CINXE.COM

A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions

<!DOCTYPE html> <html lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="https://www.facebook.com/2008/fbml"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <meta content="mdpi" name="sso-service" /> <meta content="width=device-width, initial-scale=1.0" name="viewport" /> <title>A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions</title><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/font-awesome.min.css?eb190a3a77e5e1ee?1739771134"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery.multiselect.css?f56c135cbf4d1483?1739771134"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/chosen.min.css?d7ca5ca9441ef9e1?1739771134"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/main2.css?6398b1425402cd8f?1739771134"> <link rel="mask-icon" href="https://pub.mdpi-res.com/img/mask-icon-128.svg?c1c7eca266cd7013?1739771134" color="#4f5671"> <link rel="apple-touch-icon" sizes="180x180" href="https://pub.mdpi-res.com/icon/apple-touch-icon-180x180.png?1739771134"> <link rel="apple-touch-icon" sizes="152x152" href="https://pub.mdpi-res.com/icon/apple-touch-icon-152x152.png?1739771134"> <link rel="apple-touch-icon" sizes="144x144" href="https://pub.mdpi-res.com/icon/apple-touch-icon-144x144.png?1739771134"> <link rel="apple-touch-icon" sizes="120x120" href="https://pub.mdpi-res.com/icon/apple-touch-icon-120x120.png?1739771134"> <link rel="apple-touch-icon" sizes="114x114" href="https://pub.mdpi-res.com/icon/apple-touch-icon-114x114.png?1739771134"> <link rel="apple-touch-icon" sizes="76x76" href="https://pub.mdpi-res.com/icon/apple-touch-icon-76x76.png?1739771134"> <link rel="apple-touch-icon" sizes="72x72" href="https://pub.mdpi-res.com/icon/apple-touch-icon-72x72.png?1739771134"> <link rel="apple-touch-icon" sizes="57x57" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1739771134"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1739771134"> <link rel="apple-touch-icon-precomposed" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1739771134"> <link rel="manifest" href="/manifest.json"> <meta name="theme-color" content="#ffffff"> <meta name="application-name" content="&nbsp;"/> <link rel="apple-touch-startup-image" href="https://pub.mdpi-res.com/img/journals/algorithms-logo-sq.png?8600e93ff98dbf14"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/img/journals/algorithms-logo-sq.png?8600e93ff98dbf14"> <meta name="msapplication-TileImage" content="https://pub.mdpi-res.com/img/journals/algorithms-logo-sq.png?8600e93ff98dbf14"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1739771134"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1739771134"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/xml2html/article-html.css?230b005b39af4260?1739771134"> <style> h2, #abstract .related_suggestion_title { } .batch_articles a { color: #000; } a, .batch_articles .authors a, a:focus, a:hover, a:active, .batch_articles a:focus, .batch_articles a:hover, li.side-menu-li a { } span.label a { color: #fff; } #main-content a.title-link:hover, #main-content a.title-link:focus, #main-content div.generic-item a.title-link:hover, #main-content div.generic-item a.title-link:focus { } #main-content #middle-column .generic-item.article-item a.title-link:hover, #main-content #middle-column .generic-item.article-item a.title-link:focus { } .art-authors a.toEncode { color: #333; font-weight: 700; } #main-content #middle-column ul li::before { } .accordion-navigation.active a.accordion__title, .accordion-navigation.active a.accordion__title::after { } .accordion-navigation li:hover::before, .accordion-navigation li:hover a, .accordion-navigation li:focus a { } .relative-size-container .relative-size-image .relative-size { } .middle-column__help__fixed a:hover i, } input[type="checkbox"]:checked:after { } input[type="checkbox"]:not(:disabled):hover:before { } #main-content .bolded-text { } #main-content .hypothesis-count-container { } #main-content .hypothesis-count-container:before { } .full-size-menu ul li.menu-item .dropdown-wrapper { } .full-size-menu ul li.menu-item > a.open::after { } #title-story .title-story-orbit .orbit-caption { #background: url('/img/design/000000_background.png') !important; background: url('/img/design/ffffff_background.png') !important; color: rgb(51, 51, 51) !important; } #main-content .content__container__orbit { background-color: #000 !important; } #main-content .content__container__journal { color: #fff; } .html-article-menu .row span { } .html-article-menu .row span.active { } .accordion-navigation__journal .side-menu-li.active::before, .accordion-navigation__journal .side-menu-li.active a { color: rgba(52,119,46,0.75) !important; font-weight: 700; } .accordion-navigation__journal .side-menu-li:hover::before , .accordion-navigation__journal .side-menu-li:hover a { color: rgba(52,119,46,0.75) !important; } .side-menu-ul li.active a, .side-menu-ul li.active, .side-menu-ul li.active::before { color: rgba(52,119,46,0.75) !important; } .side-menu-ul li.active a { } .result-selected, .active-result.highlighted, .active-result:hover, .result-selected, .active-result.highlighted, .active-result:focus { } .search-container.search-container__default-scheme { } nav.tab-bar .open-small-search.active:after { } .search-container.search-container__default-scheme .custom-accordion-for-small-screen-link::after { color: #fff; } @media only screen and (max-width: 50em) { #main-content .content__container.journal-info { color: #fff; } #main-content .content__container.journal-info a { color: #fff; } } .button.button--color { } .button.button--color:hover, .button.button--color:focus { } .button.button--color-journal { position: relative; background-color: rgba(52,119,46,0.75); border-color: #fff; color: #fff !important; } .button.button--color-journal:hover::before { content: ''; position: absolute; top: 0; left: 0; height: 100%; width: 100%; background-color: #ffffff; opacity: 0.2; } .button.button--color-journal:visited, .button.button--color-journal:hover, .button.button--color-journal:focus { background-color: rgba(52,119,46,0.75); border-color: #fff; color: #fff !important; } .button.button--color path { } .button.button--color:hover path { fill: #fff; } #main-content #search-refinements .ui-slider-horizontal .ui-slider-range { } .breadcrumb__element:last-of-type a { } #main-header { } #full-size-menu .top-bar, #full-size-menu li.menu-item span.user-email { } .top-bar-section li:not(.has-form) a:not(.button) { } #full-size-menu li.menu-item .dropdown-wrapper li a:hover { } #full-size-menu li.menu-item a:hover, #full-size-menu li.menu.item a:focus, nav.tab-bar a:hover { } #full-size-menu li.menu.item a:active, #full-size-menu li.menu.item a.active { } #full-size-menu li.menu-item a.open-mega-menu.active, #full-size-menu li.menu-item div.mega-menu, a.open-mega-menu.active { } #full-size-menu li.menu-item div.mega-menu li, #full-size-menu li.menu-item div.mega-menu a { border-color: #9a9a9a; } div.type-section h2 { font-size: 20px; line-height: 26px; font-weight: 300; } div.type-section h3 { margin-left: 15px; margin-bottom: 0px; font-weight: 300; } .journal-tabs .tab-title.active a { } </style> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/slick.css?f38b2db10e01b157?1739771134"> <meta name="title" content="A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions"> <meta name="description" content="A number of AI-generated tools are used today to clone human voices, leading to a new technology known as Audio Deepfakes (ADs). Despite being introduced to enhance human lives as audiobooks, ADs have been used to disrupt public safety. ADs have thus recently come to the attention of researchers, with Machine Learning (ML) and Deep Learning (DL) methods being developed to detect them. In this article, a review of existing AD detection methods was conducted, along with a comparative description of the available faked audio datasets. The article introduces types of AD attacks and then outlines and analyzes the detection methods and datasets for imitation- and synthetic-based Deepfakes. To the best of the authors&rsquo; knowledge, this is the first review targeting imitated and synthetically generated audio detection methods. The similarities and differences of AD detection methods are summarized by providing a quantitative comparison that finds that the method type affects the performance more than the audio features themselves, in which a substantial tradeoff between the accuracy and scalability exists. Moreover, at the end of this article, the potential research directions and challenges of Deepfake detection methods are discussed to discover that, even though AD detection is an active area of research, further research is still needed to address the existing gaps. This article can be a starting point for researchers to understand the current state of the AD literature and investigate more robust detection models that can detect fakeness even if the target audio contains accented voices or real-world noises." > <link rel="image_src" href="https://pub.mdpi-res.com/img/journals/algorithms-logo.png?8600e93ff98dbf14" > <meta name="dc.title" content="A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions"> <meta name="dc.creator" content="Zaynab Almutairi"> <meta name="dc.creator" content="Hebah Elgibreen"> <meta name="dc.type" content="Review"> <meta name="dc.source" content="Algorithms 2022, Vol. 15, Page 155"> <meta name="dc.date" content="2022-05-04"> <meta name ="dc.identifier" content="10.3390/a15050155"> <meta name="dc.publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/3.0/"> <meta name="dc.format" content="application/pdf" > <meta name="dc.language" content="en" > <meta name="dc.description" content="A number of AI-generated tools are used today to clone human voices, leading to a new technology known as Audio Deepfakes (ADs). Despite being introduced to enhance human lives as audiobooks, ADs have been used to disrupt public safety. ADs have thus recently come to the attention of researchers, with Machine Learning (ML) and Deep Learning (DL) methods being developed to detect them. In this article, a review of existing AD detection methods was conducted, along with a comparative description of the available faked audio datasets. The article introduces types of AD attacks and then outlines and analyzes the detection methods and datasets for imitation- and synthetic-based Deepfakes. To the best of the authors&rsquo; knowledge, this is the first review targeting imitated and synthetically generated audio detection methods. The similarities and differences of AD detection methods are summarized by providing a quantitative comparison that finds that the method type affects the performance more than the audio features themselves, in which a substantial tradeoff between the accuracy and scalability exists. Moreover, at the end of this article, the potential research directions and challenges of Deepfake detection methods are discussed to discover that, even though AD detection is an active area of research, further research is still needed to address the existing gaps. This article can be a starting point for researchers to understand the current state of the AD literature and investigate more robust detection models that can detect fakeness even if the target audio contains accented voices or real-world noises." > <meta name="dc.subject" content="Audio Deepfakes (ADs)" > <meta name="dc.subject" content="Machine Learning (ML)" > <meta name="dc.subject" content="Deep Learning (DL)" > <meta name="dc.subject" content="imitated audio" > <meta name ="prism.issn" content="1999-4893"> <meta name ="prism.publicationName" content="Algorithms"> <meta name ="prism.publicationDate" content="2022-05-04"> <meta name ="prism.volume" content="15"> <meta name ="prism.number" content="5"> <meta name ="prism.section" content="Review" > <meta name ="prism.startingPage" content="155" > <meta name="citation_issn" content="1999-4893"> <meta name="citation_journal_title" content="Algorithms"> <meta name="citation_publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="citation_title" content="A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions"> <meta name="citation_publication_date" content="2022/5"> <meta name="citation_online_date" content="2022/05/04"> <meta name="citation_volume" content="15"> <meta name="citation_issue" content="5"> <meta name="citation_firstpage" content="155"> <meta name="citation_author" content="Almutairi, Zaynab"> <meta name="citation_author" content="Elgibreen, Hebah"> <meta name="citation_doi" content="10.3390/a15050155"> <meta name="citation_id" content="mdpi-a15050155"> <meta name="citation_abstract_html_url" content="https://www.mdpi.com/1999-4893/15/5/155"> <meta name="citation_pdf_url" content="https://www.mdpi.com/1999-4893/15/5/155/pdf?version=1652175692"> <link rel="alternate" type="application/pdf" title="PDF Full-Text" href="https://www.mdpi.com/1999-4893/15/5/155/pdf?version=1652175692"> <meta name="fulltext_pdf" content="https://www.mdpi.com/1999-4893/15/5/155/pdf?version=1652175692"> <meta name="citation_fulltext_html_url" content="https://www.mdpi.com/1999-4893/15/5/155/htm"> <link rel="alternate" type="text/html" title="HTML Full-Text" href="https://www.mdpi.com/1999-4893/15/5/155/htm"> <meta name="fulltext_html" content="https://www.mdpi.com/1999-4893/15/5/155/htm"> <link rel="alternate" type="text/xml" title="XML Full-Text" href="https://www.mdpi.com/1999-4893/15/5/155/xml"> <meta name="fulltext_xml" content="https://www.mdpi.com/1999-4893/15/5/155/xml"> <meta name="citation_xml_url" content="https://www.mdpi.com/1999-4893/15/5/155/xml"> <meta name="twitter:card" content="summary" /> <meta name="twitter:site" content="@MDPIOpenAccess" /> <meta name="twitter:image" content="https://pub.mdpi-res.com/img/journals/algorithms-logo-social.png?8600e93ff98dbf14" /> <meta property="fb:app_id" content="131189377574"/> <meta property="og:site_name" content="MDPI"/> <meta property="og:type" content="article"/> <meta property="og:url" content="https://www.mdpi.com/1999-4893/15/5/155" /> <meta property="og:title" content="A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions" /> <meta property="og:description" content="A number of AI-generated tools are used today to clone human voices, leading to a new technology known as Audio Deepfakes (ADs). Despite being introduced to enhance human lives as audiobooks, ADs have been used to disrupt public safety. ADs have thus recently come to the attention of researchers, with Machine Learning (ML) and Deep Learning (DL) methods being developed to detect them. In this article, a review of existing AD detection methods was conducted, along with a comparative description of the available faked audio datasets. The article introduces types of AD attacks and then outlines and analyzes the detection methods and datasets for imitation- and synthetic-based Deepfakes. To the best of the authors&rsquo; knowledge, this is the first review targeting imitated and synthetically generated audio detection methods. The similarities and differences of AD detection methods are summarized by providing a quantitative comparison that finds that the method type affects the performance more than the audio features themselves, in which a substantial tradeoff between the accuracy and scalability exists. Moreover, at the end of this article, the potential research directions and challenges of Deepfake detection methods are discussed to discover that, even though AD detection is an active area of research, further research is still needed to address the existing gaps. This article can be a starting point for researchers to understand the current state of the AD literature and investigate more robust detection models that can detect fakeness even if the target audio contains accented voices or real-world noises." /> <meta property="og:image" content="https://pub.mdpi-res.com/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g001-550.jpg?1652175764" /> <link rel="alternate" type="application/rss+xml" title="MDPI Publishing - Latest articles" href="https://www.mdpi.com/rss"> <meta name="google-site-verification" content="PxTlsg7z2S00aHroktQd57fxygEjMiNHydKn3txhvwY"> <meta name="facebook-domain-verification" content="mcoq8dtq6sb2hf7z29j8w515jjoof7" /> <script id="Cookiebot" data-cfasync="false" src="https://consent.cookiebot.com/uc.js" data-cbid="51491ddd-fe7a-4425-ab39-69c78c55829f" type="text/javascript" async></script> <!--[if lt IE 9]> <script>var browserIe8 = true;</script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/ie8foundationfix.css?50273beac949cbf0?1739771134"> <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.6.2/html5shiv.js"></script> <script src="//s3.amazonaws.com/nwapi/nwmatcher/nwmatcher-1.2.5-min.js"></script> <script src="//html5base.googlecode.com/svn-history/r38/trunk/js/selectivizr-1.0.3b.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/respond.js/1.1.0/respond.min.js"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8patch.js?9e1d3c689a0471df?1739771134"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/rem.min.js?94b62787dcd6d2f2?1739771134"></script> <![endif]--> <script type="text/plain" data-cookieconsent="statistics"> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-WPK7SW5'); </script> <script type="text/plain" data-cookieconsent="statistics"> _linkedin_partner_id = "2846186"; window._linkedin_data_partner_ids = window._linkedin_data_partner_ids || []; window._linkedin_data_partner_ids.push(_linkedin_partner_id); </script><script type="text/javascript"> (function(){var s = document.getElementsByTagName("script")[0]; var b = document.createElement("script"); b.type = "text/javascript";b.async = true; b.src = "https://snap.licdn.com/li.lms-analytics/insight.min.js"; s.parentNode.insertBefore(b, s);})(); </script> <script type="text/plain" data-cookieconsent="statistics" data-cfasync="false" src="//script.crazyegg.com/pages/scripts/0116/4951.js" async="async" ></script> </head> <body> <div class="direction direction_right" id="small_right" style="border-right-width: 0px; padding:0;"> <i class="fa fa-caret-right fa-2x"></i> </div> <div class="big_direction direction_right" id="big_right" style="border-right-width: 0px;"> <div style="text-align: right;"> Next Article in Journal<br> <div><a href="/1999-4893/15/5/156">Binary Horse Optimization Algorithm for Feature Selection</a></div> Next Article in Special Issue<br> <div><a href="/1999-4893/15/7/247">Comparative Review of the Intrusion Detection Systems Based on Federated Learning: Advantages and Open Challenges</a></div> </div> </div> <div class="direction" id="small_left" style="border-left-width: 0px"> <i class="fa fa-caret-left fa-2x"></i> </div> <div class="big_direction" id="big_left" style="border-left-width: 0px;"> <div> Previous Article in Journal<br> <div><a href="/1999-4893/15/5/154">Improving the Quantum Multi-Swarm Optimization with Adaptive Differential Evolution for Dynamic Environments</a></div> </div> </div> <div style="clear: both;"></div> <div id="menuModal" class="reveal-modal reveal-modal-new reveal-modal-menu" aria-hidden="true" data-reveal role="dialog"> <div class="menu-container"> <div class="UI_NavMenu"> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Journals</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about/journals">Active Journals</a> <a href="/about/journalfinder">Find a Journal</a> <a href="/about/journals/proposal">Journal Proposal</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <a href="/topics"> <h2>Topics</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Information</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; max-width: 200px; float: left;"> <a href="/authors">For Authors</a> <a href="/reviewers">For Reviewers</a> <a href="/editors">For Editors</a> <a href="/librarians">For Librarians</a> <a href="/publishing_services">For Publishers</a> <a href="/societies">For Societies</a> <a href="/conference_organizers">For Conference Organizers</a> </div> <div style="width: 100%; max-width: 250px; float: left;"> <a href="/openaccess">Open Access Policy</a> <a href="/ioap">Institutional Open Access Program</a> <a href="/special_issues_guidelines">Special Issues Guidelines</a> <a href="/editorial_process">Editorial Process</a> <a href="/ethics">Research and Publication Ethics</a> <a href="/apc">Article Processing Charges</a> <a href="/awards">Awards</a> <a href="/testimonials">Testimonials</a> </div> </div> </div> </div> <a href="/authors/english"> <h2>Author Services</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Initiatives</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer">Sciforum</a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer">MDPI Books</a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer">Preprints.org</a> <a href="https://www.scilit.com" target="_blank" rel="noopener noreferrer">Scilit</a> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer">SciProfiles</a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer">Encyclopedia</a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer">JAMS</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>About</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about">Overview</a> <a href="/about/contact">Contact</a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer">Careers</a> <a href="/about/announcements">News</a> <a href="/about/press">Press</a> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer">Blog</a> </div> </div> </div> </div> </div> <div class="menu-container__buttons"> <a class="button UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> </div> </div> </div> <div id="captchaModal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-label="Captcha" aria-hidden="true" role="dialog"></div> <div id="actionDisabledModal" class="reveal-modal" data-reveal aria-labelledby="actionDisableModalTitle" aria-hidden="true" role="dialog" style="width: 300px;"> <h2 id="actionDisableModalTitle">Notice</h2> <form action="/email/captcha" method="post" id="emailCaptchaForm"> <div class="row"> <div id="js-action-disabled-modal-text" class="small-12 columns"> </div> <div id="js-action-disabled-modal-submit" class="small-12 columns" style="margin-top: 10px; display: none;"> You can make submissions to other journals <a href="https://susy.mdpi.com/user/manuscripts/upload">here</a>. </div> </div> </form> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="rssNotificationModal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="rssNotificationModalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="rssNotificationModalTitle">Notice</h2> <p> You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader. </p> </div> </div> <div class="row"> <div class="small-12 columns"> <a class="button button--color js-rss-notification-confirm">Continue</a> <a class="button button--grey" onclick="$(this).closest('.reveal-modal').find('.close-reveal-modal').click(); return false;">Cancel</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="drop-article-label-openaccess" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to <a href="https://www.mdpi.com/openaccess">https://www.mdpi.com/openaccess</a>. </p> </div> <div id="drop-article-label-feature" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications. </p> <p> Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers. </p> </div> <div id="drop-article-label-choice" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal. <div style="margin-top: -10px;"> <div id="drop-article-label-choice-journal-link" style="display: none; margin-top: -10px; padding-top: 10px;"> </div> </div> </p> </div> <div id="drop-article-label-resubmission" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Original Submission Date Received: <span id="drop-article-label-resubmission-date"></span>. </p> </div> <div id="container"> <noscript> <div id="no-javascript"> You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled. </div> </noscript> <div class="fixed"> <nav class="tab-bar show-for-medium-down"> <div class="row full-width collapse"> <div class="medium-3 small-4 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1739771134" style="width: 64px;" title="MDPI Open Access Journals"> </a> </div> <div class="medium-3 small-4 columns right-aligned"> <div class="show-for-medium-down"> <a href="#" style="display: none;"> <i class="material-icons" onclick="$('#menuModal').foundation('reveal', 'close'); return false;">clear</i> </a> <a class="js-toggle-desktop-layout-link" title="Toggle desktop layout" style="display: none;" href="/toggle_desktop_layout_cookie"> <i class="material-icons">zoom_out_map</i> </a> <a href="#" class="js-open-small-search open-small-search"> <i class="material-icons show-for-small only">search</i> </a> <a title="MDPI main page" class="js-open-menu" data-reveal-id="menuModal" href="#"> <i class="material-icons">menu</i> </a> </div> </div> </div> </nav> </div> <section class="main-section"> <header> <div class="full-size-menu show-for-large-up"> <div class="row full-width"> <div class="large-1 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1739771134" title="MDPI Open Access Journals"> </a> </div> <div class="large-8 columns text-right UI_NavMenu"> <ul> <li class="menu-item"> <a href="/about/journals" data-dropdown="journals-dropdown" aria-controls="journals-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Journals</a> <ul id="journals-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about/journals"> Active Journals </a> </li> <li> <a href="/about/journalfinder"> Find a Journal </a> </li> <li> <a href="/about/journals/proposal"> Journal Proposal </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/topics">Topics</a> </li> <li class="menu-item"> <a href="/authors" data-dropdown="information-dropdown" aria-controls="information-dropdown" aria-expanded="false" data-options="is_hover:true; hover_timeout:200">Information</a> <ul id="information-dropdown" class="f-dropdown dropdown-wrapper" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-5 columns right-border"> <ul> <li> <a href="/authors">For Authors</a> </li> <li> <a href="/reviewers">For Reviewers</a> </li> <li> <a href="/editors">For Editors</a> </li> <li> <a href="/librarians">For Librarians</a> </li> <li> <a href="/publishing_services">For Publishers</a> </li> <li> <a href="/societies">For Societies</a> </li> <li> <a href="/conference_organizers">For Conference Organizers</a> </li> </ul> </div> <div class="small-7 columns"> <ul> <li> <a href="/openaccess">Open Access Policy</a> </li> <li> <a href="/ioap">Institutional Open Access Program</a> </li> <li> <a href="/special_issues_guidelines">Special Issues Guidelines</a> </li> <li> <a href="/editorial_process">Editorial Process</a> </li> <li> <a href="/ethics">Research and Publication Ethics</a> </li> <li> <a href="/apc">Article Processing Charges</a> </li> <li> <a href="/awards">Awards</a> </li> <li> <a href="/testimonials">Testimonials</a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/authors/english">Author Services</a> </li> <li class="menu-item"> <a href="/about/initiatives" data-dropdown="initiatives-dropdown" aria-controls="initiatives-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Initiatives</a> <ul id="initiatives-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> </li> <li> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> </li> <li> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> </li> <li> <a href="https://www.scilit.com" target="_blank" rel="noopener noreferrer"> Scilit </a> </li> <li> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer"> SciProfiles </a> </li> <li> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> </li> <li> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/about" data-dropdown="about-dropdown" aria-controls="about-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">About</a> <ul id="about-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about"> Overview </a> </li> <li> <a href="/about/contact"> Contact </a> </li> <li> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Careers </a> </li> <li> <a href="/about/announcements"> News </a> </li> <li> <a href="/about/press"> Press </a> </li> <li> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer"> Blog </a> </li> </ul> </div> </div> </li> </ul> </li> </ul> </div> <div class="large-3 columns text-right full-size-menu__buttons"> <div> <a class="button button--default-inversed UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> <a class="button button--default js-journal-active-only-link js-journal-active-only-submit-link UC_NavSubmitButton" href=" https://susy.mdpi.com/user/manuscripts/upload?journal=algorithms " data-disabledmessage="new submissions are not possible.">Submit</a> </div> </div> </div> </div> <div class="header-divider">&nbsp;</div> <div class="search-container hide-for-small-down row search-container__homepage-scheme"> <form id="basic_search" style="background-color: inherit !important;" class="large-12 medium-12 columns " action="/search" method="get"> <div class="row search-container__main-elements"> <div class="large-2 medium-2 small-12 columns text-right1 small-only-text-left"> <div class="show-for-medium-up"> <div class="search-input-label">&nbsp;</div> </div> <span class="search-container__title">Search<span class="hide-for-medium"> for Articles</span><span class="hide-for-small">:</span></span> </div> <div class="custom-accordion-for-small-screen-content"> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Title / Keyword</div> </div> <input type="text" placeholder="Title / Keyword" id="q" tabindex="1" name="q" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Author / Affiliation / Email</div> </div> <input type="text" id="authors" placeholder="Author / Affiliation / Email" tabindex="2" name="authors" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Journal</div> </div> <select id="journal" tabindex="3" name="journal" class="chosen-select"> <option value="">All Journals</option> <option value="acoustics" > Acoustics </option> <option value="amh" > Acta Microbiologica Hellenica (AMH) </option> <option value="actuators" > Actuators </option> <option value="adhesives" > Adhesives </option> <option value="admsci" > Administrative Sciences </option> <option value="adolescents" > Adolescents </option> <option value="arm" > Advances in Respiratory Medicine (ARM) </option> <option value="aerobiology" > Aerobiology </option> <option value="aerospace" > Aerospace </option> <option value="agriculture" > Agriculture </option> <option value="agriengineering" > AgriEngineering </option> <option value="agrochemicals" > Agrochemicals </option> <option value="agronomy" > Agronomy </option> <option value="ai" > AI </option> <option value="aisens" > AI Sensors </option> <option value="air" > Air </option> <option value="algorithms" selected='selected'> Algorithms </option> <option value="allergies" > Allergies </option> <option value="alloys" > Alloys </option> <option value="analytica" > Analytica </option> <option value="analytics" > Analytics </option> <option value="anatomia" > Anatomia </option> <option value="anesthres" > Anesthesia Research </option> <option value="animals" > Animals </option> <option value="antibiotics" > Antibiotics </option> <option value="antibodies" > Antibodies </option> <option value="antioxidants" > Antioxidants </option> <option value="applbiosci" > Applied Biosciences </option> <option value="applmech" > Applied Mechanics </option> <option value="applmicrobiol" > Applied Microbiology </option> <option value="applnano" > Applied Nano </option> <option value="applsci" > Applied Sciences </option> <option value="asi" > Applied System Innovation (ASI) </option> <option value="appliedchem" > AppliedChem </option> <option value="appliedmath" > AppliedMath </option> <option value="aquacj" > Aquaculture Journal </option> <option value="architecture" > Architecture </option> <option value="arthropoda" > Arthropoda </option> <option value="arts" > Arts </option> <option value="astronomy" > Astronomy </option> <option value="atmosphere" > Atmosphere </option> <option value="atoms" > Atoms </option> <option value="audiolres" > Audiology Research </option> <option value="automation" > Automation </option> <option value="axioms" > Axioms </option> <option value="bacteria" > Bacteria </option> <option value="batteries" > Batteries </option> <option value="behavsci" > Behavioral Sciences </option> <option value="beverages" > Beverages </option> <option value="BDCC" > Big Data and Cognitive Computing (BDCC) </option> <option value="biochem" > BioChem </option> <option value="bioengineering" > Bioengineering </option> <option value="biologics" > Biologics </option> <option value="biology" > Biology </option> <option value="blsf" > Biology and Life Sciences Forum </option> <option value="biomass" > Biomass </option> <option value="biomechanics" > Biomechanics </option> <option value="biomed" > BioMed </option> <option value="biomedicines" > Biomedicines </option> <option value="biomedinformatics" > BioMedInformatics </option> <option value="biomimetics" > Biomimetics </option> <option value="biomolecules" > Biomolecules </option> <option value="biophysica" > Biophysica </option> <option value="biosensors" > Biosensors </option> <option value="biosphere" > Biosphere </option> <option value="biotech" > BioTech </option> <option value="birds" > Birds </option> <option value="blockchains" > Blockchains </option> <option value="brainsci" > Brain Sciences </option> <option value="buildings" > Buildings </option> <option value="businesses" > Businesses </option> <option value="carbon" > C (Journal of Carbon Research) </option> <option value="cancers" > Cancers </option> <option value="cardiogenetics" > Cardiogenetics </option> <option value="catalysts" > Catalysts </option> <option value="cells" > Cells </option> <option value="ceramics" > Ceramics </option> <option value="challenges" > Challenges </option> <option value="ChemEngineering" > ChemEngineering </option> <option value="chemistry" > Chemistry </option> <option value="chemproc" > Chemistry Proceedings </option> <option value="chemosensors" > Chemosensors </option> <option value="children" > Children </option> <option value="chips" > Chips </option> <option value="civileng" > CivilEng </option> <option value="cleantechnol" > Clean Technologies (Clean Technol.) </option> <option value="climate" > Climate </option> <option value="ctn" > Clinical and Translational Neuroscience (CTN) </option> <option value="clinbioenerg" > Clinical Bioenergetics </option> <option value="clinpract" > Clinics and Practice </option> <option value="clockssleep" > Clocks &amp; Sleep </option> <option value="coasts" > Coasts </option> <option value="coatings" > Coatings </option> <option value="colloids" > Colloids and Interfaces </option> <option value="colorants" > Colorants </option> <option value="commodities" > Commodities </option> <option value="complications" > Complications </option> <option value="compounds" > Compounds </option> <option value="computation" > Computation </option> <option value="csmf" > Computer Sciences &amp; Mathematics Forum </option> <option value="computers" > Computers </option> <option value="condensedmatter" > Condensed Matter </option> <option value="conservation" > Conservation </option> <option value="constrmater" > Construction Materials </option> <option value="cmd" > Corrosion and Materials Degradation (CMD) </option> <option value="cosmetics" > Cosmetics </option> <option value="covid" > COVID </option> <option value="cmtr" > Craniomaxillofacial Trauma &amp; Reconstruction (CMTR) </option> <option value="crops" > Crops </option> <option value="cryo" > Cryo </option> <option value="cryptography" > Cryptography </option> <option value="crystals" > Crystals </option> <option value="cimb" > Current Issues in Molecular Biology (CIMB) </option> <option value="curroncol" > Current Oncology </option> <option value="dairy" > Dairy </option> <option value="data" > Data </option> <option value="dentistry" > Dentistry Journal </option> <option value="dermato" > Dermato </option> <option value="dermatopathology" > Dermatopathology </option> <option value="designs" > Designs </option> <option value="diabetology" > Diabetology </option> <option value="diagnostics" > Diagnostics </option> <option value="dietetics" > Dietetics </option> <option value="digital" > Digital </option> <option value="disabilities" > Disabilities </option> <option value="diseases" > Diseases </option> <option value="diversity" > Diversity </option> <option value="dna" > DNA </option> <option value="drones" > Drones </option> <option value="ddc" > Drugs and Drug Candidates (DDC) </option> <option value="dynamics" > Dynamics </option> <option value="earth" > Earth </option> <option value="ecologies" > Ecologies </option> <option value="econometrics" > Econometrics </option> <option value="economies" > Economies </option> <option value="education" > Education Sciences </option> <option value="electricity" > Electricity </option> <option value="electrochem" > Electrochem </option> <option value="electronicmat" > Electronic Materials </option> <option value="electronics" > Electronics </option> <option value="ecm" > Emergency Care and Medicine </option> <option value="encyclopedia" > Encyclopedia </option> <option value="endocrines" > Endocrines </option> <option value="energies" > Energies </option> <option value="esa" > Energy Storage and Applications (ESA) </option> <option value="eng" > Eng </option> <option value="engproc" > Engineering Proceedings </option> <option value="entropy" > Entropy </option> <option value="eesp" > Environmental and Earth Sciences Proceedings </option> <option value="environments" > Environments </option> <option value="epidemiologia" > Epidemiologia </option> <option value="epigenomes" > Epigenomes </option> <option value="ebj" > European Burn Journal (EBJ) </option> <option value="ejihpe" > European