CINXE.COM

Search results for: maize fall army worm

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: maize fall army worm</title> <meta name="description" content="Search results for: maize fall army worm"> <meta name="keywords" content="maize fall army worm"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="maize fall army worm" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="maize fall army worm"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1002</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: maize fall army worm</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1002</span> Evaluation of the Most Effective Insecticides against the Spodoptera Frugiperda, on the Maize Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Ali%20Hassan">Ahmed Ali Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2016, the Fall Armyworm (FAW) was first discovered in Africa. FAW is abundantly present in Somalia and seriously harms the maize crop. This investigation examined the impact on maize productivity of three different pesticides used to combat the autumn armyworm, Spodoptera frugiperda (Noctuidae: Lepidoptera). During the 2020–2021 growing season, three insecticides (Malathion 57 EC, Ampligo150 ZC, and Carbryle 85 WP) were evaluated at field demonstration plots. Our result showed that, significant mortality of S. frugiperda was observed on the treatment plot treated with Amplico. Ampligo caused over 90% larval mortality after application. Malathion had moderate activity, causing 53.733% mortality after application, while Carbaryl was less effective, causing 36.367% mortality after application. Consequently, the current finding shows that the three selected insecticides reduced the damage and infestation level of S. frugiperda in the maize field conditions and the most effective treatment were Amplico. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticides" title="pesticides">pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=maize%20fall%20army%20worm" title=" maize fall army worm"> maize fall army worm</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticides" title=" insecticides"> insecticides</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20frugiperda" title=" S. frugiperda"> S. frugiperda</a> </p> <a href="https://publications.waset.org/abstracts/169800/evaluation-of-the-most-effective-insecticides-against-the-spodoptera-frugiperda-on-the-maize-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1001</span> Occurrence of the fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae), on Maize in Katsina State, Nigeria and preliminary study of its Developmental Characteristics under Laboratory Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Sani">Ibrahim Sani</a>, <a href="https://publications.waset.org/abstracts/search?q=Suleiman%20Mohammed."> Suleiman Mohammed.</a>, <a href="https://publications.waset.org/abstracts/search?q=Salisu%20Sulaiman"> Salisu Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Aminu%20Musa"> Aminu Musa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fall army worm (FAW), Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae) has recently become one of the major threats to maize production in the world. It is native to tropical and subtropical America and began to spread to many African and a few Asian Countries. A survey for the observation of infestation and collection of fall armyworm was conducted in field planted with maize in the northern part of Katsina state. Eggs and immature stages were collected, place in a plastic container and brought to the laboratory for observation and study of developmental stages. FAW was identified based on the morphological characteristics, i.e. the “Y” inverted shape on the head capsule and the patterns of black spots on the abdominal segments (square and trapezoidal forms). Different growing stage of maize are affected by fall armyworm, but the damage is greatest during the early growing phase of corn. Heavy infestation on the leaves also cause defoliation. Four developmental stages (eggs larvae, pupae and adults) of the FAW were studied when fed with young corn under laboratory conditions. Furthermore, effective scouting or monitoring of FAW could be practice at early stage of growth of maize. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infestation" title="infestation">infestation</a>, <a href="https://publications.waset.org/abstracts/search?q=katsina" title=" katsina"> katsina</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=fall%20armyworm" title=" fall armyworm"> fall armyworm</a> </p> <a href="https://publications.waset.org/abstracts/180992/occurrence-of-the-fall-armyworm-spodoptera-frugiperda-j-e-smith-lepidoptera-noctuidae-on-maize-in-katsina-state-nigeria-and-preliminary-study-of-its-developmental-characteristics-under-laboratory-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1000</span> The Impact of Three Different Insecticides Against Fall Armyworms on Maize Productivity, in Somalia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Ali%20Hassan">Ahmed Ali Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fall armyworm (FAW) was first identified in 2016 in Africa. FAW is widely distributed in Somalia and severely damages the maize crop. The effect of three different pesticides used to control the autumn armyworm, Spodoptera frugiperda (Noctuidae: Lepidoptera), on maize productivity was investigated in this study. During the 2020–2021 growing season, three insecticides (Malathion 57 EC, Ampligo150 ZC, and Carbryle 85 WP) were evaluated at field demonstration plots. Our result showed that significant mortality of S. frugiperda was observed on the treatment plot treated with Amplico. After spraying, Ampligo resulted in (92.200%) larval death. Compared to Carbaryl, which was less active and only caused 36.367% mortality after application, Malathion had a moderate mortality rate of 53.733%. Consequently, our current finding shows that the three selected insecticides reduced the damage and infestation level of S. frugiperda in the maize field conditions, and the most effective treatment was Amplico. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maize" title="maize">maize</a>, <a href="https://publications.waset.org/abstracts/search?q=fall%20armyworm" title=" fall armyworm"> fall armyworm</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticides" title=" insecticides"> insecticides</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a> </p> <a href="https://publications.waset.org/abstracts/191889/the-impact-of-three-different-insecticides-against-fall-armyworms-on-maize-productivity-in-somalia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">999</span> Intelligence Failures and Infiltration: The Case of the Ethiopian Army 1977-1991</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fantahun%20Ibrahim">Fantahun Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Ethiopian army was one of the largest and most heavily armed ground forces in Africa between 1974 and 1991. It scored a decisive victory over Somalia’s armed forces in March 1978. It, however, failed to withstand the combined onslaught of the northern insurgents from Tigray and Eritrea and finally collapsed in 1991. At the heart of the problem was the army’s huge intelligence failure. The northern insurgents, on the other hand, had a cutting edge in intelligence gathering. Among other things they infiltrated the army high command and managed to get top secrets about the army. Commanders who had fallen into the hands of the insurgents in several battles were told to send letters to their colleagues in the command structure and persuade them to work secretly for the insurgents. Some commanders did work for the insurgents and played a great role in the undoing of military operations. Insurgent commanders were able to warn their fighters about air strikes before jet fighters took off from airfields in the northern theatre. It was not uncommon for leaders of insurgents to get the full details of military operations days before their implementation. Such intelligence failures led to major military disasters like the fall of Afabet (March, 1988), Enda Sellase (February, 1989), Massawa and Debre Tabor (February, 1990), Karra Mishig, Meragna and Alem Ketema (June, 1990). This paper, therefore, seeks to investigate the army’s intelligence failures using untapped archival documents kept at the Ministry of National Defence in Addis Ababa and interviewing key former commanders of the army and ex-leaders of the insurgents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ethiopian%20army" title="Ethiopian army">Ethiopian