CINXE.COM
Search results for: iron oxide (fe3o4) nanoparticles
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: iron oxide (fe3o4) nanoparticles</title> <meta name="description" content="Search results for: iron oxide (fe3o4) nanoparticles"> <meta name="keywords" content="iron oxide (fe3o4) nanoparticles"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="iron oxide (fe3o4) nanoparticles" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="iron oxide (fe3o4) nanoparticles"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3362</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: iron oxide (fe3o4) nanoparticles</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3362</span> Iron Oxide Magnetic Nanoparticles as MRI Contrast Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suhas%20Pednekar">Suhas Pednekar</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Chavan"> Prashant Chavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Chaughule"> Ramesh Chaughule</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Patkar"> Deepak Patkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iron oxide (Fe3O4) magnetic nanoparticles (MNPs) are one of the most attractive nanomaterials for various biomedical applications. An important potential medical application of polymer-coated iron oxide nanoparticles (NPs) is as imaging agents. Composition, size, morphology and surface chemistry of these nanoparticles can now be tailored by various processes to not only improve magnetic properties but also affect the behavior of nanoparticles in vivo. MNPs are being actively investigated as the next generation of magnetic resonance imaging (MRI) contrast agents. Also, there is considerable interest in developing magnetic nanoparticles and their surface modifications with therapeutic agents. Our study involves the synthesis of biocompatible cancer drug coated with iron oxide nanoparticles and to evaluate their efficacy as MRI contrast agents. A simple and rapid microwave method to prepare Fe3O4 nanoparticles has been developed. The drug was successfully conjugated to the Fe3O4 nanoparticles which can be used for various applications. The relaxivity R2 (reciprocal of the spin-spin relaxation time T2) is an important factor to determine the efficacy of Fe nanoparticles as contrast agents for MRI experiments. R2 values of the coated magnetic nanoparticles were also measured using MRI technique and the results showed that R2 of the Fe complex consisting of Fe3O4, polymer and drug was higher than that of bare Fe nanoparticles and polymer coated nanoparticles. This is due to the increase in hydrodynamic sizes of Fe NPs. The results with various amounts of iron molar concentrations are also discussed. Using MRI, it is seen that the R2 relaxivity increases linearly with increase in concentration of Fe NPs in water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20drug" title="cancer drug">cancer drug</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20size" title=" hydrodynamic size"> hydrodynamic size</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title=" magnetic nanoparticles"> magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a> </p> <a href="https://publications.waset.org/abstracts/64976/iron-oxide-magnetic-nanoparticles-as-mri-contrast-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3361</span> Detection of Epinephrine in Chicken Serum at Iron Oxide Screen Print Modified Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwole%20Opeyemi%20Dina">Oluwole Opeyemi Dina</a>, <a href="https://publications.waset.org/abstracts/search?q=Saheed%20E.%20Elugoke"> Saheed E. Elugoke</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Olutope%20Fayemi"> Peter Olutope Fayemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Omolola%20E.%20Fayemi"> Omolola E. Fayemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the detection of epinephrine (EP) at Fe₃O₄ modified screen printed silver electrode (SPSE). The iron oxide (Fe₃O₄) nanoparticles were characterized with UV-visible spectroscopy, Fourier-Transform infrared spectroscopy (FT-IR) and Scanning electron microscopy (SEM) prior to the modification of the SPSE. The EP oxidation peak current (Iap) increased with an increase in the concentration of EP as well as the scan rate (from 25 - 400 mVs⁻¹). Using cyclic voltammetry (CV), the relationship between Iap and EP concentration was linear over a range of 3.8 -118.9 µM and 118.9-175 µM with a detection limit of 41.99 µM and 83.16 µM, respectively. Selective detection of EP in the presence of ascorbic acid was also achieved at this electrode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=screenprint%20electrode" title="screenprint electrode">screenprint electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticle" title=" iron oxide nanoparticle"> iron oxide nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=epinephrine" title=" epinephrine"> epinephrine</a>, <a href="https://publications.waset.org/abstracts/search?q=serum" title=" serum"> serum</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltametry" title=" cyclic voltametry"> cyclic voltametry</a> </p> <a href="https://publications.waset.org/abstracts/144358/detection-of-epinephrine-in-chicken-serum-at-iron-oxide-screen-print-modified-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3360</span> Iron Oxide Nanoparticles: Synthesis, Properties, and Environmental Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shalini%20Rajput">Shalini Rajput</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Mohan"> Dinesh Mohan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is the most important and essential resources for existing of life on the earth. Water quality is gradually decreasing due to increasing urbanization and industrialization and various other developmental activities. It can pose a threat to the environment and public health therefore it is necessary to remove hazardous contaminants from wastewater prior to its discharge to the environment. Recently, magnetic iron oxide nanoparticles have been arise as significant materials due to its distinct properties. This article focuses on the synthesis method with a possible mechanism, structure and application of magnetic iron oxide nanoparticles. The various characterization techniques including X-ray diffraction, transmission electron microscopy, scanning electron microscopy with energy dispersive X-ray, Fourier transform infrared spectroscopy and vibrating sample magnetometer are useful to describe the physico-chemical properties of nanoparticles. Nanosized iron oxide particles utilized for remediation of contaminants from aqueous medium through adsorption process. Due to magnetic properties, nanoparticles can be easily separate from aqueous media. Considering the importance and emerging trend of nanotechnology, iron oxide nanoparticles as nano-adsorbent can be of great importance in the field of wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide" title=" iron oxide"> iron oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a> </p> <a href="https://publications.waset.org/abstracts/19335/iron-oxide-nanoparticles-synthesis-properties-and-environmental-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3359</span> Inhibitory Impacts of Fulvic Acid-Coated Iron Oxide Nano Particles on the Amyloid Fibril Aggregations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalia%20Jomehpour">Dalia Jomehpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Sheikhlary"> Sara Sheikhlary</a>, <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Heydari"> Esmaeil Heydari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossien%20Majles%20Ara"> Mohammad Hossien Majles Ara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we report fulvic acid-coated iron oxide nanoparticles of 10.7 ± 2.7 nm size, which serve to inhibit amyloid fibrillation formation. Although the effect of fulvic acid on tau fibrils was investigated, to our best knowledge, its inhibitory impacts on amyloid aggregation formation have been assessed neither in-vitro nor in-vivo. On the other hand, iron oxide nanoparticles exhibit anti-amyloid activity on their own. This study investigates the inhibitory effect of fulvic acid coated iron oxide nanoparticles on amyloid aggregations