CINXE.COM

Search results for: dissipative plasmas

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: dissipative plasmas</title> <meta name="description" content="Search results for: dissipative plasmas"> <meta name="keywords" content="dissipative plasmas"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="dissipative plasmas" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="dissipative plasmas"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 91</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: dissipative plasmas</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Dust Ion Acoustic Shock Waves in Dissipative Superthermal Plasmas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Reza%20Pakzad">Hamid Reza Pakzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the properties of dust-ion-acoustic (DIA) shock waves in an unmagnetized dusty plasma, whose constituents are inertial ions, superthermal electrons, and stationary dust particles, are investigated by employing the reductive perturbation method. The dissipation is taken into account the kinematic viscosity among the plasma constituents. It is shown that the basic features of DIA shock waves are significantly modified by the effects of electron superthermality and ion kinematic viscosity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reductive%20perturbation%20method" title="reductive perturbation method">reductive perturbation method</a>, <a href="https://publications.waset.org/abstracts/search?q=dust%20ion%20acoustic%20shock%20wave" title=" dust ion acoustic shock wave"> dust ion acoustic shock wave</a>, <a href="https://publications.waset.org/abstracts/search?q=superthermal%20electron" title=" superthermal electron"> superthermal electron</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative%20plasmas" title=" dissipative plasmas"> dissipative plasmas</a> </p> <a href="https://publications.waset.org/abstracts/51026/dust-ion-acoustic-shock-waves-in-dissipative-superthermal-plasmas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Innovative Dissipative Bracings for Seismic-Resistant Automated Rack Supported Warehouses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agnese%20Natali">Agnese Natali</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Morelli"> Francesco Morelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20Salvatore"> Walter Salvatore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automated Rack Supported Warehouses (ARSWs) are storage buildings whose structure is made of the same racks where goods are placed. The possibility of designing dissipative seismic-resistant ARSWs is investigated. Diagonals are the dissipative elements, arranged as tense-only X bracings. Local optimization is numerically performed to satisfy the over-resistant connection request for the dissipative element, that is hard to be reached due the geometrical limits of the thin-walled diagonals and must be balanced with resistance, the limit of slenderness, and ductility requests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20racks" title="steel racks">steel racks</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-walled%20cold-formed%20elements" title=" thin-walled cold-formed elements"> thin-walled cold-formed elements</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20optimization" title=" structural optimization"> structural optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchy%20rules" title=" hierarchy rules"> hierarchy rules</a>, <a href="https://publications.waset.org/abstracts/search?q=dog-bone%20philosophy" title=" dog-bone philosophy"> dog-bone philosophy</a> </p> <a href="https://publications.waset.org/abstracts/143716/innovative-dissipative-bracings-for-seismic-resistant-automated-rack-supported-warehouses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Comparative Study of Soliton Collisions in Uniform and Nonuniform Magnetized Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renu%20Tomar">Renu Tomar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitendra%20K.%20Malik"> Hitendra K. Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20P.%20Dahiya"> Raj P. Dahiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Similar to the sound waves in air, plasmas support the propagation of ion waves, which evolve into the solitary structures when the effect of non linearity and dispersion are balanced. The ion acoustic solitary waves have been investigated in details in homogeneous plasmas, inhomogeneous plasmas, and magnetized plasmas. The ion acoustic solitary waves are also found to reflect from a density gradient or boundary present in the plasma after propagating. Another interesting feature of the solitary waves is their collision. In the present work, we carry out analytical calculations for the head-on collision of solitary waves in a magnetized plasma which has dust grains in addition to the ions and electrons. For this, we employ Poincar´e-Lighthill-Kuo (PLK) method. To lowest nonlinear order, the problem of colliding solitary waves leads to KdV (modified KdV) equations and also yields the phase shifts that occur in the interaction. These calculations are accomplished for the uniform and nonuniform plasmas, and the results on the soliton properties are discussed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inhomogeneous%20magnetized%20plasma" title="inhomogeneous magnetized plasma">inhomogeneous magnetized plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=dust%20charging" title=" dust charging"> dust charging</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton%20collisions" title=" soliton collisions"> soliton collisions</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetized%20plasma" title=" magnetized plasma"> magnetized plasma</a> </p> <a href="https://publications.waset.org/abstracts/14740/comparative-study-of-soliton-collisions-in-uniform-and-nonuniform-magnetized-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Theoretical Investigations and Simulation of Electromagnetic Ion Cyclotron Waves in the Earth’s Magnetosphere Through Magnetospheric Multiscale Mission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Abid">A. A. Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wave-particle interactions are considered to be the paramount in the transmission of energy in collisionless space plasmas, where electromagnetic fields confined the charged particles movement. One of the distinct features of energy transfer in collisionless plasma is wave-particle interaction which is ubiquitous in space plasmas. The three essential populations of the inner magnetosphere are cold plasmaspheric plasmas, ring-currents, and radiation belts high energy particles. The transition region amid such populations initiates wave-particle interactions among distinct plasmas and the wave mode perceived in the magnetosphere is the electromagnetic ion cyclotron (EMIC) wave. These waves can interact with numerous particle species resonantly, accompanied by plasma particle heating is still in debate. In this work we paid particular attention to how EMIC waves impact plasma species, specifically how they affect the heating of electrons and ions during storm and substorm in the Magnetosphere. Using Magnetospheric Multiscale (MMS) mission and electromagnetic hybrid simulation, this project will investigate the energy transfer mechanism (e.g., Landau interactions, bounce resonance interaction, cyclotron resonance interaction, etc.) between EMIC waves and cold-warm plasma populations. Other features such as the production of EMIC waves and the importance of cold plasma particles in EMIC wave-particle interactions will also be worth exploring. Wave particle interactions, electromagnetic hybrid simulation, electromagnetic ion cyclotron (EMIC) waves, Magnetospheric Multiscale (MMS) mission, space plasmas, inner magnetosphere <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MMS" title="MMS">MMS</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetosphere" title=" magnetosphere"> magnetosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20particle%20interraction" title=" wave particle interraction"> wave particle interraction</a>, <a href="https://publications.waset.org/abstracts/search?q=non-maxwellian%20distribution" title=" non-maxwellian distribution"> non-maxwellian distribution</a> </p> <a href="https://publications.waset.org/abstracts/183636/theoretical-investigations-and-simulation-of-electromagnetic-ion-cyclotron-waves-in-the-earths-magnetosphere-through-magnetospheric-multiscale-mission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Dynamics of Adiabatic Rapid Passage in an Open Rabi Dimer Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justin%20Zhengjie%20Tan">Justin Zhengjie Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhao"> Yang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adiabatic Rapid Passage, a popular method of achieving population inversion, is studied in a Rabi dimer model in the presence of noise which acts as a dissipative environment. The integration of the multi-Davydov D2 Ansatz into the time-dependent variational framework enables us to model the intricate quantum system accurately. By influencing the system with a driving field strength resonant with the energy spacing, the probability of adiabatic rapid passage, which is modelled after the Landau Zener model, can be derived along with several other observables, such as the photon population. The effects of a dissipative environment can be reproduced by coupling the system to a common phonon mode. By manipulating the strength and frequency of the driving field, along with the coupling strength of the phonon mode to the qubits, we are able to control the qubits and photon dynamics and subsequently increase the probability of Adiabatic Rapid Passage happening. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20electrodynamics" title="quantum electrodynamics">quantum electrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=adiabatic%20rapid%20passage" title=" adiabatic rapid passage"> adiabatic rapid passage</a>, <a href="https://publications.waset.org/abstracts/search?q=Landau-Zener%20transitions" title=" Landau-Zener transitions"> Landau-Zener transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative%20environment" title=" dissipative environment"> dissipative environment</a> </p> <a href="https://publications.waset.org/abstracts/167520/dynamics-of-adiabatic-rapid-passage-in-an-open-rabi-dimer-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Analytical Solutions for Geodesic Acoustic Eigenmodes in Tokamak Plasmas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20I.%20Ilgisonis">Victor I. Ilgisonis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludmila%20V.%20Konovaltseva"> Ludmila V. Konovaltseva</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20P.%20Lakhin"> Vladimir P. Lakhin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20A.%20Sorokina"> Ekaterina A. Sorokina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The analytical solutions for geodesic acoustic eigenmodes in tokamak plasmas with circular concentric magnetic surfaces are found. In the frame of ideal magnetohydrodynamics the dispersion relation taking into account the toroidal coupling between electrostatic perturbations and electromagnetic perturbations with poloidal mode number |m| = 2 is derived. In the absence of such a coupling the dispersion relation gives the standard continuous spectrum of geodesic acoustic modes. The analysis of the existence of global eigenmodes for plasma equilibria with both off-axis and on-axis maximum of the local geodesic acoustic frequency is performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tokamak" title="tokamak">tokamak</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD" title=" MHD"> MHD</a>, <a href="https://publications.waset.org/abstracts/search?q=geodesic%20acoustic%20mode" title=" geodesic acoustic mode"> geodesic acoustic mode</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenmode" title=" eigenmode"> eigenmode</a> </p> <a href="https://publications.waset.org/abstracts/11335/analytical-solutions-for-geodesic-acoustic-eigenmodes-in-tokamak-plasmas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">734</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Zero-Dissipative Explicit Runge-Kutta Method for Periodic Initial Value Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Senu">N. Senu</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Kasim"> I. A. Kasim</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ismail"> F. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Bachok"> N. Bachok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper zero-dissipative explicit Runge-Kutta method is derived for solving second-order ordinary differential equations with periodical solutions. The phase-lag and dissipation properties for Runge-Kutta (RK) method are also discussed. The new method has algebraic order three with dissipation of order infinity. The numerical results for the new method are compared with existing method when solving the second-order differential equations with periodic solutions using constant step size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissipation" title="dissipation">dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillatory%20solutions" title=" oscillatory solutions"> oscillatory solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=phase-lag" title=" phase-lag"> phase-lag</a>, <a href="https://publications.waset.org/abstracts/search?q=Runge-Kutta%20methods" title=" Runge-Kutta methods "> Runge-Kutta methods </a> </p> <a href="https://publications.waset.org/abstracts/13272/zero-dissipative-explicit-runge-kutta-method-for-periodic-initial-value-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Kinetic Model to Interpret Whistler Waves in Multicomponent Non-Maxwellian Space Plasmas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Warda%20Nasir">Warda Nasir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20S.%20Qureshi"> M. N. S. Qureshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whistler waves are right handed circularly polarized waves and are frequently observed in space plasmas. The Low frequency branch of the Whistler waves having frequencies nearly around 100 Hz, known as Lion roars, are frequently observed in magnetosheath. Another feature of the magnetosheath is the observations of flat top electron distributions with single as well as two electron populations. In the past, lion roars were studied by employing kinetic model using classical bi-Maxwellian distribution function, however, could not be justified both on quantitatively as well as qualitatively grounds. We studied Whistler waves by employing kinetic model using non-Maxwellian distribution function such as the generalized (r,q) distribution function which is the generalized form of kappa and Maxwellian distribution functions by employing kinetic theory with single or two electron populations. We compare our results with the Cluster observations and found good quantitative and qualitative agreement between them. At times when lion roars are observed (not observed) in the data and bi-Maxwellian could not provide the sufficient growth (damping) rates, we showed that when generalized (r,q) distribution function is employed, the resulted growth (damping) rates exactly match the observations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinetic%20model" title="kinetic model">kinetic model</a>, <a href="https://publications.waset.org/abstracts/search?q=whistler%20waves" title=" whistler waves"> whistler waves</a>, <a href="https://publications.waset.org/abstracts/search?q=non-maxwellian%20distribution%20function" title=" non-maxwellian distribution function"> non-maxwellian distribution function</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20plasmas" title=" space plasmas"> space plasmas</a> </p> <a href="https://publications.waset.org/abstracts/52048/kinetic-model-to-interpret-whistler-waves-in-multicomponent-non-maxwellian-space-plasmas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Modulational Instability of Ion-Acoustic Wave in Electron-Positron-Ion Plasmas with Two-Electron Temperature Distributions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Kumar%20Chawla">Jitendra Kumar Chawla</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20Kumar%20Mishra"> Mukesh Kumar Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nonlinear amplitude modulation of ion-acoustic wave is studied in the presence of two-electron temperature distribution in unmagnetized electron-positron-ion plasmas. The Krylov-Bogoliubov-Mitropolosky (KBM) perturbation method is used to derive the nonlinear Schrödinger equation. The dispersive and nonlinear coefficients are obtained which depend on the temperature and concentration of the hot and cold electron species as well as the positron density and temperature. The modulationally unstable regions are studied numerically for a wide range of wave number. The effects of the temperature and concentration of the hot and cold electron on the modulational stability are investigated in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modulational%20instability" title="modulational instability">modulational instability</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20acoustic%20wave" title=" ion acoustic wave"> ion acoustic wave</a>, <a href="https://publications.waset.org/abstracts/search?q=KBM%20method" title=" KBM method"> KBM method</a> </p> <a href="https://publications.waset.org/abstracts/28700/modulational-instability-of-ion-acoustic-wave-in-electron-positron-ion-plasmas-with-two-electron-temperature-distributions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">665</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Effect of Plasma Radiation on Keratinocyte Cells Involved