CINXE.COM

Search results for: fecal bacteria community composition

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fecal bacteria community composition</title> <meta name="description" content="Search results for: fecal bacteria community composition"> <meta name="keywords" content="fecal bacteria community composition"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fecal bacteria community composition" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fecal bacteria community composition"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8399</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fecal bacteria community composition</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8399</span> Effects of Ensiled Mulberry Leaves and Sun-Dried Mulberry Fruit Pomace on the Composition of Bacteria in Feces of Finishing Steers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yan%20Li">Yan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingxiang%20Meng"> Qingxiang Meng</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Zhou"> Bo Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenming%20Zhou"> Zhenming Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to compare the effects of ensiled mulberry leaves (EML), and sun-dried mulberry fruit pomace (SMFP) on fecal bacterial communities in Simmental crossbred finishing steers fed the following 3 diets: a standard TMR diet, standard diet containing EML and standard diet containing SMFP, and the diets had similar protein and energy levels. Bacterial communities in the fecal content were analyzed using Illumina Miseq sequencing of the V4 region of the 16S rRNA gene amplification. Quantitative real-time PCR was used to detect the selected bacterial species in the feces. Most of the sequences were assigned to phyla Firmicutes (56.67%) and Bacteroidetes(35.90%), followed by Proteobacteria(1.86%), Verrucomicrobia(1.80%) and Tenericutes(1.37%). And the predominant genera included the 5-7N15 (5.91%), CF231 (2.49%), Oscillospira (2.33%), Paludibacter (1.23%) and Akkermansia(1.11%). As for the treatments, no significant differences were observed in Firmicutes (p = 0.28), Bacteroidetes (p = 0.63), Proteobacteria (p = 0.46), Verrucomicrobia (p = 0.17) and Tenericutes (p = 0.75). On the genus level, classified genera with high abundance (more than 0.1%) mainly came from two phyla: Bacteroidetes and Firmicutes. Also no differences were observed in most genera level, 5-7N15 (p = 0.21), CF231 (p = 0.62), Oscillospira (p = 0.9), Paludibacter (p = 0.33) and Akkermansia (p = 0.37), except that rc4-4 were lower in the CON and SMFP groups compared to the EML animals (p = 0.02). Additionally, there were no differences in richness estimate and diversity indices (p > 0.16), and treatments had no significant effect on most selected bacterial species in the fecal (p > 0.06), except that Ruminococcus albus were higher in the EML group (p < 0.01) and Streptococcus bovis were lower in the CON group (p < 0.01). In conclusion, diets supplemented with EML and SMFP have little influence on fecal bacterial community composition in finishing steers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fecal%20bacteria%20community%20composition" title="fecal bacteria community composition">fecal bacteria community composition</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing" title=" sequencing"> sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=ensiled%20mulberry%20leaves%20%28EML%29" title=" ensiled mulberry leaves (EML)"> ensiled mulberry leaves (EML)</a>, <a href="https://publications.waset.org/abstracts/search?q=sun-dried%20mulberry%20fruit%20pomace%20%28SMFP%29" title=" sun-dried mulberry fruit pomace (SMFP)"> sun-dried mulberry fruit pomace (SMFP)</a> </p> <a href="https://publications.waset.org/abstracts/72392/effects-of-ensiled-mulberry-leaves-and-sun-dried-mulberry-fruit-pomace-on-the-composition-of-bacteria-in-feces-of-finishing-steers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8398</span> Bacteria Removal from Wastewater by Electrocoagulation Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boudjema%20Nouara">Boudjema Nouara</a>, <a href="https://publications.waset.org/abstracts/search?q=Mameri%20%20Nabil"> Mameri Nabil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacteria have played an important role in water contamination as a consequence of organic pollution. In this study, an electrocoagulation process was adopted to remove fecal contamination and pathogenic bacteria from waste water. The effect of anode/cathodes materials as well as operating conditions for bacteria removal from water, such as current intensity and initial pH and temperature. The results indicated that the complete removal was achevied when using aluminium anode as anode at current intensity of 3A, initial pH of 7-8 and electrolysis time of 30 minutes. This process showed a bactericidal effect of 95 to 99% for the total and fecal coliforms and 99% to 100% for Eschercichia coli and fecal Streptococci. A decrease of 72% was recorded for sulphite-reducing Clostridia. Thus, this process has the potential to be one the options for treatment where high amount of bacteria in wastewater river. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=el%20Harrach%20river" title=" el Harrach river"> el Harrach river</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title=" electrocoagulation"> electrocoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/28065/bacteria-removal-from-wastewater-by-electrocoagulation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8397</span> Characterization of the Intestinal Microbiota: A Signature in Fecal Samples from Patients with Irritable Bowel Syndrome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mina%20Hojat%20Ansari">Mina Hojat Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Bagheri%20Lankarani"> Kamran Bagheri Lankarani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Fattahi"> Mohammad Reza Fattahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Safarpour"> Ali Reza Safarpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Irritable bowel syndrome (IBS) is a common bowel disorder which is usually diagnosed through the abdominal pain, fecal irregularities and bloating. Alteration in the intestinal microbial composition is implicating to inflammatory and functional bowel disorders which is recently also noted as an IBS feature. Owing to the potential importance of microbiota implication in both efficiencies of the treatment and prevention of the diseases, we examined the association between the intestinal microbiota and different bowel patterns in a cohort of subjects with IBS and healthy controls. Fresh fecal samples were collected from a total of 50 subjects, 30 of whom met the Rome IV criteria for IBS and 20 Healthy control. Total DNA was extracted and library preparation was conducted following the standard protocol for small whole genome sequencing. The pooled libraries sequenced on an Illumina Nextseq platform with a 2 × 150 paired-end read length and obtained sequences were analyzed using several bioinformatics programs. The majority of sequences obtained in the current study assigned to bacteria. However, our finding highlighted the significant microbial taxa variation among the studied groups. The result, therefore, suggests a significant association of the microbiota with symptoms and bowel characteristics in patients with IBS. These alterations in fecal microbiota could be exploited as a biomarker for IBS or its subtypes and suggest the modification of the microbiota might be integrated into prevention and treatment strategies for IBS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irritable%20bowel%20syndrome" title="irritable bowel syndrome">irritable bowel syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=intestinal%20microbiota" title=" intestinal microbiota"> intestinal microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20whole%20genome%20sequencing" title=" small whole genome sequencing"> small whole genome sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=fecal%20samples" title=" fecal samples"> fecal samples</a>, <a href="https://publications.waset.org/abstracts/search?q=Illumina" title=" Illumina"> Illumina</a> </p> <a href="https://publications.waset.org/abstracts/98505/characterization-of-the-intestinal-microbiota-a-signature-in-fecal-samples-from-patients-with-irritable-bowel-syndrome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8396</span> Seasonal Effect of Antibiotic Resistant Bacteria into the Environment from Treated Sewage Effluents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Al-Bahry">S. N. Al-Bahry</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Al-Musharafi"> S. K. Al-Musharafi</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Y.%20Mahmoud"> I. Y. Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recycled treated sewage effluents (TSE) is used for agriculture, Public park irrigation and industrial purposes. TSE was found to play a major role in the distribution of antibiotic resistant bacteria into the environment. Fecal coliform and enterococci counts were significantly higher during summer compared to winter seasons. Oman has low annual rainfall with annual average temperature varied between 15-45oC. The main source of potable water is from seawater desalination. Resistance of the isolates to 10 antibiotics (Amikacin, Ampicillin, chloramphenicol, gentamycine, minocylin, nalidixicacid, neomycin, streptomycin, Tetracycline, Tobramycin, and Trimethoprim) was tested. Both fecal coliforms and enterococci were multiple resistant to 2-10 antibiotics. However, temperature variation during summer and winter did not affect resistance of the isolates to antibiotics. The significance of this investigation may be indicator to the environmental TSE pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title="antibiotic resistance">antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20treated%20effluent" title=" sewage treated effluent"> sewage treated effluent</a> </p> <a href="https://publications.waset.org/abstracts/25718/seasonal-effect-of-antibiotic-resistant-bacteria-into-the-environment-from-treated-sewage-effluents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8395</span> Fluorescence in situ Hybridization (FISH) Detection of Bacteria and Archaea in Fecal Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Nejjari">Maria Nejjari</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Cloutier"> Michel Cloutier</a>, <a href="https://publications.waset.org/abstracts/search?q=Guylaine%20Talbot"> Guylaine Talbot</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Lanthier"> Martin Lanthier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fluorescence in situ hybridization (FISH) is a staining technique that allows the identification, detection and quantification of microorganisms without prior cultivation by means of epifluorescence and confocal laser scanning microscopy (CLSM). Oligonucleotide probes have been used to detect bacteria and archaea that colonize the cattle and swine digestive systems. These bacterial strains have been obtained from fecal samples issued from cattle manure and swine slurry. The collection of these samples has been done at 3 different pit’s levels A, B and C with same height. Two collection depth levels have been taken in consideration, one collection level just under the pit’s surface and the second one at the bottom of the pit. Cells were fixed and FISH was performed using oligonucleotides of 15 to 25 nucleotides of length associated with a fluorescent molecule Cy3 or Cy5. The double hybridization using Cy3 probe targeting bacteria (Cy3-EUB338-I) along with a Cy5 probe targeting Archaea (Gy5-ARCH915) gave a better signal. The CLSM images show that there are more bacteria than archaea in swine slurry. However, the choice of fluorescent probes is critical for getting the double hybridization and a unique signature for each microorganism. FISH technique is an easy way to detect pathogens like E. coli O157, Listeria, Salmonella that easily contaminate water streams, agricultural soils and, consequently, food products and endanger human health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=archaea" title="archaea">archaea</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=FISH" title=" FISH"> FISH</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a> </p> <a href="https://publications.waset.org/abstracts/45624/fluorescence-in-situ-hybridization-fish-detection-of-bacteria-and-archaea-in-fecal-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8394</span> One Health Approach: The Importance of Improving the Identification of Waterborne Bacteria in Austrian Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aurora%20Gitto">Aurora Gitto</a>, <a href="https://publications.waset.org/abstracts/search?q=Philipp%20Proksch"> Philipp Proksch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of various microorganisms (bacteria, fungi) in surface water and groundwater represents an important issue for human health worldwide. The matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) has emerged as a promising and reliable tool for bacteria identification in clinical diagnostic microbiology and environmental strains thanks to an ionization technique that uses a laser energy absorbing matrix to create ions from large molecules with minimal fragmentation. The study aims first to conceptualise and set up library information and create a comprehensive database of MALDI-TOF-MS spectra from environmental water samples. The samples were analysed over a year (2021-2022) using membrane filtration methodology (0.45 μm and 0.22 μm) and then isolated on R2A agar for a period of 5 days and Yeast extract agar growing at 22 °C up to 4 days and 37 °C for 48 hours. The undetected organisms by MALDI-TOF-MS were analysed by PCR and then sequenced. The information obtained by the sequencing was further implemented in the MALDI-TOF-MS library. Among the culturable bacteria, the results show how the incubator temperature affects the growth of some genera instead of others, as demonstrated by Pseudomonas sp., which grows at 22 °C, compared to Bacillus sp., which is abundant at 37 °C. The bacteria community shows a variation in composition also between the media used, as demonstrated with R2A agar which has been defined by a higher presence of organisms not detected compared to YEA. Interesting is the variability of the Genus over one year of sampling and how the seasonality impacts the bacteria community; in fact, in some sampling locations, we observed how the composition changed, moving from winter to spring and summer. In conclusion, the bacteria community in groundwater and river bank filtration represents important information that needs to be added to the library to simplify future water quality analysis but mainly to prevent potential risks to human health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title="water quality">water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=MALDI-TOF-MS" title=" MALDI-TOF-MS"> MALDI-TOF-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing" title=" sequencing"> sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=library" title=" library"> library</a> </p> <a href="https://publications.waset.org/abstracts/166306/one-health-approach-the-importance-of-improving-the-identification-of-waterborne-bacteria-in-austrian-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8393</span> Development of Macrobenthic Communities in the North Port, West Coastal Water of Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Belin%20Tavakoly%20Sany">Seyedeh Belin Tavakoly Sany</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosli%20Hashim"> Rosli Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Rezayi"> Majid Rezayi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aishah%20Salleh"> Aishah Salleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary objectives of this study were to investigate the distribution and composition of the macrobenthic community and their response to environmental parameters in the North Port, west coastal waters of Malaysia. A total of 25 species were identified, including 13 bivalvia, 4 gastropoda, and 3 crustacea. The other taxa were less diversified. There were no temporal changes in the macrobenthic community composition, but significant effects (p < 0.05) on the benthic community composition were found on a spatial scale. The correlation analyses and similarity tests were in good agreement, confirming the significant response of macrobenthic community composition to variations of environmental parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distribution" title="distribution">distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=macrobenthic%20community" title=" macrobenthic community"> macrobenthic community</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=North%20Port" title=" North Port"> North Port</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/43624/development-of-macrobenthic-communities-in-the-north-port-west-coastal-water-of-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8392</span> Treatment of Wastewater by Constructed Wetland Eco-Technology: Plant Species Alters the Performance and the Enrichment of Bacteria Ries Alters the Performance and the Enrichment of Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kraiem%20Khadija">Kraiem Khadija</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamadi%20Kallali"> Hamadi Kallali</a>, <a href="https://publications.waset.org/abstracts/search?q=Naceur%20Jedidi"> Naceur Jedidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Constructed wetland systems are eco-technology recognized as environmentally friendly and emerging innovative solutions remediation as these systems are cost-effective and sustainable wastewater treatment systems. The performance of these biological system is affected by various factors such as plant, substrate, wastewater type, hydraulic loading rate, hydraulic retention time, water depth, and operation mood. The objective of this study was to to assess the alters of plant species on pollutants reduction and enrichment of anammox and nitrifing denitrifing bacteria in a modified vertical flow (VFCW) constructed wetland. This tests were carried out using three modified vertical constructed wetlands with a surface of 0.23 m² and depth 80 cm. It was a saturated vertical constructed wetland at the bottom. The saturation zone is maintained by the siphon structure at the outlet. The VFCW (₁) system was unplanted, VFCW (₂) planted with Typha angustofolia, and VFCW(₃) planted with Phragmites australis. The experimental units were fed with domestic wastewater and were operated by batch mode during 8 months at an average hydraulic loading rate around 20 cm day− 1. The operation cycle was two days feeding and five days rest. Results indicated that plants presence improved the removal efficiency; the removal rates of organic matter (85.1–90.9%; COD and 81.8–88.9%; BOD5), nitrogen (54.2–73%; NTK and 66–77%; NH4 -N) were higher by 10.7–30.1% compared to the unplanted vertical constructed wetland. On the other hand, the plant species had no significant effect on removal efficiency of COD, The removal of COD was similar in VFCW (₂) and VFCW (₃) (p > 0.05), attaining average removal efficiencies of 88.7% and 85.2%, respectively. Whereas it had a significant effect on NTK removal (p > 0.05), with an average removal rate of 72% versus 51% for VFCW (₂) and VFCW (₃), respectively. Among the three sets of vertical flow constructed wetlands, the VFCW(₂) removed the highest percent of total streptococcus, fecal streptococcus total coliforms, fecal coliforms, E. coli as 59, 62, 52, 63, and 58%, respectively. The presence and the plant species alters the community composition and abundance of the bacteria. The abundance of bacteria in the planted wetland was much higher than that in the unplanted one. VFCW(₃) had the highest relative abundance of nitrifying bacteria such as Nitrosospira (18%), Nitrosospira (12%), and Nitrobacter (8%). Whereas the vertical constructed wetland planted with typha had larger number of denitrifying species, with relative abundances of Aeromonas (13%), Paracoccus (11%), Thauera (7%), and Thiobacillus (6%). However, the abundance of nitrifying bacteria was very lower in this system than VFCW(₂). Interestingly, the presence of Thypha angustofolia species favored the enrichment of anammox bacteria compared to unplanted system and system planted with phragmites australis. The results showed that the middle layer had the most accumulation of anammox bacteria, which the anaerobic condition is better and the root system is moderate. Vegetation has several characteristics that make it an essential component of wetlands, but its exact effects are complex and debated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastawater" title="wastawater">wastawater</a>, <a href="https://publications.waset.org/abstracts/search?q=constructed%20wetland" title=" constructed wetland"> constructed wetland</a>, <a href="https://publications.waset.org/abstracts/search?q=anammox" title=" anammox"> anammox</a>, <a href="https://publications.waset.org/abstracts/search?q=removal" title=" removal"> removal</a> </p> <a href="https://publications.waset.org/abstracts/150884/treatment-of-wastewater-by-constructed-wetland-eco-technology-plant-species-alters-the-performance-and-the-enrichment-of-bacteria-ries-alters-the-performance-and-the-enrichment-of-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8391</span> Salmonella Spp. and Essential Oil of Laurus nobilis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Oldyerou">Karima Oldyerou</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Meddah"> B. Meddah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tirtouil"> A. Tirtouil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The food borne infections have a significant impact on public health. Salmonella is the first bacterial cause, especially because of its general availability in the intestinal tract of poultry, pigs and cattle. This bacteria and essential oil of Laurus nobilis subject in this article. In vitro evaluation of the antibacterial activity shows a sensitivity of Salmonella spp. with a MIC of 2.5 mg.ml -1 in vivo after infection of wistar rats and administered orally this essential oil, microbiological results fecal material shows the antibacterial effect of this oil on Salmonella spp. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laurus%20nobilis" title="Laurus nobilis">Laurus nobilis</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=salmonella" title=" salmonella"> salmonella</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=fecal%20matte" title=" fecal matte"> fecal matte</a> </p> <a href="https://publications.waset.org/abstracts/41995/salmonella-spp-and-essential-oil-of-laurus-nobilis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8390</span> Recognition of Early Enterococcus Faecalis through Image Treatment by Using Octave</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20Victoria%20Vigoya%20Morales">Laura Victoria Vigoya Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Rolando%20Suarez%20Mora"> David Rolando Suarez Mora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of detecting enterococcus faecalis is receiving considerable attention with the new cases of beachgoers infected with the bacteria, which can be found in fecal matter. The process detection of this kind of bacteria would be taking a long time, which waste time and money as a result of closing recreation place, like beach or pools. Hence, new methods for automating the process of detecting and recognition of this bacteria has become in a challenge. This article describes a novel approach to detect the enterococcus faecalis bacteria in water by using an octave algorithm, which embody a network neural. This document shows result of performance, quality and integrity of the algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enterococcus%20faecalis" title="Enterococcus faecalis">Enterococcus faecalis</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20treatment" title=" image treatment"> image treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=octave%20and%20network%20neuronal" title=" octave and network neuronal"> octave and network neuronal</a> </p> <a href="https://publications.waset.org/abstracts/88433/recognition-of-early-enterococcus-faecalis-through-image-treatment-by-using-octave" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8389</span> Microbial Quality of Raw Camel Milk Produced in South of Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maha%20Alaoui%20Ismaili">Maha Alaoui Ismaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouchta%20Saidi"> Bouchta Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Zahar"> Mohamed Zahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abed%20Hamama"> Abed Hamama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thirty one samples of raw camel milk obtained from the region of Laâyoune (South of Morocco) were examined for their microbial quality and presence of some pathogenic bacteria (Staphylococcus aureus and Salmonella sp.). pH of the samples ranged from 6.31 to 6.64 and their titratable acidity had a mean value of 18.56 °Dornic. Data obtained showed a strong microbial contamination with an average total aerobic flora of 1.76 108 ufc ml-1 and a very high fecal counts: 1.82 107 ; 3.25 106 and 3.75 106 ufc.ml-1 in average for total coliforms, fecal coliforms and enterococci respectively. Yeasts and moulds were also found at average respective levels of 3.13 106 and 1.60 105 ufc.ml-1. Salmonella sp. and S. aureus was detected respectively in 13% and 30% of the milk samples. These results indicate clearly the lack of hygienic conditions of camel milk production and storage in this region. Lactic acid bacteria were found at the following average numbers: 4.25 107 ; 4.45 107 and 3.55 107 ufc.ml-1 for Lactococci, Leuconostocs and Lactobacilli respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camel%20milk" title="camel milk">camel milk</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20quality" title=" microbial quality"> microbial quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella" title=" Salmonella"> Salmonella</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus "> Staphylococcus aureus </a> </p> <a href="https://publications.waset.org/abstracts/31064/microbial-quality-of-raw-camel-milk-produced-in-south-of-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8388</span> Examining the Role of Soil pH on the Composition and Abundance of Nitrite Oxidising Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansur%20Abdulrasheed">Mansur Abdulrasheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20I.%20Ibrahim"> Hussein I. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20F.%20Umar"> Ahmed F. Umar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrification, the microbial oxidation of ammonia to nitrate (NO3-) via nitrite (NO2-) is a vital process in the biogeochemical nitrogen cycle and is performed by two distinct functional groups; ammonia oxidisers (comprised of ammonia oxidising bacteria (AOB) and ammonia oxidising archaea (AOA)) and nitrite oxidising bacteria. Autotrophic nitrification is said to occur in acidic soils, even though most laboratory cultures of isolated ammonia and nitrite oxidising bacteria fail to grow below neutral pH. Published studies revealed that soil pH is a major driver for determining the distribution and abundance of AOB and AOA. To determine whether distinct populations of nitrite oxidising bacteria within the lineages of Nitrospira and Nitrobacter are adapted to a particular range of pH as observed in ammonia oxidising organisms, the community structure of Nitrospira-like and Nitrobacter-like NOB were examined across a pH gradient (4.5–7.5) by amplifying nitrite oxido-reductase (nxrA) and 16S rRNA genes followed by denaturing gradient gel electrophoresis (DGGE). The community structure of both Nitrospira and Nitrobacter changed with soil pH, with distinct populations observed in acidic and neutral soils. The abundance of Nitrospira-like 16S rRNA and Nitrobacter-like nxrA gene copies contrasted across the pH gradient. Nitrobacter-like nxrA gene abundance decreased with increasing soil pH, whereas Nitrospira-like 16S rRNA gene abundance increased with increasing pH. Findings indicated that abundance and distributions of soil NOB is influence by soil pH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrospira" title="nitrospira">nitrospira</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrobacter" title=" nitrobacter"> nitrobacter</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrite-oxidizing%20bacteria" title=" nitrite-oxidizing bacteria"> nitrite-oxidizing bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrification" title=" nitrification"> nitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil "> soil </a> </p> <a href="https://publications.waset.org/abstracts/42862/examining-the-role-of-soil-ph-on-the-composition-and-abundance-of-nitrite-oxidising-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8387</span> Determination of Antimicrobial Effect and Essential Oil Composition Salvia verticillata L. Subsp. amasiaca</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanju%20Teker">Tanju Teker</a>, <a href="https://publications.waset.org/abstracts/search?q=Yener%20Tekeli%CC%87"> Yener Tekeli̇</a>, <a href="https://publications.waset.org/abstracts/search?q=Esra%20Karpuz"> Esra Karpuz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salvia species are known as medicinal plant and often used in public. The antimicrobial effects and essential oil composition of Salvia verticillata L. subsp. amasiaca were determined. The antimicrobial activity is determined by using disk diffusion method against two Gram-positive bacteria, two Gram-negative bacteria and one kind of yeast and essential oil composition was determined by GC - MS. As a result of antimicrobial