Journal of Investigation in Health, Psychology and Education (EJIHPE) </option> <option value="fermentation" > Fermentation </option> <option value="fibers" > Fibers </option> <option value="fintech" > FinTech </option> <option value="fire" > Fire </option> <option value="fishes" > Fishes </option> <option value="fluids" > Fluids </option> <option value="foods" > Foods </option> <option value="forecasting" > Forecasting </option> <option value="forensicsci" > Forensic Sciences </option> <option value="forests" > Forests </option> <option value="fossstud" > Fossil Studies </option> <option value="foundations" > Foundations </option> <option value="fractalfract" > Fractal and Fractional (Fractal Fract) </option> <option value="fuels" > Fuels </option> <option value="future" > Future </option> <option value="futureinternet" > Future Internet </option> <option value="futurepharmacol" > Future Pharmacology </option> <option value="futuretransp" > Future Transportation </option> <option value="galaxies" > Galaxies </option> <option value="games" > Games </option> <option value="gases" > Gases </option> <option value="gastroent" > Gastroenterology Insights </option> <option value="gastrointestdisord" > Gastrointestinal Disorders </option> <option value="gastronomy" > Gastronomy </option> <option value="gels" > Gels </option> <option value="genealogy" > Genealogy </option> <option value="genes" > Genes </option> <option value="geographies" > Geographies </option> <option value="geohazards" > GeoHazards </option> <option value="geomatics" > Geomatics </option> <option value="geometry" > Geometry </option> <option value="geosciences" > Geosciences </option> <option value="geotechnics" > Geotechnics </option> <option value="geriatrics" > Geriatrics </option> <option value="glacies" > Glacies </option> <option value="gucdd" > Gout, Urate, and Crystal Deposition Disease (GUCDD) </option> <option value="grasses" > Grasses </option> <option value="greenhealth" > Green Health </option> <option value="hardware" > Hardware </option> <option value="healthcare" > Healthcare </option> <option value="hearts" > Hearts </option> <option value="hemato" > Hemato </option> <option value="hematolrep" > Hematology Reports </option> <option value="heritage" > Heritage </option> <option value="histories" > Histories </option> <option value="horticulturae" > Horticulturae </option> <option value="hospitals" > Hospitals </option> <option value="humanities" > Humanities </option> <option value="humans" > Humans </option> <option value="hydrobiology" > Hydrobiology </option> <option value="hydrogen" > Hydrogen </option> <option value="hydrology" > Hydrology </option> <option value="hygiene" > Hygiene </option> <option value="immuno" > Immuno </option> <option value="idr" > Infectious Disease Reports </option> <option value="informatics" > Informatics </option> <option value="information" > Information </option> <option value="infrastructures" > Infrastructures </option> <option value="inorganics" > Inorganics </option> <option value="insects" > Insects </option> <option value="instruments" > Instruments </option> <option value="iic" > Intelligent Infrastructure and Construction </option> <option value="ijerph" > International Journal of Environmental Research and Public Health (IJERPH) </option> <option value="ijfs" > International Journal of Financial Studies (IJFS) </option> <option value="ijms" > International Journal of Molecular Sciences (IJMS) </option> <option value="IJNS" > International Journal of Neonatal Screening (IJNS) </option> <option value="ijom" > International Journal of Orofacial Myology and Myofunctional Therapy (IJOM) </option> <option value="ijpb" > International Journal of Plant Biology (IJPB) </option> <option value="ijt" > International Journal of Topology </option> <option value="ijtm" > International Journal of Translational Medicine (IJTM) </option> <option value="ijtpp" > International Journal of Turbomachinery, Propulsion and Power (IJTPP) </option> <option value="ime" > International Medical Education (IME) </option> <option value="inventions" > Inventions </option> <option value="IoT" > IoT </option> <option value="ijgi" > ISPRS International Journal of Geo-Information (IJGI) </option> <option value="J" > J </option> <option value="jal" > Journal of Ageing and Longevity (JAL) </option> <option value="jcdd" > Journal of Cardiovascular Development and Disease (JCDD) </option> <option value="jcto" > Journal of Clinical &amp; Translational Ophthalmology (JCTO) </option> <option value="jcm" > Journal of Clinical Medicine (JCM) </option> <option value="jcs" > Journal of Composites Science (J. Compos. Sci.) </option> <option value="jcp" > Journal of Cybersecurity and Privacy (JCP) </option> <option value="jdad" > Journal of Dementia and Alzheimer&#039;s Disease (JDAD) </option> <option value="jdb" > Journal of Developmental Biology (JDB) </option> <option value="jeta" > Journal of Experimental and Theoretical Analyses (JETA) </option> <option value="jemr" > Journal of Eye Movement Research (JEMR) </option> <option value="jfb" > Journal of Functional Biomaterials (JFB) </option> <option value="jfmk" > Journal of Functional Morphology and Kinesiology (JFMK) </option> <option value="jof" > Journal of Fungi (JoF) </option> <option value="jimaging" > Journal of Imaging (J. Imaging) </option> <option value="jintelligence" > Journal of Intelligence (J. Intell.) </option> <option value="jlpea" > Journal of Low Power Electronics and Applications (JLPEA) </option> <option value="jmmp" > Journal of Manufacturing and Materials Processing (JMMP) </option> <option value="jmse" > Journal of Marine Science and Engineering (JMSE) </option> <option value="jmahp" > Journal of Market Access &amp; Health Policy (JMAHP) </option> <option value="jmms" > Journal of Mind and Medical Sciences (JMMS) </option> <option value="jmp" > Journal of Molecular Pathology (JMP) </option> <option value="jnt" > Journal of Nanotheranostics (JNT) </option> <option value="jne" > Journal of Nuclear Engineering (JNE) </option> <option value="ohbm" > Journal of Otorhinolaryngology, Hearing and Balance Medicine (JOHBM) </option> <option value="jop" > Journal of Parks </option> <option value="jpm" > Journal of Personalized Medicine (JPM) </option> <option value="jpbi" > Journal of Pharmaceutical and BioTech Industry (JPBI) </option> <option value="jor" > Journal of Respiration (JoR) </option> <option value="jrfm" > Journal of Risk and Financial Management (JRFM) </option> <option value="jsan" > Journal of Sensor and Actuator Networks (JSAN) </option> <option value="joma" > Journal of the Oman Medical Association (JOMA) </option> <option value="jtaer" > Journal of Theoretical and Applied Electronic Commerce Research (JTAER) </option> <option value="jvd" > Journal of Vascular Diseases (JVD) </option> <option value="jox" > Journal of Xenobiotics (JoX) </option> <option value="jzbg" > Journal of Zoological and Botanical Gardens (JZBG) </option> <option value="journalmedia" > Journalism and Media </option> <option value="kidneydial" > Kidney and Dialysis </option> <option value="kinasesphosphatases" > Kinases and Phosphatases </option> <option value="knowledge" > Knowledge </option> <option value="labmed" > LabMed </option> <option value="laboratories" > Laboratories </option> <option value="land" > Land </option> <option value="languages" > Languages </option> <option value="laws" > Laws </option> <option value="life" > Life </option> <option value="limnolrev" > Limnological Review </option> <option value="lipidology" > Lipidology </option> <option value="liquids" > Liquids </option> <option value="literature" > Literature </option> <option value="livers" > Livers </option> <option value="logics" > Logics </option> <option value="logistics" > Logistics </option> <option value="lubricants" > Lubricants </option> <option value="lymphatics" > Lymphatics </option> <option value="make" > Machine Learning and Knowledge Extraction (MAKE) </option> <option value="machines" > Machines </option> <option value="macromol" > Macromol </option> <option value="magnetism" > Magnetism </option> <option value="magnetochemistry" > Magnetochemistry </option> <option value="marinedrugs" > Marine Drugs </option> <option value="materials" > Materials </option> <option value="materproc" > Materials Proceedings </option> <option value="mca" > Mathematical and Computational Applications (MCA) </option> <option value="mathematics" > Mathematics </option> <option value="medsci" > Medical Sciences </option> <option value="msf" > Medical Sciences Forum </option> <option value="medicina" > Medicina </option> <option value="medicines" > Medicines </option> <option value="membranes" > Membranes </option> <option value="merits" > Merits </option> <option value="metabolites" > Metabolites </option> <option value="metals" > Metals </option> <option value="meteorology" > Meteorology </option> <option value="methane" > Methane </option> <option value="mps" > Methods and Protocols (MPs) </option> <option value="metrics" > Metrics </option> <option value="metrology" > Metrology </option> <option value="micro" > Micro </option> <option value="microbiolres" > Microbiology Research </option> <option value="micromachines" > Micromachines </option> <option value="microorganisms" > Microorganisms </option> <option value="microplastics" > Microplastics </option> <option value="microwave" > Microwave </option> <option value="minerals" > Minerals </option> <option value="mining" > Mining </option> <option value="modelling" > Modelling </option> <option value="mmphys" > Modern Mathematical Physics </option> <option value="molbank" > Molbank </option> <option value="molecules" > Molecules </option> <option value="mti" > Multimodal Technologies and Interaction (MTI) </option> <option value="muscles" > Muscles </option> <option value="nanoenergyadv" > Nanoenergy Advances </option> <option value="nanomanufacturing" > Nanomanufacturing </option> <option value="nanomaterials" > Nanomaterials </option> <option value="ndt" > NDT </option> <option value="network" > Network </option> <option value="neuroglia" > Neuroglia </option> <option value="neurolint" > Neurology International </option> <option value="neurosci" > NeuroSci </option> <option value="nitrogen" > Nitrogen </option> <option value="ncrna" > Non-Coding RNA (ncRNA) </option> <option value="nursrep" > Nursing Reports </option> <option value="nutraceuticals" > Nutraceuticals </option> <option value="nutrients" > Nutrients </option> <option value="obesities" > Obesities </option> <option value="oceans" > Oceans </option> <option value="onco" > Onco </option> <option value="optics" > Optics </option> <option value="oral" > Oral </option> <option value="organics" > Organics </option> <option value="organoids" > Organoids </option> <option value="osteology" > Osteology </option> <option value="oxygen" > Oxygen </option> <option value="parasitologia" > Parasitologia </option> <option value="particles" > Particles </option> <option value="pathogens" > Pathogens </option> <option value="pathophysiology" > Pathophysiology </option> <option value="pediatrrep" > Pediatric Reports </option> <option value="pets" > Pets </option> <option value="pharmaceuticals" > Pharmaceuticals </option> <option value="pharmaceutics" > Pharmaceutics </option> <option value="pharmacoepidemiology" > Pharmacoepidemiology </option> <option value="pharmacy" > Pharmacy </option> <option value="philosophies" > Philosophies </option> <option value="photochem" > Photochem </option> <option value="photonics" > Photonics </option> <option value="phycology" > Phycology </option> <option value="physchem" > Physchem </option> <option value="psf" > Physical Sciences Forum </option> <option value="physics" > Physics </option> <option value="physiologia" > Physiologia </option> <option value="plants" > Plants </option> <option value="plasma" > Plasma </option> <option value="platforms" > Platforms </option> <option value="pollutants" > Pollutants </option> <option value="polymers" > Polymers </option> <option value="polysaccharides" > Polysaccharides </option> <option value="populations" > Populations </option> <option value="poultry" > Poultry </option> <option value="powders" > Powders </option> <option value="proceedings" > Proceedings </option> <option value="processes" > Processes </option> <option value="prosthesis" > Prosthesis </option> <option value="proteomes" > Proteomes </option> <option value="psychiatryint" > Psychiatry International </option> <option value="psychoactives" > Psychoactives </option> <option value="psycholint" > Psychology International </option> <option value="publications" > Publications </option> <option value="qubs" > Quantum Beam Science (QuBS) </option> <option value="quantumrep" > Quantum Reports </option> <option value="quaternary" > Quaternary </option> <option value="radiation" > Radiation </option> <option value="reactions" > Reactions </option> <option value="realestate" > Real Estate </option> <option value="receptors" > Receptors </option> <option value="recycling" > Recycling </option> <option value="rsee" > Regional Science and Environmental Economics (RSEE) </option> <option value="religions" > Religions </option> <option value="remotesensing" > Remote Sensing </option> <option value="reports" > Reports </option> <option value="reprodmed" > Reproductive Medicine (Reprod. Med.) </option> <option value="resources" > Resources </option> <option value="rheumato" > Rheumato </option> <option value="risks" > Risks </option> <option value="robotics" > Robotics </option> <option value="ruminants" > Ruminants </option> <option value="safety" > Safety </option> <option value="sci" > Sci </option> <option value="scipharm" > Scientia Pharmaceutica (Sci. Pharm.) </option> <option value="sclerosis" > Sclerosis </option> <option value="seeds" > Seeds </option> <option value="sensors" > Sensors </option> <option value="separations" > Separations </option> <option value="sexes" > Sexes </option> <option value="signals" > Signals </option> <option value="sinusitis" > Sinusitis </option> <option value="smartcities" > Smart Cities </option> <option value="socsci" > Social Sciences </option> <option value="siuj" > Société Internationale d’Urologie Journal (SIUJ) </option> <option value="societies" > Societies </option> <option value="software" > Software </option> <option value="soilsystems" > Soil Systems </option> <option value="solar" > Solar </option> <option value="solids" > Solids </option> <option value="spectroscj" > Spectroscopy Journal </option> <option value="sports" > Sports </option> <option value="standards" > Standards </option> <option value="stats" > Stats </option> <option value="stresses" > Stresses </option> <option value="surfaces" > Surfaces </option> <option value="surgeries" > Surgeries </option> <option value="std" > Surgical Techniques Development </option> <option value="sustainability" > Sustainability </option> <option value="suschem" > Sustainable Chemistry </option> <option value="symmetry" > Symmetry </option> <option value="synbio" > SynBio </option> <option value="systems" > Systems </option> <option value="targets" > Targets </option> <option value="taxonomy" > Taxonomy </option> <option value="technologies" > Technologies </option> <option value="telecom" > Telecom </option> <option value="textiles" > Textiles </option> <option value="thalassrep" > Thalassemia Reports </option> <option value="therapeutics" > Therapeutics </option> <option value="thermo" > Thermo </option> <option value="timespace" > Time and Space </option> <option value="tomography" > Tomography </option> <option value="tourismhosp" > Tourism and Hospitality </option> <option value="toxics" > Toxics </option> <option value="toxins" > Toxins </option> <option value="transplantology" > Transplantology </option> <option value="traumacare" > Trauma Care </option> <option value="higheredu" > Trends in Higher Education </option> <option value="tropicalmed" > Tropical Medicine and Infectious Disease (TropicalMed) </option> <option value="universe" > Universe </option> <option value="urbansci" > Urban Science </option> <option value="uro" > Uro </option> <option value="vaccines" > Vaccines </option> <option value="vehicles" > Vehicles </option> <option value="venereology" > Venereology </option> <option value="vetsci" > Veterinary Sciences </option> <option value="vibration" > Vibration </option> <option value="virtualworlds" > Virtual Worlds </option> <option value="viruses" > Viruses </option> <option value="vision" > Vision </option> <option value="waste" > Waste </option> <option value="water" > Water </option> <option value="wild" > Wild </option> <option value="wind" > Wind </option> <option value="women" > Women </option> <option value="world" > World </option> <option value="wevj" > World Electric Vehicle Journal (WEVJ) </option> <option value="youth" > Youth </option> <option value="zoonoticdis" > Zoonotic Diseases </option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Article Type</div> </div> <select id="article_type" tabindex="4" name="article_type" class="chosen-select"> <option value="">All Article Types</option> <option value="research-article">Article</option> <option value="review-article">Review</option> <option value="rapid-communication">Communication</option> <option value="editorial">Editorial</option> <option value="abstract">Abstract</option> <option value="book-review">Book Review</option> <option value="brief-communication">Brief Communication</option> <option value="brief-report">Brief Report</option> <option value="case-report">Case Report</option> <option value="clinicopathological-challenge">Clinicopathological Challenge</option> <option value="article-commentary">Comment</option> <option value="commentary">Commentary</option> <option value="concept-paper">Concept Paper</option> <option value="conference-report">Conference Report</option> <option value="correction">Correction</option> <option value="creative">Creative</option> <option value="data-descriptor">Data Descriptor</option> <option value="discussion">Discussion</option> <option value="Entry">Entry</option> <option value="essay">Essay</option> <option value="expression-of-concern">Expression of Concern</option> <option value="extended-abstract">Extended Abstract</option> <option value="field-guide">Field Guide</option> <option value="giants-in-urology">Giants in Urology</option> <option value="guidelines">Guidelines</option> <option value="hypothesis">Hypothesis</option> <option value="interesting-image">Interesting Images</option> <option value="letter">Letter</option> <option value="books-received">New Book Received</option> <option value="obituary">Obituary</option> <option value="opinion">Opinion</option> <option value="perspective">Perspective</option> <option value="proceedings">Proceeding Paper</option> <option value="project-report">Project Report</option> <option value="protocol">Protocol</option> <option value="registered-report">Registered Report</option> <option value="reply">Reply</option> <option value="retraction">Retraction</option> <option value="note">Short Note</option> <option value="study-protocol">Study Protocol</option> <option value="systematic_review">Systematic Review</option> <option value="technical-note">Technical Note</option> <option value="tutorial">Tutorial</option> <option value="urology-around-the-world">Urology around the World</option> <option value="viewpoint">Viewpoint</option> </select> </div> <div class="large-1 medium-1 small-6 end columns small-push-6 medium-reset-order large-reset-order js-search-collapsed-button-container"> <div class="search-input-label">&nbsp;</div> <input type="submit" id="search" value="Search" class="button button--dark button--full-width searchButton1 US_SearchButton" tabindex="12"> </div> <div class="large-1 medium-1 small-6 end columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-collapsed-link-container"> <div class="search-input-label">&nbsp;</div> <a class="main-search-clear search-container__link" href="#" onclick="openAdvanced(''); return false;">Advanced<span class="show-for-small-only"> Search</span></a> </div> </div> </div> <div class="search-container__advanced" style="margin-top: 0; padding-top: 0px; background-color: inherit; color: inherit;"> <div class="row"> <div class="large-2 medium-2 columns show-for-medium-up">&nbsp;</div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Section</div> </div> <select id="section" tabindex="5" name="section" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Special Issue</div> </div> <select id="special_issue" tabindex="6" name="special_issue" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Volume</div> <input type="text" id="volume" tabindex="7" name="volume" placeholder="..." value="15" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Issue</div> <input type="text" id="issue" tabindex="8" name="issue" placeholder="..." value="5" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Number</div> <input type="text" id="number" tabindex="9" name="number" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Page</div> <input type="text" id="page" tabindex="10" name="page" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 columns small-push-6 medium-reset order large-reset-order medium-reset-order js-search-expanded-button-container"></div> <div class="large-1 medium-1 small-6 columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-expanded-link-container"></div> </div> </div> </form> <form id="advanced-search" class="large-12 medium-12 columns"> <div class="search-container__advanced"> <div id="advanced-search-template" class="row advanced-search-row"> <div class="large-2 medium-2 small-12 columns show-for-medium-up">&nbsp;</div> <div class="large-2 medium-2 small-3 columns connector-div"> <div class="search-input-label"><span class="show-for-medium-up">Logical Operator</span><span class="show-for-small">Operator</span></div> <select class="connector"> <option value="and">AND</option> <option value="or">OR</option> </select> </div> <div class="large-3 medium-3 small-6 columns search-text-div"> <div class="search-input-label">Search Text</div> <input type="text" class="search-text" placeholder="Search text"> </div> <div class="large-2 medium-2 small-6 large-offset-0 medium-offset-0 small-offset-3 columns search-field-div"> <div class="search-input-label">Search Type</div> <select class="search-field"> <option value="all">All fields</option> <option value="title">Title</option> <option value="abstract">Abstract</option> <option value="keywords">Keywords</option> <option value="authors">Authors</option> <option value="affiliations">Affiliations</option> <option value="doi">Doi</option> <option value="full_text">Full Text</option> <option value="references">References</option> </select> </div> <div class="large-1 medium-1 small-3 columns"> <div class="search-input-label">&nbsp;</div> <div class="search-action-div"> <div class="search-plus"> <i class="material-icons">add_circle_outline</i> </div> </div> <div class="search-action-div"> <div class="search-minus"> <i class="material-icons">remove_circle_outline</i> </div> </div> </div> <div class="large-1 medium-1 small-6 large-offset-0 medium-offset-0 small-offset-3 end columns"> <div class="search-input-label">&nbsp;</div> <input class="advanced-search-button button button--dark search-submit" type="submit" value="Search"> </div> <div class="large-1 medium-1 small-6 end columns show-for-medium-up"></div> </div> </div> </form> </div> <div class="header-divider">&nbsp;</div> <div class="breadcrumb row full-row"> <div class="breadcrumb__element"> <a href="/about/journals">Journals</a> </div> <div class="breadcrumb__element"> <a href="/journal/algorithms">Algorithms</a> </div> <div class="breadcrumb__element"> <a href="/1999-4893/15">Volume 15</a> </div> <div class="breadcrumb__element"> <a href="/1999-4893/15/5">Issue 5</a> </div> <div class="breadcrumb__element"> <a href="#">10.3390/a15050155</a> </div> </div> </header> <div id="main-content" class=""> <div class="row full-width row-fixed-left-column"> <div id="left-column" class="content__column large-3 medium-3 small-12 columns"> <div class="content__container"> <a href="/journal/algorithms"> <img src="https://pub.mdpi-res.com/img/journals/algorithms-logo.png?8600e93ff98dbf14" alt="algorithms-logo" title="Algorithms" style="max-height: 60px; margin: 0 0 0 0;"> </a> <div class="generic-item no-border"> <a class="button button--color button--full-width js-journal-active-only-link js-journal-active-only-submit-link UC_ArticleSubmitButton" href="https://susy.mdpi.com/user/manuscripts/upload?form%5Bjournal_id%5D%3D13" data-disabledmessage="creating new submissions is not possible."> Submit to this Journal </a> <a class="button button--color button--full-width js-journal-active-only-link UC_ArticleReviewButton" href="https://susy.mdpi.com/volunteer/journals/review" data-disabledmessage="volunteering as journal reviewer is not possible."> Review for this Journal </a> <a class="button button--color-inversed button--color-journal button--full-width js-journal-active-only-link UC_ArticleEditIssueButton" href="/journalproposal/sendproposalspecialissue/algorithms" data-path="/1999-4893/15/5/155" data-disabledmessage="proposing new special issue is not possible."> Propose a Special Issue </a> </div> <div class="generic-item link-article-menu show-for-small"> <a href="#" class="link-article-menu show-for-small"> <span class="closed">&#9658;</span> <span class="open" style="display: none;">&#9660;</span> Article Menu </a> </div> <div class="hide-small-down-initially UI_ArticleMenu"> <div class="generic-item"> <h2>Article Menu</h2> </div> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#academic_editors" class="accordion__title">Academic Editor</a> <div id="academic_editors" class="content active"> <div class="academic-editor-container " title=""> <div class="sciprofiles-link" style="display: inline-block"> <div class="sciprofiles-link__link"> <img class="sciprofiles-link__image" src="https://pub.mdpi-res.com/bundles/mdpisciprofileslink/img/unknown-user.png?1739771134" style="width: auto; height: 16px; border-radius: 50%;"> <span class="sciprofiles-link__name" style="line-height: 36px;">Theodore B. Trafalis</span> </div> </div> </div> </div> </li> <li class="accordion-direct-link"> <a href="/1999-4893/15/5/155/scifeed_display" data-reveal-id="scifeed-modal" data-reveal-ajax="true">Subscribe SciFeed</a> </li> <li class="accordion-direct-link js-article-similarity-container" style="display: none"> <a href="#" class="js-similarity-related-articles">Recommended Articles</a> </li> <li class="accordion-navigation"> <a href="#related" class="accordion__title">Related Info Link</a> <div id="related" class="content UI_ArticleMenu_RelatedLinks"> <ul> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=A%20Review%20of%20Modern%20Audio%20Deepfake%20Detection%20Methods%3A%20Challenges%20and%20Future%20Directions" target="_blank" rel="noopener noreferrer">Google Scholar</a> </li> </ul> </div> </li> <li class="accordion-navigation"> <a href="#authors" class="accordion__title">More by Authors Links</a> <div id="authors" class="content UI_ArticleMenu_AuthorsLinks"> <ul class="side-menu-ul"> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on DOAJ</a> </li> <div id="AuthorDOAJExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Zaynab%20Almutairi%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Almutairi, Z.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Hebah%20Elgibreen%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Elgibreen, H.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on Google Scholar</a> </li> <div id="AuthorGoogleExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Zaynab%20Almutairi" target="_blank" rel="noopener noreferrer">Almutairi, Z.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Hebah%20Elgibreen" target="_blank" rel="noopener noreferrer">Elgibreen, H.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on PubMed</a> </li> <div id="AuthorPubMedExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&amp;term=Zaynab%20Almutairi" target="_blank" rel="noopener noreferrer">Almutairi, Z.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&amp;term=Hebah%20Elgibreen" target="_blank" rel="noopener noreferrer">Elgibreen, H.</a> <li> </li> </ul> </div> </ul> </div> </li> </ul> <span style="display:none" id="scifeed_hidden_flag"></span> <span style="display:none" id="scifeed_subscribe_url">/ajax/scifeed/subscribe</span> </div> </div> <div class="content__container responsive-moving-container large medium active hidden" data-id="article-counters"> <div id="counts-wrapper" class="row generic-item no-border" data-equalizer> <div id="js-counts-wrapper__views" class="small-12 hide columns count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Article Views</span> <span class="count view-number"></span> </div> </a> </div> <div id="js-counts-wrapper__citations" class="small-12 columns hide count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Citations</span> <span class="count citations-number Var_ArticleMaxCitations">-</span> </div> </a> </div> </div> </div> <div class="content__container"> <div class="hide-small-down-initially"> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#table_of_contents" class="accordion__title">Table of Contents</a> <div id="table_of_contents" class="content active"> <div class="menu-caption" id="html-quick-links-title"></div> </div> </li> </ul> </div> </div> <!-- PubGrade code --> <div id="pbgrd-sky"></div> <script src="https://cdn.pbgrd.com/core-mdpi.js"></script> <style>.content__container { min-width: 300px; }</style> <!-- PubGrade code --> </div> <div id="middle-column" class="content__column large-9 medium-9 small-12 columns end middle-bordered"> <div class="middle-column__help"> <div class="middle-column__help__fixed show-for-medium-up"> <span id="js-altmetrics-donut" href="#" target="_blank" rel="noopener noreferrer" style="display: none;"> <span data-badge-type='donut' class='altmetric-embed' data-doi='10.3390/a15050155'></span> <span>Altmetric</span> </span> <a href="#" class="UA_ShareButton" data-reveal-id="main-share-modal" title="Share"> <i class="material-icons">share</i> <span>Share</span> </a> <a href="#" data-reveal-id="main-help-modal" title="Help"> <i class="material-icons">announcement</i> <span>Help</span> </a> <a href="javascript:void(0);" data-reveal-id="cite-modal" data-counterslink = "https://www.mdpi.com/1999-4893/15/5/155/cite" > <i class="material-icons">format_quote</i> <span>Cite</span> </a> <a href="https://sciprofiles.com/discussion-groups/public/10.3390/a15050155?utm_source=mpdi.com&utm_medium=publication&utm_campaign=discuss_in_sciprofiles" target="_blank" rel="noopener noreferrer" title="Discuss in Sciprofiles"> <i class="material-icons">question_answer</i> <span>Discuss in SciProfiles</span> </a> </div> <div id="main-help-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Need Help?</h2> </div> <div class="small-6 columns"> <h3>Support</h3> <p> Find support for a specific problem in the support section of our website. </p> <a target="_blank" href="/about/contactform" class="button button--color button--full-width"> Get Support </a> </div> <div class="small-6 columns"> <h3>Feedback</h3> <p> Please let us know what you think of our products and services. </p> <a target="_blank" href="/feedback/send" class="button button--color button--full-width"> Give Feedback </a> </div> <div class="small-6 columns end"> <h3>Information</h3> <p> Visit our dedicated information section to learn more about MDPI. </p> <a target="_blank" href="/authors" class="button button--color button--full-width"> Get Information </a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> <div class="middle-column__main "> <div class="page-highlight"> <style type="text/css"> img.review-status { width: 30px; } </style> <div id="jmolModal" class="reveal-modal" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <h2>JSmol Viewer</h2> <div class="row"> <div class="small-12 columns text-center"> <iframe style="width: 520px; height: 520px;" frameborder="0" id="jsmol-content"></iframe> <div class="content"></div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div itemscope itemtype="http://schema.org/ScholarlyArticle" id="abstract" class="abstract_div"> <div class="js-check-update-container"></div> <div class="html-content__container content__container content__container__combined-for-large__first" style="overflow: auto; position: inherit;"> <div class='html-profile-nav'> <div class='top-bar'> <div class='nav-sidebar-btn show-for-large-up' data-status='opened' > <i class='material-icons'>first_page</i> </div> <a id="js-button-download" class="button button--color-inversed" style="display: none;" href="/1999-4893/15/5/155/pdf?version=1652175692" data-name="A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions" data-journal="algorithms"> <i class="material-icons custom-download"></i> Download PDF </a> <div class='nav-btn'> <i class='material-icons'>settings</i> </div> <a href="/1999-4893/15/5/155/reprints" id="js-button-reprints" class="button button--color-inversed"> Order Article Reprints </a> </div> <div class='html-article-menu'> <div class='html-first-step row'> <div class='html-font-family large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'> Font Type: </div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option"><i style='font-family:Arial, Arial, Helvetica, sans-serif;' data-fontfamily='Arial, Arial, Helvetica, sans-serif'>Arial</i></span> <span class="html-article-menu-option"><i style='font-family:Georgia1, Georgia, serif;' data-fontfamily='Georgia1, Georgia, serif'>Georgia</i></span> <span class="html-article-menu-option"><i style='font-family:Verdana, Verdana, Geneva, sans-serif;' data-fontfamily='Verdana, Verdana, Geneva, sans-serif' >Verdana</i></span> </div> </div> </div> <div class='html-font-resize large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Font Size:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-percent="100">Aa</span> <span class="html-article-menu-option a2" data-percent="120">Aa</span> <span class="html-article-menu-option a3" data-percent="160">Aa</span> </div> </div> </div> </div> <div class='row'> <div class='html-line-space large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Line Spacing:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-line-height="1.5em"> <i class="fa">&#xf034;</i> </span> <span class="html-article-menu-option a2" data-line-height="1.8em"> <i class="fa">&#xf034;</i> </span> <span class="html-article-menu-option a3" data-line-height="2.1em"> <i class="fa">&#xf034;</i> </span> </div> </div> </div> <div class='html-column-width large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Column Width:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-column-width="20%"> <i class="fa">&#xf035;</i> </span> <span class="html-article-menu-option a2" data-column-width="10%"> <i class="fa">&#xf035;</i> </span> <span class="html-article-menu-option a3" data-column-width="0%"> <i class="fa">&#xf035;</i> </span> </div> </div> </div> </div> <div class='row'> <div class='html-font-bg large-6 medium-6 small-12 columns end'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Background:</div> <div class='large-8 medium-8 small-12 columns'> <div class="html-article-menu-option html-nav-bg html-nav-bright" data-bg="bright"> <i class="fa fa-file-text"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-dark" data-bg="dark"> <i class="fa fa-file-text-o"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-creme" data-bg="creme"> <i class="fa fa-file-text"></i> </div> </div> </div> </div> </div> </div> </div> <article ><div class='html-article-content'> <span itemprop="publisher" content="Multidisciplinary Digital Publishing Institute"></span><span itemprop="url" content="https://www.mdpi.com/1999-4893/15/5/155"></span> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Review</span></div> <h1 class="title hypothesis_container" itemprop="name"> A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions </h1> <div class="art-authors hypothesis_container"> by <span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop7679509' data-options='is_hover:true, hover_timeout:5000'> Zaynab Almutairi</div><div id="profile-card-drop7679509" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Zaynab Almutairi</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/2035882?utm_source=mdpi.com&amp;utm_medium=website&amp;utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.com/scholars?q=Zaynab%20Almutairi" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Zaynab%20Almutairi&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Zaynab%20Almutairi" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1,*</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="7679509" href="/cdn-cgi/l/email-protection#56793538327b35313f793a79333b373f3a7b262439223335223f39387566666666656266606660666266606632666066616162626162666267636663676337626667376330626162676737636763666267673762616363"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0001-8242-9246" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1739771134" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a> and </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop7679510' data-options='is_hover:true, hover_timeout:5000'> Hebah Elgibreen</div><div id="profile-card-drop7679510" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Hebah Elgibreen</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/1428983?utm_source=mdpi.com&amp;utm_medium=website&amp;utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.com/scholars?q=Hebah%20Elgibreen" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Hebah%20Elgibreen&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Hebah%20Elgibreen" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1,2</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="7679510" href="/cdn-cgi/l/email-protection#032c606d672e60646a2c6f2c666e626a6f2e73716c776660776a6c6d2033333331353b333233623262336733673335313b333032613267373533673360326737353261333a"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0002-3764-6169" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1739771134" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a></span> </div> <div class="nrm"></div> <span style="display:block; height:6px;"></span> <div></div> <div style="margin: 5px 0 15px 0;" class="hypothesis_container"> <div class="art-affiliations"> <div class="affiliation "> <div class="affiliation-item"><sup>1</sup></div> <div class="affiliation-name ">Information Technology Department, College of Computer and Information Sciences, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>2</sup></div> <div class="affiliation-name ">Artificial Intelligence Center of Advanced Studies (Thakaa), King Saud University, Riyadh P.O. Box 145111, Saudi Arabia</div> </div> <div class="affiliation"> <div class="affiliation-item"><sup>*</sup></div> <div class="affiliation-name ">Author to whom correspondence should be addressed. </div> </div> </div> </div> <div class="bib-identity" style="margin-bottom: 10px;"> <em>Algorithms</em> <b>2022</b>, <em>15</em>(5), 155; <a href="https://doi.org/10.3390/a15050155">https://doi.org/10.3390/a15050155</a> </div> <div class="pubhistory" style="font-weight: bold; padding-bottom: 10px;"> <span style="display: inline-block">Submission received: 23 March 2022</span> / <span style="display: inline-block">Revised: 30 April 2022</span> / <span style="display: inline-block">Accepted: 1 May 2022</span> / <span style="display: inline-block">Published: 4 May 2022</span> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/algorithms/special_issues/Adversarial_Federated_Machine_Learning ">Commemorative Special Issue: Adversarial and Federated Machine Learning: State of the Art and New Perspectives</a>)<br/> </div> <div class="highlight-box1"> <div class="download"> <a class="button button--color-inversed button--drop-down" data-dropdown="drop-download-808172" aria-controls="drop-supplementary-808172" aria-expanded="false"> Download <i class="material-icons">keyboard_arrow_down</i> </a> <div id="drop-download-808172" class="f-dropdown label__btn__dropdown label__btn__dropdown--button" data-dropdown-content aria-hidden="true" tabindex="-1"> <a class="UD_ArticlePDF" href="/1999-4893/15/5/155/pdf?version=1652175692" data-name="A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions" data-journal="algorithms">Download PDF</a> <br/> <a id="js-pdf-with-cover-access-captcha" href="#" data-target="/1999-4893/15/5/155/pdf-with-cover" class="accessCaptcha">Download PDF with Cover</a> <br/> <a id="js-xml-access-captcha" href="#" data-target="/1999-4893/15/5/155/xml" class="accessCaptcha">Download XML</a> <br/> <a href="/1999-4893/15/5/155/epub" id="epub_link">Download Epub</a> <br/> </div> <div class="js-browse-figures" style="display: inline-block;"> <a href="#" class="button button--color-inversed margin-bottom-10 openpopupgallery UI_BrowseArticleFigures" data-target='article-popup' data-counterslink = "https://www.mdpi.com/1999-4893/15/5/155/browse" >Browse Figures</a> </div> <div id="article-popup" class="popupgallery" style="display: inline; line-height: 200%"> <a href="https://pub.mdpi-res.com/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g001.png?1652175763" title=" <strong>Figure 1</strong><br/> &lt;p&gt;An illustration of the AD detection process.