.1.cmml"><mi id="S2.T1.12.12.12.1.m1.1.1.2" xref="S2.T1.12.12.12.1.m1.1.1.2.cmml">P</mi><mi id="S2.T1.12.12.12.1.m1.1.1.3" xref="S2.T1.12.12.12.1.m1.1.1.3.cmml">C</mi></msub><annotation-xml encoding="MathML-Content" id="S2.T1.12.12.12.1.m1.1b"><apply id="S2.T1.12.12.12.1.m1.1.1.cmml" xref="S2.T1.12.12.12.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T1.12.12.12.1.m1.1.1.1.cmml" xref="S2.T1.12.12.12.1.m1.1.1">subscript</csymbol><ci id="S2.T1.12.12.12.1.m1.1.1.2.cmml" xref="S2.T1.12.12.12.1.m1.1.1.2">𝑃</ci><ci id="S2.T1.12.12.12.1.m1.1.1.3.cmml" xref="S2.T1.12.12.12.1.m1.1.1.3">𝐶</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.12.12.12.1.m1.1c">P_{C}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.12.12.12.1.m1.1d">italic_P start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left" id="S2.T1.14.14.14.4">Checking Period</td> <td class="ltx_td ltx_align_left" id="S2.T1.14.14.14.3">From <math alttext="S_{3}" class="ltx_Math" display="inline" id="S2.T1.13.13.13.2.m1.1"><semantics id="S2.T1.13.13.13.2.m1.1a"><msub id="S2.T1.13.13.13.2.m1.1.1" xref="S2.T1.13.13.13.2.m1.1.1.cmml"><mi id="S2.T1.13.13.13.2.m1.1.1.2" xref="S2.T1.13.13.13.2.m1.1.1.2.cmml">S</mi><mn id="S2.T1.13.13.13.2.m1.1.1.3" xref="S2.T1.13.13.13.2.m1.1.1.3.cmml">3</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T1.13.13.13.2.m1.1b"><apply id="S2.T1.13.13.13.2.m1.1.1.cmml" xref="S2.T1.13.13.13.2.m1.1.1"><csymbol cd="ambiguous" id="S2.T1.13.13.13.2.m1.1.1.1.cmml" xref="S2.T1.13.13.13.2.m1.1.1">subscript</csymbol><ci id="S2.T1.13.13.13.2.m1.1.1.2.cmml" xref="S2.T1.13.13.13.2.m1.1.1.2">𝑆</ci><cn id="S2.T1.13.13.13.2.m1.1.1.3.cmml" type="integer" xref="S2.T1.13.13.13.2.m1.1.1.3">3</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.13.13.13.2.m1.1c">S_{3}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.13.13.13.2.m1.1d">italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT</annotation></semantics></math> to <math alttext="S_{4}" class="ltx_Math" display="inline" id="S2.T1.14.14.14.3.m2.1"><semantics id="S2.T1.14.14.14.3.m2.1a"><msub id="S2.T1.14.14.14.3.m2.1.1" xref="S2.T1.14.14.14.3.m2.1.1.cmml"><mi id="S2.T1.14.14.14.3.m2.1.1.2" xref="S2.T1.14.14.14.3.m2.1.1.2.cmml">S</mi><mn id="S2.T1.14.14.14.3.m2.1.1.3" xref="S2.T1.14.14.14.3.m2.1.1.3.cmml">4</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T1.14.14.14.3.m2.1b"><apply id="S2.T1.14.14.14.3.m2.1.1.cmml" xref="S2.T1.14.14.14.3.m2.1.1"><csymbol cd="ambiguous" id="S2.T1.14.14.14.3.m2.1.1.1.cmml" xref="S2.T1.14.14.14.3.m2.1.1">subscript</csymbol><ci id="S2.T1.14.14.14.3.m2.1.1.2.cmml" xref="S2.T1.14.14.14.3.m2.1.1.2">𝑆</ci><cn id="S2.T1.14.14.14.3.m2.1.1.3.cmml" type="integer" xref="S2.T1.14.14.14.3.m2.1.1.3">4</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.14.14.14.3.m2.1c">S_{4}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.14.14.14.3.m2.1d">italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT</annotation></semantics></math>, showing the time to confirm the fix is stable and effective.</td> </tr> <tr class="ltx_tr" id="S2.T1.17.17.17"> <td class="ltx_td ltx_align_left" id="S2.T1.15.15.15.1"><math alttext="P_{L}" class="ltx_Math" display="inline" id="S2.T1.15.15.15.1.m1.1"><semantics id="S2.T1.15.15.15.1.m1.1a"><msub id="S2.T1.15.15.15.1.m1.1.1" xref="S2.T1.15.15.15.1.m1.1.1.cmml"><mi id="S2.T1.15.15.15.1.m1.1.1.2" xref="S2.T1.15.15.15.1.m1.1.1.2.cmml">P</mi><mi id="S2.T1.15.15.15.1.m1.1.1.3" xref="S2.T1.15.15.15.1.m1.1.1.3.cmml">L</mi></msub><annotation-xml encoding="MathML-Content" id="S2.T1.15.15.15.1.m1.1b"><apply id="S2.T1.15.15.15.1.m1.1.1.cmml" xref="S2.T1.15.15.15.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T1.15.15.15.1.m1.1.1.1.cmml" xref="S2.T1.15.15.15.1.m1.1.1">subscript</csymbol><ci id="S2.T1.15.15.15.1.m1.1.1.2.cmml" xref="S2.T1.15.15.15.1.m1.1.1.2">𝑃</ci><ci id="S2.T1.15.15.15.1.m1.1.1.3.cmml" xref="S2.T1.15.15.15.1.m1.1.1.3">𝐿</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.15.15.15.1.m1.1c">P_{L}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.15.15.15.1.m1.1d">italic_P start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left" id="S2.T1.17.17.17.4">Learning Period</td> <td class="ltx_td ltx_align_left" id="S2.T1.17.17.17.3">From <math alttext="S_{4}" class="ltx_Math" display="inline" id="S2.T1.16.16.16.2.m1.1"><semantics id="S2.T1.16.16.16.2.m1.1a"><msub id="S2.T1.16.16.16.2.m1.1.1" xref="S2.T1.16.16.16.2.m1.1.1.cmml"><mi id="S2.T1.16.16.16.2.m1.1.1.2" xref="S2.T1.16.16.16.2.m1.1.1.2.cmml">S</mi><mn id="S2.T1.16.16.16.2.m1.1.1.3" xref="S2.T1.16.16.16.2.m1.1.1.3.cmml">4</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T1.16.16.16.2.m1.1b"><apply id="S2.T1.16.16.16.2.m1.1.1.cmml" xref="S2.T1.16.16.16.2.m1.1.1"><csymbol cd="ambiguous" id="S2.T1.16.16.16.2.m1.1.1.1.cmml" xref="S2.T1.16.16.16.2.m1.1.1">subscript</csymbol><ci id="S2.T1.16.16.16.2.m1.1.1.2.cmml" xref="S2.T1.16.16.16.2.m1.1.1.2">𝑆</ci><cn id="S2.T1.16.16.16.2.m1.1.1.3.cmml" type="integer" xref="S2.T1.16.16.16.2.m1.1.1.3">4</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.16.16.16.2.m1.1c">S_{4}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.16.16.16.2.m1.1d">italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT</annotation></semantics></math> to <math alttext="S_{5}" class="ltx_Math" display="inline" id="S2.T1.17.17.17.3.m2.1"><semantics id="S2.T1.17.17.17.3.m2.1a"><msub id="S2.T1.17.17.17.3.m2.1.1" xref="S2.T1.17.17.17.3.m2.1.1.cmml"><mi id="S2.T1.17.17.17.3.m2.1.1.2" xref="S2.T1.17.17.17.3.m2.1.1.2.cmml">S</mi><mn id="S2.T1.17.17.17.3.m2.1.1.3" xref="S2.T1.17.17.17.3.m2.1.1.3.cmml">5</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T1.17.17.17.3.m2.1b"><apply id="S2.T1.17.17.17.3.m2.1.1.cmml" xref="S2.T1.17.17.17.3.m2.1.1"><csymbol cd="ambiguous" id="S2.T1.17.17.17.3.m2.1.1.1.cmml" xref="S2.T1.17.17.17.3.m2.1.1">subscript</csymbol><ci id="S2.T1.17.17.17.3.m2.1.1.2.cmml" xref="S2.T1.17.17.17.3.m2.1.1.2">𝑆</ci><cn id="S2.T1.17.17.17.3.m2.1.1.3.cmml" type="integer" xref="S2.T1.17.17.17.3.m2.1.1.3">5</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.17.17.17.3.m2.1c">S_{5}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.17.17.17.3.m2.1d">italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT</annotation></semantics></math>, showing the time to provide the incident’s root cause.</td> </tr> <tr class="ltx_tr" id="S2.T1.23.23.23"> <td class="ltx_td ltx_align_left ltx_border_tt" id="S2.T1.18.18.18.1"><math alttext="MTTR" class="ltx_Math" display="inline" id="S2.T1.18.18.18.1.m1.1"><semantics id="S2.T1.18.18.18.1.m1.1a"><mrow id="S2.T1.18.18.18.1.m1.1.1" xref="S2.T1.18.18.18.1.m1.1.1.cmml"><mi id="S2.T1.18.18.18.1.m1.1.1.2" xref="S2.T1.18.18.18.1.m1.1.1.2.cmml">M</mi><mo id="S2.T1.18.18.18.1.m1.1.1.1" xref="S2.T1.18.18.18.1.m1.1.1.1.cmml"></mo><mi id="S2.T1.18.18.18.1.m1.1.1.3" xref="S2.T1.18.18.18.1.m1.1.1.3.cmml">T</mi><mo id="S2.T1.18.18.18.1.m1.1.1.1a" xref="S2.T1.18.18.18.1.m1.1.1.1.cmml"></mo><mi id="S2.T1.18.18.18.1.m1.1.1.4" xref="S2.T1.18.18.18.1.m1.1.1.4.cmml">T</mi><mo id="S2.T1.18.18.18.1.m1.1.1.1b" xref="S2.T1.18.18.18.1.m1.1.1.1.cmml"></mo><mi id="S2.T1.18.18.18.1.m1.1.1.5" xref="S2.T1.18.18.18.1.m1.1.1.5.cmml">R</mi></mrow><annotation-xml encoding="MathML-Content" id="S2.T1.18.18.18.1.m1.1b"><apply id="S2.T1.18.18.18.1.m1.1.1.cmml" xref="S2.T1.18.18.18.1.m1.1.1"><times id="S2.T1.18.18.18.1.m1.1.1.1.cmml" xref="S2.T1.18.18.18.1.m1.1.1.1"></times><ci id="S2.T1.18.18.18.1.m1.1.1.2.cmml" xref="S2.T1.18.18.18.1.m1.1.1.2">𝑀</ci><ci id="S2.T1.18.18.18.1.m1.1.1.3.cmml" xref="S2.T1.18.18.18.1.m1.1.1.3">𝑇</ci><ci id="S2.T1.18.18.18.1.m1.1.1.4.cmml" xref="S2.T1.18.18.18.1.m1.1.1.4">𝑇</ci><ci id="S2.T1.18.18.18.1.m1.1.1.5.cmml" xref="S2.T1.18.18.18.1.m1.1.1.5">𝑅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.18.18.18.1.m1.1c">MTTR</annotation><annotation encoding="application/x-llamapun" id="S2.T1.18.18.18.1.m1.1d">italic_M italic_T italic_T italic_R</annotation></semantics></math></td> <td class="ltx_td ltx_align_left ltx_border_tt" id="S2.T1.23.23.23.7">Mean Time To Resolve</td> <td class="ltx_td ltx_align_left ltx_border_tt" id="S2.T1.23.23.23.6">From <math alttext="S_{1}" class="ltx_Math" display="inline" id="S2.T1.19.19.19.2.m1.1"><semantics id="S2.T1.19.19.19.2.m1.1a"><msub id="S2.T1.19.19.19.2.m1.1.1" xref="S2.T1.19.19.19.2.m1.1.1.cmml"><mi id="S2.T1.19.19.19.2.m1.1.1.2" xref="S2.T1.19.19.19.2.m1.1.1.2.cmml">S</mi><mn id="S2.T1.19.19.19.2.m1.1.1.3" xref="S2.T1.19.19.19.2.m1.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T1.19.19.19.2.m1.1b"><apply id="S2.T1.19.19.19.2.m1.1.1.cmml" xref="S2.T1.19.19.19.2.m1.1.1"><csymbol cd="ambiguous" id="S2.T1.19.19.19.2.m1.1.1.1.cmml" xref="S2.T1.19.19.19.2.m1.1.1">subscript</csymbol><ci id="S2.T1.19.19.19.2.m1.1.1.2.cmml" xref="S2.T1.19.19.19.2.m1.1.1.2">𝑆</ci><cn id="S2.T1.19.19.19.2.m1.1.1.3.cmml" type="integer" xref="S2.T1.19.19.19.2.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.19.19.19.2.m1.1c">S_{1}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.19.19.19.2.m1.1d">italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math> to <math alttext="S_{4}" class="ltx_Math" display="inline" id="S2.T1.20.20.20.3.m2.1"><semantics id="S2.T1.20.20.20.3.m2.1a"><msub id="S2.T1.20.20.20.3.m2.1.1" xref="S2.T1.20.20.20.3.m2.1.1.cmml"><mi id="S2.T1.20.20.20.3.m2.1.1.2" xref="S2.T1.20.20.20.3.m2.1.1.2.cmml">S</mi><mn id="S2.T1.20.20.20.3.m2.1.1.3" xref="S2.T1.20.20.20.3.m2.1.1.3.cmml">4</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T1.20.20.20.3.m2.1b"><apply id="S2.T1.20.20.20.3.m2.1.1.cmml" xref="S2.T1.20.20.20.3.m2.1.1"><csymbol cd="ambiguous" id="S2.T1.20.20.20.3.m2.1.1.1.cmml" xref="S2.T1.20.20.20.3.m2.1.1">subscript</csymbol><ci id="S2.T1.20.20.20.3.m2.1.1.2.cmml" xref="S2.T1.20.20.20.3.m2.1.1.2">𝑆</ci><cn id="S2.T1.20.20.20.3.m2.1.1.3.cmml" type="integer" xref="S2.T1.20.20.20.3.m2.1.1.3">4</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.20.20.20.3.m2.1c">S_{4}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.20.20.20.3.m2.1d">italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT</annotation></semantics></math>, covering <math alttext="P_{I}" class="ltx_Math" display="inline" id="S2.T1.21.21.21.4.m3.1"><semantics id="S2.T1.21.21.21.4.m3.1a"><msub id="S2.T1.21.21.21.4.m3.1.1" xref="S2.T1.21.21.21.4.m3.1.1.cmml"><mi id="S2.T1.21.21.21.4.m3.1.1.2" xref="S2.T1.21.21.21.4.m3.1.1.2.cmml">P</mi><mi id="S2.T1.21.21.21.4.m3.1.1.3" xref="S2.T1.21.21.21.4.m3.1.1.3.cmml">I</mi></msub><annotation-xml encoding="MathML-Content" id="S2.T1.21.21.21.4.m3.1b"><apply id="S2.T1.21.21.21.4.m3.1.1.cmml" xref="S2.T1.21.21.21.4.m3.1.1"><csymbol cd="ambiguous" id="S2.T1.21.21.21.4.m3.1.1.1.cmml" xref="S2.T1.21.21.21.4.m3.1.1">subscript</csymbol><ci id="S2.T1.21.21.21.4.m3.1.1.2.cmml" xref="S2.T1.21.21.21.4.m3.1.1.2">𝑃</ci><ci id="S2.T1.21.21.21.4.m3.1.1.3.cmml" xref="S2.T1.21.21.21.4.m3.1.1.3">𝐼</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.21.21.21.4.m3.1c">P_{I}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.21.21.21.4.m3.1d">italic_P start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT</annotation></semantics></math>, <math alttext="P_{R}" class="ltx_Math" display="inline" id="S2.T1.22.22.22.5.m4.1"><semantics id="S2.T1.22.22.22.5.m4.1a"><msub id="S2.T1.22.22.22.5.m4.1.1" xref="S2.T1.22.22.22.5.m4.1.1.cmml"><mi id="S2.T1.22.22.22.5.m4.1.1.2" xref="S2.T1.22.22.22.5.m4.1.1.2.cmml">P</mi><mi id="S2.T1.22.22.22.5.m4.1.1.3" xref="S2.T1.22.22.22.5.m4.1.1.3.cmml">R</mi></msub><annotation-xml encoding="MathML-Content" id="S2.T1.22.22.22.5.m4.1b"><apply id="S2.T1.22.22.22.5.m4.1.1.cmml" xref="S2.T1.22.22.22.5.m4.1.1"><csymbol cd="ambiguous" id="S2.T1.22.22.22.5.m4.1.1.1.cmml" xref="S2.T1.22.22.22.5.m4.1.1">subscript</csymbol><ci id="S2.T1.22.22.22.5.m4.1.1.2.cmml" xref="S2.T1.22.22.22.5.m4.1.1.2">𝑃</ci><ci id="S2.T1.22.22.22.5.m4.1.1.3.cmml" xref="S2.T1.22.22.22.5.m4.1.1.3">𝑅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.22.22.22.5.m4.1c">P_{R}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.22.22.22.5.m4.1d">italic_P start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT</annotation></semantics></math>, <math alttext="P_{C}" class="ltx_Math" display="inline" id="S2.T1.23.23.23.6.m5.1"><semantics id="S2.T1.23.23.23.6.m5.1a"><msub id="S2.T1.23.23.23.6.m5.1.1" xref="S2.T1.23.23.23.6.m5.1.1.cmml"><mi id="S2.T1.23.23.23.6.m5.1.1.2" xref="S2.T1.23.23.23.6.m5.1.1.2.cmml">P</mi><mi id="S2.T1.23.23.23.6.m5.1.1.3" xref="S2.T1.23.23.23.6.m5.1.1.3.cmml">C</mi></msub><annotation-xml encoding="MathML-Content" id="S2.T1.23.23.23.6.m5.1b"><apply id="S2.T1.23.23.23.6.m5.1.1.cmml" xref="S2.T1.23.23.23.6.m5.1.1"><csymbol cd="ambiguous" id="S2.T1.23.23.23.6.m5.1.1.1.cmml" xref="S2.T1.23.23.23.6.m5.1.1">subscript</csymbol><ci id="S2.T1.23.23.23.6.m5.1.1.2.cmml" xref="S2.T1.23.23.23.6.m5.1.1.2">𝑃</ci><ci id="S2.T1.23.23.23.6.m5.1.1.3.cmml" xref="S2.T1.23.23.23.6.m5.1.1.3">𝐶</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.23.23.23.6.m5.1c">P_{C}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.23.23.23.6.m5.1d">italic_P start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT</annotation></semantics></math>, showing the full time of resolving issues.</td> </tr> <tr class="ltx_tr" id="S2.T1.25.25.25"> <td class="ltx_td ltx_align_left" id="S2.T1.24.24.24.1"><math alttext="MTBF" class="ltx_Math" display="inline" id="S2.T1.24.24.24.1.m1.1"><semantics id="S2.T1.24.24.24.1.m1.1a"><mrow id="S2.T1.24.24.24.1.m1.1.1" xref="S2.T1.24.24.24.1.m1.1.1.cmml"><mi id="S2.T1.24.24.24.1.m1.1.1.2" xref="S2.T1.24.24.24.1.m1.1.1.2.cmml">M</mi><mo id="S2.T1.24.24.24.1.m1.1.1.1" xref="S2.T1.24.24.24.1.m1.1.1.1.cmml"></mo><mi id="S2.T1.24.24.24.1.m1.1.1.3" xref="S2.T1.24.24.24.1.m1.1.1.3.cmml">T</mi><mo id="S2.T1.24.24.24.1.m1.1.1.1a" xref="S2.T1.24.24.24.1.m1.1.1.1.cmml"></mo><mi id="S2.T1.24.24.24.1.m1.1.1.4" xref="S2.T1.24.24.24.1.m1.1.1.4.cmml">B</mi><mo id="S2.T1.24.24.24.1.m1.1.1.1b" xref="S2.T1.24.24.24.1.m1.1.1.1.cmml"></mo><mi id="S2.T1.24.24.24.1.m1.1.1.5" xref="S2.T1.24.24.24.1.m1.1.1.5.cmml">F</mi></mrow><annotation-xml encoding="MathML-Content" id="S2.T1.24.24.24.1.m1.1b"><apply id="S2.T1.24.24.24.1.m1.1.1.cmml" xref="S2.T1.24.24.24.1.m1.1.1"><times id="S2.T1.24.24.24.1.m1.1.1.1.cmml" xref="S2.T1.24.24.24.1.m1.1.1.1"></times><ci id="S2.T1.24.24.24.1.m1.1.1.2.cmml" xref="S2.T1.24.24.24.1.m1.1.1.2">𝑀</ci><ci id="S2.T1.24.24.24.1.m1.1.1.3.cmml" xref="S2.T1.24.24.24.1.m1.1.1.3">𝑇</ci><ci id="S2.T1.24.24.24.1.m1.1.1.4.cmml" xref="S2.T1.24.24.24.1.m1.1.1.4">𝐵</ci><ci id="S2.T1.24.24.24.1.m1.1.1.5.cmml" xref="S2.T1.24.24.24.1.m1.1.1.5">𝐹</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.24.24.24.1.m1.1c">MTBF</annotation><annotation encoding="application/x-llamapun" id="S2.T1.24.24.24.1.m1.1d">italic_M italic_T italic_B italic_F</annotation></semantics></math></td> <td class="ltx_td ltx_align_left" id="S2.T1.25.25.25.3">Mean Time Between Failures</td> <td class="ltx_td ltx_align_left" id="S2.T1.25.25.25.2">From the <math alttext="S_{1}" class="ltx_Math" display="inline" id="S2.T1.25.25.25.2.m1.1"><semantics id="S2.T1.25.25.25.2.m1.1a"><msub id="S2.T1.25.25.25.2.m1.1.1" xref="S2.T1.25.25.25.2.m1.1.1.cmml"><mi id="S2.T1.25.25.25.2.m1.1.1.2" xref="S2.T1.25.25.25.2.m1.1.1.2.cmml">S</mi><mn id="S2.T1.25.25.25.2.m1.1.1.3" xref="S2.T1.25.25.25.2.m1.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T1.25.25.25.2.m1.1b"><apply id="S2.T1.25.25.25.2.m1.1.1.cmml" xref="S2.T1.25.25.25.2.m1.1.1"><csymbol cd="ambiguous" id="S2.T1.25.25.25.2.m1.1.1.1.cmml" xref="S2.T1.25.25.25.2.m1.1.1">subscript</csymbol><ci id="S2.T1.25.25.25.2.m1.1.1.2.cmml" xref="S2.T1.25.25.25.2.m1.1.1.2">𝑆</ci><cn id="S2.T1.25.25.25.2.m1.1.1.3.cmml" type="integer" xref="S2.T1.25.25.25.2.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.25.25.25.2.m1.1c">S_{1}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.25.25.25.2.m1.1d">italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math> of the current incident to the next, showing how frequently failures happen.</td> </tr> <tr class="ltx_tr" id="S2.T1.28.28.28"> <td class="ltx_td ltx_align_left ltx_border_bb" id="S2.T1.28.28.28.3"> <math alttext="T" class="ltx_Math" display="inline" id="S2.T1.26.26.26.1.m1.1"><semantics id="S2.T1.26.26.26.1.m1.1a"><mi id="S2.T1.26.26.26.1.m1.1.1" xref="S2.T1.26.26.26.1.m1.1.1.cmml">T</mi><annotation-xml encoding="MathML-Content" id="S2.T1.26.26.26.1.m1.1b"><ci id="S2.T1.26.26.26.1.m1.1.1.cmml" xref="S2.T1.26.26.26.1.m1.1.1">𝑇</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.26.26.26.1.m1.1c">T</annotation><annotation encoding="application/x-llamapun" id="S2.T1.26.26.26.1.m1.1d">italic_T</annotation></semantics></math>, <math alttext="T_{S}" class="ltx_Math" display="inline" id="S2.T1.27.27.27.2.m2.1"><semantics id="S2.T1.27.27.27.2.m2.1a"><msub id="S2.T1.27.27.27.2.m2.1.1" xref="S2.T1.27.27.27.2.m2.1.1.cmml"><mi id="S2.T1.27.27.27.2.m2.1.1.2" xref="S2.T1.27.27.27.2.m2.1.1.2.cmml">T</mi><mi id="S2.T1.27.27.27.2.m2.1.1.3" xref="S2.T1.27.27.27.2.m2.1.1.3.cmml">S</mi></msub><annotation-xml encoding="MathML-Content" id="S2.T1.27.27.27.2.m2.1b"><apply id="S2.T1.27.27.27.2.m2.1.1.cmml" xref="S2.T1.27.27.27.2.m2.1.1"><csymbol cd="ambiguous" id="S2.T1.27.27.27.2.m2.1.1.1.cmml" xref="S2.T1.27.27.27.2.m2.1.1">subscript</csymbol><ci id="S2.T1.27.27.27.2.m2.1.1.2.cmml" xref="S2.T1.27.27.27.2.m2.1.1.2">𝑇</ci><ci id="S2.T1.27.27.27.2.m2.1.1.3.cmml" xref="S2.T1.27.27.27.2.m2.1.1.3">𝑆</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.27.27.27.2.m2.1c">T_{S}</annotation><annotation encoding="application/x-llamapun" id="S2.T1.27.27.27.2.m2.1d">italic_T start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT</annotation></semantics></math>, <math alttext="A" class="ltx_Math" display="inline" id="S2.T1.28.28.28.3.m3.1"><semantics id="S2.T1.28.28.28.3.m3.1a"><mi id="S2.T1.28.28.28.3.m3.1.1" xref="S2.T1.28.28.28.3.m3.1.1.cmml">A</mi><annotation-xml encoding="MathML-Content" id="S2.T1.28.28.28.3.m3.1b"><ci id="S2.T1.28.28.28.3.m3.1.1.cmml" xref="S2.T1.28.28.28.3.m3.1.1">𝐴</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.T1.28.28.28.3.m3.1c">A</annotation><annotation encoding="application/x-llamapun" id="S2.T1.28.28.28.3.m3.1d">italic_A</annotation></semantics></math> </td> <td class="ltx_td ltx_align_left ltx_border_bb" id="S2.T1.28.28.28.4">Outage time, scaled, availability</td> <td class="ltx_td ltx_align_left ltx_border_bb" id="S2.T1.28.28.28.5">Definitions discussed in <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S2.SS2" title="2.2. LLM-Specific Terms and Metrics ‣ 2. Anatomy of an LLM-service Incident: Model and Example ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Section</span> <span class="ltx_text ltx_ref_tag">2.2</span></a> </td> </tr> </table> </span></div> </figure> <figure class="ltx_table" id="S2.T2"> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_table"><span class="ltx_text" id="S2.T2.15.3.1" style="font-size:90%;">Table 2</span>. </span><span class="ltx_text" id="S2.T2.4.2" style="font-size:90%;">Values of parameters for the selected incident <cite class="ltx_cite ltx_citemacro_citep">(OpenAI, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib41" title="">2024a</a>)</cite>, UDT time. Status-markers <math alttext="S_{1}" class="ltx_Math" display="inline" id="S2.T2.3.1.m1.1"><semantics id="S2.T2.3.1.m1.1b"><msub id="S2.T2.3.1.m1.1.1" xref="S2.T2.3.1.m1.1.1.cmml"><mi id="S2.T2.3.1.m1.1.1.2" xref="S2.T2.3.1.m1.1.1.2.cmml">S</mi><mn id="S2.T2.3.1.m1.1.1.3" xref="S2.T2.3.1.m1.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T2.3.1.m1.1c"><apply id="S2.T2.3.1.m1.1.1.cmml" xref="S2.T2.3.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T2.3.1.m1.1.1.1.cmml" xref="S2.T2.3.1.m1.1.1">subscript</csymbol><ci id="S2.T2.3.1.m1.1.1.2.cmml" xref="S2.T2.3.1.m1.1.1.2">𝑆</ci><cn id="S2.T2.3.1.m1.1.1.3.cmml" type="integer" xref="S2.T2.3.1.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T2.3.1.m1.1d">S_{1}</annotation><annotation encoding="application/x-llamapun" id="S2.T2.3.1.m1.1e">italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math> through <math alttext="S_{4}" class="ltx_Math" display="inline" id="S2.T2.4.2.m2.1"><semantics id="S2.T2.4.2.m2.1b"><msub id="S2.T2.4.2.m2.1.1" xref="S2.T2.4.2.m2.1.1.cmml"><mi id="S2.T2.4.2.m2.1.1.2" xref="S2.T2.4.2.m2.1.1.2.cmml">S</mi><mn id="S2.T2.4.2.m2.1.1.3" xref="S2.T2.4.2.m2.1.1.3.cmml">4</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T2.4.2.m2.1c"><apply id="S2.T2.4.2.m2.1.1.cmml" xref="S2.T2.4.2.m2.1.1"><csymbol cd="ambiguous" id="S2.T2.4.2.m2.1.1.1.cmml" xref="S2.T2.4.2.m2.1.1">subscript</csymbol><ci id="S2.T2.4.2.m2.1.1.2.cmml" xref="S2.T2.4.2.m2.1.1.2">𝑆</ci><cn id="S2.T2.4.2.m2.1.1.3.cmml" type="integer" xref="S2.T2.4.2.m2.1.1.3">4</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T2.4.2.m2.1d">S_{4}</annotation><annotation encoding="application/x-llamapun" id="S2.T2.4.2.m2.1e">italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT</annotation></semantics></math> occur on April 10, 2024.</span></figcaption> <div class="ltx_inline-block ltx_align_center ltx_transformed_outer" id="S2.T2.13" style="width:385.9pt;height:24.9pt;vertical-align:-0.0pt;"><span class="ltx_transformed_inner" style="transform:translate(-86.1pt,5.6pt) scale(0.69154732901864,0.69154732901864) ;"> <table class="ltx_tabular ltx_align_middle" id="S2.T2.13.9"> <tr class="ltx_tr" id="S2.T2.13.9.9"> <td class="ltx_td ltx_align_center ltx_border_tt" id="S2.T2.13.9.9.10"><span class="ltx_text ltx_font_bold" id="S2.T2.13.9.9.10.1">Incident ID</span></td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S2.T2.5.1.1.1"><math alttext="S_{1}" class="ltx_Math" display="inline" id="S2.T2.5.1.1.1.m1.1"><semantics id="S2.T2.5.1.1.1.m1.1a"><msub id="S2.T2.5.1.1.1.m1.1.1" xref="S2.T2.5.1.1.1.m1.1.1.cmml"><mi id="S2.T2.5.1.1.1.m1.1.1.2" xref="S2.T2.5.1.1.1.m1.1.1.2.cmml">S</mi><mn id="S2.T2.5.1.1.1.m1.1.1.3" xref="S2.T2.5.1.1.1.m1.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T2.5.1.1.1.m1.1b"><apply id="S2.T2.5.1.1.1.m1.1.1.cmml" xref="S2.T2.5.1.1.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T2.5.1.1.1.m1.1.1.1.cmml" xref="S2.T2.5.1.1.1.m1.1.1">subscript</csymbol><ci id="S2.T2.5.1.1.1.m1.1.1.2.cmml" xref="S2.T2.5.1.1.1.m1.1.1.2">𝑆</ci><cn id="S2.T2.5.1.1.1.m1.1.1.3.cmml" type="integer" xref="S2.T2.5.1.1.1.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T2.5.1.1.1.m1.1c">S_{1}</annotation><annotation encoding="application/x-llamapun" id="S2.T2.5.1.1.1.m1.1d">italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S2.T2.6.2.2.2"><math alttext="S_{2}" class="ltx_Math" display="inline" id="S2.T2.6.2.2.2.m1.1"><semantics id="S2.T2.6.2.2.2.m1.1a"><msub id="S2.T2.6.2.2.2.m1.1.1" xref="S2.T2.6.2.2.2.m1.1.1.cmml"><mi id="S2.T2.6.2.2.2.m1.1.1.2" xref="S2.T2.6.2.2.2.m1.1.1.2.cmml">S</mi><mn id="S2.T2.6.2.2.2.m1.1.1.3" xref="S2.T2.6.2.2.2.m1.1.1.3.cmml">2</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T2.6.2.2.2.m1.1b"><apply id="S2.T2.6.2.2.2.m1.1.1.cmml" xref="S2.T2.6.2.2.2.m1.1.1"><csymbol cd="ambiguous" id="S2.T2.6.2.2.2.m1.1.1.1.cmml" xref="S2.T2.6.2.2.2.m1.1.1">subscript</csymbol><ci id="S2.T2.6.2.2.2.m1.1.1.2.cmml" xref="S2.T2.6.2.2.2.m1.1.1.2">𝑆</ci><cn id="S2.T2.6.2.2.2.m1.1.1.3.cmml" type="integer" xref="S2.T2.6.2.2.2.m1.1.1.3">2</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T2.6.2.2.2.m1.1c">S_{2}</annotation><annotation encoding="application/x-llamapun" id="S2.T2.6.2.2.2.m1.1d">italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S2.T2.7.3.3.3"><math alttext="S_{3}" class="ltx_Math" display="inline" id="S2.T2.7.3.3.3.m1.1"><semantics id="S2.T2.7.3.3.3.m1.1a"><msub id="S2.T2.7.3.3.3.m1.1.1" xref="S2.T2.7.3.3.3.m1.1.1.cmml"><mi id="S2.T2.7.3.3.3.m1.1.1.2" xref="S2.T2.7.3.3.3.m1.1.1.2.cmml">S</mi><mn id="S2.T2.7.3.3.3.m1.1.1.3" xref="S2.T2.7.3.3.3.m1.1.1.3.cmml">3</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T2.7.3.3.3.m1.1b"><apply id="S2.T2.7.3.3.3.m1.1.1.cmml" xref="S2.T2.7.3.3.3.m1.1.1"><csymbol cd="ambiguous" id="S2.T2.7.3.3.3.m1.1.1.1.cmml" xref="S2.T2.7.3.3.3.m1.1.1">subscript</csymbol><ci id="S2.T2.7.3.3.3.m1.1.1.2.cmml" xref="S2.T2.7.3.3.3.m1.1.1.2">𝑆</ci><cn id="S2.T2.7.3.3.3.m1.1.1.3.cmml" type="integer" xref="S2.T2.7.3.3.3.m1.1.1.3">3</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T2.7.3.3.3.m1.1c">S_{3}</annotation><annotation encoding="application/x-llamapun" id="S2.T2.7.3.3.3.m1.1d">italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S2.T2.8.4.4.4"><math alttext="S_{4}" class="ltx_Math" display="inline" id="S2.T2.8.4.4.4.m1.1"><semantics id="S2.T2.8.4.4.4.m1.1a"><msub id="S2.T2.8.4.4.4.m1.1.1" xref="S2.T2.8.4.4.4.m1.1.1.cmml"><mi id="S2.T2.8.4.4.4.m1.1.1.2" xref="S2.T2.8.4.4.4.m1.1.1.2.cmml">S</mi><mn id="S2.T2.8.4.4.4.m1.1.1.3" xref="S2.T2.8.4.4.4.m1.1.1.3.cmml">4</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T2.8.4.4.4.m1.1b"><apply id="S2.T2.8.4.4.4.m1.1.1.cmml" xref="S2.T2.8.4.4.4.m1.1.1"><csymbol cd="ambiguous" id="S2.T2.8.4.4.4.m1.1.1.1.cmml" xref="S2.T2.8.4.4.4.m1.1.1">subscript</csymbol><ci id="S2.T2.8.4.4.4.m1.1.1.2.cmml" xref="S2.T2.8.4.4.4.m1.1.1.2">𝑆</ci><cn id="S2.T2.8.4.4.4.m1.1.1.3.cmml" type="integer" xref="S2.T2.8.4.4.4.m1.1.1.3">4</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T2.8.4.4.4.m1.1c">S_{4}</annotation><annotation encoding="application/x-llamapun" id="S2.T2.8.4.4.4.m1.1d">italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S2.T2.9.5.5.5"><math alttext="S_{5}" class="ltx_Math" display="inline" id="S2.T2.9.5.5.5.m1.1"><semantics id="S2.T2.9.5.5.5.m1.1a"><msub id="S2.T2.9.5.5.5.m1.1.1" xref="S2.T2.9.5.5.5.m1.1.1.cmml"><mi id="S2.T2.9.5.5.5.m1.1.1.2" xref="S2.T2.9.5.5.5.m1.1.1.2.cmml">S</mi><mn id="S2.T2.9.5.5.5.m1.1.1.3" xref="S2.T2.9.5.5.5.m1.1.1.3.cmml">5</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T2.9.5.5.5.m1.1b"><apply id="S2.T2.9.5.5.5.m1.1.1.cmml" xref="S2.T2.9.5.5.5.m1.1.1"><csymbol cd="ambiguous" id="S2.T2.9.5.5.5.m1.1.1.1.cmml" xref="S2.T2.9.5.5.5.m1.1.1">subscript</csymbol><ci id="S2.T2.9.5.5.5.m1.1.1.2.cmml" xref="S2.T2.9.5.5.5.m1.1.1.2">𝑆</ci><cn id="S2.T2.9.5.5.5.m1.1.1.3.cmml" type="integer" xref="S2.T2.9.5.5.5.m1.1.1.3">5</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T2.9.5.5.5.m1.1c">S_{5}</annotation><annotation encoding="application/x-llamapun" id="S2.T2.9.5.5.5.m1.1d">italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S2.T2.10.6.6.6"> <math alttext="P_{I}" class="ltx_Math" display="inline" id="S2.T2.10.6.6.6.m1.1"><semantics id="S2.T2.10.6.6.6.m1.1a"><msub id="S2.T2.10.6.6.6.m1.1.1" xref="S2.T2.10.6.6.6.m1.1.1.cmml"><mi id="S2.T2.10.6.6.6.m1.1.1.2" xref="S2.T2.10.6.6.6.m1.1.1.2.cmml">P</mi><mi id="S2.T2.10.6.6.6.m1.1.1.3" xref="S2.T2.10.6.6.6.m1.1.1.3.cmml">I</mi></msub><annotation-xml encoding="MathML-Content" id="S2.T2.10.6.6.6.m1.1b"><apply id="S2.T2.10.6.6.6.m1.1.1.cmml" xref="S2.T2.10.6.6.6.m1.1.1"><csymbol cd="ambiguous" id="S2.T2.10.6.6.6.m1.1.1.1.cmml" xref="S2.T2.10.6.6.6.m1.1.1">subscript</csymbol><ci id="S2.T2.10.6.6.6.m1.1.1.2.cmml" xref="S2.T2.10.6.6.6.m1.1.1.2">𝑃</ci><ci id="S2.T2.10.6.6.6.m1.1.1.3.cmml" xref="S2.T2.10.6.6.6.m1.1.1.3">𝐼</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T2.10.6.6.6.m1.1c">P_{I}</annotation><annotation encoding="application/x-llamapun" id="S2.T2.10.6.6.6.m1.1d">italic_P start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT</annotation></semantics></math> [h]</td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S2.T2.11.7.7.7"> <math alttext="P_{R}" class="ltx_Math" display="inline" id="S2.T2.11.7.7.7.m1.1"><semantics id="S2.T2.11.7.7.7.m1.1a"><msub id="S2.T2.11.7.7.7.m1.1.1" xref="S2.T2.11.7.7.7.m1.1.1.cmml"><mi id="S2.T2.11.7.7.7.m1.1.1.2" xref="S2.T2.11.7.7.7.m1.1.1.2.cmml">P</mi><mi id="S2.T2.11.7.7.7.m1.1.1.3" xref="S2.T2.11.7.7.7.m1.1.1.3.cmml">R</mi></msub><annotation-xml encoding="MathML-Content" id="S2.T2.11.7.7.7.m1.1b"><apply id="S2.T2.11.7.7.7.m1.1.1.cmml" xref="S2.T2.11.7.7.7.m1.1.1"><csymbol cd="ambiguous" id="S2.T2.11.7.7.7.m1.1.1.1.cmml" xref="S2.T2.11.7.7.7.m1.1.1">subscript</csymbol><ci id="S2.T2.11.7.7.7.m1.1.1.2.cmml" xref="S2.T2.11.7.7.7.m1.1.1.2">𝑃</ci><ci id="S2.T2.11.7.7.7.m1.1.1.3.cmml" xref="S2.T2.11.7.7.7.m1.1.1.3">𝑅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T2.11.7.7.7.m1.1c">P_{R}</annotation><annotation encoding="application/x-llamapun" id="S2.T2.11.7.7.7.m1.1d">italic_P start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT</annotation></semantics></math> [h]</td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S2.T2.12.8.8.8"> <math alttext="P_{C}" class="ltx_Math" display="inline" id="S2.T2.12.8.8.8.m1.1"><semantics id="S2.T2.12.8.8.8.m1.1a"><msub id="S2.T2.12.8.8.8.m1.1.1" xref="S2.T2.12.8.8.8.m1.1.1.cmml"><mi id="S2.T2.12.8.8.8.m1.1.1.2" xref="S2.T2.12.8.8.8.m1.1.1.2.cmml">P</mi><mi id="S2.T2.12.8.8.8.m1.1.1.3" xref="S2.T2.12.8.8.8.m1.1.1.3.cmml">C</mi></msub><annotation-xml encoding="MathML-Content" id="S2.T2.12.8.8.8.m1.1b"><apply id="S2.T2.12.8.8.8.m1.1.1.cmml" xref="S2.T2.12.8.8.8.m1.1.1"><csymbol cd="ambiguous" id="S2.T2.12.8.8.8.m1.1.1.1.cmml" xref="S2.T2.12.8.8.8.m1.1.1">subscript</csymbol><ci id="S2.T2.12.8.8.8.m1.1.1.2.cmml" xref="S2.T2.12.8.8.8.m1.1.1.2">𝑃</ci><ci id="S2.T2.12.8.8.8.m1.1.1.3.cmml" xref="S2.T2.12.8.8.8.m1.1.1.3">𝐶</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T2.12.8.8.8.m1.1c">P_{C}</annotation><annotation encoding="application/x-llamapun" id="S2.T2.12.8.8.8.m1.1d">italic_P start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT</annotation></semantics></math> [h]</td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S2.T2.13.9.9.9"> <math alttext="P_{L}" class="ltx_Math" display="inline" id="S2.T2.13.9.9.9.m1.1"><semantics id="S2.T2.13.9.9.9.m1.1a"><msub id="S2.T2.13.9.9.9.m1.1.1" xref="S2.T2.13.9.9.9.m1.1.1.cmml"><mi id="S2.T2.13.9.9.9.m1.1.1.2" xref="S2.T2.13.9.9.9.m1.1.1.2.cmml">P</mi><mi id="S2.T2.13.9.9.9.m1.1.1.3" xref="S2.T2.13.9.9.9.m1.1.1.3.cmml">L</mi></msub><annotation-xml encoding="MathML-Content" id="S2.T2.13.9.9.9.m1.1b"><apply id="S2.T2.13.9.9.9.m1.1.1.cmml" xref="S2.T2.13.9.9.9.m1.1.1"><csymbol cd="ambiguous" id="S2.T2.13.9.9.9.m1.1.1.1.cmml" xref="S2.T2.13.9.9.9.m1.1.1">subscript</csymbol><ci id="S2.T2.13.9.9.9.m1.1.1.2.cmml" xref="S2.T2.13.9.9.9.m1.1.1.2">𝑃</ci><ci id="S2.T2.13.9.9.9.m1.1.1.3.cmml" xref="S2.T2.13.9.9.9.m1.1.1.3">𝐿</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T2.13.9.9.9.m1.1c">P_{L}</annotation><annotation encoding="application/x-llamapun" id="S2.T2.13.9.9.9.m1.1d">italic_P start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT</annotation></semantics></math> [h]</td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S2.T2.13.9.9.11">Time To Resolve [h]</td> </tr> <tr class="ltx_tr" id="S2.T2.13.9.10"> <td class="ltx_td ltx_align_center ltx_border_bb ltx_border_t" id="S2.T2.13.9.10.1">w20mcckg1748</td> <td class="ltx_td ltx_align_center ltx_border_bb ltx_border_t" id="S2.T2.13.9.10.2">17:56</td> <td class="ltx_td ltx_align_center ltx_border_bb ltx_border_t" id="S2.T2.13.9.10.3">20:39</td> <td class="ltx_td ltx_align_center ltx_border_bb ltx_border_t" id="S2.T2.13.9.10.4">20:49</td> <td class="ltx_td ltx_align_center ltx_border_bb ltx_border_t" id="S2.T2.13.9.10.5">20:56</td> <td class="ltx_td ltx_align_center ltx_border_bb ltx_border_t" id="S2.T2.13.9.10.6">2024-04-18 00:01</td> <td class="ltx_td ltx_align_center ltx_border_bb ltx_border_t" id="S2.T2.13.9.10.7">2.72</td> <td class="ltx_td ltx_align_center ltx_border_bb ltx_border_t" id="S2.T2.13.9.10.8">0.17</td> <td class="ltx_td ltx_align_center ltx_border_bb ltx_border_t" id="S2.T2.13.9.10.9">0.12</td> <td class="ltx_td ltx_align_center ltx_border_bb ltx_border_t" id="S2.T2.13.9.10.10">171.08</td> <td class="ltx_td ltx_align_center ltx_border_bb ltx_border_t" id="S2.T2.13.9.10.11">3.00</td> </tr> </table> </span></div> </figure> <div class="ltx_para" id="S2.SS1.p4"> <p class="ltx_p" id="S2.SS1.p4.5"><span class="ltx_text ltx_font_bold" id="S2.SS1.p4.5.1">Incident visualization and model parameters:</span> Focusing on the major ChatGPT outage on April 10, 2024, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S2.F2" title="In 2. Anatomy of an LLM-service Incident: Model and Example ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Figure</span> <span class="ltx_text ltx_ref_tag">2</span></a> visualizes the failure-recovery process as reported by ChatGPT, overlapping it with the number of user reports as reported by DownDetector. Around 2024-04-10 17:30, with the service believed to operate normally, some faults started to happen and the number of user reports increased to an abnormal level. This triggered an alert to the ChatGPT operational team, who started <span class="ltx_text ltx_font_italic" id="S2.SS1.p4.5.2">investigating</span> at 17:56 (status <math alttext="S_{1}" class="ltx_Math" display="inline" id="S2.SS1.p4.1.m1.1"><semantics id="S2.SS1.p4.1.m1.1a"><msub id="S2.SS1.p4.1.m1.1.1" xref="S2.SS1.p4.1.m1.1.1.cmml"><mi id="S2.SS1.p4.1.m1.1.1.2" xref="S2.SS1.p4.1.m1.1.1.2.cmml">S</mi><mn id="S2.SS1.p4.1.m1.1.1.3" xref="S2.SS1.p4.1.m1.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S2.SS1.p4.1.m1.1b"><apply id="S2.SS1.p4.1.m1.1.1.cmml" xref="S2.SS1.p4.1.m1.1.1"><csymbol cd="ambiguous" id="S2.SS1.p4.1.m1.1.1.1.cmml" xref="S2.SS1.p4.1.m1.1.1">subscript</csymbol><ci id="S2.SS1.p4.1.m1.1.1.2.cmml" xref="S2.SS1.p4.1.m1.1.1.2">𝑆</ci><cn id="S2.SS1.p4.1.m1.1.1.3.cmml" type="integer" xref="S2.SS1.p4.1.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p4.1.m1.1c">S_{1}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p4.1.m1.1d">italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math>). At 20:39, they <span class="ltx_text ltx_font_italic" id="S2.SS1.p4.5.3">identified</span> the issue (<math alttext="S_{2}" class="ltx_Math" display="inline" id="S2.SS1.p4.2.m2.1"><semantics id="S2.SS1.p4.2.m2.1a"><msub id="S2.SS1.p4.2.m2.1.1" xref="S2.SS1.p4.2.m2.1.1.cmml"><mi id="S2.SS1.p4.2.m2.1.1.2" xref="S2.SS1.p4.2.m2.1.1.2.cmml">S</mi><mn id="S2.SS1.p4.2.m2.1.1.3" xref="S2.SS1.p4.2.m2.1.1.3.cmml">2</mn></msub><annotation-xml encoding="MathML-Content" id="S2.SS1.p4.2.m2.1b"><apply id="S2.SS1.p4.2.m2.1.1.cmml" xref="S2.SS1.p4.2.m2.1.1"><csymbol cd="ambiguous" id="S2.SS1.p4.2.m2.1.1.1.cmml" xref="S2.SS1.p4.2.m2.1.1">subscript</csymbol><ci id="S2.SS1.p4.2.m2.1.1.2.cmml" xref="S2.SS1.p4.2.m2.1.1.2">𝑆</ci><cn id="S2.SS1.p4.2.m2.1.1.3.cmml" type="integer" xref="S2.SS1.p4.2.m2.1.1.3">2</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p4.2.m2.1c">S_{2}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p4.2.m2.1d">italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT</annotation></semantics></math>). They quickly implemented a fix, which they released and started <span class="ltx_text ltx_font_italic" id="S2.SS1.p4.5.4">monitoring</span> at 20:49 (<math alttext="S_{3}" class="ltx_Math" display="inline" id="S2.SS1.p4.3.m3.1"><semantics id="S2.SS1.p4.3.m3.1a"><msub id="S2.SS1.p4.3.m3.1.1" xref="S2.SS1.p4.3.m3.1.1.cmml"><mi id="S2.SS1.p4.3.m3.1.1.2" xref="S2.SS1.p4.3.m3.1.1.2.cmml">S</mi><mn id="S2.SS1.p4.3.m3.1.1.3" xref="S2.SS1.p4.3.m3.1.1.3.cmml">3</mn></msub><annotation-xml encoding="MathML-Content" id="S2.SS1.p4.3.m3.1b"><apply id="S2.SS1.p4.3.m3.1.1.cmml" xref="S2.SS1.p4.3.m3.1.1"><csymbol cd="ambiguous" id="S2.SS1.p4.3.m3.1.1.1.cmml" xref="S2.SS1.p4.3.m3.1.1">subscript</csymbol><ci id="S2.SS1.p4.3.m3.1.1.2.cmml" xref="S2.SS1.p4.3.m3.1.1.2">𝑆</ci><cn id="S2.SS1.p4.3.m3.1.1.3.cmml" type="integer" xref="S2.SS1.p4.3.m3.1.1.3">3</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p4.3.m3.1c">S_{3}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p4.3.m3.1d">italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT</annotation></semantics></math>). They confirmed that the issue had been <span class="ltx_text ltx_font_italic" id="S2.SS1.p4.5.5">resolved</span> at 20:56 (<math alttext="S_{4}" class="ltx_Math" display="inline" id="S2.SS1.p4.4.m4.1"><semantics id="S2.SS1.p4.4.m4.1a"><msub id="S2.SS1.p4.4.m4.1.1" xref="S2.SS1.p4.4.m4.1.1.cmml"><mi id="S2.SS1.p4.4.m4.1.1.2" xref="S2.SS1.p4.4.m4.1.1.2.cmml">S</mi><mn id="S2.SS1.p4.4.m4.1.1.3" xref="S2.SS1.p4.4.m4.1.1.3.cmml">4</mn></msub><annotation-xml encoding="MathML-Content" id="S2.SS1.p4.4.m4.1b"><apply id="S2.SS1.p4.4.m4.1.1.cmml" xref="S2.SS1.p4.4.m4.1.1"><csymbol cd="ambiguous" id="S2.SS1.p4.4.m4.1.1.1.cmml" xref="S2.SS1.p4.4.m4.1.1">subscript</csymbol><ci id="S2.SS1.p4.4.m4.1.1.2.cmml" xref="S2.SS1.p4.4.m4.1.1.2">𝑆</ci><cn id="S2.SS1.p4.4.m4.1.1.3.cmml" type="integer" xref="S2.SS1.p4.4.m4.1.1.3">4</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p4.4.m4.1c">S_{4}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p4.4.m4.1d">italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT</annotation></semantics></math>). During this period, the user reports increased to a peak, around which it fluctuated until the fix was released to increasingly more users, at which point a sharp drop of user reports, toward a normal level, can be seen in the figure. Finally, after a period of <span class="ltx_text ltx_font_italic" id="S2.SS1.p4.5.6">postmortem analysis</span>, an incident summary was released by the ChatGPT team, to explain the cause of this incident to its users (<math alttext="S_{5}" class="ltx_Math" display="inline" id="S2.SS1.p4.5.m5.1"><semantics id="S2.SS1.p4.5.m5.1a"><msub id="S2.SS1.p4.5.m5.1.1" xref="S2.SS1.p4.5.m5.1.1.cmml"><mi id="S2.SS1.p4.5.m5.1.1.2" xref="S2.SS1.p4.5.m5.1.1.2.cmml">S</mi><mn id="S2.SS1.p4.5.m5.1.1.3" xref="S2.SS1.p4.5.m5.1.1.3.cmml">5</mn></msub><annotation-xml encoding="MathML-Content" id="S2.SS1.p4.5.m5.1b"><apply id="S2.SS1.p4.5.m5.1.1.cmml" xref="S2.SS1.p4.5.m5.1.1"><csymbol cd="ambiguous" id="S2.SS1.p4.5.m5.1.1.1.cmml" xref="S2.SS1.p4.5.m5.1.1">subscript</csymbol><ci id="S2.SS1.p4.5.m5.1.1.2.cmml" xref="S2.SS1.p4.5.m5.1.1.2">𝑆</ci><cn id="S2.SS1.p4.5.m5.1.1.3.cmml" type="integer" xref="S2.SS1.p4.5.m5.1.1.3">5</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p4.5.m5.1c">S_{5}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p4.5.m5.1d">italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT</annotation></semantics></math>).</p> </div> <div class="ltx_para" id="S2.SS1.p5"> <p class="ltx_p" id="S2.SS1.p5.6">This incident exemplifies a failure-recovery process with five key status-markers, <math alttext="S_{1}" class="ltx_Math" display="inline" id="S2.SS1.p5.1.m1.1"><semantics id="S2.SS1.p5.1.m1.1a"><msub id="S2.SS1.p5.1.m1.1.1" xref="S2.SS1.p5.1.m1.1.1.cmml"><mi id="S2.SS1.p5.1.m1.1.1.2" xref="S2.SS1.p5.1.m1.1.1.2.cmml">S</mi><mn id="S2.SS1.p5.1.m1.1.1.3" xref="S2.SS1.p5.1.m1.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S2.SS1.p5.1.m1.1b"><apply id="S2.SS1.p5.1.m1.1.1.cmml" xref="S2.SS1.p5.1.m1.1.1"><csymbol cd="ambiguous" id="S2.SS1.p5.1.m1.1.1.1.cmml" xref="S2.SS1.p5.1.m1.1.1">subscript</csymbol><ci id="S2.SS1.p5.1.m1.1.1.2.cmml" xref="S2.SS1.p5.1.m1.1.1.2">𝑆</ci><cn id="S2.SS1.p5.1.m1.1.1.3.cmml" type="integer" xref="S2.SS1.p5.1.