analysis while sample has shown very strong antimicrobial activity against Staphylococcus aureus, moderately effective against Pseudomonas aeruginosa and low effective against Enterococcus faecalis, it has not shown antimicrobial activity against Escherichia coli and C. albicans. Trans-caryophyllene (% 35.07), germacrene-d (% 10.98) and caryopyllene oxide (% 5.81) are the main components of essential oil composition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salvia" title="salvia">salvia</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plant" title=" medicinal plant"> medicinal plant</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a> </p> <a href="https://publications.waset.org/abstracts/35132/determination-of-antimicrobial-effect-and-essential-oil-composition-salvia-verticillata-l-subsp-amasiaca" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8386</span> A Study of Fecal Sludge Management in Auroville and Its Surrounding Villages in Tamilnadu, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preethi%20Grace%20Theva%20Neethi%20Dhas">Preethi Grace Theva Neethi Dhas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A healthy human gut microbiome has commensal and symbiotic functions in digestion and is a decisive factor for human health. The soil microbiome is a crucial component in the ecosystem of soils and their health and resilience. Changes in soil microbiome are linked to human health. Ever since the industrial era, the human and the soil microbiome have been going through drastic changes. The soil microbiome has changed due to industrialization and extensive agricultural practices, whereas humans have less contact with soil and increased intake of highly processed foods, leading to changes in the human gut microbiome. Regenerating the soil becomes crucial in maintaining a healthy ecosystem. The nutrients, once obtained from the soil, need to be given back to the soil. Soil degradation needs to be addressed in effective ways, like adding organic nutrients back to the soil. Manure from animals and humans needs to be returned to the soil, which can complete the nutrient cycle in the soil. On the other hand, fecal sludge management (FSM) is a growing concern in many parts of the developing world. Hence, it becomes crucial to treat and reuse fecal sludge in a safe manner, i.e., low in risk to human health. Co-composting fecal sludge with organic wastes is a practice that allows the safe management of fecal sludge and the safe application of nutrients to the soil. This paper will discuss the possible impact of co-composting fecal sludge with coconut choir waste on the soil, water, and ecosystem at large. Impact parameters like nitrogen, phosphorus, and fecal coliforms will be analyzed. The overall impact of fecal sludge application on the soil will be researched and presented in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fecal%20sludge%20management" title="fecal sludge management">fecal sludge management</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20cycle" title=" nutrient cycle"> nutrient cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20health" title=" soil health"> soil health</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a> </p> <a href="https://publications.waset.org/abstracts/175735/a-study-of-fecal-sludge-management-in-auroville-and-its-surrounding-villages-in-tamilnadu-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8385</span> Sulfamethoxazole Removal and Ammonium Nitrogen Conversion by Microalgae-Bacteria Consortium in Ammonium-Rich Wastewater: Responses Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eheneden%20Iyobosa">Eheneden Iyobosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Rongchang%20Wang"> Rongchang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Adesina%20Odunayo%20Blessing"> Adesina Odunayo Blessing</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaoxiang%20Chen"> Gaoxiang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Haijing%20Ren"> Haijing Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianfu%20Zhao"> Jianfu Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the treatment of ammonium-rich wastewater with 500 μg/L sulfamethoxazole (SMX) antibiotic by a Microalgae-Bacteria Consortium, diverse parameters were monitored to assess treatment efficacy. Over 14 days, residual SMX concentrations decreased markedly from 500 μg/L to 45.6 μg/L, and removal rates declined from 102.4 to 9.9 μg/L/day. Biomass exhibited consistent growth, reaching a peak of 542.6 mg/L on day 10. Chlorophyll-a, chlorophyll-b, and carotenoid levels varied over time, reflecting fluctuations in microalgal activity. Extracellular polymeric substances (EPS) production showed temporal variations, with protein content ranging from 69.4 to 162.3 mg/g Dry cell weight (DCW) and polysaccharides content from 50.6 to 82.8 mg/g DCW. Ammonium nitrogen concentration decreased steadily from 300 mg/L to 5 mg/L throughout the treatment period. The bacterial community composition was significantly altered in the presence of antibiotics, with notable increases in Bacteroidota and Proteobacteria. Community richness and diversity indices were higher in the antibiotics-treated group than in the control group, as evidenced by the Chao index (258 compared to 181), Shannon index (1.8085 compared to 1.1545), and Simpson index (0.5032 compared to 0.6478), indicating notable shifts in microbial community structure. These findings demonstrate the efficacy of the Microalgae-Bacteria Consortium in removing SMX from wastewater and suggest its potential to mitigate antibiotic pollution while maintaining microbial diversity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium-rich%20wastewater" title="ammonium-rich wastewater">ammonium-rich wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae-bacteria%20consortium" title=" microalgae-bacteria consortium"> microalgae-bacteria consortium</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfamethoxazole%20removal" title=" sulfamethoxazole removal"> sulfamethoxazole removal</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20community%20diversity" title=" microbial community diversity"> microbial community diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20growth" title=" biomass growth"> biomass growth</a> </p> <a href="https://publications.waset.org/abstracts/191493/sulfamethoxazole-removal-and-ammonium-nitrogen-conversion-by-microalgae-bacteria-consortium-in-ammonium-rich-wastewater-responses-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8384</span> The Impact of Community Settlement on Leisure Time Use and Body Composition in Determining Physical Lifestyles among Women</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mawarni%20Mohamed">Mawarni Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharifah%20Shahira%20A.%20Hamid"> Sharifah Shahira A. Hamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leisure time is an important component to offset the sedentary lifestyle of the people. Women tend to benefit from leisure activities not only to reduce stress but also to provide opportunities for well-being and self-satisfaction. This study was conducted to investigate body composition and leisure time use among women in Selangor from the influences of community settlement. A total of 419 women aged 18-65 years were selected to participate in this study. Descriptive statistics, t-test and ANOVA were used to analyze the level of physical activity and the relationship between leisure-time use and body composition were made to analyze the physical lifestyles. The results showed that women with normal body composition seem to be involved in more passive activities than women with less weight gain and obesity. Thus, the study recommended that the government and other health and recreational agencies should develop more places and activities suitable for leisure preference for women in their community settlement so they become more interested to engage in more active recreational and physical activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title="body composition">body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20settlement" title=" community settlement"> community settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=leisure%20time" title=" leisure time"> leisure time</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20lifestyles" title=" physical lifestyles"> physical lifestyles</a> </p> <a href="https://publications.waset.org/abstracts/56196/the-impact-of-community-settlement-on-leisure-time-use-and-body-composition-in-determining-physical-lifestyles-among-women" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8383</span> Bacteriological Quality and Physicochemical Water Beaches of the City of Annaba (Mediterranean Sea)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wahiba%20Boudraa">Wahiba Boudraa</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20Chettibbi"> Farah Chettibbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Meriem%20Aberkane"> Meriem Aberkane</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Djamaa"> Fatma Djamaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Moussa%20Houhamdi"> Moussa Houhamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intensity of human activities in regions surrounding the Mediterranean Sea always has a strong long-term environmental impact resulting in coastal and marine degradation, as well as an aggravated risk of more serious damage. The available data on water quality show that most water resources in Algeria are polluted by uncontrolled discharges from municipal sewage and untreated industrial effluents. Annaba is a coastal town in Algeria; The Gulf of Annaba, responds to these changes as it receives the continental inputs and urban waste, industrial without prior treatment of a highly industrialized and urbanized city, subject to the same environmental problems that know the rest of the Algerian coast. In later year, the beaches of bacterial enumeration process waters showed relatively high levels of