formed from the commonly used in-vitro model, lysozyme from chicken egg white. FESEM, XRD, and FTIR characterization confirmed that fulvic acid was coated onto the surface of the nanoparticles. The inhibitory effects of the fulvic acid coated iron oxide nanoparticles were verified by Thioflavin T assay, circular dichroism (CD), and FESEM analysis. Furthermore, the toxicity of the nanoparticles on the neuroblastoma SH-SY5Y human cell line was assessed through an MTT assay. Our results indicate that fulvic acid coated iron oxide nanoparticles can efficiently inhibit the formation of amyloid aggregations while exhibiting negligible in-vitro toxicity; thus, they can be used as anti-amyloid agents in the development of the potential drug for neurodegenerative diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title="Alzheimer’s disease">Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=fulvic%20acid%20coated%20iron%20oxide%20nanoparticles" title=" fulvic acid coated iron oxide nanoparticles"> fulvic acid coated iron oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=fulvic%20acid" title=" fulvic acid"> fulvic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloid%20inhibitor" title=" amyloid inhibitor"> amyloid inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a> </p> <a href="https://publications.waset.org/abstracts/152105/inhibitory-impacts-of-fulvic-acid-coated-iron-oxide-nano-particles-on-the-amyloid-fibril-aggregations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3358</span> Evaluation of Cytotoxic Effect of Mitoxantrone Conjugated Magnetite Nanoparticles and Graphene Oxide-Magnetite Nanocomposites on Mesenchymal Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Jafarizad">Abbas Jafarizad</a>, <a href="https://publications.waset.org/abstracts/search?q=Duygu%20Ekinci"> Duygu Ekinci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work targeted drug delivery is proposed to decrease adverse effect of drugs with concomitant reduces in consumption and treatment outgoings. Nanoparticles (NPs) can be prepared from a variety of materials such as lipid, biodegradable polymer that prevent the drugs cytotoxicity in healthy cells, etc. One of the most important drugs used in chemotherapy is mitoxantrone (MTX) which prevents cell proliferation by inhibition of topoisomerase II and DNA repair; however, it is not selective and has some serious side effects. In this study, mentioned aim is achieved by using several nanocarriers like magnetite (Fe3O4) and their composites with magnetic graphene oxide (Fe3O4@GO). Also, cytotoxic potential of Fe3O4, Fe3O4-MTX, and Fe3O4@GO-MTX nanocomposite were evaluated on mesenchymal stem cells (MSCs). In this study, we reported the synthesis of monodisperse Fe3O4 NPs and Fe3O4@GO nanocomposite and their structures were investigated by using field emission scanning electron microscope (FESEM), Fourier transform infrared (FTIR) spectra, atomic force microscopy (AFM), Brauneur Emmet Teller (BET) isotherm and contact angle studies. Moreover, we used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to evaluate cytotoxic effects of MTX, Fe3O4 NPs, Fe3O4-MTX and Fe3O4@GO-MTX nanocomposite on MSCs. The in-vitro MTT results indicated that all concentrations of MTX and Fe3O4@GO-MTX nanocomposites showed cytotoxic effects while all concentrations of Fe3O4 NPs and Fe3O4-MTX NPs did not show any cytotoxic effect on stem cells. The results from this study indicated that using Fe3O4 NPs as anticancer drug delivery systems could be a trustworthy method for cancer treatment. But for reaching excellent and accurate results, further investigation is necessary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mitoxantrone" title="mitoxantrone">mitoxantrone</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetite" title=" magnetite"> magnetite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20graphene%20oxide" title=" magnetic graphene oxide"> magnetic graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=MTT%20assay" title=" MTT assay"> MTT assay</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a> </p> <a href="https://publications.waset.org/abstracts/66115/evaluation-of-cytotoxic-effect-of-mitoxantrone-conjugated-magnetite-nanoparticles-and-graphene-oxide-magnetite-nanocomposites-on-mesenchymal-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3357</span> First Experimental Evidence on Feasibility of Molecular Magnetic Particle Imaging of Tumor Marker Alpha-1-Fetoprotein Using Antibody Conjugated Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kolja%20Them">Kolja Them</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyal%20Chikhaliwala"> Priyal Chikhaliwala</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudeshna%20Chandra"> Sudeshna Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The purpose of this work is to examine possibilities for noninvasive imaging and identification of tumor markers for cancer diagnosis. The proposed method uses antibody conjugated iron oxide nanoparticles and multicolor Magnetic Particle Imaging (mMPI). The method has the potential for radiation exposure free real-time estimation of local tumor marker concentrations in vivo. In this study, the method is applied to human Alpha-1-Fetoprotein. Materials and Methods: As tracer material AFP antibody-conjugated Dendrimer-Fe3O4 nanoparticles were used. The nanoparticle bioconjugates were then incubated with bovine serum albumin (BSA) to block any possible nonspecific binding sites. Parts of the resulting solution were then incubated with AFP antigen. MPI measurements were done using the preclinical MPI scanner (Bruker Biospin MRI GmbH) and the multicolor method was used for image reconstruction. Results: In multicolor MPI images the nanoparticles incubated only with BSA were clearly distinguished from nanoparticles incubated with BSA and AFP antigens. Conclusion: Tomographic imaging of human tumor marker Alpha-1-Fetoprotein is possible using AFP antibody conjugated iron oxide nanoparticles in presence of BSA. This opens interesting perspectives for cancer diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noninvasive%20imaging" title="noninvasive imaging">noninvasive imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20antigens" title=" tumor antigens"> tumor antigens</a>, <a href="https://publications.waset.org/abstracts/search?q=antibody%20conjugated%20iron%20oxide%20nanoparticles" title=" antibody conjugated iron oxide nanoparticles"> antibody conjugated iron oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=multicolor%20magnetic%20particle%20imaging" title=" multicolor magnetic particle imaging"> multicolor magnetic particle imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20diagnosis" title=" cancer diagnosis"> cancer diagnosis</a> </p> <a href="https://publications.waset.org/abstracts/73134/first-experimental-evidence-on-feasibility-of-molecular-magnetic-particle-imaging-of-tumor-marker-alpha-1-fetoprotein-using-antibody-conjugated-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3356</span> Preparation of Poly(Acrylic Acid) Functionalized Magnetic Graphene Oxide Composite and Its Application for Pb(II) Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Wang">Yu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xibang%20Chen"> Xibang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Maolin%20Zhai"> Maolin Zhai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Peng"> Jing Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiuqiang%20Li"> Jiuqiang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poly(acrylic acid) (PAA) functionalized magnetic graphene oxide (GO) composite was synthesized through a two-step process. Magnetic Fe₃O₄/GO was first prepared by a facile hydrothermal method. A radiation-induced grafting technique was used to graft PAA to Fe₃O₄/GO to obtain the Fe₃O₄/GO-g-PAA subsequently. The characteristics results of FTIR, Raman, XRD, SEM, TEM, and VSM showed that Fe₃O₄/GO-g-PAA was successfully prepared. The Fe₃O₄/GO-g-PAA composites were used as sorbents for the removal of Pb(II) ions, and the maximum adsorption capacity for Pb(II) was 176.92 mg/g. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe%E2%82%83O%E2%82%84" title="Fe₃O₄">Fe₃O₄</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic" title=" magnetic"> magnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=Pb%28II%29%20removal" title=" Pb(II) removal"> Pb(II) removal</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation-induced" title=" radiation-induced"> radiation-induced</a> </p> <a href="https://publications.waset.org/abstracts/130434/preparation-of-polyacrylic-acid-functionalized-magnetic-graphene-oxide-composite-and-its-application-for-pbii-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3355</span> Catalytic Performance of Fe3O4 Nanoparticles (Fe3O4 NPs) in the Synthesis of Pyrazolines </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Gharib">Ali Gharib</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Vojdanifard"> Leila Vojdanifard</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Noroozi%20Pesyan"> Nader Noroozi Pesyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different Pyrazoline derivatives were synthesized by cyclization of substituted chalcone derivatives in presence of hydrazine hydrate. A series of novel 1,3,5-triaryl pyrazoline derivatives has been synthesized by the reaction of chalcone and phenylhydrazine in the presence of the Fe3O4 NPs, in high yields. The structures of compounds obtained were determined by IR and 1H NMR spectra. Fe3O4 NPs was recycled and no appreciable change in activity was noticed after three cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pyrazoline" title="pyrazoline">pyrazoline</a>, <a href="https://publications.waset.org/abstracts/search?q=chalcone" title=" chalcone"> chalcone</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe3O4" title=" Fe3O4"> Fe3O4</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/22630/catalytic-performance-of-fe3o4-nanoparticles-fe3o4-nps-in-the-synthesis-of-pyrazolines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3354</span> Green Synthesized Iron Oxide Nanoparticles: A Nano-Nutrient for the Growth and Enhancement of Flax (Linum usitatissimum L.) Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Karunakaran">G. Karunakaran</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jagathambal"> M. Jagathambal</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Van%20Minh"> N. Van Minh</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Kolesnikov"> E. Kolesnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gusev"> A. Gusev</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20V.%20Zakharova"> O. V. Zakharova</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20V.%20Scripnikova"> E. V. Scripnikova</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20D.%20Vishnyakova"> E. D. Vishnyakova</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Kuznetsov"> D. Kuznetsov </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iron oxide nanoparticles (Fe<sub>2</sub>O<sub>3</sub>NPs) are widely used in different applications due to its ecofriendly nature and biocompatibility. Hence, in this investigation, biosynthesized Fe<sub>2</sub>O<sub>3</sub>NPs influence on flax (<em>Linum usitatissimum</em> L.) plant was examined. The biosynthesized nanoparticles were found to be cubic phase which is confirmed by XRD analysis. FTIR analysis confirmed the presence of functional groups corresponding to the iron oxide nanoparticle. The elemental analysis also confirmed that the obtained nanoparticle is iron oxide nanoparticle. The scanning electron microscopy and the transmission electron microscopy confirm that the average particle size was around 56 nm. The effect of Fe<sub>2</sub>O<sub>3</sub>NPs on seed germination followed by biochemical analysis was carried out using standard methods. The results obtained after four days and 11 days of seed vigor studies showed that the seedling length (cm), average number of seedling with leaves, increase in root length (cm) was found to be enhanced on treatment with iron oxide nanoparticles when compared to control. A positive correlation was noticed with the dose of the nanoparticle and plant growth, which may be due to changes in metabolic activity. Hence, to evaluate the change in metabolic activity, peroxidase and catalase activities were estimated. It was clear from the observation that higher concentration of iron oxide nanoparticles (Fe<sub>2</sub>O<sub>3</sub>NPs 1000 mg/L) has enhanced peroxidase and catalase activities and in turn plant growth. Thus, this study clearly showed that biosynthesized iron oxide nanoparticles will be an effective nano-nutrient for agriculture applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalase" title="catalase">catalase</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer" title=" fertilizer"> fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles" title=" iron oxide nanoparticles"> iron oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=Linum%20usitatissimum%20L." title=" Linum usitatissimum L."> Linum usitatissimum L.</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-nutrient" title=" nano-nutrient"> nano-nutrient</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxidase" title=" peroxidase"> peroxidase</a> </p> <a href="https://publications.waset.org/abstracts/70716/green-synthesized-iron-oxide-nanoparticles-a-nano-nutrient-for-the-growth-and-enhancement-of-flax-linum-usitatissimum-l-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3353</span> Chitosan Functionalized Fe3O4@Au Core-Shell Nanomaterials for Targeted Drug Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Pati">S. S. Pati</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Herojit%20Singh"> L. Herojit Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Oliveira"> A. C. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Garg"> V. K. Garg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan functionalized Fe3O4-Au core shell nanoparticles have been prepared using a two step wet chemical approach using NaBH4 as reducing agent for formation of Au inethylene glycol. X-ray diffraction studies shows individual phases of Fe3O4 and Au in the as prepared samples with crystallite size of 5.9 and 11.4 nm respectively. The functionalization of the core-shell nanostructure with Chitosan has been confirmed using Fourier transform infrared spectroscopy along with signatures of octahedral and tetrahedral sites of Fe3O4 below 600cm-1. Mössbauer spectroscopy shows decrease in particle-particle interaction in presence of Au shell (72% sextet) than pure oleic coated Fe3O4 nanoparticles (88% sextet) at room temperature. At 80K, oleic acid coated Fe3O4 shows only sextets whereas the Chitosan functionalized Fe3O4 and Chitosan functionalized Fe3O4@Au core shell show presence of 5 and 11% doublet, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core%20shell" title="core shell">core shell</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title=" magnetic nanoparticles"> magnetic nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/28882/chitosan-functionalized-fe3o4-at-au-core-shell-nanomaterials-for-targeted-drug-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3352</span> Green Synthesis of Magnetic, Silica Nanocomposite and Its Adsorptive Performance against Organochlorine Pesticides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waleed%20A.%20El-Said">Waleed A. El-Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Dina%20M.%20Fouad"> Dina M. Fouad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20H.