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p5.1.m1.1c">S_{1}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p5.1.m1.1d">italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math> through <math alttext="S_{5}" class="ltx_Math" display="inline" id="S2.SS1.p5.2.m2.1"><semantics id="S2.SS1.p5.2.m2.1a"><msub id="S2.SS1.p5.2.m2.1.1" xref="S2.SS1.p5.2.m2.1.1.cmml"><mi id="S2.SS1.p5.2.m2.1.1.2" xref="S2.SS1.p5.2.m2.1.1.2.cmml">S</mi><mn id="S2.SS1.p5.2.m2.1.1.3" xref="S2.SS1.p5.2.m2.1.1.3.cmml">5</mn></msub><annotation-xml encoding="MathML-Content" id="S2.SS1.p5.2.m2.1b"><apply id="S2.SS1.p5.2.m2.1.1.cmml" xref="S2.SS1.p5.2.m2.1.1"><csymbol cd="ambiguous" id="S2.SS1.p5.2.m2.1.1.1.cmml" xref="S2.SS1.p5.2.m2.1.1">subscript</csymbol><ci id="S2.SS1.p5.2.m2.1.1.2.cmml" xref="S2.SS1.p5.2.m2.1.1.2">𝑆</ci><cn id="S2.SS1.p5.2.m2.1.1.3.cmml" type="integer" xref="S2.SS1.p5.2.m2.1.1.3">5</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p5.2.m2.1c">S_{5}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p5.2.m2.1d">italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT</annotation></semantics></math>. <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S2.T1" title="In 2.1. Model and Real-World Example ‣ 2. Anatomy of an LLM-service Incident: Model and Example ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Table</span> <span class="ltx_text ltx_ref_tag">1</span></a> summarizes the industry-wide model, including these status-markers, the periods they delimit, and the operational metrics. Among the periods, whereas <math alttext="P_{I}" class="ltx_Math" display="inline" id="S2.SS1.p5.3.m3.1"><semantics id="S2.SS1.p5.3.m3.1a"><msub id="S2.SS1.p5.3.m3.1.1" xref="S2.SS1.p5.3.m3.1.1.cmml"><mi id="S2.SS1.p5.3.m3.1.1.2" xref="S2.SS1.p5.3.m3.1.1.2.cmml">P</mi><mi id="S2.SS1.p5.3.m3.1.1.3" xref="S2.SS1.p5.3.m3.1.1.3.cmml">I</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS1.p5.3.m3.1b"><apply id="S2.SS1.p5.3.m3.1.1.cmml" xref="S2.SS1.p5.3.m3.1.1"><csymbol cd="ambiguous" id="S2.SS1.p5.3.m3.1.1.1.cmml" xref="S2.SS1.p5.3.m3.1.1">subscript</csymbol><ci id="S2.SS1.p5.3.m3.1.1.2.cmml" xref="S2.SS1.p5.3.m3.1.1.2">𝑃</ci><ci id="S2.SS1.p5.3.m3.1.1.3.cmml" xref="S2.SS1.p5.3.m3.1.1.3">𝐼</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p5.3.m3.1c">P_{I}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p5.3.m3.1d">italic_P start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT</annotation></semantics></math>, <math alttext="P_{R}" class="ltx_Math" display="inline" id="S2.SS1.p5.4.m4.1"><semantics id="S2.SS1.p5.4.m4.1a"><msub id="S2.SS1.p5.4.m4.1.1" xref="S2.SS1.p5.4.m4.1.1.cmml"><mi id="S2.SS1.p5.4.m4.1.1.2" xref="S2.SS1.p5.4.m4.1.1.2.cmml">P</mi><mi id="S2.SS1.p5.4.m4.1.1.3" xref="S2.SS1.p5.4.m4.1.1.3.cmml">R</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS1.p5.4.m4.1b"><apply id="S2.SS1.p5.4.m4.1.1.cmml" xref="S2.SS1.p5.4.m4.1.1"><csymbol cd="ambiguous" id="S2.SS1.p5.4.m4.1.1.1.cmml" xref="S2.SS1.p5.4.m4.1.1">subscript</csymbol><ci id="S2.SS1.p5.4.m4.1.1.2.cmml" xref="S2.SS1.p5.4.m4.1.1.2">𝑃</ci><ci id="S2.SS1.p5.4.m4.1.1.3.cmml" xref="S2.SS1.p5.4.m4.1.1.3">𝑅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p5.4.m4.1c">P_{R}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p5.4.m4.1d">italic_P start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT</annotation></semantics></math>, and <math alttext="P_{C}" class="ltx_Math" display="inline" id="S2.SS1.p5.5.m5.1"><semantics id="S2.SS1.p5.5.m5.1a"><msub id="S2.SS1.p5.5.m5.1.1" xref="S2.SS1.p5.5.m5.1.1.cmml"><mi id="S2.SS1.p5.5.m5.1.1.2" xref="S2.SS1.p5.5.m5.1.1.2.cmml">P</mi><mi id="S2.SS1.p5.5.m5.1.1.3" xref="S2.SS1.p5.5.m5.1.1.3.cmml">C</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS1.p5.5.m5.1b"><apply id="S2.SS1.p5.5.m5.1.1.cmml" xref="S2.SS1.p5.5.m5.1.1"><csymbol cd="ambiguous" id="S2.SS1.p5.5.m5.1.1.1.cmml" xref="S2.SS1.p5.5.m5.1.1">subscript</csymbol><ci id="S2.SS1.p5.5.m5.1.1.2.cmml" xref="S2.SS1.p5.5.m5.1.1.2">𝑃</ci><ci id="S2.SS1.p5.5.m5.1.1.3.cmml" xref="S2.SS1.p5.5.m5.1.1.3">𝐶</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p5.5.m5.1c">P_{C}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p5.5.m5.1d">italic_P start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT</annotation></semantics></math> capture how the operational team resolved the outage and are thus synchronous with users experiencing the incident, <math alttext="P_{L}" class="ltx_Math" display="inline" id="S2.SS1.p5.6.m6.1"><semantics id="S2.SS1.p5.6.m6.1a"><msub id="S2.SS1.p5.6.m6.1.1" xref="S2.SS1.p5.6.m6.1.1.cmml"><mi id="S2.SS1.p5.6.m6.1.1.2" xref="S2.SS1.p5.6.m6.1.1.2.cmml">P</mi><mi id="S2.SS1.p5.6.m6.1.1.3" xref="S2.SS1.p5.6.m6.1.1.3.cmml">L</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS1.p5.6.m6.1b"><apply id="S2.SS1.p5.6.m6.1.1.cmml" xref="S2.SS1.p5.6.m6.1.1"><csymbol cd="ambiguous" id="S2.SS1.p5.6.m6.1.1.1.cmml" xref="S2.SS1.p5.6.m6.1.1">subscript</csymbol><ci id="S2.SS1.p5.6.m6.1.1.2.cmml" xref="S2.SS1.p5.6.m6.1.1.2">𝑃</ci><ci id="S2.SS1.p5.6.m6.1.1.3.cmml" xref="S2.SS1.p5.6.m6.1.1.3">𝐿</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p5.6.m6.1c">P_{L}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p5.6.m6.1d">italic_P start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT</annotation></semantics></math> captures the period, sometimes ending long after the incident has been resolved, during which the operational team analyses the incident and devises new measures to prevent it and related incidents from happening again.</p> </div> <div class="ltx_para" id="S2.SS1.p6"> <p class="ltx_p" id="S2.SS1.p6.1">The model outputs include the industry-standard Time To Resolve and, with knowledge about prior and following incidents, Time Between Failures. <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S2.T2" title="In 2.1. Model and Real-World Example ‣ 2. Anatomy of an LLM-service Incident: Model and Example ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Table</span> <span class="ltx_text ltx_ref_tag">2</span></a> summarizes the status-markers, the periods spanning the failure-recovery process, and the Time To Resolve for this incident. It shows how the operational team took much longer than usual to find the cause of this incident, 2.72 h vs. the 0.65 h found in our analysis in <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S4" title="4. Failure-Recovery Analysis ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Section</span> <span class="ltx_text ltx_ref_tag">4</span></a> (see <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S4.T6" title="In 4. Failure-Recovery Analysis ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Table</span> <span class="ltx_text ltx_ref_tag">6</span></a>), but then it was able to resolve the failure and restore service much faster than normal. However, by then it was already late, as the media has picked up the incident.</p> </div> </section> <section class="ltx_subsection" id="S2.SS2"> <h3 class="ltx_title ltx_title_subsection"> <span class="ltx_tag ltx_tag_subsection">2.2. </span>LLM-Specific Terms and Metrics</h3> <div class="ltx_para" id="S2.SS2.p1"> <p class="ltx_p" id="S2.SS2.p1.1"><span class="ltx_text ltx_font_bold" id="S2.SS2.p1.1.1">Incident:</span> An operational issue that may cause a service outage, e.g., ”getting an error of having reached a limit of GPT-4 usage” <cite class="ltx_cite ltx_citemacro_citep">(Archive, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib8" title="">2024</a>)</cite>. Once an incident happens, a textual report of its failure-recovery process is produced and is (expectedly) disclosed to the public. An incident can have different <em class="ltx_emph ltx_font_italic" id="S2.SS2.p1.1.2">impact levels</em> on single or multiple services, which include critical, major, minor, minimal, and maintenance, and are similarly defined by the LLM operators.</p> </div> <div class="ltx_para" id="S2.SS2.p2"> <p class="ltx_p" id="S2.SS2.p2.1"><span class="ltx_text ltx_font_bold" id="S2.SS2.p2.1.1">Outage:</span> Time when the service is unavailable. An outage can have multiple impact ranges: <em class="ltx_emph ltx_font_italic" id="S2.SS2.p2.1.2">major outage</em>, where most of the service’s users experience it, and <em class="ltx_emph ltx_font_italic" id="S2.SS2.p2.1.3">partial outage</em>, where a relatively small fraction of the users experience the outage. Operators such as OpenAI <span class="ltx_text ltx_font_italic" id="S2.SS2.p2.1.4">scale</span> (discount) partial outages as being about 30% (<math alttext="0.3\times" class="ltx_math_unparsed" display="inline" id="S2.SS2.p2.1.m1.1"><semantics id="S2.SS2.p2.1.m1.1a"><mrow id="S2.SS2.p2.1.m1.1b"><mn id="S2.SS2.p2.1.m1.1.1">0.3</mn><mo id="S2.SS2.p2.1.m1.1.2" lspace="0.222em">×</mo></mrow><annotation encoding="application/x-tex" id="S2.SS2.p2.1.m1.1c">0.3\times</annotation><annotation encoding="application/x-llamapun" id="S2.SS2.p2.1.m1.1d">0.3 ×</annotation></semantics></math>) as bad as major outages <cite class="ltx_cite ltx_citemacro_citep">(Atlassian, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib9" title="">2024</a>)</cite>.</p> </div> <div class="ltx_para" id="S2.SS2.p3"> <p class="ltx_p" id="S2.SS2.p3.3"><span class="ltx_text ltx_font_bold" id="S2.SS2.p3.3.2">Outage duration:</span> For an operator, per day, let <math alttext="T_{M}" class="ltx_Math" display="inline" id="S2.SS2.p3.1.m1.1"><semantics id="S2.SS2.p3.1.m1.1a"><msub id="S2.SS2.p3.1.m1.1.1" xref="S2.SS2.p3.1.m1.1.1.cmml"><mi id="S2.SS2.p3.1.m1.1.1.2" xref="S2.SS2.p3.1.m1.1.1.2.cmml">T</mi><mi id="S2.SS2.p3.1.m1.1.1.3" xref="S2.SS2.p3.1.m1.1.1.3.cmml">M</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS2.p3.1.m1.1b"><apply id="S2.SS2.p3.1.m1.1.1.cmml" xref="S2.SS2.p3.1.m1.1.1"><csymbol cd="ambiguous" id="S2.SS2.p3.1.m1.1.1.1.cmml" xref="S2.SS2.p3.1.m1.1.1">subscript</csymbol><ci id="S2.SS2.p3.1.m1.1.1.2.cmml" xref="S2.SS2.p3.1.m1.1.1.2">𝑇</ci><ci id="S2.SS2.p3.1.m1.1.1.3.cmml" xref="S2.SS2.p3.1.m1.1.1.3">𝑀</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS2.p3.1.m1.1c">T_{M}</annotation><annotation encoding="application/x-llamapun" id="S2.SS2.p3.1.m1.1d">italic_T start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT</annotation></semantics></math> be the duration of major outage minutes and <math alttext="T_{P}" class="ltx_Math" display="inline" id="S2.SS2.p3.2.m2.1"><semantics id="S2.SS2.p3.2.m2.1a"><msub id="S2.SS2.p3.2.m2.1.1" xref="S2.SS2.p3.2.m2.1.1.cmml"><mi id="S2.SS2.p3.2.m2.1.1.2" xref="S2.SS2.p3.2.m2.1.1.2.cmml">T</mi><mi id="S2.SS2.p3.2.m2.1.1.3" xref="S2.SS2.p3.2.m2.1.1.3.cmml">P</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS2.p3.2.m2.1b"><apply id="S2.SS2.p3.2.m2.1.1.cmml" xref="S2.SS2.p3.2.m2.1.1"><csymbol cd="ambiguous" id="S2.SS2.p3.2.m2.1.1.1.cmml" xref="S2.SS2.p3.2.m2.1.1">subscript</csymbol><ci id="S2.SS2.p3.2.m2.1.1.2.cmml" xref="S2.SS2.p3.2.m2.1.1.2">𝑇</ci><ci id="S2.SS2.p3.2.m2.1.1.3.cmml" xref="S2.SS2.p3.2.m2.1.1.3">𝑃</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS2.p3.2.m2.1c">T_{P}</annotation><annotation encoding="application/x-llamapun" id="S2.SS2.p3.2.m2.1d">italic_T start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT</annotation></semantics></math> be the partial outage minutes. The formula to calculate the <em class="ltx_emph ltx_font_italic" id="S2.SS2.p3.3.1">daily <span class="ltx_text ltx_framed ltx_framed_underline" id="S2.SS2.p3.3.1.1">total</span> outage minutes (<math alttext="T" class="ltx_Math" display="inline" id="S2.SS2.p3.3.1.m1.1"><semantics id="S2.SS2.p3.3.1.m1.1a"><mi id="S2.SS2.p3.3.1.m1.1.1" xref="S2.SS2.p3.3.1.m1.1.1.cmml">T</mi><annotation-xml encoding="MathML-Content" id="S2.SS2.p3.3.1.m1.1b"><ci id="S2.SS2.p3.3.1.m1.1.1.cmml" xref="S2.SS2.p3.3.1.m1.1.1">𝑇</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS2.p3.3.1.m1.1c">T</annotation><annotation encoding="application/x-llamapun" id="S2.SS2.p3.3.1.m1.1d">italic_T</annotation></semantics></math>)</em> is:</p> <table class="ltx_equation ltx_eqn_table" id="S2.E1"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(1)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="T=T_{M}+T_{P}" class="ltx_Math" display="block" id="S2.E1.m1.1"><semantics id="S2.E1.m1.1a"><mrow id="S2.E1.m1.1.1" xref="S2.E1.m1.1.1.cmml"><mi id="S2.E1.m1.1.1.2" xref="S2.E1.m1.1.1.2.cmml">T</mi><mo id="S2.E1.m1.1.1.1" xref="S2.E1.m1.1.1.1.cmml">=</mo><mrow id="S2.E1.m1.1.1.3" xref="S2.E1.m1.1.1.3.cmml"><msub id="S2.E1.m1.1.1.3.2" xref="S2.E1.m1.1.1.3.2.cmml"><mi id="S2.E1.m1.1.1.3.2.2" xref="S2.E1.m1.1.1.3.2.2.cmml">T</mi><mi id="S2.E1.m1.1.1.3.2.3" xref="S2.E1.m1.1.1.3.2.3.cmml">M</mi></msub><mo id="S2.E1.m1.1.1.3.1" xref="S2.E1.m1.1.1.3.1.cmml">+</mo><msub id="S2.E1.m1.1.1.3.3" xref="S2.E1.m1.1.1.3.3.cmml"><mi id="S2.E1.m1.1.1.3.3.2" xref="S2.E1.m1.1.1.3.3.2.cmml">T</mi><mi id="S2.E1.m1.1.1.3.3.3" xref="S2.E1.m1.1.1.3.3.3.cmml">P</mi></msub></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.E1.m1.1b"><apply id="S2.E1.m1.1.1.cmml" xref="S2.E1.m1.1.1"><eq id="S2.E1.m1.1.1.1.cmml" xref="S2.E1.m1.1.1.1"></eq><ci id="S2.E1.m1.1.1.2.cmml" xref="S2.E1.m1.1.1.2">𝑇</ci><apply id="S2.E1.m1.1.1.3.cmml" xref="S2.E1.m1.1.1.3"><plus id="S2.E1.m1.1.1.3.1.cmml" xref="S2.E1.m1.1.1.3.1"></plus><apply id="S2.E1.m1.1.1.3.2.cmml" xref="S2.E1.m1.1.1.3.2"><csymbol cd="ambiguous" id="S2.E1.m1.1.1.3.2.1.cmml" xref="S2.E1.m1.1.1.3.2">subscript</csymbol><ci id="S2.E1.m1.1.1.3.2.2.cmml" xref="S2.E1.m1.1.1.3.2.2">𝑇</ci><ci id="S2.E1.m1.1.1.3.2.3.cmml" xref="S2.E1.m1.1.1.3.2.3">𝑀</ci></apply><apply id="S2.E1.m1.1.1.3.3.cmml" xref="S2.E1.m1.1.1.3.3"><csymbol cd="ambiguous" id="S2.E1.m1.1.1.3.3.1.cmml" xref="S2.E1.m1.1.1.3.3">subscript</csymbol><ci id="S2.E1.m1.1.1.3.3.2.cmml" xref="S2.E1.m1.1.1.3.3.2">𝑇</ci><ci id="S2.E1.m1.1.1.3.3.3.cmml" xref="S2.E1.m1.1.1.3.3.3">𝑃</ci></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E1.m1.1c">T=T_{M}+T_{P}</annotation><annotation encoding="application/x-llamapun" id="S2.E1.m1.1d">italic_T = italic_T start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT + italic_T start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> </div> <div class="ltx_para" id="S2.SS2.p4"> <p class="ltx_p" id="S2.SS2.p4.1">Similarly, the <em class="ltx_emph ltx_font_italic" id="S2.SS2.p4.1.1">daily <span class="ltx_text ltx_framed ltx_framed_underline" id="S2.SS2.p4.1.1.1">scaled</span> outage minutes (<math alttext="T_{S}" class="ltx_Math" display="inline" id="S2.SS2.p4.1.1.m1.1"><semantics id="S2.SS2.p4.1.1.m1.1a"><msub id="S2.SS2.p4.1.1.m1.1.1" xref="S2.SS2.p4.1.1.m1.1.1.cmml"><mi id="S2.SS2.p4.1.1.m1.1.1.2" xref="S2.SS2.p4.1.1.m1.1.1.2.cmml">T</mi><mi id="S2.SS2.p4.1.1.m1.1.1.3" xref="S2.SS2.p4.1.1.m1.1.1.3.cmml">S</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS2.p4.1.1.m1.1b"><apply id="S2.SS2.p4.1.1.m1.1.1.cmml" xref="S2.SS2.p4.1.1.m1.1.1"><csymbol cd="ambiguous" id="S2.SS2.p4.1.1.m1.1.1.1.cmml" xref="S2.SS2.p4.1.1.m1.1.1">subscript</csymbol><ci id="S2.SS2.p4.1.1.m1.1.1.2.cmml" xref="S2.SS2.p4.1.1.m1.1.1.2">𝑇</ci><ci id="S2.SS2.p4.1.1.m1.1.1.3.cmml" xref="S2.SS2.p4.1.1.m1.1.1.3">𝑆</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS2.p4.1.1.m1.1c">T_{S}</annotation><annotation encoding="application/x-llamapun" id="S2.SS2.p4.1.1.m1.1d">italic_T start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT</annotation></semantics></math>)</em> has the formula:</p> <table class="ltx_equation ltx_eqn_table" id="S2.E2"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(2)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="T_{S}=T_{M}+(T_{P}\times 0.3)" class="ltx_Math" display="block" id="S2.E2.m1.1"><semantics id="S2.E2.m1.1a"><mrow id="S2.E2.m1.1.1" xref="S2.E2.m1.1.1.cmml"><msub id="S2.E2.m1.1.1.3" xref="S2.E2.m1.1.1.3.cmml"><mi id="S2.E2.m1.1.1.3.2" xref="S2.E2.m1.1.1.3.2.cmml">T</mi><mi id="S2.E2.m1.1.1.3.3" xref="S2.E2.m1.1.1.3.3.cmml">S</mi></msub><mo id="S2.E2.m1.1.1.2" xref="S2.E2.m1.1.1.2.cmml">=</mo><mrow id="S2.E2.m1.1.1.1" xref="S2.E2.m1.1.1.1.cmml"><msub id="S2.E2.m1.1.1.1.3" xref="S2.E2.m1.1.1.1.3.cmml"><mi id="S2.E2.m1.1.1.1.3.2" xref="S2.E2.m1.1.1.1.3.2.cmml">T</mi><mi id="S2.E2.m1.1.1.1.3.3" xref="S2.E2.m1.1.1.1.3.3.cmml">M</mi></msub><mo id="S2.E2.m1.1.1.1.2" xref="S2.E2.m1.1.1.1.2.cmml">+</mo><mrow id="S2.E2.m1.1.1.1.1.1" xref="S2.E2.m1.1.1.1.1.1.1.cmml"><mo id="S2.E2.m1.1.1.1.1.1.2" stretchy="false" xref="S2.E2.m1.1.1.1.1.1.1.cmml">(</mo><mrow id="S2.E2.m1.1.1.1.1.1.1" xref="S2.E2.m1.1.1.1.1.1.1.cmml"><msub id="S2.E2.m1.1.1.1.1.1.1.2" xref="S2.E2.m1.1.1.1.1.1.1.2.cmml"><mi id="S2.E2.m1.1.1.1.1.1.1.2.2" xref="S2.E2.m1.1.1.1.1.1.1.2.2.cmml">T</mi><mi id="S2.E2.m1.1.1.1.1.1.1.2.3" xref="S2.E2.m1.1.1.1.1.1.1.2.3.cmml">P</mi></msub><mo id="S2.E2.m1.1.1.1.1.1.1.1" lspace="0.222em" rspace="0.222em" xref="S2.E2.m1.1.1.1.1.1.1.1.cmml">×</mo><mn id="S2.E2.m1.1.1.1.1.1.1.3" xref="S2.E2.m1.1.1.1.1.1.1.3.cmml">0.3</mn></mrow><mo id="S2.E2.m1.1.1.1.1.1.3" stretchy="false" xref="S2.E2.m1.1.1.1.1.1.1.cmml">)</mo></mrow></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.E2.m1.1b"><apply id="S2.E2.m1.1.1.cmml" xref="S2.E2.m1.1.1"><eq id="S2.E2.m1.1.1.2.cmml" xref="S2.E2.m1.1.1.2"></eq><apply id="S2.E2.m1.1.1.3.cmml" xref="S2.E2.m1.1.1.3"><csymbol cd="ambiguous" id="S2.E2.m1.1.1.3.1.cmml" xref="S2.E2.m1.1.1.3">subscript</csymbol><ci id="S2.E2.m1.1.1.3.2.cmml" xref="S2.E2.m1.1.1.3.2">𝑇</ci><ci id="S2.E2.m1.1.1.3.3.cmml" xref="S2.E2.m1.1.1.3.3">𝑆</ci></apply><apply id="S2.E2.m1.1.1.1.cmml" xref="S2.E2.m1.1.1.1"><plus id="S2.E2.m1.1.1.1.2.cmml" xref="S2.E2.m1.1.1.1.2"></plus><apply id="S2.E2.m1.1.1.1.3.cmml" xref="S2.E2.m1.1.1.1.3"><csymbol cd="ambiguous" id="S2.E2.m1.1.1.1.3.1.cmml" xref="S2.E2.m1.1.1.1.3">subscript</csymbol><ci id="S2.E2.m1.1.1.1.3.2.cmml" xref="S2.E2.m1.1.1.1.3.2">𝑇</ci><ci id="S2.E2.m1.1.1.1.3.3.cmml" xref="S2.E2.m1.1.1.1.3.3">𝑀</ci></apply><apply id="S2.E2.m1.1.1.1.1.1.1.cmml" xref="S2.E2.m1.1.1.1.1.1"><times id="S2.E2.m1.1.1.1.1.1.1.1.cmml" xref="S2.E2.m1.1.1.1.1.1.1.1"></times><apply id="S2.E2.m1.1.1.1.1.1.1.2.cmml" xref="S2.E2.m1.1.1.1.1.1.1.2"><csymbol cd="ambiguous" id="S2.E2.m1.1.1.1.1.1.1.2.1.cmml" xref="S2.E2.m1.1.1.1.1.1.1.2">subscript</csymbol><ci id="S2.E2.m1.1.1.1.1.1.1.2.2.cmml" xref="S2.E2.m1.1.1.1.1.1.1.2.2">𝑇</ci><ci id="S2.E2.m1.1.1.1.1.1.1.2.3.cmml" xref="S2.E2.m1.1.1.1.1.1.1.2.3">𝑃</ci></apply><cn id="S2.E2.m1.1.1.1.1.1.1.3.cmml" type="float" xref="S2.E2.m1.1.1.1.1.1.1.3">0.3</cn></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E2.m1.1c">T_{S}=T_{M}+(T_{P}\times 0.3)</annotation><annotation encoding="application/x-llamapun" id="S2.E2.m1.1d">italic_T start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT = italic_T start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT + ( italic_T start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT × 0.3 )</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> </div> <div class="ltx_para" id="S2.SS2.p5"> <p class="ltx_p" id="S2.SS2.p5.1">Organizations such as OpenAI use primarily the scaled outage minutes to assess and report outage impact <cite class="ltx_cite ltx_citemacro_citep">(Atlassian, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib9" title="">2024</a>)</cite>.</p> </div> <div class="ltx_para" id="S2.SS2.p6"> <p class="ltx_p" id="S2.SS2.p6.1"><span class="ltx_text ltx_font_bold" id="S2.SS2.p6.1.1">Availability</span>: Derived from the daily scaled outage minutes, we define the <span class="ltx_text ltx_font_italic" id="S2.SS2.p6.1.2">daily availability</span>, <math alttext="A" class="ltx_Math" display="inline" id="S2.SS2.p6.1.m1.1"><semantics id="S2.SS2.p6.1.m1.1a"><mi id="S2.SS2.p6.1.m1.1.1" xref="S2.SS2.p6.1.m1.1.1.cmml">A</mi><annotation-xml encoding="MathML-Content" id="S2.SS2.p6.1.m1.1b"><ci id="S2.SS2.p6.1.m1.1.1.cmml" xref="S2.SS2.p6.1.m1.1.1">𝐴</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS2.p6.1.m1.1c">A</annotation><annotation encoding="application/x-llamapun" id="S2.SS2.p6.1.m1.1d">italic_A</annotation></semantics></math>, as the percentage of time a service or a group of services are available, given by the formula:</p> <table class="ltx_equation ltx_eqn_table" id="S2.E3"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(3)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="A=(1-\frac{T_{S}}{24\times 60})\times 100\%" class="ltx_Math" display="block" id="S2.E3.m1.1"><semantics id="S2.E3.m1.1a"><mrow id="S2.E3.m1.1.1" xref="S2.E3.m1.1.1.cmml"><mi id="S2.E3.m1.1.1.3" xref="S2.E3.m1.1.1.3.cmml">A</mi><mo id="S2.E3.m1.1.1.2" xref="S2.E3.m1.1.1.2.cmml">=</mo><mrow id="S2.E3.m1.1.1.1" xref="S2.E3.m1.1.1.1.cmml"><mrow id="S2.E3.m1.1.1.1.1.1" xref="S2.E3.m1.1.1.1.1.1.1.cmml"><mo id="S2.E3.m1.1.1.1.1.1.2" stretchy="false" xref="S2.E3.m1.1.1.1.1.1.1.cmml">(</mo><mrow id="S2.E3.m1.1.1.1.1.1.1" xref="S2.E3.m1.1.1.1.1.1.1.cmml"><mn id="S2.E3.m1.1.1.1.1.1.1.2" xref="S2.E3.m1.1.1.1.1.1.1.2.cmml">1</mn><mo id="S2.E3.m1.1.1.1.1.1.1.1" xref="S2.E3.m1.1.1.1.1.1.1.1.cmml">−</mo><mfrac id="S2.E3.m1.1.1.1.1.1.1.3" xref="S2.E3.m1.1.1.1.1.1.1.3.cmml"><msub id="S2.E3.m1.1.1.1.1.1.1.3.2" xref="S2.E3.m1.1.1.1.1.1.1.3.2.cmml"><mi id="S2.E3.m1.1.1.1.1.1.1.3.2.2" xref="S2.E3.m1.1.1.1.1.1.1.3.2.2.cmml">T</mi><mi id="S2.E3.m1.1.1.1.1.1.1.3.2.3" xref="S2.E3.m1.1.1.1.1.1.1.3.2.3.cmml">S</mi></msub><mrow id="S2.E3.m1.1.1.1.1.1.1.3.3" xref="S2.E3.m1.1.1.1.1.1.1.3.3.cmml"><mn id="S2.E3.m1.1.1.1.1.1.1.3.3.2" xref="S2.E3.m1.1.1.1.1.1.1.3.3.2.cmml">24</mn><mo id="S2.E3.m1.1.1.1.1.1.1.3.3.1" lspace="0.222em" rspace="0.222em" xref="S2.E3.m1.1.1.1.1.1.1.3.3.1.cmml">×</mo><mn id="S2.E3.m1.1.1.1.1.1.1.3.3.3" xref="S2.E3.m1.1.1.1.1.1.1.3.3.3.cmml">60</mn></mrow></mfrac></mrow><mo id="S2.E3.m1.1.1.1.1.1.3" rspace="0.055em" stretchy="false" xref="S2.E3.m1.1.1.1.1.1.1.cmml">)</mo></mrow><mo id="S2.E3.m1.1.1.1.2" rspace="0.222em" xref="S2.E3.m1.1.1.1.2.cmml">×</mo><mrow id="S2.E3.m1.1.1.1.3" xref="S2.E3.m1.1.1.1.3.cmml"><mn id="S2.E3.m1.1.1.1.3.2" xref="S2.E3.m1.1.1.1.3.2.cmml">100</mn><mo id="S2.E3.m1.1.1.1.3.1" xref="S2.E3.m1.1.1.1.3.1.cmml">%</mo></mrow></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.E3.m1.1b"><apply id="S2.E3.m1.1.1.cmml" xref="S2.E3.m1.1.1"><eq id="S2.E3.m1.1.1.2.cmml" xref="S2.E3.m1.1.1.2"></eq><ci id="S2.E3.m1.1.1.3.cmml" xref="S2.E3.m1.1.1.3">𝐴</ci><apply id="S2.E3.m1.1.1.1.cmml" xref="S2.E3.m1.1.1.1"><times id="S2.E3.m1.1.1.1.2.cmml" xref="S2.E3.m1.1.1.1.2"></times><apply id="S2.E3.m1.1.1.1.1.1.1.cmml" xref="S2.E3.m1.1.1.1.1.1"><minus id="S2.E3.m1.1.1.1.1.1.1.1.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1"></minus><cn id="S2.E3.m1.1.1.1.1.1.1.2.cmml" type="integer" xref="S2.E3.m1.1.1.1.1.1.1.2">1</cn><apply id="S2.E3.m1.1.1.1.1.1.1.3.cmml" xref="S2.E3.m1.1.1.1.1.1.1.3"><divide id="S2.E3.m1.1.1.1.1.1.1.3.1.cmml" xref="S2.E3.m1.1.1.1.1.1.1.3"></divide><apply id="S2.E3.m1.1.1.1.1.1.1.3.2.cmml" xref="S2.E3.m1.1.1.1.1.1.1.3.2"><csymbol cd="ambiguous" id="S2.E3.m1.1.1.1.1.1.1.3.2.1.cmml" xref="S2.E3.m1.1.1.1.1.1.1.3.2">subscript</csymbol><ci id="S2.E3.m1.1.1.1.1.1.1.3.2.2.cmml" xref="S2.E3.m1.1.1.1.1.1.1.3.2.2">𝑇</ci><ci id="S2.E3.m1.1.1.1.1.1.1.3.2.3.cmml" xref="S2.E3.m1.1.1.1.1.1.1.3.2.3">𝑆</ci></apply><apply id="S2.E3.m1.1.1.1.1.1.1.3.3.cmml" xref="S2.E3.m1.1.1.1.1.1.1.3.3"><times id="S2.E3.m1.1.1.1.1.1.1.3.3.1.cmml" xref="S2.E3.m1.1.1.1.1.1.1.3.3.1"></times><cn id="S2.E3.m1.1.1.1.1.1.1.3.3.2.cmml" type="integer" xref="S2.E3.m1.1.1.1.1.1.1.3.3.2">24</cn><cn id="S2.E3.m1.1.1.1.1.1.1.3.3.3.cmml" type="integer" xref="S2.E3.m1.1.1.1.1.1.1.3.3.3">60</cn></apply></apply></apply><apply id="S2.E3.m1.1.1.1.3.cmml" xref="S2.E3.m1.1.1.1.3"><csymbol cd="latexml" id="S2.E3.m1.1.1.1.3.1.cmml" xref="S2.E3.m1.1.1.1.3.1">percent</csymbol><cn id="S2.E3.m1.1.1.1.3.2.cmml" type="integer" xref="S2.E3.m1.1.1.1.3.2">100</cn></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E3.m1.1c">A=(1-\frac{T_{S}}{24\times 60})\times 100\%</annotation><annotation encoding="application/x-llamapun" id="S2.E3.m1.1d">italic_A = ( 1 - divide start_ARG italic_T start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_ARG start_ARG 24 × 60 end_ARG ) × 100 %</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> </div> <figure class="ltx_table" id="S2.T3"> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_table"><span class="ltx_text" id="S2.T3.12.2.1" style="font-size:90%;">Table 3</span>. </span><span class="ltx_text" id="S2.T3.2.1" style="font-size:90%;">Summary of LLM outages, per service. Legend: Incident Count <math alttext="=" class="ltx_Math" display="inline" id="S2.T3.2.1.m1.1"><semantics id="S2.T3.2.1.m1.1b"><mo id="S2.T3.2.1.m1.1.1" xref="S2.T3.2.1.m1.1.1.cmml">=</mo><annotation-xml encoding="MathML-Content" id="S2.T3.2.1.m1.1c"><eq id="S2.T3.2.1.m1.1.1.cmml" xref="S2.T3.2.1.m1.1.1"></eq></annotation-xml><annotation encoding="application/x-tex" id="S2.T3.2.1.m1.1d">=</annotation><annotation encoding="application/x-llamapun" id="S2.T3.2.1.m1.1e">=</annotation></semantics></math> the number of related incidents.</span></figcaption> <div class="ltx_inline-block ltx_align_center ltx_transformed_outer" id="S2.T3.10" style="width:433.6pt;height:136.5pt;vertical-align:-0.0pt;"><span class="ltx_transformed_inner" style="transform:translate(-69.2pt,21.8pt) scale(0.758075782075794,0.758075782075794) ;"> <table class="ltx_tabular ltx_align_middle" id="S2.T3.10.8"> <tr class="ltx_tr" id="S2.T3.10.8.9"> <td class="ltx_td ltx_align_left ltx_border_tt" id="S2.T3.10.8.9.1" rowspan="2"><span class="ltx_text ltx_font_bold" id="S2.T3.10.8.9.1.1">ID</span></td> <td class="ltx_td ltx_align_left ltx_border_tt" id="S2.T3.10.8.9.2" rowspan="2"><span class="ltx_text ltx_font_bold" id="S2.T3.10.8.9.2.1">Service</span></td> <td class="ltx_td ltx_align_left ltx_border_tt" id="S2.T3.10.8.9.3" rowspan="2"><span class="ltx_text ltx_font_bold" id="S2.T3.10.8.9.3.1">Provider</span></td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S2.T3.10.8.9.4" rowspan="2"><span class="ltx_text ltx_font_bold" id="S2.T3.10.8.9.4.1">Start</span></td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S2.T3.10.8.9.5" rowspan="2"><span class="ltx_text ltx_font_bold" id="S2.T3.10.8.9.5.1">End</span></td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S2.T3.10.8.9.6" rowspan="2"><span class="ltx_text ltx_font_bold" id="S2.T3.10.8.9.6.1">Months</span></td> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r ltx_border_tt" colspan="3" id="S2.T3.10.8.9.7"><span class="ltx_text ltx_font_bold" id="S2.T3.10.8.9.7.1">Outage Count</span></td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_tt" colspan="2" id="S2.T3.10.8.9.8"><span class="ltx_text ltx_font_bold" id="S2.T3.10.8.9.8.1">Outage Minutes</span></td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S2.T3.10.8.9.9"><span class="ltx_text ltx_font_bold" id="S2.T3.10.8.9.9.1">Incident</span></td> </tr> <tr class="ltx_tr" id="S2.T3.10.8.10"> <td class="ltx_td ltx_align_right ltx_border_l ltx_border_t" id="S2.T3.10.8.10.1"><span class="ltx_text ltx_font_bold" id="S2.T3.10.8.10.1.1">Total</span></td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T3.10.8.10.2"><span class="ltx_text ltx_font_bold" id="S2.T3.10.8.10.2.1">Major</span></td> <td class="ltx_td ltx_align_right ltx_border_r ltx_border_t" id="S2.T3.10.8.10.3"><span class="ltx_text ltx_font_bold" id="S2.T3.10.8.10.3.1">Partial</span></td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T3.10.8.10.4"><span class="ltx_text ltx_font_bold" id="S2.T3.10.8.10.4.1">Total</span></td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S2.T3.10.8.10.5"><span class="ltx_text ltx_font_bold" id="S2.T3.10.8.10.5.1">Scaled</span></td> <td class="ltx_td ltx_align_right" id="S2.T3.10.8.10.6"><span class="ltx_text ltx_font_bold" id="S2.T3.10.8.10.6.1">Count</span></td> </tr> <tr class="ltx_tr" id="S2.T3.3.1.1"> <td class="ltx_td ltx_align_left ltx_border_t" id="S2.T3.3.1.1.1"><math alttext="O_{1}" class="ltx_Math" display="inline" id="S2.T3.3.1.1.1.m1.1"><semantics id="S2.T3.3.1.1.1.m1.1a"><msub id="S2.T3.3.1.1.1.m1.1.1" xref="S2.T3.3.1.1.1.m1.1.1.cmml"><mi id="S2.T3.3.1.1.1.m1.1.1.2" xref="S2.T3.3.1.1.1.m1.1.1.2.cmml">O</mi><mn id="S2.T3.3.1.1.1.m1.1.1.3" xref="S2.T3.3.1.1.1.m1.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T3.3.1.1.1.m1.1b"><apply id="S2.T3.3.1.1.1.m1.1.1.cmml" xref="S2.T3.3.1.1.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T3.3.1.1.1.m1.1.1.1.cmml" xref="S2.T3.3.1.1.1.m1.1.1">subscript</csymbol><ci id="S2.T3.3.1.1.1.m1.1.1.2.cmml" xref="S2.T3.3.1.1.1.m1.1.1.2">𝑂</ci><cn id="S2.T3.3.1.1.1.m1.1.1.3.cmml" type="integer" xref="S2.T3.3.1.1.1.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T3.3.1.1.1.m1.1c">O_{1}</annotation><annotation encoding="application/x-llamapun" id="S2.T3.3.1.1.1.m1.1d">italic_O start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left ltx_border_t" id="S2.T3.3.1.1.2">API</td> <td class="ltx_td ltx_align_left ltx_border_t" id="S2.T3.3.1.1.3" rowspan="4"><span class="ltx_text" id="S2.T3.3.1.1.3.1">OpenAI</span></td> <td class="ltx_td ltx_align_center ltx_border_t" id="S2.T3.3.1.1.4">2021-02-11</td> <td class="ltx_td ltx_align_center ltx_border_t" id="S2.T3.3.1.1.5">2024-08-31</td> <td class="ltx_td ltx_align_center ltx_border_t" id="S2.T3.3.1.1.6">43</td> <td class="ltx_td ltx_align_right ltx_border_l ltx_border_t" id="S2.T3.3.1.1.7">104</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T3.3.1.1.8">26</td> <td class="ltx_td ltx_align_right ltx_border_r ltx_border_t" id="S2.T3.3.1.1.9">78</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T3.3.1.1.10">7,891</td> <td class="ltx_td ltx_align_right ltx_border_r ltx_border_t" id="S2.T3.3.1.1.11">3,340</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T3.3.1.1.12">242</td> </tr> <tr class="ltx_tr" id="S2.T3.4.2.2"> <td class="ltx_td ltx_align_left" id="S2.T3.4.2.2.1"><math alttext="O_{2}" class="ltx_Math" display="inline" id="S2.T3.4.2.2.1.m1.1"><semantics id="S2.T3.4.2.2.1.m1.1a"><msub id="S2.T3.4.2.2.1.m1.1.1" xref="S2.T3.4.2.2.1.m1.1.1.cmml"><mi id="S2.T3.4.2.2.1.m1.1.1.2" xref="S2.T3.4.2.2.1.m1.1.1.2.cmml">O</mi><mn id="S2.T3.4.2.2.1.m1.1.1.3" xref="S2.T3.4.2.2.1.m1.1.1.3.cmml">2</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T3.4.2.2.1.m1.1b"><apply id="S2.T3.4.2.2.1.m1.1.1.cmml" xref="S2.T3.4.2.2.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T3.4.2.2.1.m1.1.1.1.cmml" xref="S2.T3.4.2.2.1.m1.1.1">subscript</csymbol><ci id="S2.T3.4.2.2.1.m1.1.1.2.cmml" xref="S2.T3.4.2.2.1.m1.1.1.2">𝑂</ci><cn id="S2.T3.4.2.2.1.m1.1.1.3.cmml" type="integer" xref="S2.T3.4.2.2.1.m1.1.1.3">2</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T3.4.2.2.1.m1.1c">O_{2}</annotation><annotation encoding="application/x-llamapun" id="S2.T3.4.2.2.1.m1.1d">italic_O start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left" id="S2.T3.4.2.2.2">ChatGPT</td> <td class="ltx_td ltx_align_center" id="S2.T3.4.2.2.3">2023-02-14</td> <td class="ltx_td ltx_align_center" id="S2.T3.4.2.2.4">2024-08-31</td> <td class="ltx_td ltx_align_center" id="S2.T3.4.2.2.5">19</td> <td class="ltx_td ltx_align_right ltx_border_l" id="S2.T3.4.2.2.6">70</td> <td class="ltx_td ltx_align_right" id="S2.T3.4.2.2.7">28</td> <td class="ltx_td ltx_align_right ltx_border_r" id="S2.T3.4.2.2.8">42</td> <td class="ltx_td ltx_align_right" id="S2.T3.4.2.2.9">5,185</td> <td class="ltx_td ltx_align_right ltx_border_r" id="S2.T3.4.2.2.10">2,744</td> <td class="ltx_td ltx_align_right" id="S2.T3.4.2.2.11">157</td> </tr> <tr class="ltx_tr" id="S2.T3.5.3.3"> <td class="ltx_td ltx_align_left" id="S2.T3.5.3.3.1"><math alttext="O_{3}" class="ltx_Math" display="inline" id="S2.T3.5.3.3.1.m1.1"><semantics id="S2.T3.5.3.3.1.m1.1a"><msub id="S2.T3.5.3.3.1.m1.1.1" xref="S2.T3.5.3.3.1.m1.1.1.cmml"><mi id="S2.T3.5.3.3.1.m1.1.1.2" xref="S2.T3.5.3.3.1.m1.1.1.2.cmml">O</mi><mn id="S2.T3.5.3.3.1.m1.1.1.3" xref="S2.T3.5.3.3.1.m1.1.1.3.cmml">3</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T3.5.3.3.1.m1.1b"><apply id="S2.T3.5.3.3.1.m1.1.1.cmml" xref="S2.T3.5.3.3.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T3.5.3.3.1.m1.1.1.1.cmml" xref="S2.T3.5.3.3.1.m1.1.1">subscript</csymbol><ci id="S2.T3.5.3.3.1.m1.1.1.2.cmml" xref="S2.T3.5.3.3.1.m1.1.1.2">𝑂</ci><cn id="S2.T3.5.3.3.1.m1.1.1.3.cmml" type="integer" xref="S2.T3.5.3.3.1.m1.1.1.3">3</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T3.5.3.3.1.m1.1c">O_{3}</annotation><annotation encoding="application/x-llamapun" id="S2.T3.5.3.3.1.m1.1d">italic_O start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left" id="S2.T3.5.3.3.2">DALL·E</td> <td class="ltx_td ltx_align_center" id="S2.T3.5.3.3.3">2023-02-21</td> <td class="ltx_td ltx_align_center" id="S2.T3.5.3.3.4">2024-08-31</td> <td class="ltx_td ltx_align_center" id="S2.T3.5.3.3.5">19</td> <td class="ltx_td ltx_align_right ltx_border_l" id="S2.T3.5.3.3.6">27</td> <td class="ltx_td ltx_align_right" id="S2.T3.5.3.3.7">13</td> <td class="ltx_td ltx_align_right ltx_border_r" id="S2.T3.5.3.3.8">14</td> <td class="ltx_td ltx_align_right" id="S2.T3.5.3.3.9">2,821</td> <td class="ltx_td ltx_align_right ltx_border_r" id="S2.T3.5.3.3.10">1,748</td> <td class="ltx_td ltx_align_right" id="S2.T3.5.3.3.11">34</td> </tr> <tr class="ltx_tr" id="S2.T3.6.4.4"> <td class="ltx_td ltx_align_left" id="S2.T3.6.4.4.1"><math alttext="O_{4}" class="ltx_Math" display="inline" id="S2.T3.6.4.4.1.m1.1"><semantics id="S2.T3.6.4.4.1.m1.1a"><msub id="S2.T3.6.4.4.1.m1.1.1" xref="S2.T3.6.4.4.1.m1.1.1.cmml"><mi id="S2.T3.6.4.4.1.m1.1.1.2" xref="S2.T3.6.4.4.1.m1.1.1.2.cmml">O</mi><mn id="S2.T3.6.4.4.1.m1.1.1.3" xref="S2.T3.6.4.4.1.m1.1.1.3.cmml">4</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T3.6.4.4.1.m1.1b"><apply id="S2.T3.6.4.4.1.m1.1.1.cmml" xref="S2.T3.6.4.4.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T3.6.4.4.1.m1.1.1.1.cmml" xref="S2.T3.6.4.4.1.m1.1.1">subscript</csymbol><ci id="S2.T3.6.4.4.1.m1.1.1.2.cmml" xref="S2.T3.6.4.4.1.m1.1.1.2">𝑂</ci><cn id="S2.T3.6.4.4.1.m1.1.1.3.cmml" type="integer" xref="S2.T3.6.4.4.1.m1.1.1.3">4</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T3.6.4.4.1.m1.1c">O_{4}</annotation><annotation encoding="application/x-llamapun" id="S2.T3.6.4.4.1.m1.1d">italic_O start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left" id="S2.T3.6.4.4.2">Playground</td> <td class="ltx_td ltx_align_center" id="S2.T3.6.4.4.3">2021-03-31</td> <td class="ltx_td ltx_align_center" id="S2.T3.6.4.4.4">2024-08-31</td> <td class="ltx_td ltx_align_center" id="S2.T3.6.4.4.5">42</td> <td class="ltx_td ltx_align_right ltx_border_l" id="S2.T3.6.4.4.6">24</td> <td class="ltx_td ltx_align_right" id="S2.T3.6.4.4.7">12</td> <td class="ltx_td ltx_align_right ltx_border_r" id="S2.T3.6.4.4.8">12</td> <td class="ltx_td ltx_align_right" id="S2.T3.6.4.4.9">1,636</td> <td class="ltx_td ltx_align_right ltx_border_r" id="S2.T3.6.4.4.10">1,018</td> <td class="ltx_td ltx_align_right" id="S2.T3.6.4.4.11">36</td> </tr> <tr class="ltx_tr" id="S2.T3.7.5.5"> <td class="ltx_td ltx_align_left ltx_border_t" id="S2.T3.7.5.5.1"><math alttext="A_{1}" class="ltx_Math" display="inline" id="S2.T3.7.5.5.1.m1.1"><semantics id="S2.T3.7.5.5.1.m1.1a"><msub id="S2.T3.7.5.5.1.m1.1.1" xref="S2.T3.7.5.5.1.m1.1.1.cmml"><mi id="S2.T3.7.5.5.1.m1.1.1.2" xref="S2.T3.7.5.5.1.m1.1.1.2.cmml">A</mi><mn id="S2.T3.7.5.5.1.m1.1.1.3" xref="S2.T3.7.5.5.1.m1.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T3.7.5.5.1.m1.1b"><apply id="S2.T3.7.5.5.1.m1.1.1.cmml" xref="S2.T3.7.5.5.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T3.7.5.5.1.m1.1.1.1.cmml" xref="S2.T3.7.5.5.1.m1.1.1">subscript</csymbol><ci id="S2.T3.7.5.5.1.m1.1.1.2.cmml" xref="S2.T3.7.5.5.1.m1.1.1.2">𝐴</ci><cn id="S2.T3.7.5.5.1.m1.1.1.3.cmml" type="integer" xref="S2.T3.7.5.5.1.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T3.7.5.5.1.m1.1c">A_{1}</annotation><annotation encoding="application/x-llamapun" id="S2.T3.7.5.5.1.m1.1d">italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left ltx_border_t" id="S2.T3.7.5.5.2">API</td> <td class="ltx_td ltx_align_left ltx_border_t" id="S2.T3.7.5.5.3" rowspan="3"><span class="ltx_text" id="S2.T3.7.5.5.3.1">Anthropic</span></td> <td class="ltx_td ltx_align_center ltx_border_t" id="S2.T3.7.5.5.4">2023-07-11</td> <td class="ltx_td ltx_align_center ltx_border_t" id="S2.T3.7.5.5.5">2024-08-31</td> <td class="ltx_td ltx_align_center ltx_border_t" id="S2.T3.7.5.5.6">14</td> <td class="ltx_td ltx_align_right ltx_border_l ltx_border_t" id="S2.T3.7.5.5.7">25</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T3.7.5.5.8">0</td> <td class="ltx_td ltx_align_right ltx_border_r ltx_border_t" id="S2.T3.7.5.5.9">25</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T3.7.5.5.10">1,675</td> <td class="ltx_td ltx_align_right ltx_border_r ltx_border_t" id="S2.T3.7.5.5.11">502</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T3.7.5.5.12">80</td> </tr> <tr class="ltx_tr" id="S2.T3.8.6.6"> <td class="ltx_td ltx_align_left" id="S2.T3.8.6.6.1"><math alttext="A_{2}" class="ltx_Math" display="inline" id="S2.T3.8.6.6.1.m1.1"><semantics id="S2.T3.8.6.6.1.m1.1a"><msub id="S2.T3.8.6.6.1.m1.1.1" xref="S2.T3.8.6.6.1.m1.1.1.cmml"><mi id="S2.T3.8.6.6.1.m1.1.1.2" xref="S2.T3.8.6.6.1.m1.1.1.2.cmml">A</mi><mn id="S2.T3.8.6.6.1.m1.1.1.3" xref="S2.T3.8.6.6.1.m1.1.1.3.cmml">2</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T3.8.6.6.1.m1.1b"><apply id="S2.T3.8.6.6.1.m1.1.1.cmml" xref="S2.T3.8.6.6.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T3.8.6.6.1.m1.1.1.1.cmml" xref="S2.T3.8.6.6.1.m1.1.1">subscript</csymbol><ci id="S2.T3.8.6.6.1.m1.1.1.2.cmml" xref="S2.T3.8.6.6.1.m1.1.1.2">𝐴</ci><cn id="S2.T3.8.6.6.1.m1.1.1.3.cmml" type="integer" xref="S2.T3.8.6.6.1.m1.1.1.3">2</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T3.8.6.6.1.m1.1c">A_{2}</annotation><annotation encoding="application/x-llamapun" id="S2.T3.8.6.6.1.m1.1d">italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left" id="S2.T3.8.6.6.2">Claude</td> <td class="ltx_td ltx_align_center" id="S2.T3.8.6.6.3">2023-07-11</td> <td class="ltx_td ltx_align_center" id="S2.T3.8.6.6.4">2024-08-31</td> <td class="ltx_td ltx_align_center" id="S2.T3.8.6.6.5">14</td> <td class="ltx_td ltx_align_right ltx_border_l" id="S2.T3.8.6.6.6">30</td> <td class="ltx_td ltx_align_right" id="S2.T3.8.6.6.7">2</td> <td class="ltx_td ltx_align_right ltx_border_r" id="S2.T3.8.6.6.8">28</td> <td class="ltx_td ltx_align_right" id="S2.T3.8.6.6.9">3,017</td> <td class="ltx_td ltx_align_right ltx_border_r" id="S2.T3.8.6.6.10">983</td> <td class="ltx_td ltx_align_right" id="S2.T3.8.6.6.11">90</td> </tr> <tr class="ltx_tr" id="S2.T3.9.7.7"> <td class="ltx_td ltx_align_left" id="S2.T3.9.7.7.1"><math alttext="A_{3}" class="ltx_Math" display="inline" id="S2.T3.9.7.7.1.m1.1"><semantics id="S2.T3.9.7.7.1.m1.1a"><msub id="S2.T3.9.7.7.1.m1.1.1" xref="S2.T3.9.7.7.1.m1.1.1.cmml"><mi id="S2.T3.9.7.7.1.m1.1.1.2" xref="S2.T3.9.7.7.1.m1.1.1.2.cmml">A</mi><mn id="S2.T3.9.7.7.1.m1.1.1.3" xref="S2.T3.9.7.7.1.m1.1.1.3.cmml">3</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T3.9.7.7.1.m1.1b"><apply id="S2.T3.9.7.7.1.m1.1.1.cmml" xref="S2.T3.9.7.7.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T3.9.7.7.1.m1.1.1.1.cmml" xref="S2.T3.9.7.7.1.m1.1.1">subscript</csymbol><ci id="S2.T3.9.7.7.1.m1.1.1.2.cmml" xref="S2.T3.9.7.7.1.m1.1.1.2">𝐴</ci><cn id="S2.T3.9.7.7.1.m1.1.1.3.cmml" type="integer" xref="S2.T3.9.7.7.1.m1.1.1.3">3</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T3.9.7.7.1.m1.1c">A_{3}</annotation><annotation encoding="application/x-llamapun" id="S2.T3.9.7.7.1.m1.1d">italic_A start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left" id="S2.T3.9.7.7.2">Console</td> <td class="ltx_td ltx_align_center" id="S2.T3.9.7.7.3">2023-07-11</td> <td class="ltx_td ltx_align_center" id="S2.T3.9.7.7.4">2024-08-31</td> <td class="ltx_td ltx_align_center" id="S2.T3.9.7.7.5">14</td> <td class="ltx_td ltx_align_right ltx_border_l" id="S2.T3.9.7.7.6">27</td> <td class="ltx_td ltx_align_right" id="S2.T3.9.7.7.7">1</td> <td class="ltx_td ltx_align_right ltx_border_r" id="S2.T3.9.7.7.8">26</td> <td class="ltx_td ltx_align_right" id="S2.T3.9.7.7.9">2,032</td> <td class="ltx_td ltx_align_right ltx_border_r" id="S2.T3.9.7.7.10">662</td> <td class="ltx_td ltx_align_right" id="S2.T3.9.7.7.11">72</td> </tr> <tr class="ltx_tr" id="S2.T3.10.8.8"> <td class="ltx_td ltx_align_left ltx_border_bb ltx_border_t" id="S2.T3.10.8.8.1"><math alttext="C_{1}" class="ltx_Math" display="inline" id="S2.T3.10.8.8.1.m1.1"><semantics id="S2.T3.10.8.8.1.m1.1a"><msub id="S2.T3.10.8.8.1.m1.1.1" xref="S2.T3.10.8.8.1.m1.1.1.cmml"><mi id="S2.T3.10.8.8.1.m1.1.1.2" xref="S2.T3.10.8.8.1.m1.1.1.2.cmml">C</mi><mn id="S2.T3.10.8.8.1.m1.1.1.3" xref="S2.T3.10.8.8.1.m1.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T3.10.8.8.1.m1.1b"><apply id="S2.T3.10.8.8.1.m1.1.1.cmml" xref="S2.T3.10.8.8.