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g002.png?1652175768" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Imitation-based Deepfake.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g003.png?1652175767" title=" <strong>Figure 3</strong><br/> &lt;p&gt;The Synthetic-based Deepfake Process.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g004.png?1652175761" title=" <strong>Figure 4</strong><br/> &lt;p&gt;The Structure of the H-Voice Dataset.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g005.png?1652175764" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Quantitative comparison of AD detection methods measured by EER and t-DCF.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g006.png?1652175769" title=" <strong>Figure 6</strong><br/> &lt;p&gt;Quantitative comparison between recent AD detection methods measured by accuracy on multiple datasets.&lt;/p&gt; "> </a> </div> <a class="button button--color-inversed" href="/1999-4893/15/5/155/notes">Versions&nbsp;Notes</a> </div> </div> <div class="responsive-moving-container small hidden" data-id="article-counters" style="margin-top: 15px;"></div> <div class="html-dynamic"> <section> <div class="art-abstract art-abstract-new in-tab hypothesis_container"> <p> <div><section class="html-abstract" id="html-abstract"> <h2 id="html-abstract-title">Abstract</h2><b>:</b> <div class="html-p">A number of AI-generated tools are used today to clone human voices, leading to a new technology known as Audio Deepfakes (ADs). Despite being introduced to enhance human lives as audiobooks, ADs have been used to disrupt public safety. ADs have thus recently come to the attention of researchers, with Machine Learning (ML) and Deep Learning (DL) methods being developed to detect them. In this article, a review of existing AD detection methods was conducted, along with a comparative description of the available faked audio datasets. The article introduces types of AD attacks and then outlines and analyzes the detection methods and datasets for imitation- and synthetic-based Deepfakes. To the best of the authors&rsquo; knowledge, this is the first review targeting imitated and synthetically generated audio detection methods. The similarities and differences of AD detection methods are summarized by providing a quantitative comparison that finds that the method type affects the performance more than the audio features themselves, in which a substantial tradeoff between the accuracy and scalability exists. Moreover, at the end of this article, the potential research directions and challenges of Deepfake detection methods are discussed to discover that, even though AD detection is an active area of research, further research is still needed to address the existing gaps. This article can be a starting point for researchers to understand the current state of the AD literature and investigate more robust detection models that can detect fakeness even if the target audio contains accented voices or real-world noises.</div> </section> <div id="html-keywords"> <div class="html-gwd-group"><div id="html-keywords-title">Keywords: </div><a href="/search?q=Audio+Deepfakes+%28ADs%29">Audio Deepfakes (ADs)</a>; <a href="/search?q=Machine+Learning+%28ML%29">Machine Learning (ML)</a>; <a href="/search?q=Deep+Learning+%28DL%29">Deep Learning (DL)</a>; <a href="/search?q=imitated+audio">imitated audio</a></div> <div> </div> </div> </div> </p> </div> </section> </div> <div class="hypothesis_container"> <ul class="menu html-nav" data-prev-node="#html-quick-links-title"> </ul> <div class="html-body"> <section id='sec1-algorithms-15-00155' type='intro'><h2 data-nested='1'> 1. Introduction</h2><div class='html-p'>AI-synthesized tools have recently been developed with the ability to generate convincing voices [<a href="#B1-algorithms-15-00155" class="html-bibr">1</a>]. However, while these tools were introduced to help people, they have also been used to spread disinformation around the world using audio [<a href="#B2-algorithms-15-00155" class="html-bibr">2</a>], and their malicious use has led to fear of the “Audio Deepfake.” Audio Deepfakes, recently called audio manipulations, are becoming widely accessible using simple mobile devices or personal PCs [<a href="#B3-algorithms-15-00155" class="html-bibr">3</a>]. This has led to worldwide public cybersecurity concerns regarding the side effects of using AD. Regardless of the benefit of this technology, ADs go beyond a simple text message or an email link. People can use it as a logical-access voice spoofing technique [<a href="#B4-algorithms-15-00155" class="html-bibr">4</a>], where it can be used to manipulate public opinion for propaganda, defamation, or even terrorism. Massive amounts of voice recordings are broadcast daily over the Internet, and detecting fakeness from them is a challenging task [<a href="#B5-algorithms-15-00155" class="html-bibr">5</a>]. However, AD attackers have targeted not only individuals and organizations but also politicians and governments [<a href="#B6-algorithms-15-00155" class="html-bibr">6</a>]. In 2019, fraudsters used AI-based software to impersonate a CEO’s voice and swindled more than USD 243,000 via a telephone call [<a href="#B7-algorithms-15-00155" class="html-bibr">7</a>]. For this reason, we need to authenticate any distributed audio recordings to avoid spreading disinformation. This problem has thus been of significant interest to the research community in recent years. Three types of AD have emerged, increasing the challenge in detection; they are synthetic-based, imitation-based, and replay-based, as will be explained in the following section.</div><div class='html-p'>With regard to Deepfakes, many detection methods have been introduced to discern fake audio files from real speech. A number of ML and DL models have been developed that use different strategies to detect fake audio. The following strategies describe the AD detection process in general, as illustrated in <a href="#algorithms-15-00155-f001" class="html-fig">Figure 1</a>. First, each audio clip should be preprocessed and transformed into suitable audio features, such as Mel-spectrograms. These features are input into the detection model, which then performs the necessary operations, such as the training process. The output is fed into any fully connected layer with an activation function (for a nonlinearity task) to produce a prediction probability of class 0 as fake or class 1 as real. However, there is a trade-off between accuracy and computational complexity. Further work is therefore required to improve the performance of AD detection and overcome the gaps identified in the literature.</div><div class='html-p'>AD detection has therefore become an active area of research with the development of advanced techniques and DL methods. However, with such advancements, current DL methods are struggling, and further investigation is necessary to understand what area of AD detection needs further development. Moreover, a comparative analysis of current methods is also important, and to the best of the authors’ knowledge, a review of imitated and synthetically generated audio detection methods is missing from the literature. Thus, this article introduces the following significant contributions to the literature:</div><div class='html-p'><ul class='html-bullet'><li><div class='html-p'>A review of state-of-the-art AD detection methods that target imitated and synthetically generated voices;</div></li><li><div class='html-p'>provision of a brief description of current AD datasets;</div></li><li><div class='html-p'>a comparative analysis of existing methods and datasets to highlight the strengths and weaknesses of each AD detection family;</div></li><li><div class='html-p'>a quantitative comparison of recent state-of-the-art AD detection methods; and</div></li><li><div class='html-p'>a discussion of the challenges and potential future research directions in this area.</div></li></ul></div><div class='html-p'>The rest of this article is organized as follows. An AD definition and its types are presented in <a href="#sec2-algorithms-15-00155" class="html-sec">Section 2</a>. <a href="#sec3-algorithms-15-00155" class="html-sec">Section 3</a> discusses and summarizes the current methods developed for AD detection. <a href="#sec4-algorithms-15-00155" class="html-sec">Section 4</a> presents the generated audio dataset used for AD detection and highlights its characteristics. <a href="#sec5-algorithms-15-00155" class="html-sec">Section 5</a> presents a quantitative comparison of recent state-of-the-art AD detection methods. <a href="#sec6-algorithms-15-00155" class="html-sec">Section 6</a> presents the challenges involved in detecting AD and discusses potential future research directions for the detection methods. Finally, this article concludes with <a href="#sec7-algorithms-15-00155" class="html-sec">Section 7</a>, which summarizes our findings.</div></section><section id='sec2-algorithms-15-00155' type=''><h2 data-nested='1'> 2. Types of Audio Deepfake Attacks</h2><div class='html-p'>AD technology is a recent invention that allows users to create audio clips that sound like specific people saying things they did not say [<a href="#B2-algorithms-15-00155" class="html-bibr">2</a>]. This technology was initially developed for a variety of applications intended to improve human life, such as audiobooks, where it could be used to imitate soothing voices [<a href="#B8-algorithms-15-00155" class="html-bibr">8</a>]. As defined from the AD literature, there are three main types of audio fakeness: imitation-based, synthetic-based, and replay-based Deepfakes.</div><div class='html-p'>Imitation-based Deepfakes are “a way of transforming speech (secret audio) so that it sounds like another speech (target audio) with the primary purpose of protecting the privacy of the secret audio” [<a href="#B3-algorithms-15-00155" class="html-bibr">3</a>]. Voices can be imitated in different ways, for example, by using humans with similar voices who are able to imitate the original speaker. However, masking algorithms, such as Efficient Wavelet Mask (EWM), have been introduced to imitate audio and Deepfake speech. In particular, an original and target audio will be recorded with similar characteristics. Then, as illustrated in <a href="#algorithms-15-00155-f002" class="html-fig">Figure 2</a>, the signal of the original audio <a href="#algorithms-15-00155-f002" class="html-fig">Figure 2</a>a will be transformed to say the speech in the target audio in <a href="#algorithms-15-00155-f002" class="html-fig">Figure 2</a>b using an imitation generation method that will generate a new speech, shown in <a href="#algorithms-15-00155-f002" class="html-fig">Figure 2</a>c, which is the fake one. It is thus difficult for humans to discern between the fake and real audio generated by this method [<a href="#B3-algorithms-15-00155" class="html-bibr">3</a>].</div><div class='html-p'>Synthetic-based or Text-To-Speech (TTS) aims to transform text into acceptable and natural speech in real time [<a href="#B9-algorithms-15-00155" class="html-bibr">9</a>] and consists of three modules: a text analysis model, an acoustic model, and a vocoder. To generate synthetic Deepfake audio, two crucial steps should be followed. First, clean and structured raw audio should be collected, with a transcript text of the audio speech. Second, the TTS model must be trained using the collected data to build a synthetic audio generation model. Tactoran 2, Deep Voice 3, and FastSpeech 2 are well-known model generation techniques and are able to produce the highest level of natural-sounding audio [<a href="#B10-algorithms-15-00155" class="html-bibr">10</a>,<a href="#B11-algorithms-15-00155" class="html-bibr">11</a>]. Tactoran 2 creates Mel-spectrograms with a modified WaveNet vocoder [<a href="#B12-algorithms-15-00155" class="html-bibr">12</a>]. Deep Voice 3 is a neural text-to-speech model that uses a position-augmented attention mechanism for an attention-based decoder [<a href="#B13-algorithms-15-00155" class="html-bibr">13</a>]. FastSpeech 2 produces high-quality results with the fastest training time [<a href="#B11-algorithms-15-00155" class="html-bibr">11</a>]. In the synthetic technique, the transcript text with the voice of the target speaker will be fed into the generation model. The text analysis module then processes the incoming text and converts it into linguistic characteristics. Then, the acoustic module extracts the parameters of the target speaker from the dataset depending on the linguistic features generated from the text analysis module. Last, the vocoder will learn to create speech waveforms based on the acoustic feature parameters, and the final audio file will be generated, which includes the synthetic fake audio in a waveform format. <a href="#algorithms-15-00155-f003" class="html-fig">Figure 3</a> illustrates the process of synthetic-based voice generation.</div><div class='html-p'>Replay-based Deepfakes are a type of malicious work that aims to replay a recording of the target speaker’s voice [<a href="#B14-algorithms-15-00155" class="html-bibr">14</a>]. There are two types: far-field detection and cut-and-paste detection. In far-field detection, a microphone recording of the victim recording is played as a test segment on a telephone handset with a loudspeaker [<a href="#B15-algorithms-15-00155" class="html-bibr">15</a>]. Meanwhile, cutting and pasting involves faking the sentence required by a text-dependent system [<a href="#B15-algorithms-15-00155" class="html-bibr">15</a>]. This article will focus on Deepfake methods spoofing real voices rather than approaches that use edited recordings. This review will thus cover the detection methods used to identify synthetic and imitation Deepfakes, and replay-based attacks will be considered out of scope.</div></section><section id='sec3-algorithms-15-00155' type=''><h2 data-nested='1'> 3. Fake Audio Detection Methods</h2><div class='html-p'>The wide range of accessible tools and methods capable of generating fake audio has led to significant recent attention to AD detection with different languages. This section will therefore present the latest work on detecting imitated and synthetically produced voices. In general, the current methods can be divided into two main types: ML and DL methods.</div><div class='html-p'>Classical ML models have been widely adopted in AD detection. Rodríguez-Ortega et al. [<a href="#B3-algorithms-15-00155" class="html-bibr">3</a>] contributed to the literature on detecting fake audio in two aspects. They first developed a fake audio dataset based on the imitation method by extracting the entropy features of real and fake audio. Using the created H-Voice dataset [<a href="#B16-algorithms-15-00155" class="html-bibr">16</a>], the researchers were able to build an ML model using Logistic Regression (LR) to detect fake audio. The model achieved a 98% success rate in detecting tasks, but the data needed to be pre-processed manually to extract the relevant features.</div><div class='html-p'>Kumar-Singh and Singh [<a href="#B17-algorithms-15-00155" class="html-bibr">17</a>] proposed a Quadratic Support Vector Machine (Q-SVM) model to distinguish synthetic audio from natural human voices. When adopting the model for binary classification, the authors divided the audio into two classes, human and AI-generated. This model was compared to other ML methods, such as Linear Discriminant, Quadratic Discriminant, Linear SVM, weighted K-Nearest Neighbors (KNN), boosted tree ensemble, and LR. As a result, they found that Q-SVM outperformed other classical methods by 97.56%, with a misclassification rate of 2.43%. Moreover, Borrelli et al. [<a href="#B18-algorithms-15-00155" class="html-bibr">18</a>] developed an SVM model with Random Forest (RF) to predict synthetic voices based on a new audio feature called Short-Term Long-Term (STLT). The models were trained using the Automatic Speaker Verification (ASV) spoof challenge 2019 [<a href="#B19-algorithms-15-00155" class="html-bibr">19</a>] dataset. Experiments found that the performance of SVM was higher than that of RF by 71%. Liu et al. [<a href="#B20-algorithms-15-00155" class="html-bibr">20</a>] compared the robustness of SVM with the DL method called Convolutional Neural Network (CNN) to detect the faked stereo audio from the real ones. From that comparison, it was found that CNN is more robust than SVM even though both achieved a high accuracy of 99% in the detection. However, SVM suffered from what the LR model had faced in the feature extraction process.</div><div class='html-p'>According to the works discussed thus far, the features in the ML models need to be manually extracted, and intensive preprocessing is needed before training to ensure good performance. However, this is time-consuming and can lead to inconsistencies, which has led the research community to develop high-level DL methods.. To address this, the CNN model used by Subramani and Rao [<a href="#B21-algorithms-15-00155" class="html-bibr">21</a>] created a novel approach for detecting synthetic audio based on two CNN models, EfficientCNN and RES-EfficientCNN. As a result, RES-EfficientCNN achieved a higher F1-score of 97.61 than EfficientCNN (94.14 F1-score) when tested over the ASV spoof challenge 2019 dataset [<a href="#B19-algorithms-15-00155" class="html-bibr">19</a>]. M. Ballesteros et al. [<a href="#B5-algorithms-15-00155" class="html-bibr">5</a>] developed a classification model named Deep4SNet that visualized the audio dataset based on a 2D CNN model (histogram) to classify imitation and synthetic audio. Deep4SNet showed an accuracy of 98.5% in detecting imitation and synthetic audio. However, Deep4SNet’s performance was not scalable and was affected by the data transformation process. E.R. Bartusiak and E.J. Delp [<a href="#B22-algorithms-15-00155" class="html-bibr">22</a>] compared the performance of the CNN model against the random method in detecting synthetic audio signals. Although the CNN achieved an accuracy 85.99% higher than that of the baseline classifier, it suffered from an overfitting problem. The Lataifeh et al. [<a href="#B23-algorithms-15-00155" class="html-bibr">23</a>] experimental study compared CNN and Bidirectional Long Short-Term Memory (BiLSTM) performance with ML models. The proposed method targeted the imitation-based fakeness of the Quranic audio clips dataset named Arabic Diversified Audio (AR-DAD) [<a href="#B24-algorithms-15-00155" class="html-bibr">24</a>]. They tested the ability of CNN and BiLSTM to distinguish real voices from imitators. In addition, ML methods such as SVM, SVM-Linear, Radial Basis Function (SVMRBF), LR, Decision Tree (DT), RF, and Gradient Boosting (XGBoost) were also tested. Ultimately, the study found that SVM had the highest accuracy with 99%, while the lowest was DT with 73.33%. Meanwhile, CNN achieved a detection rate higher than BiLSTM with 94.33%. Although the accuracy of the CNN method was lower than that of the ML models, it was better in capturing spurious correlations. It was also effective in extracting features that could be achieved automatically with generalization abilities. However, the main limitation of the CNN models that are used thus far for AD is that they can only handle images as input, and thus the audio needs to be preprocessed and transformed to a spectrogram or 2D figure to be able to provide it as input to the network.</div><div class='html-p'>Zhenchun Lei et al. [<a href="#B25-algorithms-15-00155" class="html-bibr">25</a>] proposed a 1-D CNN and Siamese CNN to detect fake audio. In the case of the 1-D CNN, the input to the model was the speech log-probabilities, while the Siamese CNN was based on two trained GMM models. The Siamese CNN contained two identical CNNs that were the same as the 1-D CNN but concatenated them using a fully connected layer with a softmax output layer. The two models were tested over the ASVspoof 2019 dataset to find that the proposed Siamese CNN outperformed the GMM and 1-D CNN by improving the min-tDCF and Equal Error Rate (EER) (EER is the error rate where the false-negative rate and the false-positive rate are equal [<a href="#B26-algorithms-15-00155" class="html-bibr">26</a>]) by ~55% when using the LFCC features. However, the performance was slightly lower when using the CQCC features. It was also found that the model is not sufficiently robust and works with a specific type of feature.</div><div class='html-p'>Another CNN model was proposed in [<a href="#B27-algorithms-15-00155" class="html-bibr">27</a>], where the audio was transferred to scatter plot images of neighboring samples before giving it as input to the CNN model. The developed model was trained over a dataset called the Fake or Real (FoR) dataset [<a href="#B28-algorithms-15-00155" class="html-bibr">28</a>] to evaluate the model, and the model accuracy reached 88.9%. Although the proposed model addressed the generalization problem of DL-based models by training with data from different generation algorithms, its performance was not as good as the others in the literature. The accuracy (88%) and EER (11%) were worse than those of the other DL models tested in the experiment. Hence, the model needs further improvement, and more data transformers need to be included.</div><div class='html-p'>On the other hand, Yu et al. [<a href="#B29-algorithms-15-00155" class="html-bibr">29</a>] proposed a new scoring method named Human Log-Likelihoods (HLLs) based on the Deep Neural Network (DNN) classifier to enhance the detection rate. They compared this with a classical scoring method called the Log-Likelihood Ratios (LLRs) that depends on the Gaussian Mixture Model (GMM). DNN-HLLs and GMM-LLRs have been tested with the ASV spoof challenge 2015 dataset [<a href="#B30-algorithms-15-00155" class="html-bibr">30</a>] and extracted features automatically. These tests confirmed that DNN-HLLs produced better detection results than GMM-LLRs since they achieved an EER of 12.24.</div><div class='html-p'>Wang et al. [<a href="#B31-algorithms-15-00155" class="html-bibr">31</a>] therefore developed a DNN model named Deep-Sonar that captured the neuron behaviors of speaker recognition (SR) systems against AI-synthesized fake audio. Their model depends on Layer-wise neuron behaviors in the classification task. The proposed model achieved a detection rate of 98.1% with an EER of approximately 2% on the voices of English speakers from the FoR dataset [<a href="#B28-algorithms-15-00155" class="html-bibr">28</a>]. However, DeepSonar’s performance was highly affected by real-world noise. Wijethunga et al.’s [<a href="#B32-algorithms-15-00155" class="html-bibr">32</a>] research used DNNs to differentiate synthetic and real voices and combined two DL models, CNNs and Recurrent Neural Network (RNN). This is because CNN is efficient at extracting features, while RNN is effective at detecting long-term dependencies in time variances. Interestingly, this combination achieved a 94% success rate in detecting audio generated by AI synthesizers. Nevertheless, the DNN model does not carry much artifact information from the feature representation perspective.</div><div class='html-p'>Chintha et al. [<a href="#B33-algorithms-15-00155" class="html-bibr">33</a>] developed two novel models that depend on a convolution RNN for audio Deepfake classification. First, the Convolution Recurrent Neural Network Spoof (CRNN-Spoof) model contains five layers of extracted audio signals that are fed into a bidirectional LSTM network for predicting fake audio. Second, the Wide Inception Residual Network Spoof (WIRE-Net-Spoof) model has a different training process and uses a function named weighted negative log-likelihood. The CRNN-Spoof method obtained higher results than the WIRE-Net-Spoof approach by 0.132% of the Tandem Decision Cost Function (t-DCF) (t-DCF is a single scalar that measure the reliability of decisions made by the systems [<a href="#B34-algorithms-15-00155" class="html-bibr">34</a>]) with a 4.27% EER in the ASV spoof challenge 2019 dataset [<a href="#B19-algorithms-15-00155" class="html-bibr">19</a>]. One limitation of this study is that it used many layers and convolutional networks, which caused it to suffer from management complexities. To address this limitation, Shan and Tsai [<a href="#B35-algorithms-15-00155" class="html-bibr">35</a>] proposed an alignment technique based on the classification models: Long Short-Term Memory (LSTM), bidirectional LSTM, and transformer architectures. The technique classifies each audio frame as matching or nonmatching from 50 recordings. The results reported that bidirectional LSTM outperforms the other models with a 99.7% accuracy and 0.43% EER. However, the training process took a long time, and the dataset used in the study was small, which led to overfitting.</div><div class='html-p'>In regard to transfer learning and unimodal methods, P. RahulT et al. [<a href="#B36-algorithms-15-00155" class="html-bibr">36</a>] proposed a new framework based on transfer learning and the ResNet-34 method for detecting faked English-speaking voices. The transfer learning model was pretrained on the CNN network. The Rest-34 method was used for solving the vanishing gradient problem that always occurs in any DL model. The results showed that the proposed framework achieved the best results measured by the EER and t-DCF metrics with results of 5.32% and 0.1514%, respectively. Although ResNet-34 solves the vanishing gradient issue, training takes a long time because of its deep architecture. Similarly, Khochare et al. [<a href="#B37-algorithms-15-00155" class="html-bibr">37</a>] investigated feature-based and image-based approaches for classifying faked audio generated synthetically. New DL models called the Temporal Convolutional Network (TCN) and Spatial Transformer Network (STN) were used in this work. TCN achieved promising outcomes in distinguishing between fake and real audio with 92% accuracy, while STN obtained an accuracy of 80%. Although the TCN works well with sequential data, it does not work with inputs converted to Short-Time Fourier Transform (STFT) and Mel Frequency Cepstral Coefficients (MFCC) features.</div><div class='html-p'>Khalid et al. [<a href="#B38-algorithms-15-00155" class="html-bibr">38</a>] contributed a new Deepfake dataset named FakeAVCeleb [<a href="#B39-algorithms-15-00155" class="html-bibr">39</a>]. The authors investigated unimodal methods that contain five classifiers to evaluate their efficiency in detection; the classifiers were MesoInception-4, Meso-4, Xception, EfficientNet-B0, and VGG16. The Xception classifier was found to achieve the highest performance with a result of 76%, while EfficientNet-B0 had the worst performance with a result of 50%. They concluded that none of the unimodal classifiers were effective for detecting fake audio. Alzantot et al. [<a href="#B40-algorithms-15-00155" class="html-bibr">40</a>] highlighted the need to develop a system for AD detection based on residual CNN. The main idea of this system is to extract three crucial features from the input, MFCC, constant Q cepstral coefficients (CQCC), and STFT, to determine the Counter Major (CM) score of the faked audio. A high CM score proves that the audio is real speech, while a low CM score suggests that it is fake. The proposed system showed promising results, improving the CM rate by 71% and 75% in two matrices of t-DCF (0.1569) and EER (6.02), respectively. However, further investigation is still needed due to the generalization errors in the proposed system.</div><div class='html-p'>T. Arif et al. [<a href="#B41-algorithms-15-00155" class="html-bibr">41</a>] developed a new audio feature descriptor called ELTP-LFCC based on a Local Ternary Pattern (ELTP) and Linear Frequency Cepstral Coefficients (LFCC). This descriptor was used with a Deep Bidirectional Long Short-Term Memory (DBiLSTM) network to increase the robustness of the model and to detect fake audio in diverse indoor and outdoor environmental conditions. The model created was tested over the ASVspoof 2019 dataset with synthetic and imitated-based fake audio. From the experiment, it was found that the model performed better over the audio synthetic dataset (with 0.74% EER) but not as well with imitated-based samples (with 33.28% EER).</div><div class='html-p'>An anti-Spoofing with Squeeze-Excitation and Residual neTworks (ASSERT) method was proposed in [<a href="#B42-algorithms-15-00155" class="html-bibr">42</a>] based on variants of the Squeeze-Excitation Network (SENet) and ResNet. This method uses log power magnitude spectra (logspec) and CQCC acoustic features to train the DNN. The model was tested with the ASVspoof 2019 dataset to find that ASSERT obtained more than a 17% relative improvements in synthetic audio. However, the model had zero t-DCF cost and zero EER with a logical access scenario during the test, which indicates that the model is highly overfitting.</div><div class='html-p'>Based on the literature discussed thus far, we can say that although DL methods avoid manual feature extraction and excessive training, they still require special transformations for audio data. Consequently, self-supervised DL methods have recently been introduced into the AD detection literature. In particular, Jiang et al. [<a href="#B43-algorithms-15-00155" class="html-bibr">43</a>] proposed a self-supervised spoofing audio detection (SSAD) model inspired by an existing self-supervised DL method named PASE+. The proposed model depends on multilayer convolutional blocks to extract context features from the audio stream. It was tested over the dataset with a 5.31% EER. While the SSAD did well in terms of efficiency and scalability, its performance was not as good as other DL methods. Future research could thus focus on the advantages of self-supervised learning and improving its performance.</div><div class='html-p'>Ultimately, the literature discussed thus far is summarized in <a href="#algorithms-15-00155-t001" class="html-table">Table 1</a>, which shows that the method type affects the performance more than the feature used. It is very clear that ML methods are more accurate than DL methods regardless of the features used. However, due to excessive training and manual feature extraction, the scalability of the ML methods is not confirmed, especially with large numbers of audio files. On the other hand, when DL algorithms were used, specific transformations were required on the audio files to ensure that the algorithms could manage them. In conclusion, although AD detection is an active area of study, further research is still needed to address the existing gaps. These challenges and potential future research directions will be highlighted in <a href="#sec6-algorithms-15-00155" class="html-sec">Section 6</a>.</div></section><section id='sec4-algorithms-15-00155' type=''><h2 data-nested='1'> 4. Fake Audio Detection Datasets</h2><div class='html-p'>The previous section discussed various methods used to distinguish fake and real voices. The detection methods discussed use models that must first be trained on a sample of data. Different datasets were published in the literature along with the detection method, while other studies focused on explaining their dataset and its characteristics. This section describes eight recent datasets created for use in fake detection methods, which are summarized in <a href="#algorithms-15-00155-t002" class="html-table">Table 2</a>.</div><div class='html-p'>More datasets have been reported for AD detection and were published separately. A German audio dataset named M-AILABS Speech was published for use with speech recognition and synthetic audio. It is freely accessible and contains 9265 real audio samples along with 806 fake samples. Each sample differs in length from 1 to 20 s, and the set has a total length of 18.7 h. The company Baidu published another public dataset called the Baidu Silicon Valley AI Lab cloned audio dataset, which was generated by a neural voice cloning tool. This dataset contains 6 h of high-quality and multi-speaker audio clips, each 2 s long. In 2019, the Fake or Real (FoR) dataset was released, which included eight synthetically generated English-accented voices by the Deep Voice 3 and Google-WavNet generation models. It is available for public access, and its most crucial feature is that it includes samples in two types of formats, MP3 and WAV. The total dataset includes 198,000 files divided into 111,000 real samples and 87,000 faked samples, with each sample being 2 s long. There was also a faked audio dataset of Arabic speakers called the Ar-DAD Arabic Diversified Audio gathered from the Holy Quran audio portal. It contains the original and imitated voices of Quran reciters, while the audio speech is for 30 male Arabic reciters and 12 imitators. Specifically, the reciters are Arabic people from Saudi Arabia, Kuwait, Egypt, Yemen, Sudan, and the UAE. The data consist of 379 fake and 15,810 real samples, each being 10 s long. The dataset language is named Classical Arabic (CA) since it is in the Quranic language.</div><div class='html-p'>Furthermore, the H-Voice dataset was generated recently based on imitation and synthetic voices speaking in different languages, namely, Spanish, English, Portuguese, French, and Tagalog. It contains samples saved as a histogram, which is in the PNG format. This dataset contains 6672 samples and has many folders, as illustrated in <a href="#algorithms-15-00155-f004" class="html-fig">Figure 4</a>, which also depicts the number of imitated and synthetically created samples in each folder. However, <a href="#algorithms-15-00155-t002" class="html-table">Table 2</a> combines the number of samples as 3332 real and 3264 fake imitated samples, as well as 4 real and 72 fake synthetic samples. It is public access, and the model generation for the synthetic-based files is Deep Voice 3.