%20Aly"> Mohamed H. Aly</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20El-Gahami"> Mohamed A. El-Gahami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green synthesis of nanomaterials has received increasing attention as an eco-friendly technology in materials science. Here, we have used two types of extractions from green tea leaf (i.e. total extraction and tannin extraction) as reducing agents for a rapid, simple and one step synthesis method of mesoporous silica nanoparticles (MSNPs)/iron oxide (Fe3O4) nanocomposite based on deposition of Fe3O4 onto MSNPs. MSNPs/Fe3O4 nanocomposite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, vibrating sample magnetometer, N2 adsorption, and high-resolution transmission electron microscopy. The average mesoporous silica particle diameter was found to be around 30 nm with high surface area (818 m2/gm). MSNPs/Fe3O4 nanocomposite was used for removing lindane pesticide (an environmental hazard material) from aqueous solutions. Fourier transform infrared, UV-vis, High-performance liquid chromatography and gas chromatography techniques were used to confirm the high ability of MSNPs/Fe3O4 nanocomposite for sensing and capture of lindane molecules with high sorption capacity (more than 89%) that could develop a new eco-friendly strategy for detection and removing of pesticide and as a promising material for water treatment application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title="green synthesis">green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20silica" title=" mesoporous silica"> mesoporous silica</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20iron%20oxide%20NPs" title=" magnetic iron oxide NPs"> magnetic iron oxide NPs</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20Lindane" title=" adsorption Lindane"> adsorption Lindane</a> </p> <a href="https://publications.waset.org/abstracts/74140/green-synthesis-of-magnetic-silica-nanocomposite-and-its-adsorptive-performance-against-organochlorine-pesticides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3351</span> Evaluation of Iron Oxide-Functionalized Multiwall Carbon Nanotube Self-Standing Electrode for Symmetric Supercapacitor Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20Bhaskara%20Rao">B. V. Bhaskara Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Espinoza"> Rodrigo Espinoza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid development of renewable energy sources has drawn great attention to energy storage devices, especially supercapacitors, because of their high power density and rate performance. This work focus on Fe₃O₄ nanoparticles synthesized by reverse co-precipitation and MWCNTs functionalized by –COOH acid functionalization. The results show that Optimized 25wt% Fe₃O₄@FMWCNT show high specific capacitance 100 mF/cm² at one mA/cm² whereas 15wt% Fe₃O₄@FMWCNT showed high stability (80% retention capacity) over 5000 cycles. The electrolyte used in the coin cell is LiPF6 and the thickness of the electrode is 30 microns. The optimized Fe₃O₄@FMWCNT bucky papers coin cell electrochemical studies suggest that 25wt% Fe₃O₄@FMWCNT could be a good candidate for high-capacity supercapacitor devices. This could be further tested for flexible and planar supercapacitor device application with gel electrolytes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-standing%20electrode" title="self-standing electrode">self-standing electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe%E2%82%83O4%40FMWCNT" title=" Fe₃O4@FMWCNT"> Fe₃O4@FMWCNT</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetric%20coin-cell" title=" symmetric coin-cell"> symmetric coin-cell</a> </p> <a href="https://publications.waset.org/abstracts/143024/evaluation-of-iron-oxide-functionalized-multiwall-carbon-nanotube-self-standing-electrode-for-symmetric-supercapacitor-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3350</span> Functionalized DOX Nanocapsules by Iron Oxide Nanoparticles for Targeted Drug Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afsaneh%20Ghorbanzadeh">Afsaneh Ghorbanzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Farahbakhsh"> Afshin Farahbakhsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakieh%20Bayat"> Zakieh Bayat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drug capsulation was used for release and targeted delivery in determined time, place and temperature or pH. The DOX nanocapsules were used to reduce and to minimize the unwanted side effects of drug. In this paper, the encapsulation methods of doxorubicin (DOX) and the labeling it by the magnetic core of iron (Fe3O4) has been studied. The Fe3O4 was conjugated with DOX via hydrazine bond. The solution was capsuled by the sensitive polymer of heat or pH such as chitosan-g-poly (N-isopropylacrylamide-co-N,N-dimethylacrylamide), dextran-g-poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) and mPEG-G2.5 PAMAM by hydrazine bond. The drug release was very slow at temperatures lower than 380°C. There was a rapid and controlled drug release at temperatures higher than 380°C. According to experiments, the use mPEG-G2.5PAMAM is the best method of DOX nanocapsules synthesis, because in this method, the drug delivery time to certain place is lower than other methods and the percentage of released drug is higher. The synthesized magnetic carrier system has potential applications in magnetic drug-targeting delivery and magnetic resonance imaging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20carrier" title="drug carrier">drug carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20release" title=" drug release"> drug release</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20NPs" title=" iron oxide NPs"> iron oxide NPs</a> </p> <a href="https://publications.waset.org/abstracts/9068/functionalized-dox-nanocapsules-by-iron-oxide-nanoparticles-for-targeted-drug-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3349</span> Efficient Synthesis of Calix[4]Pyrroles Catalyzed by Powerful and Magnetically Recoverable Fe3O4 Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renu%20Gautam">Renu Gautam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20S.%20Chauhan"> S. M. S. Chauhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetic Fe3O4 nanoparticles has been used as an efficient and facile acid catalyst for the synthesis of calix[4]pyrrole in moderate to excellent yields by the one pot condensation of different ketones and pyrrole. The catalyst was easily recovered using external magnet and reused over several cycles without losing its catalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calix%5B4%5Dpyrrole" title="calix[4]pyrrole">calix[4]pyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic" title=" magnetic"> magnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe3O4%20nanoparticles" title=" Fe3O4 nanoparticles"> Fe3O4 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysis" title=" catalysis "> catalysis </a> </p> <a href="https://publications.waset.org/abstracts/21760/efficient-synthesis-of-calix4pyrroles-catalyzed-by-powerful-and-magnetically-recoverable-fe3o4-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3348</span> The Using of Hybrid Superparamagnetic Magnetite Nanoparticles (Fe₃O₄)- Graphene Oxide Functionalized Surface with Collagen, to Target the Cancer Stem Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Khalaf%20Reyad%20Raslan">Ahmed Khalaf Reyad Raslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer stem cells (CSCs) describe a class of pluripotent cancer cells that behave analogously to normal stem cells in their ability to differentiate into the spectrum of cell types observed in tumors. The de-differentiation processes, such as an epithelial-mesenchymal transition (EMT), are known to enhance cellular plasticity. Here, we demonstrate a new hypothesis to use hybrid superparamagnetic magnetite nanoparticles (Fe₃O₄)- graphene oxide functionalized surface with Collagen to target the cancer stem cell as an early detection tool for cancer. We think that with the use of magnetic resonance imaging (MRI) and the new hybrid system would be possible to track the cancer stem cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title="hydrogel">hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate" title=" alginate"> alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=collagen" title=" collagen"> collagen</a> </p> <a href="https://publications.waset.org/abstracts/145693/the-using-of-hybrid-superparamagnetic-magnetite-nanoparticles-fe3o4-graphene-oxide-functionalized-surface-with-collagen-to-target-the-cancer-stem-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3347</span> Different Methods of Fe3O4 Nano Particles Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arezoo%20Hakimi">Arezoo Hakimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Farahbakhsh"> Afshin Farahbakhsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Herein, we comparison synthesized Fe3O4 using, hydrothermal method, Mechanochemical processes and solvent thermal method. The Hydrothermal Technique has been the most popular one, gathering interest from scientists and technologists of different disciplines, particularly