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T3.10.8.8.1.m1.1.1.1.cmml" xref="S2.T3.10.8.8.1.m1.1.1">subscript</csymbol><ci id="S2.T3.10.8.8.1.m1.1.1.2.cmml" xref="S2.T3.10.8.8.1.m1.1.1.2">𝐶</ci><cn id="S2.T3.10.8.8.1.m1.1.1.3.cmml" type="integer" xref="S2.T3.10.8.8.1.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T3.10.8.8.1.m1.1c">C_{1}</annotation><annotation encoding="application/x-llamapun" id="S2.T3.10.8.8.1.m1.1d">italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left ltx_border_bb ltx_border_t" id="S2.T3.10.8.8.2">Character.AI</td> <td class="ltx_td ltx_align_left ltx_border_bb ltx_border_t" id="S2.T3.10.8.8.3">Character.AI</td> <td class="ltx_td ltx_align_center ltx_border_bb ltx_border_t" id="S2.T3.10.8.8.4">2023-10-19</td> <td class="ltx_td ltx_align_center ltx_border_bb ltx_border_t" id="S2.T3.10.8.8.5">2024-08-31</td> <td class="ltx_td ltx_align_center ltx_border_bb ltx_border_t" id="S2.T3.10.8.8.6">11</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_l ltx_border_t" id="S2.T3.10.8.8.7">32</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_t" id="S2.T3.10.8.8.8">17</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_r ltx_border_t" id="S2.T3.10.8.8.9">15</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_t" id="S2.T3.10.8.8.10">3,351</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_r ltx_border_t" id="S2.T3.10.8.8.11">1,878</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_t" id="S2.T3.10.8.8.12">41</td> </tr> </table> </span></div> </figure> <figure class="ltx_table" id="S2.T4"> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_table"><span class="ltx_text" id="S2.T4.5.1.1" style="font-size:90%;">Table 4</span>. </span><span class="ltx_text" id="S2.T4.6.2" style="font-size:90%;">Summary of LLM incident reports, per service. Legend: Maint. = Maintenance; Inv. = Investigating; PM = Postmortem.</span></figcaption> <div class="ltx_inline-block ltx_align_center ltx_transformed_outer" id="S2.T4.3" style="width:433.6pt;height:57.5pt;vertical-align:-0.0pt;"><span class="ltx_transformed_inner" style="transform:translate(-122.4pt,16.2pt) scale(0.639216050405757,0.639216050405757) ;"> <table class="ltx_tabular ltx_align_middle" id="S2.T4.3.3"> <tr class="ltx_tr" id="S2.T4.3.3.4"> <td class="ltx_td ltx_align_left ltx_border_tt" id="S2.T4.3.3.4.1" rowspan="2"><span class="ltx_text ltx_font_bold" id="S2.T4.3.3.4.1.1">ID</span></td> <td class="ltx_td ltx_align_left ltx_border_tt" id="S2.T4.3.3.4.2" rowspan="2"><span class="ltx_text ltx_font_bold" id="S2.T4.3.3.4.2.1">Provider</span></td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S2.T4.3.3.4.3" rowspan="2"><span class="ltx_text ltx_font_bold" id="S2.T4.3.3.4.3.1">First Date</span></td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S2.T4.3.3.4.4" rowspan="2"><span class="ltx_text ltx_font_bold" id="S2.T4.3.3.4.4.1">Last Date</span></td> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r ltx_border_tt" id="S2.T4.3.3.4.5"><span class="ltx_text ltx_font_bold" id="S2.T4.3.3.4.5.1"># of</span></td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_tt" colspan="5" id="S2.T4.3.3.4.6"><span class="ltx_text ltx_font_bold" id="S2.T4.3.3.4.6.1"># of Impact Levels</span></td> <td class="ltx_td ltx_align_center ltx_border_tt" colspan="5" id="S2.T4.3.3.4.7"><span class="ltx_text ltx_font_bold" id="S2.T4.3.3.4.7.1"># of Failure-Recovery Status</span></td> </tr> <tr class="ltx_tr" id="S2.T4.3.3.5"> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r" id="S2.T4.3.3.5.1"><span class="ltx_text ltx_font_bold" id="S2.T4.3.3.5.1.1">Reports</span></td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T4.3.3.5.2"><span class="ltx_text ltx_font_bold" id="S2.T4.3.3.5.2.1">Critical</span></td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T4.3.3.5.3"><span class="ltx_text ltx_font_bold" id="S2.T4.3.3.5.3.1">Major</span></td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T4.3.3.5.4"><span class="ltx_text ltx_font_bold" id="S2.T4.3.3.5.4.1">Minor</span></td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T4.3.3.5.5"><span class="ltx_text ltx_font_bold" id="S2.T4.3.3.5.5.1">None</span></td> <td class="ltx_td ltx_align_right ltx_border_r ltx_border_t" id="S2.T4.3.3.5.6"><span class="ltx_text ltx_font_bold" id="S2.T4.3.3.5.6.1">Maint.</span></td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T4.3.3.5.7"><span class="ltx_text ltx_font_bold" id="S2.T4.3.3.5.7.1">Inv.</span></td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T4.3.3.5.8"><span class="ltx_text ltx_font_bold" id="S2.T4.3.3.5.8.1">Identified</span></td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T4.3.3.5.9"><span class="ltx_text ltx_font_bold" id="S2.T4.3.3.5.9.1">Monitoring</span></td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T4.3.3.5.10"><span class="ltx_text ltx_font_bold" id="S2.T4.3.3.5.10.1">Resolved</span></td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T4.3.3.5.11"><span class="ltx_text ltx_font_bold" id="S2.T4.3.3.5.11.1">PM</span></td> </tr> <tr class="ltx_tr" id="S2.T4.1.1.1"> <td class="ltx_td ltx_align_left ltx_border_t" id="S2.T4.1.1.1.1"><math alttext="P_{1}" class="ltx_Math" display="inline" id="S2.T4.1.1.1.1.m1.1"><semantics id="S2.T4.1.1.1.1.m1.1a"><msub id="S2.T4.1.1.1.1.m1.1.1" xref="S2.T4.1.1.1.1.m1.1.1.cmml"><mi id="S2.T4.1.1.1.1.m1.1.1.2" xref="S2.T4.1.1.1.1.m1.1.1.2.cmml">P</mi><mn id="S2.T4.1.1.1.1.m1.1.1.3" xref="S2.T4.1.1.1.1.m1.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T4.1.1.1.1.m1.1b"><apply id="S2.T4.1.1.1.1.m1.1.1.cmml" xref="S2.T4.1.1.1.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T4.1.1.1.1.m1.1.1.1.cmml" xref="S2.T4.1.1.1.1.m1.1.1">subscript</csymbol><ci id="S2.T4.1.1.1.1.m1.1.1.2.cmml" xref="S2.T4.1.1.1.1.m1.1.1.2">𝑃</ci><cn id="S2.T4.1.1.1.1.m1.1.1.3.cmml" type="integer" xref="S2.T4.1.1.1.1.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T4.1.1.1.1.m1.1c">P_{1}</annotation><annotation encoding="application/x-llamapun" id="S2.T4.1.1.1.1.m1.1d">italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left ltx_border_t" id="S2.T4.1.1.1.2">OpenAI</td> <td class="ltx_td ltx_align_center ltx_border_t" id="S2.T4.1.1.1.3">2021-02-09</td> <td class="ltx_td ltx_align_center ltx_border_t" id="S2.T4.1.1.1.4">2024-08-28</td> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r ltx_border_t" id="S2.T4.1.1.1.5">365</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T4.1.1.1.6">46</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T4.1.1.1.7">125</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T4.1.1.1.8">141</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T4.1.1.1.9">52</td> <td class="ltx_td ltx_align_right ltx_border_r ltx_border_t" id="S2.T4.1.1.1.10">1</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T4.1.1.1.11">259</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T4.1.1.1.12">144</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T4.1.1.1.13">225</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T4.1.1.1.14">365</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S2.T4.1.1.1.15">29</td> </tr> <tr class="ltx_tr" id="S2.T4.2.2.2"> <td class="ltx_td ltx_align_left" id="S2.T4.2.2.2.1"><math alttext="P_{2}" class="ltx_Math" display="inline" id="S2.T4.2.2.2.1.m1.1"><semantics id="S2.T4.2.2.2.1.m1.1a"><msub id="S2.T4.2.2.2.1.m1.1.1" xref="S2.T4.2.2.2.1.m1.1.1.cmml"><mi id="S2.T4.2.2.2.1.m1.1.1.2" xref="S2.T4.2.2.2.1.m1.1.1.2.cmml">P</mi><mn id="S2.T4.2.2.2.1.m1.1.1.3" xref="S2.T4.2.2.2.1.m1.1.1.3.cmml">2</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T4.2.2.2.1.m1.1b"><apply id="S2.T4.2.2.2.1.m1.1.1.cmml" xref="S2.T4.2.2.2.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T4.2.2.2.1.m1.1.1.1.cmml" xref="S2.T4.2.2.2.1.m1.1.1">subscript</csymbol><ci id="S2.T4.2.2.2.1.m1.1.1.2.cmml" xref="S2.T4.2.2.2.1.m1.1.1.2">𝑃</ci><cn id="S2.T4.2.2.2.1.m1.1.1.3.cmml" type="integer" xref="S2.T4.2.2.2.1.m1.1.1.3">2</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T4.2.2.2.1.m1.1c">P_{2}</annotation><annotation encoding="application/x-llamapun" id="S2.T4.2.2.2.1.m1.1d">italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left" id="S2.T4.2.2.2.2">Anthropic</td> <td class="ltx_td ltx_align_center" id="S2.T4.2.2.2.3">2023-03-25</td> <td class="ltx_td ltx_align_center" id="S2.T4.2.2.2.4">2024-08-30</td> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r" id="S2.T4.2.2.2.5">141</td> <td class="ltx_td ltx_align_right" id="S2.T4.2.2.2.6">5</td> <td class="ltx_td ltx_align_right" id="S2.T4.2.2.2.7">43</td> <td class="ltx_td ltx_align_right" id="S2.T4.2.2.2.8">48</td> <td class="ltx_td ltx_align_right" id="S2.T4.2.2.2.9">44</td> <td class="ltx_td ltx_align_right ltx_border_r" id="S2.T4.2.2.2.10">1</td> <td class="ltx_td ltx_align_right" id="S2.T4.2.2.2.11">96</td> <td class="ltx_td ltx_align_right" id="S2.T4.2.2.2.12">45</td> <td class="ltx_td ltx_align_right" id="S2.T4.2.2.2.13">51</td> <td class="ltx_td ltx_align_right" id="S2.T4.2.2.2.14">141</td> <td class="ltx_td ltx_align_right" id="S2.T4.2.2.2.15">2</td> </tr> <tr class="ltx_tr" id="S2.T4.3.3.3"> <td class="ltx_td ltx_align_left ltx_border_bb" id="S2.T4.3.3.3.1"><math alttext="P_{3}" class="ltx_Math" display="inline" id="S2.T4.3.3.3.1.m1.1"><semantics id="S2.T4.3.3.3.1.m1.1a"><msub id="S2.T4.3.3.3.1.m1.1.1" xref="S2.T4.3.3.3.1.m1.1.1.cmml"><mi id="S2.T4.3.3.3.1.m1.1.1.2" xref="S2.T4.3.3.3.1.m1.1.1.2.cmml">P</mi><mn id="S2.T4.3.3.3.1.m1.1.1.3" xref="S2.T4.3.3.3.1.m1.1.1.3.cmml">3</mn></msub><annotation-xml encoding="MathML-Content" id="S2.T4.3.3.3.1.m1.1b"><apply id="S2.T4.3.3.3.1.m1.1.1.cmml" xref="S2.T4.3.3.3.1.m1.1.1"><csymbol cd="ambiguous" id="S2.T4.3.3.3.1.m1.1.1.1.cmml" xref="S2.T4.3.3.3.1.m1.1.1">subscript</csymbol><ci id="S2.T4.3.3.3.1.m1.1.1.2.cmml" xref="S2.T4.3.3.3.1.m1.1.1.2">𝑃</ci><cn id="S2.T4.3.3.3.1.m1.1.1.3.cmml" type="integer" xref="S2.T4.3.3.3.1.m1.1.1.3">3</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.T4.3.3.3.1.m1.1c">P_{3}</annotation><annotation encoding="application/x-llamapun" id="S2.T4.3.3.3.1.m1.1d">italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left ltx_border_bb" id="S2.T4.3.3.3.2">Character.AI</td> <td class="ltx_td ltx_align_center ltx_border_bb" id="S2.T4.3.3.3.3">2023-10-24</td> <td class="ltx_td ltx_align_center ltx_border_bb" id="S2.T4.3.3.3.4">2024-08-07</td> <td class="ltx_td ltx_align_center ltx_border_bb ltx_border_l ltx_border_r" id="S2.T4.3.3.3.5"> 36</td> <td class="ltx_td ltx_align_right ltx_border_bb" id="S2.T4.3.3.3.6">19</td> <td class="ltx_td ltx_align_right ltx_border_bb" id="S2.T4.3.3.3.7">11</td> <td class="ltx_td ltx_align_right ltx_border_bb" id="S2.T4.3.3.3.8">4</td> <td class="ltx_td ltx_align_right ltx_border_bb" id="S2.T4.3.3.3.9">2</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_r" id="S2.T4.3.3.3.10">0</td> <td class="ltx_td ltx_align_right ltx_border_bb" id="S2.T4.3.3.3.11">26</td> <td class="ltx_td ltx_align_right ltx_border_bb" id="S2.T4.3.3.3.12">16</td> <td class="ltx_td ltx_align_right ltx_border_bb" id="S2.T4.3.3.3.13">15</td> <td class="ltx_td ltx_align_right ltx_border_bb" id="S2.T4.3.3.3.14">36</td> <td class="ltx_td ltx_align_right ltx_border_bb" id="S2.T4.3.3.3.15">2</td> </tr> </table> </span></div> </figure> </section> </section> <section class="ltx_section" id="S3"> <h2 class="ltx_title ltx_title_section"> <span class="ltx_tag ltx_tag_section">3. </span>Dataset Collection and Preparation</h2> <div class="ltx_para" id="S3.p1"> <p class="ltx_p" id="S3.p1.1">We collect for this research long-term datasets from 8 LLM services across 3 LLM service providers. We then process these datasets to prepare data useful to characterize LLM service outages and incidents. Tables <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S2.T3" title="Table 3 ‣ 2.2. LLM-Specific Terms and Metrics ‣ 2. Anatomy of an LLM-service Incident: Model and Example ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">3</span></a> and <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S2.T4" title="Table 4 ‣ 2.2. LLM-Specific Terms and Metrics ‣ 2. Anatomy of an LLM-service Incident: Model and Example ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">4</span></a> summarize the processed outage and incident datasets, respectively.</p> </div> <section class="ltx_subsection" id="S3.SS1"> <h3 class="ltx_title ltx_title_subsection"> <span class="ltx_tag ltx_tag_subsection">3.1. </span>Selection and Introduction of LLM Services</h3> <div class="ltx_para" id="S3.SS1.p1"> <p class="ltx_p" id="S3.SS1.p1.1"><span class="ltx_text ltx_font_bold" id="S3.SS1.p1.1.1">Selection process:</span> Addressing the main challenge of lacking longitudinal failure data about LLM services, particularly under the same failure model, we carefully investigate the current LLM services, and select 8 LLM services from 3 service providers based on the following reasons: (1) <em class="ltx_emph ltx_font_italic" id="S3.SS1.p1.1.2">Data availability:</em> Selected services should have public status pages running for long durations, so our data collection can provide rich datasets for the community to further analyze. (2) <em class="ltx_emph ltx_font_italic" id="S3.SS1.p1.1.3">Popularity:</em> Selected services should be popular, with many users and applications with daily use, so the impact of outages is significant, and there is high likelihood users and media will also report on such outages if left unattended. This pressures operators to respond quickly, so the data we collect represents the best performance LLM operators can currently deliver. (3) <em class="ltx_emph ltx_font_italic" id="S3.SS1.p1.1.4">Diversity:</em> Selected services should cover most types of LLM services provided by different companies. This will ensure the generality of our results.</p> </div> <div class="ltx_para" id="S3.SS1.p2"> <p class="ltx_p" id="S3.SS1.p2.1"><span class="ltx_text ltx_font_bold" id="S3.SS1.p2.1.1">Selected LLM services.</span> (1) <em class="ltx_emph ltx_font_italic" id="S3.SS1.p2.1.2">OpenAI API:</em> The OpenAI API allows developers to access and use advanced LLM models provided by OpenAI through API keys without building or training from scratch. (2) <em class="ltx_emph ltx_font_italic" id="S3.SS1.p2.1.3">ChatGPT:</em> ChatGPT is a chatbot that interacts with users conversationally. ChatGPT can answer follow-up questions with prompts and provide a detailed response. (3) <em class="ltx_emph ltx_font_italic" id="S3.SS1.p2.1.4">Labs (DALL·E):</em> DALL·E is a text-to-image model that can create original, realistic images from a short text description. (4) <em class="ltx_emph ltx_font_italic" id="S3.SS1.p2.1.5">Playground:</em> Playground is a web-based interface for users to interact with and experiment with OpenAI’s language models. (5) <em class="ltx_emph ltx_font_italic" id="S3.SS1.p2.1.6">Anthropic API:</em> Similar to OpenAI API, Anthropic API allows developers to integrate language models such as Claude, into their applications and services. (6) <em class="ltx_emph ltx_font_italic" id="S3.SS1.p2.1.7">Claude</em> Similar to OpenAI’s ChatGPT, Claude is an AI chatbot and is trained to have natural, text-based conversations with users. (7) <em class="ltx_emph ltx_font_italic" id="S3.SS1.p2.1.8">Console:</em> Similar to the OpenAI’s playground, the Anthropic Console is a web-based interface that allows users to interact with Anthropic’s AI models directly. (8) <em class="ltx_emph ltx_font_italic" id="S3.SS1.p2.1.9">Character.AI:</em> is an innovative chatbot platform that leverages LLMs to facilitate a series of chatbots that emulate the personas of various figures, such as historical icons, fictional heroes, modern celebrities, etc.</p> </div> </section> <section class="ltx_subsection" id="S3.SS2"> <h3 class="ltx_title ltx_title_subsection"> <span class="ltx_tag ltx_tag_subsection">3.2. </span>Data Collection and Dataset Preparation</h3> <div class="ltx_para" id="S3.SS2.p1"> <p class="ltx_p" id="S3.SS2.p1.1">We collected all available outage and incident data reported publicly by of OpenAI, Anthropic, and Character.AI, up to 2024-08-31, on their public status pages <cite class="ltx_cite ltx_citemacro_citep">(Uptime, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib59" title="">2024c</a>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib57" title="">a</a>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib58" title="">b</a>)</cite> and incident pages <cite class="ltx_cite ltx_citemacro_citep">(Incident, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib30" title="">2024c</a>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib28" title="">a</a>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib29" title="">b</a>)</cite>. The starting dates differ: OpenAI has started reporting on February 11, Anthropic on July 11, and Character.AI on October 19, all dates in 2023. Our study misses none of the published reports.</p> </div> <div class="ltx_para" id="S3.SS2.p2"> <p class="ltx_p" id="S3.SS2.p2.1">The industry has standardized presenting outage data in a calendar format, with separate information for each service. Each outage history page displays a 3-month calendar view. By hovering over the calendar, one can reveal detailed information about outages, including the occurrence and duration of partial and major outages and any related incidents. Incident reports provide detailed records of past issues, organized chronologically by month. Each incident report includes a title, a timeline of incident status updates with detailed descriptions, and the services affected. Not all outages have corresponding incident reports. Conversely, some incidents, e.g., with minimal impact, do not report a service outage.</p> </div> <div class="ltx_para" id="S3.SS2.p3"> <p class="ltx_p" id="S3.SS2.p3.1">We developed an <span class="ltx_text ltx_font_italic" id="S3.SS2.p3.1.1">automated data-collection method</span>, able to collect industry-standard outage and incident reports. Our tools leverage Python Selenium WebDriver <cite class="ltx_cite ltx_citemacro_citep">(Selenium, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib52" title="">2024</a>)</cite>, a robust tool allowing native browser automation by simulating real-user interactions. Our tools implement exception-handling mechanisms, addressing potential issues such as network problems, stale elements, and unexpected page layouts. They parse and extract information from the dynamic pages and store them as raw outage and incident datasets. After that, we performed a series of data transformations for the raw datasets, including filling in missing values, extracting data from text, processing JSON formats, splitting columns, and performing feature calculations to get the metrics used in this study. </p> </div> <figure class="ltx_table" id="S3.T5"> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_table"><span class="ltx_text" id="S3.T5.7.1.1" style="font-size:90%;">Table 5</span>. </span><span class="ltx_text" id="S3.T5.8.2" style="font-size:90%;">Status counts of incident reports (see <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S2.T4" title="In 2.2. LLM-Specific Terms and Metrics ‣ 2. Anatomy of an LLM-service Incident: Model and Example ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Table</span> <span class="ltx_text ltx_ref_tag">4</span></a>).</span></figcaption> <div class="ltx_inline-block ltx_align_center ltx_transformed_outer" id="S3.T5.5" style="width:130.1pt;height:189.3pt;vertical-align:-0.0pt;"><span class="ltx_transformed_inner" style="transform:translate(-33.9pt,49.4pt) scale(0.657236873651957,0.657236873651957) ;"> <table class="ltx_tabular ltx_align_middle" id="S3.T5.5.5"> <tr class="ltx_tr" id="S3.T5.5.5.5"> <td class="ltx_td ltx_align_center ltx_border_tt" id="S3.T5.1.1.1.1"><math alttext="S_{1}" class="ltx_Math" display="inline" id="S3.T5.1.1.1.1.m1.1"><semantics id="S3.T5.1.1.1.1.m1.1a"><msub id="S3.T5.1.1.1.1.m1.1.1" xref="S3.T5.1.1.1.1.m1.1.1.cmml"><mi id="S3.T5.1.1.1.1.m1.1.1.2" xref="S3.T5.1.1.1.1.m1.1.1.2.cmml">S</mi><mn id="S3.T5.1.1.1.1.m1.1.1.3" xref="S3.T5.1.1.1.1.m1.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S3.T5.1.1.1.1.m1.1b"><apply id="S3.T5.1.1.1.1.m1.1.1.cmml" xref="S3.T5.1.1.1.1.m1.1.1"><csymbol cd="ambiguous" id="S3.T5.1.1.1.1.m1.1.1.1.cmml" xref="S3.T5.1.1.1.1.m1.1.1">subscript</csymbol><ci id="S3.T5.1.1.1.1.m1.1.1.2.cmml" xref="S3.T5.1.1.1.1.m1.1.1.2">𝑆</ci><cn id="S3.T5.1.1.1.1.m1.1.1.3.cmml" type="integer" xref="S3.T5.1.1.1.1.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T5.1.1.1.1.m1.1c">S_{1}</annotation><annotation encoding="application/x-llamapun" id="S3.T5.1.1.1.1.m1.1d">italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S3.T5.2.2.2.2"><math alttext="S_{2}" class="ltx_Math" display="inline" id="S3.T5.2.2.2.2.m1.1"><semantics id="S3.T5.2.2.2.2.m1.1a"><msub id="S3.T5.2.2.2.2.m1.1.1" xref="S3.T5.2.2.2.2.m1.1.1.cmml"><mi id="S3.T5.2.2.2.2.m1.1.1.2" xref="S3.T5.2.2.2.2.m1.1.1.2.cmml">S</mi><mn id="S3.T5.2.2.2.2.m1.1.1.3" xref="S3.T5.2.2.2.2.m1.1.1.3.cmml">2</mn></msub><annotation-xml encoding="MathML-Content" id="S3.T5.2.2.2.2.m1.1b"><apply id="S3.T5.2.2.2.2.m1.1.1.cmml" xref="S3.T5.2.2.2.2.m1.1.1"><csymbol cd="ambiguous" id="S3.T5.2.2.2.2.m1.1.1.1.cmml" xref="S3.T5.2.2.2.2.m1.1.1">subscript</csymbol><ci id="S3.T5.2.2.2.2.m1.1.1.2.cmml" xref="S3.T5.2.2.2.2.m1.1.1.2">𝑆</ci><cn id="S3.T5.2.2.2.2.m1.1.1.3.cmml" type="integer" xref="S3.T5.2.2.2.2.m1.1.1.3">2</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T5.2.2.2.2.m1.1c">S_{2}</annotation><annotation encoding="application/x-llamapun" id="S3.T5.2.2.2.2.m1.1d">italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S3.T5.3.3.3.3"><math alttext="S_{3}" class="ltx_Math" display="inline" id="S3.T5.3.3.3.3.m1.1"><semantics id="S3.T5.3.3.3.3.m1.1a"><msub id="S3.T5.3.3.3.3.m1.1.1" xref="S3.T5.3.3.3.3.m1.1.1.cmml"><mi id="S3.T5.3.3.3.3.m1.1.1.2" xref="S3.T5.3.3.3.3.m1.1.1.2.cmml">S</mi><mn id="S3.T5.3.3.3.3.m1.1.1.3" xref="S3.T5.3.3.3.3.m1.1.1.3.cmml">3</mn></msub><annotation-xml encoding="MathML-Content" id="S3.T5.3.3.3.3.m1.1b"><apply id="S3.T5.3.3.3.3.m1.1.1.cmml" xref="S3.T5.3.3.3.3.m1.1.1"><csymbol cd="ambiguous" id="S3.T5.3.3.3.3.m1.1.1.1.cmml" xref="S3.T5.3.3.3.3.m1.1.1">subscript</csymbol><ci id="S3.T5.3.3.3.3.m1.1.1.2.cmml" xref="S3.T5.3.3.3.3.m1.1.1.2">𝑆</ci><cn id="S3.T5.3.3.3.3.m1.1.1.3.cmml" type="integer" xref="S3.T5.3.3.3.3.m1.1.1.3">3</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T5.3.3.3.3.m1.1c">S_{3}</annotation><annotation encoding="application/x-llamapun" id="S3.T5.3.3.3.3.m1.1d">italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S3.T5.4.4.4.4"><math alttext="S_{4}" class="ltx_Math" display="inline" id="S3.T5.4.4.4.4.m1.1"><semantics id="S3.T5.4.4.4.4.m1.1a"><msub id="S3.T5.4.4.4.4.m1.1.1" xref="S3.T5.4.4.4.4.m1.1.1.cmml"><mi id="S3.T5.4.4.4.4.m1.1.1.2" xref="S3.T5.4.4.4.4.m1.1.1.2.cmml">S</mi><mn id="S3.T5.4.4.4.4.m1.1.1.3" xref="S3.T5.4.4.4.4.m1.1.1.3.cmml">4</mn></msub><annotation-xml encoding="MathML-Content" id="S3.T5.4.4.4.4.m1.1b"><apply id="S3.T5.4.4.4.4.m1.1.1.cmml" xref="S3.T5.4.4.4.4.m1.1.1"><csymbol cd="ambiguous" id="S3.T5.4.4.4.4.m1.1.1.1.cmml" xref="S3.T5.4.4.4.4.m1.1.1">subscript</csymbol><ci id="S3.T5.4.4.4.4.m1.1.1.2.cmml" xref="S3.T5.4.4.4.4.m1.1.1.2">𝑆</ci><cn id="S3.T5.4.4.4.4.m1.1.1.3.cmml" type="integer" xref="S3.T5.4.4.4.4.m1.1.1.3">4</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T5.4.4.4.4.m1.1c">S_{4}</annotation><annotation encoding="application/x-llamapun" id="S3.T5.4.4.4.4.m1.1d">italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_center ltx_border_tt" id="S3.T5.5.5.5.5"><math alttext="S_{5}" class="ltx_Math" display="inline" id="S3.T5.5.5.5.5.m1.1"><semantics id="S3.T5.5.5.5.5.m1.1a"><msub id="S3.T5.5.5.5.5.m1.1.1" xref="S3.T5.5.5.5.5.m1.1.1.cmml"><mi id="S3.T5.5.5.5.5.m1.1.1.2" xref="S3.T5.5.5.5.5.m1.1.1.2.cmml">S</mi><mn id="S3.T5.5.5.5.5.m1.1.1.3" xref="S3.T5.5.5.5.5.m1.1.1.3.cmml">5</mn></msub><annotation-xml encoding="MathML-Content" id="S3.T5.5.5.5.5.m1.1b"><apply id="S3.T5.5.5.5.5.m1.1.1.cmml" xref="S3.T5.5.5.5.5.m1.1.1"><csymbol cd="ambiguous" id="S3.T5.5.5.5.5.m1.1.1.1.cmml" xref="S3.T5.5.5.5.5.m1.1.1">subscript</csymbol><ci id="S3.T5.5.5.5.5.m1.1.1.2.cmml" xref="S3.T5.5.5.5.5.m1.1.1.2">𝑆</ci><cn id="S3.T5.5.5.5.5.m1.1.1.3.cmml" type="integer" xref="S3.T5.5.5.5.5.m1.1.1.3">5</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T5.5.5.5.5.m1.1c">S_{5}</annotation><annotation encoding="application/x-llamapun" id="S3.T5.5.5.5.5.m1.1d">italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S3.T5.5.5.5.6"><span class="ltx_text ltx_font_bold" id="S3.T5.5.5.5.6.1">Count</span></td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S3.T5.5.5.5.7"><span class="ltx_text ltx_font_bold" id="S3.T5.5.5.5.7.1">Percent</span></td> </tr> <tr class="ltx_tr" id="S3.T5.5.5.6"> <td class="ltx_td ltx_align_center ltx_border_t" id="S3.T5.5.5.6.1">✓</td> <td class="ltx_td ltx_border_t" id="S3.T5.5.5.6.2"></td> <td class="ltx_td ltx_align_center ltx_border_t" id="S3.T5.5.5.6.3">✓</td> <td class="ltx_td ltx_align_center ltx_border_t" id="S3.T5.5.5.6.4">✓</td> <td class="ltx_td ltx_border_t" id="S3.T5.5.5.6.5"></td> <td class="ltx_td ltx_align_right ltx_border_t" id="S3.T5.5.5.6.6">131</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S3.T5.5.5.6.7">24.39%</td> </tr> <tr class="ltx_tr" id="S3.T5.5.5.7"> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.7.1">✓</td> <td class="ltx_td" id="S3.T5.5.5.7.2"></td> <td class="ltx_td" id="S3.T5.5.5.7.3"></td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.7.4">✓</td> <td class="ltx_td" id="S3.T5.5.5.7.5"></td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.7.6">110</td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.7.7">20.48%</td> </tr> <tr class="ltx_tr" id="S3.T5.5.5.8"> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.8.1">✓</td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.8.2">✓</td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.8.3">✓</td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.8.4">✓</td> <td class="ltx_td" id="S3.T5.5.5.8.5"></td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.8.6">77</td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.8.7">14.34%</td> </tr> <tr class="ltx_tr" id="S3.T5.5.5.9"> <td class="ltx_td" id="S3.T5.5.5.9.1"></td> <td class="ltx_td" id="S3.T5.5.5.9.2"></td> <td class="ltx_td" id="S3.T5.5.5.9.3"></td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.9.4">✓</td> <td class="ltx_td" id="S3.T5.5.5.9.5"></td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.9.6">62</td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.9.7">11.55%</td> </tr> <tr class="ltx_tr" id="S3.T5.5.5.10"> <td class="ltx_td" id="S3.T5.5.5.10.1"></td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.10.2">✓</td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.10.3">✓</td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.10.4">✓</td> <td class="ltx_td" id="S3.T5.5.5.10.5"></td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.10.6">39</td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.10.7">7.26%</td> </tr> <tr class="ltx_tr" id="S3.T5.5.5.11"> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.11.1">✓</td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.11.2">✓</td> <td class="ltx_td" id="S3.T5.5.5.11.3"></td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.11.4">✓</td> <td class="ltx_td" id="S3.T5.5.5.11.5"></td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.11.6">35</td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.11.7">6.52%</td> </tr> <tr class="ltx_tr" id="S3.T5.5.5.12"> <td class="ltx_td" id="S3.T5.5.5.12.1"></td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.12.2">✓</td> <td class="ltx_td" id="S3.T5.5.5.12.3"></td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.12.4">✓</td> <td class="ltx_td" id="S3.T5.5.5.12.5"></td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.12.6">32</td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.12.7">5.96%</td> </tr> <tr class="ltx_tr" id="S3.T5.5.5.13"> <td class="ltx_td" id="S3.T5.5.5.13.1"></td> <td class="ltx_td" id="S3.T5.5.5.13.2"></td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.13.3">✓</td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.13.4">✓</td> <td class="ltx_td" id="S3.T5.5.5.13.5"></td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.13.6">18</td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.13.7">3.35%</td> </tr> <tr class="ltx_tr" id="S3.T5.5.5.14"> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.14.1">✓</td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.14.2">✓</td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.14.3">✓</td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.14.4">✓</td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.14.5">✓</td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.14.6">12</td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.14.7">2.23%</td> </tr> <tr class="ltx_tr" id="S3.T5.5.5.15"> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.15.1">✓</td> <td class="ltx_td" id="S3.T5.5.5.15.2"></td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.15.3">✓</td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.15.4">✓</td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.15.5">✓</td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.15.6">7</td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.15.7">1.30%</td> </tr> <tr class="ltx_tr" id="S3.T5.5.5.16"> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.16.1">✓</td> <td class="ltx_td" id="S3.T5.5.5.16.2"></td> <td class="ltx_td" id="S3.T5.5.5.16.3"></td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.16.4">✓</td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.16.5">✓</td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.16.6">5</td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.16.7">0.93%</td> </tr> <tr class="ltx_tr" id="S3.T5.5.5.17"> <td class="ltx_td" id="S3.T5.5.5.17.1"></td> <td class="ltx_td" id="S3.T5.5.5.17.2"></td> <td class="ltx_td" id="S3.T5.5.5.17.3"></td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.17.4">✓</td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.17.5">✓</td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.17.6">4</td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.17.7">0.74%</td> </tr> <tr class="ltx_tr" id="S3.T5.5.5.18"> <td class="ltx_td" id="S3.T5.5.5.18.1"></td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.18.2">✓</td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.18.3">✓</td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.18.4">✓</td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.18.5">✓</td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.18.6">3</td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.18.7">0.56%</td> </tr> <tr class="ltx_tr" id="S3.T5.5.5.19"> <td class="ltx_td" id="S3.T5.5.5.19.1"></td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.19.2">✓</td> <td class="ltx_td" id="S3.T5.5.5.19.3"></td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.19.4">✓</td> <td class="ltx_td ltx_align_center" id="S3.T5.5.5.19.5">✓</td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.19.6">2</td> <td class="ltx_td ltx_align_right" id="S3.T5.5.5.19.7">0.37%</td> </tr> <tr class="ltx_tr" id="S3.T5.5.5.20"> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_t" colspan="5" id="S3.T5.5.5.20.1">TOTAL</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_t" id="S3.T5.5.5.20.2">537</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_t" id="S3.T5.5.5.20.3">100.00%</td> </tr> </table> </span></div> </figure> <figure class="ltx_figure" id="S3.F3"><img alt="Refer to caption" class="ltx_graphics ltx_centering ltx_img_landscape" height="519" id="S3.F3.g1" src="x3.png" width="830"/> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S3.F3.4.2.1" style="font-size:90%;">Figure 3</span>. </span><span class="ltx_text" id="S3.F3.2.1" style="font-size:90%;">Presence of different status combinations, by service [%]. Due to small counts, status combinations with <math alttext="S_{5}" class="ltx_Math" display="inline" id="S3.F3.2.1.m1.1"><semantics id="S3.F3.2.1.m1.1b"><msub id="S3.F3.2.1.m1.1.1" xref="S3.F3.2.1.m1.1.1.cmml"><mi id="S3.F3.2.1.m1.1.1.2" xref="S3.F3.2.1.m1.1.1.2.cmml">S</mi><mn id="S3.F3.2.1.m1.1.1.3" xref="S3.F3.2.1.m1.1.1.3.cmml">5</mn></msub><annotation-xml encoding="MathML-Content" id="S3.F3.2.1.m1.1c"><apply id="S3.F3.2.1.m1.1.1.cmml" xref="S3.F3.2.1.m1.1.1"><csymbol cd="ambiguous" id="S3.F3.2.1.m1.1.1.1.cmml" xref="S3.F3.2.1.m1.1.1">subscript</csymbol><ci id="S3.F3.2.1.m1.1.1.2.cmml" xref="S3.F3.2.1.m1.1.1.2">𝑆</ci><cn id="S3.F3.2.1.m1.1.1.3.cmml" type="integer" xref="S3.F3.2.1.m1.1.1.3">5</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.F3.2.1.m1.1d">S_{5}</annotation><annotation encoding="application/x-llamapun" id="S3.F3.2.1.m1.1e">italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT</annotation></semantics></math> are merged into ‘All-with-S5’. (<a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S2.T3" title="In 2.2. LLM-Specific Terms and Metrics ‣ 2. Anatomy of an LLM-service Incident: Model and Example ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Table</span> <span class="ltx_text ltx_ref_tag">3</span></a> indexes the services.)</span></figcaption> </figure> <div class="ltx_para" id="S3.SS2.p4"> <p class="ltx_p" id="S3.SS2.p4.2"><span class="ltx_text ltx_font_bold" id="S3.SS2.p4.2.1">Data cleanup related to the failure-recovery model in <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S2.SS1" title="2.1. Model and Real-World Example ‣ 2. Anatomy of an LLM-service Incident: Model and Example ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Section</span> <span class="ltx_text ltx_ref_tag">2.1</span></a>:</span> (1) The incident reports from, e.g., ChatGPT, include 6 statuses: <em class="ltx_emph ltx_font_italic" id="S3.SS2.p4.2.2">investigating, identified, monitoring, update, resolved</em>, and <em class="ltx_emph ltx_font_italic" id="S3.SS2.p4.2.3">postmortem.</em> The <em class="ltx_emph ltx_font_italic" id="S3.SS2.p4.2.4">update</em> status is not considered in the model, but in all the reports we have analyzed it seems to be used only as a keep-alive of the recovery process, to mark the operational team is still actively working on the incident, so we do not consider it in our analysis; (2) Out of the over 500 hundreds of incidents we analyzed in this work, only 5 cases do not follow the order of status markers <math alttext="S_{1}" class="ltx_Math" display="inline" id="S3.SS2.p4.1.m1.1"><semantics id="S3.SS2.p4.1.m1.1a"><msub id="S3.SS2.p4.1.m1.1.1" xref="S3.SS2.p4.1.m1.1.1.cmml"><mi id="S3.SS2.p4.1.m1.1.1.2" xref="S3.SS2.p4.1.m1.1.1.2.cmml">S</mi><mn id="S3.SS2.p4.1.m1.1.1.3" xref="S3.SS2.p4.1.m1.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S3.SS2.p4.1.m1.1b"><apply id="S3.SS2.p4.1.m1.1.1.cmml" xref="S3.SS2.p4.1.m1.1.1"><csymbol cd="ambiguous" id="S3.SS2.p4.1.m1.1.1.1.cmml" xref="S3.SS2.p4.1.m1.1.1">subscript</csymbol><ci id="S3.SS2.p4.1.m1.1.1.2.cmml" xref="S3.SS2.p4.1.m1.1.1.2">𝑆</ci><cn id="S3.SS2.p4.1.m1.1.1.3.cmml" type="integer" xref="S3.SS2.p4.1.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS2.p4.1.m1.1c">S_{1}</annotation><annotation encoding="application/x-llamapun" id="S3.SS2.p4.1.m1.1d">italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math> through <math alttext="S_{5}" class="ltx_Math" display="inline" id="S3.SS2.p4.2.m2.1"><semantics id="S3.SS2.p4.2.m2.1a"><msub id="S3.SS2.p4.2.m2.1.1" xref="S3.SS2.p4.2.m2.1.1.cmml"><mi id="S3.SS2.p4.2.m2.1.1.2" xref="S3.SS2.p4.2.m2.1.1.2.cmml">S</mi><mn id="S3.SS2.p4.2.m2.1.1.3" xref="S3.SS2.p4.2.m2.1.1.3.cmml">5</mn></msub><annotation-xml encoding="MathML-Content" id="S3.SS2.p4.2.m2.1b"><apply id="S3.SS2.p4.2.m2.1.1.cmml" xref="S3.SS2.p4.2.m2.1.1"><csymbol cd="ambiguous" id="S3.SS2.p4.2.m2.1.1.1.cmml" xref="S3.SS2.p4.2.m2.1.1">subscript</csymbol><ci id="S3.SS2.p4.2.m2.1.1.2.cmml" xref="S3.SS2.p4.2.m2.1.1.2">𝑆</ci><cn id="S3.SS2.p4.2.m2.1.1.3.cmml" type="integer" xref="S3.SS2.p4.2.m2.1.1.3">5</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS2.p4.2.m2.1c">S_{5}</annotation><annotation encoding="application/x-llamapun" id="S3.SS2.p4.2.m2.1d">italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT</annotation></semantics></math>. In 2 of these cases, the status-marker <em class="ltx_emph ltx_font_italic" id="S3.SS2.p4.2.5">identified</em> comes before <em class="ltx_emph ltx_font_italic" id="S3.SS2.p4.2.6">investigating</em>, and in 3 other cases, the status-marker <em class="ltx_emph ltx_font_italic" id="S3.SS2.p4.2.7">monitoring</em> comes before <em class="ltx_emph ltx_font_italic" id="S3.SS2.p4.2.8">identified</em>. None of these cases involves unusual durations or recovery times, so we safely exclude these 5 corner cases in our analysis. </p> </div> </section> </section> <section class="ltx_section" id="S4"> <h2 class="ltx_title ltx_title_section"> <span class="ltx_tag ltx_tag_section">4. </span>Failure-Recovery Analysis</h2> <div class="ltx_para" id="S4.p1"> <p class="ltx_p" id="S4.p1.1">We investigate the time spent on the key operational metrics (MTTR, MTBF) and compare the failure-recovery performance across the 8 LLM services and 3 service providers. We conduct several types of analysis to investigate the failure-recovery processes of LLM services: (1) Statues count and percent of different services; (2) Mean values for main model parameters; (3) Percent of different periods in the MTTR process; (4) Distribution of MTTR and MTTF duration by service; (5) Distribution of MTTR and MTTF duration by providers. For each analysis, we begin with key observations, followed by detailed descriptions and discussions.</p> </div> <div class="ltx_para ltx_noindent" id="S4.p2"> <p class="ltx_p" id="S4.p2.1"> <span class="ltx_inline-block ltx_parbox ltx_align_middle ltx_framed ltx_framed_rectangle" id="S4.p2.1.1" style="width:433.6pt;"> <span class="ltx_p" id="S4.p2.1.1.1"><span class="ltx_text ltx_font_bold" id="S4.p2.1.1.1.1">Observation #1:</span> <span class="ltx_text ltx_font_italic" id="S4.p2.1.1.1.2">Most incident reports lack information for all statuses. Although 100% of the incidents have been resolved, only 6.15% of reports disclose a postmortem.</span></span> </span></p> </div> <figure class="ltx_table" id="S4.T6"> <figcaption class="ltx_caption"><span class="ltx_tag ltx_tag_table"><span class="ltx_text" id="S4.T6.20.3.1" style="font-size:90%;">Table 6</span>. </span><span class="ltx_text" id="S4.T6.4.2" style="font-size:90%;">Mean value for model parameters by service. Legend: h<math alttext="=" class="ltx_Math" display="inline" id="S4.T6.3.1.m1.1"><semantics id="S4.T6.3.1.m1.1b"><mo id="S4.T6.3.1.m1.1.1" xref="S4.T6.3.1.m1.1.1.cmml">=</mo><annotation-xml encoding="MathML-Content" id="S4.T6.3.1.m1.1c"><eq id="S4.T6.3.1.m1.1.1.cmml" xref="S4.T6.3.1.m1.1.1"></eq></annotation-xml><annotation encoding="application/x-tex" id="S4.T6.3.1.m1.1d">=</annotation><annotation encoding="application/x-llamapun" id="S4.T6.3.1.m1.1e">=</annotation></semantics></math>hour(s), D<math alttext="=" class="ltx_Math" display="inline" id="S4.T6.4.2.m2.1"><semantics id="S4.T6.4.2.m2.1b"><mo id="S4.T6.4.2.m2.1.1" xref="S4.T6.4.2.m2.1.1.cmml">=</mo><annotation-xml encoding="MathML-Content" id="S4.T6.4.2.m2.1c"><eq id="S4.T6.4.2.m2.1.1.cmml" xref="S4.T6.4.2.m2.1.1"></eq></annotation-xml><annotation encoding="application/x-tex" id="S4.T6.4.2.m2.1d">=</annotation><annotation encoding="application/x-llamapun" id="S4.T6.4.2.m2.1e">=</annotation></semantics></math>day(s).