CINXE.COM
Search results for: gas chromatography jojoba esters
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: gas chromatography jojoba esters</title> <meta name="description" content="Search results for: gas chromatography jojoba esters"> <meta name="keywords" content="gas chromatography jojoba esters"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="gas chromatography jojoba esters" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="gas chromatography jojoba esters"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 922</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: gas chromatography jojoba esters</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">922</span> Transesterification of Jojoba Oil Wax Using Microwave Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moataz%20Elsawy">Moataz Elsawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20F.%20Naguib"> Hala F. Naguib</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilda%20A.%20Aziz"> Hilda A. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Eid%20A.%20Ismail"> Eid A. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Labiba%20I.%20Hussein"> Labiba I. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Maher%20Z.%20Elsabee"> Maher Z. Elsabee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jojoba oil-wax is extracted from the seeds of the jojoba (Simmondsia chinensis Link Schneider), a perennial shrub that grows in semi-desert areas in Egypt and in some parts of the world. The main uses of jojoba oil wax are in the cosmetics and pharmaceutical industry, but new uses could arise related to the search of new energetic crops. This paper summarizes a process to convert the jojoba oil wax to biodiesel by transesterification with ethanol and a series of aliphatic alcohols using a more economic and energy saving method in a domestic microwave. The effect of time and power of the microwave on the extent of the transesterification using ethanol and other aliphatic alcohols has been studied. The separation of the alkyl esters from the fatty alcohols rich fraction has been done in a single crystallization step at low temperature (−18°C) from low boiling point petroleum ether. Gas chromatography has been used to follow up the transesterification process. All products have been characterized by spectral analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jojoba%20oil" title="jojoba oil">jojoba oil</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%20jojoba%20esters" title=" gas chromatography jojoba esters"> gas chromatography jojoba esters</a>, <a href="https://publications.waset.org/abstracts/search?q=jojoba%20alcohol" title=" jojoba alcohol"> jojoba alcohol</a> </p> <a href="https://publications.waset.org/abstracts/9506/transesterification-of-jojoba-oil-wax-using-microwave-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">921</span> Effect of Irrigation Interval on Jojoba Plants under Circumstance of Sinai</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Khattab">E. Khattab</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Halla"> S. Halla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jojoba plants are characterized by a tolerance of water stress, but due to the conditions of the Sinai in which the water is less, an irrigation interval study was carried out the jojoba plant from water stress without affecting the yield of oil. The field experiment was carried out at Maghara Research Station at North Sinai, Desert Research Center, Ministry of Agriculture, Egypt, to study the effect of irrigation interval on five clones of jojoba plants S-L, S-610, S- 700, S-B and S-G on growth and yield characters. Results showed that the clone S-700 has increase of all growth and yield characters under all interval irrigation compare with other clones. All variable of studied confirmed that clones of jojoba had significant effect with irrigation interval at one week but decrease value with three weeks. Jojoba plants tolerance to water stress but irrigation interval every week increased seed yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interval%20irrigation" title="interval irrigation">interval irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20and%20yield%20characters" title=" growth and yield characters"> growth and yield characters</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=jojoba" title=" jojoba"> jojoba</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinai" title=" Sinai"> Sinai</a> </p> <a href="https://publications.waset.org/abstracts/80001/effect-of-irrigation-interval-on-jojoba-plants-under-circumstance-of-sinai" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">920</span> Evaluation of Phthalates Contents and Their Health Effects in Consumed Sachet Water Brands in Delta State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edjere%20Oghenekohwiroro">Edjere Oghenekohwiroro</a>, <a href="https://publications.waset.org/abstracts/search?q=Asibor%20Irabor%20Godwin"> Asibor Irabor Godwin</a>, <a href="https://publications.waset.org/abstracts/search?q=Uwem%20Bassey"> Uwem Bassey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper determines the presence and levels of phthalates in sachet and borehole water source in some parts of Delta State, Nigeria. Sachet and borehole water samples were collected from seven different water packaging facilities and level of phthalates determined using GC-MS instrumentation. Phthalates concentration in borehole samples varied from 0.00-0.01 (DMP), 0.06-0.20 (DEP), 0.10-0.98 (DBP), 0.21-0.36 (BEHP), 0.01-0.03 (DnOP) µg/L and (BBP) was not detectable; while sachet water varied from 0.03-0.95 (DMP), 0.16-12.45 (DEP), 0.57-3.38 (DBP), 0.00-0.03 (BBP), 0.08-0.31 (BEHP) and 0-0.03 (DnOP) µg/L. Phthalates concentration in the sachet water was higher than that of the corresponding boreholes sources and also showed significant difference (p < 0.05) between the two. Sources of these phthalate esters were the interaction between water molecules and plastic storage facilities. Although concentration of all phthalate esters analyzed were lower than the threshold limit value(TLV), over time storage of water samples in this medium can lead to substantial increase with negative effects on individuals consuming them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phthalate%20esters" title="phthalate esters">phthalate esters</a>, <a href="https://publications.waset.org/abstracts/search?q=borehole" title=" borehole"> borehole</a>, <a href="https://publications.waset.org/abstracts/search?q=sachet%20water" title=" sachet water"> sachet water</a>, <a href="https://publications.waset.org/abstracts/search?q=sample%20extraction" title=" sample extraction"> sample extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a> </p> <a href="https://publications.waset.org/abstracts/44400/evaluation-of-phthalates-contents-and-their-health-effects-in-consumed-sachet-water-brands-in-delta-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">919</span> Propagation of Simmondsia chinensis (Link) Schneider by Stem Cuttings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Eed">Ahmed M. Eed</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20H.%20Burgoyne"> Adam H. Burgoyne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jojoba (Simmondsia chinensis (Link) Schneider), is a desert shrub which tolerates saline, alkyle soils and drought. The seeds contain a characteristic liquid wax of economic importance in industry as a machine lubricant and cosmetics. A major problem in seed propagation is that jojoba is a dioecious plant whose sex is not easily determined prior to flowering (3-4 years from germination). To overcome this phenomenon, asexual propagation using vegetative methods such as cutting can be used. This research was conducted to find out the effect of different Plant Growth Regulators (PGRs) and rooting media on Jojoba rhizogenesis. An experiment was carried out in a Factorial Completely Randomized Design (FCRD) with three replications, each with sixty cuttings per replication in fiberglass house of Natural Jojoba Corporation at Yemen. The different rooting media used were peat moss + perlite + vermiculite (1:1:1), peat moss + perlite (1:1) and peat moss + sand (1:1). Plant materials used were semi-hard wood cuttings of jojoba plants with length of 15 cm. The cuttings were collected in the month of June during 2012 and 2013 from the sub-terminal growth of the mother plants of Amman farm and introduced to Yemen. They were wounded, treated with Indole butyric acid (IBA), α-naphthalene acetic acid (NAA) or Indole-3-acetic acid (IAA) all @ 4000 ppm (part per million) and cultured on different rooting media under intermittent mist propagation