in the last fifteen years. In the hydrothermal method Fe3O4 microspheres, in which many nearly monodisperse spherical particles with diameters of about 400nm, in the mechanochemical method regular morphology indicates that the particles are well crystallized and in the solvent thermal method Fe3O4 nanoparticles have good properties of uniform size and good dispersion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe3O4%20nanoparticles" title="Fe3O4 nanoparticles">Fe3O4 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20method" title=" hydrothermal method"> hydrothermal method</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanochemical%20processes" title=" mechanochemical processes"> mechanochemical processes</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20thermal%20method" title=" solvent thermal method"> solvent thermal method</a> </p> <a href="https://publications.waset.org/abstracts/46580/different-methods-of-fe3o4-nano-particles-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3346</span> Light-Emitting Diode Assisted Synthesis of Ag@Fe3O4 Nanoparticles and Their Application in Magnetic and Photothermal Hyperthermia Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pei-Wen%20Lin">Pei-Wen Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ta-I%20Yang"> Ta-I Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer has been one of the leading causes of human death for centuries. Considerable effort has been devoted to developing new treatments to reduce and control cancers. Magnetic particle hyperthermia and near-infrared photothermal therapy are the promising strategies to treat cancers due to its effectiveness with only mild side effects. This study focused on synthesizing magnetic Ag@Fe3O4 nanoparticles applicable for both of magnetic hyperthermia and near-infrared photothermal therapy. The hydrophilic poly(diallyldimethylammonium chloride) polymer was utilized to prepare superparamagnetic Fe3O4 clusters and to promote silver nanoparticles grown on Fe3O4 surfaces, obtaining Ag@Fe3O4 nanoparticles. The morphology (shape and dimension) of Ag nanoparticles was subsequently tailored using commercial LED lights. Therefore, the resulting Ag@Fe3O4 nanoparticles can absorb specific wavelength of light ranging from 400 nm to 800 nm by adjusting the wavelength of LED lights and the free silver ions in reaction solution. Heating performance tests confirmed that the synthesized Ag@Fe3O4 nanoparticles show appreciable heating capability for both of magnetic particle hyperthermia and near-infrared photothermal therapy. The findings in this study could provide new ideas to design functional materials to treat cancers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light-emitting%20diode%20assisted%20synthesis" title="light-emitting diode assisted synthesis">light-emitting diode assisted synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20particles" title=" magnetic particles"> magnetic particles</a>, <a href="https://publications.waset.org/abstracts/search?q=photothermal%20materials" title=" photothermal materials"> photothermal materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a> </p> <a href="https://publications.waset.org/abstracts/56976/light-emitting-diode-assisted-synthesis-of-ag-at-fe3o4-nanoparticles-and-their-application-in-magnetic-and-photothermal-hyperthermia-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3345</span> Application of Nanoparticles in Biomedical and MRI</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raziyeh%20Mohammadi">Raziyeh Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, nanoparticles are used for various biomedical applications where they facilitate laboratory diagnostics and therapeutics. The performance of nanoparticles for biomedical applications is often assessed by their narrow size distribution, suitable magnetic saturation, and low toxicity effects. Superparamagnetic iron oxide nanoparticles have received great attention due to their applications as contrast agents for magnetic resonance imaging (MRI. (Processes in the tissue where the blood brain barrier is intact in this way shielded from the contact to this conventional contrast agent and will only reveal changes in the tissue if it involves an alteration in the vasculature. This technique is very useful for detecting tumors and can even be used for detecting metabolic functional alterations in the brain, such as epileptic activity.SPIONs have found application in Magnetic Resonance Imaging (MRI) and magnetic hyperthermia. Unlike bulk iron, SPIONs do not have remnant magnetization in the absence of the external magnetic field; therefore, a precise remote control over their action is possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical" title=" biomedical"> biomedical</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide" title=" iron oxide"> iron oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=spions" title=" spions"> spions</a> </p> <a href="https://publications.waset.org/abstracts/145609/application-of-nanoparticles-in-biomedical-and-mri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3344</span> Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anurag%20Gaur%20Nidhi">Anurag Gaur Nidhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67 % at magnetic field 2-5kG, respectively at particle concentration 0.6 mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44 % by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67 % by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capture%20efficiency" title="capture efficiency">capture efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=implant%20assisted-Magnetic%20drug%20targeting%20%28IA-MDT%29" title=" implant assisted-Magnetic drug targeting (IA-MDT)"> implant assisted-Magnetic drug targeting (IA-MDT)</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title=" magnetic nanoparticles"> magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=In-vitro%20study" title=" In-vitro study"> In-vitro study</a> </p> <a href="https://publications.waset.org/abstracts/32102/experimental-study-on-capturing-of-magnetic-nanoparticles-transported-in-an-implant-assisted-cylindrical-tube-under-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3343</span> Adsorption of Reactive Dye Using Entrapped nZVI</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Gomathi%20Priya">P. Gomathi Priya</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Thenmozhi"> M. E. Thenmozhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iron nanoparticles were used to cleanup effluents. This paper involves synthesis of iron nanoparticles chemically by sodium borohydride reduction of ammonium ferrous sulfate solution (FAS). Iron oxide nanoparticles have lesser efficiency of adsorption than Zero Valent Iron nanoparticles (nZVI). Glucosamine acts as a stabilizing agent and chelating agent to prevent Iron nanoparticles from oxidation. nZVI particles were characterized using Scanning Electron Microscopy (SEM). Thus, the synthesized nZVI was subjected to entrapment in biopolymer, viz. barium (Ba)-alginate beads. The beads were characterized using SEM. Batch dye degradation studies were conducted using Reactive black Water soluble Nontoxic Natural substances (WNN) dye which is one of the most hazardous dyes used in textile industries. Effect of contact time, effect of pH, initial dye concentration, adsorbent dosage, isotherm and kinetic studies were carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20ferrous%20sulfate%20solution" title="ammonium ferrous sulfate solution">ammonium ferrous sulfate solution</a>, <a href="https://publications.waset.org/abstracts/search?q=barium" title=" barium"> barium</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate%20beads" title=" alginate beads"> alginate beads</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20black%20WNN%20dye" title=" reactive black WNN dye"> reactive black WNN dye</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20valent%20iron%20nanoparticles" title=" zero valent iron nanoparticles"> zero valent iron nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/85605/adsorption-of-reactive-dye-using-entrapped-nzvi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3342</span> Fe₃O₄/SiO₂/TiO₂ Nanoparticles as Catalyst for Recovery of Gold from the Mixture of Au(III) and Cu(II) Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eko%20S.