</span></figcaption> <div class="ltx_inline-block ltx_transformed_outer" id="S4.T6.18" style="width:433.6pt;height:225.9pt;vertical-align:-0.0pt;"><span class="ltx_transformed_inner" style="transform:translate(26.8pt,-13.9pt) scale(1.14084124643012,1.14084124643012) ;"> <table class="ltx_tabular ltx_align_middle" id="S4.T6.18.14"> <tr class="ltx_tr" id="S4.T6.10.6.6"> <td class="ltx_td ltx_align_left ltx_border_tt" id="S4.T6.10.6.6.7"><span class="ltx_text ltx_font_bold" id="S4.T6.10.6.6.7.1">ID</span></td> <td class="ltx_td ltx_align_left ltx_border_tt" id="S4.T6.10.6.6.8"><span class="ltx_text ltx_font_bold" id="S4.T6.10.6.6.8.1">Service</span></td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S4.T6.5.1.1.1"> <math alttext="P_{I}" class="ltx_Math" display="inline" id="S4.T6.5.1.1.1.m1.1"><semantics id="S4.T6.5.1.1.1.m1.1a"><msub id="S4.T6.5.1.1.1.m1.1.1" xref="S4.T6.5.1.1.1.m1.1.1.cmml"><mi id="S4.T6.5.1.1.1.m1.1.1.2" xref="S4.T6.5.1.1.1.m1.1.1.2.cmml">P</mi><mi id="S4.T6.5.1.1.1.m1.1.1.3" xref="S4.T6.5.1.1.1.m1.1.1.3.cmml">I</mi></msub><annotation-xml encoding="MathML-Content" id="S4.T6.5.1.1.1.m1.1b"><apply id="S4.T6.5.1.1.1.m1.1.1.cmml" xref="S4.T6.5.1.1.1.m1.1.1"><csymbol cd="ambiguous" id="S4.T6.5.1.1.1.m1.1.1.1.cmml" xref="S4.T6.5.1.1.1.m1.1.1">subscript</csymbol><ci id="S4.T6.5.1.1.1.m1.1.1.2.cmml" xref="S4.T6.5.1.1.1.m1.1.1.2">𝑃</ci><ci id="S4.T6.5.1.1.1.m1.1.1.3.cmml" xref="S4.T6.5.1.1.1.m1.1.1.3">𝐼</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.T6.5.1.1.1.m1.1c">P_{I}</annotation><annotation encoding="application/x-llamapun" id="S4.T6.5.1.1.1.m1.1d">italic_P start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT</annotation></semantics></math><span class="ltx_text ltx_font_bold" id="S4.T6.5.1.1.1.1"> [h]</span> </td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S4.T6.6.2.2.2"> <math alttext="P_{R}" class="ltx_Math" display="inline" id="S4.T6.6.2.2.2.m1.1"><semantics id="S4.T6.6.2.2.2.m1.1a"><msub id="S4.T6.6.2.2.2.m1.1.1" xref="S4.T6.6.2.2.2.m1.1.1.cmml"><mi id="S4.T6.6.2.2.2.m1.1.1.2" xref="S4.T6.6.2.2.2.m1.1.1.2.cmml">P</mi><mi id="S4.T6.6.2.2.2.m1.1.1.3" xref="S4.T6.6.2.2.2.m1.1.1.3.cmml">R</mi></msub><annotation-xml encoding="MathML-Content" id="S4.T6.6.2.2.2.m1.1b"><apply id="S4.T6.6.2.2.2.m1.1.1.cmml" xref="S4.T6.6.2.2.2.m1.1.1"><csymbol cd="ambiguous" id="S4.T6.6.2.2.2.m1.1.1.1.cmml" xref="S4.T6.6.2.2.2.m1.1.1">subscript</csymbol><ci id="S4.T6.6.2.2.2.m1.1.1.2.cmml" xref="S4.T6.6.2.2.2.m1.1.1.2">𝑃</ci><ci id="S4.T6.6.2.2.2.m1.1.1.3.cmml" xref="S4.T6.6.2.2.2.m1.1.1.3">𝑅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.T6.6.2.2.2.m1.1c">P_{R}</annotation><annotation encoding="application/x-llamapun" id="S4.T6.6.2.2.2.m1.1d">italic_P start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT</annotation></semantics></math><span class="ltx_text ltx_font_bold" id="S4.T6.6.2.2.2.1"> [h]</span> </td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S4.T6.7.3.3.3"> <math alttext="P_{C}" class="ltx_Math" display="inline" id="S4.T6.7.3.3.3.m1.1"><semantics id="S4.T6.7.3.3.3.m1.1a"><msub id="S4.T6.7.3.3.3.m1.1.1" xref="S4.T6.7.3.3.3.m1.1.1.cmml"><mi id="S4.T6.7.3.3.3.m1.1.1.2" xref="S4.T6.7.3.3.3.m1.1.1.2.cmml">P</mi><mi id="S4.T6.7.3.3.3.m1.1.1.3" xref="S4.T6.7.3.3.3.m1.1.1.3.cmml">C</mi></msub><annotation-xml encoding="MathML-Content" id="S4.T6.7.3.3.3.m1.1b"><apply id="S4.T6.7.3.3.3.m1.1.1.cmml" xref="S4.T6.7.3.3.3.m1.1.1"><csymbol cd="ambiguous" id="S4.T6.7.3.3.3.m1.1.1.1.cmml" xref="S4.T6.7.3.3.3.m1.1.1">subscript</csymbol><ci id="S4.T6.7.3.3.3.m1.1.1.2.cmml" xref="S4.T6.7.3.3.3.m1.1.1.2">𝑃</ci><ci id="S4.T6.7.3.3.3.m1.1.1.3.cmml" xref="S4.T6.7.3.3.3.m1.1.1.3">𝐶</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.T6.7.3.3.3.m1.1c">P_{C}</annotation><annotation encoding="application/x-llamapun" id="S4.T6.7.3.3.3.m1.1d">italic_P start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT</annotation></semantics></math><span class="ltx_text ltx_font_bold" id="S4.T6.7.3.3.3.1"> [h]</span> </td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S4.T6.8.4.4.4"> <math alttext="P_{L}" class="ltx_Math" display="inline" id="S4.T6.8.4.4.4.m1.1"><semantics id="S4.T6.8.4.4.4.m1.1a"><msub id="S4.T6.8.4.4.4.m1.1.1" xref="S4.T6.8.4.4.4.m1.1.1.cmml"><mi id="S4.T6.8.4.4.4.m1.1.1.2" xref="S4.T6.8.4.4.4.m1.1.1.2.cmml">P</mi><mi id="S4.T6.8.4.4.4.m1.1.1.3" xref="S4.T6.8.4.4.4.m1.1.1.3.cmml">L</mi></msub><annotation-xml encoding="MathML-Content" id="S4.T6.8.4.4.4.m1.1b"><apply id="S4.T6.8.4.4.4.m1.1.1.cmml" xref="S4.T6.8.4.4.4.m1.1.1"><csymbol cd="ambiguous" id="S4.T6.8.4.4.4.m1.1.1.1.cmml" xref="S4.T6.8.4.4.4.m1.1.1">subscript</csymbol><ci id="S4.T6.8.4.4.4.m1.1.1.2.cmml" xref="S4.T6.8.4.4.4.m1.1.1.2">𝑃</ci><ci id="S4.T6.8.4.4.4.m1.1.1.3.cmml" xref="S4.T6.8.4.4.4.m1.1.1.3">𝐿</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.T6.8.4.4.4.m1.1c">P_{L}</annotation><annotation encoding="application/x-llamapun" id="S4.T6.8.4.4.4.m1.1d">italic_P start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT</annotation></semantics></math><span class="ltx_text ltx_font_bold" id="S4.T6.8.4.4.4.1"> [D]</span> </td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S4.T6.9.5.5.5"> <math alttext="MTTR" class="ltx_Math" display="inline" id="S4.T6.9.5.5.5.m1.1"><semantics id="S4.T6.9.5.5.5.m1.1a"><mrow id="S4.T6.9.5.5.5.m1.1.1" xref="S4.T6.9.5.5.5.m1.1.1.cmml"><mi id="S4.T6.9.5.5.5.m1.1.1.2" xref="S4.T6.9.5.5.5.m1.1.1.2.cmml">M</mi><mo id="S4.T6.9.5.5.5.m1.1.1.1" xref="S4.T6.9.5.5.5.m1.1.1.1.cmml"></mo><mi id="S4.T6.9.5.5.5.m1.1.1.3" xref="S4.T6.9.5.5.5.m1.1.1.3.cmml">T</mi><mo id="S4.T6.9.5.5.5.m1.1.1.1a" xref="S4.T6.9.5.5.5.m1.1.1.1.cmml"></mo><mi id="S4.T6.9.5.5.5.m1.1.1.4" xref="S4.T6.9.5.5.5.m1.1.1.4.cmml">T</mi><mo id="S4.T6.9.5.5.5.m1.1.1.1b" xref="S4.T6.9.5.5.5.m1.1.1.1.cmml"></mo><mi id="S4.T6.9.5.5.5.m1.1.1.5" xref="S4.T6.9.5.5.5.m1.1.1.5.cmml">R</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.T6.9.5.5.5.m1.1b"><apply id="S4.T6.9.5.5.5.m1.1.1.cmml" xref="S4.T6.9.5.5.5.m1.1.1"><times id="S4.T6.9.5.5.5.m1.1.1.1.cmml" xref="S4.T6.9.5.5.5.m1.1.1.1"></times><ci id="S4.T6.9.5.5.5.m1.1.1.2.cmml" xref="S4.T6.9.5.5.5.m1.1.1.2">𝑀</ci><ci id="S4.T6.9.5.5.5.m1.1.1.3.cmml" xref="S4.T6.9.5.5.5.m1.1.1.3">𝑇</ci><ci id="S4.T6.9.5.5.5.m1.1.1.4.cmml" xref="S4.T6.9.5.5.5.m1.1.1.4">𝑇</ci><ci id="S4.T6.9.5.5.5.m1.1.1.5.cmml" xref="S4.T6.9.5.5.5.m1.1.1.5">𝑅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.T6.9.5.5.5.m1.1c">MTTR</annotation><annotation encoding="application/x-llamapun" id="S4.T6.9.5.5.5.m1.1d">italic_M italic_T italic_T italic_R</annotation></semantics></math><span class="ltx_text ltx_font_bold" id="S4.T6.9.5.5.5.1"> [h]</span> </td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S4.T6.10.6.6.6"> <math alttext="MTBF" class="ltx_Math" display="inline" id="S4.T6.10.6.6.6.m1.1"><semantics id="S4.T6.10.6.6.6.m1.1a"><mrow id="S4.T6.10.6.6.6.m1.1.1" xref="S4.T6.10.6.6.6.m1.1.1.cmml"><mi id="S4.T6.10.6.6.6.m1.1.1.2" xref="S4.T6.10.6.6.6.m1.1.1.2.cmml">M</mi><mo id="S4.T6.10.6.6.6.m1.1.1.1" xref="S4.T6.10.6.6.6.m1.1.1.1.cmml"></mo><mi id="S4.T6.10.6.6.6.m1.1.1.3" xref="S4.T6.10.6.6.6.m1.1.1.3.cmml">T</mi><mo id="S4.T6.10.6.6.6.m1.1.1.1a" xref="S4.T6.10.6.6.6.m1.1.1.1.cmml"></mo><mi id="S4.T6.10.6.6.6.m1.1.1.4" xref="S4.T6.10.6.6.6.m1.1.1.4.cmml">B</mi><mo id="S4.T6.10.6.6.6.m1.1.1.1b" xref="S4.T6.10.6.6.6.m1.1.1.1.cmml"></mo><mi id="S4.T6.10.6.6.6.m1.1.1.5" xref="S4.T6.10.6.6.6.m1.1.1.5.cmml">F</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.T6.10.6.6.6.m1.1b"><apply id="S4.T6.10.6.6.6.m1.1.1.cmml" xref="S4.T6.10.6.6.6.m1.1.1"><times id="S4.T6.10.6.6.6.m1.1.1.1.cmml" xref="S4.T6.10.6.6.6.m1.1.1.1"></times><ci id="S4.T6.10.6.6.6.m1.1.1.2.cmml" xref="S4.T6.10.6.6.6.m1.1.1.2">𝑀</ci><ci id="S4.T6.10.6.6.6.m1.1.1.3.cmml" xref="S4.T6.10.6.6.6.m1.1.1.3">𝑇</ci><ci id="S4.T6.10.6.6.6.m1.1.1.4.cmml" xref="S4.T6.10.6.6.6.m1.1.1.4">𝐵</ci><ci id="S4.T6.10.6.6.6.m1.1.1.5.cmml" xref="S4.T6.10.6.6.6.m1.1.1.5">𝐹</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.T6.10.6.6.6.m1.1c">MTBF</annotation><annotation encoding="application/x-llamapun" id="S4.T6.10.6.6.6.m1.1d">italic_M italic_T italic_B italic_F</annotation></semantics></math><span class="ltx_text ltx_font_bold" id="S4.T6.10.6.6.6.1"> [D]</span> </td> </tr> <tr class="ltx_tr" id="S4.T6.11.7.7"> <td class="ltx_td ltx_align_left ltx_border_t" id="S4.T6.11.7.7.1"><math alttext="O_{1}" class="ltx_Math" display="inline" id="S4.T6.11.7.7.1.m1.1"><semantics id="S4.T6.11.7.7.1.m1.1a"><msub id="S4.T6.11.7.7.1.m1.1.1" xref="S4.T6.11.7.7.1.m1.1.1.cmml"><mi id="S4.T6.11.7.7.1.m1.1.1.2" xref="S4.T6.11.7.7.1.m1.1.1.2.cmml">O</mi><mn id="S4.T6.11.7.7.1.m1.1.1.3" xref="S4.T6.11.7.7.1.m1.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S4.T6.11.7.7.1.m1.1b"><apply id="S4.T6.11.7.7.1.m1.1.1.cmml" xref="S4.T6.11.7.7.1.m1.1.1"><csymbol cd="ambiguous" id="S4.T6.11.7.7.1.m1.1.1.1.cmml" xref="S4.T6.11.7.7.1.m1.1.1">subscript</csymbol><ci id="S4.T6.11.7.7.1.m1.1.1.2.cmml" xref="S4.T6.11.7.7.1.m1.1.1.2">𝑂</ci><cn id="S4.T6.11.7.7.1.m1.1.1.3.cmml" type="integer" xref="S4.T6.11.7.7.1.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.T6.11.7.7.1.m1.1c">O_{1}</annotation><annotation encoding="application/x-llamapun" id="S4.T6.11.7.7.1.m1.1d">italic_O start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left ltx_border_t" id="S4.T6.11.7.7.2">API-OpenAI</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.11.7.7.3">0.72</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.11.7.7.4">1.63</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.11.7.7.5">1.46</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.11.7.7.6">4.10</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.11.7.7.7">2.56</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.11.7.7.8">5.64</td> </tr> <tr class="ltx_tr" id="S4.T6.12.8.8"> <td class="ltx_td ltx_align_left" id="S4.T6.12.8.8.1"><math alttext="O_{2}" class="ltx_Math" display="inline" id="S4.T6.12.8.8.1.m1.1"><semantics id="S4.T6.12.8.8.1.m1.1a"><msub id="S4.T6.12.8.8.1.m1.1.1" xref="S4.T6.12.8.8.1.m1.1.1.cmml"><mi id="S4.T6.12.8.8.1.m1.1.1.2" xref="S4.T6.12.8.8.1.m1.1.1.2.cmml">O</mi><mn id="S4.T6.12.8.8.1.m1.1.1.3" xref="S4.T6.12.8.8.1.m1.1.1.3.cmml">2</mn></msub><annotation-xml encoding="MathML-Content" id="S4.T6.12.8.8.1.m1.1b"><apply id="S4.T6.12.8.8.1.m1.1.1.cmml" xref="S4.T6.12.8.8.1.m1.1.1"><csymbol cd="ambiguous" id="S4.T6.12.8.8.1.m1.1.1.1.cmml" xref="S4.T6.12.8.8.1.m1.1.1">subscript</csymbol><ci id="S4.T6.12.8.8.1.m1.1.1.2.cmml" xref="S4.T6.12.8.8.1.m1.1.1.2">𝑂</ci><cn id="S4.T6.12.8.8.1.m1.1.1.3.cmml" type="integer" xref="S4.T6.12.8.8.1.m1.1.1.3">2</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.T6.12.8.8.1.m1.1c">O_{2}</annotation><annotation encoding="application/x-llamapun" id="S4.T6.12.8.8.1.m1.1d">italic_O start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left" id="S4.T6.12.8.8.2">ChatGPT</td> <td class="ltx_td ltx_align_right" id="S4.T6.12.8.8.3">0.65</td> <td class="ltx_td ltx_align_right" id="S4.T6.12.8.8.4">1.64</td> <td class="ltx_td ltx_align_right" id="S4.T6.12.8.8.5">1.73</td> <td class="ltx_td ltx_align_right" id="S4.T6.12.8.8.6">4.79</td> <td class="ltx_td ltx_align_right" id="S4.T6.12.8.8.7">3.64</td> <td class="ltx_td ltx_align_right" id="S4.T6.12.8.8.8">4.01</td> </tr> <tr class="ltx_tr" id="S4.T6.13.9.9"> <td class="ltx_td ltx_align_left" id="S4.T6.13.9.9.1"><math alttext="O_{3}" class="ltx_Math" display="inline" id="S4.T6.13.9.9.1.m1.1"><semantics id="S4.T6.13.9.9.1.m1.1a"><msub id="S4.T6.13.9.9.1.m1.1.1" xref="S4.T6.13.9.9.1.m1.1.1.cmml"><mi id="S4.T6.13.9.9.1.m1.1.1.2" xref="S4.T6.13.9.9.1.m1.1.1.2.cmml">O</mi><mn id="S4.T6.13.9.9.1.m1.1.1.3" xref="S4.T6.13.9.9.1.m1.1.1.3.cmml">3</mn></msub><annotation-xml encoding="MathML-Content" id="S4.T6.13.9.9.1.m1.1b"><apply id="S4.T6.13.9.9.1.m1.1.1.cmml" xref="S4.T6.13.9.9.1.m1.1.1"><csymbol cd="ambiguous" id="S4.T6.13.9.9.1.m1.1.1.1.cmml" xref="S4.T6.13.9.9.1.m1.1.1">subscript</csymbol><ci id="S4.T6.13.9.9.1.m1.1.1.2.cmml" xref="S4.T6.13.9.9.1.m1.1.1.2">𝑂</ci><cn id="S4.T6.13.9.9.1.m1.1.1.3.cmml" type="integer" xref="S4.T6.13.9.9.1.m1.1.1.3">3</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.T6.13.9.9.1.m1.1c">O_{3}</annotation><annotation encoding="application/x-llamapun" id="S4.T6.13.9.9.1.m1.1d">italic_O start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left" id="S4.T6.13.9.9.2">DALL·E</td> <td class="ltx_td ltx_align_right" id="S4.T6.13.9.9.3">1.01</td> <td class="ltx_td ltx_align_right" id="S4.T6.13.9.9.4">0.96</td> <td class="ltx_td ltx_align_right" id="S4.T6.13.9.9.5">1.81</td> <td class="ltx_td ltx_align_right" id="S4.T6.13.9.9.6">1.86</td> <td class="ltx_td ltx_align_right" id="S4.T6.13.9.9.7">3.03</td> <td class="ltx_td ltx_align_right" id="S4.T6.13.9.9.8">18.24</td> </tr> <tr class="ltx_tr" id="S4.T6.14.10.10"> <td class="ltx_td ltx_align_left" id="S4.T6.14.10.10.1"><math alttext="O_{4}" class="ltx_Math" display="inline" id="S4.T6.14.10.10.1.m1.1"><semantics id="S4.T6.14.10.10.1.m1.1a"><msub id="S4.T6.14.10.10.1.m1.1.1" xref="S4.T6.14.10.10.1.m1.1.1.cmml"><mi id="S4.T6.14.10.10.1.m1.1.1.2" xref="S4.T6.14.10.10.1.m1.1.1.2.cmml">O</mi><mn id="S4.T6.14.10.10.1.m1.1.1.3" xref="S4.T6.14.10.10.1.m1.1.1.3.cmml">4</mn></msub><annotation-xml encoding="MathML-Content" id="S4.T6.14.10.10.1.m1.1b"><apply id="S4.T6.14.10.10.1.m1.1.1.cmml" xref="S4.T6.14.10.10.1.m1.1.1"><csymbol cd="ambiguous" id="S4.T6.14.10.10.1.m1.1.1.1.cmml" xref="S4.T6.14.10.10.1.m1.1.1">subscript</csymbol><ci id="S4.T6.14.10.10.1.m1.1.1.2.cmml" xref="S4.T6.14.10.10.1.m1.1.1.2">𝑂</ci><cn id="S4.T6.14.10.10.1.m1.1.1.3.cmml" type="integer" xref="S4.T6.14.10.10.1.m1.1.1.3">4</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.T6.14.10.10.1.m1.1c">O_{4}</annotation><annotation encoding="application/x-llamapun" id="S4.T6.14.10.10.1.m1.1d">italic_O start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left" id="S4.T6.14.10.10.2">Playground</td> <td class="ltx_td ltx_align_right" id="S4.T6.14.10.10.3">0.37</td> <td class="ltx_td ltx_align_right" id="S4.T6.14.10.10.4">1.56</td> <td class="ltx_td ltx_align_right" id="S4.T6.14.10.10.5">2.22</td> <td class="ltx_td ltx_align_right" id="S4.T6.14.10.10.6">4.30</td> <td class="ltx_td ltx_align_right" id="S4.T6.14.10.10.7">2.95</td> <td class="ltx_td ltx_align_right" id="S4.T6.14.10.10.8">39.93</td> </tr> <tr class="ltx_tr" id="S4.T6.15.11.11"> <td class="ltx_td ltx_align_left ltx_border_t" id="S4.T6.15.11.11.1"><math alttext="A_{1}" class="ltx_Math" display="inline" id="S4.T6.15.11.11.1.m1.1"><semantics id="S4.T6.15.11.11.1.m1.1a"><msub id="S4.T6.15.11.11.1.m1.1.1" xref="S4.T6.15.11.11.1.m1.1.1.cmml"><mi id="S4.T6.15.11.11.1.m1.1.1.2" xref="S4.T6.15.11.11.1.m1.1.1.2.cmml">A</mi><mn id="S4.T6.15.11.11.1.m1.1.1.3" xref="S4.T6.15.11.11.1.m1.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S4.T6.15.11.11.1.m1.1b"><apply id="S4.T6.15.11.11.1.m1.1.1.cmml" xref="S4.T6.15.11.11.1.m1.1.1"><csymbol cd="ambiguous" id="S4.T6.15.11.11.1.m1.1.1.1.cmml" xref="S4.T6.15.11.11.1.m1.1.1">subscript</csymbol><ci id="S4.T6.15.11.11.1.m1.1.1.2.cmml" xref="S4.T6.15.11.11.1.m1.1.1.2">𝐴</ci><cn id="S4.T6.15.11.11.1.m1.1.1.3.cmml" type="integer" xref="S4.T6.15.11.11.1.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.T6.15.11.11.1.m1.1c">A_{1}</annotation><annotation encoding="application/x-llamapun" id="S4.T6.15.11.11.1.m1.1d">italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left ltx_border_t" id="S4.T6.15.11.11.2">API-Anthropic</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.15.11.11.3">1.04</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.15.11.11.4">1.11</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.15.11.11.5">1.37</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.15.11.11.6">-</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.15.11.11.7">2.81</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.15.11.11.8">5.22</td> </tr> <tr class="ltx_tr" id="S4.T6.16.12.12"> <td class="ltx_td ltx_align_left" id="S4.T6.16.12.12.1"><math alttext="A_{2}" class="ltx_Math" display="inline" id="S4.T6.16.12.12.1.m1.1"><semantics id="S4.T6.16.12.12.1.m1.1a"><msub id="S4.T6.16.12.12.1.m1.1.1" xref="S4.T6.16.12.12.1.m1.1.1.cmml"><mi id="S4.T6.16.12.12.1.m1.1.1.2" xref="S4.T6.16.12.12.1.m1.1.1.2.cmml">A</mi><mn id="S4.T6.16.12.12.1.m1.1.1.3" xref="S4.T6.16.12.12.1.m1.1.1.3.cmml">2</mn></msub><annotation-xml encoding="MathML-Content" id="S4.T6.16.12.12.1.m1.1b"><apply id="S4.T6.16.12.12.1.m1.1.1.cmml" xref="S4.T6.16.12.12.1.m1.1.1"><csymbol cd="ambiguous" id="S4.T6.16.12.12.1.m1.1.1.1.cmml" xref="S4.T6.16.12.12.1.m1.1.1">subscript</csymbol><ci id="S4.T6.16.12.12.1.m1.1.1.2.cmml" xref="S4.T6.16.12.12.1.m1.1.1.2">𝐴</ci><cn id="S4.T6.16.12.12.1.m1.1.1.3.cmml" type="integer" xref="S4.T6.16.12.12.1.m1.1.1.3">2</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.T6.16.12.12.1.m1.1c">A_{2}</annotation><annotation encoding="application/x-llamapun" id="S4.T6.16.12.12.1.m1.1d">italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left" id="S4.T6.16.12.12.2">Claude</td> <td class="ltx_td ltx_align_right" id="S4.T6.16.12.12.3">1.35</td> <td class="ltx_td ltx_align_right" id="S4.T6.16.12.12.4">1.72</td> <td class="ltx_td ltx_align_right" id="S4.T6.16.12.12.5">2.05</td> <td class="ltx_td ltx_align_right" id="S4.T6.16.12.12.6">0.21</td> <td class="ltx_td ltx_align_right" id="S4.T6.16.12.12.7">3.16</td> <td class="ltx_td ltx_align_right" id="S4.T6.16.12.12.8">4.79</td> </tr> <tr class="ltx_tr" id="S4.T6.17.13.13"> <td class="ltx_td ltx_align_left" id="S4.T6.17.13.13.1"><math alttext="A_{3}" class="ltx_Math" display="inline" id="S4.T6.17.13.13.1.m1.1"><semantics id="S4.T6.17.13.13.1.m1.1a"><msub id="S4.T6.17.13.13.1.m1.1.1" xref="S4.T6.17.13.13.1.m1.1.1.cmml"><mi id="S4.T6.17.13.13.1.m1.1.1.2" xref="S4.T6.17.13.13.1.m1.1.1.2.cmml">A</mi><mn id="S4.T6.17.13.13.1.m1.1.1.3" xref="S4.T6.17.13.13.1.m1.1.1.3.cmml">3</mn></msub><annotation-xml encoding="MathML-Content" id="S4.T6.17.13.13.1.m1.1b"><apply id="S4.T6.17.13.13.1.m1.1.1.cmml" xref="S4.T6.17.13.13.1.m1.1.1"><csymbol cd="ambiguous" id="S4.T6.17.13.13.1.m1.1.1.1.cmml" xref="S4.T6.17.13.13.1.m1.1.1">subscript</csymbol><ci id="S4.T6.17.13.13.1.m1.1.1.2.cmml" xref="S4.T6.17.13.13.1.m1.1.1.2">𝐴</ci><cn id="S4.T6.17.13.13.1.m1.1.1.3.cmml" type="integer" xref="S4.T6.17.13.13.1.m1.1.1.3">3</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.T6.17.13.13.1.m1.1c">A_{3}</annotation><annotation encoding="application/x-llamapun" id="S4.T6.17.13.13.1.m1.1d">italic_A start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left" id="S4.T6.17.13.13.2">Console</td> <td class="ltx_td ltx_align_right" id="S4.T6.17.13.13.3">0.94</td> <td class="ltx_td ltx_align_right" id="S4.T6.17.13.13.4">0.34</td> <td class="ltx_td ltx_align_right" id="S4.T6.17.13.13.5">0.58</td> <td class="ltx_td ltx_align_right" id="S4.T6.17.13.13.6">-</td> <td class="ltx_td ltx_align_right" id="S4.T6.17.13.13.7">2.05</td> <td class="ltx_td ltx_align_right" id="S4.T6.17.13.13.8">5.73</td> </tr> <tr class="ltx_tr" id="S4.T6.18.14.14"> <td class="ltx_td ltx_align_left ltx_border_t" id="S4.T6.18.14.14.1"><math alttext="C_{1}" class="ltx_Math" display="inline" id="S4.T6.18.14.14.1.m1.1"><semantics id="S4.T6.18.14.14.1.m1.1a"><msub id="S4.T6.18.14.14.1.m1.1.1" xref="S4.T6.18.14.14.1.m1.1.1.cmml"><mi id="S4.T6.18.14.14.1.m1.1.1.2" xref="S4.T6.18.14.14.1.m1.1.1.2.cmml">C</mi><mn id="S4.T6.18.14.14.1.m1.1.1.3" xref="S4.T6.18.14.14.1.m1.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S4.T6.18.14.14.1.m1.1b"><apply id="S4.T6.18.14.14.1.m1.1.1.cmml" xref="S4.T6.18.14.14.1.m1.1.1"><csymbol cd="ambiguous" id="S4.T6.18.14.14.1.m1.1.1.1.cmml" xref="S4.T6.18.14.14.1.m1.1.1">subscript</csymbol><ci id="S4.T6.18.14.14.1.m1.1.1.2.cmml" xref="S4.T6.18.14.14.1.m1.1.1.2">𝐶</ci><cn id="S4.T6.18.14.14.1.m1.1.1.3.cmml" type="integer" xref="S4.T6.18.14.14.1.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.T6.18.14.14.1.m1.1c">C_{1}</annotation><annotation encoding="application/x-llamapun" id="S4.T6.18.14.14.1.m1.1d">italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math></td> <td class="ltx_td ltx_align_left ltx_border_t" id="S4.T6.18.14.14.2">Character.AI</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.18.14.14.3">0.40</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.18.14.14.4">0.50</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.18.14.14.5">1.73</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.18.14.14.6">3.61</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.18.14.14.7">3.95</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.18.14.14.8">8.74</td> </tr> <tr class="ltx_tr" id="S4.T6.18.14.15"> <td class="ltx_td ltx_border_t" id="S4.T6.18.14.15.1"></td> <td class="ltx_td ltx_align_left ltx_border_t" id="S4.T6.18.14.15.2"><span class="ltx_text ltx_font_bold" id="S4.T6.18.14.15.2.1">Arith. Mean</span></td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.18.14.15.3">0.84</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.18.14.15.4">1.40</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.18.14.15.5">1.58</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.18.14.15.6">4.01</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.18.14.15.7">2.94</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S4.T6.18.14.15.8">7.41</td> </tr> <tr class="ltx_tr" id="S4.T6.18.14.16"> <td class="ltx_td ltx_border_bb" id="S4.T6.18.14.16.1"></td> <td class="ltx_td ltx_align_left ltx_border_bb" id="S4.T6.18.14.16.2"><span class="ltx_text ltx_font_bold" id="S4.T6.18.14.16.2.1">Geom. Mean</span></td> <td class="ltx_td ltx_align_right ltx_border_bb" id="S4.T6.18.14.16.3">0.53</td> <td class="ltx_td ltx_align_right ltx_border_bb" id="S4.T6.18.14.16.4">1.15</td> <td class="ltx_td ltx_align_right ltx_border_bb" id="S4.T6.18.14.16.5">0.87</td> <td class="ltx_td ltx_align_right ltx_border_bb" id="S4.T6.18.14.16.6">3.45</td> <td class="ltx_td ltx_align_right ltx_border_bb" id="S4.T6.18.14.16.7">3.99</td> <td class="ltx_td ltx_align_right ltx_border_bb" id="S4.T6.18.14.16.8">3.26</td> </tr> </table> </span></div> </figure> <figure class="ltx_figure" id="S4.F4"><img alt="Refer to caption" class="ltx_graphics ltx_centering ltx_img_landscape" height="363" id="S4.F4.g1" src="x4.png" width="830"/> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S4.F4.2.1.1" style="font-size:90%;">Figure 4</span>. </span><span class="ltx_text" id="S4.F4.3.2" style="font-size:90%;">Percent of time spent in the Investigating, Repairing, and Checking periods, from the overall duration for failure resolution [%].</span></figcaption> </figure> <div class="ltx_para" id="S4.p3"> <p class="ltx_p" id="S4.p3.12">Updated status information is important for users waiting for a service to recover so that they can plan their work, recovery, and communication with customers. <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S3.T5" title="In 3.2. Data Collection and Dataset Preparation ‣ 3. Dataset Collection and Preparation ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Table</span> <span class="ltx_text ltx_ref_tag">5</span></a> gives the numbers and percent of different combinations of statuses for all reports. In most cases, incident reports do not include every status. Cases with <math alttext="S_{5}(postmortem)" class="ltx_Math" display="inline" id="S4.p3.1.m1.1"><semantics id="S4.p3.1.m1.1a"><mrow id="S4.p3.1.m1.1.1" xref="S4.p3.1.m1.1.1.cmml"><msub id="S4.p3.1.m1.1.1.3" xref="S4.p3.1.m1.1.1.3.cmml"><mi id="S4.p3.1.m1.1.1.3.2" xref="S4.p3.1.m1.1.1.3.2.cmml">S</mi><mn id="S4.p3.1.m1.1.1.3.3" xref="S4.p3.1.m1.1.1.3.3.cmml">5</mn></msub><mo id="S4.p3.1.m1.1.1.2" xref="S4.p3.1.m1.1.1.2.cmml"></mo><mrow id="S4.p3.1.m1.1.1.1.1" xref="S4.p3.1.m1.1.1.1.1.1.cmml"><mo id="S4.p3.1.m1.1.1.1.1.2" stretchy="false" xref="S4.p3.1.m1.1.1.1.1.1.cmml">(</mo><mrow id="S4.p3.1.m1.1.1.1.1.1" xref="S4.p3.1.m1.1.1.1.1.1.cmml"><mi id="S4.p3.1.m1.1.1.1.1.1.2" xref="S4.p3.1.m1.1.1.1.1.1.2.cmml">p</mi><mo id="S4.p3.1.m1.1.1.1.1.1.1" xref="S4.p3.1.m1.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.1.m1.1.1.1.1.1.3" xref="S4.p3.1.m1.1.1.1.1.1.3.cmml">o</mi><mo id="S4.p3.1.m1.1.1.1.1.1.1a" xref="S4.p3.1.m1.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.1.m1.1.1.1.1.1.4" xref="S4.p3.1.m1.1.1.1.1.1.4.cmml">s</mi><mo id="S4.p3.1.m1.1.1.1.1.1.1b" xref="S4.p3.1.m1.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.1.m1.1.1.1.1.1.5" xref="S4.p3.1.m1.1.1.1.1.1.5.cmml">t</mi><mo id="S4.p3.1.m1.1.1.1.1.1.1c" xref="S4.p3.1.m1.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.1.m1.1.1.1.1.1.6" xref="S4.p3.1.m1.1.1.1.1.1.6.cmml">m</mi><mo id="S4.p3.1.m1.1.1.1.1.1.1d" xref="S4.p3.1.m1.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.1.m1.1.1.1.1.1.7" xref="S4.p3.1.m1.1.1.1.1.1.7.cmml">o</mi><mo id="S4.p3.1.m1.1.1.1.1.1.1e" xref="S4.p3.1.m1.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.1.m1.1.1.1.1.1.8" xref="S4.p3.1.m1.1.1.1.1.1.8.cmml">r</mi><mo id="S4.p3.1.m1.1.1.1.1.1.1f" xref="S4.p3.1.m1.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.1.m1.1.1.1.1.1.9" xref="S4.p3.1.m1.1.1.1.1.1.9.cmml">t</mi><mo id="S4.p3.1.m1.1.1.1.1.1.1g" xref="S4.p3.1.m1.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.1.m1.1.1.1.1.1.10" xref="S4.p3.1.m1.1.1.1.1.1.10.cmml">e</mi><mo id="S4.p3.1.m1.1.1.1.1.1.1h" xref="S4.p3.1.m1.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.1.m1.1.1.1.1.1.11" xref="S4.p3.1.m1.1.1.1.1.1.11.cmml">m</mi></mrow><mo id="S4.p3.1.m1.1.1.1.1.3" stretchy="false" xref="S4.p3.1.m1.1.1.1.1.1.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S4.p3.1.m1.1b"><apply id="S4.p3.1.m1.1.1.cmml" xref="S4.p3.1.m1.1.1"><times id="S4.p3.1.m1.1.1.2.cmml" xref="S4.p3.1.m1.1.1.2"></times><apply id="S4.p3.1.m1.1.1.3.cmml" xref="S4.p3.1.m1.1.1.3"><csymbol cd="ambiguous" id="S4.p3.1.m1.1.1.3.1.cmml" xref="S4.p3.1.m1.1.1.3">subscript</csymbol><ci id="S4.p3.1.m1.1.1.3.2.cmml" xref="S4.p3.1.m1.1.1.3.2">𝑆</ci><cn id="S4.p3.1.m1.1.1.3.3.cmml" type="integer" xref="S4.p3.1.m1.1.1.3.3">5</cn></apply><apply id="S4.p3.1.m1.1.1.1.1.1.cmml" xref="S4.p3.1.m1.1.1.1.1"><times id="S4.p3.1.m1.1.1.1.1.1.1.cmml" xref="S4.p3.1.m1.1.1.1.1.1.1"></times><ci id="S4.p3.1.m1.1.1.1.1.1.2.cmml" xref="S4.p3.1.m1.1.1.1.1.1.2">𝑝</ci><ci id="S4.p3.1.m1.1.1.1.1.1.3.cmml" xref="S4.p3.1.m1.1.1.1.1.1.3">𝑜</ci><ci id="S4.p3.1.m1.1.1.1.1.1.4.cmml" xref="S4.p3.1.m1.1.1.1.1.1.4">𝑠</ci><ci id="S4.p3.1.m1.1.1.1.1.1.5.cmml" xref="S4.p3.1.m1.1.1.1.1.1.5">𝑡</ci><ci id="S4.p3.1.m1.1.1.1.1.1.6.cmml" xref="S4.p3.1.m1.1.1.1.1.1.6">𝑚</ci><ci id="S4.p3.1.m1.1.1.1.1.1.7.cmml" xref="S4.p3.1.m1.1.1.1.1.1.7">𝑜</ci><ci id="S4.p3.1.m1.1.1.1.1.1.8.cmml" xref="S4.p3.1.m1.1.1.1.1.1.8">𝑟</ci><ci id="S4.p3.1.m1.1.1.1.1.1.9.cmml" xref="S4.p3.1.m1.1.1.1.1.1.9">𝑡</ci><ci id="S4.p3.1.m1.1.1.1.1.1.10.cmml" xref="S4.p3.1.m1.1.1.1.1.1.10">𝑒</ci><ci id="S4.p3.1.m1.1.1.1.1.1.11.cmml" xref="S4.p3.1.m1.1.1.1.1.1.11">𝑚</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p3.1.m1.1c">S_{5}(postmortem)</annotation><annotation encoding="application/x-llamapun" id="S4.p3.1.m1.1d">italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ( italic_p italic_o italic_s italic_t italic_m italic_o italic_r italic_t italic_e italic_m )</annotation></semantics></math> account for the fewest percent, with only 6.15% of incident reports having a postmortem. The most prevailing case combination is <math alttext="S_{1}" class="ltx_Math" display="inline" id="S4.p3.2.m2.1"><semantics id="S4.p3.2.m2.1a"><msub id="S4.p3.2.m2.1.1" xref="S4.p3.2.m2.1.1.cmml"><mi id="S4.p3.2.m2.1.1.2" xref="S4.p3.2.m2.1.1.2.cmml">S</mi><mn id="S4.p3.2.m2.1.1.3" xref="S4.p3.2.m2.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S4.p3.2.m2.1b"><apply id="S4.p3.2.m2.1.1.cmml" xref="S4.p3.2.m2.1.1"><csymbol cd="ambiguous" id="S4.p3.2.m2.1.1.1.cmml" xref="S4.p3.2.m2.1.1">subscript</csymbol><ci id="S4.p3.2.m2.1.1.2.cmml" xref="S4.p3.2.m2.1.1.2">𝑆</ci><cn id="S4.p3.2.m2.1.1.3.cmml" type="integer" xref="S4.p3.2.m2.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p3.2.m2.1c">S_{1}</annotation><annotation encoding="application/x-llamapun" id="S4.p3.2.m2.1d">italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math>-<math alttext="S_{3}" class="ltx_Math" display="inline" id="S4.p3.3.m3.1"><semantics id="S4.p3.3.m3.1a"><msub id="S4.p3.3.m3.1.1" xref="S4.p3.3.m3.1.1.cmml"><mi id="S4.p3.3.m3.1.1.2" xref="S4.p3.3.m3.1.1.2.cmml">S</mi><mn id="S4.p3.3.m3.1.1.3" xref="S4.p3.3.m3.1.1.3.cmml">3</mn></msub><annotation-xml encoding="MathML-Content" id="S4.p3.3.m3.1b"><apply id="S4.p3.3.m3.1.1.cmml" xref="S4.p3.3.m3.1.1"><csymbol cd="ambiguous" id="S4.p3.3.m3.1.1.1.cmml" xref="S4.p3.3.m3.1.1">subscript</csymbol><ci id="S4.p3.3.m3.1.1.2.cmml" xref="S4.p3.3.m3.1.1.2">𝑆</ci><cn id="S4.p3.3.m3.1.1.3.cmml" type="integer" xref="S4.p3.3.m3.1.1.3">3</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p3.3.m3.1c">S_{3}</annotation><annotation encoding="application/x-llamapun" id="S4.p3.3.m3.1d">italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT</annotation></semantics></math>-<math alttext="S_{4}" class="ltx_Math" display="inline" id="S4.p3.4.m4.1"><semantics id="S4.p3.4.m4.1a"><msub id="S4.p3.4.m4.1.1" xref="S4.p3.4.m4.1.1.cmml"><mi id="S4.p3.4.m4.1.1.2" xref="S4.p3.4.m4.1.1.2.cmml">S</mi><mn id="S4.p3.4.m4.1.1.3" xref="S4.p3.4.m4.1.1.3.cmml">4</mn></msub><annotation-xml encoding="MathML-Content" id="S4.p3.4.m4.1b"><apply id="S4.p3.4.m4.1.1.cmml" xref="S4.p3.4.m4.1.1"><csymbol cd="ambiguous" id="S4.p3.4.m4.1.1.1.cmml" xref="S4.p3.4.m4.1.1">subscript</csymbol><ci id="S4.p3.4.m4.1.1.2.cmml" xref="S4.p3.4.m4.1.1.2">𝑆</ci><cn id="S4.p3.4.m4.1.1.3.cmml" type="integer" xref="S4.p3.4.m4.1.1.3">4</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p3.4.m4.1c">S_{4}</annotation><annotation encoding="application/x-llamapun" id="S4.p3.4.m4.1d">italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT</annotation></semantics></math> (24.39%), in which the important status <math alttext="S_{2}(identified)" class="ltx_Math" display="inline" id="S4.p3.5.m5.1"><semantics id="S4.p3.5.m5.1a"><mrow id="S4.p3.5.m5.1.1" xref="S4.p3.5.m5.1.1.cmml"><msub id="S4.p3.5.m5.1.1.3" xref="S4.p3.5.m5.1.1.3.cmml"><mi id="S4.p3.5.m5.1.1.3.2" xref="S4.p3.5.m5.1.1.3.2.cmml">S</mi><mn id="S4.p3.5.m5.1.1.3.3" xref="S4.p3.5.m5.1.1.3.3.cmml">2</mn></msub><mo id="S4.p3.5.m5.1.1.2" xref="S4.p3.5.m5.1.1.2.cmml"></mo><mrow id="S4.p3.5.m5.1.1.1.1" xref="S4.p3.5.m5.1.1.1.1.1.cmml"><mo id="S4.p3.5.m5.1.1.1.1.2" stretchy="false" xref="S4.p3.5.m5.1.1.1.1.1.cmml">(</mo><mrow id="S4.p3.5.m5.1.1.1.1.1" xref="S4.p3.5.m5.1.1.1.1.1.cmml"><mi id="S4.p3.5.m5.1.1.1.1.1.2" xref="S4.p3.5.m5.1.1.1.1.1.2.cmml">i</mi><mo id="S4.p3.5.m5.1.1.1.1.1.1" xref="S4.p3.5.m5.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.5.m5.1.1.1.1.1.3" xref="S4.p3.5.m5.1.1.1.1.1.3.cmml">d</mi><mo id="S4.p3.5.m5.1.1.1.1.1.1a" xref="S4.p3.5.m5.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.5.m5.1.1.1.1.1.4" xref="S4.p3.5.m5.1.1.1.1.1.4.cmml">e</mi><mo id="S4.p3.5.m5.1.1.1.1.1.1b" xref="S4.p3.5.m5.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.5.m5.1.1.1.1.1.5" xref="S4.p3.5.m5.1.1.1.1.1.5.cmml">n</mi><mo id="S4.p3.5.m5.1.1.1.1.1.1c" xref="S4.p3.5.m5.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.5.m5.1.1.1.1.1.6" xref="S4.p3.5.m5.1.1.1.1.1.6.cmml">t</mi><mo id="S4.p3.5.m5.1.1.1.1.1.1d" xref="S4.p3.5.m5.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.5.m5.1.1.1.1.1.7" xref="S4.p3.5.m5.1.1.1.1.1.7.cmml">i</mi><mo id="S4.p3.5.m5.1.1.1.1.1.1e" xref="S4.p3.5.m5.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.5.m5.1.1.1.1.1.8" xref="S4.p3.5.m5.1.1.1.1.1.8.cmml">f</mi><mo id="S4.p3.5.m5.1.1.1.1.1.1f" xref="S4.p3.5.m5.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.5.m5.1.1.1.1.1.9" xref="S4.p3.5.m5.1.1.1.1.1.9.cmml">i</mi><mo id="S4.p3.5.m5.1.1.1.1.1.1g" xref="S4.p3.5.m5.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.5.m5.1.1.1.1.1.10" xref="S4.p3.5.m5.1.1.1.1.1.10.cmml">e</mi><mo id="S4.p3.5.m5.1.1.1.1.1.1h" xref="S4.p3.5.m5.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.5.m5.1.1.1.1.1.11" xref="S4.p3.5.m5.1.1.1.1.1.11.cmml">d</mi></mrow><mo id="S4.p3.5.m5.1.1.1.1.3" stretchy="false" xref="S4.p3.5.m5.1.1.1.1.1.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S4.p3.5.m5.1b"><apply id="S4.p3.5.m5.1.1.cmml" xref="S4.p3.5.m5.1.1"><times id="S4.p3.5.m5.1.1.2.cmml" xref="S4.p3.5.m5.1.1.2"></times><apply id="S4.p3.5.m5.1.1.3.cmml" xref="S4.p3.5.m5.1.1.3"><csymbol cd="ambiguous" id="S4.p3.5.m5.1.1.3.1.cmml" xref="S4.p3.5.m5.1.1.3">subscript</csymbol><ci id="S4.p3.5.m5.1.1.3.2.cmml" xref="S4.p3.5.m5.1.1.3.2">𝑆</ci><cn id="S4.p3.5.m5.1.1.3.3.cmml" type="integer" xref="S4.p3.5.m5.1.1.3.3">2</cn></apply><apply id="S4.p3.5.m5.1.1.1.1.1.cmml" xref="S4.p3.5.m5.1.1.1.1"><times id="S4.p3.5.m5.1.1.1.1.1.1.cmml" xref="S4.p3.5.m5.1.1.1.1.1.1"></times><ci id="S4.p3.5.m5.1.1.1.1.1.2.cmml" xref="S4.p3.5.m5.1.1.1.1.1.2">𝑖</ci><ci id="S4.p3.5.m5.1.1.1.1.1.3.cmml" xref="S4.p3.5.m5.1.1.1.1.1.3">𝑑</ci><ci id="S4.p3.5.m5.1.1.1.1.1.4.cmml" xref="S4.p3.5.m5.1.1.1.1.1.4">𝑒</ci><ci id="S4.p3.5.m5.1.1.1.1.1.5.cmml" xref="S4.p3.5.m5.1.1.1.1.1.5">𝑛</ci><ci id="S4.p3.5.m5.1.1.1.1.1.6.cmml" xref="S4.p3.5.m5.1.1.1.1.1.6">𝑡</ci><ci id="S4.p3.5.m5.1.1.1.1.1.7.cmml" xref="S4.p3.5.m5.1.1.1.1.1.7">𝑖</ci><ci id="S4.p3.5.m5.1.1.1.1.1.8.cmml" xref="S4.p3.5.m5.1.1.1.1.1.8">𝑓</ci><ci id="S4.p3.5.m5.1.1.1.1.1.9.cmml" xref="S4.p3.5.m5.1.1.1.1.1.9">𝑖</ci><ci id="S4.p3.5.m5.1.1.1.1.1.10.cmml" xref="S4.p3.5.m5.1.1.1.1.1.10">𝑒</ci><ci id="S4.p3.5.m5.1.1.1.1.1.11.cmml" xref="S4.p3.5.m5.1.1.1.1.1.11">𝑑</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p3.5.m5.1c">S_{2}(identified)</annotation><annotation encoding="application/x-llamapun" id="S4.p3.5.m5.1d">italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_i italic_d italic_e italic_n italic_t italic_i italic_f italic_i italic_e italic_d )</annotation></semantics></math> is missing. This means the operators do not communicate to the users that they have identified the issue. 20.48% of cases only provide information about <math alttext="S_{1}(investigating)" class="ltx_Math" display="inline" id="S4.p3.6.m6.1"><semantics id="S4.p3.6.m6.1a"><mrow id="S4.p3.6.m6.1.1" xref="S4.p3.6.m6.1.1.cmml"><msub id="S4.p3.6.m6.1.1.3" xref="S4.p3.6.m6.1.1.3.cmml"><mi id="S4.p3.6.m6.1.1.3.2" xref="S4.p3.6.m6.1.1.3.2.cmml">S</mi><mn id="S4.p3.6.m6.1.1.3.3" xref="S4.p3.6.m6.1.1.3.3.cmml">1</mn></msub><mo id="S4.p3.6.m6.1.1.2" xref="S4.p3.6.m6.1.1.2.cmml"></mo><mrow id="S4.p3.6.m6.1.1.1.1" xref="S4.p3.6.m6.1.1.1.1.1.cmml"><mo id="S4.p3.6.m6.1.1.1.1.2" stretchy="false" xref="S4.p3.6.m6.1.1.1.1.1.cmml">(</mo><mrow id="S4.p3.6.m6.1.1.1.1.1" xref="S4.p3.6.m6.1.1.1.1.1.cmml"><mi id="S4.p3.6.m6.1.1.1.1.1.2" xref="S4.p3.6.m6.1.1.1.1.1.2.cmml">i</mi><mo id="S4.p3.6.m6.1.1.1.1.1.1" xref="S4.p3.6.m6.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.6.m6.1.1.1.1.1.3" xref="S4.p3.6.m6.1.1.1.1.1.3.cmml">n</mi><mo id="S4.p3.6.m6.1.1.1.1.1.1a" xref="S4.p3.6.m6.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.6.m6.1.1.1.1.1.4" xref="S4.p3.6.m6.1.1.1.1.1.4.cmml">v</mi><mo id="S4.p3.6.m6.1.1.1.1.1.1b" xref="S4.p3.6.m6.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.6.m6.1.1.1.1.1.5" xref="S4.p3.6.m6.1.1.1.1.1.5.cmml">e</mi><mo id="S4.p3.6.m6.1.1.1.1.1.1c" xref="S4.p3.6.m6.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.6.m6.1.1.1.1.1.6" xref="S4.p3.6.m6.1.1.1.1.1.6.cmml">s</mi><mo id="S4.p3.6.m6.1.1.1.1.1.1d" xref="S4.p3.6.m6.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.6.m6.1.1.1.1.1.7" xref="S4.p3.6.m6.1.1.1.1.1.7.cmml">t</mi><mo id="S4.p3.6.m6.1.1.1.1.1.1e" xref="S4.p3.6.m6.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.6.m6.1.1.1.1.1.8" xref="S4.p3.6.m6.1.1.1.1.1.8.cmml">i</mi><mo id="S4.p3.6.m6.1.1.1.1.1.1f" xref="S4.p3.6.m6.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.6.m6.1.1.1.1.1.9" xref="S4.p3.6.m6.1.1.1.1.1.9.cmml">g</mi><mo id="S4.p3.6.m6.1.1.1.1.1.1g" xref="S4.p3.6.m6.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.6.m6.1.1.1.1.1.10" xref="S4.p3.6.m6.1.1.1.1.1.10.cmml">a</mi><mo id="S4.p3.6.m6.1.1.1.1.1.1h" xref="S4.p3.6.m6.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.6.m6.1.1.1.1.1.11" xref="S4.p3.6.m6.1.1.1.1.1.11.cmml">t</mi><mo id="S4.p3.6.m6.1.1.1.1.1.1i" xref="S4.p3.6.m6.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.6.m6.1.1.1.1.1.12" xref="S4.p3.6.m6.1.1.1.1.1.12.cmml">i</mi><mo id="S4.p3.6.m6.1.1.1.1.1.1j" xref="S4.p3.6.m6.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.6.m6.1.1.1.1.1.13" xref="S4.p3.6.m6.1.1.1.1.1.13.cmml">n</mi><mo id="S4.p3.6.m6.1.1.1.1.1.1k" xref="S4.p3.6.m6.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.6.m6.1.1.1.1.1.14" xref="S4.p3.6.m6.1.1.1.1.1.14.cmml">g</mi></mrow><mo id="S4.p3.6.m6.1.1.1.1.3" stretchy="false" xref="S4.p3.6.m6.1.1.1.1.1.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S4.p3.6.m6.1b"><apply id="S4.p3.6.m6.1.1.cmml" xref="S4.p3.6.m6.1.1"><times id="S4.p3.6.m6.1.1.2.cmml" xref="S4.p3.6.m6.1.1.2"></times><apply id="S4.p3.6.m6.1.1.3.cmml" xref="S4.p3.6.m6.1.1.3"><csymbol cd="ambiguous" id="S4.p3.6.m6.1.1.3.1.cmml" xref="S4.p3.6.m6.1.1.3">subscript</csymbol><ci id="S4.p3.6.m6.1.1.3.2.cmml" xref="S4.p3.6.m6.1.1.3.2">𝑆</ci><cn id="S4.p3.6.m6.1.1.3.3.cmml" type="integer" xref="S4.p3.6.m6.1.1.3.3">1</cn></apply><apply id="S4.p3.6.m6.1.1.1.1.1.cmml" xref="S4.p3.6.m6.1.1.1.1"><times id="S4.p3.6.m6.1.1.1.1.1.1.cmml" xref="S4.p3.6.m6.1.1.1.1.1.1"></times><ci id="S4.p3.6.m6.1.1.1.1.1.2.cmml" xref="S4.p3.6.m6.1.1.1.1.1.2">𝑖</ci><ci id="S4.p3.6.m6.1.1.1.1.1.3.cmml" xref="S4.p3.6.m6.1.1.1.1.1.3">𝑛</ci><ci id="S4.p3.6.m6.1.1.1.1.1.4.cmml" xref="S4.p3.6.m6.1.1.1.1.1.4">𝑣</ci><ci id="S4.p3.6.m6.1.1.1.1.1.5.cmml" xref="S4.p3.6.m6.1.1.1.1.1.5">𝑒</ci><ci id="S4.p3.6.m6.1.1.1.1.1.6.cmml" xref="S4.p3.6.m6.1.1.1.1.1.6">𝑠</ci><ci id="S4.p3.6.m6.1.1.1.1.1.7.cmml" xref="S4.p3.6.m6.1.1.1.1.1.7">𝑡</ci><ci id="S4.p3.6.m6.1.1.1.1.1.8.cmml" xref="S4.p3.6.m6.1.1.1.1.1.8">𝑖</ci><ci id="S4.p3.6.m6.1.1.1.1.1.9.cmml" xref="S4.p3.6.m6.1.1.1.1.1.9">𝑔</ci><ci id="S4.p3.6.m6.1.1.1.1.1.10.cmml" xref="S4.p3.6.m6.1.1.1.1.1.10">𝑎</ci><ci id="S4.p3.6.m6.1.1.1.1.1.11.cmml" xref="S4.p3.6.m6.1.1.1.1.1.11">𝑡</ci><ci id="S4.p3.6.m6.1.1.1.1.1.12.cmml" xref="S4.p3.6.m6.1.1.1.1.1.12">𝑖</ci><ci id="S4.p3.6.m6.1.1.1.1.1.13.cmml" xref="S4.p3.6.m6.1.1.1.1.1.13">𝑛</ci><ci id="S4.p3.6.m6.1.1.1.1.1.14.cmml" xref="S4.p3.6.m6.1.1.1.1.1.14">𝑔</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p3.6.m6.1c">S_{1}(investigating)</annotation><annotation encoding="application/x-llamapun" id="S4.p3.6.m6.1d">italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_i italic_n italic_v italic_e italic_s italic_t italic_i italic_g italic_a italic_t italic_i italic_n italic_g )</annotation></semantics></math> and <math alttext="S_{4}(resolved)" class="ltx_Math" display="inline" id="S4.p3.7.m7.1"><semantics id="S4.p3.7.m7.1a"><mrow id="S4.p3.7.m7.1.1" xref="S4.p3.7.m7.1.1.cmml"><msub id="S4.p3.7.m7.1.1.3" xref="S4.p3.7.m7.1.1.3.cmml"><mi id="S4.p3.7.m7.1.1.3.2" xref="S4.p3.7.m7.1.1.3.2.cmml">S</mi><mn id="S4.p3.7.m7.1.1.3.3" xref="S4.p3.7.m7.1.1.3.3.cmml">4</mn></msub><mo id="S4.p3.7.m7.1.1.2" xref="S4.p3.7.m7.1.1.2.cmml"></mo><mrow id="S4.p3.7.m7.1.1.1.1" xref="S4.p3.7.m7.1.1.1.1.1.cmml"><mo id="S4.p3.7.m7.1.1.1.1.2" stretchy="false" xref="S4.p3.7.m7.1.1.1.1.1.cmml">(</mo><mrow id="S4.p3.7.m7.1.1.1.1.1" xref="S4.p3.7.m7.1.1.1.1.1.cmml"><mi id="S4.p3.7.m7.1.1.1.1.1.2" xref="S4.p3.7.m7.1.1.1.1.1.2.cmml">r</mi><mo id="S4.p3.7.m7.1.1.1.1.1.1" xref="S4.p3.7.m7.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.7.m7.1.1.1.1.1.3" xref="S4.p3.7.m7.1.1.1.1.1.3.cmml">e</mi><mo id="S4.p3.7.m7.1.1.1.1.1.1a" xref="S4.p3.7.m7.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.7.m7.1.1.1.1.1.4" xref="S4.p3.7.m7.1.1.1.1.1.4.cmml">s</mi><mo id="S4.p3.7.m7.1.1.1.1.1.1b" xref="S4.p3.7.m7.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.7.m7.1.1.1.1.1.5" xref="S4.p3.7.m7.1.1.1.1.1.5.cmml">o</mi><mo id="S4.p3.7.m7.1.1.1.1.1.1c" xref="S4.p3.7.m7.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.7.m7.1.1.1.1.1.6" xref="S4.p3.7.m7.1.1.1.1.1.6.cmml">l</mi><mo id="S4.p3.7.m7.1.1.1.1.1.1d" xref="S4.p3.7.m7.