army</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligence" title=" intelligence"> intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration" title=" infiltration"> infiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=insurgents" title=" insurgents"> insurgents</a> </p> <a href="https://publications.waset.org/abstracts/56134/intelligence-failures-and-infiltration-the-case-of-the-ethiopian-army-1977-1991" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">998</span> Worm Gearing Design Improvement by Considering Varying Mesh Stiffness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Elkholy">A. H. Elkholy</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Falah"> A. H. Falah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new approach has been developed to estimate the load share and stress distribution of worm gear sets. The approach is based upon considering the instantaneous tooth meshing stiffness where the worm gear drive was modelled as a series of spur gear slices, and each slice was analyzed separately using the well established formulae of spur gears. By combining the results obtained for all slices, the entire envolute worm gear set loading and stressing was obtained. The geometric modelling method presented, allows tooth elastic deformation and tooth root stresses of worm gear drives under different load conditions to be investigated. On the basis of the method introduced in this study, the instantaneous meshing stiffness and load share were obtained. In comparison with existing methods, this approach has both good analysis accuracy and less computing time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gear" title="gear">gear</a>, <a href="https://publications.waset.org/abstracts/search?q=load%2Fstress%20distribution" title=" load/stress distribution"> load/stress distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=worm" title=" worm"> worm</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel" title=" wheel"> wheel</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20stiffness" title=" tooth stiffness"> tooth stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20line" title=" contact line"> contact line</a> </p> <a href="https://publications.waset.org/abstracts/31502/worm-gearing-design-improvement-by-considering-varying-mesh-stiffness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">997</span> Design Improvement of Worm Gearing for Better Energy Utilization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elkholy">Ahmed Elkholy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most power transmission cases use gearing in general, and worm gearing, in particular for energy utilization. Therefore, designing gears for minimum weight and maximum power transmission is the main target of this study. In this regard, a new approach has been developed to estimate the load share and stress distribution of worm gear sets. The approach is based upon considering the instantaneous tooth meshing stiffness where the worm gear drive was modelled as a series of spur gear slices, and each slice was analyzed separately using a well-established criteria. By combining the results obtained for all slices, the entire worm gear set loading and stressing was determined. The geometric modelling method presented, allows tooth elastic deformation and tooth root stresses of worm gear drives under different load conditions to be investigated. On the basis of the method introduced in this study, the instantaneous meshing stiffness and load share were obtained. In comparison with existing methods, this approach has both good analytical accuracy and less computing time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gear" title="gear">gear</a>, <a href="https://publications.waset.org/abstracts/search?q=load%2Fstress%20distribution" title=" load/stress distribution"> load/stress distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=worm" title=" worm"> worm</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel" title=" wheel"> wheel</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20stiffness" title=" tooth stiffness"> tooth stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20line" title=" contact line"> contact line</a> </p> <a href="https://publications.waset.org/abstracts/63727/design-improvement-of-worm-gearing-for-better-energy-utilization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">996</span> Friction Calculation and Simulation of Column Electric Power Steering System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Hamid%20Mirmohammad%20Sadeghi">Seyed Hamid Mirmohammad Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Raffaella%20Sesana"> Raffaella Sesana</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Maffiodo"> Daniela Maffiodo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a procedure for friction calculation of column electric power steering (C-EPS) system which affects handling and comfort in driving. The friction losses estimation is obtained from experimental tests and mathematical calculation. Parts in C-EPS mainly involved in friction losses are bearings and worm gear. In the theoretical approach, the gear geometry and Hertz law were employed to measure the normal load and the sliding velocity and contact areas from the worm gears driving conditions. The viscous friction generated in the worm gear was obtained with a theoretical approach and the result was applied to model the friction in the steering system. Finally, by viscous friction coefficient and Coulomb friction coefficient, values of friction in worm gear were calculated. According to the Bearing Company and the characteristics of each bearing, the friction torques due to load and due to speed were calculated. A MATLAB Simulink model for calculating the friction in bearings and worm gear in C-EPS were done and the total friction value was estimated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction" title="friction">friction</a>, <a href="https://publications.waset.org/abstracts/search?q=worm%20gear" title=" worm gear"> worm gear</a>, <a href="https://publications.waset.org/abstracts/search?q=column%20electric%20power%20steering%20system" title=" column electric power steering system"> column electric power steering system</a>, <a href="https://publications.waset.org/abstracts/search?q=simulink" title=" simulink"> simulink</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing" title=" bearing"> bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=EPS" title=" EPS"> EPS</a> </p> <a href="https://publications.waset.org/abstracts/58098/friction-calculation-and-simulation-of-column-electric-power-steering-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">995</span> Effects of Particle Sizes of Maize Flour on the Quality of Traditional Maize Snack, Kokoro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adebola%20Ajayi">Adebola Ajayi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olakunle%20M.%20Makanjuola"> Olakunle M. Makanjuola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of particle sizes of maize flour on the quality of traditional maize snack (Kokoro) were investigated. Maize flour of different sieve mesh sizes of 1.00mm, 1.9 mm, 1.4 mm, 1.68 mm and 2.0 mm was used to produce Kokoro. The samples were analysed for protein, fat, moisture content, crude fibre, ash and sensory evaluation. The various mixture obtained were separately processed into snacks following essential traditional method of production. The result of the sensory evaluation showed that Kokoro of sample 546 using 1.0mm mesh sieve size was the most preferred and sample 513 using 2.00 was least preferred. The result revealed that the more the maize was well blended the more acceptable the product is to the consumer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20sizes" title="particle sizes">particle sizes</a>, <a href="https://publications.waset.org/abstracts/search?q=maize%20flour" title=" maize flour"> maize flour</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Kokoro" title=" Kokoro"> Kokoro</a> </p> <a href="https://publications.waset.org/abstracts/79646/effects-of-particle-sizes-of-maize-flour-on-the-quality-of-traditional-maize-snack-kokoro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">994</span> Role of Selenite and Selenate Uptake by Maize Plants in Chlorophyll A and B Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Garousi">F. Garousi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Veres"> S. Veres</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89.