CINXE.COM

Search results for: immobilized TiO₂

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: immobilized TiO₂</title> <meta name="description" content="Search results for: immobilized TiO₂"> <meta name="keywords" content="immobilized TiO₂"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="immobilized TiO₂" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="immobilized TiO₂"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 556</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: immobilized TiO₂</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">556</span> Effect of Addition of Surfactant to the Surface Hydrophilicity and Photocatalytic Activity of Immobilized Nano TiO2 Thin Films </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eden%20G.%20Mariquit">Eden G. Mariquit</a>, <a href="https://publications.waset.org/abstracts/search?q=Winarto%20Kurniawan"> Winarto Kurniawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Miyauchi"> Masahiro Miyauchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirofumi%20Hinode"> Hirofumi Hinode</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research studied the effect of adding surfactant to the titanium dioxide (TiO2) sol-gel solution that was used to immobilize TiO2 on glass substrates by dip coating technique using TiO2 sol-gel solution mixed with different types of surfactants. After dipping into the TiO2 sol, the films were calcined and produced pure anatase crystal phase. The thickness of the thin film was varied by repeating the dip and calcine cycle. The prepared films were characterized using FE-SEM, TG-DTA, and XRD, and its photocatalytic performances were tested on degradation of an organic dye, methylene blue. Aside from its phocatalytic performance, the photo-induced hydrophilicity of thin TiO2 films surface was also studied. Characterization results showed that the addition of surfactant gave rise to characteristic patterns on the surface of the TiO2 thin film which also affects the photocatalytic activity. The addition of CTAB to the TiO2 dipping solution had a negative effect because the calcination temperature was not high enough to burn all the surfactants off. As for the surface wettability, the addition of surfactant also affected the induced surface hydrophilicity of the TiO2 films when irradiated under UV light. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20hydrophilicity" title=" surface hydrophilicity"> surface hydrophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20thin%20films" title=" TiO2 thin films"> TiO2 thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant "> surfactant </a> </p> <a href="https://publications.waset.org/abstracts/14519/effect-of-addition-of-surfactant-to-the-surface-hydrophilicity-and-photocatalytic-activity-of-immobilized-nano-tio2-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">555</span> Zeolite Supported Iron-Sensitized TIO₂ for Tetracycline Photocatalytic ‎Degradation under Visible Light: A Comparison between Doping and Ion ‎Exchange ‎</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghadeer%20Jalloul">Ghadeer Jalloul</a>, <a href="https://publications.waset.org/abstracts/search?q=Nour%20Hijazi"> Nour Hijazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassia%20Boyadjian"> Cassia Boyadjian</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Awala"> Hussein Awala</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20N.%20Ahmad"> Mohammad N. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8EAhmad%20Albadarin"> ‎Ahmad Albadarin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we applied Fe-sensitized TiO₂ supported over embryonic Beta zeolite (BEA) zeolite ‎for the photocatalytic degradation of Tetracycline (TC) antibiotic under visible light. Four different ‎samples having 20, 40, 60, and 100% w/w as a ratio of TiO₂/BEA were prepared. The ‎immobilization of solgel TiO₂ (33 m²/g) over BEA (390 m²/g) increased its surface area to (227 ‎m²/g) and enhanced its adsorption capacity from 8% to 19%. To expand the activity of TiO₂ ‎photocatalyst towards the visible light region (λ>380 nm), we explored two different metal ‎sensitization techniques with Iron ions (Fe³⁺). In the ion-exchange method, the substitutional cations ‎in the zeolite in TiO₂/BEA were exchanged with (Fe³⁺) in an aqueous solution of FeCl₃. In the ‎doping technique, solgel TiO₂ was doped with (Fe³⁺) from FeCl₃ precursor during its synthesis and ‎before its immobilization over BEA. (Fe-TiO₂/BEA) catalysts were characterized using SEM, XRD, ‎BET, UV-VIS DRS, and FTIR. After testing the performance of the various ion-exchanged catalysts ‎under blue and white lights, only (Fe-TiO₂/BEA 60%) showed better activity as compared to pure ‎TiO₂ under white light with 100 ppm initial catalyst concentration and 20 ppm TC concentration. As ‎compared to ion-exchanged (Fe-TiO₂/BEA), doped (Fe-TiO₂/BEA) resulted in higher photocatalytic ‎efficiencies under blue and white lights. The 3%-Fe-doped TiO₂/BEA removed 92% of TC ‎compared to 54% by TiO₂ under white light. The catalysts were also tested under real solar ‎irradiations. This improvement in the photocatalytic performance of TiO₂ was due to its higher ‎adsorption capacity due to BEA support combined with the presence of Iron ions that enhance the ‎visible light absorption and minimize the recombination effect by the charge carriers. ‎ <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tetracycline" title="Tetracycline">Tetracycline</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20degradation" title=" photocatalytic degradation"> photocatalytic degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilized%20TiO%E2%82%82" title=" immobilized TiO₂"> immobilized TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=iron-doped%20TiO%E2%82%82" title=" iron-doped TiO₂"> iron-doped TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=ion-exchange" title=" ion-exchange"> ion-exchange</a> </p> <a href="https://publications.waset.org/abstracts/171966/zeolite-supported-iron-sensitized-tio2-for-tetracycline-photocatalytic-degradation-under-visible-light-a-comparison-between-doping-and-ion-exchange" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">554</span> TiO2/Clay Minerals (Palygorskite/Halloysite) Nanocomposite Coatings for Water Disinfection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dionisios%20Panagiotaras">Dionisios Panagiotaras</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Papoulis"> Dimitrios Papoulis</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20Stathatos"> Elias Stathatos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microfibrous palygorskite and tubular halloysite clay mineral combined with nanocrystalline TiO2 are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 450 °C. The synthesis is employing nonionic surfactant molecule as pore directing agent along with acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite or halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties. The composite palygorskite-TiO2 and halloysite-TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye’s decoloration in spite of small amount of palygorskite -TiO2 or halloysite- TiO2 catalyst immobilized onto glass substrates mainly due to the high surface area and uniform distribution of TiO2 on clay minerals avoiding aggregation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=halloysite" title="halloysite">halloysite</a>, <a href="https://publications.waset.org/abstracts/search?q=palygorskite" title=" palygorskite"> palygorskite</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a> </p> <a href="https://publications.waset.org/abstracts/6861/tio2clay-minerals-palygorskitehalloysite-nanocomposite-coatings-for-water-disinfection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">553</span> Photocatalytic Removal of Methylene Blue Dye: Fabrication and Optimization of Adsorbant Material and a Photocatlyst in Unilayer and Bilayer System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Mahmood">M. Z. Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ismail"> S. Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A reusable immobilized unilayer thin coating of adsorbent material bentonite and photocatalyst (TiO₂) was fabricated on the glass beaker to remove aqueous methylene blue solution. The dye removal efficiency of photocatalyst was much lower with pure titanium dioxide. In the preliminary experiments, different compositions of TiO₂ – bentonite were tested on unilayer and bilayer system, and it was observed that 0.50:0.50 ratios are best for maximum photocatalytic degradation of methylene blue in aqueous medium when applied on unilayer coating system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a> </p> <a href="https://publications.waset.org/abstracts/116815/photocatalytic-removal-of-methylene-blue-dye-fabrication-and-optimization-of-adsorbant-material-and-a-photocatlyst-in-unilayer-and-bilayer-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">552</span> Recirculation Type Photocatalytic Reactor for Degradation of Monocrotophos Using TiO₂ and W-TiO₂ Coated Immobilized Clay Beads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Sraw">Abhishek Sraw</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Sobti"> Amit Sobti</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamini%20Pandey"> Yamini Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Wanchoo"> R. K. Wanchoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Amrit%20Pal%20Toor"> Amrit Pal Toor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monocrotophos (MCP) is a widely used pesticide in India, which belong to an extremely toxic organophosphorus family, is persistent in nature and its toxicity is widely reported in all environmental segments in the country. Advanced Oxidation Process (AOP) is a promising solution to the problem of water pollution. TiO₂ is being widely used as a photocatalyst because of its many advantages, but it has a large band gap, due to which it is modified using metal and nonmetal dopant to make it active under sunlight and visible light. The use of nanosized powdered catalysts makes the recovery process extremely complicated. Hence the aim is to use low cost, easily available, eco-friendly clay material in form of bead as the support for the immobilization of catalyst, to solve the problem of post-separation of suspended catalyst from treated water. A recirculation type photocatalytic reactor (RTPR), using ultraviolet light emitting source (blue black lamp) was designed which work effectively for both suspended catalysts and catalyst coated clay beads. The bare, TiO₂ and W-TiO₂ coated clay beads were characterized by scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS) and N₂ adsorption–desorption measurements techniques (BET) for their structural, textural and electronic properties. The study involved variation of different parameters like light conditions, recirculation rate, light intensity and initial MCP concentration under UV and sunlight for the degradation of MCP. The degradation and mineralization studies of the insecticide solution were performed using UV-Visible spectrophotometer, and COD vario-photometer and GC-MS analysis respectively. The main focus of the work lies in checking the recyclability of the immobilized TiO₂ over clay beads in the developed RTPR up to 30 continuous cycles without reactivation of catalyst. The results demonstrated the economic feasibility of the utilization of developed RTPR for the efficient purification of pesticide polluted water. The prepared TiO₂ clay beads delivered 75.78% degradation of MCP under UV light with negligible catalyst loss. Application of W-TiO₂ coated clay beads filled RTPR for the degradation of MCP under sunlight, however, shows 32% higher degradation of MCP than the same system based on undoped TiO₂. The COD measurements of TiO₂ coated beads led to 73.75% COD reduction while W-TiO₂ resulted in 87.89% COD reduction. The GC-MS analysis confirms the efficient breakdown of complex MCP molecules into simpler hydrocarbons. This supports the promising application of clay beads as a support for the photocatalyst and proves its eco-friendly nature, excellent recyclability, catalyst holding capacity, and economic viability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immobilized%20clay%20beads" title="immobilized clay beads">immobilized clay beads</a>, <a href="https://publications.waset.org/abstracts/search?q=monocrotophos" title=" monocrotophos"> monocrotophos</a>, <a href="https://publications.waset.org/abstracts/search?q=recirculation%20type%20photocatalytic%20reactor" title=" recirculation type photocatalytic reactor"> recirculation type photocatalytic reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a> </p> <a href="https://publications.waset.org/abstracts/98410/recirculation-type-photocatalytic-reactor-for-degradation-of-monocrotophos-using-tio2-and-w-tio2-coated-immobilized-clay-beads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">551</span> Is Ag@TiO2 Core-Shell Nanoparticles Superior to Ag Surface Doped TiO2 Nanostructures?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaohong%20Yang">Xiaohong Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Fu"> Haitao Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xizhong%20An"> Xizhong An</a>, <a href="https://publications.waset.org/abstracts/search?q=Aibing%20Yu"> Aibing Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver@titanium dioxide (Ag@TiO2) core-shell nanostructures and Ag surface doped TiO2 particles (TiO2@Ag) have been designed and synthesized by sol-gel and hydrothermal methods under mild conditions. These two types of Ag/TiO2 nanocomposites were characterized in terms of their properties by various techniques such as transmission electron microscope (TEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) and ultra violet-visible absorption spectroscopy (UV-Vis). Specifically, the photocatalystic performance and antibacterial behavior of such nanocomposites have been investigated and compared. It was found that The Ag@TiO2 core-shell nanostructures exhibit superior photocatalytic property to the Ag surface doped TiO2 particles under the reported conditions. While with UV pre-irradiation, the Ag@TiO2 core-shell composites exhibit better bactericidal performance. This is probably because the Ag cores tend to facilitate charge separation for TiO2, producing greater hydroxyl radicals on the surface of the TiO2 particles. These findings would be useful for the design and synthesis of Ag/TiO2 nanocomposites with desirable photocatalystic and antimicrobial activity for environmental applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ag%40TiO2%20core-shell%20nanoparticles" title="Ag@TiO2 core-shell nanoparticles">Ag@TiO2 core-shell nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=Ag%20surface%20doped%20TiO2%20nanoparticles" title=" Ag surface doped TiO2 nanoparticles"> Ag surface doped TiO2 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a> </p> <a href="https://publications.waset.org/abstracts/21864/is-ag-at-tio2-core-shell-nanoparticles-superior-to-ag-surface-doped-tio2-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">550</span> Enhanced Photocatalytic Hydrogen Production on TiO2 by Using Carbon Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bashir%20Ahmmad">Bashir Ahmmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Kensaku%20Kanomata">Kensaku Kanomata</a>, <a href="https://publications.waset.org/abstracts/search?q=Fumihiko%20Hirose"> Fumihiko Hirose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of carbon materials on TiO2 for the photocatalytic hydrogen gas production from water/alcohol mixtures was investigated. Single walled carbon nanotubes (SWNTs), multi walled carbon nanotubes (MWNTs), carbon nanofiber (CNF), fullerene (FLN), graphite (GP), and graphite silica (GS) were used as co-catalysts by directly mixing with TiO2. Drastic synergy effects were found with increase in the amount of hydrogen gas by a factor of ca. 150 and 100 for SWNTs and GS with TiO2, repectively. The order of H2 gas production for these carbon materials was SWNTs > GS >> MWNTs > FLN > CNF > GP. To maximize the hydrogen production from SWNTs/TiO2, various parameters of experimental conditions were changed. Also, a comparison between Pt/TiO2, WNTs/TiO2 and GS/TiO2 was made for the amount of H2 gas production. Finally, the recyclability of SWNTs/TiO2 and GS/TiO2 were tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20materials" title=" carbon materials"> carbon materials</a>, <a href="https://publications.waset.org/abstracts/search?q=alcohol%20reforming" title=" alcohol reforming"> alcohol reforming</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title=" hydrogen production"> hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20oxide" title=" titanium oxide"> titanium oxide</a> </p> <a href="https://publications.waset.org/abstracts/3272/enhanced-photocatalytic-hydrogen-production-on-tio2-by-using-carbon-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">549</span> Enhanced Visible-Light Photocatalytic Activity of TiO2 Doped in Degradation of Acid Dye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Benalioua">B. Benalioua</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Benyamina"> I. Benyamina</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mansour"> M. Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bentouami"> A. Bentouami</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Boury"> B. Boury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by XRD, BET and UV- vis DRS. The photocatalytic efficiency of the Zn -Fe TiO2 treated at 500°C was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Zn-Fe-TiO2 (500°C) revealed the presence of the anatase phase and the absence of the Rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV-visible diffuse reflection material showed that the Fe-Zn-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Zn -Fe- TiO2 under visible light. Indeed, the efficiency of photocatalytic Fe-Zn-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=POA" title="POA">POA</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20photocatalysis" title=" heterogeneous photocatalysis"> heterogeneous photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping "> doping </a> </p> <a href="https://publications.waset.org/abstracts/27754/enhanced-visible-light-photocatalytic-activity-of-tio2-doped-in-degradation-of-acid-dye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">548</span> Synthesis of DHA Rich Glycerides with Immobilized Lipases from Mucor miehei and Rhizopus oryzae </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyendra%20P.%20Chaurasia">Satyendra P. Chaurasia</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditi%20Sharma"> Aditi Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20K.%20Dalai"> Ajay K. Dalai </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The esterification of Docosahexaenoic acid (DHA) with glycerol using immobilized Mucor mie-hei lipase (MML) and Rhizopus oryzae lipase (ROL) have been studied in the present paper to synthesize triglycerides (TG) rich in DHA. Both immobilized lipases (MML and ROL), and their support materials (immobead-150 and ion-exchange resin) were characterized and compared for surface properties with BET, for chemical functional groups with FT-IR, and for particle size distribution with particle size analyzer. The most suitable reaction conditions for synthesis of DHA rich TG in biphasic solvent system were found as 1:3 (wt/wt) glycerol to DHA ratio, 1:1 (wt/wt) buffer to DHA ratio, 1:1 (wt/wt) solvent to DHA ratio at 50 ºC temperature, and 600 rpm speed of agitation with 100 mg of immobilized lipases. Maximum 95.9 % esterification was obtained with immobilized MML in 14 days reaction with formation of 65.7 wt% DHA rich TG. Whereas, immobilized ROL has shown formation of only 23.8 wt% DHA rich TG with total 78.9 % esterification in 15 days. Additionally, repeated use of both immobilized lipases was con-ducted up to five cycles, indicated 50.4% and 41.2 % activity retention after fifth repeated use of immobilized MML and ROL, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DHA" title="DHA">DHA</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilized%20Mucor%20miehei%20lipase" title=" immobilized Mucor miehei lipase"> immobilized Mucor miehei lipase</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhizopus%20oryzae%20lipase" title=" Rhizopus oryzae lipase"> Rhizopus oryzae lipase</a>, <a href="https://publications.waset.org/abstracts/search?q=esterification" title=" esterification"> esterification</a> </p> <a href="https://publications.waset.org/abstracts/30020/synthesis-of-dha-rich-glycerides-with-immobilized-lipases-from-mucor-miehei-and-rhizopus-oryzae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">547</span> Removal Capacity of Activated Carbon (AC) by Combining AC and Titanium Dioxide (TIO₂) in a Photocatalytically Regenerative Activated Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanane%20Belayachi">Hanane Belayachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Bourahla"> Sarra Bourahla</a>, <a href="https://publications.waset.org/abstracts/search?q=Amel%20Belayachi"> Amel Belayachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadela%20Nemchi"> Fadela Nemchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostefa%20Belhakem"> Mostefa Belhakem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most used techniques to remove pollutants from wastewater are adsorption onto activated carbon (AC) and oxidation using a photocatalyst slurry. The aim of this work is to eliminate such drawbacks by combining AC and titanium dioxide (TiO₂) in a photocatalytically Regenerative Activated Carbon. Anatase titania was deposited on powder-activated carbon made from grape seeds by the impregnation method, and then the composite photocatalyst was employed for the removal of reactive black 5, which is an anionic azo dye, from water. The AGS/TiO₂ was characterized by BET, MEB, RDX and optical absorption spectroscopy. The BET surface area and the pore structure of composite photocatalysts (AGS/TiO₂) and activated grape seeds (AGS) were evaluated from nitrogen adsorption data at 77 K in relation to process conditions. Our results indicate that the photocatalytic activity of AGS/TiO₂ was much higher than single-phase titania. The adsorption equilibrium of reactive black 5 from aqueous solutions on the examined materials was investigated. Langmuir, Freundlich, and Redlich–Petersen models were fitted to experimental equilibrium data, and their goodness of fit is compared. The degradation kinetics fitted well to the Langmuir-Hinselwood pseudo first order rate low. The photocatalytic activity of AGS/TiO₂ was much higher than virgin TiO₂. Chemical oxygen demand (COD) removal was measured at regular intervals to quantify the mineralization of the dye. Above 96% mineralization was observed. These results suggest that UV-irradiated TiO₂ immobilized on activated carbon may be considered an adequate process for the treatment of diluted colored textile wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutant" title=" pollutant"> pollutant</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysis" title=" catalysis"> catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a> </p> <a href="https://publications.waset.org/abstracts/185955/removal-capacity-of-activated-carbon-ac-by-combining-ac-and-titanium-dioxide-tio2-in-a-photocatalytically-regenerative-activated-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">546</span> Synthesis, Characterization and Photocatalytic Performance of TiO2 Co-doped with Bismuth and Zinc</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.Benalioua">B.Benalioua</a>, <a href="https://publications.waset.org/abstracts/search?q=I.Benyamina"> I.Benyamina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.Bentouami"> A.Bentouami</a>, <a href="https://publications.waset.org/abstracts/search?q=B.Boury"> B.Boury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the Bi, Zn co-doped TiO2 treated at 670°C for 2 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Bi-Zn-TiO2 (670°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the Bi-Zn-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Bi-Zn-TiO2 under visible light. Indeed, the efficiency of photocatalytic Bi-Zn-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 70 minutes, whereas with the P25-TiO2 discoloration is achieved after 120 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=POA" title="POA">POA</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20photocatalysis" title=" heterogeneous photocatalysis"> heterogeneous photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=co-doping" title=" co-doping"> co-doping</a> </p> <a href="https://publications.waset.org/abstracts/43389/synthesis-characterization-and-photocatalytic-performance-of-tio2-co-doped-with-bismuth-and-zinc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">545</span> Synthesis, Characterization and