bacterial indicators of fecal contamination (group D streptococci, total and fecal coliforms), which reflect the risks to people attending these beaches. During the twelve months of our study, we isolated from three beaches in the city of Annaba (St. Cloud, El-Kettara, and Djenane El Bey) a number of pathogenic microorganisms considered, namely: Salmonella, Aeromonas, Citrobacter, Yersinia, Enterococcus, and E.coli. The microbial count revealed elevated levels of coliform bacteria, fecal coliforms and fecal streptococci quite high especially in urban beaches (St. Cloud and El-Kettara). They are widely popular during the summer by many vacationers. For the physico-chemical parameters, there exist some weak values which increase during the pluvial period, hivernal and festival saison. These values remain, nevertheless, weak to be able to cause an organic or metallic pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quality%20microbiology" title="quality microbiology">quality microbiology</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20of%20water" title=" pollution of water"> pollution of water</a>, <a href="https://publications.waset.org/abstracts/search?q=fecal%20contamination" title=" fecal contamination"> fecal contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=physico-chemistry" title=" physico-chemistry"> physico-chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=beaches%20of%20Annaba%20city" title=" beaches of Annaba city"> beaches of Annaba city</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria." title=" Algeria."> Algeria.</a> </p> <a href="https://publications.waset.org/abstracts/33044/bacteriological-quality-and-physicochemical-water-beaches-of-the-city-of-annaba-mediterranean-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8382</span> Evaluation of Methods for Simultaneous Extraction and Purification of Fungal and Bacterial DNA from Vaginal Swabs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20De%20Carvalho">Vanessa De Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Chad%20MacPherson"> Chad MacPherson</a>, <a href="https://publications.waset.org/abstracts/search?q=Julien%20Tremblay"> Julien Tremblay</a>, <a href="https://publications.waset.org/abstracts/search?q=Julie%20Champagne"> Julie Champagne</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie-Anne%20Girard"> Stephanie-Anne Girard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The interactions between bacteria and fungi in the human vaginal microbiome are fundamental to the concept of health and disease. The means by which the microbiota and mycobiota interact is still poorly understood and further studies are necessary to properly characterize this complex ecosystem. The aim of this study was to select a DNA extraction method capable of recovering high qualities of fungal and bacterial DNA from a single vaginal swab. Methods: 11 female volunteers ( ≥ 20 to < 55 years old) self-collected vaginal swabs in triplicates. Three commercial extraction kits: Masterpure Yeast Purification kit (Epicenter), PureLink™ Microbiome DNA Purification kit (Invitrogen), and Quick-DNA™ Fecal/Soil Microbe Miniprep kit (Zymo) were evaluated on the ability to recover fungal and bacterial DNA simultaneously. The extraction kits were compared on the basis of recovery, yield, purity, and the community richness of bacterial (16S rRNA - V3-V4 region) and fungal (ITS1) microbiota composition by Illumina MiSeq amplicon sequencing. Results: Recovery of bacterial DNA was achieved with all three kits while fungal DNA was only consistently recovered with Masterpure Yeast Purification kit (yield and purity). Overall, all kits displayed similar microbiota profiles for the top 20 OTUs; however, Quick-DNA™ Fecal/Soil Microbe Miniprep kit (Zymo) showed more species richness than the other two kits. Conclusion: In the present study, Masterpure Yeast purification kit proved to be a good candidate for purification of high quality fungal and bacterial DNA simultaneously. These findings have potential benefits that could be applied in future vaginal microbiome research. Whilst the use of a single extraction method would lessen the burden of multiple swab sampling, decrease laboratory workload and off-set costs associated with multiple DNA extractions, thoughtful consideration must be taken when selecting an extraction kit depending on the desired downstream application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20vaginosis" title="bacterial vaginosis">bacterial vaginosis</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20extraction" title=" DNA extraction"> DNA extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiota" title=" microbiota"> microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=mycobiota" title=" mycobiota"> mycobiota</a>, <a href="https://publications.waset.org/abstracts/search?q=vagina" title=" vagina"> vagina</a>, <a href="https://publications.waset.org/abstracts/search?q=vulvovaginal%20candidiasis" title=" vulvovaginal candidiasis"> vulvovaginal candidiasis</a>, <a href="https://publications.waset.org/abstracts/search?q=women%E2%80%99s%20health" title=" women’s health"> women’s health</a> </p> <a href="https://publications.waset.org/abstracts/95405/evaluation-of-methods-for-simultaneous-extraction-and-purification-of-fungal-and-bacterial-dna-from-vaginal-swabs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8381</span> Risperidone for the Treatment of Retentive Fecal Incontinence in Children and Adolescents: A Randomize Clinical Trial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazal%20Zahed">Ghazal Zahed</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Tabatabaee"> Leila Tabatabaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Hosseini"> Amirhossein Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Somaye%20Fatahi"> Somaye Fatahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Functional retentive overflow incontinence (Retentive FI) is the most common cause of fecal soiling in children. Affected patients may have more problems with their parents and peer group, self-esteem issues, and more psychiatric comorbidities than the general population. Therapeutic interventions for Retentive FI and related problems and comorbid conditions are needed at the same time. Based on the clinical experiences, patients with retentive FI and comorbid psychiatric disorders, were accelerated in their treatment of fecal incontinence when they were being treated with Risperidone for their psychiatric comorbidities, therefore this study was conducted to evaluate the effect of Risperidone in the treatment of Retentive FI in children and adolescents. In this double-blind randomized clinical trial, 136 patients aged 4-18 years eligible for the study were randomly divided into two groups receiving Risperidone and placebo. About half of these patients had newly diagnosed psychiatric disorders and were drug naïve, this was considered in their division. In addition to polyethylene glycol, all the participants received family counseling and education for withholding behaviors and related behavioral interventions, and nonpharmacological interventions for psychiatric comorbidities. A significant correlation was observed between the duration of treatment with risperidone and the presence of psychiatric comorbidities (P <0.001) for diurnal fecal incontinence. Based on our findings in this study, Risperidone, used commonly for psychiatric disorders in children and adolescents, may be useful in the treatment of retentive fecal incontinence in the presence of psychiatric comorbidities, and along with other interventions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Retentive%20Fecal%20Incontinence" title="Retentive Fecal Incontinence">Retentive Fecal Incontinence</a>, <a href="https://publications.waset.org/abstracts/search?q=Risperidone" title=" Risperidone"> Risperidone</a>, <a href="https://publications.waset.org/abstracts/search?q=Treatment" title=" Treatment"> Treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=Pediatric" title=" Pediatric"> Pediatric</a>, <a href="https://publications.waset.org/abstracts/search?q=Encopresis" title=" Encopresis"> Encopresis</a>, <a href="https://publications.waset.org/abstracts/search?q=Atypical%20Antipsychotics" title=" Atypical Antipsychotics"> Atypical Antipsychotics</a>, <a href="https://publications.waset.org/abstracts/search?q=Fecal%20Soiling" title=" Fecal Soiling"> Fecal Soiling</a> </p> <a href="https://publications.waset.org/abstracts/152045/risperidone-for-the-treatment-of-retentive-fecal-incontinence-in-children-and-adolescents-a-randomize-clinical-trial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8380</span> Gut Microbiota in Patients with Opioid Use Disorder: A 12-week Follow up Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng-Yu%20Lee">Sheng-Yu Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: Opioid use disorder is often characterized by repetitive drug-seeking and drug-taking behaviors with severe public health consequences. Animal model showed that opioid-induced perturbations in the gut microbiota causally relate to neuroinflammation, deficits in reward responding, and opioid tolerance, possibly due to changes in gut microbiota. Therefore, we propose that the dysbiosis of gut microbiota can be associated with pathogenesis of opioid dependence. In this current study, we explored the differences in gut microbiota between patients and normal controls and in patients before and after initiation of methadone treatment program for 12 weeks. Methods: Patients with opioid use disorder between 20 and 65 years were recruited from the methadone maintenance outpatient clinic in 2 medical centers in the Southern Taiwan. Healthy controls without any family history of major psychiatric disorders (schizophrenia, bipolar disorder and major depressive disorder) were recruited from the community. After initial screening, 15 patients with opioid use disorder joined the study for initial evaluation (Week 0), 12 of them completed the 12-week follow-up while receiving