%20B%C3%B3di"> É. Bódi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20V%C3%A1rallyay"> S. Várallyay</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Kov%C3%A1cs"> B. Kovács</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extracting and determining chlorophyll pigments (chlorophyll a and b) in green leaves are the procedures based on the solvent extraction of pigments in samples using N,N-dimethylformamide as the extractant. In this study, two species of soluble inorganic selenium forms, selenite (Se( IV)) and selenate (Se( VI)) at different concentrations were investigated on maize plants that were growing in nutrient solutions during 2 weeks and at the end of the experiment, amounts of chlorophyll a and b for first and second leaves of maize were measured. In accordance with the results we observed that our regarded Se concentrations in both forms of Se( IV) and Se( VI) were not effective on maize plants’ chlorophyll a and b significantly although high level of 3 mg.kg-1 Se( IV) had negative affect on growth of the samples that had been treated by it but about Se( VI) samples we did not observe this state and our different considered Se( VI) concentrations were not toxic for maize plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maize" title="maize">maize</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20selenate" title=" sodium selenate"> sodium selenate</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20selenite" title=" sodium selenite"> sodium selenite</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll%20a%20and%20b" title=" chlorophyll a and b "> chlorophyll a and b </a> </p> <a href="https://publications.waset.org/abstracts/27082/role-of-selenite-and-selenate-uptake-by-maize-plants-in-chlorophyll-a-and-b-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">993</span> Investigation of Influence of Maize Stover Components and Urea Treatment on Dry Matter Digestibility and Fermentation Kinetics Using in vitro Gas Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anon%20Paserakung">Anon Paserakung</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaloemphon%20Muangyen"> Chaloemphon Muangyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Suban%20Foiklang"> Suban Foiklang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanin%20Opatpatanakit"> Yanin Opatpatanakit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improving nutritive values and digestibility of maize stover is an alternative way to increase their utilization in ruminant and reduce air pollution from open burning of maize stover in the northern Thailand. The present study, 2x3 factorial arrangements in completely randomized design was conducted to investigate the effect of maize stover components (whole and upper stover; cut above 5th node). Urea treatment at levels 0, 3, and 6% DM on dry matter digestibility and fermentation kinetics of maize stover using in vitro gas production. After 21 days of urea treatment, results illustrated that there was no interaction between maize stover components and urea treatment on 48h in vitro dry matter digestibility (IVDMD). IVDMD was unaffected by maize stover components (P > 0.05), average IVDMD was 55%. However, using whole maize stover gave higher cumulative gas and gas kinetic parameters than those of upper stover (P<0.05). Treating maize stover by ensiling with urea resulted in a significant linear increase in IVDMD (P<0.05). IVDMD increased from 42.6% to 53.9% when increased urea concentration from 0 to 3% and maximum IVDMD (65.1%) was observed when maize stover was ensiled with 6% urea. Maize stover treated with urea at levels of 0, 3, and 6% linearly increased cumulative gas production at 96h (31.1 vs 50.5 and 59.1 ml, respectively) and all gas kinetic parameters excepted the gas production from the immediately soluble fraction (P<0.50). The results indicate that maize stover treated with 6% urea enhance in vitro dry matter digestibility and fermentation kinetics. This study provides a practical approach to increasing utilization of maize stover in feeding ruminant animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maize%20stover" title="maize stover">maize stover</a>, <a href="https://publications.waset.org/abstracts/search?q=urea%20treatment" title=" urea treatment"> urea treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=ruminant%20feed" title=" ruminant feed"> ruminant feed</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20production" title=" gas production"> gas production</a> </p> <a href="https://publications.waset.org/abstracts/73526/investigation-of-influence-of-maize-stover-components-and-urea-treatment-on-dry-matter-digestibility-and-fermentation-kinetics-using-in-vitro-gas-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">992</span> Brevicoryne brassicae Compatibility with Maize in Multiple Cropping System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zunnu%20Raen%20Akhtar">Zunnu Raen Akhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brevicoryne brassicae, aphid feeds on cabbage and Brassica sp. as preferred host. Brassica plants usually ripen when maize starts growing in multiple cropping systems. Experiment was conducted to observe suitability of B. brassicae by rearing it on maize as host. In a tritrophic eco-system, predator coccinellids can be found in the fields of brassica and maize. This experiment emphasized on issue of aphids growing incidence in a cropping system. Brassica is sown and harvested earlier than maize and is attacked by aphids, while maize is also attacked by aphids. Five mortality tests were conducted of B. brassicae fed on maize. Out of five mortality tests, 3 tests were conducted using 1st instar, while in two mortality tests, 2nd instars of aphids were used. Mortality tests revealed that first instar mortality was quite high on the second day, while in second instar larvae mortality was delayed up to third to the fourth day. These experiments reveal that aphids can use maize as substitute host at later instars as compared to young ones. These experiments can be foundation for studying further crop-insect interaction and sampling techniques used for this purpose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=host%20suitability" title="host suitability">host suitability</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20brassicae" title=" B. brassicae"> B. brassicae</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=tritrophic%20interaction" title=" tritrophic interaction"> tritrophic interaction</a> </p> <a href="https://publications.waset.org/abstracts/74393/brevicoryne-brassicae-compatibility-with-maize-in-multiple-cropping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">991</span> Identification of a Novel Maize Dehydration-Responsive Gene with a Potential Role in Improving Maize Drought Tolerance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyle%20Phillips">Kyle Phillips</a>, <a href="https://publications.waset.org/abstracts/search?q=Ndiko%20Ludidi"> Ndiko Ludidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global climate change has resulted in altered rainfall patterns, which has resulted in annual losses in maize crop yields due to drought. Therefore it is important to produce maize cultivars that are more drought-tolerant, which is not an easily accomplished task as plants have a plethora of physical and biochemical adaptation methods. One such mechanism is the drought-induced expression of enzymatic and non-enzymatic proteins which assist plants to resist the effects of drought on their growth and development. One of these proteins is AtRD22 which has been identified in Arabidopsis thaliana. Using an in silico approach, a maize protein with 48% sequence homology to AtRD22 has been identified. This protein appears to be localized in the extracellular matrix, similarly to AtRD22. Promoter analysis of the encoding gene reveals cis-acting elements suggestive of induction of the gene’s expression by abscisic acid (ABA). Semi-quantitative transcriptomic analysis of the putative maize RD22 has revealed an increase in transcript levels after the exposure to drought. Current work elucidates the effect of up-regulation and silencing of the maize RD22 gene on the tolerance of maize to drought. The potential role of the maize RD22 gene in maize drought tolerance can be used as a tool to improve food security. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abscisic%20acid" title="abscisic acid">abscisic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=drought-responsive%20cis-acting%20elements" title=" drought-responsive cis-acting elements"> drought-responsive cis-acting elements</a>, <a href="https://publications.waset.org/abstracts/search?q=maize%20drought%20tolerance" title=" maize drought tolerance"> maize drought tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=RD22" title=" RD22"> RD22</a> </p> <a href="https://publications.waset.org/abstracts/24320/identification-of-a-novel-maize-dehydration-responsive-gene-with-a-potential-role-in-improving-maize-drought-tolerance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">990</span> Modern Sports and Imperial Solidarity: Sports, Mutiny and British Army in Colonial Malabar (1900-1930) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anas%20Ali">Anas Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The British administration at Malabar, the southern coastal commercial outpost in the Indian Subcontinent, faced with a series of perpetual revolts from the Mappila Muslim peasants during the last decades of the 19th and early decades of the 20th century. The control of Malabar region was a concern for the British administrators as the region was a prime centre of spice trade and plantation products. The Madras government set up a special police battalion called the Malabar Special Police in 1884 and summoned different army battalions to Malabar to crush the revolts. The setting up of army camps in the rural Malabar led to the diffusion of modern sports as the army men played different games in the garrisons and with the local people. For the imperial army men deployed in Malabar, sports acted as a viable medium to strengthen solidarity with other European settlers. They actively participated in the ‘Canterbury Week’, an annual sporting event organized by the European planters and organized tournaments among themselves. This paper would argue that, sports enabled the imperial army men, European planters and British administrators to build camaraderie that enabled them to manifest their imperial solidarity during the time of these constant revolts. Based on newspaper reports and colonial memoirs, this paper would look at how modern sports enabled the imperial army men to be ‘good in health’ and create a feeling of ‘being at home’ during this period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=imperial%20army" title="imperial army">imperial army</a>, <a href="https://publications.waset.org/abstracts/search?q=Malabar" title=" Malabar"> Malabar</a>, <a href="https://publications.waset.org/abstracts/search?q=modern%20sports" title=" modern sports"> modern sports</a>, <a href="https://publications.waset.org/abstracts/search?q=mutiny" title=" mutiny"> mutiny</a> </p> <a href="https://publications.waset.org/abstracts/139097/modern-sports-and-imperial-solidarity-sports-mutiny-and-british-army-in-colonial-malabar-1900-1930" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">989</span> Modelling Public Knowledge and Attitude towards Genetically Modified Maize in Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezrah%20Kipkirui%20Tonui">Ezrah Kipkirui Tonui</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Otieno%20Orwa"> George Otieno Orwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A survey of 138 farmers was conducted in Rift valley, Kenya, in November and December 2013 in three counties (Uasin-gishu, Elgeyo-marakwet, and Tranzoia) to determine public knowledge and attitude towards genetically modified (GM) maize. Above two third (70%) of the respondents had knowledge of GM maize, mostly those educated and male. Female was found to be having low knowledge on GM maize. Public acknowledged the technology’s potential positive impacts, with more than 90% willing to adopt and more than 98% willing to buy GM seedlings at any given price. A small percentage less than 3% were of a negative opinion about willing to buy and adopt GM seeds. We conclude that GM technology has a role to play in food security in Kenya. However, the public needs more information about the technology, which can be provided through established sources of information and training. Finally, public knowledge and attitude on GM maize should be studied on a regular basis, and the survey population broadened to 47 counties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=public" title="public">public</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge" title=" knowledge"> knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=attitudes" title=" attitudes"> attitudes</a>, <a href="https://publications.waset.org/abstracts/search?q=GM%20maize" title=" GM maize"> GM maize</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenya" title=" Kenya"> Kenya</a> </p> <a href="https://publications.waset.org/abstracts/8651/modelling-public-knowledge-and-attitude-towards-genetically-modified-maize-in-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">988</span> Effect of Selenite and Selenate Uptake by Maize Plants on Specific Leaf Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Garousi">F. Garousi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sz.%20Veres"> Sz. Veres</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89.%20B%C3%B3di"> É. Bódi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sz.%20V%C3%A1rallyay"> Sz. Várallyay</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Kov%C3%A1cs"> B. Kovács</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Specific leaf area (SLA; cm2leaf g-1leaf) is a key ecophysiological parameter influencing leaf physiology, photosynthesis, and whole plant carbon gain and also can be used as a rapid and diagnostic tool. In this study, two species of soluble inorganic selenium forms, selenite (SeIV) and selenate (SeVI) at different concentrations were investigated on maize plants that were growing in nutrient solutions during 2 weeks and at the end of the experiment, amounts of SLA for first and second leaves of maize were measured. In accordance with the results we observed that our regarded Se concentrations in both forms of SeIV and SeVI were not effective on maize plants’ SLA significantly although high level of 3 mg.kg-1 SeIV had negative affect on growth of the samples that had been treated by it but about SeVI samples we did not observe this state and our different considered SeVI concentrations were not toxic for maize plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maize" title="maize">maize</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20selenate" title=" sodium selenate"> sodium selenate</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20selenite" title=" sodium selenite"> sodium selenite</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20leaf%20area" title=" specific leaf area "> specific leaf area </a> </p> <a href="https://publications.waset.org/abstracts/21223/effect-of-selenite-and-selenate-uptake-by-maize-plants-on-specific-leaf-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">987</span> Development of a Cost Effective Two Wheel Tractor Mounted Mobile Maize Sheller for Small Farmers in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Israil%20Hossain">M. Israil Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20P.%20Tiwari"> T. P. Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashrafuzzaman%20Gulandaz"> Ashrafuzzaman Gulandaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusrat%20Jahan"> Nusrat Jahan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two-wheel tractor (power tiller) is a common tillage tool in Bangladesh agriculture for easy access in fragmented land with affordable price of small farmers. Traditional maize sheller needs to be carried from place to place by hooking with two-wheel tractor (2WT) and set up again for shelling operation which takes longer time for preparation of maize shelling. The mobile maize sheller eliminates the transportation problem and can start shelling operation instantly any place as it is attached together with 2WT. It is counterclockwise rotating cylinder, axial flow type sheller, and grain separated with a frictional force between spike tooth and concave. The maize sheller is attached with nuts and bolts in front of the engine base of 2WT. The operating power of the sheller comes from the fly wheel of the engine of the tractor through &lsquo;V&rdquo; belt pulley arrangement. The average shelling capacity of the mobile sheller is 2.0 t/hr, broken kernel 2.2%, and shelling efficiency 97%. The average maize shelling cost is Tk. 0.22/kg and traditional custom hire rate is Tk.1.0/kg, respectively (1 US$=Tk.78.0). The service provider of the 2WT can transport the mobile maize sheller long distance in operator&rsquo;s seating position. The manufacturers started the fabrication of mobile maize sheller. This mobile maize sheller is also compatible for the other countries where 2WT is available for farming operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost%20effective" title="cost effective">cost