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.7.m7.1.1.1.1.1.7" xref="S4.p3.7.m7.1.1.1.1.1.7.cmml">v</mi><mo id="S4.p3.7.m7.1.1.1.1.1.1e" xref="S4.p3.7.m7.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.7.m7.1.1.1.1.1.8" xref="S4.p3.7.m7.1.1.1.1.1.8.cmml">e</mi><mo id="S4.p3.7.m7.1.1.1.1.1.1f" xref="S4.p3.7.m7.1.1.1.1.1.1.cmml"></mo><mi id="S4.p3.7.m7.1.1.1.1.1.9" xref="S4.p3.7.m7.1.1.1.1.1.9.cmml">d</mi></mrow><mo id="S4.p3.7.m7.1.1.1.1.3" stretchy="false" xref="S4.p3.7.m7.1.1.1.1.1.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S4.p3.7.m7.1b"><apply id="S4.p3.7.m7.1.1.cmml" xref="S4.p3.7.m7.1.1"><times id="S4.p3.7.m7.1.1.2.cmml" xref="S4.p3.7.m7.1.1.2"></times><apply id="S4.p3.7.m7.1.1.3.cmml" xref="S4.p3.7.m7.1.1.3"><csymbol cd="ambiguous" id="S4.p3.7.m7.1.1.3.1.cmml" xref="S4.p3.7.m7.1.1.3">subscript</csymbol><ci id="S4.p3.7.m7.1.1.3.2.cmml" xref="S4.p3.7.m7.1.1.3.2">𝑆</ci><cn id="S4.p3.7.m7.1.1.3.3.cmml" type="integer" xref="S4.p3.7.m7.1.1.3.3">4</cn></apply><apply id="S4.p3.7.m7.1.1.1.1.1.cmml" xref="S4.p3.7.m7.1.1.1.1"><times id="S4.p3.7.m7.1.1.1.1.1.1.cmml" xref="S4.p3.7.m7.1.1.1.1.1.1"></times><ci id="S4.p3.7.m7.1.1.1.1.1.2.cmml" xref="S4.p3.7.m7.1.1.1.1.1.2">𝑟</ci><ci id="S4.p3.7.m7.1.1.1.1.1.3.cmml" xref="S4.p3.7.m7.1.1.1.1.1.3">𝑒</ci><ci id="S4.p3.7.m7.1.1.1.1.1.4.cmml" xref="S4.p3.7.m7.1.1.1.1.1.4">𝑠</ci><ci id="S4.p3.7.m7.1.1.1.1.1.5.cmml" xref="S4.p3.7.m7.1.1.1.1.1.5">𝑜</ci><ci id="S4.p3.7.m7.1.1.1.1.1.6.cmml" xref="S4.p3.7.m7.1.1.1.1.1.6">𝑙</ci><ci id="S4.p3.7.m7.1.1.1.1.1.7.cmml" xref="S4.p3.7.m7.1.1.1.1.1.7">𝑣</ci><ci id="S4.p3.7.m7.1.1.1.1.1.8.cmml" xref="S4.p3.7.m7.1.1.1.1.1.8">𝑒</ci><ci id="S4.p3.7.m7.1.1.1.1.1.9.cmml" xref="S4.p3.7.m7.1.1.1.1.1.9">𝑑</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p3.7.m7.1c">S_{4}(resolved)</annotation><annotation encoding="application/x-llamapun" id="S4.p3.7.m7.1d">italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( italic_r italic_e italic_s italic_o italic_l italic_v italic_e italic_d )</annotation></semantics></math> statuses. 14.34% of reports update every status (<math alttext="S_{1}" class="ltx_Math" display="inline" id="S4.p3.8.m8.1"><semantics id="S4.p3.8.m8.1a"><msub id="S4.p3.8.m8.1.1" xref="S4.p3.8.m8.1.1.cmml"><mi id="S4.p3.8.m8.1.1.2" xref="S4.p3.8.m8.1.1.2.cmml">S</mi><mn id="S4.p3.8.m8.1.1.3" xref="S4.p3.8.m8.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S4.p3.8.m8.1b"><apply id="S4.p3.8.m8.1.1.cmml" xref="S4.p3.8.m8.1.1"><csymbol cd="ambiguous" id="S4.p3.8.m8.1.1.1.cmml" xref="S4.p3.8.m8.1.1">subscript</csymbol><ci id="S4.p3.8.m8.1.1.2.cmml" xref="S4.p3.8.m8.1.1.2">𝑆</ci><cn id="S4.p3.8.m8.1.1.3.cmml" type="integer" xref="S4.p3.8.m8.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p3.8.m8.1c">S_{1}</annotation><annotation encoding="application/x-llamapun" id="S4.p3.8.m8.1d">italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math>-<math alttext="S_{2}" class="ltx_Math" display="inline" id="S4.p3.9.m9.1"><semantics id="S4.p3.9.m9.1a"><msub id="S4.p3.9.m9.1.1" xref="S4.p3.9.m9.1.1.cmml"><mi id="S4.p3.9.m9.1.1.2" xref="S4.p3.9.m9.1.1.2.cmml">S</mi><mn id="S4.p3.9.m9.1.1.3" xref="S4.p3.9.m9.1.1.3.cmml">2</mn></msub><annotation-xml encoding="MathML-Content" id="S4.p3.9.m9.1b"><apply id="S4.p3.9.m9.1.1.cmml" xref="S4.p3.9.m9.1.1"><csymbol cd="ambiguous" id="S4.p3.9.m9.1.1.1.cmml" xref="S4.p3.9.m9.1.1">subscript</csymbol><ci id="S4.p3.9.m9.1.1.2.cmml" xref="S4.p3.9.m9.1.1.2">𝑆</ci><cn id="S4.p3.9.m9.1.1.3.cmml" type="integer" xref="S4.p3.9.m9.1.1.3">2</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p3.9.m9.1c">S_{2}</annotation><annotation encoding="application/x-llamapun" id="S4.p3.9.m9.1d">italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT</annotation></semantics></math>-<math alttext="S_{3}" class="ltx_Math" display="inline" id="S4.p3.10.m10.1"><semantics id="S4.p3.10.m10.1a"><msub id="S4.p3.10.m10.1.1" xref="S4.p3.10.m10.1.1.cmml"><mi id="S4.p3.10.m10.1.1.2" xref="S4.p3.10.m10.1.1.2.cmml">S</mi><mn id="S4.p3.10.m10.1.1.3" xref="S4.p3.10.m10.1.1.3.cmml">3</mn></msub><annotation-xml encoding="MathML-Content" id="S4.p3.10.m10.1b"><apply id="S4.p3.10.m10.1.1.cmml" xref="S4.p3.10.m10.1.1"><csymbol cd="ambiguous" id="S4.p3.10.m10.1.1.1.cmml" xref="S4.p3.10.m10.1.1">subscript</csymbol><ci id="S4.p3.10.m10.1.1.2.cmml" xref="S4.p3.10.m10.1.1.2">𝑆</ci><cn id="S4.p3.10.m10.1.1.3.cmml" type="integer" xref="S4.p3.10.m10.1.1.3">3</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p3.10.m10.1c">S_{3}</annotation><annotation encoding="application/x-llamapun" id="S4.p3.10.m10.1d">italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT</annotation></semantics></math>-<math alttext="S_{4}" class="ltx_Math" display="inline" id="S4.p3.11.m11.1"><semantics id="S4.p3.11.m11.1a"><msub id="S4.p3.11.m11.1.1" xref="S4.p3.11.m11.1.1.cmml"><mi id="S4.p3.11.m11.1.1.2" xref="S4.p3.11.m11.1.1.2.cmml">S</mi><mn id="S4.p3.11.m11.1.1.3" xref="S4.p3.11.m11.1.1.3.cmml">4</mn></msub><annotation-xml encoding="MathML-Content" id="S4.p3.11.m11.1b"><apply id="S4.p3.11.m11.1.1.cmml" xref="S4.p3.11.m11.1.1"><csymbol cd="ambiguous" id="S4.p3.11.m11.1.1.1.cmml" xref="S4.p3.11.m11.1.1">subscript</csymbol><ci id="S4.p3.11.m11.1.1.2.cmml" xref="S4.p3.11.m11.1.1.2">𝑆</ci><cn id="S4.p3.11.m11.1.1.3.cmml" type="integer" xref="S4.p3.11.m11.1.1.3">4</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p3.11.m11.1c">S_{4}</annotation><annotation encoding="application/x-llamapun" id="S4.p3.11.m11.1d">italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT</annotation></semantics></math>) throughout the duration of incidents, while 11.55% only update once the incidents have been resolved (<math alttext="S_{4}" class="ltx_Math" display="inline" id="S4.p3.12.m12.1"><semantics id="S4.p3.12.m12.1a"><msub id="S4.p3.12.m12.1.1" xref="S4.p3.12.m12.1.1.cmml"><mi id="S4.p3.12.m12.1.1.2" xref="S4.p3.12.m12.1.1.2.cmml">S</mi><mn id="S4.p3.12.m12.1.1.3" xref="S4.p3.12.m12.1.1.3.cmml">4</mn></msub><annotation-xml encoding="MathML-Content" id="S4.p3.12.m12.1b"><apply id="S4.p3.12.m12.1.1.cmml" xref="S4.p3.12.m12.1.1"><csymbol cd="ambiguous" id="S4.p3.12.m12.1.1.1.cmml" xref="S4.p3.12.m12.1.1">subscript</csymbol><ci id="S4.p3.12.m12.1.1.2.cmml" xref="S4.p3.12.m12.1.1.2">𝑆</ci><cn id="S4.p3.12.m12.1.1.3.cmml" type="integer" xref="S4.p3.12.m12.1.1.3">4</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p3.12.m12.1c">S_{4}</annotation><annotation encoding="application/x-llamapun" id="S4.p3.12.m12.1d">italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT</annotation></semantics></math>).</p> </div> <div class="ltx_para" id="S4.p4"> <p class="ltx_p" id="S4.p4.1">These results indicate that operators fail to communicate the state of a failure to the user and update the user about potential fix times. Users must create their own failure models <cite class="ltx_cite ltx_citemacro_citep">(Garg et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib18" title="">2018</a>)</cite> and fault-tolerance systems <cite class="ltx_cite ltx_citemacro_citep">(Primorac et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib44" title="">2021</a>)</cite> and expect little input from the operator.</p> </div> <figure class="ltx_figure ltx_minipage ltx_align_center ltx_align_middle" id="S4.F5" style="width:433.6pt;"> <div class="ltx_flex_figure"> <div class="ltx_flex_cell ltx_flex_size_1"> <figure class="ltx_figure ltx_figure_panel" id="S4.F5.sf1"><img alt="Refer to caption" class="ltx_graphics ltx_img_landscape" height="498" id="S4.F5.sf1.g1" src="x5.png" width="830"/> <figcaption class="ltx_caption"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S4.F5.sf1.2.1.1" style="font-size:90%;">(a)</span> </span><span class="ltx_text" id="S4.F5.sf1.3.2" style="font-size:90%;">Mean Time To Resolve (Shorter is better).</span></figcaption> </figure> </div> <div class="ltx_flex_break"></div> <div class="ltx_flex_cell ltx_flex_size_1"> <figure class="ltx_figure ltx_figure_panel" id="S4.F5.sf2"><img alt="Refer to caption" class="ltx_graphics ltx_img_landscape" height="498" id="S4.F5.sf2.g1" src="x6.png" width="830"/> <figcaption class="ltx_caption"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S4.F5.sf2.2.1.1" style="font-size:90%;">(b)</span> </span><span class="ltx_text" id="S4.F5.sf2.3.2" style="font-size:90%;">Mean Time Between Failures (Longer is better).</span></figcaption> </figure> </div> </div> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S4.F5.2.1.1" style="font-size:90%;">Figure 5</span>. </span><span class="ltx_text" id="S4.F5.3.2" style="font-size:90%;">Distribution of MTTR and MTBF by service, with median values indicated.</span></figcaption> </figure> <div class="ltx_para ltx_noindent" id="S4.p5"> <p class="ltx_p" id="S4.p5.1"> <span class="ltx_inline-block ltx_parbox ltx_align_middle ltx_framed ltx_framed_rectangle" id="S4.p5.1.1" style="width:433.6pt;"> <span class="ltx_p" id="S4.p5.1.1.1"><span class="ltx_text ltx_font_bold" id="S4.p5.1.1.1.1">Observation #2:</span> <span class="ltx_text ltx_font_italic" id="S4.p5.1.1.1.2"> ChatGPT includes postmortems in 12.91% of its reports. Anthropic’s reports contain the fewest postmortems, with none provided for its API and Console services.</span></span> </span></p> </div> <div class="ltx_para" id="S4.p6"> <p class="ltx_p" id="S4.p6.5">The status combinations also vary depending on different services, as <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S3.F3" title="In 3.2. Data Collection and Dataset Preparation ‣ 3. Dataset Collection and Preparation ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Figure</span> <span class="ltx_text ltx_ref_tag">3</span></a> shows. The primary status combination for OpenAI services is <math alttext="S_{1}" class="ltx_Math" display="inline" id="S4.p6.1.m1.1"><semantics id="S4.p6.1.m1.1a"><msub id="S4.p6.1.m1.1.1" xref="S4.p6.1.m1.1.1.cmml"><mi id="S4.p6.1.m1.1.1.2" xref="S4.p6.1.m1.1.1.2.cmml">S</mi><mn id="S4.p6.1.m1.1.1.3" xref="S4.p6.1.m1.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S4.p6.1.m1.1b"><apply id="S4.p6.1.m1.1.1.cmml" xref="S4.p6.1.m1.1.1"><csymbol cd="ambiguous" id="S4.p6.1.m1.1.1.1.cmml" xref="S4.p6.1.m1.1.1">subscript</csymbol><ci id="S4.p6.1.m1.1.1.2.cmml" xref="S4.p6.1.m1.1.1.2">𝑆</ci><cn id="S4.p6.1.m1.1.1.3.cmml" type="integer" xref="S4.p6.1.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p6.1.m1.1c">S_{1}</annotation><annotation encoding="application/x-llamapun" id="S4.p6.1.m1.1d">italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math>-<math alttext="S_{3}" class="ltx_Math" display="inline" id="S4.p6.2.m2.1"><semantics id="S4.p6.2.m2.1a"><msub id="S4.p6.2.m2.1.1" xref="S4.p6.2.m2.1.1.cmml"><mi id="S4.p6.2.m2.1.1.2" xref="S4.p6.2.m2.1.1.2.cmml">S</mi><mn id="S4.p6.2.m2.1.1.3" xref="S4.p6.2.m2.1.1.3.cmml">3</mn></msub><annotation-xml encoding="MathML-Content" id="S4.p6.2.m2.1b"><apply id="S4.p6.2.m2.1.1.cmml" xref="S4.p6.2.m2.1.1"><csymbol cd="ambiguous" id="S4.p6.2.m2.1.1.1.cmml" xref="S4.p6.2.m2.1.1">subscript</csymbol><ci id="S4.p6.2.m2.1.1.2.cmml" xref="S4.p6.2.m2.1.1.2">𝑆</ci><cn id="S4.p6.2.m2.1.1.3.cmml" type="integer" xref="S4.p6.2.m2.1.1.3">3</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p6.2.m2.1c">S_{3}</annotation><annotation encoding="application/x-llamapun" id="S4.p6.2.m2.1d">italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT</annotation></semantics></math>-<math alttext="S_{4}" class="ltx_Math" display="inline" id="S4.p6.3.m3.1"><semantics id="S4.p6.3.m3.1a"><msub id="S4.p6.3.m3.1.1" xref="S4.p6.3.m3.1.1.cmml"><mi id="S4.p6.3.m3.1.1.2" xref="S4.p6.3.m3.1.1.2.cmml">S</mi><mn id="S4.p6.3.m3.1.1.3" xref="S4.p6.3.m3.1.1.3.cmml">4</mn></msub><annotation-xml encoding="MathML-Content" id="S4.p6.3.m3.1b"><apply id="S4.p6.3.m3.1.1.cmml" xref="S4.p6.3.m3.1.1"><csymbol cd="ambiguous" id="S4.p6.3.m3.1.1.1.cmml" xref="S4.p6.3.m3.1.1">subscript</csymbol><ci id="S4.p6.3.m3.1.1.2.cmml" xref="S4.p6.3.m3.1.1.2">𝑆</ci><cn id="S4.p6.3.m3.1.1.3.cmml" type="integer" xref="S4.p6.3.m3.1.1.3">4</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p6.3.m3.1c">S_{4}</annotation><annotation encoding="application/x-llamapun" id="S4.p6.3.m3.1d">italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT</annotation></semantics></math>, representing 29.96% for API, 41.13% for ChatGPT, 38.71% for DALL·E, and 31.25% for Playground. In contrast, Anthropic and Character.AI primarily use the <math alttext="S_{1}" class="ltx_Math" display="inline" id="S4.p6.4.m4.1"><semantics id="S4.p6.4.m4.1a"><msub id="S4.p6.4.m4.1.1" xref="S4.p6.4.m4.1.1.cmml"><mi id="S4.p6.4.m4.1.1.2" xref="S4.p6.4.m4.1.1.2.cmml">S</mi><mn id="S4.p6.4.m4.1.1.3" xref="S4.p6.4.m4.1.1.3.cmml">1</mn></msub><annotation-xml encoding="MathML-Content" id="S4.p6.4.m4.1b"><apply id="S4.p6.4.m4.1.1.cmml" xref="S4.p6.4.m4.1.1"><csymbol cd="ambiguous" id="S4.p6.4.m4.1.1.1.cmml" xref="S4.p6.4.m4.1.1">subscript</csymbol><ci id="S4.p6.4.m4.1.1.2.cmml" xref="S4.p6.4.m4.1.1.2">𝑆</ci><cn id="S4.p6.4.m4.1.1.3.cmml" type="integer" xref="S4.p6.4.m4.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p6.4.m4.1c">S_{1}</annotation><annotation encoding="application/x-llamapun" id="S4.p6.4.m4.1d">italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT</annotation></semantics></math>-<math alttext="S_{4}" class="ltx_Math" display="inline" id="S4.p6.5.m5.1"><semantics id="S4.p6.5.m5.1a"><msub id="S4.p6.5.m5.1.1" xref="S4.p6.5.m5.1.1.cmml"><mi id="S4.p6.5.m5.1.1.2" xref="S4.p6.5.m5.1.1.2.cmml">S</mi><mn id="S4.p6.5.m5.1.1.3" xref="S4.p6.5.m5.1.1.3.cmml">4</mn></msub><annotation-xml encoding="MathML-Content" id="S4.p6.5.m5.1b"><apply id="S4.p6.5.m5.1.1.cmml" xref="S4.p6.5.m5.1.1"><csymbol cd="ambiguous" id="S4.p6.5.m5.1.1.1.cmml" xref="S4.p6.5.m5.1.1">subscript</csymbol><ci id="S4.p6.5.m5.1.1.2.cmml" xref="S4.p6.5.m5.1.1.2">𝑆</ci><cn id="S4.p6.5.m5.1.1.3.cmml" type="integer" xref="S4.p6.5.m5.1.1.3">4</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p6.5.m5.1c">S_{4}</annotation><annotation encoding="application/x-llamapun" id="S4.p6.5.m5.1d">italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT</annotation></semantics></math> combination, accounting for over 30% of each service. OpenAI publishes more status information in incident reports compared to Anthropic and Character.AI.</p> </div> <div class="ltx_para ltx_noindent" id="S4.p7"> <p class="ltx_p" id="S4.p7.1"> <span class="ltx_inline-block ltx_parbox ltx_align_middle ltx_framed ltx_framed_rectangle" id="S4.p7.1.1" style="width:433.6pt;"> <span class="ltx_p" id="S4.p7.1.1.1"><span class="ltx_text ltx_font_bold" id="S4.p7.1.1.1.1">Observation #3:</span> <span class="ltx_text ltx_font_italic" id="S4.p7.1.1.1.2">Claude spent the longest time on investigating (1.35 hours), repairing (1.72 hours), and checking (2.05 hours).</span></span> </span></p> </div> <div class="ltx_para" id="S4.p8"> <p class="ltx_p" id="S4.p8.6">The time a service takes to resolve incidents affects the fault-tolerance strategies a user can use. For example, users can maintain a local cache to tolerate very short failures. <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S4.T6" title="In 4. Failure-Recovery Analysis ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Table</span> <span class="ltx_text ltx_ref_tag">6</span></a> shows the mean value of different model parameters. For MTTR and MTBF, because some records don’t have <math alttext="investigating" class="ltx_Math" display="inline" id="S4.p8.1.m1.1"><semantics id="S4.p8.1.m1.1a"><mrow id="S4.p8.1.m1.1.1" xref="S4.p8.1.m1.1.1.cmml"><mi id="S4.p8.1.m1.1.1.2" xref="S4.p8.1.m1.1.1.2.cmml">i</mi><mo id="S4.p8.1.m1.1.1.1" xref="S4.p8.1.m1.1.1.1.cmml"></mo><mi id="S4.p8.1.m1.1.1.3" xref="S4.p8.1.m1.1.1.3.cmml">n</mi><mo id="S4.p8.1.m1.1.1.1a" xref="S4.p8.1.m1.1.1.1.cmml"></mo><mi id="S4.p8.1.m1.1.1.4" xref="S4.p8.1.m1.1.1.4.cmml">v</mi><mo id="S4.p8.1.m1.1.1.1b" xref="S4.p8.1.m1.1.1.1.cmml"></mo><mi id="S4.p8.1.m1.1.1.5" xref="S4.p8.1.m1.1.1.5.cmml">e</mi><mo id="S4.p8.1.m1.1.1.1c" xref="S4.p8.1.m1.1.1.1.cmml"></mo><mi id="S4.p8.1.m1.1.1.6" xref="S4.p8.1.m1.1.1.6.cmml">s</mi><mo id="S4.p8.1.m1.1.1.1d" xref="S4.p8.1.m1.1.1.1.cmml"></mo><mi id="S4.p8.1.m1.1.1.7" xref="S4.p8.1.m1.1.1.7.cmml">t</mi><mo id="S4.p8.1.m1.1.1.1e" xref="S4.p8.1.m1.1.1.1.cmml"></mo><mi id="S4.p8.1.m1.1.1.8" xref="S4.p8.1.m1.1.1.8.cmml">i</mi><mo id="S4.p8.1.m1.1.1.1f" xref="S4.p8.1.m1.1.1.1.cmml"></mo><mi id="S4.p8.1.m1.1.1.9" xref="S4.p8.1.m1.1.1.9.cmml">g</mi><mo id="S4.p8.1.m1.1.1.1g" xref="S4.p8.1.m1.1.1.1.cmml"></mo><mi id="S4.p8.1.m1.1.1.10" xref="S4.p8.1.m1.1.1.10.cmml">a</mi><mo id="S4.p8.1.m1.1.1.1h" xref="S4.p8.1.m1.1.1.1.cmml"></mo><mi id="S4.p8.1.m1.1.1.11" xref="S4.p8.1.m1.1.1.11.cmml">t</mi><mo id="S4.p8.1.m1.1.1.1i" xref="S4.p8.1.m1.1.1.1.cmml"></mo><mi id="S4.p8.1.m1.1.1.12" xref="S4.p8.1.m1.1.1.12.cmml">i</mi><mo id="S4.p8.1.m1.1.1.1j" xref="S4.p8.1.m1.1.1.1.cmml"></mo><mi id="S4.p8.1.m1.1.1.13" xref="S4.p8.1.m1.1.1.13.cmml">n</mi><mo id="S4.p8.1.m1.1.1.1k" xref="S4.p8.1.m1.1.1.1.cmml"></mo><mi id="S4.p8.1.m1.1.1.14" xref="S4.p8.1.m1.1.1.14.cmml">g</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p8.1.m1.1b"><apply id="S4.p8.1.m1.1.1.cmml" xref="S4.p8.1.m1.1.1"><times id="S4.p8.1.m1.1.1.1.cmml" xref="S4.p8.1.m1.1.1.1"></times><ci id="S4.p8.1.m1.1.1.2.cmml" xref="S4.p8.1.m1.1.1.2">𝑖</ci><ci id="S4.p8.1.m1.1.1.3.cmml" xref="S4.p8.1.m1.1.1.3">𝑛</ci><ci id="S4.p8.1.m1.1.1.4.cmml" xref="S4.p8.1.m1.1.1.4">𝑣</ci><ci id="S4.p8.1.m1.1.1.5.cmml" xref="S4.p8.1.m1.1.1.5">𝑒</ci><ci id="S4.p8.1.m1.1.1.6.cmml" xref="S4.p8.1.m1.1.1.6">𝑠</ci><ci id="S4.p8.1.m1.1.1.7.cmml" xref="S4.p8.1.m1.1.1.7">𝑡</ci><ci id="S4.p8.1.m1.1.1.8.cmml" xref="S4.p8.1.m1.1.1.8">𝑖</ci><ci id="S4.p8.1.m1.1.1.9.cmml" xref="S4.p8.1.m1.1.1.9">𝑔</ci><ci id="S4.p8.1.m1.1.1.10.cmml" xref="S4.p8.1.m1.1.1.10">𝑎</ci><ci id="S4.p8.1.m1.1.1.11.cmml" xref="S4.p8.1.m1.1.1.11">𝑡</ci><ci id="S4.p8.1.m1.1.1.12.cmml" xref="S4.p8.1.m1.1.1.12">𝑖</ci><ci id="S4.p8.1.m1.1.1.13.cmml" xref="S4.p8.1.m1.1.1.13">𝑛</ci><ci id="S4.p8.1.m1.1.1.14.cmml" xref="S4.p8.1.m1.1.1.14">𝑔</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p8.1.m1.1c">investigating</annotation><annotation encoding="application/x-llamapun" id="S4.p8.1.m1.1d">italic_i italic_n italic_v italic_e italic_s italic_t italic_i italic_g italic_a italic_t italic_i italic_n italic_g</annotation></semantics></math> timestamps, we use the minimum ones before the resolved status here (This also explains why Claude has the longest <math alttext="P_{I}" class="ltx_Math" display="inline" id="S4.p8.2.m2.1"><semantics id="S4.p8.2.m2.1a"><msub id="S4.p8.2.m2.1.1" xref="S4.p8.2.m2.1.1.cmml"><mi id="S4.p8.2.m2.1.1.2" xref="S4.p8.2.m2.1.1.2.cmml">P</mi><mi id="S4.p8.2.m2.1.1.3" xref="S4.p8.2.m2.1.1.3.cmml">I</mi></msub><annotation-xml encoding="MathML-Content" id="S4.p8.2.m2.1b"><apply id="S4.p8.2.m2.1.1.cmml" xref="S4.p8.2.m2.1.1"><csymbol cd="ambiguous" id="S4.p8.2.m2.1.1.1.cmml" xref="S4.p8.2.m2.1.1">subscript</csymbol><ci id="S4.p8.2.m2.1.1.2.cmml" xref="S4.p8.2.m2.1.1.2">𝑃</ci><ci id="S4.p8.2.m2.1.1.3.cmml" xref="S4.p8.2.m2.1.1.3">𝐼</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p8.2.m2.1c">P_{I}</annotation><annotation encoding="application/x-llamapun" id="S4.p8.2.m2.1d">italic_P start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT</annotation></semantics></math>, <math alttext="P_{R}" class="ltx_Math" display="inline" id="S4.p8.3.m3.1"><semantics id="S4.p8.3.m3.1a"><msub id="S4.p8.3.m3.1.1" xref="S4.p8.3.m3.1.1.cmml"><mi id="S4.p8.3.m3.1.1.2" xref="S4.p8.3.m3.1.1.2.cmml">P</mi><mi id="S4.p8.3.m3.1.1.3" xref="S4.p8.3.m3.1.1.3.cmml">R</mi></msub><annotation-xml encoding="MathML-Content" id="S4.p8.3.m3.1b"><apply id="S4.p8.3.m3.1.1.cmml" xref="S4.p8.3.m3.1.1"><csymbol cd="ambiguous" id="S4.p8.3.m3.1.1.1.cmml" xref="S4.p8.3.m3.1.1">subscript</csymbol><ci id="S4.p8.3.m3.1.1.2.cmml" xref="S4.p8.3.m3.1.1.2">𝑃</ci><ci id="S4.p8.3.m3.1.1.3.cmml" xref="S4.p8.3.m3.1.1.3">𝑅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p8.3.m3.1c">P_{R}</annotation><annotation encoding="application/x-llamapun" id="S4.p8.3.m3.1d">italic_P start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT</annotation></semantics></math>, and <math alttext="P_{C}" class="ltx_Math" display="inline" id="S4.p8.4.m4.1"><semantics id="S4.p8.4.m4.1a"><msub id="S4.p8.4.m4.1.1" xref="S4.p8.4.m4.1.1.cmml"><mi id="S4.p8.4.m4.1.1.2" xref="S4.p8.4.m4.1.1.2.cmml">P</mi><mi id="S4.p8.4.m4.1.1.3" xref="S4.p8.4.m4.1.1.3.cmml">C</mi></msub><annotation-xml encoding="MathML-Content" id="S4.p8.4.m4.1b"><apply id="S4.p8.4.m4.1.1.cmml" xref="S4.p8.4.m4.1.1"><csymbol cd="ambiguous" id="S4.p8.4.m4.1.1.1.cmml" xref="S4.p8.4.m4.1.1">subscript</csymbol><ci id="S4.p8.4.m4.1.1.2.cmml" xref="S4.p8.4.m4.1.1.2">𝑃</ci><ci id="S4.p8.4.m4.1.1.3.cmml" xref="S4.p8.4.m4.1.1.3">𝐶</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p8.4.m4.1c">P_{C}</annotation><annotation encoding="application/x-llamapun" id="S4.p8.4.m4.1d">italic_P start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT</annotation></semantics></math> respectively, but it does not have the longest <math alttext="MTTR" class="ltx_Math" display="inline" id="S4.p8.5.m5.1"><semantics id="S4.p8.5.m5.1a"><mrow id="S4.p8.5.m5.1.1" xref="S4.p8.5.m5.1.1.cmml"><mi id="S4.p8.5.m5.1.1.2" xref="S4.p8.5.m5.1.1.2.cmml">M</mi><mo id="S4.p8.5.m5.1.1.1" xref="S4.p8.5.m5.1.1.1.cmml"></mo><mi id="S4.p8.5.m5.1.1.3" xref="S4.p8.5.m5.1.1.3.cmml">T</mi><mo id="S4.p8.5.m5.1.1.1a" xref="S4.p8.5.m5.1.1.1.cmml"></mo><mi id="S4.p8.5.m5.1.1.4" xref="S4.p8.5.m5.1.1.4.cmml">T</mi><mo id="S4.p8.5.m5.1.1.1b" xref="S4.p8.5.m5.1.1.1.cmml"></mo><mi id="S4.p8.5.m5.1.1.5" xref="S4.p8.5.m5.1.1.5.cmml">R</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p8.5.m5.1b"><apply id="S4.p8.5.m5.1.1.cmml" xref="S4.p8.5.m5.1.1"><times id="S4.p8.5.m5.1.1.1.cmml" xref="S4.p8.5.m5.1.1.1"></times><ci id="S4.p8.5.m5.1.1.2.cmml" xref="S4.p8.5.m5.1.1.2">𝑀</ci><ci id="S4.p8.5.m5.1.1.3.cmml" xref="S4.p8.5.m5.1.1.3">𝑇</ci><ci id="S4.p8.5.m5.1.1.4.cmml" xref="S4.p8.5.m5.1.1.4">𝑇</ci><ci id="S4.p8.5.m5.1.1.5.cmml" xref="S4.p8.5.m5.1.1.5">𝑅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p8.5.m5.1c">MTTR</annotation><annotation encoding="application/x-llamapun" id="S4.p8.5.m5.1d">italic_M italic_T italic_T italic_R</annotation></semantics></math>). The learning period (<math alttext="P_{L}" class="ltx_Math" display="inline" id="S4.p8.6.m6.1"><semantics id="S4.p8.6.m6.1a"><msub id="S4.p8.6.m6.1.1" xref="S4.p8.6.m6.1.1.cmml"><mi id="S4.p8.6.m6.1.1.2" xref="S4.p8.6.m6.1.1.2.cmml">P</mi><mi id="S4.p8.6.m6.1.1.3" xref="S4.p8.6.m6.1.1.3.cmml">L</mi></msub><annotation-xml encoding="MathML-Content" id="S4.p8.6.m6.1b"><apply id="S4.p8.6.m6.1.1.cmml" xref="S4.p8.6.m6.1.1"><csymbol cd="ambiguous" id="S4.p8.6.m6.1.1.1.cmml" xref="S4.p8.6.m6.1.1">subscript</csymbol><ci id="S4.p8.6.m6.1.1.2.cmml" xref="S4.p8.6.m6.1.1.2">𝑃</ci><ci id="S4.p8.6.m6.1.1.3.cmml" xref="S4.p8.6.m6.1.1.3">𝐿</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p8.6.m6.1c">P_{L}</annotation><annotation encoding="application/x-llamapun" id="S4.p8.6.m6.1d">italic_P start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT</annotation></semantics></math>) takes the longest time (2.94 days) in all services.</p> </div> <div class="ltx_para ltx_noindent" id="S4.p9"> <p class="ltx_p" id="S4.p9.1"> <span class="ltx_inline-block ltx_parbox ltx_align_middle ltx_framed ltx_framed_rectangle" id="S4.p9.1.1" style="width:433.6pt;"> <span class="ltx_p" id="S4.p9.1.1.1"><span class="ltx_text ltx_font_bold" id="S4.p9.1.1.1.1">Observation #4:</span> <span class="ltx_text ltx_font_italic" id="S4.p9.1.1.1.2">Significant differences are observed across the 8 services in the percentage of periods within failure resolutions. For Character.AI, 82.71% of the time is spent on monitoring and checking if the fix is stable and effective. Anthropic services spent more percent of the time for investigating and resolving issues than OpenAI services.</span></span> </span></p> </div> <div class="ltx_para" id="S4.p10"> <p class="ltx_p" id="S4.p10.1"><a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S4.F4" title="In 4. Failure-Recovery Analysis ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Figure</span> <span class="ltx_text ltx_ref_tag">4</span></a> shows the percent of the 3 periods (Investigating, Repairing, Checking) in <math alttext="MTTR" class="ltx_Math" display="inline" id="S4.p10.1.m1.1"><semantics id="S4.p10.1.m1.1a"><mrow id="S4.p10.1.m1.1.1" xref="S4.p10.1.m1.1.1.cmml"><mi id="S4.p10.1.m1.1.1.2" xref="S4.p10.1.m1.1.1.2.cmml">M</mi><mo id="S4.p10.1.m1.1.1.1" xref="S4.p10.1.m1.1.1.1.cmml"></mo><mi id="S4.p10.1.m1.1.1.3" xref="S4.p10.1.m1.1.1.3.cmml">T</mi><mo id="S4.p10.1.m1.1.1.1a" xref="S4.p10.1.m1.1.1.1.cmml"></mo><mi id="S4.p10.1.m1.1.1.4" xref="S4.p10.1.m1.1.1.4.cmml">T</mi><mo id="S4.p10.1.m1.1.1.1b" xref="S4.p10.1.m1.1.1.1.cmml"></mo><mi id="S4.p10.1.m1.1.1.5" xref="S4.p10.1.m1.1.1.5.cmml">R</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p10.1.m1.1b"><apply id="S4.p10.1.m1.1.1.cmml" xref="S4.p10.1.m1.1.1"><times id="S4.p10.1.m1.1.1.1.cmml" xref="S4.p10.1.m1.1.1.1"></times><ci id="S4.p10.1.m1.1.1.2.cmml" xref="S4.p10.1.m1.1.1.2">𝑀</ci><ci id="S4.p10.1.m1.1.1.3.cmml" xref="S4.p10.1.m1.1.1.3">𝑇</ci><ci id="S4.p10.1.m1.1.1.4.cmml" xref="S4.p10.1.m1.1.1.4">𝑇</ci><ci id="S4.p10.1.m1.1.1.5.cmml" xref="S4.p10.1.m1.1.1.5">𝑅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p10.1.m1.1c">MTTR</annotation><annotation encoding="application/x-llamapun" id="S4.p10.1.m1.1d">italic_M italic_T italic_T italic_R</annotation></semantics></math>. The majority of the resolution time is used for checking, ranging from the highest 82.71% for Character.AI to the lowest 43.75% for Console. Most services spent more percent of the time on repairing than investigating, except for API and Console from Anthropic. Anthropic API spent 26.70% of the time investigating issues, while Console spent 43.23% in the same period. The large fraction of the time used for checking indicates that deploying a fix to production takes a long time. Operators should employ faster testing and continuous deployment techniques to deploy fixes faster <cite class="ltx_cite ltx_citemacro_citep">(Zhang et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib69" title="">2018</a>)</cite>. However, this is challenging as LLMs are a new technology, and there isn’t much work on improving testing and deployment time.</p> </div> <div class="ltx_para ltx_noindent" id="S4.p11"> <p class="ltx_p" id="S4.p11.1"> <span class="ltx_inline-block ltx_parbox ltx_align_middle ltx_framed ltx_framed_rectangle" id="S4.p11.1.1.1" style="width:433.6pt;"> <span class="ltx_p" id="S4.p11.1.1.1.1"><span class="ltx_text ltx_font_bold" id="S4.p11.1.1.1.1.2">Observation #5:</span> <span class="ltx_text ltx_font_italic" id="S4.p11.1.1.1.1.1"> OpenAI’s API and ChatGPT recover slower from failures than Anthropic’s API and Claude, with 1.6x and 1.4 longer <math alttext="MTTR" class="ltx_Math" display="inline" id="S4.p11.1.1.1.1.1.m1.1"><semantics id="S4.p11.1.1.1.1.1.m1.1a"><mrow id="S4.p11.1.1.1.1.1.m1.1.1" xref="S4.p11.1.1.1.1.1.m1.1.1.cmml"><mi id="S4.p11.1.1.1.1.1.m1.1.1.2" xref="S4.p11.1.1.1.1.1.m1.1.1.2.cmml">M</mi><mo id="S4.p11.1.1.1.1.1.m1.1.1.1" xref="S4.p11.1.1.1.1.1.m1.1.1.1.cmml"></mo><mi id="S4.p11.1.1.1.1.1.m1.1.1.3" xref="S4.p11.1.1.1.1.1.m1.1.1.3.cmml">T</mi><mo id="S4.p11.1.1.1.1.1.m1.1.1.1a" xref="S4.p11.1.1.1.1.1.m1.1.1.1.cmml"></mo><mi id="S4.p11.1.1.1.1.1.m1.1.1.4" xref="S4.p11.1.1.1.1.1.m1.1.1.4.cmml">T</mi><mo id="S4.p11.1.1.1.1.1.m1.1.1.1b" xref="S4.p11.1.1.1.1.1.m1.1.1.1.cmml"></mo><mi id="S4.p11.1.1.1.1.1.m1.1.1.5" xref="S4.p11.1.1.1.1.1.m1.1.1.5.cmml">R</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p11.1.1.1.1.1.m1.1b"><apply id="S4.p11.1.1.1.1.1.m1.1.1.cmml" xref="S4.p11.1.1.1.1.1.m1.1.1"><times id="S4.p11.1.1.1.1.1.m1.1.1.1.cmml" xref="S4.p11.1.1.1.1.1.m1.1.1.1"></times><ci id="S4.p11.1.1.1.1.1.m1.1.1.2.cmml" xref="S4.p11.1.1.1.1.1.m1.1.1.2">𝑀</ci><ci id="S4.p11.1.1.1.1.1.m1.1.1.3.cmml" xref="S4.p11.1.1.1.1.1.m1.1.1.3">𝑇</ci><ci id="S4.p11.1.1.1.1.1.m1.1.1.4.cmml" xref="S4.p11.1.1.1.1.1.m1.1.1.4">𝑇</ci><ci id="S4.p11.1.1.1.1.1.m1.1.1.5.cmml" xref="S4.p11.1.1.1.1.1.m1.1.1.5">𝑅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p11.1.1.1.1.1.m1.1c">MTTR</annotation><annotation encoding="application/x-llamapun" id="S4.p11.1.1.1.1.1.m1.1d">italic_M italic_T italic_T italic_R</annotation></semantics></math>, respectively.</span></span> </span></p> </div> <div class="ltx_para" id="S4.p12"> <p class="ltx_p" id="S4.p12.3"><a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S4.F5.sf1" title="In Figure 5 ‣ 4. Failure-Recovery Analysis ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Figure</span> <span class="ltx_text ltx_ref_tag">5(a)</span></a> depicts <math alttext="MTTR" class="ltx_Math" display="inline" id="S4.p12.1.m1.1"><semantics id="S4.p12.1.m1.1a"><mrow id="S4.p12.1.m1.1.1" xref="S4.p12.1.m1.1.1.cmml"><mi id="S4.p12.1.m1.1.1.2" xref="S4.p12.1.m1.1.1.2.cmml">M</mi><mo id="S4.p12.1.m1.1.1.1" xref="S4.p12.1.m1.1.1.1.cmml"></mo><mi id="S4.p12.1.m1.1.1.3" xref="S4.p12.1.m1.1.1.3.cmml">T</mi><mo id="S4.p12.1.m1.1.1.1a" xref="S4.p12.1.m1.1.1.1.cmml"></mo><mi id="S4.p12.1.m1.1.1.4" xref="S4.p12.1.m1.1.1.4.cmml">T</mi><mo id="S4.p12.1.m1.1.1.1b" xref="S4.p12.1.m1.1.1.1.cmml"></mo><mi id="S4.p12.1.m1.1.1.5" xref="S4.p12.1.m1.1.1.5.cmml">R</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p12.1.m1.1b"><apply id="S4.p12.1.m1.1.1.cmml" xref="S4.p12.1.m1.1.1"><times id="S4.p12.1.m1.1.1.1.cmml" xref="S4.p12.1.m1.1.1.1"></times><ci id="S4.p12.1.m1.1.1.2.cmml" xref="S4.p12.1.m1.1.1.2">𝑀</ci><ci id="S4.p12.1.m1.1.1.3.cmml" xref="S4.p12.1.m1.1.1.3">𝑇</ci><ci id="S4.p12.1.m1.1.1.4.cmml" xref="S4.p12.1.m1.1.1.4">𝑇</ci><ci id="S4.p12.1.m1.1.1.5.cmml" xref="S4.p12.1.m1.1.1.5">𝑅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p12.1.m1.1c">MTTR</annotation><annotation encoding="application/x-llamapun" id="S4.p12.1.m1.1d">italic_M italic_T italic_T italic_R</annotation></semantics></math> of the 8 LLM service incidents, showing how quickly failures are resolved. Most failures are resolved between 0.5 and 3 hours, with the median values around 1 hour. APIs and chatbots are the most popular LLM services. The median <math alttext="MTTR" class="ltx_Math" display="inline" id="S4.p12.2.m2.1"><semantics id="S4.p12.2.m2.1a"><mrow id="S4.p12.2.m2.1.1" xref="S4.p12.2.m2.1.1.cmml"><mi id="S4.p12.2.m2.1.1.2" xref="S4.p12.2.m2.1.1.2.cmml">M</mi><mo id="S4.p12.2.m2.1.1.1" xref="S4.p12.2.m2.1.1.1.cmml"></mo><mi id="S4.p12.2.m2.1.1.3" xref="S4.p12.2.m2.1.1.3.cmml">T</mi><mo id="S4.p12.2.m2.1.1.1a" xref="S4.p12.2.m2.1.1.1.cmml"></mo><mi id="S4.p12.2.m2.1.1.4" xref="S4.p12.2.m2.1.1.4.cmml">T</mi><mo id="S4.p12.2.m2.1.1.1b" xref="S4.p12.2.m2.1.1.1.cmml"></mo><mi id="S4.p12.2.m2.1.1.5" xref="S4.p12.2.m2.1.1.5.cmml">R</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p12.2.m2.1b"><apply id="S4.p12.2.m2.1.1.cmml" xref="S4.p12.2.m2.1.1"><times id="S4.p12.2.m2.1.1.1.cmml" xref="S4.p12.2.m2.1.1.1"></times><ci id="S4.p12.2.m2.1.1.2.cmml" xref="S4.p12.2.m2.1.1.2">𝑀</ci><ci id="S4.p12.2.m2.1.1.3.cmml" xref="S4.p12.2.m2.1.1.3">𝑇</ci><ci id="S4.p12.2.m2.1.1.4.cmml" xref="S4.p12.2.m2.1.1.4">𝑇</ci><ci id="S4.p12.2.m2.1.1.5.cmml" xref="S4.p12.2.m2.1.1.5">𝑅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p12.2.m2.1c">MTTR</annotation><annotation encoding="application/x-llamapun" id="S4.p12.2.m2.1d">italic_M italic_T italic_T italic_R</annotation></semantics></math> of OpenAI API (1.23 hours) is 1.6x longer than Anthropic API (0.77 hours). Similarly, the median <math alttext="MTTR" class="ltx_Math" display="inline" id="S4.p12.3.m3.1"><semantics id="S4.p12.3.m3.1a"><mrow id="S4.p12.3.m3.1.1" xref="S4.p12.3.m3.1.1.cmml"><mi id="S4.p12.3.m3.1.1.2" xref="S4.p12.3.m3.1.1.2.cmml">M</mi><mo id="S4.p12.3.m3.1.1.1" xref="S4.p12.3.m3.1.1.1.cmml"></mo><mi id="S4.p12.3.m3.1.1.3" xref="S4.p12.3.m3.1.1.3.cmml">T</mi><mo id="S4.p12.3.m3.1.1.1a" xref="S4.p12.3.m3.1.1.1.cmml"></mo><mi id="S4.p12.3.m3.1.1.4" xref="S4.p12.3.m3.1.1.4.cmml">T</mi><mo id="S4.p12.3.m3.1.1.1b" xref="S4.p12.3.m3.1.1.1.cmml"></mo><mi id="S4.p12.3.m3.1.1.5" xref="S4.p12.3.m3.1.1.5.cmml">R</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p12.3.m3.1b"><apply id="S4.p12.3.m3.1.1.cmml" xref="S4.p12.3.m3.1.1"><times id="S4.p12.3.m3.1.1.1.cmml" xref="S4.p12.3.m3.1.1.1"></times><ci id="S4.p12.3.m3.1.1.2.cmml" xref="S4.p12.3.m3.1.1.2">𝑀</ci><ci id="S4.p12.3.m3.1.1.3.cmml" xref="S4.p12.3.m3.1.1.3">𝑇</ci><ci id="S4.p12.3.m3.1.1.4.cmml" xref="S4.p12.3.m3.1.1.4">𝑇</ci><ci id="S4.p12.3.m3.1.1.5.cmml" xref="S4.p12.3.m3.1.1.5">𝑅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p12.3.m3.1c">MTTR</annotation><annotation encoding="application/x-llamapun" id="S4.p12.3.m3.1d">italic_M italic_T italic_T italic_R</annotation></semantics></math> of ChatGPT (1.32 hours) is 1.4x longer than Claude (0.93 hours).</p> </div> <figure class="ltx_figure ltx_minipage ltx_align_center ltx_align_middle" id="S4.F6" style="width:433.6pt;"> <div class="ltx_flex_figure"> <div class="ltx_flex_cell ltx_flex_size_2"> <figure class="ltx_figure ltx_figure_panel" id="S4.F6.sf1"><img alt="Refer to caption" class="ltx_graphics ltx_img_landscape" height="581" id="S4.F6.sf1.g1" src="x7.png" width="830"/> <figcaption class="ltx_caption"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S4.F6.sf1.2.1.1" style="font-size:90%;">(a)</span> </span><span class="ltx_text" id="S4.F6.sf1.3.2" style="font-size:90%;">MTTR.</span></figcaption> </figure> </div> <div class="ltx_flex_cell ltx_flex_size_2"> <figure class="ltx_figure ltx_figure_panel" id="S4.F6.sf2"><img alt="Refer to caption" class="ltx_graphics ltx_img_landscape" height="581" id="S4.F6.sf2.g1" src="x8.png" width="830"/> <figcaption class="ltx_caption"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S4.F6.sf2.2.1.1" style="font-size:90%;">(b)</span> </span><span class="ltx_text" id="S4.F6.sf2.3.2" style="font-size:90%;">MTBF.</span></figcaption> </figure> </div> </div> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S4.F6.2.1.1" style="font-size:90%;">Figure 6</span>. </span><span class="ltx_text" id="S4.F6.3.2" style="font-size:90%;">MTTR and MTBF by provider, ECDF plot. The closer the line is to the upper left, the shorter the time it takes.</span></figcaption> </figure> <div class="ltx_para ltx_noindent" id="S4.p13"> <p class="ltx_p" id="S4.p13.3"> <span class="ltx_inline-block ltx_parbox ltx_align_middle ltx_framed ltx_framed_rectangle" id="S4.p13.3.3.3" style="width:433.6pt;"> <span class="ltx_p" id="S4.p13.3.3.3.3"><span class="ltx_text ltx_font_bold" id="S4.p13.3.3.3.3.4">Observation #6:</span> <span class="ltx_text ltx_font_italic" id="S4.p13.3.3.3.3.3">Playground is the most reliable service (16.80 median <math alttext="MTBF" class="ltx_Math" display="inline" id="S4.p13.1.1.1.1.1.m1.1"><semantics id="S4.p13.1.1.1.1.1.m1.1a"><mrow id="S4.p13.1.1.1.1.1.m1.1.1" xref="S4.p13.1.1.1.1.1.m1.1.1.cmml"><mi id="S4.p13.1.1.1.1.1.m1.1.1.2" xref="S4.p13.1.1.1.1.1.m1.1.1.2.cmml">M</mi><mo id="S4.p13.1.1.1.1.1.m1.1.1.1" xref="S4.p13.1.1.1.1.1.m1.1.1.1.cmml"></mo><mi id="S4.p13.1.1.1.1.1.m1.1.1.3" xref="S4.p13.1.1.1.1.1.m1.1.1.3.cmml">T</mi><mo id="S4.p13.1.1.1.1.1.m1.1.1.1a" xref="S4.p13.1.1.1.1.1.m1.1.1.1.cmml"></mo><mi id="S4.p13.1.1.1.1.1.m1.1.1.4" xref="S4.p13.1.1.1.1.1.m1.1.1.4.cmml">B</mi><mo id="S4.p13.1.1.1.1.1.m1.1.1.1b" xref="S4.p13.1.1.1.1.1.m1.1.1.1.cmml"></mo><mi id="S4.p13.1.1.1.1.1.m1.1.1.5" xref="S4.p13.1.1.1.1.1.m1.1.1.5.cmml">F</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p13.1.1.1.1.1.m1.1b"><apply id="S4.p13.1.1.1.1.1.m1.1.1.cmml" xref="S4.p13.1.1.1.1.1.m1.1.1"><times id="S4.p13.1.1.1.1.1.m1.1.1.1.cmml" xref="S4.p13.1.1.1.1.1.m1.1.1.1"></times><ci id="S4.p13.1.1.1.1.1.m1.1.1.2.cmml" xref="S4.p13.1.1.1.1.1.m1.1.1.2">𝑀</ci><ci id="S4.p13.1.1.1.1.1.m1.1.1.3.cmml" xref="S4.p13.1.1.1.1.1.m1.1.1.3">𝑇</ci><ci id="S4.p13.1.1.1.1.1.m1.1.1.4.cmml" xref="S4.p13.1.1.1.1.1.m1.1.1.4">𝐵</ci><ci id="S4.p13.1.1.1.1.1.m1.1.1.5.cmml" xref="S4.p13.1.1.1.1.1.m1.1.1.5">𝐹</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p13.1.1.1.1.1.m1.1c">MTBF</annotation><annotation encoding="application/x-llamapun" id="S4.p13.1.1.1.1.1.m1.1d">italic_M italic_T italic_B italic_F</annotation></semantics></math>), followed by DALL·E (4.53 median <math alttext="MTBF" class="ltx_Math" display="inline" id="S4.p13.2.2.2.2.2.m2.1"><semantics id="S4.p13.2.2.2.2.2.m2.1a"><mrow id="S4.p13.2.2.2.2.2.m2.1.1" xref="S4.p13.2.2.2.2.2.m2.1.1.cmml"><mi id="S4.p13.2.2.2.2.2.m2.1.1.2" xref="S4.p13.2.2.2.2.2.m2.1.1.2.cmml">M</mi><mo id="S4.p13.2.2.2.2.2.m2.1.1.1" xref="S4.p13.2.2.2.2.2.m2.1.1.1.cmml"></mo><mi id="S4.p13.2.2.2.2.2.m2.1.1.3" xref="S4.p13.2.2.2.2.2.m2.1.1.3.cmml">T</mi><mo id="S4.p13.2.2.2.2.2.m2.1.1.1a" xref="S4.p13.2.2.2.2.2.m2.1.1.1.cmml"></mo><mi id="S4.p13.2.2.2.2.2.m2.1.1.4" xref="S4.p13.2.2.2.2.2.m2.1.1.4.cmml">B</mi><mo id="S4.p13.2.2.2.2.2.m2.1.1.1b" xref="S4.p13.2.2.2.2.2.m2.1.1.1.cmml"></mo><mi id="S4.p13.2.2.2.2.2.m2.1.1.5" xref="S4.p13.2.2.2.2.2.m2.1.1.5.cmml">F</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p13.2.2.2.2.2.m2.1b"><apply id="S4.p13.2.2.2.2.2.m2.1.1.cmml" xref="S4.p13.2.2.2.2.2.m2.1.1"><times id="S4.p13.2.2.2.2.2.m2.1.1.1.cmml" xref="S4.p13.2.2.2.2.2.m2.1.1.1"></times><ci id="S4.p13.2.2.2.2.2.m2.1.1.2.cmml" xref="S4.p13.2.2.2.2.2.m2.1.1.2">𝑀</ci><ci id="S4.p13.2.2.2.2.2.m2.1.1.3.cmml" xref="S4.p13.2.2.2.2.2.m2.1.1.3">𝑇</ci><ci id="S4.p13.2.2.2.2.2.m2.1.1.4.cmml" xref="S4.p13.2.2.2.2.2.m2.1.1.4">𝐵</ci><ci id="S4.p13.2.2.2.2.2.m2.1.1.5.cmml" xref="S4.p13.2.2.2.2.2.m2.1.1.5">𝐹</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p13.2.2.2.2.2.m2.1c">MTBF</annotation><annotation encoding="application/x-llamapun" id="S4.p13.2.2.2.2.2.m2.1d">italic_M italic_T italic_B italic_F</annotation></semantics></math>) and Character.AI (3.94 median <math alttext="MTBF" class="ltx_Math" display="inline" id="S4.p13.3.3.3.3.3.m3.1"><semantics id="S4.p13.3.3.3.3.3.m3.1a"><mrow id="S4.p13.3.3.3.3.3.m3.1.1" xref="S4.p13.3.3.3.3.3.m3.1.1.cmml"><mi id="S4.p13.3.3.3.3.3.m3.1.1.2" xref="S4.p13.3.3.3.3.3.m3.1.1.2.cmml">M</mi><mo id="S4.p13.3.3.3.3.3.m3.1.1.1" xref="S4.p13.3.3.3.3.3.m3.1.1.1.cmml"></mo><mi id="S4.p13.3.3.3.3.3.m3.1.1.3" xref="S4.p13.3.3.3.3.3.m3.1.1.3.cmml">T</mi><mo id="S4.p13.3.3.3.3.3.m3.1.1.1a" xref="S4.p13.3.3.3.3.3.m3.1.1.1.cmml"></mo><mi id="S4.p13.3.3.3.3.3.m3.1.1.4" xref="S4.p13.3.3.3.3.3.m3.1.1.4.cmml">B</mi><mo id="S4.p13.3.3.3.3.3.m3.1.1.1b" xref="S4.p13.3.3.3.3.3.m3.1.1.1.cmml"></mo><mi id="S4.p13.3.3.3.3.3.m3.1.1.5" xref="S4.p13.3.3.3.3.3.m3.1.1.5.cmml">F</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p13.3.3.3.3.3.m3.1b"><apply id="S4.p13.3.3.3.3.3.m3.1.1.cmml" xref="S4.p13.3.3.3.3.3.m3.1.1"><times id="S4.p13.3.3.3.3.3.m3.1.1.1.cmml" xref="S4.p13.3.3.3.3.3.m3.1.1.1"></times><ci id="S4.p13.3.3.3.3.3.m3.1.1.2.cmml" xref="S4.p13.3.3.3.3.3.m3.1.1.2">𝑀</ci><ci id="S4.p13.3.3.3.3.3.m3.1.1.3.cmml" xref="S4.p13.3.3.3.3.3.m3.1.1.3">𝑇</ci><ci id="S4.p13.3.3.3.3.3.m3.1.1.4.cmml" xref="S4.p13.3.3.3.3.3.m3.1.1.4">𝐵</ci><ci id="S4.p13.3.3.3.3.3.m3.1.1.5.cmml" xref="S4.p13.3.3.3.3.3.m3.1.1.5">𝐹</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p13.3.3.3.3.3.m3.1c">MTBF</annotation><annotation encoding="application/x-llamapun" id="S4.p13.3.3.3.3.3.m3.1d">italic_M italic_T italic_B italic_F</annotation></semantics></math>). OpenAI’s ChatGPT is more reliable than Anthropic’s Claude, though its API is less reliable in comparison.