Photocatalytic Performance of TiO2 Co-Doped with Sulfur and Nitrogen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Benalioua">B. Benalioua</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Benyamina"> I. Benyamina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bentouami"> A. Bentouami</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Boury"> B. Boury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the S, N co-doped TiO2 treated at 600°C for 1 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material S-N-TiO2 (600°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the S-N-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of S-N-TiO2 under visible light. Indeed, the efficiency of photocatalytic S-N-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=POA" title="POA">POA</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20photocatalysis" title=" heterogeneous photocatalysis"> heterogeneous photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=co-doping" title=" co-doping"> co-doping</a> </p> <a href="https://publications.waset.org/abstracts/26354/synthesis-characterization-and-photocatalytic-performance-of-tio2-co-doped-with-sulfur-and-nitrogen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">544</span> 4-Chlorophenol Degradation in Water Using TIO₂-X%ZnS Synthesized by One-Step Sol-Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Vel%C3%A1squez%20Torres">M. E. Velásquez Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Tzompantzi"> F. Tzompantzi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Castillo-Rodr%C3%ADguez"> J. C. Castillo-Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Romero%20Villegas"> A. G. Romero Villegas</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mend%C3%A9z-Salazar"> S. Mendéz-Salazar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20E.%20Santolalla-Vargas"> C. E. Santolalla-Vargas</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Cardoso-Mart%C3%ADnez"> J. Cardoso-Martínez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photocatalytic degradation, as an advanced oxidation technology, is a promising method in organic pollutant degradation. In this sense, chlorophenols should be removed from the water because they are highly toxic. The TiO₂ - X% ZnS photocatalysts, where X represents the molar percentage of ZnS (3%, 5%, 10%, and 15%), were synthesized using the one-step sol-gel method to use them as photocatalysts to degrade 4-chlorophenol. The photocatalysts were synthesized by a one-step sol-gel method. They were refluxed for 36 hours, dried at 80°C, and calcined at 400°C. They were labeled TiO₂ - X%ZnS, where X represents the molar percentage of ZnS (3%, 5%, 10%, and 15%). The band gap was calculated using a Cary 100 UV-Visible Spectrometer with an integrating sphere accessory. Ban gap value of each photocatalyst was: 2.7 eV of TiO₂, 2.8 eV of TiO₂ - 3%ZnS and TiO₂ - 5%ZnS, 2.9 eV of TiO₂ - 10%ZnS and 2.6 eV of TiO2 - 15%ZnS. In a batch type reactor, under the irradiation of a mercury lamp (λ = 254 nm, Pen-Ray), degradations of 55 ppm 4-chlorophenol were obtained at 360 minutes with the synthesized photocatalysts: 60% (3% ZnS), 66% (5% ZnS), 74% (10% ZnS) and 58% (15% ZnS). In this sense, the best material as a photocatalyst was TiO₂ -10%ZnS with a degradation percentage of 74%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=4-chlorophenol" title="4-chlorophenol">4-chlorophenol</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pollutant" title=" water pollutant"> water pollutant</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a> </p> <a href="https://publications.waset.org/abstracts/152569/4-chlorophenol-degradation-in-water-using-tio2-xzns-synthesized-by-one-step-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">543</span> Comparison of Tribological Properties of TiO₂, ZrO₂ and TiO₂–ZrO₂ Composite Films Prepared by Sol–Gel Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20%C3%87omakl%C4%B1">O. Çomaklı</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Yaz%C4%B1c%C4%B1"> M. Yazıcı</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Yetim"> T. Yetim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Yetim"> A. F. Yetim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20%C3%87elik"> A. Çelik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, TiO₂, ZrO₂, and TiO₂–ZrO₂ composite films were coated on Cp-Ti substrates by sol-gel method. Structures of uncoated and coated samples were investigated by X-ray diffraction and SEM. XRD data identified anatase phase in TiO₂ coated samples and tetragonal zirconia phase in ZrO₂ coated samples while both of anatase and tetragonal zirconia phases in TiO₂–ZrO₂ composite films. The mechanical and wear properties of samples were investigated using micro hardness, pin-on-disk tribotester, and 3D profilometer. The best wear resistance was obtained from TiO₂–ZrO₂ composite films. This can be attributed to their high surface hardness, low surface roughness and high thickness of the film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title="sol-gel">sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=ZrO%E2%82%82" title=" ZrO₂"> ZrO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82%E2%80%93ZrO%E2%82%82" title=" TiO₂–ZrO₂"> TiO₂–ZrO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20films" title=" composite films"> composite films</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/74998/comparison-of-tribological-properties-of-tio2-zro2-and-tio2-zro2-composite-films-prepared-by-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">542</span> Photocatalytic Glucose Electrooxidation Applications of Titanium Dioxide Supported CD and CdTe Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilal%20%20Kivrak">Hilal Kivrak</a>, <a href="https://publications.waset.org/abstracts/search?q=Aykut%20%C3%87a%C4%9FLar"> Aykut ÇağLar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahit%20Akta%C5%9F"> Nahit Aktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Osman%20Solak"> Ali Osman Solak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, Cd/TiO₂ and CdTe/TiO₂ catalysts are prepared via sodium borohydride (NaBH4) reduction method. These catalysts are characterized by fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). These Cd/TiO₂ and CdTe/TiO₂ are employed as catalysts for the photocatalytic oxidation of glucose. Cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) measurements are used to investigate their glucose electrooxidation activities of catalysts at long and under UV illumination (ʎ=354 nm). CdTe/TiO₂ catalyst is showed the best photocatalytic glucose electrooxidation activity compared to Cd/TiO₂ catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium" title="cadmium">cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=NaBH4%20reduction%20method" title=" NaBH4 reduction method"> NaBH4 reduction method</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20glucose%20electrooxidation" title=" photocatalytic glucose electrooxidation"> photocatalytic glucose electrooxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=Tellerium" title=" Tellerium"> Tellerium</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a> </p> <a href="https://publications.waset.org/abstracts/124317/photocatalytic-glucose-electrooxidation-applications-of-titanium-dioxide-supported-cd-and-cdte-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">541</span> The Study of Visible Light Active Bismuth Modified Nitrogen Doped Titanium Dioxide Photocatlysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Benalioua">B. Benalioua</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Benyamina"> I. Benyamina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bentouami"> A. Bentouami</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Boury"> B. Boury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the Bi, N co-doped TiO2 treated at 600°C for 1 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Bi -N- TiO2 (600°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the Bi-N-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Bi-N-TiO2 under visible light. Indeed, the efficiency of photocatalytic Bi-N-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=POA" title="POA">POA</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20photocatalysis" title=" heterogeneous photocatalysis"> heterogeneous photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=co-doping" title=" co-doping"> co-doping</a> </p> <a href="https://publications.waset.org/abstracts/27753/the-study-of-visible-light-active-bismuth-modified-nitrogen-doped-titanium-dioxide-photocatlysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">540</span> Lithium Ion Supported on TiO2 Mixed Metal Oxides as a Heterogeneous Catalyst for Biodiesel Production from Canola Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Alsharifi">Mariam Alsharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Znad"> Hussein Znad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Ang"> Ming Ang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering the environmental issues and the shortage in the conventional fossil fuel sources, biodiesel has gained a promising solution to shift away from fossil based fuel as one of the sustainable and renewable energy. It is synthesized by transesterification of vegetable oils or animal fats with alcohol (methanol or ethanol) in the presence of a catalyst. This study focuses on synthesizing a high efficient Li/TiO2 heterogeneous catalyst for biodiesel production from canola oil. In this work, lithium immobilized onto TiO2 by the simple impregnation method. The catalyst was evaluated by transesterification reaction in a batch reactor under moderate reaction conditions. To study the effect of Li concentrations, a series of LiNO3 concentrations (20, 30, 40 wt. %) at different calcination temperatures (450, 600, 750 ºC) were evaluated. The Li/TiO2 catalysts are characterized by several spectroscopic and analytical techniques such as XRD, FT-IR, BET, TG-DSC and FESEM. The optimum values of impregnated Lithium nitrate on TiO2 and calcination temperature are 30 wt. % and 600 ºC, respectively, along with a high conversion to be 98 %. The XRD study revealed that the insertion of Li improved the catalyst efficiency without any alteration in structure of TiO2 The best performance of the catalyst was achieved when using a methanol to oil ratio of 24:1, 5 wt. % of catalyst loading, at 65◦C reaction temperature for 3 hours of reaction time. Moreover, the experimental kinetic data were compatible with the pseudo-first order model and the activation energy was (39.366) kJ/mol. The synthesized catalyst Li/TiO2 was applied to trans- esterify used cooking oil and exhibited a 91.73% conversion. The prepared catalyst has shown a high catalytic activity to produce biodiesel from fresh and used oil within mild reaction conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=canola%20oil" title=" canola oil"> canola oil</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalyst" title=" heterogeneous catalyst"> heterogeneous catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=impregnation%20method" title=" impregnation method"> impregnation method</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/72028/lithium-ion-supported-on-tio2-mixed-metal-oxides-as-a-heterogeneous-catalyst-for-biodiesel-production-from-canola-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">539</span> Optical and Magnetic Properties of Ferromagnetic Co-Ni Co-Doped TiO2 Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Bensaha">Rabah Bensaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Badreddine%20Toubal"> Badreddine Toubal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the structural, optical and magnetic properties of TiO2, Co-doped TiO2, Ni-doped TiO2 and Co-Ni co-doped TiO2 thin films prepared by the sol-gel dip coating method. Fully anatase phase was obtained by adding metal ions without any detectable impurity phase or oxide formed. AFM and SEM micrographs clearly confirm that the addition of Co-Ni affects the shape of anatase nanoparticles. The crystallite sizes and surface roughness of TiO2 films increase with Co-doping, Ni-doping and Co–Ni co-doping, respectively. The refractive index, thickness and optical band gap values of the films were obtained by means of optical transmittance spectra measurements. The band gap of TiO2 sample was decreased by Co-doping, Ni-doping and Co–Ni co-doping TiO2 films. Both undoped and Co-Ni co-doped films were found to be ferromagnetic at room temperature may due to the presence of oxygen vacancy defect and the probable formation of metal clusters Co-Ni. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Co-Ni%20co-doped" title="Co-Ni co-doped">Co-Ni co-doped</a>, <a href="https://publications.waset.org/abstracts/search?q=anatase%20TiO2" title=" anatase TiO2"> anatase TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic" title=" ferromagnetic"> ferromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title=" sol-gel method"> sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/35968/optical-and-magnetic-properties-of-ferromagnetic-co-ni-co-doped-tio2-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">538</span> Effects of Copper and Cobalt Co-Doping on Structural, Optical and Electrical Properties of Tio2 Thin Films Prepared by Sol Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Bensaha">Rabah Bensaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Badreeddine%20Toubal"> Badreeddine Toubal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Un-doped TiO2, Co single doped TiO2 and (Cu-Co) co-doped TiO2 thin films have been growth on silicon substrates by the sol-gel dip coating technique. We mainly investigated both effects of the dopants and annealing temperature on the structural, optical and electrical properties of TiO2 films using X-ray diffraction (XRD), Raman and FTIR spectroscopy, Atomic force microscopy (AFM), Scanning electron microscopy (SEM), UV–Vis spectroscopy. The chemical compositions of Co-doped and (Cu-Co) co-doped TiO2 films were confirmed by XRD, Raman and FTIR studies. The average grain sizes of CoTiO3-TiO2 nanocomposites were increased with annealing temperature. AFM and SEM reveal a completely the various nanostructures of CoTiO3-TiO2 nanocomposites thin films. The films exhibit a high optical reflectance with a large band gap. The highest electrical conductivity was obtained for the (Cu-Co) co-doped TiO2 films. The polyhedral surface morphology might possibly improve the surface contact between particle sizes and then contribute to better electron mobility as well as conductivity. The obtained results suggest that the prepared TiO2 films can be used for optoelectronic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title="sol-gel">sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20thin%20films" title=" TiO2 thin films"> TiO2 thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=CoTiO3-TiO2%20nanocomposites%20films" title=" CoTiO3-TiO2 nanocomposites films"> CoTiO3-TiO2 nanocomposites films</a>, <a href="https://publications.waset.org/abstracts/search?q=Electrical%20conductivity" title=" Electrical conductivity"> Electrical conductivity</a> </p> <a href="https://publications.waset.org/abstracts/36032/effects-of-copper-and-cobalt-co-doping-on-structural-optical-and-electrical-properties-of-tio2-thin-films-prepared-by-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">537</span> Synthesis of a Hybrid Material (PVA/SiO₂/TiO₂) by Sol-Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gueridi%20Bachir">Gueridi Bachir</a>, <a href="https://publications.waset.org/abstracts/search?q=Dadache%20Derradji"> Dadache Derradji</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouabah%20Farid"> Rouabah Farid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is focused on the preparation and characterization of poly (vinyl alcohol)/silica gel/Nano-TiO₂, and the study of titanium dioxide (TiO₂) nanoparticles 1% on the properties of poly (vinyl alcohol) (PVA)/silica films. Fourier transform infrared (FT-IR), water contact angle, ultraviolet-visible spectrometry (UV-VIS)) were used to characterize the hybrid films obtained. The PVA/SiO₂/Nano-TiO₂ films were successfully synthesized. Owing to the FT-IR Analysis, the chemical bonds have clearly shown that the PVA backbone is linked to the (SiO₂-TiO₂) network. UV-VIS tests indicated that the hybrid films' UV shielding properties were drastically enhanced as a result of the addition of TiO₂. The water contact angle results revealed that TiO₂ nanoparticles used as a doping compound possess an important influence on the hydrophilicity of PVA/SiO₂ as thin films. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title="sol-gel method">sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20materials" title=" hybrid materials"> hybrid materials</a>, <a href="https://publications.waset.org/abstracts/search?q=PVA%2FSIO%E2%82%82%2FTiO%E2%82%82" title=" PVA/SIO₂/TiO₂"> PVA/SIO₂/TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopical%20characterization" title=" spectroscopical characterization"> spectroscopical characterization</a> </p> <a href="https://publications.waset.org/abstracts/194584/synthesis-of-a-hybrid-material-pvasio2tio2-by-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">536</span> Synthesis and Characterization of TiO₂, N Doped TiO₂ and AG Doped TiO₂ for Photocatalytic Degradation of Methylene Blue in Adwa Almeda Textile Industry, Tigray, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mulugeta%20Gurum%20Gerechal">Mulugeta Gurum Gerechal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the photocatalytic mechanism of water purification using nanoparticles has gained wider acceptance. For this purpose, the crystal form of N- TiO₂ and Ag-TiO₂ was prepared from TiCl₄, urea, NH₄OH, and AgNO₃ by sol-gel method and simple solid phase reaction followed by calcination at a temperature of 400°C for 4h at each. The synthesized photocatalysts were characterized using XRD, SEM, and UV-visible diffuse reflectance spectra. In the experiment, it was found that the absorption edge of N-TiO₂ was an efficient shift to visible light as compared to Ag-TiO₂. The XRD diffraction makes the particle size of N-TiO₂ smaller than Ag-TiO₂. The effect of catalyst loading and the effect of temperature on the photocatalytic efficiency of the prepared samples was tested using methylene blue as a target pollutant. The photocatalytic degradation efficiency of the catalysts for methylene blue was increased from 57.05 to 96.02% under solar radiation as the amount of the catalyst increased from 0.15 to 0.45 gram for N-TiO₂. Similarly, photocatalytic degradation of methylene blue was increased from 40.32 to 81.21% as the amount of Ag-TiO₂ increased from 0.05g to 0.1g. In addition, the photocatalytic degradation efficiency of the catalysts for the removal of methylene blue was increased from 58.00 to 98.00 and 47.00 to 81.21% under solar radiation as the calcination temperature of the catalyst increased from 300 to 500 for N-TiO₂ for Ag-TiO₂ 300 to 400⁰C. However, a further increase in catalyst loading and calcination temperature was found to decrease the degradation efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst%20loading" title=" catalyst loading"> catalyst loading</a>, <a href="https://publications.waset.org/abstracts/search?q=calcination" title=" calcination"> calcination</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a> </p> <a href="https://publications.waset.org/abstracts/193164/synthesis-and-characterization-of-tio2-n-doped-tio2-and-ag-doped-tio2-for-photocatalytic-degradation-of-methylene-blue-in-adwa-almeda-textile-industry-tigray-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">535</span> Photocatalytic Oxidation of Gaseous Formaldehyde Using the TiO2 Coated SF Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janjira%20Triped">Janjira Triped</a>, <a href="https://publications.waset.org/abstracts/search?q=Wipada%20Sanongraj"> Wipada Sanongraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Wipawee%20Khamwichit"> Wipawee Khamwichit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research work covered in this study includes the morphological structure and optical properties of TiO2-coated silk fibroin (SF) filters at 2.5% wt. TiO2/vol. PVA solution. SEM micrographs revealed the fibrous morphology of the TiO2-coated SF filters. An average diameter of the SF fiber was estimated to be approximately 10µm. Also, it was confirmed that TiO2 can be adhered more on SF filter surface at higher TiO2 dosages. The activity of semiconductor materials was studied by UV-VIS spectrophotometer method. The spectral data recorded shows the strong cut off at 390 nm. The calculated band-gap energy was about 3.19 eV. The photocatalytic activity of the filter was tested for gaseous formaldehyde removal in a modeling room with the total volume of 2.66 m3. The highest removal efficiency (54.72 ± 1.75%) was obtained at the initial formaldehyde concentration of about 5.00 ± 0.50ppm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20oxidation%20process" title="photocatalytic oxidation process">photocatalytic oxidation process</a>, <a href="https://publications.waset.org/abstracts/search?q=formaldehyde%20%28HCHO%29" title=" formaldehyde (HCHO)"> formaldehyde (HCHO)</a>, <a href="https://publications.waset.org/abstracts/search?q=silk%20fibroin%20%28SF%29" title=" silk fibroin (SF)"> silk fibroin (SF)</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide%20%28TiO2%29" title=" titanium dioxide (TiO2)"> titanium dioxide (TiO2)</a> </p> <a href="https://publications.waset.org/abstracts/4845/photocatalytic-oxidation-of-gaseous-formaldehyde-using-the-tio2-coated-sf-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">534</span> Structural Characterization and Application of Tio2 Nano-Partical</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maru%20Chetan">Maru Chetan</a>, <a href="https://publications.waset.org/abstracts/search?q=Desai%20Abhilash"> Desai Abhilash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The structural characteristics & application of TiO2 powder with different phases are study by various techniques in this paper. TTIP, EG and citric acid use as Ti source and catalyst respectively synthesis for sol gel synthesis of TiO2 powder. To replace sol gel method we develop the new method of making nano particle of TiO2 powder. It is two route method one is physical and second one is chemical route. Specific aim to this process is to minimize the production cost and the large scale production of nano particle The synthesis product work characterize by EDAX, SEM, XRD tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mortal%20and%20pestle" title="mortal and pestle">mortal and pestle</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20particle" title=" nano particle "> nano particle </a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=TTIP" title=" TTIP"> TTIP</a> </p> <a href="https://publications.waset.org/abstracts/24097/structural-characterization-and-application-of-tio2-nano-partical" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">533</span> ZnO / TiO2 Nanoparticles for Degradation of Cyanide Ion </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Tabatabaee">Masoumeh Tabatabaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Shahryarzadeh"> Zahra Shahryarzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20R.%20Shishebor"> Masoud R. Shishebor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advanced oxidation process (AOPs) is alternative method for the complete degradation many organic pollutants. When a photocatalyst absorbs radiation whose energy hν > Eg an ē from its filled valance band (VB) is promoted to its conduction band (CB) and valance band holes h+ are formed. Electron would reduce any available species, including O2, water and hydroxide ion to form hydroxyl radicals. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. TiO2 can only absorb a small portion of solar spectrum in the UV region and many methods such as dye sensitization, doping of other metals and using TiO2 with another semiconductor have been used to improve the photocatalytic activity of TiO2 under solar irradiation. Studies have shown that the use of metal oxides or sulfide such as WO3, MoO3, SiO2, MgO, ZnO, and CdS with TiO2 can significantly enhance the photocatalytic activity of TiO2. Due to similarity of photodegradation mechanism of ZnO with TiO2, it is a suitable semiconductor using with TiO2 and recently nanosized bicomponent TiO2-ZnO photocatalysts were prepared and used for degradation of some pollutants. In this study, Nano-sized ZnO/TiO2 composite was synthesized. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to characterize the structure and morphology of it. The effect of photocatalytic activity of prepared ZnO/TiO2 on the degradation of cyanide ion under UV was investigated. The effect of various parameters such as ZnO/TiO2 concentration, amount of photocatalyst, amount of H2O2, initial dye or cyanide ion concentration, pH and irradiation time on were investigated. Results show that more than 95% of 4 mgL-1 cyanide ion degraded after 60-min reaction time and under UV irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title="photodegradation">photodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%2FTiO2" title=" ZnO/TiO2"> ZnO/TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=cyanide%20ion" title=" cyanide ion "> cyanide ion </a> </p> <a href="https://publications.waset.org/abstracts/34128/zno-tio2-nanoparticles-for-degradation-of-cyanide-ion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">532</span> Elaboration and Characterization of PVDF/TiO2 Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Z.%20Benabid">F. Z. Benabid</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kridi"> S. Kridi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Zouai"> F. Zouai</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Benachour"> D. Benachour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of present work is to characterize the PVDF/TiO2 blends as nanocomposites, and study the effect of TiO2 on properties of different compositions and the evaluation of the effectiveness of the method used for filler treatment. Nanocomposite samples were synthesized by molten route in an internal mixer. The TiO2 nanoparticles were treated with stearic acid in order to obtain a good dispersion, and the demonstration of the effectiveness of the treatment on the morphology and roughness of the nanofiller was established by microstructural analysis by FTIR and AFM. The various developed nanocomposite compositions were characterized by different methods; i.e. FTIR, XRD, SEM and optical microscopy. Rheological, dielectric and mechanical studies were also performed. The results showed a remarkable increase in the crystallinity of the PVDF/neat TiO2 nanocomposite containing 1 wt% loading of filler, due to the nucleation effect of TiO2 nanoparticles. A good dispersion was obtained in PVDF/treated TiO2 nanocomposites. The rheological study showed an increase in the fluidity in all developed nanocomposite compositions, involved by the orientation of TiO2 nanoparticles in the flow direction. The dielectric study revealed an increase in electrical conductivity in PVDF/neat TiO2 nanocomposites. However, in PVDF/ treated TiO2 nanocomposites, the electrical conductivity was decreased by the addition of 0.5 and 2 wt% loading of filler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=PVDF" title=" PVDF"> PVDF</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=comixing" title=" comixing"> comixing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20treatment" title=" mechanical treatment"> mechanical treatment</a> </p> <a href="https://publications.waset.org/abstracts/35087/elaboration-and-characterization-of-pvdftio2-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">531</span> Investigation of Tribological Behavior of Electrodeposited Cr, Co-Cr and Co-Cr/Tio2 Nano-Composite Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mahdavi">S. Mahdavi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.R.%20Allahkaram"> S.R. Allahkaram </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrodeposition is a simple and economic technique for precision coating of different shaped substrates with pure metal, alloy or composite films. Dc electrodeposition was used to produce Cr, Co-Cr and Co-Cr/TiO2 nano-composite coatings from Cr(III) based electrolytes onto 316L SS substrates. The effects of TiO2 nano-particles concentration on co-deposition of these particles along with Cr content and microhardness of the coatings were investigated. Morphology of the Cr, Co-Cr and Co-Cr/TiO2 coatings besides their tribological behavior were studied. The results showed that increment of TiO2 nano-particles concentration from 0 to 30 g L-1 in the bath increased their co-deposition and Cr content of the coatings from 0 to 3.5 wt.% and from 23.7 to 31.2 wt.%, respectively. Microhardness of Cr coating was about 920 Hv which was higher than Co-Cr and even Co-Cr/TiO2 films. Microhardness of Co-Cr and Co-Cr/TiO2 coatings were improved by increasing their Cr and TiO2 content. All the coatings had nodular morphology and contained microcracks. Nodules sizes and the number of microcracks in the alloy and composite coatings were lower than the Cr film. Wear results revealed that the Co-Cr/TiO2 coating had the lowest wear loss between all the samples, while the Cr film had the worst wear resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Co-Cr%20alloy" title="Co-Cr alloy">Co-Cr alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-composite" title=" nano-composite"> nano-composite</a>, <a href="https://publications.waset.org/abstracts/search?q=tribological%20behavior" title=" tribological behavior"> tribological behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=trivalent%20chromium" title=" trivalent chromium"> trivalent chromium</a> </p> <a href="https://publications.waset.org/abstracts/24529/investigation-of-tribological-behavior-of-electrodeposited-cr-co-cr-and-co-crtio2-nano-composite-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">530</span> Improving Photocatalytic Efficiency of TiO2 Films Incorporated with Natural Geopolymer for Sunlight-Driven Water Purification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satam%20Alotibi">Satam Alotibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Haya%20A.%20Al-Sunaidi"> Haya A. Al-Sunaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Almaymunah%20M.%20AlRoibah"> Almaymunah M. AlRoibah</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahraa%20H.%20Al-Omaran"> Zahraa H. Al-Omaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Alyami"> Mohammed Alyami</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatehia%20S.%20Alhakami"> Fatehia S. Alhakami</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellah%20Kaiba"> Abdellah Kaiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazen%20Alshaaer"> Mazen Alshaaer</a>, <a href="https://publications.waset.org/abstracts/search?q=Talal%20F.%20Qahtan"> Talal F. Qahtan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research study presents a novel approach to harnessing the potential of natural geopolymer in conjunction with TiO₂ nanoparticles (TiO₂ NPs) for the development of highly efficient photocatalytic materials for water decontamination. The study begins with the formulation of a geopolymer paste derived from natural sources, which is subsequently applied as a coating on glass substrates and allowed to air-dry at room temperature. The result is a series of geopolymer-coated glass films, serving as the foundation for further experimentation. To enhance the photocatalytic capabilities of these films, a critical step involves immersing them in a suspension of TiO₂ nanoparticles (TiO₂ NPs) in water for varying durations. This immersion process yields geopolymer-loaded TiO₂ NPs films with varying concentrations, setting the stage for comprehensive characterization and analysis. A range of advanced analytical techniques, including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), were meticulously employed to assess the structural, morphological, and chemical properties of the geopolymer-based TiO₂ films. These analyses provided invaluable insights into the materials' composition and surface characteristics. The culmination of this research effort sees the geopolymer-based TiO₂ films being repurposed as immobilized photocatalytic reactors for water decontamination under natural sunlight irradiation. Remarkably, the results revealed exceptional photocatalytic performance that exceeded the capabilities of conventional TiO₂-based photocatalysts. This breakthrough underscores the significant potential of natural geopolymer as a versatile and highly effective matrix for enhancing the photocatalytic efficiency of TiO₂ nanoparticles in water treatment applications. In summary, this study represents a significant advancement in the quest for sustainable and efficient photocatalytic materials for environmental remediation. By harnessing the synergistic effects of natural geopolymer and TiO₂ nanoparticles, these geopolymer-based films exhibit outstanding promise in addressing water decontamination challenges and contribute to the development of eco-friendly