in the Wound Healing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Fazekas">B. Fazekas</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Korolov"> I. Korolov</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kutasi"> K. Kutasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma medicine, which involves the use of gas discharge plasmas for medical applications is a rapidly growing research field. The use of non-thermal atmospheric pressure plasmas in dermatology to assist tissue regeneration by improving the healing of infected and/or chronic wounds is a promising application. It is believed that plasma can activate cells, which are involved in the wound closure. Non-thermal atmospheric plasmas are rich in chemically active species (such as O and N-atoms, O2(a) molecules) and radiative species such as the NO, N2+ and N2 excited molecules, which dominantly radiate in the 200-500 nm spectral range. In order to understand the effect of plasma species, both of chemically active and radiative species on wound healing process, the interaction of physical plasma with the human skin cells is necessary. In order to clarify the effect of plasma radiation on the wound healing process we treated keratinocyte cells – that are one of the main cell types in human skin epidermis – covered with a layer of phosphate-buffered saline (PBS) with a low power atmospheric pressure plasma. For the generation of such plasma we have applied a plasma needle. Here, the plasma is ignited at the tip of the needle in flowing helium gas in contact with the ambient air. To study the effect of plasma radiation we used a plasma needle configuration, where the plasma species – chemically active radicals and charged species – could not reach the treated cells, but only the radiation. For the comparison purposes, we also irradiated the cells using a UV-B light source (FS20 lamp) with a 20 and 40 mJ cm-2 dose of 312 nm. After treatment the viability and the proliferation of the cells have been examined. The proliferation of cells has been studied with a real time monitoring system called Xcelligence. The results have indicated, that the 20 mJ cm-2 dose did not affect cell viability, whereas the 40 mJ cm-2 dose resulted a decrease in cell viability. The results have shown that the plasma radiation have no quantifiable effect on the cell proliferation as compared to the non-treated cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UV%20radiation" title="UV radiation">UV radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-equilibrium%20gas%20discharges%20%28non-thermal%20plasmas%29" title=" non-equilibrium gas discharges (non-thermal plasmas)"> non-equilibrium gas discharges (non-thermal plasmas)</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20emission" title=" plasma emission"> plasma emission</a>, <a href="https://publications.waset.org/abstracts/search?q=keratinocyte%20cells" title=" keratinocyte cells"> keratinocyte cells</a> </p> <a href="https://publications.waset.org/abstracts/19358/effect-of-plasma-radiation-on-keratinocyte-cells-involved-in-the-wound-healing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Correlations between Wear Rate and Energy Dissipation Mechanisms in a Ti6Al4V–WC/Co Sliding Pair</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Rudas">J. S. Rudas</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Guti%C3%A9rrez%20Cabeza"> J. M. Gutiérrez Cabeza</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Corz%20Rodr%C3%ADguez"> A. Corz Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20G%C3%B3mez"> L. M. Gómez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Toro"> A. O. Toro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prediction of the wear rate of rubbing pairs has attracted the interest of many researchers for years. It has been recently proposed that the sliding wear rate can be inferred from the calculation of the energy rate dissipated by the tribological pair. In this paper some of the dissipative mechanisms present in a pin-on-disc configuration are discussed and both analytical and numerical calculations are carried out. Three dissipative mechanisms were studied: First, the energy release due to temperature gradients within the solid; second, the heat flow from the solid to the environment, and third, the energy loss due to abrasive damage of the surface. The Finite Element Method was used to calculate the dynamics of heat transfer within the solid, with the aid of commercial software. Validation the FEM model was assisted by virtual and laboratory experimentation using different operating points (sliding velocity and geometry contact). The materials for the experiments were Ti6Al4V alloy and Tungsten Carbide (WC-Co). The results showed that the sliding wear rate has a linear relationship with the energy dissipation flow. It was also found that energy loss due to micro-cutting is relevant for the system. This mechanism changes if the sliding velocity and pin geometry are modified though the degradation coefficient continues to present a linear behavior. We found that the less relevant dissipation mechanism for all the cases studied is the energy release by temperature gradients in the solid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative%20mechanism" title=" dissipative mechanism"> dissipative mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20sliding" title=" dry sliding"> dry sliding</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear "> wear </a> </p> <a href="https://publications.waset.org/abstracts/22761/correlations-between-wear-rate-and-energy-dissipation-mechanisms-in-a-ti6al4v-wcco-sliding-pair" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Seismic Retrofit of Reinforced Concrete Structures by Highly Dissipative Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Sorace">Stefano Sorace</a>, <a href="https://publications.waset.org/abstracts/search?q=Gloria%20Terenzi"> Gloria Terenzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Giulia%20Mazzieri"> Giulia Mazzieri</a>, <a href="https://publications.waset.org/abstracts/search?q=Iacopo%20Costoli"> Iacopo Costoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prolonged earthquake sequence that struck several urban agglomerations and villages in Central Italy, starting from 24 August 2016 through January 2017, highlighted once again the seismic vulnerability of pre-normative reinforced concrete (R/C) structures. At the same time, considerable damages were surveyed in recently retrofitted R/C buildings too, one of which also by means of a dissipative bracing system. The solution adopted for the latter did not expressly take into account the performance of non-structural elements, and namely of infills and partitions, confirming the importance of their dynamic interaction with the structural skeleton. Based on this consideration, an alternative supplemental damping-based retrofit solution for this representative building, i.e., a school with an R/C structure situated in the municipality of Norcia, is examined in this paper. It consists of the incorporation of dissipative braces equipped with pressurized silicone fluid viscous (FV) dampers, instead of the BRAD system installed in the building, the delayed activation of which -caused by the high stiffness of the constituting metallic dampers- determined the observed non-structural damages. Indeed, the alternative solution proposed herein, characterized by dissipaters with mainly damping mechanical properties, guarantees an earlier activation of the protective system. A careful assessment analysis, preliminarily carried out to simulate and check the case study building performance in originally BRAD-retrofitted conditions, confirms that the interstorey drift demand related to the Norcia earthquake's mainshock and aftershocks is beyond the response capacity of infills. The verification analyses developed on the R/C structure, including the FV-damped braces, highlight their higher performance, giving rise to a completely undamaged response both of structural and non-structural elements up to the basic design earthquake normative level of seismic action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissipative%20technologies" title="dissipative technologies">dissipative technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20assessment%20analysis" title=" performance assessment analysis"> performance assessment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20structures" title=" concrete structures"> concrete structures</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title=" seismic retrofit"> seismic retrofit</a> </p> <a href="https://publications.waset.org/abstracts/114797/seismic-retrofit-of-reinforced-concrete-structures-by-highly-dissipative-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Treatment of Coal-Water-Oil Slurry Using High Voltage Discharge and Dielectric Barrier Discharge Plasmas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Song-Chol%20Pak">Song-Chol