</div><div class='html-p'>Moreover, the FakeAVCeleb dataset is a new restricted dataset of English speakers that has been synthetically generated by the SV2TTS tool. It contains a total of 20,490 samples divided between 490 real samples and 20,000 fakes, each being 7 s long in MP3 format. Last, the ASV spoof 2021 challenge dataset also consists of two fake scenarios, a logical and a physical scenario. The logical scenario contains fake audio made using synthetic software, while the physical scenario is fake audio made by reproducing prerecorded audio using parts of real speaker data. While this dataset has yet to be published, older versions are available to the public (2015 [<a href="#B30-algorithms-15-00155" class="html-bibr">30</a>], 2017 [<a href="#B47-algorithms-15-00155" class="html-bibr">47</a>], and 2019 [<a href="#B19-algorithms-15-00155" class="html-bibr">19</a>]).</div><div class='html-p'>However, the ASV spoof challenge has one limitation that has not been considered a crucial factor in the AD area, which is noise. A new synthetic-based dataset was therefore developed in the current year to fill this gap called the Audio Deep synthesis Detection challenge (ADD). This dataset consists of three tracks, a low-quality fake audio detection (LF), a partially fake audio detection (PF), and a fake audio game (FG), which is outside the scope of the current article. LF contains 300 real voices and 700 fully faked spoken words with real-world noises, while PF has 1052 partially fake audio samples. The language of the ADD dataset is Chinese, and it is publicly available.</div><div class='html-p'>From <a href="#algorithms-15-00155-t002" class="html-table">Table 2</a>, it can be concluded that most datasets have been developed for English. While one dataset was found for Classical Arabic (CA) language, it covered only imitation fakeness, while other types of the Arabic language were not covered. There is thus still a need to generate a new dataset based on the syntactic fakeness of the Arabic language. The developed dataset can be used to complement the developed AD detection model to detect both imitation and synthetic Deepfakes with minimal preprocessing and training delays.</div></section><section id='sec5-algorithms-15-00155' type='discussion'><h2 data-nested='1'> 5. Discussion</h2><div class='html-p'>From the literature, it was clear that the methods proposed thus far require special data processing to perform well, where classical ML methods require extensive amounts of manual labor to prepare the data, while the DL-based methods use an image-based approach to understand the audio features. The preprocessing approach used can affect the performance of the method, and thus new research is recommended to develop new solutions that allow the models to understand the audio data as it is. Nevertheless, it was crucial to analyze the statutes of the current AD detection methods based on previous work experiments. Thus, from the experimental results of the cited studies, a quantitative comparison was conducted based on three criteria (EER, t-DCF, and accuracy), as illustrated in <a href="#algorithms-15-00155-t003" class="html-table">Table 3</a>.</div><div class='html-p'>Starting with the EER and t-DCF, as shown in <a href="#algorithms-15-00155-f005" class="html-fig">Figure 5</a>, it can be concluded that there is no clear pattern in performance with respect to the approach or dataset used. Each method performs differently depending on the technique used. For instance, the Bidirectional LSTM method provides the best EER and t-DCF compared to the other methods, but the dataset information was not clarified in the study, and overfitting was a concern. Another example is GMM-LLR, which provides the worst EER even though it used the same features and trained on the same dataset as DNN-HLLs. In regard to the CNN methods highlighted in the orange box, regardless of the dataset used, all versions have a similar performance with respect to the EER and t-DCF. However, one interesting observation that can be highlighted is the fact that the type of fakeness can have an effect on the performance of the method. For instance, DBiLSTM provides a very low EER and t-DCF compared to the other methods when applied with synthetic AD, while it is one of the worst when applied to the imitation-based datasets.</div><div class='html-p'>When considering the accuracy, illustrated in <a href="#algorithms-15-00155-f006" class="html-fig">Figure 6</a>, a pattern can be identified with respect to the dataset and fakeness type. In particular, regardless of the method used, the accuracy of the methods applied on the FakeAVCeleb dataset did not perform well compared to the other datasets. This can be attributed to the fact that this dataset is a combination of video-audio Deepfakes. Moreover, ML methods perform better with imitation-based fakeness compared to the synthetic-based datasets. For instance, in SVM, RF, and XGBoost, highlighted with green, gray, and purple boxes, respectively, it is clear that they perform almost perfectly when applied to the imitation-based datasets (AR-DAD and H-voice) while preforming poorly when applied over the synthetic-based datasets (ASV spoof and FoR). Moreover, it is interesting to note that DL-based methods such as CNN are more stable than the ML methods with respect to the fakeness type. For instance, comparing CNN versions (under the orange box) with SVM versions (under the gray box), it is clear that CNN is stable and has a similar performance regardless of the dataset, while SVM is unstable and performs differently depending on the data and fakeness type. Thus, it can be concluded that regardless of how ML methods perform well, for more stability and consistency in performance, DL-based methods are better options. However, further improvements are still needed to allow the addressing of audio data directly and to surpass the extensive preprocessing and data transformation needed in the current literature.</div></section><section id='sec6-algorithms-15-00155' type=''><h2 data-nested='1'> 6. Challenges and Future Research Directions</h2><div class='html-p'>This section will highlight the most important challenges and opportunities facing researchers in the AD field. It will examine the most crucial challenges with fake audio detection methods.</div><section id='sec6dot1-algorithms-15-00155' type=''><h4 class='html-italic' data-nested='2'> 6.1. Limited AD Detection Methods with Respect to Non-English Languages</h4><div class='html-p'>Almost all existing studies focus on developing detection methods to detect fake voices speaking English, although six official languages are included in the United Nations’ list of official languages [<a href="#B48-algorithms-15-00155" class="html-bibr">48</a>]. For example, the authors are aware of no existing studies focusing on Arabic. Indeed, Arabic is the world’s fourth most widely spoken language behind Chinese, Spanish, and English, with over 230 million native speakers [<a href="#B49-algorithms-15-00155" class="html-bibr">49</a>]. It consists of three core types: Classical Arabic (CA), Modern Standard Arabic (MSA), and Dialect Arabic (DA) [<a href="#B50-algorithms-15-00155" class="html-bibr">50</a>]. CA is the official language of the Quran; MSA is the official language of the present era; and DA is the spoken language of everyday life that differs between regions [<a href="#B50-algorithms-15-00155" class="html-bibr">50</a>]. The reason for highlighting the Arabic language in this section is because the Arabic language has a unique challenge in alphabet pronunciation, which the traditional techniques of audio processing and ML learning models cannot deal with [<a href="#B51-algorithms-15-00155" class="html-bibr">51</a>]. It contains three crucial long vowels named Fatha, Damma, and Khasra [<a href="#B52-algorithms-15-00155" class="html-bibr">52</a>], which if pronounced incorrectly will change the meaning of the sentence [<a href="#B51-algorithms-15-00155" class="html-bibr">51</a>]. The authors [<a href="#B53-algorithms-15-00155" class="html-bibr">53</a>] therefore pointed out that the performance of any model in a specific language will not be the same in other languages, especially in languages that have limited available data, such as Arabic and Chinese. There was only one attempt by [<a href="#B24-algorithms-15-00155" class="html-bibr">24</a>], where the authors collected CA data based on imitation fakes. For this reason, we can directly understand the lack of detection methods for non-English AD. We therefore encourage the research community to meet this research gap by proposing a new detection method to detect other languages, such as Arabic.</div></section><section id='sec6dot2-algorithms-15-00155' type=''><h4 class='html-italic' data-nested='2'> 6.2. Lack of Accent Assessment in Existing AD Detection Methods</h4><div class='html-p'>The majority of detection methods rely on detecting the type of fake itself without considering other factors that could affect the accuracy of the detection. One such factor is accents, which are defined as the way a specific group of people typically speak, particularly the citizens or natives of a particular country [<a href="#B54-algorithms-15-00155" class="html-bibr">54</a>]. Research on this subject is still missing from the AD literature, and it is presently unclear whether accents can affect detection accuracy. In other audio fields, such as speaker recognition, accents affected the performance of the methods proposed [<a href="#B55-algorithms-15-00155" class="html-bibr">55</a>]. Thus, it is expected that accents can be a challenge in the AD area. To address this challenge, further study is needed on languages that use many different accents, such as Arabic. One country will often contain speakers using many different accents, and the Saudi language is no exception, as it contains Najdi, Hijazi, Qaseemi, and many other accents. Further research is necessary because when the number of accents increases, the chance of the classifier learning a more generalized model for the detection task will increase [<a href="#B28-algorithms-15-00155" class="html-bibr">28</a>]. We therefore suggest that future research focus on covering the AD detection area and measuring the effectiveness of accents, especially Saudi accents.</div></section><section id='sec6dot3-algorithms-15-00155' type=''><h4 class='html-italic' data-nested='2'> 6.3. Excessive Preprocessing to Build Deepfake Detection Models</h4><div class='html-p'>As discussed in the literature of this article, and even though AD detection methods are able to provide high detection accuracy, these methods are currently trading off efficiency with scalability. For this reason, new self-supervised methods should be developed to avoid the excessive preprocessing of ML methods and the extra transformation of DL methods. To date, the Self-Supervised Learning (SSL) approach has not been fully considered in the AD area and can be a valuable solution to overcome these challenges. As confirmed in [<a href="#B56-algorithms-15-00155" class="html-bibr">56</a>], the most crucial aspect of SSL effectiveness is dealing with unlabeled data to work effectively in detection tasks. Only one attempt [<a href="#B43-algorithms-15-00155" class="html-bibr">43</a>] has been seen in the literature addressing the SSL method, and although it was efficient and scalable in solving the issues of supervised algorithms, the detection rate was very low. Thus, it is encouraged to develop new SSL methods with better accuracy that can overcome the ML and DL challenges while introducing better performances.</div></section><section id='sec6dot4-algorithms-15-00155' type=''><h4 class='html-italic' data-nested='2'> 6.4. Limited Assessment of Noisy Audio in Existing AD Detection Methods</h4><div class='html-p'>Noise in general is defined as “arbitrary, unwanted electrical energy that enters the communications system through the communicating medium and obstructs with the conveyed message” [<a href="#B57-algorithms-15-00155" class="html-bibr">57</a>]. Noises can also be generated from natural sources, such as rain, wind, cars, or voices. Voices that have been recorded indoors or outdoors can be affected by real-world noises, such as laughter and rain [<a href="#B31-algorithms-15-00155" class="html-bibr">31</a>]. However, attackers can easily deceive detectors by introducing real-world noises, so robustness is crucial for fake voice detectors. Unfortunately, only one attempt has been made to study this issue in the AD area, and this failed to tackle the effects of real-world noises using the proposed detection method, which is in work [<a href="#B31-algorithms-15-00155" class="html-bibr">31</a>]. This direction could thus be a starting point for researchers looking to develop a robust fake audio detection method that works even with noisy data in the wild.</div></section><section id='sec6dot5-algorithms-15-00155' type=''><h4 class='html-italic' data-nested='2'> 6.5. Limited AD Imitation-Based Detection Methods</h4><div class='html-p'>From the literature discussed, most of the related works have been focused on synthetic-based detection methods, whereas imitation-based methods have been limited. The reason for that is confirmed by M. Ballesteros et al. [<a href="#B5-algorithms-15-00155" class="html-bibr">5</a>], where detecting imitated voices is not a trivial process since a faked voice sounds more similar to the original. Thus, to fill this limitation, we encourage the research community to take on this limitation in the future.</div></section></section><section id='sec7-algorithms-15-00155' type='conclusions'><h2 data-nested='1'> 7. Conclusions</h2><div class='html-p'>This review article has discussed the field of AD, carefully surveying a number of studies exploring detection methods with respect to current datasets. It began by presenting a broad overview of AD, along with their definitions and types. Then, it reviewed the relevant articles that have addressed the subject over the last four years and examined the limitations covered in the literature on classical ML and DL detection methods. Following this, the available faked audio datasets were summarized, and the discussed methods were also compared. Moreover, a quantitative comparison of recent state-of-the-art AD detection methods was also provided. Finally, the research challenges and opportunities of the field were discussed. From this analysis, it can be concluded that further advancements are still needed in the literature of fake audio detection to develop a method that can detect fakeness with different accents or real-world noises. Moreover, the SSL approach can be one future research direction to help solve the current issues affecting the existing AD methods. Imitation-based AD detection is an important part of the AD field that also needs further development in comparison to the synthesis-based methods.</div></section> </div> <div class="html-back"> <section class='html-notes'><h2 >Author Contributions</h2><div class='html-p'>Conceptualization, Z.A.; formal analysis, Z.A.; resources, Z.A.; writing—original draft preparation, Z.A.; writing—review and editing, H.E.; visualization, Z.A.; supervision, H.E. All authors have read and agreed to the published version of the manuscript.</div></section><section class='html-notes'><h2>Funding</h2><div class='html-p'>This research received no external funding.</div></section><section class='html-notes'><h2 >Institutional Review Board Statement</h2><div class='html-p'>Not applicable.</div></section><section class='html-notes'><h2 >Informed Consent Statement</h2><div class='html-p'>Informed consent was obtained from all subjects involved in the study.</div></section><section class='html-notes'><h2 >Data Availability Statement</h2><div class='html-p'>Not applicable.</div></section><section class='html-notes'><h2 >Conflicts of Interest</h2><div class='html-p'>The authors declare no conflict of interest.</div></section><section id='html-references_list'><h2>References</h2><ol class='html-xx'><li id='B1-algorithms-15-00155' class='html-x' data-content='1.'>Lyu, S. Deepfake detection: Current challenges and next steps. <span class='html-italic'>IEEE Comput. Soc.</span> <b>2020</b>, 1–6. [<a href="https://scholar.google.com/scholar_lookup?title=Deepfake+detection:+Current+challenges+and+next+steps&author=Lyu,+S.&publication_year=2020&journal=IEEE+Comput.+Soc.&pages=1%E2%80%936&doi=10.1109/ICMEW46912.2020.9105991" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/ICMEW46912.2020.9105991" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B2-algorithms-15-00155' class='html-x' data-content='2.'>Diakopoulos, N.; Johnson, D. Anticipating and addressing the ethical implications of deepfakes in the context of elections. <span class='html-italic'>New Media Soc.</span> <b>2021</b>, <span class='html-italic'>23</span>, 2072–2098. [<a href="https://scholar.google.com/scholar_lookup?title=Anticipating+and+addressing+the+ethical+implications+of+deepfakes+in+the+context+of+elections&author=Diakopoulos,+N.&author=Johnson,+D.&publication_year=2021&journal=New+Media+Soc.&volume=23&pages=2072%E2%80%932098&doi=10.1177/1461444820925811" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1177/1461444820925811" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B3-algorithms-15-00155' class='html-x' data-content='3.'>Rodríguez-Ortega, Y.; Ballesteros, D.M.; Renza, D. A machine learning model to detect fake voice. In <span class='html-italic'>Applied Informatics</span>; Florez, H., Misra, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–13. [<a href="https://scholar.google.com/scholar_lookup?title=A+machine+learning+model+to+detect+fake+voice&author=Rodr%C3%ADguez-Ortega,+Y.&author=Ballesteros,+D.M.&author=Renza,+D.&publication_year=2020&pages=3%E2%80%9313" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B4-algorithms-15-00155' class='html-x' data-content='4.'>Chen, T.; Kumar, A.; Nagarsheth, P.; Sivaraman, G.; Khoury, E. Generalization of audio deepfake detection. In Proceedings of the Odyssey 2020 The Speaker and Language Recognition Workshop, Tokyo, Japan, 1–5 November 2020; pp. 132–137. [<a href="https://scholar.google.com/scholar_lookup?title=Generalization+of+audio+deepfake+detection&conference=Proceedings+of+the+Odyssey+2020+The+Speaker+and+Language+Recognition+Workshop&author=Chen,+T.&author=Kumar,+A.&author=Nagarsheth,+P.&author=Sivaraman,+G.&author=Khoury,+E.&publication_year=2020&pages=132%E2%80%93137" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B5-algorithms-15-00155' class='html-x' data-content='5.'>Ballesteros, D.M.; Rodriguez-Ortega, Y.; Renza, D.; Arce, G. Deep4SNet: Deep learning for fake speech classification. <span class='html-italic'>Expert Syst. Appl.</span> <b>2021</b>, <span class='html-italic'>184</span>, 115465. [<a href="https://scholar.google.com/scholar_lookup?title=Deep4SNet:+Deep+learning+for+fake+speech+classification&author=Ballesteros,+D.M.&author=Rodriguez-Ortega,+Y.&author=Renza,+D.&author=Arce,+G.&publication_year=2021&journal=Expert+Syst.+Appl.&volume=184&pages=115465&doi=10.1016/j.eswa.2021.115465" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.eswa.2021.115465" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B6-algorithms-15-00155' class='html-x' data-content='6.'>Suwajanakorn, S.; Seitz, S.M.; Kemelmacher-Shlizerman, I. Synthesizing obama: Learning lip sync from audio. <span class='html-italic'>ACM Trans. Graph. ToG</span> <b>2017</b>, <span class='html-italic'>36</span>, 1–13. [<a href="https://scholar.google.com/scholar_lookup?title=Synthesizing+obama:+Learning+lip+sync+from+audio&author=Suwajanakorn,+S.&author=Seitz,+S.M.&author=Kemelmacher-Shlizerman,+I.&publication_year=2017&journal=ACM+Trans.+Graph.+ToG&volume=36&pages=1%E2%80%9313&doi=10.1145/3072959.3073640" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1145/3072959.3073640" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B7-algorithms-15-00155' class='html-x' data-content='7.'>Catherine Stupp Fraudsters Used AI to Mimic CEO’s Voice in Unusual Cybercrime Case. Available online: <a href='https://www.wsj.com/articles/fraudsters-use-ai-to-mimic-ceos-voice-in-unusual-cybercrime-case-11567157402' target='_blank' rel="noopener noreferrer" >https://www.wsj.com/articles/fraudsters-use-ai-to-mimic-ceos-voice-in-unusual-cybercrime-case-11567157402</a> (accessed on 29 January 2022).</li><li id='B8-algorithms-15-00155' class='html-x' data-content='8.'>Chadha, A.; Kumar, V.; Kashyap, S.; Gupta, M. Deepfake: An overview. In <span class='html-italic'>Proceedings of Second International Conference on Computing, Communications, and Cyber-Security</span>; Singh, P.K., Wierzchoń, S.T., Tanwar, S., Ganzha, M., Rodrigues, J.J.P.C., Eds.; Springer: Singapore, 2021; pp. 557–566. [<a href="https://scholar.google.com/scholar_lookup?title=Deepfake:+An+overview&author=Chadha,+A.&author=Kumar,+V.&author=Kashyap,+S.&author=Gupta,+M.&publication_year=2021&pages=557%E2%80%93566" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B9-algorithms-15-00155' class='html-x' data-content='9.'>Tan, X.; Qin, T.; Soong, F.; Liu, T.-Y. A survey on neural speech synthesis. <span class='html-italic'>arXiv</span> <b>2021</b>, arXiv:2106.15561. [<a href="https://scholar.google.com/scholar_lookup?title=A+survey+on+neural+speech+synthesis&author=Tan,+X.&author=Qin,+T.&author=Soong,+F.&author=Liu,+T.-Y.&publication_year=2021&journal=arXiv" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B10-algorithms-15-00155' class='html-xx' data-content='10.'>Ning, Y.; He, S.; Wu, Z.; Xing, C.; Zhang, L.-J. A Review of Deep Learning Based Speech Synthesis. <span class='html-italic'>Appl. Sci.</span> <b>2019</b>, <span class='html-italic'>9</span>, 4050. [<a href="https://scholar.google.com/scholar_lookup?title=A+Review+of+Deep+Learning+Based+Speech+Synthesis&author=Ning,+Y.&author=He,+S.&author=Wu,+Z.&author=Xing,+C.&author=Zhang,+L.-J.&publication_year=2019&journal=Appl.+Sci.&volume=9&pages=4050&doi=10.3390/app9194050" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/app9194050" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.mdpi.com/2076-3417/9/19/4050/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B11-algorithms-15-00155' class='html-xx' data-content='11.'>Ren, Y.; Hu, C.; Tan, X.; Qin, T.; Zhao, S.; Zhao, Z.; Liu, T.-Y. Fastspeech 2: Fast and High-Quality End-to-End Text to Speech. <span class='html-italic'>arXiv</span> <b>2020</b>, arXiv:2006.04558. [<a href="https://scholar.google.com/scholar_lookup?title=Fastspeech+2:+Fast+and+High-Quality+End-to-End+Text+to+Speech&author=Ren,+Y.&author=Hu,+C.&author=Tan,+X.&author=Qin,+T.&author=Zhao,+S.&author=Zhao,+Z.&author=Liu,+T.-Y.&publication_year=2020&journal=arXiv" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B12-algorithms-15-00155' class='html-xx' data-content='12.'>Shen, J.; Pang, R.; Weiss, R.J.; Schuster, M.; Jaitly, N.; Yang, Z.; Chen, Z.; Zhang, Y.; Wang, Y.; Skerrv-Ryan, R. <span class='html-italic'>Natural Tts Synthesis by Conditioning Wavenet on Mel Spectrogram Predictions</span>; IEEE: Piscataway, NJ, USA, 2018; pp. 4779–4783. [<a href="https://scholar.google.com/scholar_lookup?title=Natural+Tts+Synthesis+by+Conditioning+Wavenet+on+Mel+Spectrogram+Predictions&author=Shen,+J.&author=Pang,+R.&author=Weiss,+R.J.&author=Schuster,+M.&author=Jaitly,+N.&author=Yang,+Z.&author=Chen,+Z.&author=Zhang,+Y.&author=Wang,+Y.&author=Skerrv-Ryan,+R.&publication_year=2018" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B13-algorithms-15-00155' class='html-xx' data-content='13.'>Ping, W.; Peng, K.; Gibiansky, A.; Arik, S.O.; Kannan, A.; Narang, S.; Raiman, J.; Miller, J. Deep voice 3: Scaling text-to-speech with convolutional sequence learning. <span class='html-italic'>arXiv</span> <b>2017</b>, arXiv:1710.07654. [<a href="https://scholar.google.com/scholar_lookup?title=Deep+voice+3:+Scaling+text-to-speech+with+convolutional+sequence+learning&author=Ping,+W.&author=Peng,+K.&author=Gibiansky,+A.&author=Arik,+S.O.&author=Kannan,+A.&author=Narang,+S.&author=Raiman,+J.&author=Miller,+J.&publication_year=2017&journal=arXiv" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B14-algorithms-15-00155' class='html-xx' data-content='14.'>Khanjani, Z.; Watson, G.; Janeja, V.P. How deep are the fakes? Focusing on audio deepfake: A survey. <span class='html-italic'>arXiv</span> <b>2021</b>, arXiv:2111.14203. [<a href="https://scholar.google.com/scholar_lookup?title=How+deep+are+the+fakes?+Focusing+on+audio+deepfake:+A+survey&author=Khanjani,+Z.&author=Watson,+G.&author=Janeja,+V.P.&publication_year=2021&journal=arXiv" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B15-algorithms-15-00155' class='html-xx' data-content='15.'>Pradhan, S.; Sun, W.; Baig, G.; Qiu, L. Combating replay attacks against voice assistants. <span class='html-italic'>Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.</span> <b>2019</b>, <span class='html-italic'>3</span>, 1–26. [<a href="https://scholar.google.com/scholar_lookup?title=Combating+replay+attacks+against+voice+assistants&author=Pradhan,+S.&author=Sun,+W.&author=Baig,+G.&author=Qiu,+L.&publication_year=2019&journal=Proc.+ACM+Interact.+Mob.+Wearable+Ubiquitous+Technol.&volume=3&pages=1%E2%80%9326&doi=10.1145/3351258" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1145/3351258" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B16-algorithms-15-00155' class='html-xx' data-content='16.'>Ballesteros, D.M.; Rodriguez, Y.; Renza, D. A dataset of histograms of original and fake voice recordings (H-voice). <span class='html-italic'>Data Brief</span> <b>2020</b>, <span class='html-italic'>29</span>, 105331. [<a href="https://scholar.google.com/scholar_lookup?title=A+dataset+of+histograms+of+original+and+fake+voice+recordings+(H-voice)&author=Ballesteros,+D.M.&author=Rodriguez,+Y.&author=Renza,+D.&publication_year=2020&journal=Data+Brief&volume=29&pages=105331&doi=10.1016/j.dib.2020.105331" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.dib.2020.105331" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B17-algorithms-15-00155' class='html-xx' data-content='17.'>Singh, A.K.; Singh, P. Detection of ai-synthesized speech using cepstral &amp; bispectral statistics. In Proceedings of the 2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR), Tokyo, Japan, 8–10 September 2021; pp. 412–417. [<a href="https://scholar.google.com/scholar_lookup?title=Detection+of+ai-synthesized+speech+using+cepstral+%2526+bispectral+statistics&conference=Proceedings+of+the+2021+IEEE+4th+International+Conference+on+Multimedia+Information+Processing+and+Retrieval+(MIPR)&author=Singh,+A.K.&author=Singh,+P.&publication_year=2021&pages=412%E2%80%93417" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B18-algorithms-15-00155' class='html-xx' data-content='18.'>Borrelli, C.; Bestagini, P.; Antonacci, F.; Sarti, A.; Tubaro, S. Synthetic speech detection through short-term and long-term prediction traces. <span class='html-italic'>EURASIP J. Inf. Secur.</span> <b>2021</b>, <span class='html-italic'>2021</span>, 2. [<a href="https://scholar.google.com/scholar_lookup?title=Synthetic+speech+detection+through+short-term+and+long-term+prediction+traces&author=Borrelli,+C.&author=Bestagini,+P.&author=Antonacci,+F.&author=Sarti,+A.&author=Tubaro,+S.&publication_year=2021&journal=EURASIP+J.+Inf.+Secur.&volume=2021&pages=2&doi=10.1186/s13635-021-00116-3" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1186/s13635-021-00116-3" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B19-algorithms-15-00155' class='html-xx' data-content='19.'>Todisco, M.; Wang, X.; Vestman, V.; Sahidullah, M.; Delgado, H.; Nautsch, A.; Yamagishi, J.; Evans, N.; Kinnunen, T.; Lee, K.A. ASVspoof 2019: Future horizons in spoofed and fake audio detection. <span class='html-italic'>arXiv</span> <b>2019</b>, arXiv:1904.05441. [<a href="https://scholar.google.com/scholar_lookup?title=ASVspoof+2019:+Future+horizons+in+spoofed+and+fake+audio+detection&author=Todisco,+M.&author=Wang,+X.&author=Vestman,+V.&author=Sahidullah,+M.&author=Delgado,+H.&author=Nautsch,+A.&author=Yamagishi,+J.&author=Evans,+N.&author=Kinnunen,+T.&author=Lee,+K.A.&publication_year=2019&journal=arXiv" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B20-algorithms-15-00155' class='html-xx' data-content='20.'>Liu, T.; Yan, D.; Wang, R.; Yan, N.; Chen, G. Identification of fake stereo audio using SVM and CNN. <span class='html-italic'>Information</span> <b>2021</b>, <span class='html-italic'>12</span>, 263. [<a href="https://scholar.google.com/scholar_lookup?title=Identification+of+fake+stereo+audio+using+SVM+and+CNN&author=Liu,+T.&author=Yan,+D.&author=Wang,+R.&author=Yan,+N.&author=Chen,+G.&publication_year=2021&journal=Information&volume=12&pages=263&doi=10.3390/info12070263" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/info12070263" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B21-algorithms-15-00155' class='html-xx' data-content='21.'>Subramani, N.; Rao, D. Learning efficient representations for fake speech detection. In Proceedings of the The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, 7–12 February 2020; pp. 5859–5866. [<a href="https://scholar.google.com/scholar_lookup?title=Learning+efficient+representations+for+fake+speech+detection&conference=Proceedings+of+the+The+Thirty-Fourth+AAAI+Conference+on+Artificial+Intelligence,+AAAI+2020,+The+Thirty-Second+Innovative+Applications+of+Artificial+Intelligence+Conference,+IAAI+2020,+The+Tenth+AAAI+Symposium+on+Educational+Advances+in+Artificial+Intelligence,+EAAI+2020&author=Subramani,+N.&author=Rao,+D.&publication_year=2020&pages=5859%E2%80%935866" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B22-algorithms-15-00155' class='html-xx' data-content='22.'>Bartusiak, E.R.; Delp, E.J. Frequency domain-based detection of generated audio. In Proceedings of the Electronic Imaging; Society for Imaging Science and Technology, New York, NY, USA, 11–15 January 2021; Volume 2021, pp. 273–281. [<a href="https://scholar.google.com/scholar_lookup?title=Frequency+domain-based+detection+of+generated+audio&conference=Proceedings+of+the+Electronic+Imaging;+Society+for+Imaging+Science+and+Technology&author=Bartusiak,+E.R.&author=Delp,+E.J.&publication_year=2021&pages=273%E2%80%93281" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B23-algorithms-15-00155' class='html-xx' data-content='23.'>Lataifeh, M.; Elnagar, A.; Shahin, I.; Nassif, A.B. Arabic audio clips: Identification and discrimination of authentic cantillations from imitations. <span class='html-italic'>Neurocomputing</span> <b>2020</b>, <span class='html-italic'>418</span>, 162–177. [<a href="https://scholar.google.com/scholar_lookup?title=Arabic+audio+clips:+Identification+and+discrimination+of+authentic+cantillations+from+imitations&author=Lataifeh,+M.&author=Elnagar,+A.&author=Shahin,+I.&author=Nassif,+A.B.&publication_year=2020&journal=Neurocomputing&volume=418&pages=162%E2%80%93177&doi=10.1016/j.neucom.2020.07.099" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.neucom.2020.07.099" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B24-algorithms-15-00155' class='html-xx' data-content='24.'>Lataifeh, M.; Elnagar, A. Ar-DAD: Arabic diversified audio dataset. <span class='html-italic'>Data Brief</span> <b>2020</b>, <span class='html-italic'>33</span>, 106503. [<a href="https://scholar.google.com/scholar_lookup?title=Ar-DAD:+Arabic+diversified+audio+dataset&author=Lataifeh,+M.&author=Elnagar,+A.&publication_year=2020&journal=Data+Brief&volume=33&pages=106503&doi=10.1016/j.dib.2020.106503" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.dib.2020.106503" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B25-algorithms-15-00155' class='html-xx' data-content='25.'>Lei, Z.; Yang, Y.; Liu, C.; Ye, J. Siamese convolutional neural network using gaussian probability feature for spoofing speech detection. In Proceedings of the INTERSPEECH, Shanghai, China, 25–29 October 2020; pp. 1116–1120. [<a href="https://scholar.google.com/scholar_lookup?title=Siamese+convolutional+neural+network+using+gaussian+probability+feature+for+spoofing+speech+detection&conference=Proceedings+of+the+INTERSPEECH&author=Lei,+Z.&author=Yang,+Y.&author=Liu,+C.&author=Ye,+J.&publication_year=2020&pages=1116%E2%80%931120" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B26-algorithms-15-00155' class='html-xx' data-content='26.'>Hofbauer, H.; Uhl, A. Calculating a boundary for the significance from the equal-error rate. In Proceedings of the 2016 International Conference on Biometrics (ICB), Halmstad, Sweden, 13 June 2016; pp. 1–4. [<a href="https://scholar.google.com/scholar_lookup?title=Calculating+a+boundary+for+the+significance+from+the+equal-error+rate&conference=Proceedings+of+the+2016+International+Conference+on+Biometrics+(ICB)&author=Hofbauer,+H.&author=Uhl,+A.&publication_year=2016&pages=1%E2%80%934" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B27-algorithms-15-00155' class='html-xx' data-content='27.'>Camacho, S.; Ballesteros, D.M.; Renza, D. Fake speech recognition using deep learning. In <span class='html-italic'>Applied Computer Sciences in Engineering</span>; Figueroa-García, J.C., Díaz-Gutierrez, Y., Gaona-García, E.E., Orjuela-Cañón, A.D., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 38–48. [<a href="https://scholar.google.com/scholar_lookup?title=Fake+speech+recognition+using+deep+learning&author=Camacho,+S.&author=Ballesteros,+D.M.&author=Renza,+D.&publication_year=2021&pages=38%E2%80%9348" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B28-algorithms-15-00155' class='html-xx' data-content='28.'>Reimao, R.; Tzerpos, V. For: A dataset for synthetic speech detection. In Proceedings of the 2019 International Conference on Speech Technology and Human-Computer Dialogue (SpeD), Timisoara, Romania, 10 October 2019; pp. 1–10. [<a href="https://scholar.google.com/scholar_lookup?title=For:+A+dataset+for+synthetic+speech+detection&conference=Proceedings+of+the+2019+International+Conference+on+Speech+Technology+and+Human-Computer+Dialogue+(SpeD)&author=Reimao,+R.&author=Tzerpos,+V.&publication_year=2019&pages=1%E2%80%9310" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B29-algorithms-15-00155' class='html-xx' data-content='29.'>Yu, H.; Tan, Z.-H.; Ma, Z.; Martin, R.; Guo, J. Guo spoofing detection in automatic speaker verification systems using DNN classifiers and dynamic acoustic features. <span class='html-italic'>IEEE Trans. Neural Netw. Learn. Syst.</span> <b>2018</b>, <span class='html-italic'>29</span>, 4633–4644. [<a href="https://scholar.google.com/scholar_lookup?title=Guo+spoofing+detection+in+automatic+speaker+verification+systems+using+DNN+classifiers+and+dynamic+acoustic+features&author=Yu,+H.&author=Tan,+Z.-H.&author=Ma,+Z.&author=Martin,+R.&author=Guo,+J.&publication_year=2018&journal=IEEE+Trans.+Neural+Netw.+Learn.+Syst.&volume=29&pages=4633%E2%80%934644&doi=10.1109/TNNLS.2017.2771947" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/TNNLS.2017.2771947" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://vbn.aau.dk/ws/files/293352647/Spoofing_Detection_in_Automatic_Speaker_Verification_Systems_Using_DNN_Classifiers_and_Dynamic_Acoustic_Features.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B30-algorithms-15-00155' class='html-xx' data-content='30.'>Wu, Z.; Kinnunen, T.; Evans, N.; Yamagishi, J.; Hanilçi, C.; Sahidullah, M.; Sizov, A. ASVspoof 2015: The first automatic speaker verification spoofing and countermeasures challenge. In Proceedings of the Interspeech 2015, Dresden, Germany, 6–10 September 2015; p. 5. [<a href="https://scholar.google.com/scholar_lookup?title=ASVspoof+2015:+The+first+automatic+speaker+verification+spoofing+and+countermeasures+challenge&conference=Proceedings+of+the+Interspeech+2015&author=Wu,+Z.&author=Kinnunen,+T.&author=Evans,+N.&author=Yamagishi,+J.&author=Hanil%C3%A7i,+C.&author=Sahidullah,+M.&author=Sizov,+A.&publication_year=2015&pages=5" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B31-algorithms-15-00155' class='html-xx' data-content='31.'>Wang, R.; Juefei-Xu, F.; Huang, Y.; Guo, Q.; Xie, X.; Ma, L.; Liu, Y. Deepsonar: Towards effective and robust detection of ai-synthesized fake voices. In Proceedings of the the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1207–1216. [<a href="https://scholar.google.com/scholar_lookup?title=Deepsonar:+Towards+effective+and+robust+detection+of+ai-synthesized+fake+voices&conference=Proceedings+of+the+the+28th+ACM+International+Conference+on+Multimedia&author=Wang,+R.&author=Juefei-Xu,+F.&author=Huang,+Y.&author=Guo,+Q.&author=Xie,+X.&author=Ma,+L.&author=Liu,+Y.&publication_year=2020&pages=1207%E2%80%931216" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B32-algorithms-15-00155' class='html-xx' data-content='32.'>Wijethunga, R.L.M.A.P.C.; Matheesha, D.M.K.; Al Noman, A.; De Silva, K.H.V.T.A.; Tissera, M.; Rupasinghe, L. Rupasinghe deepfake audio detection: A deep learning based solution for group conversations. In Proceedings of the 2020 2nd International Conference on Advancements in Computing (ICAC), Malabe, Sri Lanka, 10–11 December 2020; Volume 1, pp. 192–197. [<a href="https://scholar.google.com/scholar_lookup?title=Rupasinghe+deepfake+audio+detection:+A+deep+learning+based+solution+for+group+conversations&conference=Proceedings+of+the+2020+2nd+International+Conference+on+Advancements+in+Computing+(ICAC)&author=Wijethunga,+R.L.M.A.P.C.&author=Matheesha,+D.M.K.&author=Al+Noman,+A.&author=De+Silva,+K.H.V.T.A.&author=Tissera,+M.&author=Rupasinghe,+L.&publication_year=2020&pages=192%E2%80%93197" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B33-algorithms-15-00155' class='html-xx' data-content='33.'>Chintha, A.; Thai, B.; Sohrawardi, S.J.; Bhatt, K.M.; Hickerson, A.; Wright, M.; Ptucha, R. Ptucha recurrent convolutional structures for audio spoof and video deepfake detection. <span class='html-italic'>IEEE J. Sel. Top. Signal. Process.</span> <b>2020</b>, <span class='html-italic'>14</span>, 1024–1037. [<a href="https://scholar.google.com/scholar_lookup?title=Ptucha+recurrent+convolutional+structures+for+audio+spoof+and+video+deepfake+detection&author=Chintha,+A.&author=Thai,+B.&author=Sohrawardi,+S.J.&author=Bhatt,+K.M.&author=Hickerson,+A.&author=Wright,+M.&author=Ptucha,+R.&publication_year=2020&journal=IEEE+J.+Sel.+Top.+Signal.+Process.