solutions for a cleaner and healthier environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title="geopolymer">geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles" title=" TiO2 nanoparticles"> TiO2 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20materials" title=" photocatalytic materials"> photocatalytic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20decontamination" title=" water decontamination"> water decontamination</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20remediation" title=" sustainable remediation"> sustainable remediation</a> </p> <a href="https://publications.waset.org/abstracts/174518/improving-photocatalytic-efficiency-of-tio2-films-incorporated-with-natural-geopolymer-for-sunlight-driven-water-purification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">529</span> Preparation and Characterization of TiO₂-SiO₂ Composite Films on Plastics Using Aqueous Peroxotitanium Acid Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayu%20Minamizawa">Ayu Minamizawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Ho%20Kim"> Jae-Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Susumu%20Yonezawa"> Susumu Yonezawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aqueous peroxotitanium acid solution was prepared by the reaction between H₂O₂ solution and TiO₂ fluorinated using F₂ gas. The coating of TiO₂/SiO₂ multilayer on the surface of polycarbonate (PC) resin was carried out step by step using the TEOS solution and aqueous peroxotitanium acid solution. We confirmed each formation of SiO₂ and TiO₂ layer by scanning electron microscopy and energy-dispersive X-ray spectroscopy, and x-ray photoelectron spectroscopy results. The formation of a TiO₂ thin layer on SiO₂ coated on polycarbonate (PC) was carried out at 120 ℃ and for 15 min ~ 3 h with aqueous peroxotitanium acid solution using a hydrothermal synthesis autoclave reactor. The morphology TiO₂ coating layer largely depended on the reaction time, as shown in the results of SEM-EDS analysis. Increasing the reaction times, the TiO₂ layer expanded uniformly. Moreover, the surface fluorination of the SiO₂ layer can promote the formation of the TiO₂ layer on the surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqueous%20peroxotitanium%20acid%20solution" title="aqueous peroxotitanium acid solution">aqueous peroxotitanium acid solution</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20activity" title=" photocatalytic activity"> photocatalytic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=polycarbonate" title=" polycarbonate"> polycarbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20fluorination" title=" surface fluorination"> surface fluorination</a> </p> <a href="https://publications.waset.org/abstracts/152872/preparation-and-characterization-of-tio2-sio2-composite-films-on-plastics-using-aqueous-peroxotitanium-acid-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">528</span> A Facile Synthesis Strategy of Saccharine/TiO₂ Composite Heterojunction Catalyst for Co₂RR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jenaidullah%20Batur">Jenaidullah Batur</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebghatullah%20Mudaber"> Sebghatullah Mudaber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, there is a list of catalysts that can reduce CO₂ to valuable chemicals and fuels, among them metal oxides such as TiO₂, known as promising photocatalysts to produce hydrogen and CO unless they are at an earlier age and still need to promote activity to able for produce fabricated values. Herein, in this work, we provided a novel, facile and eco-friendly synthesis strategy to synthesize more effective TiO₂-organic composite materials to selectively reduce CO₂ to CO. In this experiment, commercial nanocrystalline TiO₂ and saccharin with Li (LiBr, LiCl) were synthesized using the facile physical grinding in the motel pestle for 10 minutes, then added 10 mL of deionized water (18.2 megaohms) on the 300mg composite catalyst before samples moving for hydrothermal heating for 24 hours at 80 C in the oven. Compared with nanosized TiO₂, the new TiO₂-Sac-Li indeed displays a high CO generation rate of 70.83 μmol/g/h, which is 7 times higher than TiO₂, which shows enhancement in CO₂ reduction and an apparent improvement in charge carrier dynamic. The CO₂ reduction process at the gas-solid interface on TiO₂-Sac-Li composite semiconductors is investigated by functional calculations and several characterization methods. The results indicate that CO₂ can be easily activated by the TiO₂-Sac-Li atoms on the surface. This work innovatively investigates CO₂ reduction in novel composite materials and helps to broaden the applications of composite materials semiconductors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20chemistry" title="green chemistry">green chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title=" green synthesis"> green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a> </p> <a href="https://publications.waset.org/abstracts/165896/a-facile-synthesis-strategy-of-saccharinetio2-composite-heterojunction-catalyst-for-co2rr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">527</span> Magnetite Nanoparticles Immobilized Pectinase: Preparation, Characterization and Application for the Fruit Juices Clarification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Mosafa">Leila Mosafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Moghadam"> Majid Moghadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Shahedi"> Mohammad Shahedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, pectinase was immobilized on the surface of silica-coated magnetite nanoparticles via covalent attachment. The magnetite-immobilized enzyme was characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and vibrating sample magnetometry techniques. Response surface methodology using Minitab Software was applied for statistical designing of operating conditions in order to immobilize pectinase on magnetic nanoparticles. The optimal conditions were obtained at 30°C and pH 5.5 with 42.97 µl pectinase for 2 h. The immobilization yield was 50.6% at optimized conditions. Compared to the free pectinase, the immobilized pectinase was found to exhibit enhanced enzyme activity, better tolerance to the variation of pH and temperature, and improved storage stability. Both free and immobilized samples reduced the viscosity of apple juice from 1.12 to 0.88 and 0.92 mm2s-1, respectively, after 30 min at their optimum temperature. Furthermore, the immobilized enzyme could be reused six consecutive cycles and the efficiency loss in viscosity reduction was found to be only 8.16%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetite%20nanoparticles" title="magnetite nanoparticles">magnetite nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=pectinase%20enzyme" title=" pectinase enzyme"> pectinase enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=juice%20clarification" title=" juice clarification"> juice clarification</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20activity" title=" enzyme activity "> enzyme activity </a> </p> <a href="https://publications.waset.org/abstracts/6143/magnetite-nanoparticles-immobilized-pectinase-preparation-characterization-and-application-for-the-fruit-juices-clarification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=immobilized%20TiO%E2%82%82&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=immobilized%20TiO%E2%82%82&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=immobilized%20TiO%E2%82%82&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=immobilized%20TiO%E2%82%82&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=immobilized%20TiO%E2%82%82&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=immobilized%20TiO%E2%82%82&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=immobilized%20TiO%E2%82%82&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=immobilized%20TiO%E2%82%82&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=immobilized%20TiO%E2%82%82&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=immobilized%20TiO%E2%82%82&amp;page=18">18</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=immobilized%20TiO%E2%82%82&amp;page=19">19</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=immobilized%20TiO%E2%82%82&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10