effective</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20maize%20sheller" title=" mobile maize sheller"> mobile maize sheller</a>, <a href="https://publications.waset.org/abstracts/search?q=maize%20shelling%20capacity" title=" maize shelling capacity"> maize shelling capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20farmers" title=" small farmers"> small farmers</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20wheel%20tractor" title=" two wheel tractor"> two wheel tractor</a> </p> <a href="https://publications.waset.org/abstracts/58969/development-of-a-cost-effective-two-wheel-tractor-mounted-mobile-maize-sheller-for-small-farmers-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">986</span> Exploitation of Variability for Salinity Tolerance in Maize Hybrids (Zea Mays L.) at Early Growth Stage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Qayyum">Abdul Qayyum</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Muhammad%20Saeed"> Hafiz Muhammad Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamoona%20Hanif"> Mamoona Hanif</a>, <a href="https://publications.waset.org/abstracts/search?q=Etrat%20Noor"> Etrat Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Waqas%20Malik"> Waqas Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoaib%20Liaqat"> Shoaib Liaqat </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salinity is extremely serious problem that has a drastic effect on maize crop, environment and causes economic losses of country. An advance technique to overcome salinity is to develop salt tolerant geno types which require screening of huge germplasm to start a breeding program. Therefore, present study was undertaken to screen out 25 maize hybrids of different origin for salinity tolerance at seedling stage under three levels of salt stress 250 and 300 mM NaCl including one control. The existence of variation for tolerance to enhanced NaCl salinity levels at seedling stage in maize proved that hybrids had differing ability to grow under saline environment and potential variability within specie. Almost all the twenty five maize hybrids behaved varyingly in response to different salinity levels. However, the maize hybrids H6, H13, H21, H23 and H24 expressed better performance under salt stress in terms of all six characters and proved to be as highly tolerant while H22, H17 H20, H18, H4, H9, and H8 were identified as moderately tolerant. Hybrids H14, H5, H11 and H3 H12, H2, were expressed as most sensitive to salinity suggesting that screening is an effective tool to exploit genetic variation among maize hybrids and salt tolerance in maize can be enhanced through selection and breeding procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salinity" title="salinity">salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrids" title=" hybrids"> hybrids</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=variation" title=" variation"> variation</a> </p> <a href="https://publications.waset.org/abstracts/20822/exploitation-of-variability-for-salinity-tolerance-in-maize-hybrids-zea-mays-l-at-early-growth-stage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">717</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">985</span> The Duties of the Immortals and the Name of Anauša or Anušiya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Moeini%20Sam">Behzad Moeini Sam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Mohammadi%20Avandi"> Sara Mohammadi Avandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the reasons for the success of the Achaemenids was the innovation and precise organization used in the administrative and military fields. Of course, these organizations had their roots in the previous governments that had changed in these borrowings. The units of the Achaemenid army are also among the cases that have their origins in the ancient East. In this article, the attempt is to find the sources of the Immortal Army based on the writings of old and current authors and archaeological documents, and the name mentioned by Herodotus and rejected by some authors. Of course, linguistic sources have also been used for better conclusions than the indicated sources. It emphasizes linguistic data to lead to a better deduction. Thus, it was included that ‘anauša’ is more probable than anušiya. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=army" title="army">army</a>, <a href="https://publications.waset.org/abstracts/search?q=immortal" title=" immortal"> immortal</a>, <a href="https://publications.waset.org/abstracts/search?q=ten%20thousand" title=" ten thousand"> ten thousand</a>, <a href="https://publications.waset.org/abstracts/search?q=Anau%C5%A1a" title=" Anauša"> Anauša</a>, <a href="https://publications.waset.org/abstracts/search?q=Anu%C5%A1iya" title=" Anušiya"> Anušiya</a> </p> <a href="https://publications.waset.org/abstracts/155000/the-duties-of-the-immortals-and-the-name-of-anausa-or-anusiya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">984</span> Evaluation of Genetic Diversity for Salt Stress in Maize Hybrids (Zea Mays L.) at Seedling Stage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdu%20Qayyum">Abdu Qayyum</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Muhammad%20Saeed"> Hafiz Muhammad Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamoona%20Hanif"> Mamoona Hanif</a>, <a href="https://publications.waset.org/abstracts/search?q=Etrat%20Noor"> Etrat Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Waqas%20Malik"> Waqas Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoaib%20Liaqat"> Shoaib Liaqat </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salinity is extremely serious problem that has a drastic effect on maize crop, environment and causes economic losses of country. An advance technique to overcome salinity is to develop salt tolerant geno types which require screening of huge germ plasm to start a breeding program. Therefore, present study was undertaken to screen out 25 maize hybrids of different origin for salinity tolerance at seedling stage under three levels of salt stress 250 and 300 mM NaCl including one control. The existence of variation for tolerance to enhanced NaCl salinity levels at seedling stage in maize proved that hybrids had differing ability to grow under saline environment and potential variability within specie. Almost all the twenty five maize hybrids behaved varyingly in response to different salinity levels. However, the maize hybrids H6, H13, H21, H23 and H24 expressed better performance under salt stress in terms of all six characters and proved to be as highly tolerant while H22, H17 H20, H18, H4, H9, and H8 were identified as moderately tolerant. Hybrids H14, H5, H11 and H3 H12, H2, were expressed as most sensitive to salinity suggesting that screening is an effective tool to exploit genetic variation among maize hybrids and salt tolerance in maize can be enhanced through selection and breeding procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salinity" title="salinity">salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrids" title=" hybrids"> hybrids</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=variation" title=" variation"> variation</a> </p> <a href="https://publications.waset.org/abstracts/20925/evaluation-of-genetic-diversity-for-salt-stress-in-maize-hybrids-zea-mays-l-at-seedling-stage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">723</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">983</span> Awareness in the Code of Ethics for Nurse Educators among Nurse Educators, Nursing Students and Professional Nurses at the Royal Thai Army, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wallapa%20Boonrod">Wallapa Boonrod</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thai National Education Act 1999 required all educational institutions received external quality evaluation at least once every five years. The purpose of this study was to compare the awareness in the code of ethics for nurse educators among nurse educators, professional nurses, and nursing students under The Royal Thai Army Nurse College. The sample consisted of 51 of nurse educators 200 nursing students and 340 professional nurses from Army nursing college and hospital by stratified random sampling techniques. The descriptive statistics indicated that the nurse educators, nursing students and professional nurses had different levels of awareness in the 9 roles of nurse educators: Nurse, Reliable Sacrifice, Intelligence, Giver, Nursing Skills, Teaching Responsibility, Unbiased Care, Tie to Organization, and Role Model. The code of ethics for nurse educators (CENE) measurement models from the awareness of nurse educators, professional nurses, and