conditions. IBA gave significantly higher percentage of rooting (66.23%) compared to NAA and IAA in all media used. However, the lowest percentage of rooting (5.33%) was recorded with IAA in the medium consisting of peat moss and sand (1:1). No significant difference was observed at all types of PGRs used with rooting media in respect of root length. Maximum number of roots was noticed in medium consisting of peat moss, perlite and vermiculite (1:1:1); peat moss and perlite (1:1) and peat moss and sand (1:1) using IBA, NAA and IBA, respectively. The interaction among rooting media was statistically significant with respect to rooting percentage character. Similarly, the interactions among PGRs were significant in terms of rooting percentage and also root length characters. The results demonstrated suitability of propagation of jojoba plants by semi-hard wood cuttings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting" title="cutting">cutting</a>, <a href="https://publications.waset.org/abstracts/search?q=IBA" title=" IBA"> IBA</a>, <a href="https://publications.waset.org/abstracts/search?q=Jojoba" title=" Jojoba"> Jojoba</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation" title=" propagation"> propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizogenesis" title=" rhizogenesis"> rhizogenesis</a> </p> <a href="https://publications.waset.org/abstracts/9097/propagation-of-simmondsia-chinensis-link-schneider-by-stem-cuttings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">918</span> Antifungal Activity of Free Fatty Acids Methyl Esters Extracted from Citrullus colocynthis L., Linum usitatissimum L., Nigella sativa L. against Toxigenic Aspergillus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Malainine">H. Malainine</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Amrouche"> A. Amrouche</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Benmehdi"> H. Benmehdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present work was aimed at evaluating antifungal effect of crude esters and their corresponding FAMEs isolated from Citrullus colocynthis L., Linum usitatissimum L. and Nigella sativa L. seeds against two toxigenic fungal strains namely Aspergillus flavus and Aspergillus ochraceus. The results of the antifungal activity performed radial growth on solid medium (PDA; potatoes dextrose agar) showed that the crude esters and their corresponding FAMEs have exhibited against the two strains tested. Overall, FAMEs have provided an antifungal effect more efficient than that of crude esters. Inhibition of Aspergillus ochraceus has been labeled with percentages ranging from 13.33 to 26.61% by crude esters, While FAMEs inhibition was ranged between 27.33 to 41.13%. However, the inhibition observed against the Aspergillus flavus was varying from 14.68 to 18.59% by crude esters compared with the inhibition percentages ranging from 21.5 to 33.45% by the FAMEs. The antifungal potency of esters oils seeds of the studied plants may be an alternative for consideration by the authorities interested, due to serving the public health, in reducing the fungal enormous peril. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Citrullus%20colocynthis%20L." title="Citrullus colocynthis L.">Citrullus colocynthis L.</a>, <a href="https://publications.waset.org/abstracts/search?q=Linum%20usitatissimum%20L." title=" Linum usitatissimum L."> Linum usitatissimum L.</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigella%20sativa%20L." title=" Nigella sativa L."> Nigella sativa L.</a>, <a href="https://publications.waset.org/abstracts/search?q=FAMEs" title=" FAMEs"> FAMEs</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal%20activity" title=" antifungal activity"> antifungal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20flavus" title=" Aspergillus flavus"> Aspergillus flavus</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20ochraceus" title=" Aspergillus ochraceus"> Aspergillus ochraceus</a> </p> <a href="https://publications.waset.org/abstracts/13961/antifungal-activity-of-free-fatty-acids-methyl-esters-extracted-from-citrullus-colocynthis-l-linum-usitatissimum-l-nigella-sativa-l-against-toxigenic-aspergillus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">917</span> Unbranched, Saturated, Carboxylic Esters as Phase-Change Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anastasia%20Stamatiou">Anastasia Stamatiou</a>, <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Obermeyer"> Melissa Obermeyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludger%20J.%20Fischer"> Ludger J. Fischer</a>, <a href="https://publications.waset.org/abstracts/search?q=Philipp%20Schuetz"> Philipp Schuetz</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B6rg%20Worlitschek"> Jörg Worlitschek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study evaluates unbranched, saturated carboxylic esters with respect to their suitability to be used as storage media for latent heat storage applications. Important thermophysical properties are gathered both by means of literature research as well as by experimental measurements. Additionally, esters are critically evaluated against other common phase-change materials in terms of their environmental impact and their economic potential. The experimental investigations are performed for eleven selected ester samples with a focus on the determination of their melting temperature and their enthalpy of fusion using differential scanning calorimetry. Transient Hot Bridge was used to determine the thermal conductivity of the liquid samples while thermogravimetric analysis was employed for the evaluation of the 5% weight loss temperature as well as of the decomposition temperature of the non-volatile samples. Both experimental results and literature data reveal the high potential of esters as phase-change materials. Their good thermal and environmental properties as well as the possibility for production from natural sources (e.g. vegetable oils) render esters as very promising for future storage applications. A particularly high short term application potential of esters could lie in low temperature storage applications where the main alternative is using salt hydrates as phase-change material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=esters" title="esters">esters</a>, <a href="https://publications.waset.org/abstracts/search?q=phase-change%20materials" title=" phase-change materials"> phase-change materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20heat%20storage" title=" latent heat storage"> latent heat storage</a> </p> <a href="https://publications.waset.org/abstracts/63849/unbranched-saturated-carboxylic-esters-as-phase-change-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">916</span> Evaluation of Esters Production by Oleic Acid Epoxidation Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flavio%20A.%20F.%20%20Da%20Ponte">Flavio A. F. Da Ponte</a>, <a href="https://publications.waset.org/abstracts/search?q=Jackson%20Q.%20Malveira"> Jackson Q. Malveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Monica%20C.%20G.%20Albuquerque"> Monica C. G. Albuquerque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years a worldwide interest in renewable resources from the biomass has spurred the industry. In this work the chemical structure of oleic acid chains was modified by homogeneous and heterogeneous catalysis in order to produce esters. The homogeneous epoxidation was carried out at H2O2 to oleic acid unsaturation molar ratio of 20:1. The reaction temperature was 338 K and reaction time 16 h. Formic acid was used as catalyst. For heterogeneous catalysis reaction temperature was 343 K and reaction time 24 h. The esters production was carried out by heterogeneous catalysis of the epoxidized oleic acid and butanol using Mg/SBA-15 as catalyst. The resulting products were confirmed by NMR (1H and 13C) and FTIR spectroscopy. The products were characterized before and after each reaction. The catalysts were characterized by X-ray diffraction, X-ray fluorescence, thermogravimetric analysis (TGA) and BET surface areas. The results were satisfactory for the bioproducts formed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20oleic" title="acid oleic">acid oleic</a>, <a href="https://publications.waset.org/abstracts/search?q=bioproduct" title=" bioproduct"> bioproduct</a>, <a href="https://publications.waset.org/abstracts/search?q=esters" title=" esters"> esters</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxidation" title=" epoxidation"> epoxidation</a> </p> <a href="https://publications.waset.org/abstracts/51353/evaluation-of-esters-production-by-oleic-acid-epoxidation-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">915</span> Surface Active Phthalic Acid Ester Produced by a Rhizobacterial Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Ibrahim">M. L. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdulhamid"> A. Abdulhamid </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A surface active molecule synthesized by a rhizobacterial strain Bacillus lentus isolated from Cajanus cajan was investigated. The bioemulsifier was extracted, purified and partially characterized using standard methods. Surface properties of the bioemulsifier were determined by studying the emulsification index, solubility test and stability studies. Partial purification of the bioemulsifier was carried out using FT-IR analysis, Silica-gel column chromatography and thin layer chromatography. GC-MS analysis was carried out to detect the composition and mass of the lipids and esters. The isolate showed an emulsifying activity of 57% and surface activity of 36mm. The stability studies revealed that the bioemulsifier had better stability at temperature of 70oC, 8% pH and 8% NaCl concentration. FT-IR indicated the bioemulsifier to contain peptide and aliphatic chain, TLC revealed the compound to be ninhydrin positive and Column chromatography showed the presence of three amino acids namely; glutamine, valine and cysteine. GC-MS indicated the lipid moiety to contain aliphatic chain ranging from C9-C16 and two major peaks of 1,2-benzenedicarboxylic acid diethyl octyl ester. Therefore, surface active agent from Bacillus lentus can be used effectively in a wide range of applications such as in MEOR and in the biosynthesis of plasticizers for industrial uses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20lentus" title="Bacillus lentus">Bacillus lentus</a>, <a href="https://publications.waset.org/abstracts/search?q=bioemulsifiers" title=" bioemulsifiers"> bioemulsifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=phthalic%20acid%20ester" title=" phthalic acid ester"> phthalic acid ester</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhizosphere" title=" Rhizosphere "> Rhizosphere </a> </p> <a href="https://publications.waset.org/abstracts/21086/surface-active-phthalic-acid-ester-produced-by-a-rhizobacterial-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">914</span> Synthesis of Iso-Amyl, Benzyl and Cinnamyl Esters over Active, Selective, Reusable and Eco-Friendly Natural Silica Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abd%20El-Aziz%20Said">Abd El-Aziz Said</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, natural silica was used as an active, selective, reusable and eco-friendly catalyst for the liquid phase synthesis of iso-amyl, benzyl and cinnamyl esters. The original and calcined natural silica were characterized by TG-DTA, XRF, XRD, FTIR, SEM, and N2-sorption analysis. The surface acidity of the catalysts was determined using isopropanol dehydration and the strength of available acid sites was measured using chemisorption of pyridine (PY) and dimethyl pyridine (DMPY). The results of acidity specified that the acidic sites are of Brönsted type, while PY-TPD demonstrated that almost of the acidic sites over the surface of natural silica are of weak and intermediate strength. The catalytic activity of natural silica towards esterification of acetic acid with alcohols was extensively studied. The results revealed that natural silica had high catalytic activity with 100% selectivity to all targeted esters. In addition, the yields obtained in batch methods were 83, 81, and 80%, respectively, whereas these yields after simple distillation were improved 97, 99.5, and 90%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid-phase%20esterification" title="liquid-phase esterification">liquid-phase esterification</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20silica" title=" natural silica"> natural silica</a>, <a href="https://publications.waset.org/abstracts/search?q=acidity%20esters" title=" acidity esters"> acidity esters</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a> </p> <a href="https://publications.waset.org/abstracts/120099/synthesis-of-iso-amyl-benzyl-and-cinnamyl-esters-over-active-selective-reusable-and-eco-friendly-natural-silica-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">913</span> Intensification of Ethyl Esters Synthesis Using a Packed-Bed Tubular Reactor at Supercritical Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camila%20da%20Silva">Camila da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Simone%20Belorte%20de%20Andrade"> Simone Belorte de Andrade</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitor%20Augusto%20dos%20Santos%20Garcia"> Vitor Augusto dos Santos Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Ferreira%20Cabral"> Vladimir Ferreira Cabral</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Vladimir%20Oliveira%20L%C3%BAcio%20Cardozo-Filho"> J. Vladimir Oliveira Lúcio Cardozo-Filho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the non-catalytic transesterification of soybean oil in continuous mode using supercritical ethanol were investigated. Experiments were performed in a packed-bed tubular reactor (PBTR) and variable studied were reaction temperature (523 K to 598 K), pressure (10 MPa to 20 MPa), oil to ethanol molar ratio (1:10 to 1:40) and water concentration (0 wt% to 10 wt% in ethanol). Results showed that ethyl esters yields obtained in the PBTR were higher (> 20 wt%) than those verified in a tubular reactor (TR), due to improved mass transfer conditions attained in the PBTR. Results demonstrated that temperature, pressure, oil to ethanol molar ratio and water concentration had a positive effect on fatty acid ethyl esters (FAEE) production in the experimental range investigated, with appreciable reaction yields (90 wt%) achieved at 598 K, 20 MPa, oil to ethanol molar ratio of 1:40 and 10 wt% of water concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=packed%20bed%20reactor" title="packed bed reactor">packed bed reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=ethyl%20esters" title=" ethyl esters"> ethyl esters</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20process" title=" continuous process"> continuous process</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst-free%20process" title=" catalyst-free process"> catalyst-free process</a> </p> <a href="https://publications.waset.org/abstracts/20326/intensification-of-ethyl-esters-synthesis-using-a-packed-bed-tubular-reactor-at-supercritical-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">912</span> Comparative Assessment of ISSR and RAPD Markers among Egyptian Jojoba Shrubs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelsabour%20G.%20A.%20Khaled">Abdelsabour G. A. Khaled</a>, <a href="https://publications.waset.org/abstracts/search?q=Galal%20A.R.%20El-Sherbeny"> Galal A.R. El-Sherbeny</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Hassanein"> Ahmed M. Hassanein</a>, <a href="https://publications.waset.org/abstracts/search?q=Gameel%20M.%20G.%20Aly"> Gameel M. G. Aly </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classical methods of identification, based on agronomical characterization, are not always the most accurate way due to the instability of these characteristics under the influence of the different environments. In order to estimate the genetic diversity, molecular markers provided excellent tools. In this study, Genetic variation of nine Egyptian jojoba shrubs was tested using ISSR (inter simple sequences repeats), RAPD (random amplified polymorphic DNA) markers and based on the morphological characterization. The average of the percentage of polymorphism (%P) ranged between 58.17% and 74.07% for ISSR and RAPD markers, respectively. The range of genetic similarity percents among shrubs based on ISSR and RAPD markers were from 82.9 to 97.9% and from 85.5 to 97.8%, respectively. The average of PIC (polymorphism information content) values were 0.19 (ISSR) and 0.24 (RAPD). In the present study, RAPD markers were more efficient than the ISSR markers. Where the RAPD technique exhibited higher marker index (MI) average (1.26) compared to ISSR one (1.11). There was an insignificant correlation between the ISSR and RAPD data (0.076, P > 0.05). The dendrogram constructed by the combined RAPD and ISSR data gave a relatively different clustering pattern. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20markers" title=" molecular markers"> molecular markers</a>, <a href="https://publications.waset.org/abstracts/search?q=polymorphism" title=" polymorphism"> polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=marker%20index" title=" marker index"> marker index</a> </p> <a href="https://publications.waset.org/abstracts/22213/comparative-assessment-of-issr-and-rapd-markers-among-egyptian-jojoba-shrubs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">911</span> Suitability of Alternative Insulating Fluid for Power Transformer: A Laboratory Investigation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Deepa">S. N. Deepa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Srinivasan"> A. D. Srinivasan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20T.%20Veeramanju"> K. T. Veeramanju</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sandeep%20Kumar"> R. Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashwini%20Mathapati"> Ashwini Mathapati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power transformer is a vital element in a power system as it continuously regulates power flow, maintaining good voltage regulation. The working of transformer much depends on the oil insulation, the oil insulation also decides the aging of transformer and hence its reliability. The mineral oil based liquid insulation is globally accepted for power transformer insulation; however it is potentially hazardous due to its non-biodegradability. In this work efficient alternative biodegradable insulating fluid is presented as a replacement to conventional mineral oil. Dielectric tests are performed as distinct alternating fluid to evaluate the suitability for transformer insulation. The selection of the distinct natural esters for an insulation system is carried out by the laboratory investigation of Breakdown voltage, Oxidation stability, Dissipation factor, Permittivity, Viscosity, Flash and Fire point. It is proposed to study and characterize the properties of natural esters to be used in power transformer. Therefore for the investigation of the dielectric behavior rice bran oil, sesame oil, and sunflower oil are considered for the study. The investigated results have been compared with the mineral oil to validate the dielectric behavior of natural esters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20insulating%20fluid" title="alternative insulating fluid">alternative insulating fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title=" dielectric properties"> dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20esters" title=" natural esters"> natural esters</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20transformers" title=" power transformers"> power transformers</a> </p> <a href="https://publications.waset.org/abstracts/109877/suitability-of-alternative-insulating-fluid-for-power-transformer-a-laboratory-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">910</span> Organic Waste Valorization for Biodiesel Production: Chemical and Biological Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meha%20Alouini">Meha Alouini</a>, <a href="https://publications.waset.org/abstracts/search?q=Wissem%20Mnif"> Wissem Mnif</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmine%20Souissi"> Yasmine Souissi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work will be conducted within the framework of the environmental sustainable development. It involves waste recovering into biodiesel fuel. Low cost feedstocks such as waste of frying oil and animal fats have been utilized to replace refined vegetable oil for biodiesel production. Biodiesel which refers to fatty acid methyl esters (FAME) was carried out by both chemical and enzymatic reaction of transesterification. In order to compare the two studied reactions the obtained biodiesel was characterized by determining its esters content and its fuel properties according to the European standard EN 14214. It was noted that the chemical method gave the product with the best physical property. But the biological one was found more effective for obtaining important ester content. Thus it would be interesting to optimize the enzymatic pathway of production of biodiesel to obtain a better property of biodiesel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20methyl%20esters" title=" fatty acid methyl esters"> fatty acid methyl esters</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20frying%20oil" title=" waste frying oil"> waste frying oil</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20beef%20fat" title=" waste beef fat"> waste beef fat</a> </p> <a href="https://publications.waset.org/abstracts/14274/organic-waste-valorization-for-biodiesel-production-chemical-and-biological-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">909</span> Characterization Transesterification Activity on Thermostable Lipase (LK1) From Local Isolate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luxy%20Grebers%20Swend%20Sinaga">Luxy Grebers Swend Sinaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhmaloka"> Akhmaloka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global energy crisis, triggered by declining fossil The global energy crisis, triggered by declining fossil fuel reserves and exacerbated by population growth and increasing energy demand, was driven the development of renewable energy sources. One of the green energy alternatives being developed is biodiesel. Transesterification is at the core of biodiesel production, where fatty acids in oil are converted into methyl esters with the aid of a catalyst. Lipases exhibit high activity and stability during catalysis, especially under harsh conditions. Lipase (Lk1) isolated from organic waste compost at the Bandung Institute of Technology, Bandung, West Java, shows promising potential in this field. The thermostable lipase was purified using Ni-NTA affinity chromatography, followed by SDS-PAGE analysis for purity confirmation. Characterizing the transesterification activity of Lk1 is essential for assessing its effectiveness in converting oil into biodiesel, including methyl esters. The results of this study showed that Lk1 exhibited the highest activity on a methyl palmitate substrate, with an optimum temperature of 60°C, very stable activity in the non-polar solvent n-hexane, and was able to maintain its optimum activity for up to 1 hour. These characters make Lk1 highly suitable for biodiesel production, as it meets the main criteria for the transesterification process in producing renewable energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=lipase%20Lk1" title=" lipase Lk1"> lipase Lk1</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=thermostability" title=" thermostability"> thermostability</a> </p> <a href="https://publications.waset.org/abstracts/192116/characterization-transesterification-activity-on-thermostable-lipase-lk1-from-local-isolate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">908</span> Production of Biodiesel Using Tannery Fleshing as a Feedstock via Solid-State Fermentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Santhana%20Krishnan">C. Santhana Krishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Mimi%20Sakinah"> A. M. Mimi Sakinah</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhveer%20Singh"> Lakhveer Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Zularisam%20A.%20Wahid"> Zularisam A. Wahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was initiated to evaluate and optimize the conversion of animal fat from tannery wastes into methyl ester. In the pre-treatment stage, animal fats feedstock was hydrolysed and esterified through solid state fermentation (SSF) using <em>Microbacterium</em> species immobilized onto sand silica matrix. After 72 hours of fermentation, predominant esters in the animal fats were found to be with 83.9% conversion rate. Later, esterified animal fats were transesterified at 3 hour reaction time with 1% NaOH (w/v %), 6% methanol to oil ratio (w/v %) to produce 89% conversion rate. C<sub>13 </sub>NMR revealed long carbon chain in fatty acid methyl esters at 22.2817-31.9727 ppm. Methyl esters of palmitic, stearic, oleic represented the major components in biodiesel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tannery%20wastes" title="tannery wastes">tannery wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20animal%20fleshing" title=" fatty animal fleshing"> fatty animal fleshing</a>, <a href="https://publications.waset.org/abstracts/search?q=trans-esterification" title=" trans-esterification"> trans-esterification</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20fermentation" title=" solid state fermentation"> solid state fermentation</a> </p> <a href="https://publications.waset.org/abstracts/45958/production-of-biodiesel-using-tannery-fleshing-as-a-feedstock-via-solid-state-fermentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">907</span> Comparative Forensic Analysis of Lipsticks Using Thin Layer Chromatography and Gas Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20O.