methadone treatment and ceased heroin use (Week 12). Fecal samples were collected from the patients at baseline and the end of 12th week. A one-time fecal sample was collected from the healthy controls. The microbiota of fecal samples were investigated using 16S rRNA V3V4 amplicon sequencing, followed by bioinformatics and statistical analyses. Results: We found no significant differences in species diversity in opioid dependent patients between Week 0 and Week 12, nor compared between patients at both points and controls. For beta diversity, using principal component analysis, we found no significant differences between patients at Week 0 and Week 12, however, both patient groups showed significant differences compared to control (P=0.011). Furthermore, the linear discriminant analysis effect size (LEfSe) analysis was used to identify differentially enriched bacteria between opioid use patients and healthy controls. Compared to controls, the relative abundance of Lactobacillaceae Lactobacillus (L. Lactobacillus), Megasphaera Megasphaerahexanoica (M. Megasphaerahexanoica) and Caecibacter Caecibactermassiliensis (C Caecibactermassiliensis) were increased in patients at Week 0, while Coriobacteriales Atopobiaceae (C. Atopobiaceae), Acidaminococcus Acidaminococcusintestini (A. Acidaminococcusintestini) and Tractidigestivibacter Tractidigestivibacterscatoligenes (T. Tractidigestivibacterscatoligenes) were increased in patients at Week 12. Conclusion: In conclusion, we suggest that the gut microbiome community maybe linked to opioid use disorder, such differences may not be altered even after 12-week of cessation of opioid use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=opioid%20use%20disorder" title="opioid use disorder">opioid use disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title=" gut microbiota"> gut microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=methadone%20treatment" title=" methadone treatment"> methadone treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=follow%20up%20study" title=" follow up study"> follow up study</a> </p> <a href="https://publications.waset.org/abstracts/166977/gut-microbiota-in-patients-with-opioid-use-disorder-a-12-week-follow-up-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8379</span> Influence of Food Microbes on Horizontal Transfer of β-Lactam Resistance Genes between Salmonella Strains in the Mouse Gut</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ottenbrite">M. Ottenbrite</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Yilmaz"> G. Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Devenish"> J. Devenish</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kang"> M. Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Dan"> H. Dan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lin"> M. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Lau"> C. Lau</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Carrillo"> C. Carrillo</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bessonov"> K. Bessonov</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Nash"> J. Nash</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Topp"> E. Topp</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Guan"> J. Guan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Consumption of food contaminated by antibiotic-resistant (AR) bacteria may lead to the transmission of AR genes in the gut microbiota and cause AR bacterial infection, a significant public health concern. However, information is limited on if and how background microbes from the food matrix (food microbes) may influence resistance transmission. Thus, we assessed the colonization of a β-lactam resistant Salmonella Heidelberg strain (donor) and a β-lactam susceptible S. Typhimurium strain (recipient) and the transfer of the resistance genes in the mouse gut in the presence or absence of food microbes that were derived from washing freshly-harvested carrots. Mice were pre-treated with streptomycin and then inoculated with both donor and recipient bacteria or recipient only. Fecal shedding of the donor, recipient, and transconjugant bacteria was enumerated using selective culture techniques. Transfer of AR genes was confirmed by whole genome sequencing. Gut microbial composition was determined by 16s rRNA amplicon sequencing. Significantly lower numbers of donors and recipients were shed from mice that were inoculated with food microbes compared to those without food microbe inoculation. S. Typhimurium transconjugants were only recovered from mice without inoculation of food microbes. A significantly higher survival rate was in mice with vs. without inoculation of food microbes. The results suggest that the food microbes may compete with both the donor and recipient Salmonella, limit their growth and reduce transmission of the β-lactam resistance gene in the mouse gut. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title="antibiotic resistance">antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20transfer" title=" gene transfer"> gene transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title=" gut microbiota"> gut microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella%20infection" title=" Salmonella infection"> Salmonella infection</a> </p> <a href="https://publications.waset.org/abstracts/145920/influence-of-food-microbes-on-horizontal-transfer-of-v-lactam-resistance-genes-between-salmonella-strains-in-the-mouse-gut" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8378</span> Identifying Future Helminth Zoonotic in Indonesian Slow Loris (Nycticebus coucang)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nafisatul%20Ulfa">Nafisatul Ulfa</a>, <a href="https://publications.waset.org/abstracts/search?q=Elok%20Budi%20Retnani"> Elok Budi Retnani</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Agus%20Lelana"> R. P. Agus Lelana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emerging zoonotic parasite infection could originate in wildlife so its time very important to identify zoonotic agents in wild populations or maintained. According to the International Union Conservation of Nature (IUCN), Sumateran slow loris (Nycticebus coucang) was protected primate which have vulnerable status. Their population in wildlife decreased cause hunting for trade and destroy habitat. Helminthiasis can caused dead regularly and its so The study was conducted to know prevalence of gastrointestinal helminth infection of slow loris (Nycticebus coucang) in The Centre of Primate Rehabilitation of International Animal Rescue Indonesia (YIARI). Total of 13 fecal sampel from captive group of Nycticebus coucang were collected for 6 days and analysed from Februari-Mei 2014 by using McMaster, flotasion and Baermann technique. All fecal sampel was examined based on its fecal pool. Out of 13 fecal sampel examined, all of sampel (100%) was infected with five types of helminth Ascaris (84,61%), Hymenolepis (76,92%), Strongylid (61,54%), Oxyurid (15,38%) dan Trichuris (7,69%). The average number of egg per gram (EPG) was 11-1810. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fecal" title="fecal">fecal</a>, <a href="https://publications.waset.org/abstracts/search?q=helminth" title=" helminth"> helminth</a>, <a href="https://publications.waset.org/abstracts/search?q=Nycticebus%20coucang" title=" Nycticebus coucang"> Nycticebus coucang</a>, <a href="https://publications.waset.org/abstracts/search?q=parasite" title=" parasite"> parasite</a>, <a href="https://publications.waset.org/abstracts/search?q=prevalence" title=" prevalence"> prevalence</a>, <a href="https://publications.waset.org/abstracts/search?q=slow%20loris" title=" slow loris"> slow loris</a> </p> <a href="https://publications.waset.org/abstracts/18321/identifying-future-helminth-zoonotic-in-indonesian-slow-loris-nycticebus-coucang" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8377</span> Changes in the fecal Microbiome of Periparturient Dairy Cattle and Associations with the Onset of Salmonella Shedding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lohendy%20Munoz-Vargas">Lohendy Munoz-Vargas</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20O.%20Opiyo"> Stephen O. Opiyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rose%20Digianantonio"> Rose Digianantonio</a>, <a href="https://publications.waset.org/abstracts/search?q=Michele%20L.%20Williams"> Michele L. Williams</a>, <a href="https://publications.waset.org/abstracts/search?q=Asela%20Wijeratne"> Asela Wijeratne</a>, <a href="https://publications.waset.org/abstracts/search?q=Gregory%20Habing"> Gregory Habing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-typhoidal Salmonella enterica is a zoonotic pathogen with critical importance in animal and public health. The persistence of Salmonella on farms affects animal productivity and health, and represents a risk for food safety. The intestinal microbiota plays a fundamental role in the colonization and invasion of this ubiquitous microorganism. To overcome the colonization resistance imparted by the gut microbiome, Salmonella uses invasion strategies and the host inflammatory response to survive, proliferate, and establish infections with diverse clinical manifestations. Cattle serve as reservoirs of Salmonella, and periparturient cows have high prevalence of Salmonella shedding; however, to author`s best knowledge, little is known about the association between the gut microbiome and the onset of Salmonella shedding during the periparturient period. Thus, the objective of this study was to assess the association between changes in bacterial communities and the onset of Salmonella shedding in cattle approaching parturition. In a prospective cohort study, fecal samples from 98 dairy cows originating from four different farms were collected at four time points relative to calving (-3 wks, -1 wk, +1 wk, +3 wks). All 392 samples were cultured for Salmonella. Sequencing of the V4 region of the 16S rRNA gene using the Illumina platform was completed to evaluate the fecal microbiome in a selected sample