nursing students were well fitted with the empirical data. The CENE models from them were invariant in forms, but variant in factor loadings. Thai Army nurse educators strive to create a learning environment that nurtures the highest nursing potential and standards in their nursing students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=awareness%20of%20the%20code%20of%20ethics%20for%20nurse%20educators" title="awareness of the code of ethics for nurse educators">awareness of the code of ethics for nurse educators</a>, <a href="https://publications.waset.org/abstracts/search?q=nursing%20college%20and%20hospital%20under%20The%20Royal%20Thai%20Army" title=" nursing college and hospital under The Royal Thai Army"> nursing college and hospital under The Royal Thai Army</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20Army%20nurse%20educators" title=" Thai Army nurse educators"> Thai Army nurse educators</a>, <a href="https://publications.waset.org/abstracts/search?q=professional%20nurses" title=" professional nurses"> professional nurses</a> </p> <a href="https://publications.waset.org/abstracts/29509/awareness-in-the-code-of-ethics-for-nurse-educators-among-nurse-educators-nursing-students-and-professional-nurses-at-the-royal-thai-army-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">982</span> Storage of Maize Grains Using Powder and Oils of Commonly Used Medicinal Plants (Aframomum melegueta, Garcinia kola and Piper guineense)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20O.%20Adejumo">T. O. Adejumo</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20Akinyemi"> O. S. Akinyemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Powders and oils of Aframomum melegueta, Garcinia kola and Piper guineense were tested as preservatives for the storage of maize grains for four weeks. The concentrations of the powders were 32.5gkg-1, 65.0gkg-1 and 97.5gkg-1 maize, while those of oils were 0.85mlkg-1, 0.50mlkg-1 and 0.75mlkg-1 maize respectively. Powders of the three botanicals at 97.5gkg-1 maize possessed insecticidal effect on Sitophilus zeamais and also inhibitory activities on Aspergillus flavus, A. fumigatus, A. niger and Fusarium verticillioides, while little effect was observed for other concentrations. Oils of the three botanicals at 0.50mlkg-1 and 0.75mlkg-1 maize showed an insecticidal effect on S. zeamais and also inhibitory activities on A. flavus, A. fumigatus, A. niger, F. verticillioides, Penicillium and Rhizopus species. Oils showed more potential as a protectant against fungal and insect pest in storage maize grains than powders. Powders and oils of A. melegueta, G. kola and P. guineense could be successfully used as biopesticides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aframomum%20melegueta" title="aframomum melegueta">aframomum melegueta</a>, <a href="https://publications.waset.org/abstracts/search?q=garcinia%20kola" title=" garcinia kola"> garcinia kola</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=powder" title=" powder"> powder</a>, <a href="https://publications.waset.org/abstracts/search?q=oils" title=" oils"> oils</a>, <a href="https://publications.waset.org/abstracts/search?q=piper%20guineense" title=" piper guineense"> piper guineense</a> </p> <a href="https://publications.waset.org/abstracts/35674/storage-of-maize-grains-using-powder-and-oils-of-commonly-used-medicinal-plants-aframomum-melegueta-garcinia-kola-and-piper-guineense" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">981</span> Contemporary Army Prints for Women’s Wear Kurti</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaleni%20Bajpai">Shaleni Bajpai</a>, <a href="https://publications.waset.org/abstracts/search?q=Nancy%20Stephan"> Nancy Stephan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various designs of women’s kurtis with different styles, motifs and prints were available in market but none of the kurtis was found in army print. Mostly army prints are used for men’s wear like jackets, trousers, caps, bags. The main colours available in military prints were beige, parrot green, red, dark blue, light blue, orange, bottle green, pink and the original military green colour. As the original camouflage is banned in civil wears so the different variety and colours were used in this study to popularize army prints in women’s wear. The aim of this project was to construct different styles of women kurti’s with various colours of different military prints. Mood board, inspiration and colour board was prepared to design the kurtis. The fabric used for construction was army printed poplin and crepe. The designing and construction of kurti’s were divided into two categories such as - casual and party wear. Casual wear had simple silhouette like a-line, high-low and waist coat style whereas party wear included princess line, panelled and bandhani style. Structured questionnaire was prepared to assess the acceptance of newly designed kurtis with respect to colour combination, overall appearance and cost. Purposively sampling method was adopted for selection of respondents. Opinion was taken from 100 women of various age groups. The result and analysis was presented through graph and percentage. Kurtis in army print of both the categories were appreciated by the respondents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=army" title="army">army</a>, <a href="https://publications.waset.org/abstracts/search?q=kurti" title=" kurti"> kurti</a>, <a href="https://publications.waset.org/abstracts/search?q=casual%20wear" title=" casual wear"> casual wear</a>, <a href="https://publications.waset.org/abstracts/search?q=party%20wear" title=" party wear"> party wear</a> </p> <a href="https://publications.waset.org/abstracts/52909/contemporary-army-prints-for-womens-wear-kurti" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">980</span> Effect of Silicon in Mitigating Cadmium Toxicity in Maize</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghulam%20Hasan%20Abbasi">Ghulam Hasan Abbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Moazzam%20Jamil"> Moazzam Jamil</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Anwar-Ul-Haq"> M. Anwar-Ul-Haq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals are significant pollutants in environment and their toxicity is a problem for survival of living things while Silicon (Si) is one of the most ubiquitous macroelements, performing an essential function in healing plants in response to environmental stresses. A hydroponic experiment was conducted to investigate the role of exogenous application of silicon under cadmium stress in six different maize hybrids with five treatments comprising of control, 7.5 µM Cd + 5 mM Si, 7.5 µM Cd + 10 mM Si, 15 µM Cd + 5 mM Si and 15 µM Cd + 10 mM Si. Results revealed that treatments of plants with 10mM Si application under both 7.5µM Cd and 15 µM Cd stress resulted in maximum improvement in plant morphological attributes (root and shoot length, root and shoot fresh and dry weight, leaf area and relative water contents) and antioxidant enzymes (POD and CAT) relative to 5 mM Si application in all maize hybrids. Results regarding Cd concentrations showed that Cd was more retained in roots followed by shoots and then leaves and maximum reduction in Cd uptake was observed at 10mM Si application. Maize hybrid 6525 showed maximum growth and least concentration of Cd whereas maize hybrid 1543 showed the minimum growth and maximum Cd concentration among all maize hybrids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a> </p> <a href="https://publications.waset.org/abstracts/35284/effect-of-silicon-in-mitigating-cadmium-toxicity-in-maize" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">979</span> Polish Operational Plans During Cold War as Part of Warsaw Pact Strategic Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wiktor%20Stypczy%C5%84ski">Wiktor Stypczyński</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the Cold War, both sides of the conflict developed advanced operational plans in case of a Third World War outbreak. In the Warsaw Pact, Soviet generals in Moscow chose targets for each army, but each country's General Staff had to create specific plans for their nation. This led to the creation of a Strategic Culture within the Warsaw Pact that was reflected in the plans of each army. This paper aims to showcase the Strategic Culture of the Warsaw Pact by using the plans of the People's Polish Army as an example. Examining one army at a time will allow for a more detailed and unique perspective on the matter. Understanding the past Strategic Culture is crucial in comprehending the current post-Soviet strategic situation in Eastern