%20Ezegbogu">M. O. Ezegbogu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20B.%20Osadolor"> H. B. Osadolor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lipsticks constitute a significant source of transfer evidence, and can, therefore, provide corroborative or inclusionary evidence in criminal investigation. This study aimed to determine the uniqueness and persistence of different lipstick smears using Thin Layer Chromatography (TLC), and Gas Chromatography with a Flame Ionisation Detector (GC-FID). In this study, we analysed lipstick smears retrieved from tea cups exposed to the environment for up to four weeks. The n-alkane content of each sample was determined using GC-FID, while TLC was used to determine the number of bands, and retention factor of each band per smear. This study shows that TLC gives more consistent results over a 4-week period than GC-FID. It also proposes a maximum exposure time of two weeks for the analysis of lipsticks left in the open using GC-FID. Finally, we conclude that neither TLC nor GC-FID can distinguish lipstick evidence recovered from hypothetical crime scenes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forensic%20science" title="forensic science">forensic science</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatography" title=" chromatography"> chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=identification" title=" identification"> identification</a>, <a href="https://publications.waset.org/abstracts/search?q=lipstick" title=" lipstick"> lipstick</a> </p> <a href="https://publications.waset.org/abstracts/108437/comparative-forensic-analysis-of-lipsticks-using-thin-layer-chromatography-and-gas-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">906</span> Lipid from Activated Sludge as a Feedstock for the Production of Biodiesel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ifeanyichukwu%20Edeh">Ifeanyichukwu Edeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Overton"> Tim Overton</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Bowra"> Steve Bowra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is increasing interest in utilising low grade or waste biomass for the production of renewable bioenergy vectors i.e. waste to energy. In this study we have chosen to assess, activated sludge, which is a microbial biomass generated during the second stage of waste water treatment as a source of lipid for biodiesel production. To date a significant proportion of biodiesel is produced from used cooking oil and animal fats. It was reasoned that if activated sludge proved a viable feedstock it has the potential to support increase biodiesel production capacity. Activated sludge was obtained at different times of the year and from two different sewage treatment works in the UK. The biomass within the activated sludge slurry was recovered by filtration and the total weight of material calculated by combining the dry weight of the total suspended solid (TSS) and the total dissolved solid (TDS) fractions. Total lipids were extracted from the TSS and TDS using solvent extraction (Folch methods). The classes of lipids within the total lipid extract were characterised using high performance thin layer chromatography (HPTLC) by referencing known standards. The fatty acid profile and content of the lipid extract were determined using acid mediated-methanolysis to obtain fatty acid methyl esters (FAMEs) which were analysed by gas chromatography and HPTLC. The results showed that there were differences in the total biomass content in the activated sludge collected from different sewage works. Lipid yields from TSS obtained from both sewage treatment works differed according to the time of year (between 3.0 and 7.4 wt. %). The lipid yield varied slightly within the same source of biomass but more widely between the two sewage treatment works. The neutral lipid classes identified were acylglycerols, free fatty acids, sterols and wax esters while the phospholipid class included phosphatidylcholine, lysophosphatidycholine, phosphatidylethanolamine and phosphatidylinositol. The fatty acid profile revealed the presence of palmitic acid, palmitoleic acid, linoleic acid, oleic acid and stearic acid and that unsaturated fatty acids were the most abundant. Following optimisation, the FAME yield was greater than 10 wt. % which was required to have an economic advantage in biodiesel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20sludge" title="activated sludge">activated sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=methanolysis" title=" methanolysis"> methanolysis</a> </p> <a href="https://publications.waset.org/abstracts/37751/lipid-from-activated-sludge-as-a-feedstock-for-the-production-of-biodiesel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">905</span> Synthesis, Characterization, and Evaluation of New Series of Oil Sorbers Based on Maleate Esters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nora%20A.%20Hamad">Nora A. Hamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20M.%20Atta"> Ayman M. Atta</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20A.%20H.%20Abdel-Rahman"> Adel A. H. Abdel-Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two malice anhydride esters were prepared using long chain aliphatic alcohols (C8H17OH and C12H25OH, 1:1 mole ratio). Three series of crosslinked homo and copolymers of maleate esters with octadecyl acrylate and acrylic acid were prepared respectively through suspension copolymerization. The monomers were mixed with 0.02 Wt% of BP initiator, PVA 1% (170 ml for each 100g of monomers) and different weight ratios of DVB crosslinked (1% and 4%) in cyclohexane. The prepared crosslinked homo and copolymers were characterized by SEM, TGA and FTIR spectroscopic analyses. The prepared polymers were coated onto poly (ethylene terephethalate) nonwoven fiber (NWPET). The effect of copolymerization feed composition, crosslinker wt% and reaction media or solvent on swelling properties of crosslinked polymers were studied through the oil absorption tests in toluene and 10% of diluted crude oil with toluene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylic%20acid" title="acrylic acid">acrylic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=crosslinked%20copolymers" title=" crosslinked copolymers"> crosslinked copolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=maleate%20ester" title=" maleate ester"> maleate ester</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28ethylene%20terephethalate%29%20nonwoven%20fiber%20%28NWPET%29" title=" poly(ethylene terephethalate) nonwoven fiber (NWPET)"> poly(ethylene terephethalate) nonwoven fiber (NWPET)</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20absorbency" title=" oil absorbency"> oil absorbency</a>, <a href="https://publications.waset.org/abstracts/search?q=octadecyl%20acrylat" title=" octadecyl acrylat"> octadecyl acrylat</a> </p> <a href="https://publications.waset.org/abstracts/56846/synthesis-characterization-and-evaluation-of-new-series-of-oil-sorbers-based-on-maleate-esters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">904</span> Characterization of Fatty Acid Glucose Esters as Os9BGlu31 Transglucosidase Substrates in Rice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juthamath%20Komvongsa">Juthamath Komvongsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bancha%20Mahong"> Bancha Mahong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kannika%20Phasai"> Kannika Phasai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukanya%20Luang"> Sukanya Luang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Seong%20Jeon"> Jong-Seong Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Ketudat-Cairns"> James Ketudat-Cairns</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Os9BGlu31 is a rice transglucosidase that transfers glucosyl moieties to various acceptors such as carboxylic acids and alcohols, including phenolic acids and flavonoids, in vitro. The role of Os9BGlu31 transglucosidase in rice plant metabolism has not been reported to date. Methanolic extracts of rice bran and flag leaves were found to contain substrates to which Os9BGlu31 could transfer glucose from 4-nitrophenyl β -D-glucopyranoside donor. The semi-purified substrate from rice bran was found to contain oleic acid and linoleic acid and the pure fatty acids were found to act as acceptor substrates for Os9BGlu31 transglucosidase to form 1-O-acyl glucose esters. Os9BGlu31 showed higher activity with oleic acid (18:1) and linoleic acid (18:2) than stearic acid (18:0), and had both higher kcat and higher Km for linoleic than oleic acid in the presence of 8 mM 4NPGlc donor. This transglucosidase