subset. Analyses of microbial composition, diversity, and structure were performed according to time points, farm, and Salmonella onset status. Individual cow fecal microbiomes, predominated by Bacteroidetes, Firmicutes, Spirochaetes, and Proteobacteria phyla, significantly changed before and after parturition. Microbial communities from different farms were distinguishable based on multivariate analysis. Although there were significant differences in some bacterial taxa between Salmonella positive and negative samples, our results did not identify differences in the fecal microbial diversity or structure for cows with and without the onset of Salmonella shedding. These data suggest that determinants other than the significant changes in the fecal microbiome influence the periparturient onset of Salmonella shedding in dairy cattle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dairy%20cattle" title="dairy cattle">dairy cattle</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiome" title=" microbiome"> microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=periparturient" title=" periparturient"> periparturient</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella" title=" Salmonella"> Salmonella</a> </p> <a href="https://publications.waset.org/abstracts/95942/changes-in-the-fecal-microbiome-of-periparturient-dairy-cattle-and-associations-with-the-onset-of-salmonella-shedding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8376</span> Removal of Polycyclic Aromatic Hydrocarbons (PAHS) and the Response of Indigenous Bacteria in Highly Contaminated Aged Soil after Persulfate Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaling%20%20Gou">Yaling Gou</a>, <a href="https://publications.waset.org/abstracts/search?q=Sucai%20%20Yang"> Sucai Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengwei%20%20Qiao"> Pengwei Qiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Integrated chemical-biological treatment is an attractive alternative to remove polycyclic aromatic hydrocarbons (PAHs) from contaminated soil; wherein indigenous bacteria is the key factor for the biodegradation of residual PAHs concentrations after the application of chemical oxidation. However, the systematical study on the impact of persulfate (PS) oxidation on indigenous bacteria as well as PAHs removal is still scarce. In this study, the influences of different PS dosages (1%, 3%, 6%, and 10% [w/w]), as well as various activation methods (native iron, H2O2, alkaline, ferrous iron, and heat) on PAHs removal and indigenous bacteria in highly contaminated aged soil were investigated. Apparent degradation of PAHs in the soil treated with PS oxidation was observed, and the removal efficiency of total PAHs in the soil ranged from 38.28% to 79.97%. The removal efficiency of total PAHs in the soil increased with increasing consumption of PS. However, the bacterial abundance in soil was negatively affected following oxidation for all of the treatments added with PS, with bacterial abundance in the soil decreased by 0.89~2.88 orders of magnitude compared to the untreated soil. Moreover, the number of total bacteria in the soil decreased as PS consumption increased. Different PS activation methods and PS dosages exhibited different influences on the bacterial community composition. Bacteria capable of degrading PAHs under anoxic conditions were composed predominantly by Proteobacteria and Firmicutes. The total amount of Proteobacteria and Firmicutes also decreased with increasing consumption of PS. The results of this study provide important insight into the design of PAHs contaminated soil remediation projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activation%20method" title="activation method">activation method</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxidation" title=" chemical oxidation"> chemical oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=indigenous%20bacteria" title=" indigenous bacteria"> indigenous bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=polycyclic%20aromatic%20hydrocarbon" title=" polycyclic aromatic hydrocarbon "> polycyclic aromatic hydrocarbon </a> </p> <a href="https://publications.waset.org/abstracts/110124/removal-of-polycyclic-aromatic-hydrocarbons-pahs-and-the-response-of-indigenous-bacteria-in-highly-contaminated-aged-soil-after-persulfate-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8375</span> Chemical Composition, Antioxidant and Antibacterial Activities of Essential Oil from the Leaves of Thymus vulgaris L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsige%20Reda">Tsige Reda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Essential oil of Thymus vulgaris was extracted by means of hydro-distillation. This study was done to investigate the chemical composition, antibacterial and antioxidant activities. The chemical composition of the essential oils was determined using gas chromatography coupled to mass spectroscopy (GC-MS). Using disc diffusion assay the antibacterial activity was assessed on one Gram-positive bacteria and one Gram-negative bacteria. The percentage oil yield of the essential oil was found to be 0.97 ± 0.08% (w/w) with yellow color. The physicochemical constants of the oil were also noted. The phytochemical screening of the plant extract revealed the presence of tannins, saponins, phenol, flavonoids, terpenoids, steroids and alkaloids. A total of 18 chemical constituents were identified by Gas Chromatography-Mass Spectroscopy analysis representing 100% of the total essential oil of Thymus vulgaris, with thymol (31.977%), o-cymene (29.992%), and carvacrol (14.541%). Previous studies have revealed that the thymol, o-cymen and carvacrol components of Thymus vulgaris are responsible for their biological activities. Thymus vulgaris have been used traditionally to treat a wide variety of infections. Based on the extensive use and lack of scientific evidence, a study was embarked upon to determine its bioactivity. The essential oil of Thymus vulgaris leaves exhibited higher activity towards the Gram-positive bacteria (Staphylococcus aurous) than the Gram-negative bacteria (Escherichia coli) and also has good antioxidant activity, and can be used medicinal and therapeutic applications. This activity may be due to the high amount of thymol, o-cymen and carvacrol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydro-distillation" title="hydro-distillation">hydro-distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=Thymus%20vulgaris" title=" Thymus vulgaris"> Thymus vulgaris</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil%20composition" title=" essential oil composition"> essential oil composition</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20screening" title=" phytochemical screening"> phytochemical screening</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20constants" title=" physicochemical constants"> physicochemical constants</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a> </p> <a href="https://publications.waset.org/abstracts/34636/chemical-composition-antioxidant-and-antibacterial-activities-of-essential-oil-from-the-leaves-of-thymus-vulgaris-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8374</span> Assessment of Water Quality of Selected Lakes of Coimbatore District, Tamil Nadu, India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20Ganesh">K. P. Ganesh</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Gomathi"> T. Gomathi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Arul%20Pragasan"> L. Arul Pragasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Degradation of lake water quality is one of the serious environmental threats for the last few decades, particularly, the lakes situated in and around urban and industrial areas. The present study aimed to analyze the physicochemical and biological parameters, and metal elements to determine the water quality of Krishnampathi, Ukkadam, Kurichi, Sulur and Singanallur Lakes. Of the 23 physicochemical parameters analyzed in the five lakes, except TDS, Chloride and Total hardness values all the 20 parameters were found within the prescribed limit as recommended by World Health Organization (WHO) and Bureau of Indian Standards (BIS). In case of biological parameter, both Total Coliform and Fecal Coliform bacteria (Escherichia coli) were identified. This indicates the contamination of lakes by fecal matter, and warns of potential of disease causing by viruses, bacteria and other organisms. Among the twelve metal elements (Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Mo, Cd and Pb) determined by inductively coupled plasma-mass spectroscopy, except Cd (for all lakes), and Pb (for Ukkadam, Kurichi, Sulur & Singanallur), all the elements were found above the prescribed limits of BIS. The results of the present study revealed that all the five major lakes of Coimbatore were contaminated. It is recommended that proper implementation of the new wetland waste management system and monitoring of water quality be of the urgent need to sustain the water bodies for future generations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=inductively%20coupled%20plasma-mass%20spectroscopy" title=" inductively coupled plasma-mass spectroscopy"> inductively coupled plasma-mass spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20and%20biological%20parameters" title=" physicochemical and biological parameters"> physicochemical and biological parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/80573/assessment-of-water-quality-of-selected-lakes-of-coimbatore-district-tamil-nadu-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8373</span> Preservation of Traditional Algerian Sausage Against Microbial Activity by the Garlic (Allium Sativum L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abed%20Hannane">Abed Hannane</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouag%20Noureddine"> Rouag Noureddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aims to evaluate the association of fresh garlic (Allium sativum L.) and storage at 4°C in