%20Kunarti">Eko S. Kunarti</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhmad%20Syoufian"> Akhmad Syoufian</a>, <a href="https://publications.waset.org/abstracts/search?q=Indriana%20Kartini"> Indriana Kartini</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnes"> Agnes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fe₃O₄/SiO₂/TiO₂ nanoparticles have been synthesized and applied as a photocatalyst for the recovery of gold from the mixture of Au(III) and Cu(II) ions. The synthesis was started by the preparation of magnetite (Fe₃O₄) using coprecipitation and sonication methods, followed by SiO₂ coating on magnetite using sol-gel reactions, and then TiO₂ coating using sol-gel process. Characterization was performed by using infrared spectroscopy, X-ray diffraction, transmission electron microscopy methods. Activity of Fe₃O₄/SiO₂/TiO₂ nanoparticles was evaluated as a photocatalyst for recovery of gold through photoreduction of Au(III) ions in Au(III) and Cu(II) ions mixture with a ratio of 1:1, in a closed reactor equipped with UV lamp. The photoreduction yield was represented as a percentage (%) of reduced Au(III) which was calculated by substraction of initial Au(III) concentration by the unreduced one. The unreduced Au(III) was determined by atomic absorption spectrometry. Results showed that the Fe₃O₄/SiO₂/TiO₂ nanoparticles were successfully synthesised with excellent magnetic and photocatalytic properties. The nanoparticles present optimum activity at a pH of 5 under UV irradiation for 120 minutes. At the optimum condition, the Fe₃O₄/SiO₂/TiO₂ nanoparticles could reduce Au³⁺ to Au⁰ 97.24%. In the mixture of Au(III) and Cu(II) ions, the Au(III) ions are more easily reducible than Cu(II) ions with the reduction results of 96.9% and 45.80% for Au(III) and Cu(II) ions, respectively. In addition, the presence of Cu(II) ions has no significant effect on the amount of gold recovered and its reduction reaction rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe%E2%82%83O%E2%82%84%2FSiO%E2%82%82%2FTiO%E2%82%82" title="Fe₃O₄/SiO₂/TiO₂">Fe₃O₄/SiO₂/TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=gold" title=" gold"> gold</a>, <a href="https://publications.waset.org/abstracts/search?q=Au%28III%29%20and%20Cu%28II%29%20mixture" title=" Au(III) and Cu(II) mixture"> Au(III) and Cu(II) mixture</a> </p> <a href="https://publications.waset.org/abstracts/84909/fe3o4sio2tio2-nanoparticles-as-catalyst-for-recovery-of-gold-from-the-mixture-of-auiii-and-cuii-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3341</span> Increasing Toughness of Oriented Polyvinyl Alcohol (PVA)/Fe3O4 Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mozhgan%20Chaichi">Mozhgan Chaichi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Sharif"> Farhad Sharif</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeede%20Mazinani"> Saeede Mazinani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer nanocomposites are a new class of materials for fabricating future multifunctional and lightweight structures. To obtain good mechanical, thermal and electrical properties, it is essential to achieve uniform dispersion of nanoparticles in polymer matrix. Alignment of nanoparticles in matrix can enhance mechanical, thermal, electrical and barrier properties of nanocomposites in oriented direction. Fe3O4 nanoparticles have generated huge activity in many areas of science and engineering due to its magnetic properties. Magnetic nanoparticles have been investigated for a wide range of applications in sensors, magnetic energy storage, environmental remediation, heterogeneous catalysts and drug delivery. The magnetic response from the Fe3O4 nanoparticles can facilitate with the alignment of nanofillers in a polymer matrix under magnetic field, aiming at fabricating composites with directional properties and functions. Here we report oriented nanocomposites based on Fe3O4 nanoparticles and poly (vinyl alcohol) (PVA), which prepared via a facile aqueous solution by applying a low external magnetic field (750 G). A significant enhancement of mechanical properties, and especially toughness of nanofilms, of oriented PVA/ Fe3O4 nanocomposites is obtained at low nanoparticles loading. Orientation of nanoparticles can align polymer chains and enhance mechanical properties. For example, orientation of 0.1 wt. % Fe3O4 nanoparticles increase 31% toughness and 23% modulus of oriented nanocomposite in compare of pure films, which indicate good dispersion of nanoparticles and efficient load transfer between nanoparticles and matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation" title=" orientation"> orientation</a> </p> <a href="https://publications.waset.org/abstracts/50372/increasing-toughness-of-oriented-polyvinyl-alcohol-pvafe3o4-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3340</span> Magnetic SF (Silk Fibroin) E-Gel Scaffolds Containing bFGF-Conjugated Fe3O4 Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Karahalilo%C4%9Flu">Z. Karahaliloğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Yal%C3%A7%C4%B1n"> E. Yalçın</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Demirbilek"> M. Demirbilek</a>, <a href="https://publications.waset.org/abstracts/search?q=E.B.%20Denkba%C5%9F"> E.B. Denkbaş </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Critical-sized bone defects caused by trauma, bone diseases, prosthetic implant revision or tumor excision cannot be repaired by physiological regenerative processes. Current orthopedic applications for critical-sized bone defects are to use autologous bone grafts, bone allografts, or synthetic graft materials. However, these strategies are unable to solve completely the problem, and motivate the development of novel effective biological scaffolds for tissue engineering applications and regenerative medicine applications. In particular, scaffolds combined with a variety of bio-agents as fundamental tools emerge to provide the regeneration of damaged bone tissues due to their ability to promote cell growth and function. In this study, a magnetic silk fibroin (SF) hydrogel scaffold was prepared by electrogelation process of the concentrated Bombxy mori silk fibroin (8 %wt) aqueous solution. For enhancement of osteoblast-like cells (SaOS-2) growth and adhesion, basal fibroblast growth factor (bFGF) were conjugated physically to the HSA-coated magnetic nanoparticles (Fe3O4) and magnetic SF e-gel scaffolds were prepared by incorporation of Fe3O4, HSA (human serum albumin)=Fe3O4 and HSA=Fe3O4-bFGF nanoparticles. HSA=Fe3O4, HSA=Fe3O4-bFGF loaded and bare SF e-gels scaffolds were characterized using scanning electron microscopy (SEM.) For cell studies, human osteoblast-like cell line (SaOS-2) was used and an MTT assay was used to assess the cytotoxicity of magnetic silk fibroin e-gel scaffolds and cell density on these surfaces. For the evaluation osteogenic activation, ALP (alkaline phosphatase), the amount of mineralized calcium, total protein and collagen were studied. Fe3O4 nanoparticles were successfully synthesized and bFGF was conjugated to HSA=Fe3O4 nanoparticles with %97.5 of binding yield which has a particle size of 71.52±2.3 nm. Electron microscopy images of the prepared HSA and bFGF incorporated SF e-gel scaffolds showed a 3D porous morphology. In terms of water uptake results, bFGF conjugated HSA=Fe3O4 nanoparticles has the best water absorbability behavior among all groups. In the in-vitro cell culture studies realized using SaOS-2 cell line, the coating of Fe3O4 nanoparticles surface with a protein enhance the cell viability and HSA coating and bFGF conjugation, the both have an inductive effect in the cell proliferation. One of the markers of bone formation and osteoblast differentiation, according to the ALP activity and total protein results, HSA=Fe3O4-bFGF loaded SF e-gels had significantly enhanced ALP activity. Osteoblast cultured HSA=Fe3O4-bFGF loaded SF e-gels deposited more calcium compared with SF e-gel. The proposed magnetic scaffolds seem to be promising for bone tissue regeneration and used in future work for various applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basic%20fibroblast%20growth%20factor%20%28bFGF%29" title="basic