&volume=14&pages=1024%E2%80%931037&doi=10.1109/JSTSP.2020.2999185" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/JSTSP.2020.2999185" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B34-algorithms-15-00155' class='html-xx' data-content='34.'>Kinnunen, T.; Lee, K.A.; Delgado, H.; Evans, N.; Todisco, M.; Sahidullah, M.; Yamagishi, J.; Reynolds, D.A. T-DCF: A detection cost function for the tandem assessment of spoofing countermeasures and automatic speaker verification. <span class='html-italic'>arXiv</span> <b>2018</b>, arXiv:1804.09618. [<a href="https://scholar.google.com/scholar_lookup?title=T-DCF:+A+detection+cost+function+for+the+tandem+assessment+of+spoofing+countermeasures+and+automatic+speaker+verification&author=Kinnunen,+T.&author=Lee,+K.A.&author=Delgado,+H.&author=Evans,+N.&author=Todisco,+M.&author=Sahidullah,+M.&author=Yamagishi,+J.&author=Reynolds,+D.A.&publication_year=2018&journal=arXiv" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B35-algorithms-15-00155' class='html-xx' data-content='35.'>Shan, M.; Tsai, T. A cross-verification approach for protecting world leaders from fake and tampered audio. <span class='html-italic'>arXiv</span> <b>2020</b>, arXiv:2010.12173. [<a href="https://scholar.google.com/scholar_lookup?title=A+cross-verification+approach+for+protecting+world+leaders+from+fake+and+tampered+audio&author=Shan,+M.&author=Tsai,+T.&publication_year=2020&journal=arXiv" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B36-algorithms-15-00155' class='html-xx' data-content='36.'>Aravind, P.R.; Nechiyil, U.; Paramparambath, N. Audio spoofing verification using deep convolutional neural networks by transfer learning. <span class='html-italic'>arXiv</span> <b>2020</b>, arXiv:2008.03464. [<a href="https://scholar.google.com/scholar_lookup?title=Audio+spoofing+verification+using+deep+convolutional+neural+networks+by+transfer+learning&author=Aravind,+P.R.&author=Nechiyil,+U.&author=Paramparambath,+N.&publication_year=2020&journal=arXiv" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B37-algorithms-15-00155' class='html-xx' data-content='37.'>Khochare, J.; Joshi, C.; Yenarkar, B.; Suratkar, S.; Kazi, F. A deep learning framework for audio deepfake detection. <span class='html-italic'>Arab. J. Sci. Eng.</span> <b>2021</b>, <span class='html-italic'>47</span>, 3447–3458. [<a href="https://scholar.google.com/scholar_lookup?title=A+deep+learning+framework+for+audio+deepfake+detection&author=Khochare,+J.&author=Joshi,+C.&author=Yenarkar,+B.&author=Suratkar,+S.&author=Kazi,+F.&publication_year=2021&journal=Arab.+J.+Sci.+Eng.&volume=47&pages=3447%E2%80%933458&doi=10.1007/s13369-021-06297-w" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s13369-021-06297-w" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B38-algorithms-15-00155' class='html-xx' data-content='38.'>Khalid, H.; Kim, M.; Tariq, S.; Woo, S.S. Evaluation of an audio-video multimodal deepfake dataset using unimodal and multimodal detectors. In Proceedings of the 1st Workshop on Synthetic Multimedia, ACM Association for Computing Machinery, New York, NY, USA, 20 October 2021; pp. 7–15. [<a href="https://scholar.google.com/scholar_lookup?title=Evaluation+of+an+audio-video+multimodal+deepfake+dataset+using+unimodal+and+multimodal+detectors&conference=Proceedings+of+the+1st+Workshop+on+Synthetic+Multimedia,+ACM+Association+for+Computing+Machinery&author=Khalid,+H.&author=Kim,+M.&author=Tariq,+S.&author=Woo,+S.S.&publication_year=2021&pages=7%E2%80%9315" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B39-algorithms-15-00155' class='html-xx' data-content='39.'>Khalid, H.; Tariq, S.; Kim, M.; Woo, S.S. FakeAVCeleb: A novel audio-video multimodal deepfake dataset. In Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks, Virtual, 6–14 December 2021; p. 14. [<a href="https://scholar.google.com/scholar_lookup?title=FakeAVCeleb:+A+novel+audio-video+multimodal+deepfake+dataset&conference=Proceedings+of+the+35th+Conference+on+Neural+Information+Processing+Systems+(NeurIPS+2021)+Track+on+Datasets+and+Benchmarks&author=Khalid,+H.&author=Tariq,+S.&author=Kim,+M.&author=Woo,+S.S.&publication_year=2021&pages=14" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B40-algorithms-15-00155' class='html-xx' data-content='40.'>Alzantot, M.; Wang, Z.; Srivastava, M.B. Deep residual neural networks for audio spoofing detection. <span class='html-italic'>arXiv CoRR</span> <b>2019</b>, arXiv:1907.00501. [<a href="https://scholar.google.com/scholar_lookup?title=Deep+residual+neural+networks+for+audio+spoofing+detection&author=Alzantot,+M.&author=Wang,+Z.&author=Srivastava,+M.B.&publication_year=2019&journal=arXiv+CoRR" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B41-algorithms-15-00155' class='html-xx' data-content='41.'>Arif, T.; Javed, A.; Alhameed, M.; Jeribi, F.; Tahir, A. Voice spoofing countermeasure for logical access attacks detection. <span class='html-italic'>IEEE Access</span> <b>2021</b>, <span class='html-italic'>9</span>, 162857–162868. [<a href="https://scholar.google.com/scholar_lookup?title=Voice+spoofing+countermeasure+for+logical+access+attacks+detection&author=Arif,+T.&author=Javed,+A.&author=Alhameed,+M.&author=Jeribi,+F.&author=Tahir,+A.&publication_year=2021&journal=IEEE+Access&volume=9&pages=162857%E2%80%93162868&doi=10.1109/ACCESS.2021.3133134" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/ACCESS.2021.3133134" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B42-algorithms-15-00155' class='html-xx' data-content='42.'>Lai, C.-I.; Chen, N.; Villalba, J.; Dehak, N. ASSERT: Anti-spoofing with squeeze-excitation and residual networks. <span class='html-italic'>arXiv</span> <b>2019</b>, arXiv:1904.01120. [<a href="https://scholar.google.com/scholar_lookup?title=ASSERT:+Anti-spoofing+with+squeeze-excitation+and+residual+networks&author=Lai,+C.-I.&author=Chen,+N.&author=Villalba,+J.&author=Dehak,+N.&publication_year=2019&journal=arXiv" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B43-algorithms-15-00155' class='html-xx' data-content='43.'>Jiang, Z.; Zhu, H.; Peng, L.; Ding, W.; Ren, Y. Self-supervised spoofing audio detection scheme. In Proceedings of the INTERSPEECH 2020, Shanghai, China, 25–29 October 2020; pp. 4223–4227. [<a href="https://scholar.google.com/scholar_lookup?title=Self-supervised+spoofing+audio+detection+scheme&conference=Proceedings+of+the+INTERSPEECH+2020&author=Jiang,+Z.&author=Zhu,+H.&author=Peng,+L.&author=Ding,+W.&author=Ren,+Y.&publication_year=2020&pages=4223%E2%80%934227" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B44-algorithms-15-00155' class='html-xx' data-content='44.'>Imdat Solak The M-AILABS Speech Dataset. Available online: <a href='https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/' target='_blank' rel="noopener noreferrer" >https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/</a> (accessed on 10 March 2022).</li><li id='B45-algorithms-15-00155' class='html-xx' data-content='45.'>Arik, S.O.; Chen, J.; Peng, K.; Ping, W.; Zhou, Y. Neural voice cloning with a few samples. In Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, QC, Canada, 2–8 December 2018; p. 11. [<a href="https://scholar.google.com/scholar_lookup?title=Neural+voice+cloning+with+a+few+samples&conference=Proceedings+of+the+32nd+Conference+on+Neural+Information+Processing+Systems+(NeurIPS+2018)&author=Arik,+S.O.&author=Chen,+J.&author=Peng,+K.&author=Ping,+W.&author=Zhou,+Y.&publication_year=2018&pages=11" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B46-algorithms-15-00155' class='html-xx' data-content='46.'>Yi, J.; Fu, R.; Tao, J.; Nie, S.; Ma, H.; Wang, C.; Wang, T.; Tian, Z.; Bai, Y.; Fan, C. Add 2022: The first audio deep synthesis detection challenge. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Singapore, 23–27 May 2022; p. 5. [<a href="https://scholar.google.com/scholar_lookup?title=Add+2022:+The+first+audio+deep+synthesis+detection+challenge&conference=Proceedings+of+the+IEEE+International+Conference+on+Acoustics,+Speech,+and+Signal+Processing&author=Yi,+J.&author=Fu,+R.&author=Tao,+J.&author=Nie,+S.&author=Ma,+H.&author=Wang,+C.&author=Wang,+T.&author=Tian,+Z.&author=Bai,+Y.&author=Fan,+C.&publication_year=2022&pages=5" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B47-algorithms-15-00155' class='html-xx' data-content='47.'>Kinnunen, T.; Sahidullah, M.; Delgado, H.; Todisco, M.; Evans, N.; Yamagishi, J.; Lee, K.A. The 2nd Automatic Speaker Verification Spoofing and Countermeasures Challenge (ASVspoof 2017) Database, Version 2. Available online: <a href='https://datashare.ed.ac.uk/handle/10283/3055' target='_blank' rel="noopener noreferrer" >https://datashare.ed.ac.uk/handle/10283/3055</a> (accessed on 5 November 2021).</li><li id='B48-algorithms-15-00155' class='html-xx' data-content='48.'>Nations, U. Official Languages. Available online: <a href='https://www.un.org/en/our-work/official-languages' target='_blank' rel="noopener noreferrer" >https://www.un.org/en/our-work/official-languages</a> (accessed on 5 March 2022).</li><li id='B49-algorithms-15-00155' class='html-xx' data-content='49.'>Almeman, K.; Lee, M. A comparison of arabic speech recognition for multi-dialect vs. specific dialects. In Proceedings of the Seventh International Conference on Speech Technology and Human-Computer Dialogue (SpeD 2013), Cluj-Napoca, Romania, 16–19 October 2013; pp. 16–19. [<a href="https://scholar.google.com/scholar_lookup?title=A+comparison+of+arabic+speech+recognition+for+multi-dialect+vs.+specific+dialects&conference=Proceedings+of+the+Seventh+International+Conference+on+Speech+Technology+and+Human-Computer+Dialogue+(SpeD+2013)&author=Almeman,+K.&author=Lee,+M.&publication_year=2013&pages=16%E2%80%9319" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B50-algorithms-15-00155' class='html-xx' data-content='50.'>Elgibreen, H.; Faisal, M.; Al Sulaiman, M.; Abdou, S.; Mekhtiche, M.A.; Moussa, A.M.; Alohali, Y.A.; Abdul, W.; Muhammad, G.; Rashwan, M.; et al. An Incremental Approach to Corpus Design and Construction: Application to a Large Contemporary Saudi Corpus. <span class='html-italic'>IEEE Access</span> <b>2021</b>, <span class='html-italic'>9</span>, 88405–88428. [<a href="https://scholar.google.com/scholar_lookup?title=An+Incremental+Approach+to+Corpus+Design+and+Construction:+Application+to+a+Large+Contemporary+Saudi+Corpus&author=Elgibreen,+H.&author=Faisal,+M.&author=Al+Sulaiman,+M.&author=Abdou,+S.&author=Mekhtiche,+M.A.&author=Moussa,+A.M.&author=Alohali,+Y.A.&author=Abdul,+W.&author=Muhammad,+G.&author=Rashwan,+M.&publication_year=2021&journal=IEEE+Access&volume=9&pages=88405%E2%80%9388428&doi=10.1109/ACCESS.2021.3089924" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/ACCESS.2021.3089924" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B51-algorithms-15-00155' class='html-xx' data-content='51.'>Asif, A.; Mukhtar, H.; Alqadheeb, F.; Ahmad, H.F.; Alhumam, A. An approach for pronunciation classification of classical arabic phonemes using deep learning. <span class='html-italic'>Appl. Sci.</span> <b>2022</b>, <span class='html-italic'>12</span>, 238. [<a href="https://scholar.google.com/scholar_lookup?title=An+approach+for+pronunciation+classification+of+classical+arabic+phonemes+using+deep+learning&author=Asif,+A.&author=Mukhtar,+H.&author=Alqadheeb,+F.&author=Ahmad,+H.F.&author=Alhumam,+A.&publication_year=2022&journal=Appl.+Sci.&volume=12&pages=238&doi=10.3390/app12010238" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/app12010238" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B52-algorithms-15-00155' class='html-xx' data-content='52.'>Ibrahim, A.B.; Seddiq, Y.M.; Meftah, A.H.; Alghamdi, M.; Selouani, S.-A.; Qamhan, M.A.; Alotaibi, Y.A.; Alshebeili, S.A. Optimizing Arabic Speech Distinctive Phonetic Features and Phoneme Recognition Using Genetic Algorithm. <span class='html-italic'>IEEE Access</span> <b>2020</b>, <span class='html-italic'>8</span>, 200395–200411. [<a href="https://scholar.google.com/scholar_lookup?title=Optimizing+Arabic+Speech+Distinctive+Phonetic+Features+and+Phoneme+Recognition+Using+Genetic+Algorithm&author=Ibrahim,+A.B.&author=Seddiq,+Y.M.&author=Meftah,+A.H.&author=Alghamdi,+M.&author=Selouani,+S.-A.&author=Qamhan,+M.A.&author=Alotaibi,+Y.A.&author=Alshebeili,+S.A.&publication_year=2020&journal=IEEE+Access&volume=8&pages=200395%E2%80%93200411&doi=10.1109/ACCESS.2020.3034762" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/ACCESS.2020.3034762" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B53-algorithms-15-00155' class='html-xx' data-content='53.'>Maw, M.; Balakrishnan, V.; Rana, O.; Ravana, S.D. Trends and patterns of text classification techniques: A systematic mapping study. <span class='html-italic'>Malays. J. Comput. Sci.</span> <b>2020</b>, <span class='html-italic'>33</span>, 102–117. [<a href="https://scholar.google.com/scholar_lookup?title=Trends+and+patterns+of+text+classification+techniques:+A+systematic+mapping+study&author=Maw,+M.&author=Balakrishnan,+V.&author=Rana,+O.&author=Ravana,+S.D.&publication_year=2020&journal=Malays.+J.+Comput.+Sci.&volume=33&pages=102%E2%80%93117" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B54-algorithms-15-00155' class='html-xx' data-content='54.'>Rizwan, M.; Odelowo, B.O.; Anderson, D.V. Word based dialect classification using extreme learning machines. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24 July 2016; pp. 2625–2629. [<a href="https://scholar.google.com/scholar_lookup?title=Word+based+dialect+classification+using+extreme+learning+machines&conference=Proceedings+of+the+2016+International+Joint+Conference+on+Neural+Networks+(IJCNN)&author=Rizwan,+M.&author=Odelowo,+B.O.&author=Anderson,+D.V.&publication_year=2016&pages=2625%E2%80%932629" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B55-algorithms-15-00155' class='html-xx' data-content='55.'>Najafian, M. Modeling accents for automatic speech recognition. In Proceedings of the 23rd European Signal Proceedings (EUSIPCO), Nice, France, 31 August–4 September 2015; University of Birmingham: Birmingham, UK, 2013; Volume 1568, p. 1. [<a href="https://scholar.google.com/scholar_lookup?title=Modeling+accents+for+automatic+speech+recognition&conference=Proceedings+of+the+23rd+European+Signal+Proceedings+(EUSIPCO)&author=Najafian,+M.&publication_year=2013&pages=1" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B56-algorithms-15-00155' class='html-xx' data-content='56.'>Liu, X.; Zhang, F.; Hou, Z.; Mian, L.; Wang, Z.; Zhang, J.; Tang, J. Self-supervised learning: Generative or contrastive. <span class='html-italic'>IEEE Trans. Knowl. Data Eng.</span> <b>2021</b>. [<a href="https://scholar.google.com/scholar_lookup?title=Self-supervised+learning:+Generative+or+contrastive&author=Liu,+X.&author=Zhang,+F.&author=Hou,+Z.&author=Mian,+L.&author=Wang,+Z.&author=Zhang,+J.&author=Tang,+J.&publication_year=2021&journal=IEEE+Trans.+Knowl.+Data+Eng.&doi=10.1109/TKDE.2021.3090866" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/TKDE.2021.3090866" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B57-algorithms-15-00155' class='html-xx' data-content='57.'>Jain, D.; Beniwal, D.P. Review paper on noise cancellation using adaptive filters. <span class='html-italic'>Int. J. Eng. Res. Technol.</span> <b>2022</b>, <span class='html-italic'>11</span>, 241–244. [<a href="https://scholar.google.com/scholar_lookup?title=Review+paper+on+noise+cancellation+using+adaptive+filters&author=Jain,+D.&author=Beniwal,+D.P.&publication_year=2022&journal=Int.+J.+Eng.+Res.+Technol.&volume=11&pages=241%E2%80%93244" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li></ol></section><section id='FiguresandTables' type='display-objects'><div class="html-fig-wrap" id="algorithms-15-00155-f001"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/1999-4893/15/5/155/display" href="#fig_body_display_algorithms-15-00155-f001"> <img alt="Algorithms 15 00155 g001 550" data-large="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g001.png" data-original="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g001.png" data-lsrc="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g001-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/1999-4893/15/5/155/display" href="#fig_body_display_algorithms-15-00155-f001"></a> </div> </div> <div class="html-fig_description"> <b>Figure 1.</b> An illustration of the AD detection process. <!-- <p><a class="html-figpopup" href="#fig_body_display_algorithms-15-00155-f001"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_algorithms-15-00155-f001" > <div class="html-caption" > <b>Figure 1.</b> An illustration of the AD detection process.</div> <div class="html-img"><img alt="Algorithms 15 00155 g001" data-large="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g001.png" data-original="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g001.png" data-lsrc="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g001.png" /></div> </div><div class="html-fig-wrap" id="algorithms-15-00155-f002"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/1999-4893/15/5/155/display" href="#fig_body_display_algorithms-15-00155-f002"> <img alt="Algorithms 15 00155 g002 550" data-large="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g002.png" data-original="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g002.png" data-lsrc="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g002-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/1999-4893/15/5/155/display" href="#fig_body_display_algorithms-15-00155-f002"></a> </div> </div> <div class="html-fig_description"> <b>Figure 2.</b> Imitation-based Deepfake. <!-- <p><a class="html-figpopup" href="#fig_body_display_algorithms-15-00155-f002"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_algorithms-15-00155-f002" > <div class="html-caption" > <b>Figure 2.</b> Imitation-based Deepfake.</div> <div class="html-img"><img alt="Algorithms 15 00155 g002" data-large="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g002.png" data-original="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g002.png" data-lsrc="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g002.png" /></div> </div><div class="html-fig-wrap" id="algorithms-15-00155-f003"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/1999-4893/15/5/155/display" href="#fig_body_display_algorithms-15-00155-f003"> <img alt="Algorithms 15 00155 g003 550" data-large="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g003.png" data-original="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g003.png" data-lsrc="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g003-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/1999-4893/15/5/155/display" href="#fig_body_display_algorithms-15-00155-f003"></a> </div> </div> <div class="html-fig_description"> <b>Figure 3.</b> The Synthetic-based Deepfake Process. <!-- <p><a class="html-figpopup" href="#fig_body_display_algorithms-15-00155-f003"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_algorithms-15-00155-f003" > <div class="html-caption" > <b>Figure 3.</b> The Synthetic-based Deepfake Process.</div> <div class="html-img"><img alt="Algorithms 15 00155 g003" data-large="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g003.png" data-original="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g003.png" data-lsrc="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g003.png" /></div> </div><div class="html-fig-wrap" id="algorithms-15-00155-f004"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/1999-4893/15/5/155/display" href="#fig_body_display_algorithms-15-00155-f004"> <img alt="Algorithms 15 00155 g004 550" data-large="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g004.png" data-original="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g004.png" data-lsrc="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g004-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/1999-4893/15/5/155/display" href="#fig_body_display_algorithms-15-00155-f004"></a> </div> </div> <div class="html-fig_description"> <b>Figure 4.</b> The Structure of the H-Voice Dataset. <!-- <p><a class="html-figpopup" href="#fig_body_display_algorithms-15-00155-f004"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_algorithms-15-00155-f004" > <div class="html-caption" > <b>Figure 4.</b> The Structure of the H-Voice Dataset.</div> <div class="html-img"><img alt="Algorithms 15 00155 g004" data-large="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g004.png" data-original="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g004.png" data-lsrc="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g004.png" /></div> </div><div class="html-fig-wrap" id="algorithms-15-00155-f005"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/1999-4893/15/5/155/display" href="#fig_body_display_algorithms-15-00155-f005"> <img alt="Algorithms 15 00155 g005 550" data-large="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g005.png" data-original="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g005.png" data-lsrc="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g005-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/1999-4893/15/5/155/display" href="#fig_body_display_algorithms-15-00155-f005"></a> </div> </div> <div class="html-fig_description"> <b>Figure 5.</b> Quantitative comparison of AD detection methods measured by EER and t-DCF. <!-- <p><a class="html-figpopup" href="#fig_body_display_algorithms-15-00155-f005"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_algorithms-15-00155-f005" > <div class="html-caption" > <b>Figure 5.</b> Quantitative comparison of AD detection methods measured by EER and t-DCF.</div> <div class="html-img"><img alt="Algorithms 15 00155 g005" data-large="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g005.png" data-original="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g005.png" data-lsrc="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g005.png" /></div> </div><div class="html-fig-wrap" id="algorithms-15-00155-f006"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/1999-4893/15/5/155/display" href="#fig_body_display_algorithms-15-00155-f006"> <img alt="Algorithms 15 00155 g006 550" data-large="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g006.png" data-original="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g006.png" data-lsrc="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g006-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/1999-4893/15/5/155/display" href="#fig_body_display_algorithms-15-00155-f006"></a> </div> </div> <div class="html-fig_description"> <b>Figure 6.</b> Quantitative comparison between recent AD detection methods measured by accuracy on multiple datasets. <!-- <p><a class="html-figpopup" href="#fig_body_display_algorithms-15-00155-f006"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_algorithms-15-00155-f006" > <div class="html-caption" > <b>Figure 6.</b> Quantitative comparison between recent AD detection methods measured by accuracy on multiple datasets.</div> <div class="html-img"><img alt="Algorithms 15 00155 g006" data-large="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g006.png" data-original="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g006.png" data-lsrc="/algorithms/algorithms-15-00155/article_deploy/html/images/algorithms-15-00155-g006.png" /></div> </div><div class="html-table-wrap" id="algorithms-15-00155-t001"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/1999-4893/15/5/155/display" href='#table_body_display_algorithms-15-00155-t001'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/1999-4893/15/5/155/display" href="#table_body_display_algorithms-15-00155-t001"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 1.</b> Summary of AD detection methods studies surveyed. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_algorithms-15-00155-t001" > <div class="html-caption" ><b>Table 1.</b> Summary of AD detection methods studies surveyed.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Year</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Ref.</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Speech Language</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Fakeness Type</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Technique</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Audio Feature Used</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Dataset</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Drawbacks</th></tr></thead><tbody ><tr ><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2018</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Yu et al. [<a href="#B29-algorithms-15-00155" class="html-bibr">29</a>]</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >DNN-HLL</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >MFCC, LFCC, CQCC</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ASV spoof 2015 [<a href="#B30-algorithms-15-00155" class="html-bibr">30</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The error rate is zero, indicating that the proposed DNN is overfitting.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >GMM-LLR</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >IMFCC, GFCC, IGFCC</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Does not carry much artifact information in the feature representations perspective.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2019</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Alzantot et al. [<a href="#B40-algorithms-15-00155" class="html-bibr">40</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Residual CNN</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >MFCC, CQCC, STFT</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ASV spoof 2019 [<a href="#B19-algorithms-15-00155" class="html-bibr">19</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The model is highly overfitting with synthetic data and cannot be generalized over unknown attacks.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2019</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >C. Lai et al. [<a href="#B42-algorithms-15-00155" class="html-bibr">42</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ASSERT (SENet + ResNet)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Logspec, CQCC</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ASV spoof 2019 [<a href="#B19-algorithms-15-00155" class="html-bibr">19</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The model is highly overfitting with synthetic data.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2020</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >P. RahulT et al. [<a href="#B36-algorithms-15-00155" class="html-bibr">36</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ResNet-34</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Spectrogram</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ASV spoof 2019 [<a href="#B19-algorithms-15-00155" class="html-bibr">19</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Requires transforming the input into a 2-D feature map before the detection process, which increases the training time and effects its speed.</td></tr><tr ><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2020</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Lataifeh et al. [<a href="#B23-algorithms-15-00155" class="html-bibr">23</a>]</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Classical Arabic</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Imitation</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Classical Classifiers (SVM-Linear, SVMRBF,<br>LR, DT, RF, XGBoost)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Arabic Diversified Audio (AR-DAD) [<a href="#B24-algorithms-15-00155" class="html-bibr">24</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Failed to capture spurious correlations, and features are extracted manually so they are not scalable and needs extensive manual labor to prepare the data.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >DL Classifiers (CNN, BiLSTM)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >MFCC spectrogram</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >DL accuracy was not as good as the classical methods, and they are an image-based approach that requires special transformation of the data.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2020</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Rodríguez-Ortega et al. [<a href="#B3-algorithms-15-00155" class="html-bibr">3</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Spanish, English, Portuguese, French, and Tagalog</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Imitation</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >LR</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Time domain waveform</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >H-Voice [<a href="#B16-algorithms-15-00155" class="html-bibr">16</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Failed to capture spurious correlations, and features are extracted manually so it is not scalable and needs extensive manual labor to prepare the data.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2020</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Wang et al. [<a href="#B31-algorithms-15-00155" class="html-bibr">31</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English, Chinese</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Deep-Sonar</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >High-dimensional data visualization of MFCC, raw neuron, activated neuron</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FoR dataset [<a href="#B28-algorithms-15-00155" class="html-bibr">28</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Highly affected by real-world noises.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2020</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Subramani and Rao [<a href="#B21-algorithms-15-00155" class="html-bibr">21</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >EfficientCNN and RES-EfficientCNN</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Spectrogram</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ASV spoof 2019 [<a href="#B19-algorithms-15-00155" class="html-bibr">19</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >They use an image-based approach that requires special transformation of the data to transfer audio files into images.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2020</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Shan and Tsai [<a href="#B35-algorithms-15-00155" class="html-bibr">35</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Bidirectional LSTM</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >MFCC</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >--</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The method did not perform well over long 5 s edits.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2020</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Wijethunga et al. [<a href="#B32-algorithms-15-00155" class="html-bibr">32</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >DNN</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >MFCC, Mel-spectrogram, STFT</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Urban-Sound8K, Conversational, AMI-Corpus, and FoR</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The proposed model does not carry much artifact information from the feature representations perspective.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2020</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Jiang et al. [<a href="#B43-algorithms-15-00155" class="html-bibr">43</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >SSAD</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >LPS, LFCC, CQCC</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ASV spoof 2019 [<a href="#B19-algorithms-15-00155" class="html-bibr">19</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >It needs extensive computing processing since it uses a temporal convolutional network (TCN) to capture the context features and another three regression workers and one binary worker to predict the target features.</td></tr><tr ><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2020</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Chintha et al. [<a href="#B33-algorithms-15-00155" class="html-bibr">33</a>]</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CRNN-Spoof</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CQCC</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ASV spoof 2019 [<a href="#B19-algorithms-15-00155" class="html-bibr">19</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The model proposed is complex and contains many layers and convolutional networks, so it needs an extensive computing process. Did not perform well compared to WIRE-Net-Spoof.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >WIRE- Net-Spoof</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >MFCC</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Did not perform well compared to CRNN-Spoof.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2020</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Kumar-Singh and Singh [<a href="#B17-algorithms-15-00155" class="html-bibr">17</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Q-SVM</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >MFCC, Mel-spectrogram</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >--</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Features are extracted manually so it is not scalable and needs extensive manual labor to prepare the data.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2020</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Zhenchun Lei et al. [<a href="#B25-algorithms-15-00155" class="html-bibr">25</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CNN and Siamese CNN</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CQCC, LFCC</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ASV spoof 2019 [<a href="#B19-algorithms-15-00155" class="html-bibr">19</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The models are not robust to different features and work best with LFCC only.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2021</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >M. Ballesteros et al. [<a href="#B5-algorithms-15-00155" class="html-bibr">5</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Spanish, English, Portuguese, French, and Tagalog</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic<br>Imitation</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Deep4SNet</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Histogram, Spectrogram, Time domain waveform</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >H-Voice [<a href="#B16-algorithms-15-00155" class="html-bibr">16</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The model was not scalable and was affected by the data transformation process.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2021</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >E.R. Bartusiak and E.J. Delp [<a href="#B22-algorithms-15-00155" class="html-bibr">22</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CNN</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Spectrogram</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ASV spoof 2019 [<a href="#B19-algorithms-15-00155" class="html-bibr">19</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >They used an image-based approach, which required a special transformation of the data, and the authors found that the model proposed failed to correctly classify new audio signals indicating that the model is not general enough.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2021</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Borrelli et al.<br>[<a href="#B18-algorithms-15-00155" class="html-bibr">18</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >RF, SVM</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >STLT</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ASV spoof 2019 [<a href="#B19-algorithms-15-00155" class="html-bibr">19</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Features extracted manually so they are not scalable and needs extensive manual labor to prepare the data.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2021</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Khalid et al. [<a href="#B38-algorithms-15-00155" class="html-bibr">38</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >MesoInception-4, Meso-4, Xception, EfficientNet-B0, VGG16</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Three-channel image of MFCC</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FakeAVCeleb [<a href="#B39-algorithms-15-00155" class="html-bibr">39</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >It was observed from the experiment that Meso-4 overfits the real class and MesoInception-4 overfits the fake class, and none of the methods provided a satisfactory performance indicating that they are not suitable for fake audio detection.</td></tr><tr ><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2021</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Khochare et al. [<a href="#B37-algorithms-15-00155" class="html-bibr">37</a>]</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Feature-based (SVM, RF, KNN, XGBoost, and LGBM)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Vector of 37 features of audio</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FoR dataset [<a href="#B28-algorithms-15-00155" class="html-bibr">28</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Features extracted manually so they are not scalable and needs extensive manual labor to prepare the data.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Image-based (CNN, TCN, STN)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Melspectrogram</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >It uses an image-based approach and could not work with inputs converted to STFT and MFCC features.