Pak</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Jun%20Kim"> Yong-Jun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hak-%20Chol%20Choe"> Hak- Chol Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Son%20Choe"> Yong-Son Choe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We converted the coal-water-oil slurry (CWOS) into an alternative fuel (AF) for internal combustion engines by high-voltage discharge (HVD) and dielectric barrier discharge (DBD) plasmas. After its treatments, the CWOS had the average coal size reduced from 12.95 to 8.26㎛, improved dispersibility, fewer deposits, and calorific value enhanced by 35%. The effects of some parameters were analyzed on the conversion of CWOS to AF, and the AF was characterized. The plasma-treated CWOS is similar to other liquid fuels in rheological properties and calorific value. It is therefore concluded that it can be directly employed in internal combustion engines with a little design modification. The suggested method may be an alternative way of converting CWOS to AF without any dispersant or stabilizer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal-water-oil%20slurry" title="coal-water-oil slurry">coal-water-oil slurry</a>, <a href="https://publications.waset.org/abstracts/search?q=high-voltage%20discharge" title=" high-voltage discharge"> high-voltage discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20barrier%20discharge" title=" dielectric barrier discharge"> dielectric barrier discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20treatment" title=" plasma treatment"> plasma treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20fuel" title=" alternative fuel"> alternative fuel</a> </p> <a href="https://publications.waset.org/abstracts/191431/treatment-of-coal-water-oil-slurry-using-high-voltage-discharge-and-dielectric-barrier-discharge-plasmas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> High Performance Wood Shear Walls and Dissipative Anchors for Damage Limitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vera%20Wilden">Vera Wilden</a>, <a href="https://publications.waset.org/abstracts/search?q=Benno%20Hoffmeister"> Benno Hoffmeister</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgios%20%20Balaskas"> Georgios Balaskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Rauber"> Lukas Rauber</a>, <a href="https://publications.waset.org/abstracts/search?q=Burkhard%20Walter"> Burkhard Walter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Light-weight timber frame elements represent an efficient structural solution for wooden multistory buildings. The wall elements of such buildings – which act as shear diaphragms- provide lateral stiffness and resistance to wind and seismic loads. The tendency towards multi-story structures leads to challenges regarding the prediction of stiffness, strength and ductility of the buildings. Lightweight timber frame elements are built up of several structural parts (sheeting, fasteners, frame, support and anchorages); each of them contributing to the dynamic response of the structure. This contribution describes the experimental and numerical investigation and development of enhanced lightweight timber frame buildings. These developments comprise high-performance timber frame walls with the variable arrangements of sheathing planes and dissipative anchors at the base of the timber buildings, which reduce damages to the timber structure and can be exchanged after significant earthquakes. In order to prove the performance of the developed elements in the context of a real building a full-scale two-story building core was designed and erected in the laboratory and tested experimentally for its seismic performance. The results of the tests and a comparison of the test results to the predicted behavior are presented. Observation during the test also reveals some aspects of the design and details which need to consider in the application of the timber walls in the context of the complete building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissipative%20anchoring" title="dissipative anchoring">dissipative anchoring</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20scale%20test" title=" full scale test"> full scale test</a>, <a href="https://publications.waset.org/abstracts/search?q=push-over-test" title=" push-over-test"> push-over-test</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20shear%20walls" title=" wood shear walls"> wood shear walls</a> </p> <a href="https://publications.waset.org/abstracts/139541/high-performance-wood-shear-walls-and-dissipative-anchors-for-damage-limitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Energy Dissipation Characteristics of an Elastomer under Dynamic Condition: A Comprehensive Assessment Using High and Low Frequency Analyser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Anas">K. Anas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Selvakumar"> M. Selvakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Samson%20David"> Samson David</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20Babu"> R. R. Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chattopadhyay"> S. Chattopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dynamic deformation of a visco elastic material can cause heat generation. This heat generation is aspect energy dissipation. The present work investigates the contribution of various factors like; elastomer structure, cross link type and density, filler networking, reinforcement potential and temperature at energy dissipation mechanism. The influences of these elements are investigated using very high frequency analyzer (VHF ) and dynamical mechanical analysis(DMA).VHF follows transmissibility and vibration isolation principle whereas DMA works on dynamical mechanical deformation principle. VHF analysis of different types of elastomers reveals that elastomer can act as a transmitter or damper of energy depending on the applied frequency ratio (ω/ωn). Dynamic modulus (G') of low damping rubbers like natural rubber does not varies rapidly with frequency but vice-versa for high damping rubber like butyl rubber (IIR). VHF analysis also depicts that polysulfidic linkages has high damping ratio (ζ) than mono sulfidic linkages due to its dissipative nature. At comparable cross link density, mono sulfidic linkages shows higher glass transition temperature (Tg) than poly sulfidic linkages. The intensity and location of loss modulus (G'') peak of different types of carbon black filled natural rubber compounds suggests that segmental relaxation at glass transition temperature (Tg) is seldom affected by filler particles, but the filler networks can influence the cross link density by absorbing the curatives. The filler network breaking and reformation during a dynamic strain is a thermally activated process. Thus, stronger aggregates are highly dissipative in nature. Measurements indicate that at lower temperature regimes polymeric chain friction is highly dissipative in nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping%20ratio" title="damping ratio">damping ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=crosslinking%20density" title=" crosslinking density"> crosslinking density</a>, <a href="https://publications.waset.org/abstracts/search?q=segmental%20motion" title=" segmental motion"> segmental motion</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20activity" title=" surface activity"> surface activity</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative" title=" dissipative"> dissipative</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20chain%20friction" title=" polymeric chain friction"> polymeric chain friction</a> </p> <a href="https://publications.waset.org/abstracts/38171/energy-dissipation-characteristics-of-an-elastomer-under-dynamic-condition-a-comprehensive-assessment-using-high-and-low-frequency-analyser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Collapse Performance of Steel Frame with Hysteric Energy Dissipating Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyung-Joon%20Kim">Hyung-Joon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Young%20Park"> Jin-Young Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy dissipating devices (EDDs) have become more popular as seismic-force-resisting systems for building structures. However, there is little information on the collapse capacities of frames employing EDDs which are an important criterion for their seismic design. This study investigates the collapse capacities of steel frames with TADAS hysteric energy dissipative devices (HEDDs) that become an alternative to steel braced frames. To do this, 5-story steel ordinary concentrically braced frame and steel frame with HEDDs are designed and modeled. Nonlinear dynamic analyses and incremental dynamic analysis with 40 ground motions scaled to maximum considered earthquake are carried out. It is shown