reaction is reversible, Os9bglu31 knockout rice lines of flag leaves were found to have higher amounts of fatty acid glucose esters than wild type control lines, these data conclude that fatty acid glucose esters act as glucosyl donor substrates for Os9BGlu31 transglucosidase in rice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title="fatty acid">fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20glucose%20ester" title=" fatty acid glucose ester"> fatty acid glucose ester</a>, <a href="https://publications.waset.org/abstracts/search?q=transglucosidase" title=" transglucosidase"> transglucosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20flag%20leaf" title=" rice flag leaf"> rice flag leaf</a>, <a href="https://publications.waset.org/abstracts/search?q=homologous%20knockout%20lines" title=" homologous knockout lines"> homologous knockout lines</a>, <a href="https://publications.waset.org/abstracts/search?q=tandam%20mass%20spectrometry" title=" tandam mass spectrometry"> tandam mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/42160/characterization-of-fatty-acid-glucose-esters-as-os9bglu31-transglucosidase-substrates-in-rice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">903</span> Bioactivities and Phytochemical Studies of Petroleum Ether Extract of Pleiogynium timorense Bark</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gehan%20F.%20Abdel%20Raoof">Gehan F. Abdel Raoof</a>, <a href="https://publications.waset.org/abstracts/search?q=Ataa%20A.%20Said"> Ataa A. Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Y.%20Mohamed"> Khaled Y. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20M.%20Mohammed"> Hala M. Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pleiogynium timorense(DC.) Leenh is one of the therapeutically active plants belonging to the family Anacardiaceae. The bark of Pleiogynium timorense needs further studies to investigate its phytochemical and biological activities. This work was carried out to investigate the chemical composition of petroleum ether extract of Pleiogynium timorense bark as well as to evaluate the analgesic and anti-inflammatory activities. The unsaponifiable matter and fatty acid methyl esters were analyzed by Gas chromatography–mass spectrometry (GC-MS). Moreover, analgesic and anti-inflammatory activities were evaluated using acetic acid-induced writhing test and carrageen hind paw oedema models in rats, respectively. The results showed that twenty one compounds in the unsaponifiable fraction were identified representing 92.54 % of the total beak area, the major compounds were 1-Heptene (35.32%), Butylated hydroxy toluene (19.42%) and phytol (12.53%), whereas fifteen compounds were identified in the fatty acid methyl esters fraction representing 94.15% of the total identified peak area. The major compounds were 9-Octadecenoic acid methyl ester (35.34%) and 9,12-Octadecadienoic acid methyl ester (29.32%). Moreover, petroleum ether extract showed a significant reduction in pain and inflammation in a dose dependent manner. This study aims to be the first step toward the use of petroleum ether extract of Pleiogynium timorense bark as analgesic and anti-inflammatory drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analgesic" title="analgesic">analgesic</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory" title=" anti-inflammatory"> anti-inflammatory</a>, <a href="https://publications.waset.org/abstracts/search?q=bark" title=" bark"> bark</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20ether%20extract" title=" petroleum ether extract"> petroleum ether extract</a>, <a href="https://publications.waset.org/abstracts/search?q=Pleiogynium%20timorense" title=" Pleiogynium timorense "> Pleiogynium timorense </a> </p> <a href="https://publications.waset.org/abstracts/93698/bioactivities-and-phytochemical-studies-of-petroleum-ether-extract-of-pleiogynium-timorense-bark" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">902</span> The Hydrolysis of Phosphate Esters Can Be Enhanced by Intramolecular Hydrogen Bonding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Sasi">Mohamed S. Sasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research project aim is to study the hydrolysis of 8-diethylphosphate-1-naphthalenol with hydroxylamine in water. 8-diethylphosphate-1-naphthalenol, 1 was successfully synthesized and its rate of reaction with hydroxylamine was studied at 60°C. Pseudo first order behavior was observed. The rate of P-O cleavage of 1 at 60°C (7.43 x 10-3 M-1s-1) was found to be 178 fold and 7 fold slower than diethyl 8-dimethylamino-1-naphthyl phosphate, 3 at 60°C (1.32 M-1s-1) and diethyl 8-amino-1-naphthyl phosphate, 2 at 90 °C (5.5 x 10-2 M-1s-1) respectively. The rate of P-O cleavage of 1 with hydroxylamine was found to be faster than that of 4-chlorophenyl-1-cyclopropylphosphate triester, 5 where the reaction was too slow to observe at 60°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphate%20esters" title="phosphate esters">phosphate esters</a>, <a href="https://publications.waset.org/abstracts/search?q=intramolecular%20hydrogen%20bonding" title=" intramolecular hydrogen bonding"> intramolecular hydrogen bonding</a> </p> <a href="https://publications.waset.org/abstracts/14160/the-hydrolysis-of-phosphate-esters-can-be-enhanced-by-intramolecular-hydrogen-bonding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">901</span> Chromatography Study of Fundamental Properties of Medical Radioisotope Astatine-211</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20E.%20Tereshatov">Evgeny E. Tereshatov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Astatine-211 is considered one of the most promising radionuclides for Targeted Alpha Therapy. In order to develop reliable procedures to label biomolecules and utilize efficient delivery vehicle principles, one should understand the main chemical characteristics of astatine. The short half-life of 211At (~7.2 h) and absence of any stable isotopes of this element are limiting factors towards studying the behavior of astatine. Our team has developed a procedure for rapid and efficient isolation of astatine from irradiated bismuth material in nitric acid media based on 3-octanone and 1-octanol extraction chromatography resins. This process has been automated and it takes 20 min from the beginning of the target dissolution to the At-211 fraction elution. Our next step is to consider commercially available chromatography resins and their applicability in astatine purification in the same media. Results obtained along with the corresponding sorption mechanisms will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=astatine-211" title="astatine-211">astatine-211</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatography" title=" chromatography"> chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism" title=" mechanism"> mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=radiopharmaceuticals" title=" radiopharmaceuticals"> radiopharmaceuticals</a> </p> <a href="https://publications.waset.org/abstracts/152922/chromatography-study-of-fundamental-properties-of-medical-radioisotope-astatine-211" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">900</span> Parabens, Paraben Metabolites and Triclocarban in Sediment Samples from the Trondheim Fjord, Norway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kristine%20Vike-Jonas">Kristine Vike-Jonas</a>, <a href="https://publications.waset.org/abstracts/search?q=Susana%20V.%20Gonzalez"> Susana V. Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Olav%20L.%20Bakkerud"> Olav L. Bakkerud</a>, <a href="https://publications.waset.org/abstracts/search?q=Karoline%20S.%20Gjelstad"> Karoline S. Gjelstad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shazia%20N.%20Aslam"> Shazia N. Aslam</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%98yvind%20Mikkelsen"> Øyvind Mikkelsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandros%20Asimakopoulos"> Alexandros Asimakopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> P-hydrobenzoic acid esters (parabens), paraben metabolites, and triclocarban (TCC) are a group of synthetic antimicrobials classified as endocrine disrupting chemicals (EDCs) and emerging pollutants. The aim of this study was to investigate the levels of these compounds in sediment near the effluent of a wastewater treatment plant (WWTP) in the Trondheim Fjord, Norway. Paraben, paraben metabolites, and TCC are high volume production chemicals that are found in a range of consumer products, especially pharmaceuticals and personal care products (PCPs). In this study, six parabens (methyl paraben; MeP, ethyl paraben; EtP, propyl paraben; PrP, butyl paraben; BuP, benzyl paraben; BezP, heptyl paraben; HeP), four paraben metabolites (4-hydroxybenzoic acid; 4-HB, 3,4-dihydroxybenzoic acid; 3,4-DHB, methyl protocatechuic acid; OH-MeP, ethyl protocatechuic acid; OH-EtP) and TCC were determined by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in 64 sediment samples from 10 different locations outside Trondheim, Norway. Of these 11 target analytes, four were detected in 40 % or more of the samples. The sum of six parabens (∑Parabens), four paraben metabolites (∑Metabolites) and TCC in sediment ranged from 4.88 to 11.56 (mean 6.81) ng/g, 52.16 to 368.28 (mean 93.89) ng/g and 0.53 to 3.65 (mean 1.50) ng/g dry sediment, respectively. Pearson correlation coefficients indicated that TCC was positively correlated with OH-MeP, but negatively correlated with 4-HB. To the best of the author’s knowledge, this is the first time parabens, paraben metabolites and TCC have been reported in the Trondheim Fjord. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parabens" title="parabens">parabens</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem%20mass%20spectrometry" title=" tandem mass spectrometry"> tandem mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/113904/parabens-paraben-metabolites-and-triclocarban-in-sediment-samples-from-the-trondheim-fjord-norway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">899</span> Integrated Two Stage Processing of Biomass Conversion to Hydroxymethylfurfural Esters Using Ionic Liquid as Green Solvent and Catalyst: Synthesis of Mono Esters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Komal%20Kumar">Komal Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreedevi%20Upadhyayula"> Sreedevi Upadhyayula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a two-stage process was established for the synthesis of HMF esters using ionic liquid acid catalyst. Ionic liquid catalyst with different strength of the Bronsted acidity was prepared in the laboratory and characterized using 1H NMR, FT-IR, and 13C NMR spectroscopy. Solid acid catalyst from the ionic liquid catalyst was prepared using the immobilization method. The acidity of the synthesized acid catalyst was measured using Hammett function and titration method. Catalytic performance was evaluated for the biomass conversion to 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA) in methyl isobutyl ketone (MIBK)-water biphasic system. A good yield of 5-HMF and LA was found at the different composition of MIBK: Water. In the case of MIBK: Water ratio 10:1, good yield of 5-HMF was observed at ambient temperature 150˚C. Upgrading of 5-HMF into monoesters from the reaction of 5-HMF and reactants using biomass-derived monoacid were performed. Ionic liquid catalyst with -SO₃H functional group was found to be best efficient in comparative of a solid acid catalyst for the esterification reaction and biomass conversion. A good yield of 5-HMF esters with high 5-HMF conversion was found to be at 105˚C using the best active catalyst. In this process, process A was the hydrothermal conversion of cellulose and monomer into 5-HMF and LA using acid catalyst. And the process B was the esterification followed by using similar acid catalyst. All monoesters of 5-HMF synthesized here can be used in chemical, cross linker for adhesive or coatings and pharmaceutical industry. A theoretical density functional theory (DFT) study for the optimization of the ionic liquid structure was performed using the Gaussian 09 program to find out the minimum energy configuration of ionic liquid catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20conversion" title="biomass conversion">biomass conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=5-HMF" title=" 5-HMF"> 5-HMF</a>, <a href="https://publications.waset.org/abstracts/search?q=Ionic%20liquid" title=" Ionic liquid"> Ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=HMF%20ester" title=" HMF ester"> HMF ester</a> </p> <a href="https://publications.waset.org/abstracts/103568/integrated-two-stage-processing-of-biomass-conversion-to-hydroxymethylfurfural-esters-using-ionic-liquid-as-green-solvent-and-catalyst-synthesis-of-mono-esters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">898</span> Determination of Four Anions in the Ground Layer of Tomb Murals by Ion Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liping%20Qiu">Liping Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofeng%20Zhang"> Xiaofeng Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ion chromatography method for the rapid determination of four anions (F⁻、Cl⁻、SO₄²⁻、NO₃⁻) in burial ground poles was optimized. The L₉(₃⁴) orthogonal test was used to determine the optimal parameters of sample pretreatment: accurately weigh 2.000g of sample, add 10mL of ultrapure water, and extract for 40min under the conditions of shaking temperature 40℃ and shaking speed 180 r·min-1. The eluent was 25 mmol/L KOH solution, the analytical column was Ion Pac® AS11-SH (250 mm × 4.0 mm), and the purified filtrate was measured by a conductivity detector. Under this method, the detection limit of each ion is 0.066~0.078mg/kg, the relative standard deviation is 0.86%~2.44% (n=7), and the recovery rate is 94.6~101.9. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ion%20chromatography" title="ion chromatography">ion chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=tomb" title=" tomb"> tomb</a>, <a href="https://publications.waset.org/abstracts/search?q=anion%20%28F%E2%81%BB" title=" anion (F⁻"> anion (F⁻</a>, <a href="https://publications.waset.org/abstracts/search?q=Cl%E2%81%BB" title=" Cl⁻"> Cl⁻</a>, <a href="https://publications.waset.org/abstracts/search?q=SO%E2%82%84%C2%B2%E2%81%BB" title=" SO₄²⁻"> SO₄²⁻</a>, <a href="https://publications.waset.org/abstracts/search?q=NO%E2%82%83%E2%81%BB%29" title=" NO₃⁻)"> NO₃⁻)</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20protection" title=" environmental protection"> environmental protection</a> </p> <a href="https://publications.waset.org/abstracts/157325/determination-of-four-anions-in-the-ground-layer-of-tomb-murals-by-ion-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">897</span> Study of Chemical Compounds of Garlic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Bazaralieva">A. B. Bazaralieva</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Turgumbayeva"> A. A. Turgumbayeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phytosubstance from garlic was obtained by extraction with liquid carbon dioxide under critical conditions. Methods of processing raw materials are proposed, and the chemical composition of garlic is studied by gas chromatography and mass spectrometry. The garlic extract's composition was determined using gas chromatography (GC) and gas chromatography-mass spectrophotometry (GC-MS). The phytosubstance had 54 constituents. The extract included the following main compounds: Manool (39.56%), Viridifrolol (7%), Podocarpa-1,8,11,13-tetraen-3-one, 14-isopropyl-1,13-dimethoxy- 5,15 percent, (+)-2-Bornanone (4.29%), Thujone (3.49%), Linolic acid ethyl ester (3.41%), and 12-O-Methylcarn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allium%20sativum" title="Allium sativum">Allium sativum</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds%20of%20garlic" title=" bioactive compounds of garlic"> bioactive compounds of garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20extraction%20of%20garlic" title=" carbon dioxide extraction of garlic"> carbon dioxide extraction of garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=GS-MS%20method" title=" GS-MS method"> GS-MS method</a> </p> <a href="https://publications.waset.org/abstracts/152011/study-of-chemical-compounds-of-garlic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">896</span> Study of Chemical Compounds of Garlic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bazaraliyeva%20Aigerim%20Bakytzhanovna">Bazaraliyeva Aigerim Bakytzhanovna</a>, <a href="https://publications.waset.org/abstracts/search?q=Turgumbayeva%20Aknur%20Amanbekovna"> Turgumbayeva Aknur Amanbekovna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phytosubstance from garlic was obtained by extraction with liquid carbon dioxide under critical conditions. Methods of processing raw materials are proposed, and the chemical composition of garlic is studied by gas chromatography and mass spectrometry. The garlic extract's composition was determined using gas chromatography (GC) and gas chromatography-mass spectrophotometry (GC-MS). The phytosubstance had 54 constituents. The extract included the following main compounds: Manool (39.56%), Viridifrolol (7%), Podocarpa-1,8,11,13-tetraen-3-one, 14-isopropyl-1,13-dimethoxy- 5,15 percent, (+)-2-Bornanone (4.29%), Thujone (3.49%), Linolic acid ethyl ester (3.41%), and 12-O-Methylcarn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allium%20sativum" title="allium sativum">allium sativum</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds%20of%20garlic" title=" bioactive compounds of garlic"> bioactive compounds of garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20extraction%20of%20garlic" title=" carbon dioxide extraction of garlic"> carbon dioxide extraction of garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=GS-MS%20method" title=" GS-MS method"> GS-MS method</a> </p> <a href="https://publications.waset.org/abstracts/151198/study-of-chemical-compounds-of-garlic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">895</span> A Viable Approach for Biological Detoxification of Non Edible Oil Seed Cakes and Their Utilization in Food Production Using Aspergillus Niger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kshitij%20Bhardwaj">Kshitij Bhardwaj</a>, <a href="https://publications.waset.org/abstracts/search?q=R.K.