</span></span> </span></p> </div> <div class="ltx_para" id="S4.p14"> <p class="ltx_p" id="S4.p14.6">Awareness of how frequently a service fails is important for users to assess the reliability they can offer when they depend on the service. It’s also important to assess which fault-tolerance mechanisms they should use as each has a different overhead. For example, active replication, frequent checkpointing, or infrequent checkpointing. <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S4.F5.sf2" title="In Figure 5 ‣ 4. Failure-Recovery Analysis ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Figure</span> <span class="ltx_text ltx_ref_tag">5(b)</span></a> depicts <math alttext="MTBF" class="ltx_Math" display="inline" id="S4.p14.1.m1.1"><semantics id="S4.p14.1.m1.1a"><mrow id="S4.p14.1.m1.1.1" xref="S4.p14.1.m1.1.1.cmml"><mi id="S4.p14.1.m1.1.1.2" xref="S4.p14.1.m1.1.1.2.cmml">M</mi><mo id="S4.p14.1.m1.1.1.1" xref="S4.p14.1.m1.1.1.1.cmml"></mo><mi id="S4.p14.1.m1.1.1.3" xref="S4.p14.1.m1.1.1.3.cmml">T</mi><mo id="S4.p14.1.m1.1.1.1a" xref="S4.p14.1.m1.1.1.1.cmml"></mo><mi id="S4.p14.1.m1.1.1.4" xref="S4.p14.1.m1.1.1.4.cmml">B</mi><mo id="S4.p14.1.m1.1.1.1b" xref="S4.p14.1.m1.1.1.1.cmml"></mo><mi id="S4.p14.1.m1.1.1.5" xref="S4.p14.1.m1.1.1.5.cmml">F</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p14.1.m1.1b"><apply id="S4.p14.1.m1.1.1.cmml" xref="S4.p14.1.m1.1.1"><times id="S4.p14.1.m1.1.1.1.cmml" xref="S4.p14.1.m1.1.1.1"></times><ci id="S4.p14.1.m1.1.1.2.cmml" xref="S4.p14.1.m1.1.1.2">𝑀</ci><ci id="S4.p14.1.m1.1.1.3.cmml" xref="S4.p14.1.m1.1.1.3">𝑇</ci><ci id="S4.p14.1.m1.1.1.4.cmml" xref="S4.p14.1.m1.1.1.4">𝐵</ci><ci id="S4.p14.1.m1.1.1.5.cmml" xref="S4.p14.1.m1.1.1.5">𝐹</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p14.1.m1.1c">MTBF</annotation><annotation encoding="application/x-llamapun" id="S4.p14.1.m1.1d">italic_M italic_T italic_B italic_F</annotation></semantics></math> of the 8 LLM incidents, showing how frequently failures occur. The <math alttext="MTBF" class="ltx_Math" display="inline" id="S4.p14.2.m2.1"><semantics id="S4.p14.2.m2.1a"><mrow id="S4.p14.2.m2.1.1" xref="S4.p14.2.m2.1.1.cmml"><mi id="S4.p14.2.m2.1.1.2" xref="S4.p14.2.m2.1.1.2.cmml">M</mi><mo id="S4.p14.2.m2.1.1.1" xref="S4.p14.2.m2.1.1.1.cmml"></mo><mi id="S4.p14.2.m2.1.1.3" xref="S4.p14.2.m2.1.1.3.cmml">T</mi><mo id="S4.p14.2.m2.1.1.1a" xref="S4.p14.2.m2.1.1.1.cmml"></mo><mi id="S4.p14.2.m2.1.1.4" xref="S4.p14.2.m2.1.1.4.cmml">B</mi><mo id="S4.p14.2.m2.1.1.1b" xref="S4.p14.2.m2.1.1.1.cmml"></mo><mi id="S4.p14.2.m2.1.1.5" xref="S4.p14.2.m2.1.1.5.cmml">F</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p14.2.m2.1b"><apply id="S4.p14.2.m2.1.1.cmml" xref="S4.p14.2.m2.1.1"><times id="S4.p14.2.m2.1.1.1.cmml" xref="S4.p14.2.m2.1.1.1"></times><ci id="S4.p14.2.m2.1.1.2.cmml" xref="S4.p14.2.m2.1.1.2">𝑀</ci><ci id="S4.p14.2.m2.1.1.3.cmml" xref="S4.p14.2.m2.1.1.3">𝑇</ci><ci id="S4.p14.2.m2.1.1.4.cmml" xref="S4.p14.2.m2.1.1.4">𝐵</ci><ci id="S4.p14.2.m2.1.1.5.cmml" xref="S4.p14.2.m2.1.1.5">𝐹</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p14.2.m2.1c">MTBF</annotation><annotation encoding="application/x-llamapun" id="S4.p14.2.m2.1d">italic_M italic_T italic_B italic_F</annotation></semantics></math> of failures varies significantly across services. The most reliable service is Playground, with a median <math alttext="MTBF" class="ltx_Math" display="inline" id="S4.p14.3.m3.1"><semantics id="S4.p14.3.m3.1a"><mrow id="S4.p14.3.m3.1.1" xref="S4.p14.3.m3.1.1.cmml"><mi id="S4.p14.3.m3.1.1.2" xref="S4.p14.3.m3.1.1.2.cmml">M</mi><mo id="S4.p14.3.m3.1.1.1" xref="S4.p14.3.m3.1.1.1.cmml"></mo><mi id="S4.p14.3.m3.1.1.3" xref="S4.p14.3.m3.1.1.3.cmml">T</mi><mo id="S4.p14.3.m3.1.1.1a" xref="S4.p14.3.m3.1.1.1.cmml"></mo><mi id="S4.p14.3.m3.1.1.4" xref="S4.p14.3.m3.1.1.4.cmml">B</mi><mo id="S4.p14.3.m3.1.1.1b" xref="S4.p14.3.m3.1.1.1.cmml"></mo><mi id="S4.p14.3.m3.1.1.5" xref="S4.p14.3.m3.1.1.5.cmml">F</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p14.3.m3.1b"><apply id="S4.p14.3.m3.1.1.cmml" xref="S4.p14.3.m3.1.1"><times id="S4.p14.3.m3.1.1.1.cmml" xref="S4.p14.3.m3.1.1.1"></times><ci id="S4.p14.3.m3.1.1.2.cmml" xref="S4.p14.3.m3.1.1.2">𝑀</ci><ci id="S4.p14.3.m3.1.1.3.cmml" xref="S4.p14.3.m3.1.1.3">𝑇</ci><ci id="S4.p14.3.m3.1.1.4.cmml" xref="S4.p14.3.m3.1.1.4">𝐵</ci><ci id="S4.p14.3.m3.1.1.5.cmml" xref="S4.p14.3.m3.1.1.5">𝐹</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p14.3.m3.1c">MTBF</annotation><annotation encoding="application/x-llamapun" id="S4.p14.3.m3.1d">italic_M italic_T italic_B italic_F</annotation></semantics></math> of 16.80 days, which is nearly 9.66 times higher than the lowest median <math alttext="MTBF" class="ltx_Math" display="inline" id="S4.p14.4.m4.1"><semantics id="S4.p14.4.m4.1a"><mrow id="S4.p14.4.m4.1.1" xref="S4.p14.4.m4.1.1.cmml"><mi id="S4.p14.4.m4.1.1.2" xref="S4.p14.4.m4.1.1.2.cmml">M</mi><mo id="S4.p14.4.m4.1.1.1" xref="S4.p14.4.m4.1.1.1.cmml"></mo><mi id="S4.p14.4.m4.1.1.3" xref="S4.p14.4.m4.1.1.3.cmml">T</mi><mo id="S4.p14.4.m4.1.1.1a" xref="S4.p14.4.m4.1.1.1.cmml"></mo><mi id="S4.p14.4.m4.1.1.4" xref="S4.p14.4.m4.1.1.4.cmml">B</mi><mo id="S4.p14.4.m4.1.1.1b" xref="S4.p14.4.m4.1.1.1.cmml"></mo><mi id="S4.p14.4.m4.1.1.5" xref="S4.p14.4.m4.1.1.5.cmml">F</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p14.4.m4.1b"><apply id="S4.p14.4.m4.1.1.cmml" xref="S4.p14.4.m4.1.1"><times id="S4.p14.4.m4.1.1.1.cmml" xref="S4.p14.4.m4.1.1.1"></times><ci id="S4.p14.4.m4.1.1.2.cmml" xref="S4.p14.4.m4.1.1.2">𝑀</ci><ci id="S4.p14.4.m4.1.1.3.cmml" xref="S4.p14.4.m4.1.1.3">𝑇</ci><ci id="S4.p14.4.m4.1.1.4.cmml" xref="S4.p14.4.m4.1.1.4">𝐵</ci><ci id="S4.p14.4.m4.1.1.5.cmml" xref="S4.p14.4.m4.1.1.5">𝐹</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p14.4.m4.1c">MTBF</annotation><annotation encoding="application/x-llamapun" id="S4.p14.4.m4.1d">italic_M italic_T italic_B italic_F</annotation></semantics></math> of 1.74 days from Claude. The median <math alttext="MTBF" class="ltx_Math" display="inline" id="S4.p14.5.m5.1"><semantics id="S4.p14.5.m5.1a"><mrow id="S4.p14.5.m5.1.1" xref="S4.p14.5.m5.1.1.cmml"><mi id="S4.p14.5.m5.1.1.2" xref="S4.p14.5.m5.1.1.2.cmml">M</mi><mo id="S4.p14.5.m5.1.1.1" xref="S4.p14.5.m5.1.1.1.cmml"></mo><mi id="S4.p14.5.m5.1.1.3" xref="S4.p14.5.m5.1.1.3.cmml">T</mi><mo id="S4.p14.5.m5.1.1.1a" xref="S4.p14.5.m5.1.1.1.cmml"></mo><mi id="S4.p14.5.m5.1.1.4" xref="S4.p14.5.m5.1.1.4.cmml">B</mi><mo id="S4.p14.5.m5.1.1.1b" xref="S4.p14.5.m5.1.1.1.cmml"></mo><mi id="S4.p14.5.m5.1.1.5" xref="S4.p14.5.m5.1.1.5.cmml">F</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p14.5.m5.1b"><apply id="S4.p14.5.m5.1.1.cmml" xref="S4.p14.5.m5.1.1"><times id="S4.p14.5.m5.1.1.1.cmml" xref="S4.p14.5.m5.1.1.1"></times><ci id="S4.p14.5.m5.1.1.2.cmml" xref="S4.p14.5.m5.1.1.2">𝑀</ci><ci id="S4.p14.5.m5.1.1.3.cmml" xref="S4.p14.5.m5.1.1.3">𝑇</ci><ci id="S4.p14.5.m5.1.1.4.cmml" xref="S4.p14.5.m5.1.1.4">𝐵</ci><ci id="S4.p14.5.m5.1.1.5.cmml" xref="S4.p14.5.m5.1.1.5">𝐹</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p14.5.m5.1c">MTBF</annotation><annotation encoding="application/x-llamapun" id="S4.p14.5.m5.1d">italic_M italic_T italic_B italic_F</annotation></semantics></math> for OpenAI’s API is 1.99 days, which is lower than Anthropic’s API at 2.09 days; however, ChatGPT at 2.04 days is higher than Claude’s 1.74 days. DALL·E and Character.AI are relatively reliable services, with median <math alttext="MTBF" class="ltx_Math" display="inline" id="S4.p14.6.m6.1"><semantics id="S4.p14.6.m6.1a"><mrow id="S4.p14.6.m6.1.1" xref="S4.p14.6.m6.1.1.cmml"><mi id="S4.p14.6.m6.1.1.2" xref="S4.p14.6.m6.1.1.2.cmml">M</mi><mo id="S4.p14.6.m6.1.1.1" xref="S4.p14.6.m6.1.1.1.cmml"></mo><mi id="S4.p14.6.m6.1.1.3" xref="S4.p14.6.m6.1.1.3.cmml">T</mi><mo id="S4.p14.6.m6.1.1.1a" xref="S4.p14.6.m6.1.1.1.cmml"></mo><mi id="S4.p14.6.m6.1.1.4" xref="S4.p14.6.m6.1.1.4.cmml">B</mi><mo id="S4.p14.6.m6.1.1.1b" xref="S4.p14.6.m6.1.1.1.cmml"></mo><mi id="S4.p14.6.m6.1.1.5" xref="S4.p14.6.m6.1.1.5.cmml">F</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p14.6.m6.1b"><apply id="S4.p14.6.m6.1.1.cmml" xref="S4.p14.6.m6.1.1"><times id="S4.p14.6.m6.1.1.1.cmml" xref="S4.p14.6.m6.1.1.1"></times><ci id="S4.p14.6.m6.1.1.2.cmml" xref="S4.p14.6.m6.1.1.2">𝑀</ci><ci id="S4.p14.6.m6.1.1.3.cmml" xref="S4.p14.6.m6.1.1.3">𝑇</ci><ci id="S4.p14.6.m6.1.1.4.cmml" xref="S4.p14.6.m6.1.1.4">𝐵</ci><ci id="S4.p14.6.m6.1.1.5.cmml" xref="S4.p14.6.m6.1.1.5">𝐹</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p14.6.m6.1c">MTBF</annotation><annotation encoding="application/x-llamapun" id="S4.p14.6.m6.1d">italic_M italic_T italic_B italic_F</annotation></semantics></math> values of 4.63 days and 3.94 days, respectively.</p> </div> <div class="ltx_para" id="S4.p15"> <p class="ltx_p" id="S4.p15.1">The MTBF of LLM services (4-40 days) is much higher than the MTBF of single-node failure (0.25-1 day) and system-wide failure (6.6 days) in other large-scale systems <cite class="ltx_cite ltx_citemacro_citep">(Martino et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib40" title="">2014</a>; Gupta et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib21" title="">2017</a>)</cite>. This indicates that LLM operators use effective fault-tolerance mechanisms. It also indicates that users can use low-overhead fault-tolerance techniques like infrequent checkpointing to provide a reliable service that depends on LLMs.</p> </div> <div class="ltx_para ltx_noindent" id="S4.p16"> <p class="ltx_p" id="S4.p16.2"> <span class="ltx_inline-block ltx_parbox ltx_align_middle ltx_framed ltx_framed_rectangle" id="S4.p16.2.2.2" style="width:433.6pt;"> <span class="ltx_p" id="S4.p16.2.2.2.2"><span class="ltx_text ltx_font_bold" id="S4.p16.2.2.2.2.3">Observation #7:</span> <span class="ltx_text ltx_font_italic" id="S4.p16.2.2.2.2.2">Over 90% of the incidents end within 10 hours for all measured providers. Specifically, Anthropic’s services resolved failures more quickly but also experienced the highest frequency of incidents, based on its <math alttext="MTTR" class="ltx_Math" display="inline" id="S4.p16.1.1.1.1.1.m1.1"><semantics id="S4.p16.1.1.1.1.1.m1.1a"><mrow id="S4.p16.1.1.1.1.1.m1.1.1" xref="S4.p16.1.1.1.1.1.m1.1.1.cmml"><mi id="S4.p16.1.1.1.1.1.m1.1.1.2" xref="S4.p16.1.1.1.1.1.m1.1.1.2.cmml">M</mi><mo id="S4.p16.1.1.1.1.1.m1.1.1.1" xref="S4.p16.1.1.1.1.1.m1.1.1.1.cmml"></mo><mi id="S4.p16.1.1.1.1.1.m1.1.1.3" xref="S4.p16.1.1.1.1.1.m1.1.1.3.cmml">T</mi><mo id="S4.p16.1.1.1.1.1.m1.1.1.1a" xref="S4.p16.1.1.1.1.1.m1.1.1.1.cmml"></mo><mi id="S4.p16.1.1.1.1.1.m1.1.1.4" xref="S4.p16.1.1.1.1.1.m1.1.1.4.cmml">T</mi><mo id="S4.p16.1.1.1.1.1.m1.1.1.1b" xref="S4.p16.1.1.1.1.1.m1.1.1.1.cmml"></mo><mi id="S4.p16.1.1.1.1.1.m1.1.1.5" xref="S4.p16.1.1.1.1.1.m1.1.1.5.cmml">R</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p16.1.1.1.1.1.m1.1b"><apply id="S4.p16.1.1.1.1.1.m1.1.1.cmml" xref="S4.p16.1.1.1.1.1.m1.1.1"><times id="S4.p16.1.1.1.1.1.m1.1.1.1.cmml" xref="S4.p16.1.1.1.1.1.m1.1.1.1"></times><ci id="S4.p16.1.1.1.1.1.m1.1.1.2.cmml" xref="S4.p16.1.1.1.1.1.m1.1.1.2">𝑀</ci><ci id="S4.p16.1.1.1.1.1.m1.1.1.3.cmml" xref="S4.p16.1.1.1.1.1.m1.1.1.3">𝑇</ci><ci id="S4.p16.1.1.1.1.1.m1.1.1.4.cmml" xref="S4.p16.1.1.1.1.1.m1.1.1.4">𝑇</ci><ci id="S4.p16.1.1.1.1.1.m1.1.1.5.cmml" xref="S4.p16.1.1.1.1.1.m1.1.1.5">𝑅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p16.1.1.1.1.1.m1.1c">MTTR</annotation><annotation encoding="application/x-llamapun" id="S4.p16.1.1.1.1.1.m1.1d">italic_M italic_T italic_T italic_R</annotation></semantics></math> (2.70 hours) and <math alttext="MTBF" class="ltx_Math" display="inline" id="S4.p16.2.2.2.2.2.m2.1"><semantics id="S4.p16.2.2.2.2.2.m2.1a"><mrow id="S4.p16.2.2.2.2.2.m2.1.1" xref="S4.p16.2.2.2.2.2.m2.1.1.cmml"><mi id="S4.p16.2.2.2.2.2.m2.1.1.2" xref="S4.p16.2.2.2.2.2.m2.1.1.2.cmml">M</mi><mo id="S4.p16.2.2.2.2.2.m2.1.1.1" xref="S4.p16.2.2.2.2.2.m2.1.1.1.cmml"></mo><mi id="S4.p16.2.2.2.2.2.m2.1.1.3" xref="S4.p16.2.2.2.2.2.m2.1.1.3.cmml">T</mi><mo id="S4.p16.2.2.2.2.2.m2.1.1.1a" xref="S4.p16.2.2.2.2.2.m2.1.1.1.cmml"></mo><mi id="S4.p16.2.2.2.2.2.m2.1.1.4" xref="S4.p16.2.2.2.2.2.m2.1.1.4.cmml">B</mi><mo id="S4.p16.2.2.2.2.2.m2.1.1.1b" xref="S4.p16.2.2.2.2.2.m2.1.1.1.cmml"></mo><mi id="S4.p16.2.2.2.2.2.m2.1.1.5" xref="S4.p16.2.2.2.2.2.m2.1.1.5.cmml">F</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p16.2.2.2.2.2.m2.1b"><apply id="S4.p16.2.2.2.2.2.m2.1.1.cmml" xref="S4.p16.2.2.2.2.2.m2.1.1"><times id="S4.p16.2.2.2.2.2.m2.1.1.1.cmml" xref="S4.p16.2.2.2.2.2.m2.1.1.1"></times><ci id="S4.p16.2.2.2.2.2.m2.1.1.2.cmml" xref="S4.p16.2.2.2.2.2.m2.1.1.2">𝑀</ci><ci id="S4.p16.2.2.2.2.2.m2.1.1.3.cmml" xref="S4.p16.2.2.2.2.2.m2.1.1.3">𝑇</ci><ci id="S4.p16.2.2.2.2.2.m2.1.1.4.cmml" xref="S4.p16.2.2.2.2.2.m2.1.1.4">𝐵</ci><ci id="S4.p16.2.2.2.2.2.m2.1.1.5.cmml" xref="S4.p16.2.2.2.2.2.m2.1.1.5">𝐹</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p16.2.2.2.2.2.m2.1c">MTBF</annotation><annotation encoding="application/x-llamapun" id="S4.p16.2.2.2.2.2.m2.1d">italic_M italic_T italic_B italic_F</annotation></semantics></math> (5.22 days) on average.</span></span> </span></p> </div> <figure class="ltx_figure" id="S4.F7"> <div class="ltx_flex_figure"> <div class="ltx_flex_cell ltx_flex_size_1"> <figure class="ltx_figure ltx_figure_panel ltx_minipage ltx_align_center ltx_align_middle" id="S4.F7.sf1" style="width:433.6pt;"><img alt="Refer to caption" class="ltx_graphics ltx_centering ltx_img_landscape" height="125" id="S4.F7.sf1.g1" src="x9.png" width="681"/> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S4.F7.sf1.2.1.1" style="font-size:90%;">(a)</span> </span><span class="ltx_text" id="S4.F7.sf1.3.2" style="font-size:90%;">The number of incidents by day of week.</span></figcaption> </figure> </div> <div class="ltx_flex_break"></div> <div class="ltx_flex_cell ltx_flex_size_1"> <figure class="ltx_figure ltx_figure_panel ltx_minipage ltx_align_center ltx_align_middle" id="S4.F7.sf2" style="width:433.6pt;"><img alt="Refer to caption" class="ltx_graphics ltx_centering ltx_img_landscape" height="125" id="S4.F7.sf2.g1" src="x10.png" width="681"/> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S4.F7.sf2.2.1.1" style="font-size:90%;">(b)</span> </span><span class="ltx_text" id="S4.F7.sf2.3.2" style="font-size:90%;">The number of incidents by hour of day.</span></figcaption> </figure> </div> </div> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S4.F7.2.1.1" style="font-size:90%;">Figure 7</span>. </span><span class="ltx_text" id="S4.F7.3.2" style="font-size:90%;">Temporal distributions for incidents, PDT time.</span></figcaption> </figure> <div class="ltx_para" id="S4.p17"> <p class="ltx_p" id="S4.p17.2">To understand how the MTTR and MTBF values are distributed and compare the distributions for different LLM providers, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S4.F6" title="In 4. Failure-Recovery Analysis ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Figure</span> <span class="ltx_text ltx_ref_tag">6</span></a> displays the Empirical Cumulative Distribution Function (ECDF) plot of <math alttext="MTTR" class="ltx_Math" display="inline" id="S4.p17.1.m1.1"><semantics id="S4.p17.1.m1.1a"><mrow id="S4.p17.1.m1.1.1" xref="S4.p17.1.m1.1.1.cmml"><mi id="S4.p17.1.m1.1.1.2" xref="S4.p17.1.m1.1.1.2.cmml">M</mi><mo id="S4.p17.1.m1.1.1.1" xref="S4.p17.1.m1.1.1.1.cmml"></mo><mi id="S4.p17.1.m1.1.1.3" xref="S4.p17.1.m1.1.1.3.cmml">T</mi><mo id="S4.p17.1.m1.1.1.1a" xref="S4.p17.1.m1.1.1.1.cmml"></mo><mi id="S4.p17.1.m1.1.1.4" xref="S4.p17.1.m1.1.1.4.cmml">T</mi><mo id="S4.p17.1.m1.1.1.1b" xref="S4.p17.1.m1.1.1.1.cmml"></mo><mi id="S4.p17.1.m1.1.1.5" xref="S4.p17.1.m1.1.1.5.cmml">R</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p17.1.m1.1b"><apply id="S4.p17.1.m1.1.1.cmml" xref="S4.p17.1.m1.1.1"><times id="S4.p17.1.m1.1.1.1.cmml" xref="S4.p17.1.m1.1.1.1"></times><ci id="S4.p17.1.m1.1.1.2.cmml" xref="S4.p17.1.m1.1.1.2">𝑀</ci><ci id="S4.p17.1.m1.1.1.3.cmml" xref="S4.p17.1.m1.1.1.3">𝑇</ci><ci id="S4.p17.1.m1.1.1.4.cmml" xref="S4.p17.1.m1.1.1.4">𝑇</ci><ci id="S4.p17.1.m1.1.1.5.cmml" xref="S4.p17.1.m1.1.1.5">𝑅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p17.1.m1.1c">MTTR</annotation><annotation encoding="application/x-llamapun" id="S4.p17.1.m1.1d">italic_M italic_T italic_T italic_R</annotation></semantics></math> in hours and <math alttext="MTBF" class="ltx_Math" display="inline" id="S4.p17.2.m2.1"><semantics id="S4.p17.2.m2.1a"><mrow id="S4.p17.2.m2.1.1" xref="S4.p17.2.m2.1.1.cmml"><mi id="S4.p17.2.m2.1.1.2" xref="S4.p17.2.m2.1.1.2.cmml">M</mi><mo id="S4.p17.2.m2.1.1.1" xref="S4.p17.2.m2.1.1.1.cmml"></mo><mi id="S4.p17.2.m2.1.1.3" xref="S4.p17.2.m2.1.1.3.cmml">T</mi><mo id="S4.p17.2.m2.1.1.1a" xref="S4.p17.2.m2.1.1.1.cmml"></mo><mi id="S4.p17.2.m2.1.1.4" xref="S4.p17.2.m2.1.1.4.cmml">B</mi><mo id="S4.p17.2.m2.1.1.1b" xref="S4.p17.2.m2.1.1.1.cmml"></mo><mi id="S4.p17.2.m2.1.1.5" xref="S4.p17.2.m2.1.1.5.cmml">F</mi></mrow><annotation-xml encoding="MathML-Content" id="S4.p17.2.m2.1b"><apply id="S4.p17.2.m2.1.1.cmml" xref="S4.p17.2.m2.1.1"><times id="S4.p17.2.m2.1.1.1.cmml" xref="S4.p17.2.m2.1.1.1"></times><ci id="S4.p17.2.m2.1.1.2.cmml" xref="S4.p17.2.m2.1.1.2">𝑀</ci><ci id="S4.p17.2.m2.1.1.3.cmml" xref="S4.p17.2.m2.1.1.3">𝑇</ci><ci id="S4.p17.2.m2.1.1.4.cmml" xref="S4.p17.2.m2.1.1.4">𝐵</ci><ci id="S4.p17.2.m2.1.1.5.cmml" xref="S4.p17.2.m2.1.1.5">𝐹</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p17.2.m2.1c">MTBF</annotation><annotation encoding="application/x-llamapun" id="S4.p17.2.m2.1d">italic_M italic_T italic_B italic_F</annotation></semantics></math> in days, grouped by provider. It also marks vertically different time points for better observation and comparison.</p> </div> <div class="ltx_para" id="S4.p18"> <p class="ltx_p" id="S4.p18.1">A small percentage of incidents can be resolved within 10 minutes, such as 8.55% for Anthropic. Anthropic also solved the highest percent of incidents (37.18%) in 0.5 hours, significantly more than OpenAI (19.72%) and Character.AI (22.86%). Most failures are addressed within 3 hours, with 74.25% for OpenAI, 82.91% for Anthropic, and 68.57% for Character.AI. After 10 hours, 92.34% of OpenAI, 90.60% of Anthropic, and 91.43% of Character.AI’s failures are solved. However, a small proposition of failures for all providers lasted over 1 day, with 6.03%, 7.69%, and 5.71%, respectively. Overall, Anthropic resolved failures more quickly, despite a higher percentage of extreme cases lasting over 1 day.</p> </div> <div class="ltx_para" id="S4.p19"> <p class="ltx_p" id="S4.p19.1">Although Anthropic resolves failures the fastest, it also encounters them most frequently, with every 5.22 days on average. In contrast, OpenAI and Character.AI are more reliable, with failure occurring every 8.48 and 8.74 days, respectively. A notable percentage of incidents occur within a day: 35.47% for Anthropic, 28.77% for OpenAI, and 20.00% for Character.AI. Within 1 week interval, nearly three-quarters of failures occur for OpenAI (75.64%) and for Anthorpic (78.63%), with a slightly lower rate for Character.AI (60.00%). Over 90% of incidents for all providers happen within a month of each other. Our findings indicate that users of LLMs should expect failures regularly (at least once a month). Therefore, failure should not be an exceptional event but should be baked into the users’ normal operating procedure.</p> </div> </section> <section class="ltx_section" id="S5"> <h2 class="ltx_title ltx_title_section"> <span class="ltx_tag ltx_tag_section">5. </span>Failure Patterns Over Time</h2> <div class="ltx_para" id="S5.p1"> <p class="ltx_p" id="S5.p1.1">This section conducts time series analyses to examine the failure patterns over time, including: (1) Weekly and daily incident distributions, (2) Auto-correlations in different time intervals; and (3) Daily service available time.</p> </div> <figure class="ltx_figure ltx_minipage ltx_align_center ltx_align_middle" id="S5.F8" style="width:433.6pt;"> <div class="ltx_flex_figure"> <div class="ltx_flex_cell ltx_flex_size_1"> <figure class="ltx_figure ltx_figure_panel" id="S5.F8.sf1"><img alt="Refer to caption" class="ltx_graphics ltx_img_landscape" height="249" id="S5.F8.sf1.g1" src="x11.png" width="747"/> <figcaption class="ltx_caption"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S5.F8.sf1.2.1.1" style="font-size:90%;">(a)</span> </span><span class="ltx_text" id="S5.F8.sf1.3.2" style="font-size:90%;">OpenAI.</span></figcaption> </figure> </div> <div class="ltx_flex_break"></div> <div class="ltx_flex_cell ltx_flex_size_1"> <figure class="ltx_figure ltx_figure_panel" id="S5.F8.sf2"><img alt="Refer to caption" class="ltx_graphics ltx_img_landscape" height="226" id="S5.F8.sf2.g1" src="x12.png" width="747"/> <figcaption class="ltx_caption"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S5.F8.sf2.2.1.1" style="font-size:90%;">(b)</span> </span><span class="ltx_text" id="S5.F8.sf2.3.2" style="font-size:90%;">Anthropic.</span></figcaption> </figure> </div> </div> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S5.F8.2.1.1" style="font-size:90%;">Figure 8</span>. </span><span class="ltx_text" id="S5.F8.3.2" style="font-size:90%;">Auto-correlations with the numbers of incidents aggregated at different time granularities.</span></figcaption> </figure> <section class="ltx_subsection" id="S5.SS1"> <h3 class="ltx_title ltx_title_subsection"> <span class="ltx_tag ltx_tag_subsection">5.1. </span>Temporal Distributions</h3> <div class="ltx_para ltx_noindent" id="S5.SS1.p1"> <p class="ltx_p" id="S5.SS1.p1.1"> <span class="ltx_inline-block ltx_parbox ltx_align_middle ltx_framed ltx_framed_rectangle" id="S5.SS1.p1.1.1" style="width:433.6pt;"> <span class="ltx_p" id="S5.SS1.p1.1.1.1"><span class="ltx_text ltx_font_bold" id="S5.SS1.p1.1.1.1.1">Observation #8:</span> <span class="ltx_text ltx_font_italic" id="S5.SS1.p1.1.1.1.2">OpenAI and Anthropic exhibit more failures on weekdays, while Character.AI has fewer on Tuesdays and Wednesdays. All services show peak failures from 8:00 to 16:00.</span></span> </span></p> </div> <div class="ltx_para" id="S5.SS1.p2"> <p class="ltx_p" id="S5.SS1.p2.1">To investigate the temporal distributions of LLM incidents, we aggregate service incidents by day of week in <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S4.F7.sf1" title="In Figure 7 ‣ 4. Failure-Recovery Analysis ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Figure</span> <span class="ltx_text ltx_ref_tag">7(a)</span></a>, and hour of day in <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S4.F7.sf2" title="In Figure 7 ‣ 4. Failure-Recovery Analysis ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Figure</span> <span class="ltx_text ltx_ref_tag">7(b)</span></a>. Incident times are given in local time (PDT) as they were originally reported in PDT. OpenAI and Anthropic’s services display a clear weekday pattern in incidents, with significantly more failures on weekdays than on weekends. In contrast, Character.AI follows a different pattern, with fewer failures occurring on Tuesdays and Wednesdays. This may be due to the differing purposes of using LLM services: Character.AI is primarily used for leisure <cite class="ltx_cite ltx_citemacro_citep">(WIRED, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib65" title="">2024</a>)</cite>, while API and conversational services are more often used for work-related tasks, such as writing and coding <cite class="ltx_cite ltx_citemacro_citep">(Wang et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib62" title="">2024b</a>)</cite>. All services exhibit a diurnal pattern, with incident peaks occurring during typical work hours, such as 8:00 to 16:00, and lower at night hours. Similar periodic failure patterns are also found in machine learning jobs <cite class="ltx_cite ltx_citemacro_citep">(Chu et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib15" title="">2023</a>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib14" title="">2024</a>; Versluis et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib61" title="">2023</a>)</cite>, deep learning jobs <cite class="ltx_cite ltx_citemacro_citep">(Li et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib35" title="">2022</a>)</cite>, and general user request in BurstGPT workloads <cite class="ltx_cite ltx_citemacro_citep">(Wang et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib63" title="">2024a</a>)</cite>.</p> </div> <figure class="ltx_figure" id="S5.F9"><img alt="Refer to caption" class="ltx_graphics ltx_centering ltx_img_landscape" height="217" id="S5.F9.g1" src="x13.png" width="830"/> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S5.F9.2.1.1" style="font-size:90%;">Figure 9</span>. </span><span class="ltx_text" id="S5.F9.3.2" style="font-size:90%;">Service daily availability by scaled outage minutes [%]. Some services started reporting later (see <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S3.SS2" title="3.2. Data Collection and Dataset Preparation ‣ 3. Dataset Collection and Preparation ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Section</span> <span class="ltx_text ltx_ref_tag">3.2</span></a>).</span></figcaption> </figure> <figure class="ltx_table" id="S5.T7"> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_table"><span class="ltx_text" id="S5.T7.2.1.1" style="font-size:90%;">Table 7</span>. </span><span class="ltx_text" id="S5.T7.3.2" style="font-size:90%;">Service availability by scaled outage minutes (from all periods).</span></figcaption> <div class="ltx_inline-block ltx_align_center ltx_transformed_outer" id="S5.T7.4" style="width:363.8pt;height:100.1pt;vertical-align:-0.0pt;"><span class="ltx_transformed_inner" style="transform:translate(-112.4pt,30.9pt) scale(0.618079347047429,0.618079347047429) ;"> <table class="ltx_tabular ltx_align_middle" id="S5.T7.4.1"> <tr class="ltx_tr" id="S5.T7.4.1.1"> <td class="ltx_td ltx_align_right ltx_border_tt" id="S5.T7.4.1.1.1"><span class="ltx_text ltx_font_bold" id="S5.T7.4.1.1.1.1">Service</span></td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S5.T7.4.1.1.2"><span class="ltx_text ltx_font_bold" id="S5.T7.4.1.1.2.1">Min</span></td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S5.T7.4.1.1.3"><span class="ltx_text ltx_font_bold" id="S5.T7.4.1.1.3.1">Max</span></td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S5.T7.4.1.1.4"><span class="ltx_text ltx_font_bold" id="S5.T7.4.1.1.4.1">Mean</span></td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S5.T7.4.1.1.5"><span class="ltx_text ltx_font_bold" id="S5.T7.4.1.1.5.1">Median</span></td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S5.T7.4.1.1.6"><span class="ltx_text ltx_font_bold" id="S5.T7.4.1.1.6.1">=100%</span></td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S5.T7.4.1.1.7"><span class="ltx_text ltx_font_bold" id="S5.T7.4.1.1.7.1">¿=99.999%</span></td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S5.T7.4.1.1.8"><span class="ltx_text ltx_font_bold" id="S5.T7.4.1.1.8.1">¿=99.99%</span></td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S5.T7.4.1.1.9"><span class="ltx_text ltx_font_bold" id="S5.T7.4.1.1.9.1">¿=99.9%</span></td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S5.T7.4.1.1.10"><span class="ltx_text ltx_font_bold" id="S5.T7.4.1.1.10.1">¿=99%</span></td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S5.T7.4.1.1.11"><span class="ltx_text ltx_font_bold" id="S5.T7.4.1.1.11.1">¿=90%</span></td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S5.T7.4.1.1.12"><span class="ltx_text ltx_font_bold" id="S5.T7.4.1.1.12.1">¡90%</span></td> </tr> <tr class="ltx_tr" id="S5.T7.4.1.2"> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.2.1">API-OpenAI</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.2.2">80.57%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.2.3">100.0%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.2.4">99.82%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.2.5">100.0%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.2.6">92.68%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.2.7">92.68%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.2.8">92.68%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.2.9">92.84%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.2.10">95.30%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.2.11">99.77%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.2.12">0.23%</td> </tr> <tr class="ltx_tr" id="S5.T7.4.1.3"> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.3.1">ChatGPT</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.3.2">77.15%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.3.3">100.0%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.3.4">99.66%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.3.5">100.0%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.3.6">88.85%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.3.7">88.85%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.3.8">88.85%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.3.9">89.20%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.3.10">93.10%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.3.11">99.12%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.3.12">0.88%</td> </tr> <tr class="ltx_tr" id="S5.T7.4.1.4"> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.4.1">DALL·E</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.4.2">74.17%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.4.3">100.0%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.4.4">99.78%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.4.5">100.0%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.4.6">95.88%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.4.7">95.88%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.4.8">95.88%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.4.9">95.88%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.4.10">96.77%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.4.11">99.28%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.4.12">0.72%</td> </tr> <tr class="ltx_tr" id="S5.T7.4.1.5"> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.5.1">Playground</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.5.2">82.57%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.5.3">100.0%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.5.4">99.94%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.5.5">100.0%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.5.6">98.08%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.5.7">98.08%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.5.8">98.08%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.5.9">98.16%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.5.10">98.88%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.5.11">99.84%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.5.12">0.16%</td> </tr> <tr class="ltx_tr" id="S5.T7.4.1.6"> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.6.1">API-Anthropic</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.6.2">85.44%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.6.3">100.0%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.6.4">99.92%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.6.5">100.0%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.6.6">94.02%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.6.7">94.02%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.6.8">94.02%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.6.9">94.26%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.6.10">97.61%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.6.11">99.76%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S5.T7.4.1.6.12">0.24%</td> </tr> <tr class="ltx_tr" id="S5.T7.4.1.7"> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.7.1">Claude</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.7.2">82.02%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.7.3">100.0%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.7.4">99.84%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.7.5">100.0%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.7.6">93.06%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.7.7">93.06%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.7.8">93.06%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.7.9">93.06%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.7.10">97.13%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.7.11">99.52%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.7.12">0.48%</td> </tr> <tr class="ltx_tr" id="S5.T7.4.1.8"> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.8.1">Console</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.8.2">82.56%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.8.3">100.0%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.8.4">99.89%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.8.5">100.0%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.8.6">93.54%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.8.7">93.54%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.8.8">93.54%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.8.9">93.54%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.8.10">97.61%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.8.11">99.76%</td> <td class="ltx_td ltx_align_right" id="S5.T7.4.1.8.12">0.24%</td> </tr> <tr class="ltx_tr" id="S5.T7.4.1.9"> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_t" id="S5.T7.4.1.9.1">Character.AI</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_t" id="S5.T7.4.1.9.2">85.33%</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_t" id="S5.T7.4.1.9.3">100.0%</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_t" id="S5.T7.4.1.9.4">99.59%</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_t" id="S5.T7.4.1.9.5">100.0%</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_t" id="S5.T7.4.1.9.6">90.88%</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_t" id="S5.T7.4.1.9.7">90.88%</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_t" id="S5.T7.4.1.9.8">90.88%</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_t" id="S5.T7.4.1.9.9">91.19%</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_t" id="S5.T7.4.1.9.10">94.03%</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_t" id="S5.T7.4.1.9.11">98.11%</td> <td class="ltx_td ltx_align_right ltx_border_bb ltx_border_t" id="S5.T7.4.1.9.12">1.89%</td> </tr> </table> </span></div> </figure> </section> <section class="ltx_subsection" id="S5.SS2"> <h3 class="ltx_title ltx_title_subsection"> <span class="ltx_tag ltx_tag_subsection">5.2. </span>Auto-correlations</h3> <div class="ltx_para ltx_noindent" id="S5.SS2.p1"> <p class="ltx_p" id="S5.SS2.p1.1"> <span class="ltx_inline-block ltx_parbox ltx_align_middle ltx_framed ltx_framed_rectangle" id="S5.SS2.p1.1.1" style="width:433.6pt;"> <span class="ltx_p" id="S5.SS2.p1.1.1.1"><span class="ltx_text ltx_font_bold" id="S5.SS2.p1.1.1.1.1">Observation #9:</span> <span class="ltx_text ltx_font_italic" id="S5.SS2.p1.1.1.1.2">LLM service failures have strong monthly auto-correlations, with OpenAI incidents showing longer-lasting correlations than Anthropic. Both services display distinct weekly periodicity.</span></span> </span></p> </div> <div class="ltx_para" id="S5.SS2.p2"> <p class="ltx_p" id="S5.SS2.p2.1">We investigate if a failure is immediately followed by another failure and how often it happens. <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S5.F8" title="In 5. Failure Patterns Over Time ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Figure</span> <span class="ltx_text ltx_ref_tag">8</span></a> depicts the auto-correlation for the number of incidents at month, week, and day granularities. We use the autocorrelation function (ACF) to measure the degree of correlation based on the temporal incidents data. Confidence intervals are drawn as the blue area. By default, this is set to a 95% confidence interval, suggesting that correlation values outside of this area are significant, which are real patterns rather than random noise. Lags represent the time intervals at which a time series is compared to itself, and autocorrelation measures how similar a time series is to itself at different lags.</p> </div> <div class="ltx_para" id="S5.SS2.p3"> <p class="ltx_p" id="S5.SS2.p3.1">For OpenAI, the auto-correlation plots display significant positive correlations up to lag 3 on a monthly scale and up to lag 12 on a weekly scale, indicating that both monthly and weekly incidents are strongly related to their previous values. Anthropic shows similar correlations with shorter lags, with up to lag 1 for monthly data and lag 7 for weekly data, likely affected by Anthropic’s shorter operational history. The consistent but gradual decay in auto-correlations at every 7-day interval for both OpenAI and Anthropic suggests strong weekly periodic behavior, supporting our previous findings in <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S4.F7" title="In 4. Failure-Recovery Analysis ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Figure</span> <span class="ltx_text ltx_ref_tag">7</span></a>. Compared to the auto-correlations observed in ML failures from the previous study <cite class="ltx_cite ltx_citemacro_citep">(Chu et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib15" title="">2023</a>)</cite>, the auto-correlation in LLM service failures shows stronger periodic trends. The periodic characteristics can be utilized to predict future incidents, similar to workload failure predictions <cite class="ltx_cite ltx_citemacro_citep">(Li et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib37" title="">2023</a>)</cite>.</p> </div> </section> <section class="ltx_subsection" id="S5.SS3"> <h3 class="ltx_title ltx_title_subsection"> <span class="ltx_tag ltx_tag_subsection">5.3. </span>Service Availability Over Time</h3> <div class="ltx_para ltx_noindent" id="S5.SS3.p1"> <p class="ltx_p" id="S5.SS3.p1.1"> <span class="ltx_inline-block ltx_parbox ltx_align_middle ltx_framed ltx_framed_rectangle" id="S5.SS3.p1.1.1" style="width:433.6pt;"> <span class="ltx_p" id="S5.SS3.p1.1.1.1"><span class="ltx_text ltx_font_bold" id="S5.SS3.p1.1.1.1.1">Observation #10:</span> <span class="ltx_text ltx_font_italic" id="S5.SS3.p1.1.1.1.2"> ChatGPT is the least consistently available service, with only 88.85% of days fully available, followed by Character.AI at 90.88%. Availability of Anthropic’s services declined after April 2024, possibly due to product release and the sharp increase in user demands.</span></span> </span></p> </div> <div class="ltx_para" id="S5.SS3.p2"> <p class="ltx_p" id="S5.SS3.p2.1">We provide a high-level view of what level of service reliability a user can expect in this section. <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S5.F9" title="In 5.1. Temporal Distributions ‣ 5. Failure Patterns Over Time ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Figure</span> <span class="ltx_text ltx_ref_tag">9</span></a> shows the service daily availability by scaled outage minutes, from February 2023 to August 2024. We categorized availability into five levels based on their value ranges. Days without outages, which mean full service availability, are colored green, while days with longer outage durations are represented by colors closer to red. <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S5.T7" title="In 5.1. Temporal Distributions ‣ 5. Failure Patterns Over Time ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Table</span> <span class="ltx_text ltx_ref_tag">7</span></a> gives the specific statistics of service availability. DALL·E and Playground have the highest availability, with 95.88% and 98.08% of days fully accessible, respectively. In contrast, ChatGPT is the least available service, with only 88.85% of days fully accessible. Availability of Anthropic’s services declined after April 2024, possibly due to product release and the sharp increase in user demands <cite class="ltx_cite ltx_citemacro_citep">(Anthropic, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib7" title="">2024b</a>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib6" title="">a</a>)</cite>. Character.AI also shows noticeable instability, with only 90.88% of days fully available and over 1.89% of days with availability falling below 90%.