preserving the microbiological, nutritional, and sanitary quality of Merguez-type sausages prepared and sold locally from meat offal. The analysis focused on the evaluation of the microbiological quality of fifteen samples randomly taken from several butcheries in the wilaya of BBA, eastern Algeria. The bacteriological analysis revealed the presence of 6.88.10⁵ CFU/g of total aerobic bacteria, 5.39.10⁵ CFU/g of total coliforms, 2.23.10⁵ CFU/g of fecal coliforms, 2.43.103 CFU/g of Escherichia coli and 1.8.10⁵ CFU/g of coagulase-positive staphylococci, values higher than Algerian standards. The addition of fresh garlic as an antibacterial preservative at concentrations of 0.06, 0.12, 0.18, and 0.24 g/g to ground beef samples and stored in the refrigerator at 4°C for 15 days. The addition of garlic to Merguez made it possible to significantly reduce the presence of different bacterial groups during their refrigerated storage, compared to untreated meat, bringing it below the standards defined in the matter. Thus, the use of garlic as a food additive at a concentration of 0.12 g/g was sufficient to obtain levels according to Algerian standards equal to 1.8.10⁴ CFU/g of total aerobic bacteria, 9.48.10³ CFU/ g of total coliforms, 3.68.10³ UFC/g fecal coliforms, 4.56.10² UFC/g of E.coli 2.39.10⁴ UFC/g of coagulase-positive staphylococci. It is clear that thanks to the addition of garlic to Merguez, the sanitary quality has been improved by reducing the aerobic bacterial load and increasing the shelf life at 4°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20effect" title="antimicrobial effect">antimicrobial effect</a>, <a href="https://publications.waset.org/abstracts/search?q=garlic" title=" garlic"> garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=sausage" title=" sausage"> sausage</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/158658/preservation-of-traditional-algerian-sausage-against-microbial-activity-by-the-garlic-allium-sativum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8372</span> Phytoplankton Community Composition in Laguna de Terminos, Mexico, and Its Relationship to Environmental Variables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enrique%20Nunez%20L.">Enrique Nunez L.</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20%20Cortes%20L."> Maria Cortes L.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Laffon%20L."> Sandra Laffon L.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20M.%20Cupul%20V."> Ana M. Cupul V.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phytoplankton community composition was studied in a tropical coastal lagoon of Mexico and relationships with environmental variables were evaluated. Six sites inside the tropical Terminos Lagoon were sampled in order to determine abundances and ecological indexes for phytoplankton from May to December 2017. Water samples were also collected to determine the values of pigments, nutrients, and water solids. Results showed that the composition and abundance of the phytoplankton community were influenced by physicochemical factors, nutrients, water solids, and climate seasons. Sixty-six species were identified as potential HAB producers (44.29% from total). However, abundances were not related to the occurrence of HAB during the study. Multidimensional ANOVA indicated no significant differences between sites while some months revealed significant differences. The canonical analysis suggested that environmental variables explained 49% of community variation of potential phytoplankton species producers of HAB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoplankton" title="phytoplankton">phytoplankton</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=lagoon" title=" lagoon"> lagoon</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title=" biodiversity"> biodiversity</a> </p> <a href="https://publications.waset.org/abstracts/122868/phytoplankton-community-composition-in-laguna-de-terminos-mexico-and-its-relationship-to-environmental-variables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8371</span> Impacts of Cerium Oxide Nanoparticles on Functional Bacterial Community in Activated Sludge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Kamika">I. Kamika</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Azizi"> S. Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tekere"> M. Tekere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanotechnology promises significant improvements of advanced materials and manufacturing techniques with a vast range of applications, which are critical for the future competitiveness of national industries. The manipulations and productions of materials, whilst, controlling the optical properties and surface area to a nanosize scale enabled a birth of a new field known as nanotechnology. However, their rapidly developing industry raises concerns about the environmental impacts of nanoparticles, as their effects on functional bacterial community in wastewater treatment remain unclear. The present research assessed the impact of cerium Oxide nanoparticles (nCeO) on the bacterial microbiome of an activated sludge system, which influenced its performance of this system on nutrient removal. Out of 15875 reads sequenced, a total of 13133 reads were non-chimeric. The wastewater samples were more dominant to the unclassified bacteria (51.07% of bacteria community) followed with the classified bacteria (48.93). Proteobacteria was the most dominant phylum in both classified and unclassified bacteria, whereas 18% of bacteria could even not be assigned a phylum and remained unclassified suggesting hitherto vast untapped microbial diversity. The bacterial operational taxonomic units (OTUs) ranged from 1014 to 2629 over the experimental period. The denitrification related species including Diaphorobacter species, Thauera species and those in the Sphaerotilus and Leptothrix group were found to be inhibited in a high concentration of CeO-NP. The diversity indices suggested that the bacterial community inhabiting the wastewater samples were less diverse as the concentration of CeO increases. The canonical correspondence analysis (CCA) results highlighted that the bacterial community variance had the strongest relationship with water temperature, conductivity, pH, and dissolved oxygen (DO) content as well as nCeO. The results provided the relationships between the microbial community and environmental variables in the wastewater samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20community" title="bacterial community">bacterial community</a>, <a href="https://publications.waset.org/abstracts/search?q=next%20generation" title=" next generation"> next generation</a>, <a href="https://publications.waset.org/abstracts/search?q=cerium%20oxide" title=" cerium oxide"> cerium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20sludge" title=" activated sludge"> activated sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a> </p> <a href="https://publications.waset.org/abstracts/46286/impacts-of-cerium-oxide-nanoparticles-on-functional-bacterial-community-in-activated-sludge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8370</span> Selection Effects on the Molecular and Abiotic Evolution of Antibiotic Resistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abishek%20Rajkumar">Abishek Rajkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antibiotic resistance can occur naturally given the selective pressure placed on antibiotics. Within a large population of bacteria, there is a significant chance that some of those bacteria can develop resistance via mutations or genetic recombination. However, a growing public health concern has arisen over the fact that antibiotic resistance has increased significantly over the past few decades. This is because humans have been over-consuming and producing antibiotics, which has ultimately accelerated the antibiotic resistance seen in these bacteria. The product of all of this is an ongoing race between scientists and the bacteria as bacteria continue to develop resistance, which creates even more demand for an antibiotic that can still terminate the newly resistant strain of bacteria. This paper will focus on a myriad of aspects of antibiotic resistance in bacteria starting with how it occurs on a molecular level and then focusing on the antibiotic concentrations and how they affect the resistance and fitness seen in bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic" title="antibiotic">antibiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular" title=" molecular"> molecular</a>, <a href="https://publications.waset.org/abstracts/search?q=mutation" title=" mutation"> mutation</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/66066/selection-effects-on-the-molecular-and-abiotic-evolution-of-antibiotic-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fecal%20bacteria%20community%20composition&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fecal%20bacteria%20community%20composition&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fecal%20bacteria%20community%20composition&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fecal%20bacteria%20community%20composition&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fecal%20bacteria%20community%20composition&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fecal%20bacteria%20community%20composition&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fecal%20bacteria%20community%20composition&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fecal%20bacteria%20community%20composition&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fecal%20bacteria%20community%20composition&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fecal%20bacteria%20community%20composition&amp;page=279">279</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fecal%20bacteria%20community%20composition&amp;page=280">280</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fecal%20bacteria%20community%20composition&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10