fibroblast growth factor (bFGF)">basic fibroblast growth factor (bFGF)</a>, <a href="https://publications.waset.org/abstracts/search?q=e-gel" title=" e-gel"> e-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles" title=" iron oxide nanoparticles"> iron oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=silk%20fibroin" title=" silk fibroin"> silk fibroin</a> </p> <a href="https://publications.waset.org/abstracts/43500/magnetic-sf-silk-fibroin-e-gel-scaffolds-containing-bfgf-conjugated-fe3o4-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3339</span> Methyl Red Dye Adsorption On PMMA/GO and PMMA/GO-Fe3O4 Nanocomposites: Equilibrium Isotherm Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Rajabi">Mostafa Rajabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazem%20Mahanpoor"> Kazem Mahanpoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performances of the methyl red (MR) dye adsorption on poly(methyl methacrylate)/graphene oxide (PMMA/GO) and poly(methyl methacrylate)/graphene oxide-Fe3O4 (PMMA/GO-Fe3O4) nanocomposites as adsorbents were investigated. Our results showed that for adsorption of MR dye on PMMA/GO-Fe3O4 and PMMA/GO nanocomposites, 80 minutes, 298 K, and pH 2 were the best contact time, temperature and pH value for process, respectively, because the optimum adsorption of the MR dye with both nanocomposite adsorbents were observed in these values of the parameters. The equilibrium study results showed that PMMA/GO-Fe3O4 and PMMA/GO were suitable adsorbents for MR dye removing and were best in agreement with the Langmuir isotherm model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20methacrylate" title=" methyl methacrylate"> methyl methacrylate</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20red" title=" methyl red"> methyl red</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20magnetic%20Fe3O4" title=" nano magnetic Fe3O4"> nano magnetic Fe3O4</a> </p> <a href="https://publications.waset.org/abstracts/140772/methyl-red-dye-adsorption-on-pmmago-and-pmmago-fe3o4-nanocomposites-equilibrium-isotherm-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3338</span> Synthesis of Size-Tunable and Stable Iron Nanoparticles for Cancer Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ambika%20Selvaraj">Ambika Selvaraj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic iron oxide nanoparticles (IO) of < 20nm (superparamagnetic) become promising tool in cancer therapy, and integrated nanodevices for cancer detection and screening. The obstacles include particle heterogeneity and cost. It can be overcome by developing monodispersed nanoparticles in economical approach. We have successfully synthesized < 7 nm IO by low temperature controlled technique, in which Fe0 is sandwiched between stabilizer and Fe2+. Size analysis showed the excellent size control from 31 nm at 33°C to 6.8 nm at 10°C. Resultant monodispersed IO were found to be stable for > 50 reuses, proved its applicability in biomedical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20temperature%20synthesis" title="low temperature synthesis">low temperature synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20iron%20nanoparticles" title=" hybrid iron nanoparticles"> hybrid iron nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20therapy" title=" cancer therapy"> cancer therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a> </p> <a href="https://publications.waset.org/abstracts/53512/synthesis-of-size-tunable-and-stable-iron-nanoparticles-for-cancer-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3337</span> Speciation of Iron(III) Oxide Nanoparticles and other Paramagnetic Intermediates during High-Temperature Oxidative Pyrolysis of 1-Methylnaphthalene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Paul%20Herring">M. Paul Herring</a>, <a href="https://publications.waset.org/abstracts/search?q=Lavrent%20Khachatryan"> Lavrent Khachatryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Barry%20Dellinger"> Barry Dellinger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low Temperature Matrix Isolation - Electron Paramagnetic Resonance (LTMI-EPR) Spectroscopy was utilized to identify the species of iron oxide nanoparticles generated during the oxidative pyrolysis of 1-methylnaphthalene (1-MN). The otherwise gas-phase reactions of 1-MN were impacted by a polypropylenimine tetra-hexacontaamine dendrimer complexed with iron(III) nitrate nonahydrate diluted in air under atmospheric conditions. The EPR fine structure of Fe (III)2O3 nanoparticles clusters, characterized by g-factors of 2.00, 2.28, 3.76 and 4.37 were detected on a cold finger maintained at 77K after accumulation over a multitude of experiments. Additionally, a high valence Fe(IV) paramagnetic intermediate and superoxide anion-radicals, O2•- adsorbed on nanoparticle surfaces in the form of Fe(IV)---O2•- were detected from the quenching area of Zone 1 in the gas-phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20trapping" title="cryogenic trapping">cryogenic trapping</a>, <a href="https://publications.waset.org/abstracts/search?q=EPFRs" title=" EPFRs"> EPFRs</a>, <a href="https://publications.waset.org/abstracts/search?q=dendrimer" title=" dendrimer"> dendrimer</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe2O3%20doped%20silica" title=" Fe2O3 doped silica"> Fe2O3 doped silica</a>, <a href="https://publications.waset.org/abstracts/search?q=soot" title=" soot"> soot</a> </p> <a href="https://publications.waset.org/abstracts/25947/speciation-of-ironiii-oxide-nanoparticles-and-other-paramagnetic-intermediates-during-high-temperature-oxidative-pyrolysis-of-1-methylnaphthalene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3336</span> Gum Arabic-Coated Magnetic Nanoparticles for Methylene Blue Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20Alzahrani">Eman Alzahrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic nanoparticles (MNPs) were fabricated using the chemical co-precipitation method followed by coating the surface of magnetic Fe3O4 nanoparticles with gum arabic (GA). The fabricated magnetic nanoparticles were characterised using transmission electron microscopy (TEM) which showed that the Fe3O4 nanoparticles and GA-MNPs nanoparticles had a mean diameter of 33 nm, and 38 nm, respectively. Scanning electron microscopy (SEM) images showed that the MNPs modified with GA had homogeneous structure and agglomerated. The energy dispersive X-ray spectroscopy (EDAX) spectrum showed strong peaks of Fe and O. X-ray diffraction patterns (XRD) indicated that the naked magnetic nanoparticles were pure Fe3O4 with a spinel structure and the covering of GA did not result in a phase change. The covering of GA on the magnetic nanoparticles was also studied by BET analysis, and Fourier transform infrared spectroscopy. Moreover, the present study reports a fast and simple method for removal and recovery of methylene blue dye (MB) from aqueous solutions by using the synthesised magnetic nanoparticles modified with gum arabic as adsorbent. The experimental results show that the adsorption process attains equilibrium within five minutes. The data fit the Langmuir isotherm equation and the maximum adsorption capacities were 8.77 mg mg-1 and 14.3 mg mg-1 for MNPs and GA-MNPs, respectively. The results indicated that the homemade magnetic nanoparticles were quite efficient for removing MB and will be a promising adsorbent for the removal of harmful dyes from waste-water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe3O4%20magnetic%20nanoparticles" title="Fe3O4 magnetic nanoparticles">Fe3O4 magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=gum%20arabic" title=" gum arabic"> gum arabic</a>, <a href="https://publications.waset.org/abstracts/search?q=co-precipitation" title=" co-precipitation"> co-precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20dye" title=" adsorption dye"> adsorption dye</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20isotherm" title=" adsorption isotherm"> adsorption isotherm</a> </p> <a href="https://publications.waset.org/abstracts/14230/gum-arabic-coated-magnetic-nanoparticles-for-methylene-blue-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3335</span> Development of Enzymatic Amperometric Biosensors with Carbon Nanotubes Decorated with Iron Oxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uc-Cayetano%20E.