</p> </div> </section> </section> <section class="ltx_section" id="S6"> <h2 class="ltx_title ltx_title_section"> <span class="ltx_tag ltx_tag_section">6. </span>Co-occurrence of Failures</h2> <div class="ltx_para" id="S6.p1"> <p class="ltx_p" id="S6.p1.1">This section examines the co-occurrence of failures across services. When an outage occurs in one service, do other services also experience outages? Is there any co-occurrence within and across different providers, given that services may share the same cloud infrastructure? For instance, both Anthropic and Character.AI rely on GCP <cite class="ltx_cite ltx_citemacro_citep">(gcp, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib4" title="">2025b</a>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib3" title="">a</a>)</cite>. How about the impacted range of incidents for different services and providers? To address these questions, we analyze (1) the co-occurrence of outages, and (2) the impact range of incidents.</p> </div> <section class="ltx_subsection" id="S6.SS1"> <h3 class="ltx_title ltx_title_subsection"> <span class="ltx_tag ltx_tag_subsection">6.1. </span>Co-occurrence of Outages</h3> <figure class="ltx_figure ltx_minipage ltx_align_center ltx_align_middle" id="S6.F10" style="width:433.6pt;"> <div class="ltx_flex_figure"> <div class="ltx_flex_cell ltx_flex_size_1"> <figure class="ltx_figure ltx_figure_panel" id="S6.F10.sf1"><img alt="Refer to caption" class="ltx_graphics ltx_img_landscape" height="651" id="S6.F10.sf1.g1" src="x14.png" width="830"/> <figcaption class="ltx_caption"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S6.F10.sf1.2.1.1" style="font-size:90%;">(a)</span> </span><span class="ltx_text" id="S6.F10.sf1.3.2" style="font-size:90%;">Co-occurrence outages in days count.</span></figcaption> </figure> </div> <div class="ltx_flex_break"></div> <div class="ltx_flex_cell ltx_flex_size_1"> <figure class="ltx_figure ltx_figure_panel" id="S6.F10.sf2"><img alt="Refer to caption" class="ltx_graphics ltx_img_landscape" height="649" id="S6.F10.sf2.g1" src="x15.png" width="830"/> <figcaption class="ltx_caption"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S6.F10.sf2.8.4.1" style="font-size:90%;">(b)</span> </span><span class="ltx_text" id="S6.F10.sf2.6.3" style="font-size:90%;">Conditional probabilities of co-occurrence outages. Notes: y-axis <math alttext="=" class="ltx_Math" display="inline" id="S6.F10.sf2.4.1.m1.1"><semantics id="S6.F10.sf2.4.1.m1.1b"><mo id="S6.F10.sf2.4.1.m1.1.1" xref="S6.F10.sf2.4.1.m1.1.1.cmml">=</mo><annotation-xml encoding="MathML-Content" id="S6.F10.sf2.4.1.m1.1c"><eq id="S6.F10.sf2.4.1.m1.1.1.cmml" xref="S6.F10.sf2.4.1.m1.1.1"></eq></annotation-xml><annotation encoding="application/x-tex" id="S6.F10.sf2.4.1.m1.1d">=</annotation><annotation encoding="application/x-llamapun" id="S6.F10.sf2.4.1.m1.1e">=</annotation></semantics></math> service A, x-axis <math alttext="=" class="ltx_Math" display="inline" id="S6.F10.sf2.5.2.m2.1"><semantics id="S6.F10.sf2.5.2.m2.1b"><mo id="S6.F10.sf2.5.2.m2.1.1" xref="S6.F10.sf2.5.2.m2.1.1.cmml">=</mo><annotation-xml encoding="MathML-Content" id="S6.F10.sf2.5.2.m2.1c"><eq id="S6.F10.sf2.5.2.m2.1.1.cmml" xref="S6.F10.sf2.5.2.m2.1.1"></eq></annotation-xml><annotation encoding="application/x-tex" id="S6.F10.sf2.5.2.m2.1d">=</annotation><annotation encoding="application/x-llamapun" id="S6.F10.sf2.5.2.m2.1e">=</annotation></semantics></math> service B, cells <math alttext="=" class="ltx_Math" display="inline" id="S6.F10.sf2.6.3.m3.1"><semantics id="S6.F10.sf2.6.3.m3.1b"><mo id="S6.F10.sf2.6.3.m3.1.1" xref="S6.F10.sf2.6.3.m3.1.1.cmml">=</mo><annotation-xml encoding="MathML-Content" id="S6.F10.sf2.6.3.m3.1c"><eq id="S6.F10.sf2.6.3.m3.1.1.cmml" xref="S6.F10.sf2.6.3.m3.1.1"></eq></annotation-xml><annotation encoding="application/x-tex" id="S6.F10.sf2.6.3.m3.1d">=</annotation><annotation encoding="application/x-llamapun" id="S6.F10.sf2.6.3.m3.1e">=</annotation></semantics></math> P(A—B).</span></figcaption> </figure> </div> </div> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S6.F10.2.1.1" style="font-size:90%;">Figure 10</span>. </span><span class="ltx_text" id="S6.F10.3.2" style="font-size:90%;">Co-occurrence of outages between service pairs.</span></figcaption> </figure> <div class="ltx_para ltx_noindent" id="S6.SS1.p1"> <p class="ltx_p" id="S6.SS1.p1.1"> <span class="ltx_inline-block ltx_parbox ltx_align_middle ltx_framed ltx_framed_rectangle" id="S6.SS1.p1.1.1" style="width:433.6pt;"> <span class="ltx_p" id="S6.SS1.p1.1.1.1"><span class="ltx_text ltx_font_bold" id="S6.SS1.p1.1.1.1.1">Observation #11:</span> <span class="ltx_text ltx_font_italic" id="S6.SS1.p1.1.1.1.2">Co-occurrence is particularly high among services from the same provider, suggesting a strong interdependence between those services. For Anthropic’s services, the likelihood of any two services experiencing outages on the same day is over 80%, indicating a severe lack of isolation across different services.</span></span> </span></p> </div> <div class="ltx_para" id="S6.SS1.p2"> <p class="ltx_p" id="S6.SS1.p2.3">The <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S6.F10.sf1" title="In Figure 10 ‣ 6.1. Co-occurrence of Outages ‣ 6. Co-occurrence of Failures ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Figure</span> <span class="ltx_text ltx_ref_tag">10(a)</span></a> shows the number of co-occurring outages across different services on the same day. The counts of outages may be affected by the maximum number of outages. For example, the number of co-occurrences among Anthropic services is lower than for OpenAI services, however, the probability of co-occurrence among Anthropic services is higher. To avoid this impact of the number of outages, we also give the conditional probabilities of co-occurring outages in <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S6.F10.sf2" title="In Figure 10 ‣ 6.1. Co-occurrence of Outages ‣ 6. Co-occurrence of Failures ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Figure</span> <span class="ltx_text ltx_ref_tag">10(b)</span></a>. The conditional probability indicates the likelihood that if service B experiences an outage, service A will also experience an outage. For instance, the 49.21% in row 1, column 2 means that if ChatGPT is down, there is a 49.21% chance that OpenAI’s API will also experience an outage on the same day. The probability that service A is also outage while service B is outage can be formulated in:</p> <table class="ltx_equation ltx_eqn_table" id="S6.E4"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(4)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="P(A|B)=\frac{P(A\cap B)}{P(A)\times P(B)}=\frac{O_{AB}}{O_{B}}" class="ltx_Math" display="block" id="S6.E4.m1.4"><semantics id="S6.E4.m1.4a"><mrow id="S6.E4.m1.4.4" xref="S6.E4.m1.4.4.cmml"><mrow id="S6.E4.m1.4.4.1" xref="S6.E4.m1.4.4.1.cmml"><mi id="S6.E4.m1.4.4.1.3" xref="S6.E4.m1.4.4.1.3.cmml">P</mi><mo id="S6.E4.m1.4.4.1.2" xref="S6.E4.m1.4.4.1.2.cmml"></mo><mrow id="S6.E4.m1.4.4.1.1.1" xref="S6.E4.m1.4.4.1.1.1.1.cmml"><mo id="S6.E4.m1.4.4.1.1.1.2" stretchy="false" xref="S6.E4.m1.4.4.1.1.1.1.cmml">(</mo><mrow id="S6.E4.m1.4.4.1.1.1.1" xref="S6.E4.m1.4.4.1.1.1.1.cmml"><mi id="S6.E4.m1.4.4.1.1.1.1.2" xref="S6.E4.m1.4.4.1.1.1.1.2.cmml">A</mi><mo fence="false" id="S6.E4.m1.4.4.1.1.1.1.1" xref="S6.E4.m1.4.4.1.1.1.1.1.cmml">|</mo><mi id="S6.E4.m1.4.4.1.1.1.1.3" xref="S6.E4.m1.4.4.1.1.1.1.3.cmml">B</mi></mrow><mo id="S6.E4.m1.4.4.1.1.1.3" stretchy="false" xref="S6.E4.m1.4.4.1.1.1.1.cmml">)</mo></mrow></mrow><mo id="S6.E4.m1.4.4.3" xref="S6.E4.m1.4.4.3.cmml">=</mo><mfrac id="S6.E4.m1.3.3" xref="S6.E4.m1.3.3.cmml"><mrow id="S6.E4.m1.1.1.1" xref="S6.E4.m1.1.1.1.cmml"><mi id="S6.E4.m1.1.1.1.3" xref="S6.E4.m1.1.1.1.3.cmml">P</mi><mo id="S6.E4.m1.1.1.1.2" xref="S6.E4.m1.1.1.1.2.cmml"></mo><mrow id="S6.E4.m1.1.1.1.1.1" xref="S6.E4.m1.1.1.1.1.1.1.cmml"><mo id="S6.E4.m1.1.1.1.1.1.2" stretchy="false" xref="S6.E4.m1.1.1.1.1.1.1.cmml">(</mo><mrow id="S6.E4.m1.1.1.1.1.1.1" xref="S6.E4.m1.1.1.1.1.1.1.cmml"><mi id="S6.E4.m1.1.1.1.1.1.1.2" xref="S6.E4.m1.1.1.1.1.1.1.2.cmml">A</mi><mo id="S6.E4.m1.1.1.1.1.1.1.1" xref="S6.E4.m1.1.1.1.1.1.1.1.cmml">∩</mo><mi id="S6.E4.m1.1.1.1.1.1.1.3" xref="S6.E4.m1.1.1.1.1.1.1.3.cmml">B</mi></mrow><mo id="S6.E4.m1.1.1.1.1.1.3" stretchy="false" xref="S6.E4.m1.1.1.1.1.1.1.cmml">)</mo></mrow></mrow><mrow id="S6.E4.m1.3.3.3" xref="S6.E4.m1.3.3.3.cmml"><mrow id="S6.E4.m1.3.3.3.4" xref="S6.E4.m1.3.3.3.4.cmml"><mrow id="S6.E4.m1.3.3.3.4.2" xref="S6.E4.m1.3.3.3.4.2.cmml"><mi id="S6.E4.m1.3.3.3.4.2.2" xref="S6.E4.m1.3.3.3.4.2.2.cmml">P</mi><mo id="S6.E4.m1.3.3.3.4.2.1" xref="S6.E4.m1.3.3.3.4.2.1.cmml"></mo><mrow id="S6.E4.m1.3.3.3.4.2.3.2" xref="S6.E4.m1.3.3.3.4.2.cmml"><mo id="S6.E4.m1.3.3.3.4.2.3.2.1" stretchy="false" xref="S6.E4.m1.3.3.3.4.2.cmml">(</mo><mi id="S6.E4.m1.2.2.2.1" xref="S6.E4.m1.2.2.2.1.cmml">A</mi><mo id="S6.E4.m1.3.3.3.4.2.3.2.2" rspace="0.055em" stretchy="false" xref="S6.E4.m1.3.3.3.4.2.cmml">)</mo></mrow></mrow><mo id="S6.E4.m1.3.3.3.4.1" rspace="0.222em" xref="S6.E4.m1.3.3.3.4.1.cmml">×</mo><mi id="S6.E4.m1.3.3.3.4.3" xref="S6.E4.m1.3.3.3.4.3.cmml">P</mi></mrow><mo id="S6.E4.m1.3.3.3.3" xref="S6.E4.m1.3.3.3.3.cmml"></mo><mrow id="S6.E4.m1.3.3.3.5.2" xref="S6.E4.m1.3.3.3.cmml"><mo id="S6.E4.m1.3.3.3.5.2.1" stretchy="false" xref="S6.E4.m1.3.3.3.cmml">(</mo><mi id="S6.E4.m1.3.3.3.2" xref="S6.E4.m1.3.3.3.2.cmml">B</mi><mo id="S6.E4.m1.3.3.3.5.2.2" stretchy="false" xref="S6.E4.m1.3.3.3.cmml">)</mo></mrow></mrow></mfrac><mo id="S6.E4.m1.4.4.4" xref="S6.E4.m1.4.4.4.cmml">=</mo><mfrac id="S6.E4.m1.4.4.5" xref="S6.E4.m1.4.4.5.cmml"><msub id="S6.E4.m1.4.4.5.2" xref="S6.E4.m1.4.4.5.2.cmml"><mi id="S6.E4.m1.4.4.5.2.2" xref="S6.E4.m1.4.4.5.2.2.cmml">O</mi><mrow id="S6.E4.m1.4.4.5.2.3" xref="S6.E4.m1.4.4.5.2.3.cmml"><mi id="S6.E4.m1.4.4.5.2.3.2" xref="S6.E4.m1.4.4.5.2.3.2.cmml">A</mi><mo id="S6.E4.m1.4.4.5.2.3.1" xref="S6.E4.m1.4.4.5.2.3.1.cmml"></mo><mi id="S6.E4.m1.4.4.5.2.3.3" xref="S6.E4.m1.4.4.5.2.3.3.cmml">B</mi></mrow></msub><msub id="S6.E4.m1.4.4.5.3" xref="S6.E4.m1.4.4.5.3.cmml"><mi id="S6.E4.m1.4.4.5.3.2" xref="S6.E4.m1.4.4.5.3.2.cmml">O</mi><mi id="S6.E4.m1.4.4.5.3.3" xref="S6.E4.m1.4.4.5.3.3.cmml">B</mi></msub></mfrac></mrow><annotation-xml encoding="MathML-Content" id="S6.E4.m1.4b"><apply id="S6.E4.m1.4.4.cmml" xref="S6.E4.m1.4.4"><and id="S6.E4.m1.4.4a.cmml" xref="S6.E4.m1.4.4"></and><apply id="S6.E4.m1.4.4b.cmml" xref="S6.E4.m1.4.4"><eq id="S6.E4.m1.4.4.3.cmml" xref="S6.E4.m1.4.4.3"></eq><apply id="S6.E4.m1.4.4.1.cmml" xref="S6.E4.m1.4.4.1"><times id="S6.E4.m1.4.4.1.2.cmml" xref="S6.E4.m1.4.4.1.2"></times><ci id="S6.E4.m1.4.4.1.3.cmml" xref="S6.E4.m1.4.4.1.3">𝑃</ci><apply id="S6.E4.m1.4.4.1.1.1.1.cmml" xref="S6.E4.m1.4.4.1.1.1"><csymbol cd="latexml" id="S6.E4.m1.4.4.1.1.1.1.1.cmml" xref="S6.E4.m1.4.4.1.1.1.1.1">conditional</csymbol><ci id="S6.E4.m1.4.4.1.1.1.1.2.cmml" xref="S6.E4.m1.4.4.1.1.1.1.2">𝐴</ci><ci id="S6.E4.m1.4.4.1.1.1.1.3.cmml" xref="S6.E4.m1.4.4.1.1.1.1.3">𝐵</ci></apply></apply><apply id="S6.E4.m1.3.3.cmml" xref="S6.E4.m1.3.3"><divide id="S6.E4.m1.3.3.4.cmml" xref="S6.E4.m1.3.3"></divide><apply id="S6.E4.m1.1.1.1.cmml" xref="S6.E4.m1.1.1.1"><times id="S6.E4.m1.1.1.1.2.cmml" xref="S6.E4.m1.1.1.1.2"></times><ci id="S6.E4.m1.1.1.1.3.cmml" xref="S6.E4.m1.1.1.1.3">𝑃</ci><apply id="S6.E4.m1.1.1.1.1.1.1.cmml" xref="S6.E4.m1.1.1.1.1.1"><intersect id="S6.E4.m1.1.1.1.1.1.1.1.cmml" xref="S6.E4.m1.1.1.1.1.1.1.1"></intersect><ci id="S6.E4.m1.1.1.1.1.1.1.2.cmml" xref="S6.E4.m1.1.1.1.1.1.1.2">𝐴</ci><ci id="S6.E4.m1.1.1.1.1.1.1.3.cmml" xref="S6.E4.m1.1.1.1.1.1.1.3">𝐵</ci></apply></apply><apply id="S6.E4.m1.3.3.3.cmml" xref="S6.E4.m1.3.3.3"><times id="S6.E4.m1.3.3.3.3.cmml" xref="S6.E4.m1.3.3.3.3"></times><apply id="S6.E4.m1.3.3.3.4.cmml" xref="S6.E4.m1.3.3.3.4"><times id="S6.E4.m1.3.3.3.4.1.cmml" xref="S6.E4.m1.3.3.3.4.1"></times><apply id="S6.E4.m1.3.3.3.4.2.cmml" xref="S6.E4.m1.3.3.3.4.2"><times id="S6.E4.m1.3.3.3.4.2.1.cmml" xref="S6.E4.m1.3.3.3.4.2.1"></times><ci id="S6.E4.m1.3.3.3.4.2.2.cmml" xref="S6.E4.m1.3.3.3.4.2.2">𝑃</ci><ci id="S6.E4.m1.2.2.2.1.cmml" xref="S6.E4.m1.2.2.2.1">𝐴</ci></apply><ci id="S6.E4.m1.3.3.3.4.3.cmml" xref="S6.E4.m1.3.3.3.4.3">𝑃</ci></apply><ci id="S6.E4.m1.3.3.3.2.cmml" xref="S6.E4.m1.3.3.3.2">𝐵</ci></apply></apply></apply><apply id="S6.E4.m1.4.4c.cmml" xref="S6.E4.m1.4.4"><eq id="S6.E4.m1.4.4.4.cmml" xref="S6.E4.m1.4.4.4"></eq><share href="https://arxiv.org/html/2501.12469v2#S6.E4.m1.3.3.cmml" id="S6.E4.m1.4.4d.cmml" xref="S6.E4.m1.4.4"></share><apply id="S6.E4.m1.4.4.5.cmml" xref="S6.E4.m1.4.4.5"><divide id="S6.E4.m1.4.4.5.1.cmml" xref="S6.E4.m1.4.4.5"></divide><apply id="S6.E4.m1.4.4.5.2.cmml" xref="S6.E4.m1.4.4.5.2"><csymbol cd="ambiguous" id="S6.E4.m1.4.4.5.2.1.cmml" xref="S6.E4.m1.4.4.5.2">subscript</csymbol><ci id="S6.E4.m1.4.4.5.2.2.cmml" xref="S6.E4.m1.4.4.5.2.2">𝑂</ci><apply id="S6.E4.m1.4.4.5.2.3.cmml" xref="S6.E4.m1.4.4.5.2.3"><times id="S6.E4.m1.4.4.5.2.3.1.cmml" xref="S6.E4.m1.4.4.5.2.3.1"></times><ci id="S6.E4.m1.4.4.5.2.3.2.cmml" xref="S6.E4.m1.4.4.5.2.3.2">𝐴</ci><ci id="S6.E4.m1.4.4.5.2.3.3.cmml" xref="S6.E4.m1.4.4.5.2.3.3">𝐵</ci></apply></apply><apply id="S6.E4.m1.4.4.5.3.cmml" xref="S6.E4.m1.4.4.5.3"><csymbol cd="ambiguous" id="S6.E4.m1.4.4.5.3.1.cmml" xref="S6.E4.m1.4.4.5.3">subscript</csymbol><ci id="S6.E4.m1.4.4.5.3.2.cmml" xref="S6.E4.m1.4.4.5.3.2">𝑂</ci><ci id="S6.E4.m1.4.4.5.3.3.cmml" xref="S6.E4.m1.4.4.5.3.3">𝐵</ci></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S6.E4.m1.4c">P(A|B)=\frac{P(A\cap B)}{P(A)\times P(B)}=\frac{O_{AB}}{O_{B}}</annotation><annotation encoding="application/x-llamapun" id="S6.E4.m1.4d">italic_P ( italic_A | italic_B ) = divide start_ARG italic_P ( italic_A ∩ italic_B ) end_ARG start_ARG italic_P ( italic_A ) × italic_P ( italic_B ) end_ARG = divide start_ARG italic_O start_POSTSUBSCRIPT italic_A italic_B end_POSTSUBSCRIPT end_ARG start_ARG italic_O start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT end_ARG</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S6.SS1.p2.2"><math alttext="O_{AB}" class="ltx_Math" display="inline" id="S6.SS1.p2.1.m1.1"><semantics id="S6.SS1.p2.1.m1.1a"><msub id="S6.SS1.p2.1.m1.1.1" xref="S6.SS1.p2.1.m1.1.1.cmml"><mi id="S6.SS1.p2.1.m1.1.1.2" xref="S6.SS1.p2.1.m1.1.1.2.cmml">O</mi><mrow id="S6.SS1.p2.1.m1.1.1.3" xref="S6.SS1.p2.1.m1.1.1.3.cmml"><mi id="S6.SS1.p2.1.m1.1.1.3.2" xref="S6.SS1.p2.1.m1.1.1.3.2.cmml">A</mi><mo id="S6.SS1.p2.1.m1.1.1.3.1" xref="S6.SS1.p2.1.m1.1.1.3.1.cmml"></mo><mi id="S6.SS1.p2.1.m1.1.1.3.3" xref="S6.SS1.p2.1.m1.1.1.3.3.cmml">B</mi></mrow></msub><annotation-xml encoding="MathML-Content" id="S6.SS1.p2.1.m1.1b"><apply id="S6.SS1.p2.1.m1.1.1.cmml" xref="S6.SS1.p2.1.m1.1.1"><csymbol cd="ambiguous" id="S6.SS1.p2.1.m1.1.1.1.cmml" xref="S6.SS1.p2.1.m1.1.1">subscript</csymbol><ci id="S6.SS1.p2.1.m1.1.1.2.cmml" xref="S6.SS1.p2.1.m1.1.1.2">𝑂</ci><apply id="S6.SS1.p2.1.m1.1.1.3.cmml" xref="S6.SS1.p2.1.m1.1.1.3"><times id="S6.SS1.p2.1.m1.1.1.3.1.cmml" xref="S6.SS1.p2.1.m1.1.1.3.1"></times><ci id="S6.SS1.p2.1.m1.1.1.3.2.cmml" xref="S6.SS1.p2.1.m1.1.1.3.2">𝐴</ci><ci id="S6.SS1.p2.1.m1.1.1.3.3.cmml" xref="S6.SS1.p2.1.m1.1.1.3.3">𝐵</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S6.SS1.p2.1.m1.1c">O_{AB}</annotation><annotation encoding="application/x-llamapun" id="S6.SS1.p2.1.m1.1d">italic_O start_POSTSUBSCRIPT italic_A italic_B end_POSTSUBSCRIPT</annotation></semantics></math> represents the number of days when both services A and B experience outages simultaneously, while <math alttext="O_{B}" class="ltx_Math" display="inline" id="S6.SS1.p2.2.m2.1"><semantics id="S6.SS1.p2.2.m2.1a"><msub id="S6.SS1.p2.2.m2.1.1" xref="S6.SS1.p2.2.m2.1.1.cmml"><mi id="S6.SS1.p2.2.m2.1.1.2" xref="S6.SS1.p2.2.m2.1.1.2.cmml">O</mi><mi id="S6.SS1.p2.2.m2.1.1.3" xref="S6.SS1.p2.2.m2.1.1.3.cmml">B</mi></msub><annotation-xml encoding="MathML-Content" id="S6.SS1.p2.2.m2.1b"><apply id="S6.SS1.p2.2.m2.1.1.cmml" xref="S6.SS1.p2.2.m2.1.1"><csymbol cd="ambiguous" id="S6.SS1.p2.2.m2.1.1.1.cmml" xref="S6.SS1.p2.2.m2.1.1">subscript</csymbol><ci id="S6.SS1.p2.2.m2.1.1.2.cmml" xref="S6.SS1.p2.2.m2.1.1.2">𝑂</ci><ci id="S6.SS1.p2.2.m2.1.1.3.cmml" xref="S6.SS1.p2.2.m2.1.1.3">𝐵</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S6.SS1.p2.2.m2.1c">O_{B}</annotation><annotation encoding="application/x-llamapun" id="S6.SS1.p2.2.m2.1d">italic_O start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT</annotation></semantics></math> indicates the number of days that service B has an outage.</p> </div> <div class="ltx_para" id="S6.SS1.p3"> <p class="ltx_p" id="S6.SS1.p3.1">The heatmaps show that co-occurrence is notably high among services from the same provider. For OpenAI services, the API is more likely to have an outage with DALL·E (78.26%) and Playground (87.50%) than ChatGPT (49.21%). For Anthropic’s services, the likelihood of any two services experiencing outages on the same day is extremely high over 80%, this may be caused by a lack of isolation across different services. There is no correlation observed between services from different providers. The lack of correlation suggests that user can use one service as the other’s backup to increase their reliability. The difference in co-occurrence between OpenAI and Anthropic suggests that outages could be reduced through better service isolation. Based on publicly available information, this may be caused by the different cloud infrastructures used by LLMs: OpenAI relies on Azure <cite class="ltx_cite ltx_citemacro_citep">(azu, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib2" title="">2025</a>)</cite>, while Anthropic uses GCP <cite class="ltx_cite ltx_citemacro_citep">(gcp, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib4" title="">2025b</a>)</cite>.</p> </div> </section> <section class="ltx_subsection" id="S6.SS2"> <h3 class="ltx_title ltx_title_subsection"> <span class="ltx_tag ltx_tag_subsection">6.2. </span>Impact Range of Incidents</h3> <figure class="ltx_figure ltx_minipage ltx_align_center ltx_align_middle" id="S6.F11" style="width:433.6pt;"> <div class="ltx_flex_figure"> <div class="ltx_flex_cell ltx_flex_size_2"> <figure class="ltx_figure ltx_figure_panel" id="S6.F11.1.1"><img alt="Refer to caption" class="ltx_graphics ltx_img_square" height="672" id="S6.F11.1.1.g1" src="x16.png" width="831"/> </figure> </div> <div class="ltx_flex_cell ltx_flex_size_2"> <figure class="ltx_figure ltx_figure_panel" id="S6.F11.2.2"><img alt="Refer to caption" class="ltx_graphics ltx_img_square" height="728" id="S6.F11.2.2.g1" src="x17.png" width="829"/> </figure> </div> </div> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_figure"><span class="ltx_text" id="S6.F11.4.1.1" style="font-size:90%;">Figure 11</span>. </span><span class="ltx_text" id="S6.F11.5.2" style="font-size:90%;">Impact Services of OpenAI and Anthropic incidents, respectively.</span></figcaption> </figure> <figure class="ltx_table" id="S6.T8"> <figcaption class="ltx_caption"><span class="ltx_tag ltx_tag_table"><span class="ltx_text" id="S6.T8.2.1.1" style="font-size:90%;">Table 8</span>. </span><span class="ltx_text" id="S6.T8.3.2" style="font-size:90%;">Percentage of the number of impacted services.</span></figcaption> <div class="ltx_inline-block ltx_transformed_outer" id="S6.T8.4" style="width:294.9pt;height:70.2pt;vertical-align:-0.0pt;"><span class="ltx_transformed_inner" style="transform:translate(34.1pt,-8.1pt) scale(1.30068392817586,1.30068392817586) ;"> <table class="ltx_tabular ltx_align_middle" id="S6.T8.4.1"> <tr class="ltx_tr" id="S6.T8.4.1.1"> <td class="ltx_td ltx_border_tt" id="S6.T8.4.1.1.1"></td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S6.T8.4.1.1.2"><span class="ltx_text ltx_font_bold" id="S6.T8.4.1.1.2.1">1</span></td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S6.T8.4.1.1.3"><span class="ltx_text ltx_font_bold" id="S6.T8.4.1.1.3.1">2</span></td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S6.T8.4.1.1.4"><span class="ltx_text ltx_font_bold" id="S6.T8.4.1.1.4.1">3</span></td> <td class="ltx_td ltx_align_right ltx_border_tt" id="S6.T8.4.1.1.5"><span class="ltx_text ltx_font_bold" id="S6.T8.4.1.1.5.1">4</span></td> </tr> <tr class="ltx_tr" id="S6.T8.4.1.2"> <td class="ltx_td ltx_align_left ltx_border_t" id="S6.T8.4.1.2.1">OpenAI</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S6.T8.4.1.2.2">57.63%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S6.T8.4.1.2.3">31.44%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S6.T8.4.1.2.4">2.73%</td> <td class="ltx_td ltx_align_right ltx_border_t" id="S6.T8.4.1.2.5">8.20%</td> </tr> <tr class="ltx_tr" id="S6.T8.4.1.3"> <td class="ltx_td ltx_align_left ltx_border_bb" id="S6.T8.4.1.3.1">Anthropic</td> <td class="ltx_td ltx_align_right ltx_border_bb" id="S6.T8.4.1.3.2">12.82%</td> <td class="ltx_td ltx_align_right ltx_border_bb" id="S6.T8.4.1.3.3">15.38%</td> <td class="ltx_td ltx_align_right ltx_border_bb" id="S6.T8.4.1.3.4">71.79%</td> <td class="ltx_td ltx_align_right ltx_border_bb" id="S6.T8.4.1.3.5">-</td> </tr> </table> </span></div> </figure> <div class="ltx_para ltx_noindent" id="S6.SS2.p1"> <p class="ltx_p" id="S6.SS2.p1.1"> <span class="ltx_inline-block ltx_parbox ltx_align_middle ltx_framed ltx_framed_rectangle" id="S6.SS2.p1.1.1" style="width:433.6pt;"> <span class="ltx_p" id="S6.SS2.p1.1.1.1"><span class="ltx_text ltx_font_bold" id="S6.SS2.p1.1.1.1.1">Observation #12:</span> <span class="ltx_text ltx_font_italic" id="S6.SS2.p1.1.1.1.2">71.79% of Anthropic incidents affect all its services, compared to only 8.20% for OpenAI.</span></span> </span></p> </div> <div class="ltx_para" id="S6.SS2.p2"> <p class="ltx_p" id="S6.SS2.p2.1">The incident reports indicate that one incident can impact several services, which is the impact range of incidents. <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S6.F11" title="In 6.2. Impact Range of Incidents ‣ 6. Co-occurrence of Failures ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Figure</span> <span class="ltx_text ltx_ref_tag">11</span></a> gives the impacted services combinations of OpenAI and Anthropic incidents based on their reports, respectively. For Anthropic, the majority of incidents (71.79%) impact its 3 services jointly. However, for OpenAI, only 8.20% of services are impacted together, and over half (57.63%) of incidents affect a single service.</p> </div> </section> </section> <section class="ltx_section" id="S7"> <h2 class="ltx_title ltx_title_section"> <span class="ltx_tag ltx_tag_section">7. </span>Limitations and Validity</h2> <div class="ltx_para" id="S7.p1"> <p class="ltx_p" id="S7.p1.1">The <span class="ltx_text ltx_font_italic" id="S7.p1.1.1">generality</span> of our work is limited to the services we analyze. We analyze LLM-related services from three popular operators, including the currently most popular (OpenAI). However, other, very different services could exist, e.g., allowing users to self-host LLMs (e.g., Anyscale), and LLM services from big cloud providers and/or used primarily internally (e.g., Google Gemini).</p> </div> <div class="ltx_para" id="S7.p2"> <p class="ltx_p" id="S7.p2.1">The <span class="ltx_text ltx_font_italic" id="S7.p2.1.1">accuracy</span> of our failure dataset is limited to what the LLM operators themselves report. That makes our data subject to the operators’ bias. Prior work <cite class="ltx_cite ltx_citemacro_citep">(Hu et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib23" title="">2020</a>; Talluri et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib55" title="">2021</a>)</cite> suggests the operator’s reports already capture the most user-visible failures as those generate widespread social media coverage, making it difficult for the operators to hide failure; to confirm this for LLM services, we need to collect data from other sources such as the user devices <cite class="ltx_cite ltx_citemacro_citep">(Burnett et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib12" title="">2020</a>)</cite> or user failure reports <cite class="ltx_cite ltx_citemacro_citep">(Hu et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib23" title="">2020</a>; Talluri et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib55" title="">2021</a>)</cite>.</p> </div> <div class="ltx_para" id="S7.p3"> <p class="ltx_p" id="S7.p3.1">The <span class="ltx_text ltx_font_italic" id="S7.p3.1.1">depth</span> of our analysis regarding the root cause of failures is limited. We glean limited information from the operators’ failure reports regarding the hardware and software infrastructure. To confirm our findings, we would ideally use detailed infrastructure and application-level data. However, this requires active help from the service operators, e.g., releasing their system traces as Google did with its cluster workloads <cite class="ltx_cite ltx_citemacro_citep">(Google, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib20" title="">2019</a>)</cite>.</p> </div> <div class="ltx_para" id="S7.p4"> <p class="ltx_p" id="S7.p4.1">The <span class="ltx_text ltx_font_italic" id="S7.p4.1.1">scope</span> of our work is limited to LLM services. We ignore other deep learning services such as Image Generation (e.g., Stable Diffusion, Midjourney), Translation (e.g., DeepL), etc. However, we believe the operational characteristics of LLM services are valuable in and of themselves. LLMs have gained broad general public adoption and mindshare, as described in <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#S1" title="1. Introduction ‣ An Empirical Characterization of Outages and Incidents in Public Services for Large Language Models"><span class="ltx_text ltx_ref_tag">Section</span> <span class="ltx_text ltx_ref_tag">1</span></a>. LLM services now also support multi-modal use cases such as image generation and image-based question answering, making them some of the most general deep learning tools currently available.</p> </div> </section> <section class="ltx_section" id="S8"> <h2 class="ltx_title ltx_title_section"> <span class="ltx_tag ltx_tag_section">8. </span>Related Work</h2> <div class="ltx_para" id="S8.p1"> <p class="ltx_p" id="S8.p1.1">Overall, this work complements the existing body of work on failure characterization, modeling, and more generally failure-recovery, with a focus on the emerging area of LLM services. Ours is the first comprehensive, longitudinal data collection and empirical characterization of public LLM services.</p> </div> <div class="ltx_para ltx_noindent" id="S8.p2"> <p class="ltx_p" id="S8.p2.1"><span class="ltx_text ltx_font_bold" id="S8.p2.1.1">Operational failure characterization</span> of workstations <cite class="ltx_cite ltx_citemacro_citep">(Javadi et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib31" title="">2013</a>)</cite>, HPC sites <cite class="ltx_cite ltx_citemacro_citep">(Gupta et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib21" title="">2017</a>)</cite>, clouds <cite class="ltx_cite ltx_citemacro_citep">(Garraghan et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib19" title="">2014</a>)</cite>, big data jobs <cite class="ltx_cite ltx_citemacro_citep">(Rosà et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib50" title="">2015</a>)</cite>, networks <cite class="ltx_cite ltx_citemacro_citep">(Potharaju and Jain, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib43" title="">2013</a>)</cite>, storage devices <cite class="ltx_cite ltx_citemacro_citep">(Alter et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib5" title="">2019</a>)</cite>, CPUs <cite class="ltx_cite ltx_citemacro_citep">(Hochschild et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib22" title="">2021</a>)</cite>, and GPUs <cite class="ltx_cite ltx_citemacro_citep">(Tiwari et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib56" title="">2015</a>)</cite> has led to improved application designs and fault-tolerance mechanisms. Leading from these, we have better failure detection <cite class="ltx_cite ltx_citemacro_citep">(Burnett et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib12" title="">2020</a>; Hu et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib23" title="">2020</a>)</cite>, checkpointing <cite class="ltx_cite ltx_citemacro_citep">(Garg et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib18" title="">2018</a>)</cite>, retry <cite class="ltx_cite ltx_citemacro_citep">(Primorac et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib44" title="">2021</a>)</cite>, and replication mechanisms <cite class="ltx_cite ltx_citemacro_citep">(Shen et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib53" title="">2015</a>)</cite>. However, these do not cover deep learning and particularly LLM services.</p> </div> <div class="ltx_para" id="S8.p3"> <p class="ltx_p" id="S8.p3.1">There is existing work on operational characteristics of GPUs for deep learning <cite class="ltx_cite ltx_citemacro_citep">(Li et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib36" title="">2017</a>)</cite>, ML jobs on HPC clusters <cite class="ltx_cite ltx_citemacro_citep">(Chu et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib14" title="">2024</a>)</cite>, and deep-learning clusters <cite class="ltx_cite ltx_citemacro_citep">(Jeon et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib32" title="">2019</a>)</cite>. However, no work has described the <span class="ltx_text ltx_font_italic" id="S8.p3.1.1">operational failure characteristics</span> of user-facing deep learning services. Our study addresses this gap, focusing on LLMs.</p> </div> <div class="ltx_para ltx_noindent" id="S8.p4"> <p class="ltx_p" id="S8.p4.1"><span class="ltx_text ltx_font_bold" id="S8.p4.1.1">Deep learning workloads</span> have been characterized including their GPU utilization <cite class="ltx_cite ltx_citemacro_citep">(Hu et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib24" title="">2021</a>; Li et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib35" title="">2022</a>)</cite>, network characteristics <cite class="ltx_cite ltx_citemacro_citep">(Awan et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib11" title="">2020</a>)</cite>, and storage characteristics <cite class="ltx_cite ltx_citemacro_citep">(Chien et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib13" title="">2018</a>)</cite>. User-facing machine learning workloads have also been characterized <cite class="ltx_cite ltx_citemacro_citep">(Weng et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib64" title="">2022</a>)</cite>. The studies complement our work as they explore different hardware/software stack layers. We complement the studies by enhancing the community’s understanding of LLM failures at the user-facing application layer.</p> </div> <div class="ltx_para ltx_noindent" id="S8.p5"> <p class="ltx_p" id="S8.p5.1"><span class="ltx_text ltx_font_bold" id="S8.p5.1.1">LLM workloads</span> have been characterized at the preliminary-level for training <cite class="ltx_cite ltx_citemacro_citep">(Hu et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib25" title="">2024</a>)</cite>, fine-tuning <cite class="ltx_cite ltx_citemacro_citep">(Xia et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib66" title="">2024</a>; Wang et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib63" title="">2024a</a>)</cite>, and inference <cite class="ltx_cite ltx_citemacro_citep">(Łazuka et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib34" title="">2024</a>)</cite>. Failures have been assessed briefly; e.g., found to occur frequently (<math alttext="\sim" class="ltx_Math" display="inline" id="S8.p5.1.m1.1"><semantics id="S8.p5.1.m1.1a"><mo id="S8.p5.1.m1.1.1" xref="S8.p5.1.m1.1.1.cmml">∼</mo><annotation-xml encoding="MathML-Content" id="S8.p5.1.m1.1b"><csymbol cd="latexml" id="S8.p5.1.m1.1.1.cmml" xref="S8.p5.1.m1.1.1">similar-to</csymbol></annotation-xml><annotation encoding="application/x-tex" id="S8.p5.1.m1.1c">\sim</annotation><annotation encoding="application/x-llamapun" id="S8.p5.1.m1.1d">∼</annotation></semantics></math>9 hour MTBF) in LLM training <cite class="ltx_cite ltx_citemacro_citep">(Hu et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2501.12469v2#bib.bib25" title="">2024</a>)</cite>, compared to around 4 days MTBF for the user-facing services in this work. Fine-tuning and inference workloads have not been characterized, especially concerning failures. Ours is the first study to focus on failures occurring in public LLM services, with unique contributions in longitudinal analysis and in collecting comprehensive data from multiple services.</p> </div> </section> <section class="ltx_section" id="S9"> <h2 class="ltx_title ltx_title_section"> <span class="ltx_tag ltx_tag_section">9. </span>Conclusion</h2> <div class="ltx_para" id="S9.p1"> <p class="ltx_p" id="S9.p1.1">Understanding the characteristics of failures in the operation of public LLM services has become a stringent problem, driven by the rapid increase in the popularity of such services, market competitiveness, and increasingly self-reported presence of such failures by LLM service providers. Addressing this problem, in this work we have conducted a comprehensive empirical characterization of long-term outages and incidents in public LLM services.</p> </div> <div class="ltx_para" id="S9.p2"> <p class="ltx_p" id="S9.p2.1">Our main findings includes: (1) Different LLM services take varying amounts of time at different stages of the failure-recovery process. For example, Anthropic services spent more time for investigating and resolving issues than OpenAI services. (2) OpenAI and Anthropic’s services failures exhibit periodic patterns that are more frequent on weekdays than on weekends. However, Character.AI has fewer failures on Tuesdays and Wednesdays. (3) Co-occurrence is significantly higher among services within the same provider, with no clear co-occurrence observed between services from different providers.</p> </div> <div class="ltx_para" id="S9.p3"> <p class="ltx_p" id="S9.p3.1">Overall, we emphasized over 10 observations, which scientists, engineers, and users could include directly in their knowledge base, and from which improvements to LLM systems could occur in time. For the future work, we aim to lead a community effort where LLM service availability datasets, collected long-term and processed to provide similar information, can be shared. Future analysis could include promising emerging LLM services in different countries such as Google Gemini, Mistral AI, and DeepSeek.</p> </div> <div class="ltx_acknowledgements"> <h6 class="ltx_title ltx_title_acknowledgements">Acknowledgements.</h6> This work was supported by the EU Horizon Graph Massivizer and the EU MSCA Cloudstars projects. This research was partly supported by a National Growth Fund through the Dutch 6G flagship project ”Future Network Services”. We thank the China Scholarship Council (CSC) for supporting Xiaoyu Chu. We thank Daniel Hofstätter, Krijn Doekemeijer, and Radu Nicolae for their critical review of the manuscript. </div> </section> <section class="ltx_bibliography" id="bib"> <h2 class="ltx_title ltx_title_bibliography">References</h2> <ul class="ltx_biblist"> <li class="ltx_bibitem" id="bib.bib1"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">(1)</span> <span class="ltx_bibblock"> </span> </li> <li class="ltx_bibitem" id="bib.bib2"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">azu (2025)</span> <span class="ltx_bibblock"> 2025. </span> <span class="ltx_bibblock">Azure OpenAI Service. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://azure.microsoft.com/en-us/products/ai-services/openai-service" title="">https://azure.microsoft.com/en-us/products/ai-services/openai-service</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib3"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">gcp (2025a)</span> <span class="ltx_bibblock"> 2025a. </span> <span class="ltx_bibblock">Scaling Character.AI. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://cloud.google.com/blog/products/databases/why-characterai-chose-spanner-and-alloydb-for-postgresql" title="">https://cloud.google.com/blog/products/databases/why-characterai-chose-spanner-and-alloydb-for-postgresql</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib4"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">gcp (2025b)</span> <span class="ltx_bibblock"> 2025b. </span> <span class="ltx_bibblock">Use Anthropic’s Claude models. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/use-claude" title="">https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/use-claude</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib5"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Alter et al<span class="ltx_text" id="bib.bib5.2.2.1">.</span> (2019)</span> <span class="ltx_bibblock"> Jacob Alter, Ji Xue, Alma Dimnaku, and Evgenia Smirni. 2019. </span> <span class="ltx_bibblock">SSD failures in the field: symptoms, causes, and prediction models. In <em class="ltx_emph ltx_font_italic" id="bib.bib5.3.1">Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2019, Denver, Colorado, USA, November 17-19, 2019</em>, Michela Taufer, Pavan Balaji, and Antonio J. Peña (Eds.). ACM, 75:1–75:14. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1145/3295500.3356172" title="">doi:<span class="ltx_ref ltx_nolink">10.1145/3295500.3356172</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib6"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Anthropic (2024a)</span> <span class="ltx_bibblock"> Anthropic. 2024a. </span> <span class="ltx_bibblock">Release notes of Anthropic API. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://docs.anthropic.com/en/release-notes/api" title="">https://docs.anthropic.com/en/release-notes/api</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib7"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Anthropic (2024b)</span> <span class="ltx_bibblock"> Anthropic. 2024b. </span> <span class="ltx_bibblock">Release notes of Claude. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://docs.anthropic.com/en/release-notes/claude-apps" title="">https://docs.anthropic.com/en/release-notes/claude-apps</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib8"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Archive (2024)</span> <span class="ltx_bibblock"> Internet Archive. 2024. </span> <span class="ltx_bibblock">Archived page of OpenAI status at 2024/04/10. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://web.archive.org/web/20240410235249/https://downdetector.com/status/openai/" title="">https://web.archive.org/web/20240410235249/https://downdetector.com/status/openai/</a>, Accessed: 2024-09-30. </span> </li> <li class="ltx_bibitem" id="bib.bib9"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Atlassian (2024)</span> <span class="ltx_bibblock"> Atlassian. 2024. </span> <span class="ltx_bibblock">Atlassian Support. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://support.atlassian.com/statuspage/docs/display-historical-uptime-of-components/" title="">https://support.atlassian.com/statuspage/docs/display-historical-uptime-of-components/</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib10"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Avizienis et al<span class="ltx_text" id="bib.bib10.2.2.1">.</span> (2004)</span> <span class="ltx_bibblock"> Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr. 2004. </span> <span class="ltx_bibblock">Basic Concepts and Taxonomy of Dependable and Secure Computing. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib10.3.1">IEEE Trans. Dependable Secur. Comput.</em> 1, 1 (2004), 11–33. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1109/TDSC.2004.2" title="">doi:<span class="ltx_ref ltx_nolink">10.1109/TDSC.2004.2</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib11"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Awan et al<span class="ltx_text" id="bib.bib11.2.2.1">.</span> (2020)</span> <span class="ltx_bibblock"> Ammar Ahmad Awan, Arpan Jain, Ching-Hsiang Chu, Hari Subramoni, and Dhabaleswar K. Panda. 2020. </span> <span class="ltx_bibblock">Communication Profiling and Characterization of Deep-Learning Workloads on Clusters With High-Performance Interconnects. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib11.3.1">IEEE Micro</em> 40, 1 (2020), 35–43. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1109/MM.2019.2949986" title="">doi:<span class="ltx_ref ltx_nolink">10.1109/MM.2019.2949986</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib12"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Burnett et al<span class="ltx_text" id="bib.bib12.2.2.1">.</span> (2020)</span> <span class="ltx_bibblock"> Sam Burnett, Lily Chen, Douglas A. Creager, Misha Efimov, Ilya Grigorik, Ben Jones, Harsha V. Madhyastha, Pavlos Papageorge, Brian Rogan, Charles Stahl, and Julia Tuttle. 2020. </span> <span class="ltx_bibblock">Network Error Logging: Client-side measurement of end-to-end web service reliability. In <em class="ltx_emph ltx_font_italic" id="bib.bib12.3.1">17th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020</em>, Ranjita Bhagwan and George Porter (Eds.). USENIX Association, 985–998. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_url ltx_font_typewriter" href="https://www.usenix.org/conference/nsdi20/presentation/burnett" title="">https://www.usenix.org/conference/nsdi20/presentation/burnett</a> </span> </li> <li class="ltx_bibitem" id="bib.bib13"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Chien et al<span class="ltx_text" id="bib.bib13.2.2.1">.</span> (2018)</span> <span class="ltx_bibblock"> Steven Wei Der Chien, Stefano Markidis, Chaitanya Prasad Sishtla, Luís Santos, Pawel Andrzej Herman, Sai Narasimhamurthy, and Erwin Laure. 2018. </span> <span class="ltx_bibblock">Characterizing Deep-Learning I/O Workloads in TensorFlow. In <em class="ltx_emph ltx_font_italic" id="bib.bib13.3.1">3rd IEEE/ACM International Workshop on Parallel Data Storage & Data Intensive Scalable Computing Systems, PDSW-DISCS@SC 2018, Dallas, TX, USA, November 12, 2018</em>. IEEE, 54–63. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1109/PDSW-DISCS.2018.00011" title="">doi:<span class="ltx_ref ltx_nolink">10.1109/PDSW-DISCS.2018.00011</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib14"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Chu et al<span class="ltx_text" id="bib.bib14.2.2.1">.</span> (2024)</span> <span class="ltx_bibblock"> Xiaoyu Chu, Daniel Hofstätter, Shashikant Ilager, Sacheendra Talluri, Duncan Kampert, Damian Podareanu, Dmitry Duplyakin, Ivona Brandic, and Alexandru Iosup. 2024. </span> <span class="ltx_bibblock">Generic and ML Workloads in an HPC Datacenter: Node Energy, Job Failures, and Node-Job Analysis. </span> <span class="ltx_bibblock">arXiv:2409.08949 [cs.DC] <a class="ltx_ref ltx_url ltx_font_typewriter" href="https://arxiv.org/abs/2409.08949" title="">https://arxiv.org/abs/2409.08949</a> </span> </li> <li class="ltx_bibitem" id="bib.bib15"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Chu et al<span class="ltx_text" id="bib.bib15.2.2.1">.</span> (2023)</span> <span class="ltx_bibblock"> Xiaoyu Chu, Sacheendra Talluri, Laurens Versluis, and Alexandru Iosup. 2023. </span> <span class="ltx_bibblock">How Do ML Jobs Fail in Datacenters? Analysis of a Long-Term Dataset from an HPC Cluster. In <em class="ltx_emph ltx_font_italic" id="bib.bib15.3.1">Proceedings of the International Conference on Performance Engineering, Coimbra, Portugal, April, 2023</em>. </span> <span class="ltx_bibblock"> </span> </li> <li class="ltx_bibitem" id="bib.bib16"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">DownDetector (2024)</span> <span class="ltx_bibblock"> DownDetector. 2024. </span> <span class="ltx_bibblock">OpenAI user reports. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://downdetector.com/status/openai/" title="">https://downdetector.com/status/openai/</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib17"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Gamell et al<span class="ltx_text" id="bib.bib17.2.2.1">.</span> (2014)</span> <span class="ltx_bibblock"> Marc Gamell, Daniel S. Katz, Hemanth Kolla, Jacqueline Chen, Scott Klasky, and Manish Parashar. 2014. </span> <span class="ltx_bibblock">Exploring Automatic, Online Failure Recovery for Scientific Applications at Extreme Scales. In <em class="ltx_emph ltx_font_italic" id="bib.bib17.3.1">International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2014, New Orleans, LA, USA, November 16-21, 2014</em>, Trish Damkroger and Jack J. Dongarra (Eds.). IEEE Computer Society, 895–906. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1109/SC.2014.78" title="">doi:<span class="ltx_ref ltx_nolink">10.1109/SC.2014.78</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib18"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Garg et al<span class="ltx_text" id="bib.bib18.2.2.1">.</span> (2018)</span> <span class="ltx_bibblock"> Rohan Garg, Tirthak Patel, Gene Cooperman, and Devesh Tiwari. 2018. </span> <span class="ltx_bibblock">Shiraz: Exploiting System Reliability and Application Resilience Characteristics to Improve Large Scale System Throughput. In <em class="ltx_emph ltx_font_italic" id="bib.bib18.3.1">48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2018, Luxembourg City, Luxembourg, June 25-28, 2018</em>. IEEE Computer Society, 83–94. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1109/DSN.2018.00021" title="">doi:<span class="ltx_ref ltx_nolink">10.1109/DSN.2018.00021</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib19"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Garraghan et al<span class="ltx_text" id="bib.bib19.2.2.1">.</span> (2014)</span> <span class="ltx_bibblock"> Peter Garraghan, Paul Townend, and Jie Xu. 2014. </span> <span class="ltx_bibblock">An Empirical Failure-Analysis of a Large-Scale Cloud Computing Environment. In <em class="ltx_emph ltx_font_italic" id="bib.bib19.3.1">15th International IEEE Symposium on High-Assurance Systems Engineering, HASE 2014, Miami Beach, FL, USA, January 9-11, 2014</em>. IEEE Computer Society, 113–120. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1109/HASE.2014.24" title="">doi:<span class="ltx_ref ltx_nolink">10.1109/HASE.2014.24</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib20"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Google (2019)</span> <span class="ltx_bibblock"> Google. 2019. </span> <span class="ltx_bibblock">Google Cluster Traces 2019. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://github.com/google/cluster-data?tab=readme-ov-file" title="">https://github.com/google/cluster-data?tab=readme-ov-file</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib21"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Gupta et al<span class="ltx_text" id="bib.bib21.2.2.1">.</span> (2017)</span> <span class="ltx_bibblock"> Saurabh Gupta, Tirthak Patel, Christian Engelmann, and Devesh Tiwari. 2017. </span> <span class="ltx_bibblock">Failures in large scale systems: long-term measurement, analysis, and implications. In <em class="ltx_emph ltx_font_italic" id="bib.bib21.3.1">Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2017, Denver, CO, USA, November 12 - 17, 2017</em>, Bernd Mohr and Padma Raghavan (Eds.). ACM, 44. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1145/3126908.3126937" title="">doi:<span class="ltx_ref ltx_nolink">10.1145/3126908.3126937</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib22"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Hochschild et al<span class="ltx_text" id="bib.bib22.2.2.1">.</span> (2021)</span> <span class="ltx_bibblock"> Peter H. Hochschild, Paul Turner, Jeffrey C. Mogul, Rama Govindaraju, Parthasarathy Ranganathan, David E. Culler, and Amin Vahdat. 2021. </span> <span class="ltx_bibblock">Cores that don’t count. In <em class="ltx_emph ltx_font_italic" id="bib.bib22.3.1">HotOS ’21: Workshop on Hot Topics in Operating Systems, Ann Arbor, Michigan, USA, June, 1-3, 2021</em>, Sebastian Angel, Baris Kasikci, and Eddie Kohler (Eds.). ACM, 9–16. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1145/3458336.3465297" title="">doi:<span class="ltx_ref ltx_nolink">10.1145/3458336.3465297</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib23"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Hu et al<span class="ltx_text" id="bib.bib23.2.2.1">.</span> (2020)</span> <span class="ltx_bibblock"> Jiyao Hu, Zhenyu Zhou, Xiaowei Yang, Jacob Malone, and Jonathan W. Williams. 2020. </span> <span class="ltx_bibblock">CableMon: Improving the Reliability of Cable Broadband Networks via Proactive Network Maintenance. In <em class="ltx_emph ltx_font_italic" id="bib.bib23.3.1">17th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020</em>, Ranjita Bhagwan and George Porter (Eds.). USENIX Association, 619–632. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_url ltx_font_typewriter" href="https://www.usenix.org/conference/nsdi20/presentation/hu-jiyao" title="">https://www.usenix.org/conference/nsdi20/presentation/hu-jiyao</a> </span> </li> <li class="ltx_bibitem" id="bib.bib24"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Hu et al<span class="ltx_text" id="bib.bib24.2.2.1">.</span> (2021)</span> <span class="ltx_bibblock"> Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei Zhang. 2021. </span> <span class="ltx_bibblock">Characterization and prediction of deep learning workloads in large-scale GPU datacenters. In <em class="ltx_emph ltx_font_italic" id="bib.bib24.3.1">International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2021, St. Louis, Missouri, USA, November 14-19, 2021</em>, Bronis R. de Supinski, Mary W. Hall, and Todd Gamblin (Eds.). ACM, 104. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1145/3458817.3476223" title="">doi:<span class="ltx_ref ltx_nolink">10.1145/3458817.3476223</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib25"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Hu et al<span class="ltx_text" id="bib.bib25.2.2.1">.</span> (2024)</span> <span class="ltx_bibblock"> Qinghao Hu, Zhisheng Ye, Zerui Wang, Guoteng Wang, Meng Zhang, Qiaoling Chen, Peng Sun, Dahua Lin, Xiaolin Wang, Yingwei Luo, Yonggang Wen, and Tianwei Zhang. 2024. </span> <span class="ltx_bibblock">Characterization of Large Language Model Development in the Datacenter. In <em class="ltx_emph ltx_font_italic" id="bib.bib25.3.1">21st USENIX Symposium on Networked Systems Design and Implementation, NSDI 2024, Santa Clara, CA, April 15-17, 2024</em>, Laurent Vanbever and Irene Zhang (Eds.). USENIX Association, 709–729. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_url ltx_font_typewriter" href="https://www.usenix.org/conference/nsdi24/presentation/hu" title="">https://www.usenix.org/conference/nsdi24/presentation/hu</a> </span> </li> <li class="ltx_bibitem" id="bib.bib26"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Hub (2022)</span> <span class="ltx_bibblock"> Singularity Hub. 2022. </span> <span class="ltx_bibblock">OpenAI Says DALL-E Is Generating Over 2 Million Images a Day. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://singularityhub.com/2022/10/03/openai-says-dall-e-is-generating-over-2-million-images-a-day-and-thats-just-table-stakes/" title="">https://singularityhub.com/2022/10/03/openai-says-dall-e-is-generating-over-2-million-images-a-day-and-thats-just-table-stakes/</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib27"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">IDC (2024)</span> <span class="ltx_bibblock"> IDC. 2024. </span> <span class="ltx_bibblock">A Deep Dive Into Global AI and Generative AI Spending. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://blogs.idc.com/2024/08/16/a-deep-dive-into-idcs-global-ai-and-generative-ai-spending/" title="">https://blogs.idc.com/2024/08/16/a-deep-dive-into-idcs-global-ai-and-generative-ai-spending/</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib28"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Incident (2024a)</span> <span class="ltx_bibblock"> Anthropic Incident. 2024a. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://status.anthropic.com/history" title="">https://status.anthropic.com/history</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib29"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Incident (2024b)</span> <span class="ltx_bibblock"> Character.AI Incident. 2024b. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://status.character.ai/history" title="">https://status.character.ai/history</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib30"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Incident (2024c)</span> <span class="ltx_bibblock"> OpenAI Incident. 2024c. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://status.openai.com/history" title="">https://status.openai.com/history</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib31"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Javadi et al<span class="ltx_text" id="bib.bib31.2.2.1">.</span> (2013)</span> <span class="ltx_bibblock"> Bahman Javadi, Derrick Kondo, Alexandru Iosup, and Dick H. J. Epema. 2013. </span> <span class="ltx_bibblock">The Failure Trace Archive: Enabling the comparison of failure measurements and models of distributed systems. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib31.3.1">J. Parallel Distributed Comput.</em> 73, 8 (2013), 1208–1223. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1016/J.JPDC.2013.04.002" title="">doi:<span class="ltx_ref ltx_nolink">10.1016/J.JPDC.2013.04.002</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib32"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Jeon et al<span class="ltx_text" id="bib.bib32.2.2.1">.</span> (2019)</span> <span class="ltx_bibblock"> Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wencong Xiao, and Fan Yang. 2019. </span> <span class="ltx_bibblock">Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads. In <em class="ltx_emph ltx_font_italic" id="bib.bib32.3.1">Proceedings of the 2019 USENIX Annual Technical Conference, USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019</em>, Dahlia Malkhi and Dan Tsafrir (Eds.). USENIX Association, 947–960. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_url ltx_font_typewriter" href="https://www.usenix.org/conference/atc19/presentation/jeon" title="">https://www.usenix.org/conference/atc19/presentation/jeon</a> </span> </li> <li class="ltx_bibitem" id="bib.bib33"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Koh et al<span class="ltx_text" id="bib.bib33.2.2.1">.</span> (2023)</span> <span class="ltx_bibblock"> Jing Yu Koh, Daniel Fried, and Russ Salakhutdinov. 2023. </span> <span class="ltx_bibblock">Generating Images with Multimodal Language Models. In <em class="ltx_emph ltx_font_italic" id="bib.bib33.3.1">Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023</em>, Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (Eds.). </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_url ltx_font_typewriter" href="http://papers.nips.cc/paper_files/paper/2023/hash/43a69d143273bd8215578bde887bb552-Abstract-Conference.html" title="">http://papers.nips.cc/paper_files/paper/2023/hash/43a69d143273bd8215578bde887bb552-Abstract-Conference.html</a> </span> </li> <li class="ltx_bibitem" id="bib.bib34"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Łazuka et al<span class="ltx_text" id="bib.bib34.2.2.1">.</span> (2024)</span> <span class="ltx_bibblock"> Małgorzata Łazuka, Andreea Anghel, and Thomas Parnell. 2024. </span> <span class="ltx_bibblock">LLM-Pilot: Characterize and Optimize Performance of your LLM Inference Services. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib34.3.1">arXiv preprint arXiv:2410.02425</em> (2024). </span> <span class="ltx_bibblock"> </span> </li> <li class="ltx_bibitem" id="bib.bib35"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Li et al<span class="ltx_text" id="bib.bib35.2.2.1">.</span> (2022)</span> <span class="ltx_bibblock"> Baolin Li, Rohin Arora, Siddharth Samsi, Tirthak Patel, William Arcand, David Bestor, Chansup Byun, Rohan Basu Roy, Bill Bergeron, John T. Holodnak, Michael Houle, Matthew Hubbell, Michael Jones, Jeremy Kepner, Anna Klein, Peter Michaleas, Joseph McDonald, Lauren Milechin, Julie Mullen, Andrew Prout, Benjamin Price, Albert Reuther, Antonio Rosa, Matthew L. Weiss, Charles Yee, Daniel Edelman, Allan Vanterpool, Anson Cheng, Vijay Gadepally, and Devesh Tiwari. 2022. </span> <span class="ltx_bibblock">AI-Enabling Workloads on Large-Scale GPU-Accelerated System: Characterization, Opportunities, and Implications. In <em class="ltx_emph ltx_font_italic" id="bib.bib35.3.1">IEEE International Symposium on High-Performance Computer Architecture, HPCA 2022, Seoul, South Korea, April 2-6, 2022</em>. IEEE, 1224–1237. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1109/HPCA53966.2022.00093" title="">doi:<span class="ltx_ref ltx_nolink">10.1109/HPCA53966.2022.00093</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib36"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Li et al<span class="ltx_text" id="bib.bib36.2.2.1">.</span> (2017)</span> <span class="ltx_bibblock"> Guanpeng Li, Siva Kumar Sastry Hari, Michael B. Sullivan, Timothy Tsai, Karthik Pattabiraman, Joel S. Emer, and Stephen W. Keckler. 2017. </span> <span class="ltx_bibblock">Understanding error propagation in deep learning neural network (DNN) accelerators and applications. In <em class="ltx_emph ltx_font_italic" id="bib.bib36.3.1">Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2017, Denver, CO, USA, November 12 - 17, 2017</em>, Bernd Mohr and Padma Raghavan (Eds.). ACM, 8. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1145/3126908.3126964" title="">doi:<span class="ltx_ref ltx_nolink">10.1145/3126908.3126964</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib37"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Li et al<span class="ltx_text" id="bib.bib37.2.2.1">.</span> (2023)</span> <span class="ltx_bibblock"> Jie Li, Rui Wang, Ghazanfar Ali, Tommy Dang, Alan Sill, and Yong Chen. 2023. </span> <span class="ltx_bibblock">Workload Failure Prediction for Data Centers. In <em class="ltx_emph ltx_font_italic" id="bib.bib37.3.1">16th IEEE International Conference on Cloud Computing, CLOUD 2023, Chicago, IL, USA, July 2-8, 2023</em>. IEEE, 479–485. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1109/CLOUD60044.2023.00064" title="">doi:<span class="ltx_ref ltx_nolink">10.1109/CLOUD60044.2023.00064</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib38"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Liu et al<span class="ltx_text" id="bib.bib38.2.2.1">.</span> (2023)</span> <span class="ltx_bibblock"> Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. </span> <span class="ltx_bibblock">Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation. In <em class="ltx_emph ltx_font_italic" id="bib.bib38.3.1">Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023</em>, Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (Eds.). </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_url ltx_font_typewriter" href="http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html" title="">http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html</a> </span> </li> <li class="ltx_bibitem" id="bib.bib39"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Lu et al<span class="ltx_text" id="bib.bib39.2.2.1">.</span> (2023)</span> <span class="ltx_bibblock"> Yujie Lu, Xianjun Yang, Xiujun Li, Xin Eric Wang, and William Yang Wang. 2023. </span> <span class="ltx_bibblock">LLMScore: Unveiling the Power of Large Language Models in Text-to-Image Synthesis Evaluation. In <em class="ltx_emph ltx_font_italic" id="bib.bib39.3.1">Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023</em>, Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (Eds.). </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_url ltx_font_typewriter" href="http://papers.nips.cc/paper_files/paper/2023/hash/47f30d67bce3e9824928267e9355420f-Abstract-Conference.html" title="">http://papers.nips.cc/paper_files/paper/2023/hash/47f30d67bce3e9824928267e9355420f-Abstract-Conference.html</a> </span> </li> <li class="ltx_bibitem" id="bib.bib40"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Martino et al<span class="ltx_text" id="bib.bib40.2.2.1">.</span> (2014)</span> <span class="ltx_bibblock"> Catello Di Martino, Zbigniew T. Kalbarczyk, Ravishankar K. Iyer, Fabio Baccanico, Joseph Fullop, and William Kramer. 2014. </span> <span class="ltx_bibblock">Lessons Learned from the Analysis of System Failures at Petascale: The Case of Blue Waters. In <em class="ltx_emph ltx_font_italic" id="bib.bib40.3.1">44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2014, Atlanta, GA, USA, June 23-26, 2014</em>. IEEE Computer Society, 610–621. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1109/DSN.2014.62" title="">doi:<span class="ltx_ref ltx_nolink">10.1109/DSN.2014.62</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib41"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">OpenAI (2024a)</span> <span class="ltx_bibblock"> OpenAI. 2024a. </span> <span class="ltx_bibblock">Elevated errors in ChatGPT. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://status.openai.com/incidents/w20mcckg1748" title="">https://status.openai.com/incidents/w20mcckg1748</a>, Accessed: 2024-09-30. </span> </li> <li class="ltx_bibitem" id="bib.bib42"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">OpenAI (2024b)</span> <span class="ltx_bibblock"> OpenAI. 2024b. </span> <span class="ltx_bibblock">Start using ChatGPT instantly (Apr 1, 2024). </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://help.openai.com/en/articles/6825453-chatgpt-release-notes" title="">https://help.openai.com/en/articles/6825453-chatgpt-release-notes</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib43"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Potharaju and Jain (2013)</span> <span class="ltx_bibblock"> Rahul Potharaju and Navendu Jain. 2013. </span> <span class="ltx_bibblock">When the network crumbles: an empirical study of cloud network failures and their impact on services. In <em class="ltx_emph ltx_font_italic" id="bib.bib43.1.1">ACM Symposium on Cloud Computing, SOCC ’13, Santa Clara, CA, USA, October 1-3, 2013</em>, Guy M. Lohman (Ed.). ACM, 15:1–15:17. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1145/2523616.2523638" title="">doi:<span class="ltx_ref ltx_nolink">10.1145/2523616.2523638</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib44"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Primorac et al<span class="ltx_text" id="bib.bib44.2.2.1">.</span> (2021)</span> <span class="ltx_bibblock"> Mia Primorac, Katerina J. Argyraki, and Edouard Bugnion. 2021. </span> <span class="ltx_bibblock">When to Hedge in Interactive Services. In <em class="ltx_emph ltx_font_italic" id="bib.bib44.3.1">18th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2021, April 12-14, 2021</em>, James Mickens and Renata Teixeira (Eds.). USENIX Association, 373–387. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_url ltx_font_typewriter" href="https://www.usenix.org/conference/nsdi21/presentation/primorac" title="">https://www.usenix.org/conference/nsdi21/presentation/primorac</a> </span> </li> <li class="ltx_bibitem" id="bib.bib45"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Pro (2024)</span> <span class="ltx_bibblock"> Similarweb Pro. 2024. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://pro.similarweb.com/" title="">https://pro.similarweb.com/</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib46"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Reiss et al<span class="ltx_text" id="bib.bib46.2.2.1">.</span> (2012)</span> <span class="ltx_bibblock"> Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and Michael A. Kozuch. 2012. </span> <span class="ltx_bibblock">Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In <em class="ltx_emph ltx_font_italic" id="bib.bib46.3.1">ACM Symposium on Cloud Computing, SOCC ’12, San Jose, CA, USA, October 14-17, 2012</em>, Michael J. Carey and Steven Hand (Eds.). ACM, 7. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1145/2391229.2391236" title="">doi:<span class="ltx_ref ltx_nolink">10.1145/2391229.2391236</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib47"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Reuters (2023)</span> <span class="ltx_bibblock"> Reuters. 2023. </span> <span class="ltx_bibblock">ChatGPT sets record for fastest-growing user base - analyst note. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_url ltx_font_typewriter" href="https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/" title="">https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/</a> </span> </li> <li class="ltx_bibitem" id="bib.bib48"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Reuters (2024a)</span> <span class="ltx_bibblock"> Reuters. 2024a. </span> <span class="ltx_bibblock">Google-backed Anthropic releases Claude chatbot across Europe. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://www.reuters.com/technology/google-backed-anthropic-releases-claude-chatbot-across-europe-2024-05-13/" title="">https://www.reuters.com/technology/google-backed-anthropic-releases-claude-chatbot-across-europe-2024-05-13/</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib49"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Reuters (2024b)</span> <span class="ltx_bibblock"> Reuters. 2024b. </span> <span class="ltx_bibblock">OpenAI says ChatGPT’s weekly users have grown to 200 million. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://www.reuters.com/technology/artificial-intelligence/openai-says-chatgpts-weekly-users-have-grown-200-million-2024-08-29/" title="">https://www.reuters.com/technology/artificial-intelligence/openai-says-chatgpts-weekly-users-have-grown-200-million-2024-08-29/</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib50"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Rosà et al<span class="ltx_text" id="bib.bib50.2.2.1">.</span> (2015)</span> <span class="ltx_bibblock"> Andrea Rosà, Lydia Y. Chen, and Walter Binder. 2015. </span> <span class="ltx_bibblock">Predicting and Mitigating Jobs Failures in Big Data Clusters. In <em class="ltx_emph ltx_font_italic" id="bib.bib50.3.1">15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid 2015, Shenzhen, China, May 4-7, 2015</em>. IEEE Computer Society, 221–230. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1109/CCGRID.2015.139" title="">doi:<span class="ltx_ref ltx_nolink">10.1109/CCGRID.2015.139</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib51"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Roumeliotis and Tselikas (2023)</span> <span class="ltx_bibblock"> Konstantinos I. Roumeliotis and Nikolaos D. Tselikas. 2023. </span> <span class="ltx_bibblock">ChatGPT and Open-AI Models: A Preliminary Review. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib51.1.1">Future Internet</em> 15, 6 (2023). </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.3390/fi15060192" title="">doi:<span class="ltx_ref ltx_nolink">10.3390/fi15060192</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib52"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Selenium (2024)</span> <span class="ltx_bibblock"> Selenium. 2024. </span> <span class="ltx_bibblock">WebDriver Documentation. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://www.selenium.dev/documentation/webdriver/" title="">https://www.selenium.dev/documentation/webdriver/</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib53"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Shen et al<span class="ltx_text" id="bib.bib53.2.2.1">.</span> (2015)</span> <span class="ltx_bibblock"> Siqi Shen, Alexandru Iosup, Assaf Israel, Walfredo Cirne, Danny Raz, and Dick H. J. Epema. 2015. </span> <span class="ltx_bibblock">An Availability-on-Demand Mechanism for Datacenters. In <em class="ltx_emph ltx_font_italic" id="bib.bib53.3.1">15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid 2015, Shenzhen, China, May 4-7, 2015</em>. IEEE Computer Society, 495–504. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1109/CCGRID.2015.58" title="">doi:<span class="ltx_ref ltx_nolink">10.1109/CCGRID.2015.58</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib54"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Talluri et al<span class="ltx_text" id="bib.bib54.2.2.1">.</span> (2019)</span> <span class="ltx_bibblock"> Sacheendra Talluri, Alicja Luszczak, Cristina L. Abad, and Alexandru Iosup. 2019. </span> <span class="ltx_bibblock">Characterization of a Big Data Storage Workload in the Cloud. In <em class="ltx_emph ltx_font_italic" id="bib.bib54.3.1">Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering, ICPE 2019, Mumbai, India, April 7-11, 2019</em>, Varsha Apte, Antinisca Di Marco, Marin Litoiu, and José Merseguer (Eds.). ACM, 33–44. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1145/3297663.3310302" title="">doi:<span class="ltx_ref ltx_nolink">10.1145/3297663.3310302</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib55"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Talluri et al<span class="ltx_text" id="bib.bib55.2.2.1">.</span> (2021)</span> <span class="ltx_bibblock"> Sacheendra Talluri, Leon Overweel, Laurens Versluis, Animesh Trivedi, and Alexandru Iosup. 2021. </span> <span class="ltx_bibblock">Empirical Characterization of User Reports about Cloud Failures. In <em class="ltx_emph ltx_font_italic" id="bib.bib55.3.1">IEEE International Conference on Autonomic Computing and Self-Organizing Systems, ACSOS 2021, Washington, DC, USA, September 27 - Oct. 1, 2021</em>, Esam El-Araby, Vana Kalogeraki, Danilo Pianini, Frédéric Lassabe, Barry Porter, Sona Ghahremani, Ingrid Nunes, Mohamed Bakhouya, and Sven Tomforde (Eds.). IEEE, 158–163. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1109/ACSOS52086.2021.00039" title="">doi:<span class="ltx_ref ltx_nolink">10.1109/ACSOS52086.2021.00039</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib56"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Tiwari et al<span class="ltx_text" id="bib.bib56.2.2.1">.</span> (2015)</span> <span class="ltx_bibblock"> Devesh Tiwari, Saurabh Gupta, James H. Rogers, Don Maxwell, Paolo Rech, Sudharshan S. Vazhkudai, Daniel Oliveira, Dave Londo, Nathan DeBardeleben, Philippe Olivier Alexandre Navaux, Luigi Carro, and Arthur S. Bland. 2015. </span> <span class="ltx_bibblock">Understanding GPU errors on large-scale HPC systems and the implications for system design and operation. In <em class="ltx_emph ltx_font_italic" id="bib.bib56.3.1">21st IEEE International Symposium on High Performance Computer Architecture, HPCA 2015, Burlingame, CA, USA, February 7-11, 2015</em>. IEEE Computer Society, 331–342. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1109/HPCA.2015.7056044" title="">doi:<span class="ltx_ref ltx_nolink">10.1109/HPCA.2015.7056044</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib57"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Uptime (2024a)</span> <span class="ltx_bibblock"> Anthropic Uptime. 2024a. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://status.anthropic.com/uptime" title="">https://status.anthropic.com/uptime</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib58"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Uptime (2024b)</span> <span class="ltx_bibblock"> Character.AI Uptime. 2024b. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://status.character.ai/uptime" title="">https://status.character.ai/uptime</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib59"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Uptime (2024c)</span> <span class="ltx_bibblock"> OpenAI Uptime. 2024c. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://status.openai.com/uptime" title="">https://status.openai.com/uptime</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib60"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Vaithilingam et al<span class="ltx_text" id="bib.bib60.2.2.1">.</span> (2022)</span> <span class="ltx_bibblock"> Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. </span> <span class="ltx_bibblock">Expectation vs. Experience: Evaluating the Usability of Code Generation Tools Powered by Large Language Models. In <em class="ltx_emph ltx_font_italic" id="bib.bib60.3.1">CHI ’22: CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April 2022 - 5 May 2022, Extended Abstracts</em>, Simone D. J. Barbosa, Cliff Lampe, Caroline Appert, and David A. Shamma (Eds.). ACM, 332:1–332:7. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1145/3491101.3519665" title="">doi:<span class="ltx_ref ltx_nolink">10.1145/3491101.3519665</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib61"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Versluis et al<span class="ltx_text" id="bib.bib61.2.2.1">.</span> (2023)</span> <span class="ltx_bibblock"> Laurens Versluis, Mehmet Çetin, Caspar Greeven, Kristian Laursen, Damian Podareanu, Valeriu Codreanu, Alexandru Uta, and Alexandru Iosup. 2023. </span> <span class="ltx_bibblock">Less is not more: We need rich datasets to explore. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib61.3.1">Future Gener. Comput. Syst.</em> 142 (2023), 117–130. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1016/J.FUTURE.2022.12.022" title="">doi:<span class="ltx_ref ltx_nolink">10.1016/J.FUTURE.2022.12.022</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib62"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Wang et al<span class="ltx_text" id="bib.bib62.2.2.1">.</span> (2024b)</span> <span class="ltx_bibblock"> Jiayin Wang, Weizhi Ma, Peijie Sun, Min Zhang, and Jian-Yun Nie. 2024b. </span> <span class="ltx_bibblock">Understanding User Experience in Large Language Model Interactions. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib62.3.1">CoRR</em> abs/2401.08329 (2024). </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.48550/ARXIV.2401.08329" title="">doi:<span class="ltx_ref ltx_nolink">10.48550/ARXIV.2401.08329</span></a> arXiv:2401.08329 </span> </li> <li class="ltx_bibitem" id="bib.bib63"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Wang et al<span class="ltx_text" id="bib.bib63.2.2.1">.</span> (2024a)</span> <span class="ltx_bibblock"> Yuxin Wang, Yuhan Chen, Zeyu Li, Xueze Kang, Zhenheng Tang, Xin He, Rui Guo, Xin Wang, Qiang Wang, Amelie Chi Zhou, and Xiaowen Chu. 2024a. </span> <span class="ltx_bibblock">BurstGPT: A Real-world Workload Dataset to Optimize LLM Serving Systems. </span> <span class="ltx_bibblock">arXiv:2401.17644 </span> </li> <li class="ltx_bibitem" id="bib.bib64"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Weng et al<span class="ltx_text" id="bib.bib64.2.2.1">.</span> (2022)</span> <span class="ltx_bibblock"> Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. </span> <span class="ltx_bibblock">MLaaS in the Wild: Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters. In <em class="ltx_emph ltx_font_italic" id="bib.bib64.3.1">19th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2022, Renton, WA, USA, April 4-6, 2022</em>, Amar Phanishayee and Vyas Sekar (Eds.). USENIX Association, 945–960. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_url ltx_font_typewriter" href="https://www.usenix.org/conference/nsdi22/presentation/weng" title="">https://www.usenix.org/conference/nsdi22/presentation/weng</a> </span> </li> <li class="ltx_bibitem" id="bib.bib65"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">WIRED (2024)</span> <span class="ltx_bibblock"> WIRED. 2024. </span> <span class="ltx_bibblock">The obsession with Character AI is becoming more common. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://wired.me/technology/character-ai-obsession/" title="">https://wired.me/technology/character-ai-obsession/</a>. </span> </li> <li class="ltx_bibitem" id="bib.bib66"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Xia et al<span class="ltx_text" id="bib.bib66.2.2.1">.</span> (2024)</span> <span class="ltx_bibblock"> Yuchen Xia, Jiho Kim, Yuhan Chen, Haojie Ye, Souvik Kundu, Cong Hao, and Nishil Talati. 2024. </span> <span class="ltx_bibblock">Understanding the Performance and Estimating the Cost of LLM Fine-Tuning. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib66.3.1">CoRR</em> abs/2408.04693 (2024). </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.48550/ARXIV.2408.04693" title="">doi:<span class="ltx_ref ltx_nolink">10.48550/ARXIV.2408.04693</span></a> arXiv:2408.04693 </span> </li> <li class="ltx_bibitem" id="bib.bib67"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Yang et al<span class="ltx_text" id="bib.bib67.2.2.1">.</span> (2024)</span> <span class="ltx_bibblock"> Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Shaochen Zhong, Bing Yin, and Xia Ben Hu. 2024. </span> <span class="ltx_bibblock">Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib67.3.1">ACM Trans. Knowl. Discov. Data</em> 18, 6 (2024), 160:1–160:32. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1145/3649506" title="">doi:<span class="ltx_ref ltx_nolink">10.1145/3649506</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib68"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">York (2024)</span> <span class="ltx_bibblock"> FOX5 New York. 2024. </span> <span class="ltx_bibblock">ChatGPT recovers following outage affecting thousands of users. </span> <span class="ltx_bibblock"> </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://www.fox5ny.com/news/chatgpt-down-users-openai-internet" title="">https://www.fox5ny.com/news/chatgpt-down-users-openai-internet</a>, Accessed: 2024-09-30. </span> </li> <li class="ltx_bibitem" id="bib.bib69"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Zhang et al<span class="ltx_text" id="bib.bib69.2.2.1">.</span> (2018)</span> <span class="ltx_bibblock"> Yang Zhang, Bogdan Vasilescu, Huaimin Wang, and Vladimir Filkov. 2018. </span> <span class="ltx_bibblock">One size does not fit all: an empirical study of containerized continuous deployment workflows. In <em class="ltx_emph ltx_font_italic" id="bib.bib69.3.1">Proceedings of the 2018 ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018</em>, Gary T. Leavens, Alessandro Garcia, and Corina S. Pasareanu (Eds.). ACM, 295–306. </span> <span class="ltx_bibblock"><a class="ltx_ref ltx_href" href="https://doi.org/10.1145/3236024.3236033" title="">doi:<span class="ltx_ref ltx_nolink">10.1145/3236024.3236033</span></a> </span> </li> </ul> </section> <div class="ltx_pagination ltx_role_newpage"></div> </article> </div> <footer class="ltx_page_footer"> <div class="ltx_page_logo">Generated on Sat Mar 15 16:14:35 2025 by <a class="ltx_LaTeXML_logo" href="http://dlmf.nist.gov/LaTeXML/"><span style="letter-spacing:-0.2em; margin-right:0.1em;">L<span class="ltx_font_smallcaps" style="position:relative; bottom:2.2pt;">a</span>T<span class="ltx_font_smallcaps" style="font-size:120%;position:relative; bottom:-0.2ex;">e</span></span><span style="font-size:90%; position:relative; bottom:-0.2ex;">XML</span><img alt="Mascot Sammy" src=""/></a> </div></footer> </div> </body> </html>