</td></tr><tr ><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2021</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Liu et al. [<a href="#B20-algorithms-15-00155" class="html-bibr">20</a>]</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Chinese</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >SVM</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >MFCC</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >--</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Features extracted manually so it is not scalable and needs extensive manual labor to prepare the data.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CNN</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >--</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The error rate is zero indicating that the proposed CNN is overfitting.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2021</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >S. Camacho et al. [<a href="#B27-algorithms-15-00155" class="html-bibr">27</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CNN</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Scatter plots</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FoR dataset [<a href="#B28-algorithms-15-00155" class="html-bibr">28</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >It did not perform as well as the traditional DL methods, and the model needed more training.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2021</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >T. Arif et al. [<a href="#B41-algorithms-15-00155" class="html-bibr">41</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic<br>imitated</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >DBiLSTM</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ELTP-LFCC</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ASV spoof 2019 [<a href="#B19-algorithms-15-00155" class="html-bibr">19</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Does not perform well over an imitated-based dataset.</td></tr></tbody> </table> </div><div class="html-table-wrap" id="algorithms-15-00155-t002"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/1999-4893/15/5/155/display" href='#table_body_display_algorithms-15-00155-t002'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/1999-4893/15/5/155/display" href="#table_body_display_algorithms-15-00155-t002"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 2.</b> Summary of AD datasets. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_algorithms-15-00155-t002" > <div class="html-caption" ><b>Table 2.</b> Summary of AD datasets.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><b>Year</b></th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Dataset</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Total Size</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Real<br>Sample<br>Size</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Fake<br>Sample<br>Size</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Sample Length (s</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Fakeness Type</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Format</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Speech<br>Language</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Accessibility</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Dataset URL</th></tr></thead><tbody ><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2018</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The M-AILABS Speech [<a href="#B44-algorithms-15-00155" class="html-bibr">44</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >18,7 h</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >9265</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >806</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >1–20</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >WAV</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >German</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Public</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><a href='https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/' target='_blank' rel="noopener noreferrer">https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/</a> (accessed 3 March 2022)</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2018</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Baidu Silicon Valley AI Lab cloned audio [<a href="#B45-algorithms-15-00155" class="html-bibr">45</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >6 h</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >10</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >120</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Mp3</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Public</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><a href='https://audiodemos.github.io/' target='_blank' rel="noopener noreferrer">https://audiodemos.github.io/</a> (accessed 3 March 2022)</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2019</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Fake oR Real (FoR) [<a href="#B28-algorithms-15-00155" class="html-bibr">28</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >198,000<br>Files</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >111,000</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >87,000</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Mp3, WAV</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Public</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><a href='https://bil.eecs.yorku.ca/datasets/(accessed' target='_blank' rel="noopener noreferrer">https://bil.eecs.yorku.ca/datasets/(accessed</a> 20 November 2021)</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2020</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >AR-DAD: Arabic Diversified Audio [<a href="#B24-algorithms-15-00155" class="html-bibr">24</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >16,209 Files</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >15,810</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >397</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >10</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Imitation</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >WAV</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Classical<br>Arabic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Public</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><a href='https://data.mendeley.com/datasets/3kndp5vs6b/3(accessed' target='_blank' rel="noopener noreferrer">https://data.mendeley.com/datasets/3kndp5vs6b/3(accessed</a> 20 November 2021)</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2020</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >H-Voice [<a href="#B16-algorithms-15-00155" class="html-bibr">16</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >6672<br>Files</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Imitation<br>3332<br>Synthetic 4</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Imitation<br>3264<br>Synthetic<br>72</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2–10</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Imitation<br>Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PNG</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Spanish, English, Portuguese, French, and Tagalog</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Public</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><a href='https://data.mendeley.com/datasets/k47yd3m28w/4' target='_blank' rel="noopener noreferrer">https://data.mendeley.com/datasets/k47yd3m28w/4</a> (accessed 20 November 2021)</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2021</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ASV spoof 2021<br>Challenge</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Mp3</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Only older versions available thus far</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><a href='https://datashare.ed.ac.uk/handle/10283/3336(accessed' target='_blank' rel="noopener noreferrer">https://datashare.ed.ac.uk/handle/10283/3336(accessed</a> 20 November 2021)</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2021</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FakeAVCeleb [<a href="#B39-algorithms-15-00155" class="html-bibr">39</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >20,490<br>Files</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >490</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >20,000</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >7</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Mp3</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >English</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Restricted</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><a href='https://sites.google.com/view/fakeavcelebdash-lab/(accessed' target='_blank' rel="noopener noreferrer">https://sites.google.com/view/fakeavcelebdash-lab/(accessed</a> 20 November 2021)</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2022</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ADD [<a href="#B46-algorithms-15-00155" class="html-bibr">46</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >85 h</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >LF:300<br>PF:0</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >LF:700<br>PF:1052</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2–10</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >WAV</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Chinese</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Public</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><a href='https://sites.google.com/view/fakeavcelebdash-lab/(accessed' target='_blank' rel="noopener noreferrer">https://sites.google.com/view/fakeavcelebdash-lab/(accessed</a> 3 May 2022)</td></tr></tbody> </table> </div><div class="html-table-wrap" id="algorithms-15-00155-t003"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/1999-4893/15/5/155/display" href='#table_body_display_algorithms-15-00155-t003'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/1999-4893/15/5/155/display" href="#table_body_display_algorithms-15-00155-t003"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 3.</b> A quantitative comparison between AD detection methods. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_algorithms-15-00155-t003" > <div class="html-caption" ><b>Table 3.</b> A quantitative comparison between AD detection methods.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Measures</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Dataset</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Detection Method</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Results (The Result Is Approximate from the Evaluation Test Published in the Study)</th></tr></thead><tbody ><tr ><td rowspan='14' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >EER</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ASV spoof 2015 challenge</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >DNN-HLLs [<a href="#B29-algorithms-15-00155" class="html-bibr">29</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >12.24%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >GMM-LLR [<a href="#B29-algorithms-15-00155" class="html-bibr">29</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >42.5%</td></tr><tr ><td rowspan='9' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ASV spoof 2019 challenge</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Residual CNN [<a href="#B40-algorithms-15-00155" class="html-bibr">40</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >6.02%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >SENet-34 [<a href="#B42-algorithms-15-00155" class="html-bibr">42</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >6.70%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CRNN-Spoof [<a href="#B33-algorithms-15-00155" class="html-bibr">33</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >4.27%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ResNet-34 [<a href="#B36-algorithms-15-00155" class="html-bibr">36</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5.32%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Siamese CNN [<a href="#B25-algorithms-15-00155" class="html-bibr">25</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >8.75%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CNN [<a href="#B25-algorithms-15-00155" class="html-bibr">25</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >9.61%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >DBiLSTM [<a href="#B41-algorithms-15-00155" class="html-bibr">41</a>] (Synthetic Audio)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.74%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >DBiLSTM [<a href="#B41-algorithms-15-00155" class="html-bibr">41</a>] (Imitation-based)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >33.30%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >SSAD [<a href="#B43-algorithms-15-00155" class="html-bibr">43</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5.31%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Bidirectional LSTM [<a href="#B35-algorithms-15-00155" class="html-bibr">35</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.43%</td></tr><tr ><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FoR</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CNN [<a href="#B27-algorithms-15-00155" class="html-bibr">27</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >11.00%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Deep-Sonar [<a href="#B31-algorithms-15-00155" class="html-bibr">31</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2.10%</td></tr><tr ><td rowspan='8' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >t-DCF</td><td rowspan='8' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ASV spoof 2019 challenge</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Residual CNN [<a href="#B40-algorithms-15-00155" class="html-bibr">40</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1569</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >SENet-34 [<a href="#B42-algorithms-15-00155" class="html-bibr">42</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.155</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CRNN-Spoof [<a href="#B33-algorithms-15-00155" class="html-bibr">33</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.132</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ResNet-34 [<a href="#B36-algorithms-15-00155" class="html-bibr">36</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1514</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Siamese CNN [<a href="#B25-algorithms-15-00155" class="html-bibr">25</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.211</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CNN [<a href="#B25-algorithms-15-00155" class="html-bibr">25</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.217</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >DBiLSTM [<a href="#B41-algorithms-15-00155" class="html-bibr">41</a>] (Synthetic Audio)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.008</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >DBiLSTM [<a href="#B41-algorithms-15-00155" class="html-bibr">41</a>] (Imitation-based)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.39</td></tr><tr ><td rowspan='31' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Accuracy</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ASV spoof 2019 challenge</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CNN [<a href="#B22-algorithms-15-00155" class="html-bibr">22</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >85.99%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >SVM [<a href="#B18-algorithms-15-00155" class="html-bibr">18</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >71.00%</td></tr><tr ><td rowspan='9' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >AR-DAD</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CNN [<a href="#B23-algorithms-15-00155" class="html-bibr">23</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >94.33%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >BiLSTM [<a href="#B23-algorithms-15-00155" class="html-bibr">23</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >91.00%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >SVM [<a href="#B23-algorithms-15-00155" class="html-bibr">23</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >99.00%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >DT [<a href="#B23-algorithms-15-00155" class="html-bibr">23</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >73.33%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >RF [<a href="#B23-algorithms-15-00155" class="html-bibr">23</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >93.67%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >LR [<a href="#B23-algorithms-15-00155" class="html-bibr">23</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >98.00%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >XGBoost [<a href="#B23-algorithms-15-00155" class="html-bibr">23</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >97.67%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >SVMRBF [<a href="#B23-algorithms-15-00155" class="html-bibr">23</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >99.00%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >SVM-LINEAR [<a href="#B23-algorithms-15-00155" class="html-bibr">23</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >99.00%</td></tr><tr ><td rowspan='10' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FoR</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >DNN [<a href="#B32-algorithms-15-00155" class="html-bibr">32</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >94.00%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Deep-Sonar [<a href="#B31-algorithms-15-00155" class="html-bibr">31</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >98.10%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >STN [<a href="#B37-algorithms-15-00155" class="html-bibr">37</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >80.00%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >TCN [<a href="#B37-algorithms-15-00155" class="html-bibr">37</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >92.00%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >SVM [<a href="#B37-algorithms-15-00155" class="html-bibr">37</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >67%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >RF [<a href="#B37-algorithms-15-00155" class="html-bibr">37</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >62%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >KNN [<a href="#B37-algorithms-15-00155" class="html-bibr">37</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >62%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >XGBoost [<a href="#B37-algorithms-15-00155" class="html-bibr">37</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >59%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >LGBM [<a href="#B37-algorithms-15-00155" class="html-bibr">37</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >60%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CNN [<a href="#B27-algorithms-15-00155" class="html-bibr">27</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >88.00%</td></tr><tr ><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FakeAVCeleb</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >EfficientNet-B0 [<a href="#B38-algorithms-15-00155" class="html-bibr">38</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >50.00%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Xception [<a href="#B38-algorithms-15-00155" class="html-bibr">38</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >76.00%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >MesoInception-4 [<a href="#B38-algorithms-15-00155" class="html-bibr">38</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >53.96%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Meso-4 [<a href="#B38-algorithms-15-00155" class="html-bibr">38</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >50.36%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >VGG16 [<a href="#B38-algorithms-15-00155" class="html-bibr">38</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >67.14%</td></tr><tr ><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >H-Voice</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >LR [<a href="#B3-algorithms-15-00155" class="html-bibr">3</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >98%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Deep4SNet [<a href="#B5-algorithms-15-00155" class="html-bibr">5</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >98.5%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Q-SVM [<a href="#B17-algorithms-15-00155" class="html-bibr">17</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >97.56%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CNN [<a href="#B20-algorithms-15-00155" class="html-bibr">20</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >99%</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >SVM [<a href="#B20-algorithms-15-00155" class="html-bibr">20</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >99%</td></tr></tbody> </table> </div></section><section class='html-fn_group'><table><tr id=''><td></td><td><div class='html-p'><b>Publisher’s Note:</b> MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.</div></td></tr></table></section> <section id="html-copyright"><br>© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<a href='https://creativecommons.org/licenses/by/4.0/' target='_blank' rel="noopener noreferrer" >https://creativecommons.org/licenses/by/4.0/</a>).</section> </div> </div> <div class="additional-content"> <h2><a name="cite"></a>Share and Cite</h2> <div class="social-media-links" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#bc839addd1cc87cfc9ded6d9dfc881faced3d1998e8cf1f8ecf5998ffd998e8c998e8efd998e8ceed9cad5d9cb998e8cd3da998e8cf1d3d8d9ced2998e8cfdc9d8d5d3998e8cf8d9d9ccdaddd7d9998e8cf8d9c8d9dfc8d5d3d2998e8cf1d9c8d4d3d8cf998ffd998e8cffd4ddd0d0d9d2dbd9cf998e8cddd2d8998e8cfac9c8c9ced9998e8cf8d5ced9dfc8d5d3d2cf9acdc9d3c8879addd1cc87ded3d8c581d4c8c8cccf869393cbcbcb92d1d8ccd592dfd3d1938d8a8d8a8f8888998ffd998cfd998cfdfd998e8ceed9cad5d9cb998e8cd3da998e8cf1d3d8d9ced2998e8cfdc9d8d5d3998e8cf8d9d9ccdaddd7d9998e8cf8d9c8d9dfc8d5d3d2998e8cf1d9c8d4d3d8cf998ffd998e8cffd4ddd0d0d9d2dbd9cf998e8cddd2d8998e8cfac9c8c9ced9998e8cf8d5ced9dfc8d5d3d2cf998cfd998cfdfddecfc8cedddfc8998ffd998e8cfd998e8cd2c9d1ded9ce998e8cd3da998e8cfdf591dbd9d2d9ceddc8d9d8998e8cc8d3d3d0cf998e8cddced9998e8cc9cfd9d8998e8cc8d3d8ddc5998e8cc8d3998e8cdfd0d3d2d9998e8cd4c9d1ddd2998e8ccad3d5dfd9cf998eff998e8cd0d9ddd8d5d2db998e8cc8d3998e8cdd998e8cd2d9cb998e8cc8d9dfd4d2d3d0d3dbc5998e8cd7d2d3cbd2998e8cddcf998e8cfdc9d8d5d3998e8cf8d9d9ccdaddd7d9cf998e8c998e84fdf8cf998e8592998e8cf8d9cfccd5c8d9998e8cded9d5d2db998e8cd5d2c8ced3d8c9dfd9d8998e8cc8d3998e8cd9d2d4ddd2dfd9998e8cd4c9d1ddd2998e8cd0d5cad9cf998e8cddcf998e8cddc9d8d5d3ded3d3d7cf998eff998e8cfdf8cf998e8cd4ddcad9998e8cded9d9d2998e8cc9cfd9d8998e8cc8d3998e8cd8d5cfcec9ccc8998e8cccc9ded0d5df998e8ccfdddad9c8c592998e8cfdf8cf998e8cd4ddcad9998e8cc8d4c9cf998e8cced9dfd9d2c8d0c5998e8cdfd3d1d9998e8cc8d3998e8cc8d4d9998e8cddc8c8d9d2c8d5d3d2998e8cd3da998e8cced9cfd9ddcedfd4d9cecf998eff998e8ccbd5c8d4998e8cf1dddfd4d5d2d9998e8cf0d9ddced2d5d2db998e8c998e84f1f0998e85998e8cddd2d8998e8cf8d9d9cc998e8cf0d9ddced2d5d2db998e8c998e84f8f0998e85998e8cd1d9c8d4d3d8cf998e8cded9d5d2db998e8cd8d9cad9d0d3ccd9d8998e8cc8d3998e8cd8d9c8d9dfc8998e8cc8d4d9d192998e8cf5d2998e8cc8d4d5cf998e8cddcec8d5dfd0d9998eff998e8cdd998e8cced9cad5d9cb998e8cd3da998e8cd9c4d5cfc8d5d2db998e8cfdf8998e8cd8d9c8d9dfc8d5d3d2998e8cd1d9c8d4d3d8cf998e8ccbddcf998e8cdfd3d2d8c9dfc8d9d8998eff998e8cddd0d3d2db998e8ccbd5c8d4998e8cdd998e8cdfd3d1ccddceddc8d5cad9998e8cd8d9cfdfced5ccc8d5d3d2998e8cd3da998e8cc8d4d9998e8cddcaddd5d0ddded0d9998e8cdaddd7d9d8998e8cddc9d8d5d3998e8cd8ddc8ddcfd9c8cf92998e8ce8d4d9998e8cddcec8d5dfd0d9998e8cd5d2c8ced3d8c9dfd9cf998e8cc8c5ccd9cf998e8cd3da998e8cfdf8998e8cddc8c8dddfd7cf998e8cddd2d8998e8cc8d4d9d2998e8cd3c9c8d0d5d2d9cf998e8cddd2d8998e8cddd2ddd0c5c6d9cf998e8cc8d4d9998e8cd8d9c8d9dfc8d5d3d2998e8cd1d9c8d4d3d8cf998e8cddd2d8998e8cd8ddc8ddcfd9c8cf998e8cdad3ce998e8cd5d1d5c8ddc8d5d3d291998e8cddd2d8998e8ccfc5d2c8d4d9c8d5df91deddcfd9d8998e8cf8d9d9ccdaddd7d9cf92998e8ce8d3998e8cc8d4d9998e8cded9cfc8998e8cd3da998e8cc8d4d9998e8cddc9c8d4d3cecf998e8acecfcdc9d3998ffe998e8cd7d2d3cbd0d9d8dbd9998eff998e8cc8d4d5cf998e8cd5cf998e8cc8d4d9998e8cdad5cecfc8998e8cced9cad5d9cb998e8cc8ddcedbd9c8d5d2db998e8cd5d1d5c8ddc8d9d8998e8cddd2d8998e8ccfc5d2c8d4d9c8d5dfddd0d0c5998e8cdbd9d2d9ceddc8d9d8998e8cddc9d8d5d3998e8cd8d9c8d9dfc8d5d3d2998e8cd1d9c8d4d3d8cf92998e8ce8d4d9998e8ccfd5d1d5d0ddced5c8d5d9cf998e8cddd2d8998e8cd8d5dadad9ced9d2dfd9cf998e8cd3da998e8cfdf8998e8cd8d9c8d9dfc8d5d3d2998e8cd1d9c8d4d3d8cf998e8cddced9998e8ccfc9d1d1ddced5c6d9d8998e8cdec5998e8cccced3cad5d8d5d2db998e8cdd998e8ccdc9ddd2c8d5c8ddc8d5cad9998e8cdfd3d1ccddced5cfd3d2998e8cc8d4ddc8998e8cdad5d2d8cf998e8cc8d4ddc8998e8cc8d4d9998e8cd1d9c8d4d3d8998e8cc8c5ccd9998e8cdddadad9dfc8cf998e8cc8d4d9998e8cccd9cedad3ced1ddd2dfd9998e8cd1d3ced9998e8cc8d4ddd2998e8cc8d4d9998e8cddc9d8d5d3998e8cdad9ddc8c9ced9cf998e8cc8d4d9d1cfd9d0cad9cf998eff998e8cd5d2998e8ccbd4d5dfd4998e8cdd998e8ccfc9decfc8ddd2c8d5ddd0998e8cc8ceddd8d9d3dada998e8cded9c8cbd9d9d2998e8cc8d4d9998e8cdddfdfc9cedddfc5998e8cddd2d8998e8ccfdfddd0ddded5d0d5c8c5998e8cd9c4d5cfc8cf92998e8cf1d3ced9d3cad9ce998eff998e8cddc8998e8cc8d4d9998e8cd9d2d8998e8cd3da998e8cc8d4d5cf998e8cddcec8d5dfd0d9998eff998e8cc8d4d9998e8cccd3c8d9d2c8d5ddd0998e8cced9cfd9ddcedfd4998e8cd8d5ced9dfc8d5d3d2cf998e8cddd2d8998e8cdfd4ddd0d0d9d2dbd9cf998e8cd3da998e8cf8d9d9ccdaddd7d9e7929292e1" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=A+Review+of+Modern+Audio+Deepfake+Detection+Methods%3A+Challenges+and+Future+Directions&amp;hashtags=mdpialgorithms&amp;url=https%3A%2F%2Fwww.mdpi.com%2F1616344&amp;via=Algorithms_MDPI" onclick="windowOpen(this.href,600,800); return false" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&amp;url=https%3A%2F%2Fwww.mdpi.com%2F1616344&amp;title=A%20Review%20of%20Modern%20Audio%20Deepfake%20Detection%20Methods%3A%20Challenges%20and%20Future%20Directions%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DA%20number%20of%20AI-generated%20tools%20are%20used%20today%20to%20clone%20human%20voices%2C%20leading%20to%20a%20new%20technology%20known%20as%20Audio%20Deepfakes%20%28ADs%29.%20Despite%20being%20introduced%20to%20enhance%20human%20lives%20as%20audiobooks%2C%20ADs%20have%20been%20used%20to%20disrupt%20public%20safety.%20ADs%20have%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/1616344" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/1616344" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/1616344" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> </div> <div class="in-tab" style="padding-top: 0px!important; margin-top: 15px;"> <div><b>MDPI and ACS Style</b></div> <p> Almutairi, Z.; Elgibreen, H. A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions. <em>Algorithms</em> <b>2022</b>, <em>15</em>, 155. https://doi.org/10.3390/a15050155 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Almutairi Z, Elgibreen H. A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions. <em>Algorithms</em>. 2022; 15(5):155. https://doi.org/10.3390/a15050155 </p> <b>Chicago/Turabian Style</b><br> <p> Almutairi, Zaynab, and Hebah Elgibreen. 2022. "A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions" <em>Algorithms</em> 15, no. 5: 155. https://doi.org/10.3390/a15050155 </p> <b>APA Style</b><br> <p> Almutairi, Z., & Elgibreen, H. (2022). A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions. <em>Algorithms</em>, <em>15</em>(5), 155. https://doi.org/10.3390/a15050155 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> <h2><a name="metrics"></a>Article Metrics</h2> <div class="row"> <div class="small-12 columns"> <div id="loaded_cite_count" style="display:none">No</div> <div id="framed_div_cited_count" class="in-tab" style="display: none; overflow: auto;"></div> <div id="loaded" style="display:none">No</div> <div id="framed_div" class="in-tab" style="display: none; margin-top: 10px;"></div> </div> <div class="small-12 columns"> <div id="article_stats_div" style="display: none; margin-bottom: 1em;"> <h3>Article Access Statistics</h3> <div id="article_stats_swf" ></div> For more information on the journal statistics, click <a href="/journal/algorithms/stats">here</a>. <div class="info-box"> Multiple requests from the same IP address are counted as one view. </div> </div> </div> </div> </div> </div> </article> </div> </div></div> <div class="webpymol-controls webpymol-controls-template" style="margin-top: 10px; display: none;"> <a class="bzoom">Zoom</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="borient"> Orient </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="blines"> As Lines </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsticks"> As Sticks </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bcartoon"> As Cartoon </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsurface"> As Surface </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bprevscene">Previous Scene</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bnextscene">Next Scene</a> </div> <div id="scifeed-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="recommended-articles-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="author-biographies-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="cite-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Cite</h2> </div> <div class="small-12 columns"> <!-- BibTeX --> <form style="margin:0; padding:0; display:inline;" name="export-bibtex" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="808172"> <input type="hidden" name="export_format_top" value="bibtex"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- EndNote --> <form style="margin:0; padding:0; display:inline;" name="export-endnote" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="808172"> <input type="hidden" name="export_format_top" value="endnote_no_abstract"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- RIS --> <form style="margin:0; padding:0; display:inline;" name="export-ris" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="808172"> <input type="hidden" name="export_format_top" value="ris"> <input type="hidden" name="export_submit_top" value=""> </form> <div> Export citation file: <a href="javascript:window.document.forms['export-bibtex'].submit()">BibTeX</a> | <a href="javascript:window.document.forms['export-endnote'].submit()">EndNote</a> | <a href="javascript:window.document.forms['export-ris'].submit()">RIS</a> </div> </div> <div class="small-12 columns"> <div class="in-tab"> <div><b>MDPI and ACS Style</b></div> <p> Almutairi, Z.; Elgibreen, H. A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions. <em>Algorithms</em> <b>2022</b>, <em>15</em>, 155. https://doi.org/10.3390/a15050155 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Almutairi Z, Elgibreen H. A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions. <em>Algorithms</em>. 2022; 15(5):155. https://doi.org/10.3390/a15050155 </p> <b>Chicago/Turabian Style</b><br> <p> Almutairi, Zaynab, and Hebah Elgibreen. 2022. "A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions" <em>Algorithms</em> 15, no. 5: 155. https://doi.org/10.3390/a15050155 </p> <b>APA Style</b><br> <p> Almutairi, Z., & Elgibreen, H. (2022). A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions. <em>Algorithms</em>, <em>15</em>(5), 155. https://doi.org/10.3390/a15050155 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> </div> </div> </div> </section> <div id="footer"> <div class="journal-info"> <span> <em><a class="Var_JournalInfo" href="/journal/algorithms">Algorithms</a></em>, EISSN 1999-4893, Published by MDPI </span> <div class="large-right"> <span> <a href="/rss/journal/algorithms" class="rss-link">RSS</a> </span> <span> <a href="/journal/algorithms/toc-alert">Content Alert</a> </span> </div> </div> <div class="row full-width footer-links" data-equalizer="footer" data-equalizer-mq="small"> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Further Information </h3> <a href="/apc"> Article Processing Charges </a> <a href="/about/payment"> Pay an Invoice </a> <a href="/openaccess"> Open Access Policy </a> <a href="/about/contact"> Contact MDPI </a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Jobs at MDPI </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Guidelines </h3> <a href="/authors"> For Authors </a> <a href="/reviewers"> For Reviewers </a> <a href="/editors"> For Editors </a> <a href="/librarians"> For Librarians </a> <a href="/publishing_services"> For Publishers </a> <a href="/societies"> For Societies </a> <a href="/conference_organizers"> For Conference Organizers </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns"> <h3> MDPI Initiatives </h3> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> <a href="https://www.scilit.com" target="_blank" rel="noopener noreferrer"> Scilit </a> <a href="https://sciprofiles.com?utm_source=mpdi.com&utm_medium=bottom_menu&utm_campaign=initiative" target="_blank" rel="noopener noreferrer"> SciProfiles </a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> <a href="/about/proceedings"> Proceedings Series </a> </div> <div class="large-2 large-push-4 medium-3 small-6 right-border-large-without columns UA_FooterFollowMDPI"> <h3> Follow MDPI </h3> <a href="https://www.linkedin.com/company/mdpi" target="_blank" rel="noopener noreferrer"> LinkedIn </a> <a href="https://www.facebook.com/MDPIOpenAccessPublishing" target="_blank" rel="noopener noreferrer"> Facebook </a> <a href="https://twitter.com/MDPIOpenAccess" target="_blank" rel="noopener noreferrer"> Twitter </a> </div> <div id="footer-subscribe" class="large-4 large-pull-8 medium-12 small-12 left-border-large columns"> <div class="footer-subscribe__container"> <img class="show-for-large-up" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-white-small.png?71d18e5f805839ab?1739771134" alt="MDPI" title="MDPI Open Access Journals" style="height: 50px; margin-bottom: 10px;"> <form id="newsletter" method="POST" action="/subscribe"> <p> Subscribe to receive issue release notifications and newsletters from MDPI journals </p> <select multiple id="newsletter-journal" class="foundation-select" name="journals[]"> <option value="acoustics">Acoustics</option> <option value="amh">Acta Microbiologica Hellenica</option> <option value="actuators">Actuators</option> <option value="adhesives">Adhesives</option> <option value="admsci">Administrative Sciences</option> <option value="adolescents">Adolescents</option> <option value="arm">Advances in Respiratory Medicine</option> <option value="aerobiology">Aerobiology</option> <option value="aerospace">Aerospace</option> <option value="agriculture">Agriculture</option> <option value="agriengineering">AgriEngineering</option> <option value="agrochemicals">Agrochemicals</option> <option value="agronomy">Agronomy</option> <option value="ai">AI</option> <option value="aisens">AI Sensors</option> <option value="air">Air</option> <option value="algorithms">Algorithms</option> <option value="allergies">Allergies</option> <option value="alloys">Alloys</option> <option value="analytica">Analytica</option> <option value="analytics">Analytics</option> <option value="anatomia">Anatomia</option> <option value="anesthres">Anesthesia Research</option> <option value="animals">Animals</option> <option value="antibiotics">Antibiotics</option> <option value="antibodies">Antibodies</option> <option value="antioxidants">Antioxidants</option> <option value="applbiosci">Applied Biosciences</option> <option value="applmech">Applied Mechanics</option> <option value="applmicrobiol">Applied Microbiology</option> <option value="applnano">Applied Nano</option> <option value="applsci">Applied Sciences</option> <option value="asi">Applied System Innovation</option> <option value="appliedchem">AppliedChem</option> <option value="appliedmath">AppliedMath</option> <option value="aquacj">Aquaculture Journal</option> <option value="architecture">Architecture</option> <option value="arthropoda">Arthropoda</option> <option value="arts">Arts</option> <option value="astronomy">Astronomy</option> <option value="atmosphere">Atmosphere</option> <option value="atoms">Atoms</option> <option value="audiolres">Audiology Research</option> <option value="automation">Automation</option> <option value="axioms">Axioms</option> <option value="bacteria">Bacteria</option> <option value="batteries">Batteries</option> <option value="behavsci">Behavioral Sciences</option> <option value="beverages">Beverages</option> <option value="BDCC">Big Data and Cognitive Computing</option> <option value="biochem">BioChem</option> <option value="bioengineering">Bioengineering</option> <option value="biologics">Biologics</option> <option value="biology">Biology</option> <option value="blsf">Biology and Life Sciences Forum</option> <option value="biomass">Biomass</option> <option value="biomechanics">Biomechanics</option> <option value="biomed">BioMed</option> <option value="biomedicines">Biomedicines</option> <option value="biomedinformatics">BioMedInformatics</option> <option value="biomimetics">Biomimetics</option> <option value="biomolecules">Biomolecules</option> <option value="biophysica">Biophysica</option> <option value="biosensors">Biosensors</option> <option value="biosphere">Biosphere</option> <option value="biotech">BioTech</option> <option value="birds">Birds</option> <option value="blockchains">Blockchains</option> <option value="brainsci">Brain Sciences</option> <option