Europe, especially with the current situation in Ukraine. This paper is based on Benon Miśkiewicz's classic methodology of military history. While this methodology is the foundation, the research findings will also draw on the Strategic Studies methodology and the accomplishments of war and military science. Additionally, the Security and Political Studies methodology will be a crucial element in constructing the narrative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20war" title="cold war">cold war</a>, <a href="https://publications.waset.org/abstracts/search?q=operetional%20plans" title=" operetional plans"> operetional plans</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20culture" title=" strategic culture"> strategic culture</a>, <a href="https://publications.waset.org/abstracts/search?q=polish%20people%27s%20army" title=" polish people&#039;s army"> polish people&#039;s army</a> </p> <a href="https://publications.waset.org/abstracts/170642/polish-operational-plans-during-cold-war-as-part-of-warsaw-pact-strategic-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">978</span> Nutritional Composition of Provitamin A-Biofortified Amahewu, a Maize Based Beverage with Potential to Alleviate Vitamin A Deficiency </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temitope%20%20D.%20%20Awobusuyi">Temitope D. Awobusuyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20%20O.%20%20Amonsou"> Eric O. Amonsou</a>, <a href="https://publications.waset.org/abstracts/search?q=Muthulisi%20Siwela"> Muthulisi Siwela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amahewu, a lactic acid fermented non-alcoholic maize based beverage is widely consumed in Southern Africa. It is traditionally made with white maize which is deficient in vitamin A. Provitamin A-biofortified maize has been developed for use as a complementary strategy to alleviate vitamin A deficiency. In this study the nutritional composition and protein digestibility of amahewu produced using provitamin A-biofortified maize was determined. Provitamin A-biofortified amahewu was processed by fermenting cooked maize porridge using malted provitamin A-biofortified maize, wheat bran and lactobacillus mixed starter culture with either malted maize or wheat bran. The total provitamin A content in amahewu products ranged from 3.3-3.8 μg/g (DW). The % retention of total provitamin A ranged from 79 %- 90 % μg/g (DW). The lowest % retention was observed in products fermented with the addition of starter culture. The gross energy of amahewu products were approx. 20 MJ/kg. There was a slight increase in the lysine content of amahewu after fermentation. Protein digestibility of amahewu (approx.91%) was slightly higher compared to unprocessed provitamin A maize (86%). However, a general decrease was observed in the minerals when compared to the unprocessed provitamin A maize. Amahewu processed using starter cultures has higher iron content than those processed with the addition of malt. These result suggests that provitamin A-biofortified amahewu has the potential to make a significant contribution towards alleviating Vitamin A Deficiency in rural communities who are also the most vulnerable to VAD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vitamin%20A%20deficiency" title="vitamin A deficiency">vitamin A deficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=provitamin%20A%20maize" title=" provitamin A maize"> provitamin A maize</a>, <a href="https://publications.waset.org/abstracts/search?q=biofortification" title=" biofortification"> biofortification</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation "> fermentation </a> </p> <a href="https://publications.waset.org/abstracts/42204/nutritional-composition-of-provitamin-a-biofortified-amahewu-a-maize-based-beverage-with-potential-to-alleviate-vitamin-a-deficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">977</span> Effect of Tillage Practices and Planting Patterns on Growth and Yield of Maize (Zee Maize)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20R.%20Obalowu">O. R. Obalowu</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20B.%20Akande"> F. B. Akande</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20P%20Abegunrin"> T. P Abegunrin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maize (Zea may) is mostly grown and consumed by Nigeria farmers using different tillage practices which have a great effect on its growth and yield. In order to maximize output, there is need to recommend a suitable tillage practice for crop production which will increase the growth and yield of maize. This study investigated the effect of tillage practices and planting pattern on the growth and yield of maize. The experiment was arranged in a 4x3x3 Randomized Complete Block Design (RCBD) layout, with four tillage practices consisting of no-tillage (NT), disc ploughing only (Ponly), disc ploughing followed by harrowing (PH), and disc ploughing, harrowing then ridging (PHR). Three planting patterns which include; 65 x 75, 75 x 75 and 85 x 75 cm spacing within and between the rows respectively, were randomly applied on the plots. All treatments were replicated three times. Data which consist of plant height, stem girth, leaf area and weight of maize per plots were taken and recorded. Data gathered were analyzed using Analysis of Variance (ANOVA) in the Minitab Software Package. The result shows that PHR under the third planting pattern has the highest growth rate (216.50 cm) while NT under the first planting pattern has the lowest mean value of growth rate (115.60 cm). Also, Ponly under the first planting pattern gives a better maize yield (19.45 kg) when compared with other tillage practices while NT under first planting pattern recorded the least yield of maize (9.40 kg). In conclusion, considering soil and weather conditions of the research area, plough only under the first planting pattern (65 x 75 cm) is the best alternative for the production of the Swan maize variety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tillage%20practice" title="tillage practice">tillage practice</a>, <a href="https://publications.waset.org/abstracts/search?q=planting%20pattern" title=" planting pattern"> planting pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=disc%20ploughing" title=" disc ploughing"> disc ploughing</a>, <a href="https://publications.waset.org/abstracts/search?q=harrowing" title=" harrowing"> harrowing</a>, <a href="https://publications.waset.org/abstracts/search?q=ridging" title=" ridging"> ridging</a> </p> <a href="https://publications.waset.org/abstracts/35634/effect-of-tillage-practices-and-planting-patterns-on-growth-and-yield-of-maize-zee-maize" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">976</span> Understanding the Impact of Climate-Induced Rural-Urban Migration on the Technical Efficiency of Maize Production in Malawi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Innocent%20Pangapanga-Phiri">Innocent Pangapanga-Phiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Dada%20Mungatana"> Eric Dada Mungatana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study estimates the effect of climate-induced rural-urban migrants (RUM) on maize productivity. It uses panel data gathered by the National Statistics Office and the World Bank to understand the effect of RUM on the technical efficiency of maize production in rural Malawi. The study runs the two-stage Tobit regression to isolate the real effect of rural-urban migration on the technical efficiency of maize production. The results show that RUM significantly reduces the technical efficiency of maize production. However, the interaction of RUM and climate-smart agriculture has a positive and significant influence on the technical efficiency of maize production, suggesting the need for re-investing migrants’ remittances in agricultural activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate-smart%20agriculture" title="climate-smart agriculture">climate-smart agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=farm%20productivity" title=" farm productivity"> farm productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=rural-urban%20migration" title=" rural-urban migration"> rural-urban migration</a>, <a href="https://publications.waset.org/abstracts/search?q=panel%20stochastic%20frontier%20models" title=" panel stochastic frontier models"> panel stochastic frontier models</a>, <a href="https://publications.waset.org/abstracts/search?q=two-stage%20Tobit%20regression" title=" two-stage Tobit regression"> two-stage Tobit regression</a> </p> <a href="https://publications.waset.org/abstracts/147297/understanding-the-impact-of-climate-induced-rural-urban-migration-on-the-technical-efficiency-of-maize-production-in-malawi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">975</span> Design and Construction of a Maize Dehusking Machine for Small and Medium-Scale Farmers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francis%20Ojo%20Ologunagba">Francis Ojo Ologunagba</a>, <a href="https://publications.waset.org/abstracts/search?q=Monday%20Olatunbosun%20Ale"> Monday Olatunbosun Ale</a>, <a href="https://publications.waset.org/abstracts/search?q=Lewis%20A.