from analysis results that the significant enhancement in terms of the collapse capacities is found due to the introduction HEDDs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collapse%20capacity" title="collapse capacity">collapse capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20dynamic%20analysis" title=" incremental dynamic analysis"> incremental dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20braced%20frame" title=" steel braced frame"> steel braced frame</a>, <a href="https://publications.waset.org/abstracts/search?q=TADAS%20hysteric%20energy%20dissipative%20device" title=" TADAS hysteric energy dissipative device"> TADAS hysteric energy dissipative device</a> </p> <a href="https://publications.waset.org/abstracts/14461/collapse-performance-of-steel-frame-with-hysteric-energy-dissipating-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Simulation of Red Blood Cells in Complex Micro-Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ting%20Ye">Ting Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Nhan%20Phan-Thien"> Nhan Phan-Thien</a>, <a href="https://publications.waset.org/abstracts/search?q=Chwee%20Teck%20Lim"> Chwee Teck Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Peng"> Lina Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Huixin%20Shi"> Huixin Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In biofluid flow systems, often the flow problems of fluids of complex structures, such as the flow of red blood cells (RBCs) through complex capillary vessels, need to be considered. In this paper, we aim to apply a particle-based method, Smoothed Dissipative Particle Dynamics (SDPD), to simulate the motion and deformation of RBCs in complex micro-tubes. We first present the theoretical models, including SDPD model, RBC-fluid interaction model, RBC deformation model, RBC aggregation model, and boundary treatment model. After that, we show the verification and validation of these models, by comparing our numerical results with the theoretical, experimental and previously-published numerical results. Finally, we provide some simulation cases, such as the motion and deformation of RBCs in rectangular, cylinder, curved, bifurcated, and constricted micro-tubes, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregation" title="aggregation">aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20blood%20cell" title=" red blood cell"> red blood cell</a>, <a href="https://publications.waset.org/abstracts/search?q=smoothed%20dissipative%20particle%20dynamics" title=" smoothed dissipative particle dynamics"> smoothed dissipative particle dynamics</a> </p> <a href="https://publications.waset.org/abstracts/88686/simulation-of-red-blood-cells-in-complex-micro-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Effects of Electric Field on Diffusion Coefficients and Share Viscosity in Dusty Plasmas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Asif%20ShakoorI">Muhammad Asif ShakoorI</a>, <a href="https://publications.waset.org/abstracts/search?q=Maogang%20He"> Maogang He</a>, <a href="https://publications.waset.org/abstracts/search?q=Aamir%20Shahzad"> Aamir Shahzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dusty (complex) plasmas contained micro-sized charged dust particles in addition to ions, electrons, and neutrals. It is typically low-temperature plasma and exists in a wide variety of physical systems. In this work, the effects of an external electric field on the diffusion coefficient and share viscosity are investigated through equilibrium molecular dynamics (EMD) simulations in three-dimensional (3D) strongly coupled (SC) dusty plasmas (DPs). The effects of constant and varying normalized electric field strength (E*) have been computed along with different combinations of plasma states on the diffusion of dust particles using EMD simulations. Diffusion coefficient (D) and share viscosity (η) along with varied system sizes, in the limit of varying E* values, is accounted for an appropriate range of plasma coupling (Γ) and screening strength (κ) parameters. At varying E* values, it is revealed that the 3D diffusion coefficient increases with increasing E* and κ; however, it decreases with an increase of Γ but within statistical limits. The share viscosity increases with increasing E*and Γ and decreases with increasing κ. New simulation results are outstanding that the combined effects of electric field and screening strengths give well-matched values of Dandη at low-intermediate to large Γ with varying small-intermediate to large N. The current EMD simulation outcomes under varying electric field strengths are in satisfactory well-matched with previous known simulation data of EMD simulations of the SC-DPs. It has been shown that the present EMD simulation data enlarged the range of E* strength up to 0.1 ≤ E*≤ 1.0 in order to find the linear range of the DPs system and to demonstrate the fundamental nature of electric field linearity of 3D SC-DPs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strongly%20coupled%20dusty%20plasma" title="strongly coupled dusty plasma">strongly coupled dusty plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20coefficient" title=" diffusion coefficient"> diffusion coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=share%20viscosity" title=" share viscosity"> share viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20strength" title=" electric field strength"> electric field strength</a> </p> <a href="https://publications.waset.org/abstracts/144509/effects-of-electric-field-on-diffusion-coefficients-and-share-viscosity-in-dusty-plasmas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Nonlinear Propagation of Acoustic Soliton Waves in Dense Quantum Electron-Positron Magnetoplasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdikian">A. Abdikian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propagation of nonlinear acoustic wave in dense electron-positron (e-p) plasmas in the presence of an external magnetic field and stationary ions (to neutralize the plasma background) is studied. By means of the quantum hydrodynamics model and applying the reductive perturbation method, the Zakharov-Kuznetsov equation is derived. Using the bifurcation theory of planar dynamical systems, the compressive structure of electrostatic solitary wave and periodic travelling waves is found. The numerical results show how the ion density ratio, the ion cyclotron frequency, and the direction cosines of the wave vector affect the nonlinear electrostatic travelling waves. The obtained results may be useful to better understand the obliquely nonlinear electrostatic travelling wave of small amplitude localized structures in dense magnetized quantum e-p plasmas and may be applicable to study the particle and energy transport mechanism in compact stars such as the interior of massive white dwarfs etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bifurcation%20theory" title="bifurcation theory">bifurcation theory</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20portrait" title=" phase portrait"> phase portrait</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetized%20electron-positron%20plasma" title=" magnetized electron-positron plasma"> magnetized electron-positron plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20Zakharov-Kuznetsov%20equation" title=" the Zakharov-Kuznetsov equation"> the Zakharov-Kuznetsov equation</a> </p> <a href="https://publications.waset.org/abstracts/72076/nonlinear-propagation-of-acoustic-soliton-waves-in-dense-quantum-electron-positron-magnetoplasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Electro-Hydrodynamic Effects Due to Plasma Bullet Propagation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Svarnas">Panagiotis Svarnas</a>, <a href="https://publications.waset.org/abstracts/search?q=Polykarpos%20Papadopoulos"> Polykarpos Papadopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atmospheric-pressure cold plasmas continue to gain increasing interest for various applications due to their unique properties, like cost-efficient production, high chemical reactivity, low gas temperature, adaptability, etc. Numerous designs have been proposed for these plasmas production in terms of electrode configuration, driving voltage waveform and working gas(es). However, in order to exploit most of the advantages of these systems, the majority of the designs are based on dielectric-barrier discharges (DBDs) either in filamentary or glow regimes. A special category of the DBD-based atmospheric-pressure cold plasmas refers to the so-called plasma jets, where a carrier noble gas is guided by the dielectric barrier (usually a hollow cylinder) and left to flow up to the atmospheric air where a complicated hydrodynamic interplay takes place. Although it is now well established that these plasmas are generated due to ionizing waves reminding in many ways streamer propagation, they exhibit discrete characteristics