value="buildings">Buildings</option> <option value="businesses">Businesses</option> <option value="carbon">C</option> <option value="cancers">Cancers</option> <option value="cardiogenetics">Cardiogenetics</option> <option value="catalysts">Catalysts</option> <option value="cells">Cells</option> <option value="ceramics">Ceramics</option> <option value="challenges">Challenges</option> <option value="ChemEngineering">ChemEngineering</option> <option value="chemistry">Chemistry</option> <option value="chemproc">Chemistry Proceedings</option> <option value="chemosensors">Chemosensors</option> <option value="children">Children</option> <option value="chips">Chips</option> <option value="civileng">CivilEng</option> <option value="cleantechnol">Clean Technologies</option> <option value="climate">Climate</option> <option value="ctn">Clinical and Translational Neuroscience</option> <option value="clinbioenerg">Clinical Bioenergetics</option> <option value="clinpract">Clinics and Practice</option> <option value="clockssleep">Clocks &amp; Sleep</option> <option value="coasts">Coasts</option> <option value="coatings">Coatings</option> <option value="colloids">Colloids and Interfaces</option> <option value="colorants">Colorants</option> <option value="commodities">Commodities</option> <option value="complications">Complications</option> <option value="compounds">Compounds</option> <option value="computation">Computation</option> <option value="csmf">Computer Sciences &amp; Mathematics Forum</option> <option value="computers">Computers</option> <option value="condensedmatter">Condensed Matter</option> <option value="conservation">Conservation</option> <option value="constrmater">Construction Materials</option> <option value="cmd">Corrosion and Materials Degradation</option> <option value="cosmetics">Cosmetics</option> <option value="covid">COVID</option> <option value="cmtr">Craniomaxillofacial Trauma &amp; Reconstruction</option> <option value="crops">Crops</option> <option value="cryo">Cryo</option> <option value="cryptography">Cryptography</option> <option value="crystals">Crystals</option> <option value="cimb">Current Issues in Molecular Biology</option> <option value="curroncol">Current Oncology</option> <option value="dairy">Dairy</option> <option value="data">Data</option> <option value="dentistry">Dentistry Journal</option> <option value="dermato">Dermato</option> <option value="dermatopathology">Dermatopathology</option> <option value="designs">Designs</option> <option value="diabetology">Diabetology</option> <option value="diagnostics">Diagnostics</option> <option value="dietetics">Dietetics</option> <option value="digital">Digital</option> <option value="disabilities">Disabilities</option> <option value="diseases">Diseases</option> <option value="diversity">Diversity</option> <option value="dna">DNA</option> <option value="drones">Drones</option> <option value="ddc">Drugs and Drug Candidates</option> <option value="dynamics">Dynamics</option> <option value="earth">Earth</option> <option value="ecologies">Ecologies</option> <option value="econometrics">Econometrics</option> <option value="economies">Economies</option> <option value="education">Education Sciences</option> <option value="electricity">Electricity</option> <option value="electrochem">Electrochem</option> <option value="electronicmat">Electronic Materials</option> <option value="electronics">Electronics</option> <option value="ecm">Emergency Care and Medicine</option> <option value="encyclopedia">Encyclopedia</option> <option value="endocrines">Endocrines</option> <option value="energies">Energies</option> <option value="esa">Energy Storage and Applications</option> <option value="eng">Eng</option> <option value="engproc">Engineering Proceedings</option> <option value="entropy">Entropy</option> <option value="eesp">Environmental and Earth Sciences Proceedings</option> <option value="environments">Environments</option> <option value="epidemiologia">Epidemiologia</option> <option value="epigenomes">Epigenomes</option> <option value="ebj">European Burn Journal</option> <option value="ejihpe">European Journal of Investigation in Health, Psychology and Education</option> <option value="fermentation">Fermentation</option> <option value="fibers">Fibers</option> <option value="fintech">FinTech</option> <option value="fire">Fire</option> <option value="fishes">Fishes</option> <option value="fluids">Fluids</option> <option value="foods">Foods</option> <option value="forecasting">Forecasting</option> <option value="forensicsci">Forensic Sciences</option> <option value="forests">Forests</option> <option value="fossstud">Fossil Studies</option> <option value="foundations">Foundations</option> <option value="fractalfract">Fractal and Fractional</option> <option value="fuels">Fuels</option> <option value="future">Future</option> <option value="futureinternet">Future Internet</option> <option value="futurepharmacol">Future Pharmacology</option> <option value="futuretransp">Future Transportation</option> <option value="galaxies">Galaxies</option> <option value="games">Games</option> <option value="gases">Gases</option> <option value="gastroent">Gastroenterology Insights</option> <option value="gastrointestdisord">Gastrointestinal Disorders</option> <option value="gastronomy">Gastronomy</option> <option value="gels">Gels</option> <option value="genealogy">Genealogy</option> <option value="genes">Genes</option> <option value="geographies">Geographies</option> <option value="geohazards">GeoHazards</option> <option value="geomatics">Geomatics</option> <option value="geometry">Geometry</option> <option value="geosciences">Geosciences</option> <option value="geotechnics">Geotechnics</option> <option value="geriatrics">Geriatrics</option> <option value="glacies">Glacies</option> <option value="gucdd">Gout, Urate, and Crystal Deposition Disease</option> <option value="grasses">Grasses</option> <option value="greenhealth">Green Health</option> <option value="hardware">Hardware</option> <option value="healthcare">Healthcare</option> <option value="hearts">Hearts</option> <option value="hemato">Hemato</option> <option value="hematolrep">Hematology Reports</option> <option value="heritage">Heritage</option> <option value="histories">Histories</option> <option value="horticulturae">Horticulturae</option> <option value="hospitals">Hospitals</option> <option value="humanities">Humanities</option> <option value="humans">Humans</option> <option value="hydrobiology">Hydrobiology</option> <option value="hydrogen">Hydrogen</option> <option value="hydrology">Hydrology</option> <option value="hygiene">Hygiene</option> <option value="immuno">Immuno</option> <option value="idr">Infectious Disease Reports</option> <option value="informatics">Informatics</option> <option value="information">Information</option> <option value="infrastructures">Infrastructures</option> <option value="inorganics">Inorganics</option> <option value="insects">Insects</option> <option value="instruments">Instruments</option> <option value="iic">Intelligent Infrastructure and Construction</option> <option value="ijerph">International Journal of Environmental Research and Public Health</option> <option value="ijfs">International Journal of Financial Studies</option> <option value="ijms">International Journal of Molecular Sciences</option> <option value="IJNS">International Journal of Neonatal Screening</option> <option value="ijom">International Journal of Orofacial Myology and Myofunctional Therapy</option> <option value="ijpb">International Journal of Plant Biology</option> <option value="ijt">International Journal of Topology</option> <option value="ijtm">International Journal of Translational Medicine</option> <option value="ijtpp">International Journal of Turbomachinery, Propulsion and Power</option> <option value="ime">International Medical Education</option> <option value="inventions">Inventions</option> <option value="IoT">IoT</option> <option value="ijgi">ISPRS International Journal of Geo-Information</option> <option value="J">J</option> <option value="jal">Journal of Ageing and Longevity</option> <option value="jcdd">Journal of Cardiovascular Development and Disease</option> <option value="jcto">Journal of Clinical &amp; Translational Ophthalmology</option> <option value="jcm">Journal of Clinical Medicine</option> <option value="jcs">Journal of Composites Science</option> <option value="jcp">Journal of Cybersecurity and Privacy</option> <option value="jdad">Journal of Dementia and Alzheimer&#039;s Disease</option> <option value="jdb">Journal of Developmental Biology</option> <option value="jeta">Journal of Experimental and Theoretical Analyses</option> <option value="jemr">Journal of Eye Movement Research</option> <option value="jfb">Journal of Functional Biomaterials</option> <option value="jfmk">Journal of Functional Morphology and Kinesiology</option> <option value="jof">Journal of Fungi</option> <option value="jimaging">Journal of Imaging</option> <option value="jintelligence">Journal of Intelligence</option> <option value="jlpea">Journal of Low Power Electronics and Applications</option> <option value="jmmp">Journal of Manufacturing and Materials Processing</option> <option value="jmse">Journal of Marine Science and Engineering</option> <option value="jmahp">Journal of Market Access &amp; Health Policy</option> <option value="jmms">Journal of Mind and Medical Sciences</option> <option value="jmp">Journal of Molecular Pathology</option> <option value="jnt">Journal of Nanotheranostics</option> <option value="jne">Journal of Nuclear Engineering</option> <option value="ohbm">Journal of Otorhinolaryngology, Hearing and Balance Medicine</option> <option value="jop">Journal of Parks</option> <option value="jpm">Journal of Personalized Medicine</option> <option value="jpbi">Journal of Pharmaceutical and BioTech Industry</option> <option value="jor">Journal of Respiration</option> <option value="jrfm">Journal of Risk and Financial Management</option> <option value="jsan">Journal of Sensor and Actuator Networks</option> <option value="joma">Journal of the Oman Medical Association</option> <option value="jtaer">Journal of Theoretical and Applied Electronic Commerce Research</option> <option value="jvd">Journal of Vascular Diseases</option> <option value="jox">Journal of Xenobiotics</option> <option value="jzbg">Journal of Zoological and Botanical Gardens</option> <option value="journalmedia">Journalism and Media</option> <option value="kidneydial">Kidney and Dialysis</option> <option value="kinasesphosphatases">Kinases and Phosphatases</option> <option value="knowledge">Knowledge</option> <option value="labmed">LabMed</option> <option value="laboratories">Laboratories</option> <option value="land">Land</option> <option value="languages">Languages</option> <option value="laws">Laws</option> <option value="life">Life</option> <option value="limnolrev">Limnological Review</option> <option value="lipidology">Lipidology</option> <option value="liquids">Liquids</option> <option value="literature">Literature</option> <option value="livers">Livers</option> <option value="logics">Logics</option> <option value="logistics">Logistics</option> <option value="lubricants">Lubricants</option> <option value="lymphatics">Lymphatics</option> <option value="make">Machine Learning and Knowledge Extraction</option> <option value="machines">Machines</option> <option value="macromol">Macromol</option> <option value="magnetism">Magnetism</option> <option value="magnetochemistry">Magnetochemistry</option> <option value="marinedrugs">Marine Drugs</option> <option value="materials">Materials</option> <option value="materproc">Materials Proceedings</option> <option value="mca">Mathematical and Computational Applications</option> <option value="mathematics">Mathematics</option> <option value="medsci">Medical Sciences</option> <option value="msf">Medical Sciences Forum</option> <option value="medicina">Medicina</option> <option value="medicines">Medicines</option> <option value="membranes">Membranes</option> <option value="merits">Merits</option> <option value="metabolites">Metabolites</option> <option value="metals">Metals</option> <option value="meteorology">Meteorology</option> <option value="methane">Methane</option> <option value="mps">Methods and Protocols</option> <option value="metrics">Metrics</option> <option value="metrology">Metrology</option> <option value="micro">Micro</option> <option value="microbiolres">Microbiology Research</option> <option value="micromachines">Micromachines</option> <option value="microorganisms">Microorganisms</option> <option value="microplastics">Microplastics</option> <option value="microwave">Microwave</option> <option value="minerals">Minerals</option> <option value="mining">Mining</option> <option value="modelling">Modelling</option> <option value="mmphys">Modern Mathematical Physics</option> <option value="molbank">Molbank</option> <option value="molecules">Molecules</option> <option value="mti">Multimodal Technologies and Interaction</option> <option value="muscles">Muscles</option> <option value="nanoenergyadv">Nanoenergy Advances</option> <option value="nanomanufacturing">Nanomanufacturing</option> <option value="nanomaterials">Nanomaterials</option> <option value="ndt">NDT</option> <option value="network">Network</option> <option value="neuroglia">Neuroglia</option> <option value="neurolint">Neurology International</option> <option value="neurosci">NeuroSci</option> <option value="nitrogen">Nitrogen</option> <option value="ncrna">Non-Coding RNA</option> <option value="nursrep">Nursing Reports</option> <option value="nutraceuticals">Nutraceuticals</option> <option value="nutrients">Nutrients</option> <option value="obesities">Obesities</option> <option value="oceans">Oceans</option> <option value="onco">Onco</option> <option value="optics">Optics</option> <option value="oral">Oral</option> <option value="organics">Organics</option> <option value="organoids">Organoids</option> <option value="osteology">Osteology</option> <option value="oxygen">Oxygen</option> <option value="parasitologia">Parasitologia</option> <option value="particles">Particles</option> <option value="pathogens">Pathogens</option> <option value="pathophysiology">Pathophysiology</option> <option value="pediatrrep">Pediatric Reports</option> <option value="pets">Pets</option> <option value="pharmaceuticals">Pharmaceuticals</option> <option value="pharmaceutics">Pharmaceutics</option> <option value="pharmacoepidemiology">Pharmacoepidemiology</option> <option value="pharmacy">Pharmacy</option> <option value="philosophies">Philosophies</option> <option value="photochem">Photochem</option> <option value="photonics">Photonics</option> <option value="phycology">Phycology</option> <option value="physchem">Physchem</option> <option value="psf">Physical Sciences Forum</option> <option value="physics">Physics</option> <option value="physiologia">Physiologia</option> <option value="plants">Plants</option> <option value="plasma">Plasma</option> <option value="platforms">Platforms</option> <option value="pollutants">Pollutants</option> <option value="polymers">Polymers</option> <option value="polysaccharides">Polysaccharides</option> <option value="populations">Populations</option> <option value="poultry">Poultry</option> <option value="powders">Powders</option> <option value="proceedings">Proceedings</option> <option value="processes">Processes</option> <option value="prosthesis">Prosthesis</option> <option value="proteomes">Proteomes</option> <option value="psychiatryint">Psychiatry International</option> <option value="psychoactives">Psychoactives</option> <option value="psycholint">Psychology International</option> <option value="publications">Publications</option> <option value="qubs">Quantum Beam Science</option> <option value="quantumrep">Quantum Reports</option> <option value="quaternary">Quaternary</option> <option value="radiation">Radiation</option> <option value="reactions">Reactions</option> <option value="realestate">Real Estate</option> <option value="receptors">Receptors</option> <option value="recycling">Recycling</option> <option value="rsee">Regional Science and Environmental Economics</option> <option value="religions">Religions</option> <option value="remotesensing">Remote Sensing</option> <option value="reports">Reports</option> <option value="reprodmed">Reproductive Medicine</option> <option value="resources">Resources</option> <option value="rheumato">Rheumato</option> <option value="risks">Risks</option> <option value="robotics">Robotics</option> <option value="ruminants">Ruminants</option> <option value="safety">Safety</option> <option value="sci">Sci</option> <option value="scipharm">Scientia Pharmaceutica</option> <option value="sclerosis">Sclerosis</option> <option value="seeds">Seeds</option> <option value="sensors">Sensors</option> <option value="separations">Separations</option> <option value="sexes">Sexes</option> <option value="signals">Signals</option> <option value="sinusitis">Sinusitis</option> <option value="smartcities">Smart Cities</option> <option value="socsci">Social Sciences</option> <option value="siuj">Société Internationale d’Urologie Journal</option> <option value="societies">Societies</option> <option value="software">Software</option> <option value="soilsystems">Soil Systems</option> <option value="solar">Solar</option> <option value="solids">Solids</option> <option value="spectroscj">Spectroscopy Journal</option> <option value="sports">Sports</option> <option value="standards">Standards</option> <option value="stats">Stats</option> <option value="stresses">Stresses</option> <option value="surfaces">Surfaces</option> <option value="surgeries">Surgeries</option> <option value="std">Surgical Techniques Development</option> <option value="sustainability">Sustainability</option> <option value="suschem">Sustainable Chemistry</option> <option value="symmetry">Symmetry</option> <option value="synbio">SynBio</option> <option value="systems">Systems</option> <option value="targets">Targets</option> <option value="taxonomy">Taxonomy</option> <option value="technologies">Technologies</option> <option value="telecom">Telecom</option> <option value="textiles">Textiles</option> <option value="thalassrep">Thalassemia Reports</option> <option value="therapeutics">Therapeutics</option> <option value="thermo">Thermo</option> <option value="timespace">Time and Space</option> <option value="tomography">Tomography</option> <option value="tourismhosp">Tourism and Hospitality</option> <option value="toxics">Toxics</option> <option value="toxins">Toxins</option> <option value="transplantology">Transplantology</option> <option value="traumacare">Trauma Care</option> <option value="higheredu">Trends in Higher Education</option> <option value="tropicalmed">Tropical Medicine and Infectious Disease</option> <option value="universe">Universe</option> <option value="urbansci">Urban Science</option> <option value="uro">Uro</option> <option value="vaccines">Vaccines</option> <option value="vehicles">Vehicles</option> <option value="venereology">Venereology</option> <option value="vetsci">Veterinary Sciences</option> <option value="vibration">Vibration</option> <option value="virtualworlds">Virtual Worlds</option> <option value="viruses">Viruses</option> <option value="vision">Vision</option> <option value="waste">Waste</option> <option value="water">Water</option> <option value="wild">Wild</option> <option value="wind">Wind</option> <option value="women">Women</option> <option value="world">World</option> <option value="wevj">World Electric Vehicle Journal</option> <option value="youth">Youth</option> <option value="zoonoticdis">Zoonotic Diseases</option> </select> <input name="email" type="email" placeholder="Enter your email address..." required="required" /> <button class="genericCaptcha button button--dark UA_FooterNewsletterSubscribeButton" type="submit">Subscribe</button> </form> </div> </div> </div> <div id="footer-copyright"> <div class="row"> <div class="columns large-6 medium-6 small-12 text-left"> © 1996-2025 MDPI (Basel, Switzerland) unless otherwise stated </div> <div class="columns large-6 medium-6 small-12 small-text-left medium-text-right large-text-right"> <a data-dropdown="drop-view-disclaimer" aria-controls="drop-view-disclaimer" aria-expanded="false" data-options="align:top; is_hover:true; hover_timeout:2000;"> Disclaimer </a> <div id="drop-view-disclaimer" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide text-left" data-dropdown-content aria-hidden="true" tabindex="-1"> Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. </div> <a href="/about/terms-and-conditions"> Terms and Conditions </a> <a href="/about/privacy"> Privacy Policy </a> </div> </div> </div> </div> <div id="cookie-notification" class="js-allow-cookies" style="display: none;"> <div class="columns large-10 medium-10 small-12"> We use cookies on our website to ensure you get the best experience.<br class="show-for-medium-up"/> Read more about our cookies <a href="/about/privacy">here</a>. </div> <div class="columns large-2 medium-2 small-12 small-only-text-left text-right"> <a class="button button--default" href="/accept_cookies">Accept</a> </div> </div> </div> <div id="main-share-modal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Share Link</h2> </div> <div class="small-12 columns"> <div class="social-media-links UA_ShareModalLinks" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#dbe4fdbab6abe0a8aeb9b1beb8afe69da9b4b6fee9eb969f8b92fee89afee9ebfee9e99afee9eb89beadb2beacfee9ebb4bdfee9eb96b4bfbea9b5fee9eb9aaebfb2b4fee9eb9fbebeabbdbab0befee9eb9fbeafbeb8afb2b4b5fee9eb96beafb3b4bfa8fee89afee9eb98b3bab7b7beb5bcbea8fee9ebbab5bffee9eb9daeafaea9befee9eb9fb2a9beb8afb2b4b5a8fdaaaeb4afe0fdbab6abe0b9b4bfa2e6b3afafaba8e1f4f4acacacf5b6bfabb2f5b8b4b6f4eaedeaede8efeffee89afeeb9afeeb9a9afee9eb89beadb2beacfee9ebb4bdfee9eb96b4bfbea9b5fee9eb9aaebfb2b4fee9eb9fbebeabbdbab0befee9eb9fbeafbeb8afb2b4b5fee9eb96beafb3b4bfa8fee89afee9eb98b3bab7b7beb5bcbea8fee9ebbab5bffee9eb9daeafaea9befee9eb9fb2a9beb8afb2b4b5a8d1d19afee9ebb5aeb6b9bea9fee9ebb4bdfee9eb9a92f6bcbeb5bea9baafbebffee9ebafb4b4b7a8fee9ebbaa9befee9ebaea8bebffee9ebafb4bfbaa2fee9ebafb4fee9ebb8b7b4b5befee9ebb3aeb6bab5fee9ebadb4b2b8bea8fee998fee9ebb7bebabfb2b5bcfee9ebafb4fee9ebbafee9ebb5beacfee9ebafbeb8b3b5b4b7b4bca2fee9ebb0b5b4acb5fee9ebbaa8fee9eb9aaebfb2b4fee9eb9fbebeabbdbab0bea8fee9ebfee9e39a9fa8fee9e2f5fee9eb9fbea8abb2afbefee9ebb9beb2b5bcfee9ebb2b5afa9b4bfaeb8bebffee9ebafb4fee9ebbeb5b3bab5b8befee9ebb3aeb6bab5fee9ebb7b2adbea8fee9ebbaa8fee9ebbaaebfb2b4b9b4b4b0a8fee998fee9eb9a9fa8fee9ebb3baadbefee9ebb9bebeb5fee9ebaea8bebffee9ebafb4fee9ebbfb2a8a9aeabaffee9ebabaeb9b7b2b8fee9eba8babdbeafa2f5fee9eb9a9fa8fee9ebb3baadbefee9ebafb3aea8fee9eba9beb8beb5afb7a2fee9ebb8b4b6befee9ebafb4fee9ebafb3befee9ebbaafafbeb5afb2b4b5fee9ebb4bdfee9eba9bea8bebaa9b8b3bea9a8fee998fee9ebacb2afb3fee9eb96bab8b3b2b5befee9eb97bebaa9b5b2b5bcfee9ebfee9e39697fee9e2fee9ebbab5bffee9eb9fbebeabfee9eb97bebaa9b5b2b5bcfee9ebfee9e39f97fee9e2fee9ebb6beafb3b4bfa8fee9ebb9beb2b5bcfee9ebbfbeadbeb7b4abbebffee9ebafb4fee9ebbfbeafbeb8affee9ebafb3beb6f5fee9eb92b5fee9ebafb3b2a8fee9ebbaa9afb2b8b7befee998fee9ebbafee9eba9beadb2beacfee9ebb4bdfee9ebbea3b2a8afb2b5bcfee9eb9a9ffee9ebbfbeafbeb8afb2b4b5fee9ebb6beafb3b4bfa8fee9ebacbaa8fee9ebb8b4b5bfaeb8afbebffee998fee9ebbab7b4b5bcfee9ebacb2afb3fee9ebbafee9ebb8b4b6abbaa9baafb2adbefee9ebbfbea8b8a9b2abafb2b4b5fee9ebb4bdfee9ebafb3befee9ebbaadbab2b7bab9b7befee9ebbdbab0bebffee9ebbaaebfb2b4fee9ebbfbaafbaa8beafa8f5fee9eb8fb3befee9ebbaa9afb2b8b7befee9ebb2b5afa9b4bfaeb8bea8fee9ebafa2abbea8fee9ebb4bdfee9eb9a9ffee9ebbaafafbab8b0a8fee9ebbab5bffee9ebafb3beb5fee9ebb4aeafb7b2b5bea8fee9ebbab5bffee9ebbab5bab7a2a1bea8fee9ebafb3befee9ebbfbeafbeb8afb2b4b5fee9ebb6beafb3b4bfa8fee9ebbab5bffee9ebbfbaafbaa8beafa8fee9ebbdb4a9fee9ebb2b6b2afbaafb2b4b5f6fee9ebbab5bffee9eba8a2b5afb3beafb2b8f6b9baa8bebffee9eb9fbebeabbdbab0bea8f5fee9eb8fb4fee9ebafb3befee9ebb9bea8affee9ebb4bdfee9ebafb3befee9ebbaaeafb3b4a9a8fe9ee9fee3ebfee2e2fee9ebb0b5b4acb7bebfbcbefee998fee9ebafb3b2a8fee9ebb2a8fee9ebafb3befee9ebbdb2a9a8affee9eba9beadb2beacfee9ebafbaa9bcbeafb2b5bcfee9ebb2b6b2afbaafbebffee9ebbab5bffee9eba8a2b5afb3beafb2b8bab7b7a2fee9ebbcbeb5bea9baafbebffee9ebbaaebfb2b4fee9ebbfbeafbeb8afb2b4b5fee9ebb6beafb3b4bfa8f5fee9eb8fb3befee9eba8b2b6b2b7baa9b2afb2bea8fee9ebbab5bffee9ebbfb2bdbdbea9beb5b8bea8fee9ebb4bdfee9eb9a9ffee9ebbfbeafbeb8afb2b4b5fee9ebb6beafb3b4bfa8fee9ebbaa9befee9eba8aeb6b6baa9b2a1bebffee9ebb9a2fee9ebaba9b4adb2bfb2b5bcfee9ebbafee9ebaaaebab5afb2afbaafb2adbefee9ebb8b4b6abbaa9b2a8b4b5fee9ebafb3baaffee9ebbdb2b5bfa8fee9ebafb3baaffee9ebafb3befee9ebb6beafb3b4bffee9ebafa2abbefee9ebbabdbdbeb8afa8fee9ebafb3befee9ebabbea9bdb4a9b6bab5b8befee9ebb6b4a9befee9ebafb3bab5fee9ebafb3befee9ebbaaebfb2b4fee9ebbdbebaafaea9bea8fee9ebafb3beb6a8beb7adbea8fee998fee9ebb2b5fee9ebacb3b2b8b3fee9ebbafee9eba8aeb9a8afbab5afb2bab7fee9ebafa9babfbeb4bdbdfee9ebb9beafacbebeb5fee9ebafb3befee9ebbab8b8aea9bab8a2fee9ebbab5bffee9eba8b8bab7bab9b2b7b2afa2fee9ebbea3b2a8afa8f5fee9eb96b4a9beb4adbea9fee998fee9ebbaaffee9ebafb3befee9ebbeb5bffee9ebb4bdfee9ebafb3b2a8fee9ebbaa9afb2b8b7befee998fee9ebafb3befee9ebabb4afbeb5afb2bab7fee9eba9bea8bebaa9b8b3fee9ebbfb2a9beb8afb2b4b5a8fee9ebbab5bffee9ebb8b3bab7b7beb5bcbea8fee9ebb4bdfee9eb9fbebeabbdbab0befee9ebbfbeafbeb8afb2b4b5fee9ebb6beafb3b4bfa880f5f5f586" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=A+Review+of+Modern+Audio+Deepfake+Detection+Methods%3A+Challenges+and+Future+Directions&amp;hashtags=mdpialgorithms&amp;url=https%3A%2F%2Fwww.mdpi.com%2F1616344&amp;via=Algorithms_MDPI" onclick="windowOpen(this.href,600,800); return false" title="Twitter" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&amp;url=https%3A%2F%2Fwww.mdpi.com%2F1616344&amp;title=A%20Review%20of%20Modern%20Audio%20Deepfake%20Detection%20Methods%3A%20Challenges%20and%20Future%20Directions%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DA%20number%20of%20AI-generated%20tools%20are%20used%20today%20to%20clone%20human%20voices%2C%20leading%20to%20a%20new%20technology%20known%20as%20Audio%20Deepfakes%20%28ADs%29.%20Despite%20being%20introduced%20to%20enhance%20human%20lives%20as%20audiobooks%2C%20ADs%20have%20been%20used%20to%20disrupt%20public%20safety.%20ADs%20have%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/1616344" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/1616344" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/1616344" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> <a href="http://www.citeulike.org/posturl?url=https://www.mdpi.com/1616344" title="CiteULike" target="_blank" rel="noopener noreferrer"> <i class="fa fa-citeulike-square" style="font-size: 30px;"></i> </a> </div> </div> <div class="small-9 columns"> <input id="js-clipboard-text" type="text" readonly value="https://www.mdpi.com/1616344" /> </div> <div class="small-3 columns text-left"> <a class="button button--color js-clipboard-copy" data-clipboard-target="#js-clipboard-text">Copy</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="weixin-share-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="weixin-share-modal-title" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="weixin-share-modal-title" style="margin: 0;">Share</h2> </div> <div class="small-12 columns"> <div class="weixin-qr-code-section"> <?xml version="1.0" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <svg width="300" height="300" version="1.1" xmlns="http://www.w3.org/2000/svg"> <desc>https://www.mdpi.com/1616344</desc> <g id="elements" fill="black" stroke="none"> <rect x="0" y="0" width="12" height="12" /> <rect x="12" y="0" width="12" height="12" /> <rect x="24" y="0" width="12" height="12" /> <rect x="36" y="0" width="12" height="12" /> <rect x="48" y="0" width="12" height="12" /> <rect x="60" y="0" width="12" height="12" /> <rect x="72" y="0" width="12" height="12" /> <rect x="96" y="0" width="12" height="12" /> <rect x="156" y="0" width="12" height="12" /> <rect x="168" y="0" width="12" height="12" /> <rect x="180" y="0" width="12" height="12" /> <rect x="192" y="0" width="12" height="12" /> <rect x="216" y="0" width="12" height="12" /> <rect x="228" y="0" width="12" height="12" /> <rect x="240" y="0" width="12" height="12" /> <rect x="252" y="0" width="12" height="12" /> <rect x="264" y="0" width="12" height="12" /> <rect x="276" y="0" width="12" height="12" /> <rect x="288" y="0" width="12" height="12" /> <rect x="0" y="12" width="12" height="12" /> <rect x="72" y="12" width="12" height="12" /> <rect x="96" y="12" width="12" height="12" /> <rect x="132" y="12" width="12" height="12" /> <rect x="144" y="12" width="12" height="12" /> <rect x="168" y="12" width="12" height="12" /> <rect x="216" y="12" width="12" height="12" /> <rect x="288" y="12" width="12" height="12" /> <rect x="0" y="24" width="12" height="12" /> <rect x="24" y="24" width="12" height="12" /> <rect x="36" y="24" width="12" height="12" /> <rect x="48" y="24" width="12" height="12" /> <rect x="72" y="24" width="12" height="12" /> <rect x="96" y="24" width="12" height="12" /> <rect x="108" y="24" width="12" height="12" /> <rect x="144" y="24" width="12" height="12" /> <rect x="168" y="24" width="12" height="12" /> <rect x="216" y="24" width="12" height="12" /> <rect x="240" y="24" width="12" height="12" /> <rect x="252" y="24" width="12" height="12" /> <rect x="264" y="24" width="12" height="12" /> <rect x="288" y="24" width="12" height="12" /> <rect x="0" y="36" width="12" height="12" /> <rect x="24" y="36" width="12" height="12" /> <rect x="36" y="36" width="12" height="12" /> <rect x="48" y="36" width="12" height="12" /> <rect x="72" y="36" width="12" height="12" /> <rect x="96" y="36" width="12" height="12" /> <rect x="108" y="36" width="12" height="12" /> <rect x="120" y="36" width="12" height="12" /> <rect x="156" y="36" width="12" height="12" /> <rect x="168" y="36" width="12" height="12" /> <rect x="192" y="36" width="12" height="12" /> <rect x="216" y="36" width="12" height="12" /> <rect x="240" y="36" width="12" height="12" /> <rect x="252" y="36" width="12" height="12" /> <rect x="264" y="36" width="12" height="12" /> <rect x="288" y="36" width="12" height="12" /> <rect x="0" y="48" width="12" height="12" /> <rect x="24" y="48" width="12" height="12" /> <rect x="36" y="48" width="12" height="12" /> <rect x="48" y="48" width="12" height="12" /> <rect x="72" y="48" width="12" height="12" /> <rect x="108" y="48" width="12" height="12" /> <rect x="120" y="48" width="12" height="12" /> <rect x="144" y="48" width="12" height="12" /> <rect x="168" y="48" width="12" height="12" /> <rect x="180" y="48" width="12" height="12" /> <rect x="216" y="48" width="12" height="12" /> <rect x="240" y="48" width="12" height="12" /> <rect x="252" y="48" width="12" height="12" /> <rect x="264" y="48" width="12" height="12" /> <rect x="288" y="48" width="12" height="12" /> <rect x="0" y="60" width="12" height="12" /> <rect x="72" y="60" width="12" height="12" /> <rect x="96" y="60" width="12" height="12" /> <rect x="108" y="60" width="12" height="12" /> <rect x="120" y="60" width="12" height="12" /> <rect x="144" y="60" width="12" height="12" /> <rect x="192" y="60" width="12" height="12" /> <rect x="216" y="60" width="12" height="12" /> <rect x="288" y="60" width="12" height="12" /> <rect x="0" y="72" width="12" height="12" /> <rect x="12" y="72" width="12" height="12" /> <rect x="24" y="72" width="12" height="12" /> <rect x="36" y="72" width="12" height="12" /> <rect x="48" y="72" width="12" height="12" /> <rect x="60" y="72" width="12" height="12" /> <rect x="72" y="72" width="12" height="12" /> <rect x="96" y="72" width="12" height="12" /> <rect x="120" y="72" width="12" height="12" /> <rect x="144" y="72" width="12" height="12" /> <rect x="168" y="72" width="12" height="12" /> <rect x="192" y="72" width="12" height="12" /> <rect x="216" y="72" width="12" height="12" /> <rect x="228" y="72" width="12" height="12" /> <rect x="240" y="72" width="12" height="12" /> <rect x="252" y="72" width="12" height="12" /> <rect x="264" y="72" width="12" height="12" /> <rect x="276" y="72" width="12" height="12" /> <rect x="288" y="72" width="12" height="12" /> <rect x="120" y="84" width="12" height="12" /> <rect x="132" y="84" width="12" height="12" /> <rect x="168" y="84" width="12" height="12" /> <rect x="180" y="84" width="12" height="12" /> <rect x="192" y="84" width="12" height="12" /> <rect x="0" y="96" width="12" height="12" /> <rect x="12" y="96" width="12" height="12" /> <rect x="48" y="96" width="12" height="12" /> <rect x="60" y="96" width="12" height="12" /> <rect x="72" y="96" width="12" height="12" /> <rect x="120" y="96" width="12" height="12" /> <rect x="144" y="96" width="12" height="12" /> <rect x="180" y="96" width="12" height="12" /> <rect x="228" y="96" width="12" height="12" /> <rect x="252" y="96" width="12" height="12" /> <rect x="264" y="96" width="12" height="12" /> <rect x="276" y="96" width="12" height="12" /> <rect x="288" y="96" width="12" height="12" /> <rect x="0" y="108" width="12" height="12" /> <rect x="12" y="108" width="12" height="12" /> <rect x="24" y="108" width="12" height="12" /> <rect x="36" y="108" width="12" height="12" /> <rect x="60" y="108" width="12" height="12" /> <rect x="144" y="108" width="12" height="12" /> <rect x="168" y="108" width="12" height="12" /> <rect x="180" y="108" width="12" height="12" /> <rect x="192" y="108" width="12" height="12" /> <rect x="204" y="108" width="12" height="12" /> <rect x="240" y="108" width="12" height="12" /> <rect x="252" y="108" width="12" height="12" /> <rect x="276" y="108" width="12" height="12" /> <rect x="48" y="120" width="12" height="12" /> <rect x="60" y="120" width="12" height="12" /> <rect x="72" y="120" width="12" height="12" /> <rect x="96" y="120" width="12" height="12" /> <rect x="108" y="120" width="12" height="12" /> <rect x="120" y="120" width="12" height="12" /> <rect x="132" y="120" width="12" height="12" /> <rect x="168" y="120" width="12" height="12" /> <rect x="180" y="120" width="12" height="12" /> <rect x="192" y="120" width="12" height="12" /> <rect x="228" y="120" width="12" height="12" /> <rect x="240" y="120" width="12" height="12" /> <rect x="252" y="120" width="12" height="12" /> <rect x="264" y="120" width="12" height="12" /> <rect x="0" y="132" width="12" height="12" /> <rect x="24" y="132" width="12" height="12" /> <rect x="108" y="132" width="12" height="12" /> <rect x="132" y="132" width="12" height="12" /> <rect x="144" y="132" width="12" height="12" /> <rect x="168" y="132" width="12" height="12" /> <rect x="180" y="132" width="12" height="12" /> <rect x="192" y="132" width="12" height="12" /> <rect x="216" y="132" width="12" height="12" /> <rect x="228" y="132" width="12" height="12" /> <rect x="264" y="132" width="12" height="12" /> <rect x="276" y="132" width="12" height="12" /> <rect x="0" y="144" width="12" height="12" /> <rect x="24" y="144" width="12" height="12" /> <rect x="48" y="144" width="12" height="12" /> <rect x="72" y="144" width="12" height="12" /> <rect x="84" y="144" width="12" height="12" /> <rect x="96" y="144" width="12" height="12" /> <rect x="132" y="144" width="12" height="12" /> <rect x="168" y="144" width="12" height="12" /> <rect x="192" y="144" width="12" height="12" /> <rect x="204" y="144" width="12" height="12" /> <rect x="216" y="144" width="12" height="12" /> <rect x="252" y="144" width="12" height="12" /> <rect x="264" y="144" width="12" height="12" /> <rect x="276" y="144" width="12" height="12" /> <rect x="288" y="144" width="12" height="12" /> <rect x="0" y="156" width="12" height="12" /> <rect x="48" y="156" width="12" height="12" /> <rect x="84" y="156" width="12" height="12" /> <rect x="108" y="156" width="12" height="12" /> <rect x="120" y="156" width="12" height="12" /> <rect x="156" y="156" width="12" height="12" /> <rect x="168" y="156" width="12" height="12" /> <rect x="180" y="156" width="12" height="12" /> <rect x="192" y="156" width="12" height="12" /> <rect x="204" y="156" width="12" height="12" /> <rect x="240" y="156" width="12" height="12" /> <rect x="276" y="156" width="12" height="12" /> <rect x="24" y="168" width="12" height="12" /> <rect x="36" y="168" width="12" height="12" /> <rect x="72" y="168" width="12" height="12" /> <rect x="84" y="168" width="12" height="12" /> <rect x="96" y="168" width="12" height="12" /> <rect x="108" y="168" width="12" height="12" /> <rect x="120" y="168" width="12" height="12" /> <rect x="132" y="168" width="12" height="12" /> <rect x="180" y="168" width="12" height="12" /> <rect x="192" y="168" width="12" height="12" /> <rect x="228" y="168" width="12" height="12" /> <rect x="240" y="168" width="12" height="12" /> <rect x="252" y="168" width="12" height="12" /> <rect x="264" y="168" width="12" height="12" /> <rect x="24" y="180" width="12" height="12" /> <rect x="48" y="180" width="12" height="12" /> <rect x="60" y="180" width="12" height="12" /> <rect x="108" y="180" width="12" height="12" /> <rect x="132" y="180" width="12" height="12" /> <rect x="144" y="180" width="12" height="12" /> <rect x="180" y="180" width="12" height="12" /> <rect x="216" y="180" width="12" height="12" /> <rect x="228" y="180" width="12" height="12" /> <rect x="240" y="180" width="12" height="12" /> <rect x="264" y="180" width="12" height="12" /> <rect x="276" y="180" width="12" height="12" /> <rect x="0" y="192" width="12" height="12" /> <rect x="12" y="192" width="12" height="12" /> <rect x="36" y="192" width="12" height="12" /> <rect x="48" y="192" width="12" height="12" /> <rect x="72" y="192" width="12" height="12" /> <rect x="96" y="192" width="12" height="12" /> <rect x="108" y="192" width="12" height="12" /> <rect x="144" y="192" width="12" height="12" /> <rect x="156" y="192" width="12" height="12" /> <rect x="192" y="192" width="12" height="12" /> <rect x="204" y="192" width="12" height="12" /> <rect x="216" y="192" width="12" height="12" /> <rect x="228" y="192" width="12" height="12" /> <rect