%20Olutayo"> Lewis A. Olutayo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The economic successes of commercial development of agricultural product processing depend upon the adaptability of each processing stage to mechanization. In maize processing, one of its post-harvest operations that is still facing a major challenge is dehusking. Therefore, a maize dehusking machine that could replace the prevalent traditional method of dehusking maize in developing countries, especially Nigeria was designed, constructed and tested at the Department of Agricultural and Bio-Environmental Engineering Technology, Rufus Giwa Polytechnic, Owo. The basic features of the machine are feeding unit (hopper), housing frame, dehusking unit, drive mechanism and discharge outlets. The machine was tested with maize of 50mm average diameter at 13% moisture content and 2.5mm machine roller clearance. Test results showed appreciable performance with the dehusking efficiency of 92% and throughput capacity of 200 Kg/hr at a machine speed of 400rpm. The estimated production cost of the machine at the time of construction is forty-five thousand, one hundred and eighty nairas (₦45,180) excluding the cost of the electric motor. It is therefore recommended for small and medium-scale maize farmers and processors in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction" title="construction">construction</a>, <a href="https://publications.waset.org/abstracts/search?q=dehusking" title=" dehusking"> dehusking</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a> </p> <a href="https://publications.waset.org/abstracts/84517/design-and-construction-of-a-maize-dehusking-machine-for-small-and-medium-scale-farmers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">974</span> Study of the Efficacy of Cysteine Protease Inhibitors Alone or Combined with Praziquantel as Chemotherapy for Mice Schistosomiasis mansoni</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alyaa%20Ahmed%20Farid">Alyaa Ahmed Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Aida%20Ismail"> Aida Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Rabia">Ibrahim Rabia</a>, <a href="https://publications.waset.org/abstracts/search?q=Azza%20Fahmy"> Azza Fahmy</a>, <a href="https://publications.waset.org/abstracts/search?q=Azza%20El%20Amir">Azza El Amir </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was designed for assessment of 3 types of Cysteine protease inhibitors (CPIs) fluromethylketone (FMK), vinyl sulfone (VS) and sodium nitro prussid (SNP), to define which of them is the best? The experiments aimed to define the protective power of each inhibitor alone or combined with PZQ for curing S. mansoni infection in mice. In vitro, treated S. mansoni adult worms recorded a mortality rate after 1 hr of exposure to 500 ppm of FMK, VS and SNP as 75, 70 and 60%, while, treated cercaria recorded 75, 60 and 50%, respectively. FMK+PZQ treatment recorded the maximum reduction in worm burden (97.2% at 5 wk PI). VS treatment alone or combined with PZQ increases IgM, total IgG, IgG2 and IgG4 levels. In EM study of worm tegument, while only detachment of spines was observed in PZQ treated group, the completely implanted spines were reported in the degenerated tegument of adult worms in all groups treated with CPIs. Treatment with VS+PZQ increased Igs levels but, its effect was different on worm reduction. So, it is not enough to eliminate the infection and FMK+PZQ considered the antischistosomicidal drug of choice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=praziquantel" title="praziquantel">praziquantel</a>, <a href="https://publications.waset.org/abstracts/search?q=fluromethylketone" title=" fluromethylketone"> fluromethylketone</a>, <a href="https://publications.waset.org/abstracts/search?q=vinyl%20sulfone" title=" vinyl sulfone"> vinyl sulfone</a>, <a href="https://publications.waset.org/abstracts/search?q=worm%20burden" title=" worm burden"> worm burden</a>, <a href="https://publications.waset.org/abstracts/search?q=immunoglobulin%20pattern" title=" immunoglobulin pattern"> immunoglobulin pattern</a> </p> <a href="https://publications.waset.org/abstracts/3577/study-of-the-efficacy-of-cysteine-protease-inhibitors-alone-or-combined-with-praziquantel-as-chemotherapy-for-mice-schistosomiasis-mansoni" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">973</span> Laboratory Scale Purification of Water from Copper Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mumtaz%20Khan">Mumtaz Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeel%20Shahid"> Adeel Shahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Waqas%20Khan"> Waqas Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals presence in water streams is a big danger for aquatic life and ultimately effects human health. Removal of copper (Cu) by ispaghula husk, maize fibre, and maize oil cake from synthetic solution in batch conditions was studied. Different experimental parameters such as contact time, initial solution pH, agitation rate, initial Cu concentration, biosorbent concentration, and biosorbent particle size has been studied to quantify the Cu biosorption. The rate of adsorption of metal ions was very fast at the beginning and became slow after reaching the saturation point, followed by a slower active metabolic uptake of metal ions into the cells. Up to a certain point, (pH=4, concentration of Cu = ~ 640 mg/l, agitation rate = ~ 400 rpm, biosorbent concentration = ~ 0.5g, 3g, 3g for ispaghula husk, maize fiber and maize oil cake, respectively) increasing the pH, concentration of Cu, agitation rate, and biosorbent concentration, increased the biosorption rate; however the sorption capacity increased by decreasing the particle size. At optimized experimental parameters, the maximum Cu biosorption by ispaghula husk, maize fibre and maize oil cake were 86.7%, 59.6% and 71.3%, respectively. Moreover, the results of the kinetics studies demonstrated that the biosorption of copper on ispaghula husk, maize fibre, and maize oil cake followed pseudo-second order kinetics. The results of adsorption were fitted to both the Langmuir and Freundlich models. The Langmuir model represented the sorption process better than Freundlich, and R² value ~ 0.978. Optimizations of physical and environmental parameters revealed, ispaghula husk as more potent copper biosorbent than maize fibre, and maize oil cake. The sorbent is cheap and available easily, so this study can be applied to remove Cu impurities on pilot and industrial scale after certain modifications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosorption" title="biosorption">biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=ispaghula%20husk" title=" ispaghula husk"> ispaghula husk</a>, <a href="https://publications.waset.org/abstracts/search?q=maize%20fibre" title=" maize fibre"> maize fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=maize%20oil%20cake" title=" maize oil cake"> maize oil cake</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a> </p> <a href="https://publications.waset.org/abstracts/78915/laboratory-scale-purification-of-water-from-copper-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maize%20fall%20army%20worm&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maize%20fall%20army%20worm&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maize%20fall%20army%20worm&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maize%20fall%20army%20worm&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maize%20fall%20army%20worm&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maize%20fall%20army%20worm&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maize%20fall%20army%20worm&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maize%20fall%20army%20worm&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maize%20fall%20army%20worm&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maize%20fall%20army%20worm&amp;page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maize%20fall%20army%20worm&amp;page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maize%20fall%20army%20worm&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10