%20G.">Uc-Cayetano E. G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ake-Uh%20O.%20E."> Ake-Uh O. E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Villanueva-Mena%20I.%20E."> Villanueva-Mena I. E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ordonez%20L.%20C."> Ordonez L. C.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotubes (CNTs) and other graphitic nanostructures are materials with extraordinary physical, physicochemical and electrochemical properties which are being aggressively investigated for a variety of sensing applications. Thus, sensing of biological molecules such as proteins, DNA, glucose and other enzymes using either single wall or multiwall carbon nanotubes (MWCNTs) has been widely reported. Despite the current progress in this area, the electrochemical response of CNTs used in a variety of sensing arrangements still needs to be improved. An alternative towards the enhancement of this CNTs' electrochemical response is to chemically (or physically) modify its surface. The influence of the decoration with iron oxide nanoparticles in different types of MWCNTs on the amperometric sensing of glucose, urea, and cholesterol in solution is investigated. Commercial MWCNTs were oxidized in acid media and subsequently decorated with iron oxide nanoparticles; finally, the enzymes glucose oxidase, urease, and cholesterol oxidase are chemically immobilized to oxidized and decorated MWCNTs for glucose, urease, and cholesterol electrochemical sensing. The results of the electrochemical characterizations consistently show that the presence of iron oxide nanoparticles decorating the surface of MWCNTs enhance the amperometric response and the sensitivity to increments in glucose, urease, and cholesterol concentration when compared to non-decorated MWCNTs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WCNTs" title="WCNTs">WCNTs</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=decoration" title=" decoration"> decoration</a> </p> <a href="https://publications.waset.org/abstracts/106360/development-of-enzymatic-amperometric-biosensors-with-carbon-nanotubes-decorated-with-iron-oxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3334</span> Green Synthesis of Copper Oxide and Cobalt Oxide Nanoparticles Using Spinacia Oleracea Leaf Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yameen%20Ahmed">Yameen Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamshid%20Hussain"> Jamshid Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Farman%20Ullah"> Farman Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohaib%20Asif"> Sohaib Asif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation aims at the synthesis of copper oxide and cobalt oxide nanoparticles using Spinacia oleracea leaf extract. These nanoparticles have many properties and applications. They possess antimicrobial catalytic properties and also they can be used in energy storage materials, gas sensors, etc. The Spinacia oleracea leaf extract behaves as a reducing agent in nanoparticle synthesis. The plant extract was first prepared and then treated with copper and cobalt salt solutions to get the precipitate. The salt solutions used for this purpose are copper sulfate pentahydrate (CuSO₄.5H₂O) and cobalt chloride hexahydrate (CoCl₂.6H₂O). The UV-Vis, XRD, EDX, and SEM techniques are used to find the optical, structural, and morphological properties of copper oxide and cobalt oxide nanoparticles. The UV absorption peaks are at 326 nm and 506 nm for copper oxide and cobalt oxide nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobalt%20oxide" title="cobalt oxide">cobalt oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title=" copper oxide"> copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title=" green synthesis"> green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/142865/green-synthesis-of-copper-oxide-and-cobalt-oxide-nanoparticles-using-spinacia-oleracea-leaf-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3333</span> Preparation of Magnetic Hydroxyapatite Composite by Wet Chemical Process for Phycobiliproteins Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shu-Jen%20Chen">Shu-Jen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Chien%20Wan"> Yi-Chien Wan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruey-Chi%20Wang"> Ruey-Chi Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) can be applied to the fabrication of bone replacement materials, the composite of dental filling, and the adsorption of biomolecules and dyes. The integration of HAp and magnetic materials would offer several advantages for bio-separation process because the magnetic adsorbents is capable of recovered by applied magnetic field. C-phycocyanin (C-PC) and Allophycocyanin (APC), isolated from Spirulina platensis, can be used in fluorescent labeling probes, health care foods and clinical diagnostic reagents. Although the purification of C-PC and APC are reported by HAp adsorption, the adsorption of C-PC and APC by magnetic HAp composites was not reported yet. Therefore, the fabrication of HAp with magnetic silica nanoparticles for proteins adsorption was investigated in this work. First, the magnetic silica particles were prepared by covering silica layer on Fe3O4 nanoparticles with a reverse micelle method. Then, the Fe3O4@SiO2 nanoparticles were mixed with calcium carbonate to obtain magnetic silica/calcium carbonate composites (Fe3O4@SiO2/CaCO3). The Fe3O4@SiO2/CaCO3 was further reacted with K2HPO4 for preparing the magnetic silica/hydroxyapatite composites (Fe3O4@SiO2/HAp). The adsorption experiments indicated that the adsorption capacity of Fe3O4@SiO2/HAp toward C-PC and APC were highest at pH 6. The adsorption of C-PC and APC by Fe3O4@SiO2/HAp could be correlated by the pseudo-second-order model, indicating chemical adsorption dominating the adsorption process. Furthermore, the adsorption data showed that the adsorption of Fe3O4@SiO2/HAp toward C-PC and APC followed the Langmuir isotherm. The isoelectric points of C-PC and APC were around 5.0. Additionally, the zeta potential data showed the Fe3O4@SiO2/HAp composite was negative charged at pH 6. Accordingly, the adsorption mechanism of Fe3O4@SiO2/HAp toward C-PC and APC should be governed by hydrogen bonding rather than electrostatic interaction. On the other hand, as compared to C-PC, the Fe3O4@SiO2/HAp shows higher adsorption affinity toward APC. Although the Fe3O4@SiO2/HAp cannot recover C-PC and APC from Spirulina platensis homogenate, the Fe3O4@SiO2/HAp can be applied to separate C-PC and APC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title="hydroxyapatite">hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic" title=" magnetic"> magnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=C-phycocyanin" title=" C-phycocyanin"> C-phycocyanin</a>, <a href="https://publications.waset.org/abstracts/search?q=allophycocyanin" title=" allophycocyanin"> allophycocyanin</a> </p> <a href="https://publications.waset.org/abstracts/96630/preparation-of-magnetic-hydroxyapatite-composite-by-wet-chemical-process-for-phycobiliproteins-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20%28fe3o4%29%20nanoparticles&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20%28fe3o4%29%20nanoparticles&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20%28fe3o4%29%20nanoparticles&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20%28fe3o4%29%20nanoparticles&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20%28fe3o4%29%20nanoparticles&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20%28fe3o4%29%20nanoparticles&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20%28fe3o4%29%20nanoparticles&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20%28fe3o4%29%20nanoparticles&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20%28fe3o4%29%20nanoparticles&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20%28fe3o4%29%20nanoparticles&page=112">112</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20%28fe3o4%29%20nanoparticles&page=113">113</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20%28fe3o4%29%20nanoparticles&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>