x="240" y="192" width="12" height="12" /> <rect x="252" y="192" width="12" height="12" /> <rect x="264" y="192" width="12" height="12" /> <rect x="96" y="204" width="12" height="12" /> <rect x="156" y="204" width="12" height="12" /> <rect x="168" y="204" width="12" height="12" /> <rect x="192" y="204" width="12" height="12" /> <rect x="240" y="204" width="12" height="12" /> <rect x="0" y="216" width="12" height="12" /> <rect x="12" y="216" width="12" height="12" /> <rect x="24" y="216" width="12" height="12" /> <rect x="36" y="216" width="12" height="12" /> <rect x="48" y="216" width="12" height="12" /> <rect x="60" y="216" width="12" height="12" /> <rect x="72" y="216" width="12" height="12" /> <rect x="120" y="216" width="12" height="12" /> <rect x="132" y="216" width="12" height="12" /> <rect x="156" y="216" width="12" height="12" /> <rect x="168" y="216" width="12" height="12" /> <rect x="192" y="216" width="12" height="12" /> <rect x="216" y="216" width="12" height="12" /> <rect x="240" y="216" width="12" height="12" /> <rect x="0" y="228" width="12" height="12" /> <rect x="72" y="228" width="12" height="12" /> <rect x="96" y="228" width="12" height="12" /> <rect x="120" y="228" width="12" height="12" /> <rect x="132" y="228" width="12" height="12" /> <rect x="144" y="228" width="12" height="12" /> <rect x="156" y="228" width="12" height="12" /> <rect x="168" y="228" width="12" height="12" /> <rect x="192" y="228" width="12" height="12" /> <rect x="240" y="228" width="12" height="12" /> <rect x="252" y="228" width="12" height="12" /> <rect x="264" y="228" width="12" height="12" /> <rect x="276" y="228" width="12" height="12" /> <rect x="0" y="240" width="12" height="12" /> <rect x="24" y="240" width="12" height="12" /> <rect x="36" y="240" width="12" height="12" /> <rect x="48" y="240" width="12" height="12" /> <rect x="72" y="240" width="12" height="12" /> <rect x="96" y="240" width="12" height="12" /> <rect x="108" y="240" width="12" height="12" /> <rect x="144" y="240" width="12" height="12" /> <rect x="156" y="240" width="12" height="12" /> <rect x="168" y="240" width="12" height="12" /> <rect x="192" y="240" width="12" height="12" /> <rect x="204" y="240" width="12" height="12" /> <rect x="216" y="240" width="12" height="12" /> <rect x="228" y="240" width="12" height="12" /> <rect x="240" y="240" width="12" height="12" /> <rect x="252" y="240" width="12" height="12" /> <rect x="264" y="240" width="12" height="12" /> <rect x="276" y="240" width="12" height="12" /> <rect x="288" y="240" width="12" height="12" /> <rect x="0" y="252" width="12" height="12" /> <rect x="24" y="252" width="12" height="12" /> <rect x="36" y="252" width="12" height="12" /> <rect x="48" y="252" width="12" height="12" /> <rect x="72" y="252" width="12" height="12" /> <rect x="108" y="252" width="12" height="12" /> <rect x="120" y="252" width="12" height="12" /> <rect x="132" y="252" width="12" height="12" /> <rect x="156" y="252" width="12" height="12" /> <rect x="180" y="252" width="12" height="12" /> <rect x="216" y="252" width="12" height="12" /> <rect x="228" y="252" width="12" height="12" /> <rect x="264" y="252" width="12" height="12" /> <rect x="276" y="252" width="12" height="12" /> <rect x="288" y="252" width="12" height="12" /> <rect x="0" y="264" width="12" height="12" /> <rect x="24" y="264" width="12" height="12" /> <rect x="36" y="264" width="12" height="12" /> <rect x="48" y="264" width="12" height="12" /> <rect x="72" y="264" width="12" height="12" /> <rect x="108" y="264" width="12" height="12" /> <rect x="120" y="264" width="12" height="12" /> <rect x="144" y="264" width="12" height="12" /> <rect x="204" y="264" width="12" height="12" /> <rect x="216" y="264" width="12" height="12" /> <rect x="252" y="264" width="12" height="12" /> <rect x="276" y="264" width="12" height="12" /> <rect x="0" y="276" width="12" height="12" /> <rect x="72" y="276" width="12" height="12" /> <rect x="96" y="276" width="12" height="12" /> <rect x="120" y="276" width="12" height="12" /> <rect x="132" y="276" width="12" height="12" /> <rect x="180" y="276" width="12" height="12" /> <rect x="216" y="276" width="12" height="12" /> <rect x="228" y="276" width="12" height="12" /> <rect x="240" y="276" width="12" height="12" /> <rect x="252" y="276" width="12" height="12" /> <rect x="264" y="276" width="12" height="12" /> <rect x="276" y="276" width="12" height="12" /> <rect x="0" y="288" width="12" height="12" /> <rect x="12" y="288" width="12" height="12" /> <rect x="24" y="288" width="12" height="12" /> <rect x="36" y="288" width="12" height="12" /> <rect x="48" y="288" width="12" height="12" /> <rect x="60" y="288" width="12" height="12" /> <rect x="72" y="288" width="12" height="12" /> <rect x="96" y="288" width="12" height="12" /> <rect x="108" y="288" width="12" height="12" /> <rect x="120" y="288" width="12" height="12" /> <rect x="144" y="288" width="12" height="12" /> <rect x="168" y="288" width="12" height="12" /> <rect x="180" y="288" width="12" height="12" /> <rect x="264" y="288" width="12" height="12" /> <rect x="276" y="288" width="12" height="12" /> <rect x="288" y="288" width="12" height="12" /> </g> </svg> </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <a href="#" class="back-to-top"><span class="show-for-medium-up">Back to Top</span><span class="show-for-small">Top</span></a> <script data-cfasync="false" src="/cdn-cgi/scripts/5c5dd728/cloudflare-static/email-decode.min.js"></script><script src="https://pub.mdpi-res.com/assets/js/modernizr-2.8.3.min.js?5227e0738f7f421d?1739771134"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery-1.12.4.min.js?4f252523d4af0b47?1739771134"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.min.js?6b2ec41c18b29054?1739771134"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.equalizer.min.js?0f6c549b75ec554c?1739771134"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.multiselect.js?0edd3998731d1091?1739771134"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.cycle2.min.js?63413052928f97ee?1739771134"></script> <script> // old browser fix - this way the console log rows won't throw (silent) errors in browsers not supporting console log if (!window.console) window.console = {}; if (!window.console.log) window.console.log = function () { }; var currentJournalNameSystem = "algorithms"; $(document).ready(function() { $('select.foundation-select').multiselect({ search: true, minHeight: 130, maxHeight: 130, }); $(document).foundation({ orbit: { timer_speed: 4000, }, reveal: { animation: 'fadeAndPop', animation_speed: 100, } }); $(".chosen-select").each(function(element) { var maxSelected = (undefined !== $(this).data('maxselectedoptions') ? $(this).data('maxselectedoptions') : 100); $(this).on('chosen:ready', function(event, data) { var select = $(data.chosen.form_field); if (select.attr('id') === 'journal-browser-volume') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Volume_Options'); } if (select.attr('id') === 'journal-browser-issue') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Issue_Options'); } }).chosen({ display_disabled_options: false, disable_search_threshold: 7, max_selected_options: maxSelected, width: "100%" }); }); $(".toEncode").each(function(e) { var oldHref = $(this).attr("href"); var newHref = oldHref.replace('.botdefense.please.enable.javascript.','@'); $(this).attr("href", newHref); if (!$(this).hasClass("emailCaptcha")) { $(this).html(newHref.replace('mailto:', '')); } $(this).removeClass("visibility-hidden"); }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { $(document).foundation('equalizer', 'reflow'); }); // fix the images that have tag height / width defined // otherwise the default foundation styles overwrite the tag definitions $("img").each(function() { if ($(this).attr('width') != undefined || $(this).attr('height') != undefined) { $(this).addClass("img-fixed"); } }); $("#basic_search, #advanced_search").submit(function(e) { var searchArguments = false; $(this).find("input,select").not("#search,.search-button").each(function() { if (undefined === $(this).val() || "" === $(this).val()) { $(this).attr('name', null); } else { $(this).attr('name'); searchArguments = true; } }); if (!searchArguments) { window.location = $(this).attr('action'); return false; } }); $(".hide-show-desktop-option").click(function(e) { e.preventDefault(); var parentDiv = $(this).closest("div"); $.ajax({ url: $(this).attr('href'), success: function(msg) { parentDiv.removeClass().hide(); } }); }); $(".generic-toggleable-header").click(function(e) { $(this).toggleClass("active"); $(this).next(".generic-toggleable-content").toggleClass("active"); }); /* * handle whole row as a link if the row contains only one visible link */ $("table.new tr").hover(function() { if ($(this).find("td:visible a").length == 1) { $(this).addClass("single-link"); } }, function() { $(this).removeClass("single-link"); }); $("table.new:not(.table-of-tables)").on("click", "tr.single-link", function(e) { var target = $(e.target); if (!e.ctrlKey && !target.is("a")) { $(this).find("td:visible a")[0].click(); } }); $(document).on("click", ".custom-accordion-for-small-screen-link", function(e) { if ($(this).closest("#basic_search").length > 0) { if ($(".search-container__advanced").first().is(":visible")) { openAdvanced() } } if (Foundation.utils.is_small_only()) { if ($(this).hasClass("active")) { $(this).removeClass("active"); $(this).next(".custom-accordion-for-small-screen-content").addClass("show-for-medium-up"); } else { $(this).addClass("active"); $(this).next(".custom-accordion-for-small-screen-content").removeClass("show-for-medium-up"); $(document).foundation('orbit', 'reflow'); } } if (undefined !== $(this).data("callback")) { var customCallback = $(this).data("callback"); func = window[customCallback]; func(); } }); $(document).on("click", ".js-open-small-search", function(e) { e.preventDefault(); $(this).toggleClass("active").closest(".tab-bar").toggleClass("active"); $(".search-container").toggleClass("hide-for-small-down"); }); $(document).on("click", ".js-open-menu", function(e) { $(".search-container").addClass("hide-for-small-down"); }); $(window).on('resize', function() { recalculate_main_browser_position(); recalculate_responsive_moving_containers(); }); updateSearchLabelVisibilities(); recalculate_main_browser_position(); recalculate_responsive_moving_containers(); if (window.document.documentMode == 11) { $("<link/>", { rel: "stylesheet", type: "text/css", href: "https://fonts.googleapis.com/icon?family=Material+Icons"}).appendTo("head"); } }); function recalculate_main_browser_position() { if (Foundation.utils.is_small_only()) { if ($("#js-main-top-container").parent("#js-large-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-small-main-top-container")); } } else { if ($("#js-main-top-container").parent("#js-small-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-large-main-top-container")); } } } function recalculate_responsive_moving_containers() { $(".responsive-moving-container.large").each(function() { var previousParent = $(".responsive-moving-container.active[data-id='"+$(this).data("id")+"']"); var movingContent = previousParent.html(); if (Foundation.utils.is_small_only()) { var currentParent = $(".responsive-moving-container.small[data-id='"+$(this).data("id")+"']"); } else if (Foundation.utils.is_medium_only()) { var currentParent = $(".responsive-moving-container.medium[data-id='"+$(this).data("id")+"']"); } else { var currentParent = $(".responsive-moving-container.large[data-id='"+$(this).data("id")+"']"); } if (previousParent.attr("class") !== currentParent.attr("class")) { currentParent.html(movingContent); previousParent.html(); currentParent.addClass("active"); previousParent.removeClass("active"); } }); } // cookies allowed is checked from a) local storage and b) from server separately so that the footer bar doesn't // get included in the custom page caches function checkCookiesAllowed() { var cookiesEnabled = localStorage.getItem("mdpi_cookies_enabled"); if (null === cookiesEnabled) { $.ajax({ url: "/ajax_cookie_value/mdpi_cookies_accepted", success: function(data) { if (data.value) { localStorage.setItem("mdpi_cookies_enabled", true); checkDisplaySurvey(); } else { $(".js-allow-cookies").show(); } } }); } else { checkDisplaySurvey(); } } function checkDisplaySurvey() { } window.addEventListener('CookiebotOnAccept', function (e) { var CookieDate = new Date; if (Cookiebot.consent.preferences) { CookieDate.setFullYear(CookieDate.getFullYear() + 1); document.cookie = "mdpi_layout_type_v2=mobile; path=/; expires=" + CookieDate.toUTCString() + ";"; $(".js-toggle-desktop-layout-link").css("display", "inline-block"); } }, false); window.addEventListener('CookiebotOnDecline', function (e) { if (!Cookiebot.consent.preferences) { $(".js-toggle-desktop-layout-link").hide(); if ("" === "desktop") { window.location = "/toggle_desktop_layout_cookie"; } } }, false); var hash = $(location).attr('hash'); if ("#share" === hash) { if (1 === $("#main-share-modal").length) { $('#main-share-modal').foundation('reveal', 'open'); } } </script> <script src="https://pub.mdpi-res.com/assets/js/lib.js?b86ef680a60436c6?1739771134"></script> <script src="https://pub.mdpi-res.com/assets/js/mdpi.js?c267ce58392b15da?1739771134"></script> <script>var banners_url = 'https://serve.mdpi.com';</script> <script type='text/javascript' src='https://pub.mdpi-res.com/assets/js/ifvisible.min.js?c621d19ecb761212?1739771134'></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?ac4ea55275297c15?1739771134"></script> <script src="https://pub.mdpi-res.com/assets/js/clipboard.min.js?3f3688138a1b9fc4?1739771134"></script> <script type="text/javascript"> $(document).ready(function() { var helpFunctions = $(".middle-column__help__fixed"); var leftColumnAffix = $(".left-column__fixed"); var middleColumn = $("#middle-column"); var clone = null; helpFunctions.affix({ offset: { top: function() { return middleColumn.offset().top - 8 - (Foundation.utils.is_medium_only() ? 30 : 0); }, bottom: function() { return $("#footer").innerHeight() + 74 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); if (leftColumnAffix.length > 0) { clone = leftColumnAffix.clone(); clone.addClass("left-column__fixed__affix"); clone.insertBefore(leftColumnAffix); clone.css('width', leftColumnAffix.outerWidth() + 50); clone.affix({ offset: { top: function() { return leftColumnAffix.offset().top - 30 - (Foundation.utils.is_medium_only() ? 50 : 0); }, bottom: function() { return $("#footer").innerHeight() + 92 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); } $(window).on("resize", function() { if (clone !== null) { clone.css('width', leftColumnAffix.outerWidth() + 50); } }); new ClipboardJS('.js-clipboard-copy'); }); </script> <script src="https://pub.mdpi-res.com/assets/js/jquery-ui-1.13.2.min.js?1e2047978946a1d2?1739771134"></script> <script src="https://pub.mdpi-res.com/assets/js/slick.min.js?d5a61c749e44e471?1739771134"></script> <script> $(document).ready(function() { $(".link-article-menu").click(function(e) { e.preventDefault(); $(this).find('span').toggle(); $(this).next("div").toggleClass("active"); }); $(".js-similarity-related-articles").click(function(e) { e.preventDefault(); if ('' !== $('#recommended-articles-modal').attr('data-url')) { $('#recommended-articles-modal').foundation('reveal', 'open', $('#recommended-articles-modal').attr('data-url')); } }); $.ajax({ url: "/article/808172/similarity-related/show-link", success: function(result) { if (result.show) { $('#recommended-articles-modal').attr('data-url', result.link); $('.js-article-similarity-container').show(); } } }); $("#recommended-articles-modal").on("click", ".ga-title-link-recommended-article", function(e) { var clickEventUrl = $(this).data("click-event-url"); if (typeof clickEventUrl !== "undefined") { fetch(clickEventUrl, { method: "GET", mode: "no-cors" }); } }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { var modal = $(this); if (modal.attr('id') === "author-biographies-modal") { modal.find('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, draggable: false, }); modal.find('.multiple-items').slick('refresh'); } }); }); </script> <script type="text/javascript"> if (-1 !== window.location.href.indexOf("?src=")) { window.history.replaceState({}, '', `${location.pathname}`); } $(document).ready(function() { var scifeedCounter = 0; var search = window.location.search; var mathjaxReady = false; // late image file loading $("img[data-lsrc]").each(function() { $(this).attr("src", $(this).data("lsrc")); }); // late mathjax initialization var head = document.getElementsByTagName("head")[0]; var script = document.createElement("script"); script.type = "text/x-mathjax-config"; script[(window.opera ? "innerHTML" : "text")] = "MathJax.Hub.processSectionDelay = 0;\n" + "MathJax.Hub.Config({\n" + " \"menuSettings\": {\n" + " CHTMLpreview: false\n" + " },\n" + " \"CHTML-preview\":{\n" + " disabled: true\n" + " },\n" + " \"HTML-CSS\": {\n" + " scale: 90,\n" + " availableFonts: [],\n" + " preferredFont: null,\n" + " preferredFonts: null,\n" + " webFont:\"Gyre-Pagella\",\n" + " imageFont:'TeX',\n" + " undefinedFamily:\"'Arial Unicode MS',serif\",\n" + " linebreaks: { automatic: false }\n" + " },\n" + " \"TeX\": {\n" + " extensions: ['noErrors.js'],\n" + " noErrors: {\n" + " inlineDelimiters: [\"\",\"\"],\n" + " multiLine: true,\n" + " style: {\n" + " 'font-size': '90%',\n" + " 'text-align': 'left',\n" + " 'color': 'black',\n" + " 'padding': '1px 3px',\n" + " 'border': '1px solid'\n" + " }\n" + " }\n" + " }\n" + "});\n" + "MathJax.Hub.Register.StartupHook('End', function() {\n" + " refreshMathjaxWidths();\n" + " mathjaxReady = true;\n" + "});\n" + "MathJax.Hub.Startup.signal.Interest(function (message) {\n" + " if (message == 'End') {\n" + " var hypoLink = document.getElementById('hypothesis_frame');\n" + " if (null !== hypoLink) {\n" + " hypoLink.setAttribute('src', 'https://commenting.mdpi.com/embed.js');\n" + " }\n" + " }\n" + "});"; head.appendChild(script); script = document.createElement("script"); script.type = "text/javascript"; script.src = "https://pub.mdpi-res.com/bundles/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; head.appendChild(script); // article version checker if (0 === search.indexOf('?type=check_update&version=')) { $.ajax({ url: "/1999-4893/15/5/155" + "/versioncheck" + search, success: function(result) { $(".js-check-update-container").html(result); } }); } $('#feed_option').click(function() { // tracker if ($('#scifeed_clicked').length<1) { $(this).append('<span style="display:none" id="scifeed_clicked">done</span>'); } $('#feed_data').toggle('slide', { direction: 'up'}, '1000'); // slideToggle(700); OR toggle(700) $("#scifeed_error_msg").html('').hide(); $("#scifeed_notice_msg").html('').hide(); }); $('#feed_option').click(function(event) { setTimeout(function(){ var captchaSection = $("#captchaSection"); captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); // var img = captchaSection.find('img'); // img.attr('src', img.data('url') + "?" + (new Date()).getTime()); // $(".captcha_reload").trigger("click"); var img = document.getElementById('gregwar_captcha_scifeed'); img.src = '/generate-captcha/gcb_captcha?n=' + (new Date()).getTime(); },800); }); $(document).on('click', '.split_feeds', function() { var name = $( this ).attr('name'); var flag = 1 - ($(this).is(":checked")*1); $('.split_feeds').each(function (index) { if ($( this ).attr('name') !== name) { $(this)[0].checked = flag; } }); }); $(document).on('click', '#scifeed_submit, #scifeed_submit1', function(event) { event.preventDefault(); $(".captcha_reload").trigger("click"); $("#scifeed_error_msg").html(""); $("#scifeed_error_msg").hide(); }); $(document).on('click', '.subscription_toggle', function(event) { if ($(this).val() === 'Create SciFeed' && $('#scifeed_hidden_flag').length>0) { event.preventDefault(); // alert('Here there would be a captcha because user is not logged in'); var captchaSection = $("#captchaSection"); if (captchaSection.hasClass('ui-helper-hidden')) { captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); var img = captchaSection.find('img'); img.attr('src', img.data('url') + "?" + (new Date()).getTime()); $("#reloadCaptcha").trigger("click"); } } }); $(document).on('click', '.scifeed_msg', function(){ $(this).hide(); }); $(document).on('click', '.article-scilit-search', function(e) { e.preventDefault(); var data = $(".article-scilit-search-data").val(); var dataArray = data.split(';').map(function(keyword) { return "(\"" + keyword.trim() + "\")"; }); var searchQuery = dataArray.join(" OR "); var searchUrl = encodeURI("https://www.scilit.com/articles/search?q="+ searchQuery + "&advanced=1&highlight=1"); var win = window.open(searchUrl, '_blank'); if (win) { win.focus(); } else { window.location(searchUrl); } }); display_stats(); citedCount(); follow_goto(); // Select the node that will be observed for mutations const targetNodes = document.getElementsByClassName('hypothesis-count-container'); // Options for the observer (which mutations to observe) const config = { attributes: false, childList: true, subtree: false }; // Callback function to execute when mutations are observed const callback = function(mutationList, observer) { for(const mutation of mutationList) { if (mutation.type === 'childList') { let node = $(mutation.target); if (parseInt(node.html()) > 0) { node.show(); } } } }; // Create an observer instance linked to the callback function const observer = new MutationObserver(callback); // Start observing the target node for configured mutations for(const targetNode of targetNodes) { observer.observe(targetNode, config); } // Select the node that will be observed for mutations const mathjaxTargetNode = document.getElementById('middle-column'); // Callback function to execute when mutations are observed const mathjaxCallback = function(mutationList, observer) { if (mathjaxReady && typeof(MathJax) !== 'undefined') { refreshMathjaxWidths(); } }; // Create an observer instance linked to the callback function const mathjaxObserver = new ResizeObserver(mathjaxCallback); // Start observing the target node for configured mutations mathjaxObserver.observe(mathjaxTargetNode); }); /* END $(document).ready */ function refreshMathjaxWidths() { let width = ($('.html-body').width()*0.9) + "px"; $('.MathJax_Display').css('max-width', width); $('.MJXc-display').css('max-width', width); } function sendScifeedFrom(form) { if (!$('#scifeed_email').val().trim()) { // empty email alert('Please, provide an email for subscribe to this scifeed'); return false; } else if (!$('#captchaSection').hasClass('ui-helper-hidden') && !$('#captchaSection').find('input').val().trim()) { // empty captcha alert('Please, fill the captcha field.'); return false; } else if( ((($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds:checked').length))<1) || ($('#scifeed_kwd_txt').length < 0 && !$('#scifeed_kwd_txt').val().trim()) || ($('#scifeed_author_txt').length<0 &&!$('#scifeed_author_txt').val().trim()) ) { alert('You did not select anything to subscribe'); return false; } else if(($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds2:checked').length)<1){ alert("You did not select anything to subscribe"); return false; } else { var url = $('#scifeed_subscribe_url').html(); var formData = $(form).serializeArray(); $.post(url, formData).done(function (data) { if (JSON.parse(data)) { $('.scifeed_msg').hide(); var res = JSON.parse(data); var successFeeds = 0; var errorFeeds = 0; if (res) { $('.scifeed_msg').html(''); $.each(res, function (index, val) { if (val) { if (val.error) { errorFeeds++; $("#scifeed_error_msg").append(index+' - '+val.error+'<br>'); } if (val.notice) // for successful feed creation { successFeeds++; // $("#scifeed_notice_msg").append(index+' - '+val.notice+'<br>'); $("#scifeed_notice_msg").append('<li>'+index+'</li>'); } } }); if (successFeeds>0) { text = $('#scifeed_notice_msg').html(); text = 'The following feed'+(successFeeds>1?'s have':' has')+ ' been sucessfully created:<br><ul>'+ text + '</ul>' +($('#scifeed_hidden_flag').length>0 ? 'You are not logged in, so you probably need to validate '+ (successFeeds>1?'them':' it')+'.<br>' :'' ) +'Please check your email'+(successFeeds>1?'s':'')+' for more details.'; //(successFeeds>1?' for each of them':'')+'.<br>'; $("#scifeed_notice_msg").html(text); $("#scifeed_notice_msg").show(); } if (errorFeeds>0) { $("#scifeed_error_msg").show();; } } $("#feed_data").hide(); } }); } } function follow_goto() { var hashStr = location.hash.replace("#",""); if(typeof hashStr !== 'undefined') { if( hashStr == 'supplementary') { document.getElementById('suppl_id').scrollIntoView(); } if( hashStr == 'citedby') { document.getElementById('cited_id').scrollIntoView(); } } } function cited() { $("#framed_div").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded"); if(loaded.innerHTML == "No") { // Load Xref result var container = document.getElementById("framed_div"); // This replace the content container.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1739771134\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; var url = "/citedby/10.3390%252Fa15050155/13"; $.post(url, function(result) { if (result.success) { container.innerHTML = result.view; } loaded.innerHTML = "Yes"; }); } } return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } function detect_device() { // Added by Bastien (18/08/2014): based on the http://detectmobilebrowsers.com/ detector var check = false; (function(a){if(/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino/i.test(a)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0,4)))check = true})(navigator.userAgent||navigator.vendor||window.opera); return check; } function display_stats(){ $("#article_stats_div").toggle(); return false; } /* * Cited By Scopus */ function citedCount(){ $("#framed_div_cited_count").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded_cite_count"); // to load only once the result! if(loaded.innerHTML == "No") { // Load Xref result var d = document.getElementById("framed_div_cited_count"); // This replace the content d.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1739771134\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; $.ajax({ method : "POST", url : "/cite-count/10.3390%252Fa15050155", success : function(data) { if (data.succ) { d.innerHTML = data.view; loaded.innerHTML = "Yes"; follow_goto(); } } }); } } // end else return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } </script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/highcharts.js?bdd06f45e34c33df?1739771134"></script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/modules/exporting.js?944dc938d06de3a8?1739771134"></script><script type="text/javascript" defer="defer"> var advancedStatsData; var selectedStatsType = "abstract"; $(function(){ var countWrapper = $('#counts-wrapper'); $('#author_stats_id #type_links a').on('click', function(e) { e.preventDefault(); selectedStatsType = $(this).data('type'); $('#article_advanced_stats').vectorMap('set', 'values', advancedStatsData[selectedStatsType]); $('#advanced_stats_max').html(advancedStatsData[selectedStatsType].max); $('#type_links a').removeClass('active'); $(this).addClass('active'); }); $.get('/1999-4893/15/5/155/stats', function (result) { if (!result.success) { return; } // process article metrics part in left column var viewNumber = countWrapper.find(".view-number"); viewNumber.html(result.metrics.views); viewNumber.parent().toggleClass("count-div--grey", result.metrics.views == 0); var downloadNumber = countWrapper.find(".download-number"); downloadNumber.html(result.metrics.downloads); downloadNumber.parent().toggleClass("count-div--grey", result.metrics.downloads == 0); var citationsNumber = countWrapper.find(".citations-number"); citationsNumber.html(result.metrics.citations); citationsNumber.parent().toggleClass("count-div--grey", result.metrics.citations == 0); if (result.metrics.views > 0 || result.metrics.downloads > 0 || result.metrics.citations > 0) { countWrapper.find("#js-counts-wrapper__views, #js-counts-wrapper__downloads").addClass("visible").show(); if (result.metrics.citations > 0) { countWrapper.find('.citations-number').html(result.metrics.citations).show(); countWrapper.find("#js-counts-wrapper__citations").addClass("visible").show(); } else { countWrapper.find("#js-counts-wrapper__citations").remove(); } $("[data-id='article-counters']").removeClass("hidden"); } if (result.metrics.altmetrics_score > 0) { $("#js-altmetrics-donut").show(); } // process view chart in main column var jsondata = result.chart; var series = new Array(); $.each(jsondata.elements, function(i, element) { var dataValues = new Array(); $.each(element.values, function(i, value) { dataValues.push(new Array(value.tip, value.value)); }); series[i] = {name: element.text, data:dataValues}; }); Highcharts.setOptions({ chart: { style: { fontFamily: 'Arial,sans-serif' } } }); $('#article_stats_swf').highcharts({ chart: { type: 'line', width: $("#tabs").width() //* 0.91 }, credits: { enabled: false }, exporting: { enabled: true }, title: { text: jsondata.title.text, x: -20 //center }, xAxis: { categories: jsondata.x_axis.labels.labels, offset: jsondata.x_axis.offset, labels:{ step: jsondata.x_axis.labels.steps, rotation: 30 } }, yAxis: { max: jsondata.y_axis.max, min: jsondata.y_axis.min, offset: jsondata.y_axis.offset, labels: { steps: jsondata.y_axis.steps }, title: { enabled: false } }, tooltip: { formatter: function (){ return this.key.replace("#val#", this.y); } }, legend: { align: 'top', itemDistance: 50 }, series: series }); }); $('#supplement_link').click(function() { document.getElementById('suppl_id').scrollIntoView(); }); $('#stats_link').click(function() { document.getElementById('stats_id').scrollIntoView(); }); // open mol viewer for molbank special supplementary files $('.showJmol').click(function(e) { e.preventDefault(); var jmolModal = $("#jmolModal"); var url = "/article/808172/jsmol_viewer/__supplementary_id__"; url = url.replace(/__supplementary_id__/g, $(this).data('index')); $('#jsmol-content').attr('src', url); jmolModal.find(".content").html($(this).data('description')); jmolModal.foundation("reveal", "open"); }); }); !function() { "use strict"; function e(e) { try { if ("undefined" == typeof console) return; "error"in console ? console.error(e) : console.log(e) } catch (e) {} } function t(e) { return d.innerHTML = '<a href="' + e.replace(/"/g, "&quot;") + '"></a>', d.childNodes[0].getAttribute("href") || "" } function n(n, c) { var o = ""; var k = parseInt(n.substr(c + 4, 2), 16); for (var i = c; i < n.length; i += 2) { if (i != c + 4) { var s = parseInt(n.substr(i, 2), 16) ^ k; o += String.fromCharCode(s); } } try { o = decodeURIComponent(escape(o)); } catch (error) { console.error(error); } return t(o); } function c(t) { for (var r = t.querySelectorAll("a"), c = 0; c < r.length; c++) try { var o = r[c] , a = o.href.indexOf(l); a > -1 && (o.href = "mailto:" + n(o.href, a + l.length)) } catch (i) { e(i) } } function o(t) { for (var r = t.querySelectorAll(u), c = 0; c < r.length; c++) try { var o = r[c] , a = o.parentNode , i = o.getAttribute(f); if (i) { var l = n(i, 0) , d = document.createTextNode(l); a.replaceChild(d, o) } } catch (h) { e(h) } } function a(t) { for (var r = t.querySelectorAll("template"), n = 0; n < r.length; n++) try { i(r[n].content) } catch (c) { e(c) } } function i(t) { try { c(t), o(t), a(t) } catch (r) { e(r) } } var l = "/cnd-cgi/l/email-protection#" , u = ".__cf_email__" , f = "data-cfemail" , d = document.createElement("div"); i(document), function() { var e = document.currentScript || document.scripts[document.scripts.length - 1]; e.parentNode.removeChild(e) }() }(); </script><script type="text/javascript"> function setCookie(cname, cvalue, ctime) { ctime = (typeof ctime === 'undefined') ? 10*365*24*60*60*1000 : ctime; // default => 10 years var d = new Date(); d.setTime(d.getTime() + ctime); // ==> 1 hour = 60*60*1000 var expires = "expires="+d.toUTCString(); document.cookie = cname + "=" + cvalue + "; " + expires +"; path=/"; } function getCookie(cname) { var name = cname + "="; var ca = document.cookie.split(';'); for(var i=0; i<ca.length; i++) { var c = ca[i]; while (c.charAt(0)==' ') c = c.substring(1); if (c.indexOf(name) == 0) return c.substring(name.length, c.length); } return ""; } </script><script type="text/javascript" src="https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js"></script><script> $(document).ready(function() { if ($("#js-similarity-related-data").length > 0) { $.ajax({ url: '/article/808172/similarity-related', success: function(response) { $("#js-similarity-related-data").html(response); $("#js-related-articles-menu").show(); $(document).foundation('tab', 'reflow'); MathJax.Hub.Queue(["Typeset", MathJax.Hub]); } }); } }); </script><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1739771134"><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1739771134"><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/magnific-popup.min.js?2be3d9e7dc569146?1739771134"></script><script> $(function() { $(".js-show-more-academic-editors").on("click", function(e) { e.preventDefault(); $(this).hide(); $(".academic-editor-container").removeClass("hidden"); }); }); </script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/vmap/jqvmap.min.css?126a06688aa11c13?1739771134"> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.min.js?935f68d33bdd88a1?1739771134"></script> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.world.js?16677403c0e1bef1?1739771134"></script> <script> function updateSlick() { $('.multiple-items').slick('setPosition'); } $(document).ready(function() { $('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, responsive: [ { breakpoint: 1024, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 600, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 480, settings: { slidesToShow: 1, slidesToScroll: 1, } } ] }); $('.multiple-items').show(); $(document).on('click', '.reviewReportSelector', function(e) { let path = $(this).attr('data-path'); handleReviews(path, $(this)); }); $(document).on('click', '.viewReviewReports', function(e) { let versionOne = $('#versionTab_1'); if (!versionOne.hasClass('activeTab')) { let path = $(this).attr('data-path'); handleReviews(path, versionOne); } location.href = "#reviewReports"; }); $(document).on('click', '.reviewersResponse, .authorResponse', function(e) { let version = $(this).attr('data-version'); let targetVersion = $('#versionTab_' + version); if (!targetVersion.hasClass('activeTab')) { let path = targetVersion.attr('data-path'); handleReviews(path, targetVersion); } location.href = $(this).attr('data-link'); }); $(document).on('click', '.tab', function (e) { e.preventDefault(); $('.tab').removeClass('activeTab'); $(this).addClass('activeTab') $('.tab').each(function() { $(this).closest('.tab-title').removeClass('active'); }); $(this).closest('.tab-title').addClass('active') }); }); function handleReviews(path, target) { $.ajax({ url: path, context: this, success: function (data) { $('.activeTab').removeClass('activeTab'); target.addClass('activeTab'); $('#reviewSection').html(data.view); }, error: function (xhr, ajaxOptions, thrownError) { console.log(xhr.status); console.log(thrownError); } }); } </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?v1?1739771134"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/storage.js?e9b262d3a3476d25?1739771134"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/jquery-scrollspy.js?09cbaec0dbb35a67?1739771134"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/magnific-popup.js?4a09c18460afb26c?1739771134"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/underscore.js?f893e294cde60c24?1739771134"></script> <script type="text/javascript"> $('document').ready(function(){ $("#left-column").addClass("show-for-large-up"); $("#middle-column").removeClass("medium-9").removeClass("left-bordered").addClass("medium-12"); $(window).on('resize scroll', function() { /* if ($('.button--drop-down').isInViewport($(".top-bar").outerHeight())) { */ if ($('.button--drop-down').isInViewport()) { $("#js-button-download").hide(); } else { $("#js-button-download").show(); } }); }); $(document).on('DOMNodeInserted', function(e) { var element = $(e.target); if (element.hasClass('menu') && element.hasClass('html-nav') ) { element.addClass("side-menu-ul"); } }); </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/articles.js?5118449d9ad8913a?1739771134"></script> <script> repositionOpenSideBar = function() { $('#left-column').addClass("show-for-large-up show-for-medium-up").show(); $('#middle-column').removeClass('large-12').removeClass('medium-12'); $('#middle-column').addClass('large-9'); } repositionCloseSideBar = function() { $('#left-column').removeClass("show-for-large-up show-for-medium-up").hide(); $('#middle-column').removeClass('large-9'); $('#middle-column').addClass('large-12').addClass('medium-12'); } </script> <!--[if lt IE 9]> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8.js?6eef8fcbc831f5bd?1739771134"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/jquery.xdomainrequest.min.js?a945caca315782b0?1739771134"></script> <![endif]--> <!-- Twitter universal website tag code --> <script type="text/plain" data-cookieconsent="marketing"> !function(e,t,n,s,u,a){e.twq||(s=e.twq=function(){s.exe?s.exe.apply(s,arguments):s.queue.push(arguments); },s.version='1.1',s.queue=[],u=t.createElement(n),u.async=!0,u.src='//static.ads-twitter.com/uwt.js', a=t.getElementsByTagName(n)[0],a.parentNode.insertBefore(u,a))}(window,document,'script'); // Insert Twitter Pixel ID and Standard Event data below twq('init','o2pip'); twq('track','PageView'); </script> <!-- End Twitter universal website tag code --> <script>(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'91382730fbddfd0a',t:'MTczOTgyMDIxOS4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();</script></body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10