which are better mirrored on the terms 'guided streamers' or 'plasma bullets'. These 'bullets' travel with supersonic velocities both inside the dielectric barrier and the channel formed by the noble gas during its penetration into the air. The present work is devoted to the interpretation of the electro-hydrodynamic effects that take place downstream of the dielectric barrier opening, i.e., in the noble gas-air mixing area where plasma bullet propagate under the influence of local electric fields in regions of variable noble gas concentration. Herein, we focus on the role of the local space charge and the residual ionic charge left behind after the bullet propagation in the gas flow field modification. The study communicates both experimental and numerical results, coupled in a comprehensive manner. The plasma bullets are here produced by a custom device having a quartz tube as a dielectric barrier and two external ring-type electrodes driven by sinusoidal high voltage at 10 kHz. Helium gas is fed to the tube and schlieren photography is employed for mapping the flow field downstream of the tube orifice. Mixture mass conservation equation, momentum conservation equation, energy conservation equation in terms of temperature and helium transfer equation are simultaneously solved, leading to the physical mechanisms that govern the experimental results. Namely, we deal with electro-hydrodynamic effects mainly due to momentum transfer from atomic ions to neutrals. The atomic ions are left behind as residual charge after the bullet propagation and gain energy from the locally created electric field. The electro-hydrodynamic force is eventually evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric-pressure%20plasmas" title="atmospheric-pressure plasmas">atmospheric-pressure plasmas</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric-barrier%20discharges" title=" dielectric-barrier discharges"> dielectric-barrier discharges</a>, <a href="https://publications.waset.org/abstracts/search?q=schlieren%20photography" title=" schlieren photography"> schlieren photography</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-hydrodynamic%20force" title=" electro-hydrodynamic force"> electro-hydrodynamic force</a> </p> <a href="https://publications.waset.org/abstracts/98556/electro-hydrodynamic-effects-due-to-plasma-bullet-propagation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> A Tunable Long-Cavity Passive Mode-Locked Fiber Laser Based on Nonlinear Amplifier Loop Mirror</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pinghe%20Wang">Pinghe Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we demonstrate a tunable long-cavity passive mode-locked fiber laser. The mode locker is a nonlinear amplifying loop mirror (NALM). The cavity frequency of the laser is 465 kHz because that 404m SMF is inserted in the cavity. A tunable bandpass filter with ~1nm 3dB bandwidth is inserted into the cavity to realize tunable mode locking. The passive mode-locked laser at a fixed wavelength is investigated in detail. The experimental results indicate that the laser operates in dissipative soliton resonance (DSR) region. When the pump power is 400mW, the laser generates the rectangular pulses with 10.58 ns pulse duration, 70.28nJ single-pulse energy. When the pump power is 400mW, the laser keeps stable mode locking status in the range from 1523.4nm to 1575nm. During the whole tuning range, the SNR, the pulse duration, the output power and single pulse energy have a little fluctuation because that the gain of the EDF changes with the wavelength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20laser" title="fiber laser">fiber laser</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative%20soliton%20resonance" title=" dissipative soliton resonance"> dissipative soliton resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20locking" title=" mode locking"> mode locking</a>, <a href="https://publications.waset.org/abstracts/search?q=tunable" title=" tunable"> tunable</a> </p> <a href="https://publications.waset.org/abstracts/78191/a-tunable-long-cavity-passive-mode-locked-fiber-laser-based-on-nonlinear-amplifier-loop-mirror" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Influence of the Coarse-Graining Method on a DEM-CFD Simulation of a Pilot-Scale Gas Fluidized Bed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theo%20Ndereyimana">Theo Ndereyimana</a>, <a href="https://publications.waset.org/abstracts/search?q=Yann%20Dufresne"> Yann Dufresne</a>, <a href="https://publications.waset.org/abstracts/search?q=Micael%20Boulet"> Micael Boulet</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Moreau"> Stephane Moreau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The DEM (Discrete Element Method) is used a lot in the industry to simulate large-scale flows of particles; for instance, in a fluidized bed, it allows to predict of the trajectory of every particle. One of the main limits of the DEM is the computational time. The CGM (Coarse-Graining Method) has been developed to tackle this issue. The goal is to increase the size of the particle and, by this means, decrease the number of particles. The method leads to a reduction of the collision frequency due to the reduction of the number of particles. Multiple characteristics of the particle movement and the fluid flow - when there is a coupling between DEM and CFD (Computational Fluid Dynamics). The main characteristic that is impacted is the energy dissipation of the system, to regain the dissipation, an ADM (Additional Dissipative Mechanism) can be added to the model. The objective of this current work is to observe the influence of the choice of the ADM and the factor of coarse-graining on the numerical results. These results will be compared with experimental results of a fluidized bed and with a numerical model of the same fluidized bed without using the CGM. The numerical model is one of a 3D cylindrical fluidized bed with 9.6M Geldart B-type particles in a bubbling regime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20dissipative%20mechanism" title="additive dissipative mechanism">additive dissipative mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=coarse-graining" title=" coarse-graining"> coarse-graining</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed" title=" fluidized bed"> fluidized bed</a> </p> <a href="https://publications.waset.org/abstracts/176694/influence-of-the-coarse-graining-method-on-a-dem-cfd-simulation-of-a-pilot-scale-gas-fluidized-bed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Analytic Solutions of Solitary Waves in Three-Level Unbalanced Dense Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20Grira">Sofiane Grira</a>, <a href="https://publications.waset.org/abstracts/search?q=Hichem%20Eleuch"> Hichem Eleuch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We explore the analytical soliton-pair solutions for unbalanced coupling between the two coherent lights and the atomic transitions in a dissipative three-level system in lambda configuration. The two allowed atomic transitions are interacting resonantly with two laser fields. For unbalanced coupling, it is possible to derive an explicit solution for non-linear differential equations describing the soliton-pair propagation in this three-level system with the same velocity. We suppose that the spontaneous emission rates from the excited state to both ground states are the same. In this work, we focus on such case where we consider the coupling between the transitions and the optical fields are unbalanced. The existence conditions for the soliton-pair propagations are determined. We will show that there are four possible configurations of the soliton-pair pulses. Two of them can be interpreted as a couple of solitons with same directions of polarization and the other two as soliton-pair with opposite directions of polarization. Due to the fact that solitons have stable shapes while propagating in the considered media, they are insensitive to noise and dispersion. Our results have potential applications in data transfer with the soliton-pair pulses, where a dissipative three-level medium could be a realistic model for the optical communication media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-linear%20differential%20equations" title="non-linear differential equations">non-linear differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=solitons" title=" solitons"> solitons</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20propagations" title=" wave propagations"> wave propagations</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20fiber" title=" optical fiber"> optical fiber</a> </p> <a href="https://publications.waset.org/abstracts/108578/analytic-solutions-of-solitary-waves-in-three-level-unbalanced-dense-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> A Customize Battery Management Approach for Satellite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Affan">Muhammad