%20Trivedi"> R.K. Trivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shipra%20Dixit"> Shipra Dixit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We used biological detoxification method that converts toxic residue waste of Jatropha curcas oil seeds (non edible oil seed) into industrial bio-products and animal feed material. Present study describes the complete degradation of phorbol esters by Aspergillus Niger strain during solid state fermentation (SSF) of deoiled Jatropha curcas seed cake. Phorbol esters were completely degraded in 15 days under the optimized SSF conditions viz deoiled cake 5.0 gm moistened with 5.0 ml distilled water; inoculum 2 ml of overnight grown Aspergillus niger; incubated at 30◦ C, pH 7.0. This method simultaneously induces the production of Protease enzyme by Aspergillus Niger which has high potential to be used in feedstuffs .The maximum Protease activities obtained were 709.16 mg/ml in Jatropha curcas oil seed cake. The protein isolate had small amounts of phorbol esters, phytic acid, and saponin without any lectin. Its minimum and maximum solubility were at pH 4.0&12.0. Water and oil binding capacities were 3.22 g water/g protein and 1.86 ml oil/g protein respectively.Emulsion activity showed high values in a range of basic pH. We concluded that Jatropha Curcas seed cake has a potential to be used as a novel source of functional protein for food or feed applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20fermentation" title="solid state fermentation">solid state fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas" title=" Jatropha curcas"> Jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20seed%20cake" title=" oil seed cake"> oil seed cake</a>, <a href="https://publications.waset.org/abstracts/search?q=phorbol%20ester" title=" phorbol ester"> phorbol ester</a> </p> <a href="https://publications.waset.org/abstracts/14869/a-viable-approach-for-biological-detoxification-of-non-edible-oil-seed-cakes-and-their-utilization-in-food-production-using-aspergillus-niger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">894</span> Experimental Investigation, Analysis and Optimization of Performance and Emission Characteristics of Composite Oil Methyl Esters at 160 bar, 180 bar and 200 bar Injection Pressures by Multifunctional Criteria Technique </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yogish%20Huchaiah">Yogish Huchaiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandrashekara%20Krishnappa"> Chandrashekara Krishnappa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study considers the optimization and validation of experimental results using Multi-Functional Criteria Technique (MFCT). MFCT is concerned with structuring and solving decision and planning problems involving multiple variables. Production of biodiesel from Composite Oil Methyl Esters (COME) of Jatropha and Pongamia oils, mixed in various proportions and Biodiesel thus obtained from two step transesterification process were tested for various Physico-Chemical properties and it has been ascertained that they were within limits proposed by ASTME. They were blended with Petrodiesel in various proportions. These Methyl Esters were blended with Petrodiesel in various proportions and coded. These blends were used as fuels in a computerized CI DI engine to investigate Performance and Emission characteristics. From the analysis of results, it was found that 180MEM4B20 blend had the maximum Performance and minimum Emissions. To validate the experimental results, MFCT was used. Characteristics such as Fuel Consumption (FC), Brake Power (BP), Brake Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTE), Carbon dioxide (CO2), Carbon Monoxide (CO), Hydro Carbon (HC) and Nitrogen oxide (NOx) were considered as dependent variables. It was found from the application of this method that the optimized combination of Injection Pressure (IP), Mix and Blend is 178MEM4.2B24. Overall corresponding variation between optimization and experimental results was found to be 7.45%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COME" title="COME">COME</a>, <a href="https://publications.waset.org/abstracts/search?q=IP" title=" IP"> IP</a>, <a href="https://publications.waset.org/abstracts/search?q=MFCT" title=" MFCT"> MFCT</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=PI" title=" PI"> PI</a>, <a href="https://publications.waset.org/abstracts/search?q=PN" title=" PN"> PN</a>, <a href="https://publications.waset.org/abstracts/search?q=PV" title=" PV"> PV</a> </p> <a href="https://publications.waset.org/abstracts/41718/experimental-investigation-analysis-and-optimization-of-performance-and-emission-characteristics-of-composite-oil-methyl-esters-at-160-bar-180-bar-and-200-bar-injection-pressures-by-multifunctional-criteria-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">893</span> Antibacterial and Antifungal Activities of the Essential Oil of Pulicaria jaubertii Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Methaq%20Algabr">Methaq Algabr</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Al-Hajj"> Nabil Al-Hajj</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameerh%20Jaber"> Ameerh Jaber</a>, <a href="https://publications.waset.org/abstracts/search?q=Amtellah%20Alshotobi"> Amtellah Alshotobi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaima%27a%20Al-suryhi"> Shaima'a Al-suryhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gadah%20Whaban"> Gadah Whaban</a>, <a href="https://publications.waset.org/abstracts/search?q=Nawal%20Alshehari"> Nawal Alshehari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steam distillation of the essential oil of P. jaubertii was performed using a Clevenger apparatus. Essential oils were analyzed by gas chromatography-flame ionization detector (GC-FID) and gas chromatography coupled to chromatography–mass spectrometry (GC-MS). The major chemical components identified in P. jaubertii essential oil include carvotanacetone (63.975%), 1-methyl-1,2-propanedione (5.887%), 2,5-dimethoxy-para-cymene (3.303%) and ar-curcumene (3.276%). The antimicrobial activity of the essential oil of P. jaubertii was evaluated against all tested microorganisms. P. jaubertii essential oil inhibited all tested microorganisms except Escherichia coli with a minimum inhibitory concentration (MIC) of 5.0 μg/mL against Staphylococcus aureus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pulicaria%20jaubertii" title="Pulicaria jaubertii">Pulicaria jaubertii</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=Carvotancetone" title=" Carvotancetone"> Carvotancetone</a> </p> <a href="https://publications.waset.org/abstracts/160906/antibacterial-and-antifungal-activities-of-the-essential-oil-of-pulicaria-jaubertii-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%20jojoba%20esters&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%20jojoba%20esters&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%20jojoba%20esters&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%20jojoba%20esters&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%20jojoba%20esters&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%20jojoba%20esters&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%20jojoba%20esters&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%20jojoba%20esters&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%20jojoba%20esters&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%20jojoba%20esters&page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%20jojoba%20esters&page=31">31</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%20jojoba%20esters&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>