Affan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ilyas%20Raza"> Muhammad Ilyas Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Harris%20Hashmi"> Muhammad Harris Hashmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is attributed to the battery management unit design of student Satellites under Pakistan National Student Satellite Program (PNSSP). The aim has been to design a customized, low-cost, efficient, reliable and less-complex battery management scheme for the Satellite. Nowadays, Lithium Ion (Li-ion) batteries have become the de-facto standard for remote applications, especially for satellites. Li-ion cells are selected for secondary storage. The design also addresses Li-ion safety requirements by monitoring, balancing and protecting cells for safe and prolonged operation. Accurate voltage measurement of individual cells was the main challenge because all the actions triggered were based on the digital voltage measurement. For this purpose, a resistive-divider network is used to maintain simplicity and cost-effectiveness. To cater the problem of insufficient i/o pins on microcontroller, fast multiplexers and de-multiplexers were used. The discrepancy inherited in the given design is the dissipation of heat due to the dissipative resistors. However, it is still considered to be the optimum adoption, considering the simple and cost-effective nature of the passive balancing technique. Furthermore, it is a completely unique solution, customized to meet specific requirements. However, there is still an option for a more advanced and expensive design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite" title="satellite">satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20module" title=" battery module"> battery module</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20balancing" title=" passive balancing"> passive balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative" title=" dissipative"> dissipative</a> </p> <a href="https://publications.waset.org/abstracts/157071/a-customize-battery-management-approach-for-satellite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> A Dissipative Particle Dynamics Study of a Capsule in Microfluidic Intracellular Delivery System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nishanthi%20N.%20S.">Nishanthi N. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Srikanth%20Vedantam"> Srikanth Vedantam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intracellular delivery of materials has always proved to be a challenge in research and therapeutic applications. Usually, vector-based methods, such as liposomes and polymeric materials, and physical methods, such as electroporation and sonoporation have been used for introducing nucleic acids or proteins. Reliance on exogenous materials, toxicity, off-target effects was the short-comings of these methods. Microinjection was an alternative process which addressed the above drawbacks. However, its low throughput had hindered its adoption widely. Mechanical deformation of cells by squeezing them through constriction channel can cause the temporary development of pores that would facilitate non-targeted diffusion of materials. Advantages of this method include high efficiency in intracellular delivery, a wide choice of materials, improved viability and high throughput. This cell squeezing process can be studied deeper by employing simple models and efficient computational procedures. In our current work, we present a finite sized dissipative particle dynamics (FDPD) model to simulate the dynamics of the cell flowing through a constricted channel. The cell is modeled as a capsule with FDPD particles connected through a spring network to represent the membrane. The total energy of the capsule is associated with linear and radial springs in addition to constraint of the fixed area. By performing detailed simulations, we studied the strain on the membrane of the capsule for channels with varying constriction heights. The strain on the capsule membrane was found to be similar though the constriction heights vary. When strain on the membrane was correlated to the development of pores, we found higher porosity in capsule flowing in wider channel. This is due to localization of strain to a smaller region in the narrow constriction channel. But the residence time of the capsule increased as the channel constriction narrowed indicating that strain for an increased time will cause less cell viability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capsule" title="capsule">capsule</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20squeezing" title=" cell squeezing"> cell squeezing</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative%20particle%20dynamics" title=" dissipative particle dynamics"> dissipative particle dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=intracellular%20delivery" title=" intracellular delivery"> intracellular delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a> </p> <a href="https://publications.waset.org/abstracts/100996/a-dissipative-particle-dynamics-study-of-a-capsule-in-microfluidic-intracellular-delivery-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Development of Equivalent Inelastic Springs to Model C-Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oday%20Al-Mamoori">Oday Al-Mamoori</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Enrique%20Martinez-Rueda"> J. Enrique Martinez-Rueda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 'C' shape yielding devices (C-devices) are effective tools for introducing supplemental sources of energy dissipation by hysteresis. Studies have shown that C-devices made of mild steel can be successfully applied as integral parts of seismic retrofitting schemes. However, explicit modelling of these devices can become cumbersome, expensive and time consuming. The device under study in this article has been previously used in non-invasive dissipative bracing for seismic retrofitting. The device is cut from a mild steel plate and has an overall shape that resembles that of a rectangular portal frame with circular interior corner transitions to avoid stress concentration and to control the extension of the dissipative region of the device. A number of inelastic finite element (FE) analyses using either inelastic 2D plane stress elements or inelastic fibre frame elements are reported and used to calibrate a 1D equivalent inelastic spring model that effectively reproduces the cyclic response of the device. The more elaborate FE model accounts for the frictional forces developed between the steel plate and the bolts used to connect the C-device to structural members. FE results also allow the visualization of the inelastic regions of the device where energy dissipation is expected to occur. FE analysis results are in a good agreement with experimental observations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C-device" title="C-device">C-device</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20nonlinear%20spring" title=" equivalent nonlinear spring"> equivalent nonlinear spring</a>, <a href="https://publications.waset.org/abstracts/search?q=FE%20analyses" title=" FE analyses"> FE analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=reversed%20cyclic%20tests" title=" reversed cyclic tests"> reversed cyclic tests</a> </p> <a href="https://publications.waset.org/abstracts/95702/development-of-equivalent-inelastic-springs-to-model-c-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manisha%20A.%20Hira">Manisha A. Hira</a>, <a href="https://publications.waset.org/abstracts/search?q=Arup%20Rakshit"> Arup Rakshit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile substrates are endowed with flexibility and ease of making&ndash;up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title="carbon fiber">carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20textiles" title=" conductive textiles"> conductive textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20dissipative%20materials" title=" electrostatic dissipative materials"> electrostatic dissipative materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20yarns" title=" hybrid yarns"> hybrid yarns</a> </p> <a href="https://publications.waset.org/abstracts/45276/study-of-structure-and-properties-of-polyestercarbon-blends-for-technical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Electron-Ion Recombination for Photoionized and Collisionally Ionized Plasmas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahin%20A.%20Abdel-Naby">Shahin A. Abdel-Naby</a>, <a href="https://publications.waset.org/abstracts/search?q=Asad%20T.%20Hassan"> Asad T. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Astrophysical plasma environments can be classified into collisionally ionized (CP) and photoionizedplasmas (PP). In the PP, ionization is caused by an external radiation field, while it is caused by electron collision in the CP. Accurate and reliable laboratory astrophysical data for electron-ion recombination is needed for plasma modeling for low and high-temperatures. Dielectronic recombination (DR) is the dominant recombination process for the CP for most of the ions. When a free electron is captured by an ion with simultaneous excitation of its core, a doubly-exited intermediate state may be formed. The doubly excited state relaxes either by electron emission (autoionization) or by radiative decay (photon emission). DR process takes place when the relaxation occurs to a bound state by a photon emission. DR calculations at low-temperatures are problematic and challenging since small uncertaintiesin the low-energy DR resonance positions can produce huge uncertainties in DR rate coefficients.DR rate coefficients for N²⁺ and O³⁺ ions are calculated using state-of-the-art multi-configurationBreit-Pauli atomic structure AUTOSTRUCTURE collisional package within the generalized collisional-radiative framework. Level-resolved calculations for RR and DR rate coefficients from the ground and metastable initial states are produced in an intermediate coupling scheme associated withn = 0 and n = 1 core-excitations. DR cross sections for these ions are convoluted with the experimental electron-cooler temperatures to produce DR rate coefficients. Good agreements are foundbetween these rate coefficients and theexperimental measurements performed at CRYRING heavy-ionstorage ring for both ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20data" title="atomic data">atomic data</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20process" title=" atomic process"> atomic process</a>, <a href="https://publications.waset.org/abstracts/search?q=electron-ion%20collision" title=" electron-ion collision"> electron-ion collision</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmas" title=" plasmas"> plasmas</a> </p> <a href="https://publications.waset.org/abstracts/151520/electron-ion-recombination-for-photoionized-and-collisionally-ionized-plasmas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Study of Ion Density Distribution and Sheath Thickness in Warm Electronegative Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajat%20Dhawan">Rajat Dhawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitendra%20K.%20Malik"> Hitendra K. Malik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electronegative plasmas comprising electrons, positive ions, and negative ions are advantageous for their expanding applications in industries. In plasma cleaning, plasma etching, and plasma deposition process, electronegative plasmas are preferred because of relatively less potential developed on the surface of the material under investigation. Also, the presence of negative ions avoid the irregularity in etching shapes and also enhance the material working during the fabrication process. The interaction of metallic conducting surface with plasma becomes mandatory to understand these applications. A metallic conducting probe immersed in a plasma results in the formation of a thin layer of charged species around the probe called as a sheath. The density of the ions embedded on the surface of the material and the sheath thickness are the important parameters for the surface-plasma interaction. Sheath thickness will give rise to the information of affected plasma region due to conducting surface/probe. The knowledge of the density of ions in the sheath region is advantageous in plasma nitriding, and their temperature is equally important as it strongly influences the thickness of the modified layer during surface plasma interaction. In the present work, we considered a negatively biased metallic probe immersed in a warm electronegative plasma. For this system, we adopted the continuity equation and momentum transfer equation for both the positive and negative ions, whereas electrons are described by Boltzmann distribution. Finally, we use the Poisson’s equation. Here, we assumed the spherical geometry for small probe radius. Poisson’s equation reveals the behaviour of potential surrounding a conducting metallic probe along with the use of the continuity and momentum transfer equations, with the help of proper boundary conditions. In turn, it gives rise to the information about the density profile of charged species and most importantly the thickness of the sheath. By keeping in mind, the well-known Bohm-Sheath criterion, all calculations are done. We found that positive ion density decreases with an increase in positive ion temperature, whereas it increases with the higher temperature of the negative ions. Positive ion density decreases as we move away from the center of the probe and is found to show a discontinuity at a particular distance from the center of the probe. The distance where discontinuity occurs is designated as sheath edge, i.e., the point where sheath ends. These results are beneficial for industrial applications, as the density of ions embedded on material surface is strongly affected by the temperature of plasma species. It has a drastic influence on the surface properties, i.e., the hardness, corrosion resistance, etc. of the materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronegative%20plasmas" title="electronegative plasmas">electronegative plasmas</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20surface%20interaction%20positive%20ion%20density" title=" plasma surface interaction positive ion density"> plasma surface interaction positive ion density</a>, <a href="https://publications.waset.org/abstracts/search?q=sheath%20thickness" title=" sheath thickness"> sheath thickness</a> </p> <a href="https://publications.waset.org/abstracts/103124/study-of-ion-density-distribution-and-sheath-thickness-in-warm-electronegative-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Preparation Static Dissipative Nanocomposites of Alkaline Earth Metal Doped Aluminium Oxide and Methyl Vinyl Silicone Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aparna%20M.%20Joshi">Aparna M. Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methyl vinyl silicone polymer (VMQ) - alkaline earth metal doped aluminium oxide composites are prepared by conventional two rolls open mill mixing method. Doped aluminium oxides (DAO) using silvery white coloured alkaline earth metals such as Mg and Ca as dopants in the concentration of 0.4 % are synthesized by microwave combustion method and referred as MA ( Mg doped aluminium oxide) and CA ( Ca doped aluminium oxide). The as-synthesized materials are characterized for the electrical resistance, X–ray diffraction, FE-SEM, TEM and FTIR. The electrical resistances of the DAOs are observed to be ~ 8-20 MΩ. This means that the resistance of aluminium oxide (Corundum) α-Al2O3 which is ~ 1010Ω is reduced by the order of ~ 103 to 104 Ω after doping. XRD studies reveal the doping of Mg and Ca in aluminium oxide. The microstructural study using FE-SEM shows the flaky clusterous structures with the thickness of the flakes between 10 and 20 nm. TEM images depict the rod-shaped morphological geometry of the particles with the diameter of ~50-70 nm. The nanocomposites are synthesized by incorporating the DAOs in the concentration of 75 phr (parts per hundred parts of rubber) into VMQ polymer. The electrical resistance of VMQ polymer, which is ~ 1015Ω, drops by the order of 108Ω. There is a retention of the electrical resistance of ~ 30-50 MΩ for the nanocomposites which is a static dissipative range of electricity. In this work white coloured electrically conductive VMQ polymer-DAO nanocomposites (MAVMQ for Mg doping and CAVMQ for Ca doping) have been synthesized. The physical and mechanical properties of the composites such as specific gravity, hardness, tensile strength and rebound resilience are measured. Hardness and tensile strength are found to increase, with the negligible alteration in the other properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doped%20aluminium%20oxide" title="doped aluminium oxide">doped aluminium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20vinyl%20silicone%20polymer" title=" methyl vinyl silicone polymer"> methyl vinyl silicone polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20synthesis" title=" microwave synthesis"> microwave synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20dissipation" title=" static dissipation"> static dissipation</a> </p> <a href="https://publications.waset.org/abstracts/33200/preparation-static-dissipative-nanocomposites-of-alkaline-earth-metal-doped-aluminium-oxide-and-methyl-vinyl-silicone-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dissipative%20plasmas&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dissipative%20plasmas&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dissipative%20plasmas&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dissipative%20plasmas&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10