CINXE.COM

Enhancing Big Data Warehousing for Efficient, Integrated and Advanced Analytics | SpringerLink

<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="applicable-device" content="pc,mobile"> <meta name="access" content="Yes"> <meta name="twitter:site" content="SpringerLink"/> <meta name="twitter:card" content="summary"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="Enhancing Big Data Warehousing for Efficient, Integrated and Advanced "/> <meta name="twitter:description" content="The existing capacity to collect, store, process and analyze huge amounts of data that is rapidly generated, i.e., Big Data, is characterized by fast technological developments and by a limited set of conceptual advances that guide researchers and practitioners in..."/> <meta name="twitter:image" content="https://static-content.springer.com/cover/book/978-3-030-21297-1.jpg"/> <meta name="dc.identifier" content="10.1007/978-3-030-21297-1_19"/> <meta name="DOI" content="10.1007/978-3-030-21297-1_19"/> <meta name="dc.description" content="The existing capacity to collect, store, process and analyze huge amounts of data that is rapidly generated, i.e., Big Data, is characterized by fast technological developments and by a limited set of conceptual advances that guide researchers and practitioners in..."/> <meta name="citation_pdf_url" content="https://link.springer.com/content/pdf/10.1007/978-3-030-21297-1_19.pdf"/> <meta name="citation_fulltext_html_url" content="https://link.springer.com/chapter/10.1007/978-3-030-21297-1_19"/> <meta name="citation_abstract_html_url" content="https://link.springer.com/chapter/10.1007/978-3-030-21297-1_19"/> <meta name="citation_inbook_title" content="Information Systems Engineering in Responsible Information Systems"/> <meta name="citation_title" content="Enhancing Big Data Warehousing for Efficient, Integrated and Advanced Analytics"/> <meta name="citation_publication_date" content="2019"/> <meta name="citation_firstpage" content="215"/> <meta name="citation_lastpage" content="226"/> <meta name="citation_language" content="en"/> <meta name="citation_doi" content="10.1007/978-3-030-21297-1_19"/> <meta name="citation_issn" content="1865-1356"/> <meta name="citation_isbn" content="978-3-030-21297-1"/> <meta name="citation_conference_series_id" content="springer/caise, dblp/caise"/> <meta name="citation_conference_title" content="International Conference on Advanced Information Systems Engineering"/> <meta name="citation_conference_abbrev" content="CAiSE"/> <meta name="size" content="99433"/> <meta name="description" content="The existing capacity to collect, store, process and analyze huge amounts of data that is rapidly generated, i.e., Big Data, is characterized by fast technological developments and by a limited set of conceptual advances that guide researchers and practitioners in..."/> <meta name="citation_author" content="Santos, Maribel Yasmina"/> <meta name="citation_author_email" content="maribel@dsi.uminho.pt"/> <meta name="citation_author_institution" content="University of Minho"/> <meta name="citation_author" content="Costa, Carlos"/> <meta name="citation_author_email" content="carlos.costa@dsi.uminho.pt"/> <meta name="citation_author_institution" content="University of Minho"/> <meta name="citation_author_institution" content="Centre for Computer Graphics - CCG"/> <meta name="citation_author" content="Galv&#227;o, Jo&#227;o"/> <meta name="citation_author_email" content="joao.galvao@dsi.uminho.pt"/> <meta name="citation_author_institution" content="University of Minho"/> <meta name="citation_author" content="Andrade, Carina"/> <meta name="citation_author_email" content="carina.andrade@dsi.uminho.pt"/> <meta name="citation_author_institution" content="University of Minho"/> <meta name="citation_author" content="Pastor, Oscar"/> <meta name="citation_author_email" content="opastor@pros.upv.es"/> <meta name="citation_author_institution" content="Universitat Politècnica de València"/> <meta name="citation_author" content="Marc&#233;n, Ana Cristina"/> <meta name="citation_author_email" content="acmarcen@pros.upv.es"/> <meta name="citation_author_institution" content="Universitat Politècnica de València"/> <meta name="citation_publisher" content="Springer, Cham"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1007/978-3-030-21297-1_19&amp;api_key="/> <meta name="format-detection" content="telephone=no"/> <meta property="og:url" content="https://link.springer.com/chapter/10.1007/978-3-030-21297-1_19"/> <meta property="og:type" content="Paper"/> <meta property="og:site_name" content="SpringerLink"/> <meta property="og:title" content="Enhancing Big Data Warehousing for Efficient, Integrated and Advanced Analytics"/> <meta property="og:description" content="The existing capacity to collect, store, process and analyze huge amounts of data that is rapidly generated, i.e., Big Data, is characterized by fast technological developments and by a limited set of conceptual advances that guide researchers and practitioners in..."/> <meta property="og:image" content="https://static-content.springer.com/cover/book/978-3-030-21297-1.jpg"/> <title>Enhancing Big Data Warehousing for Efficient, Integrated and Advanced Analytics | SpringerLink</title> <link rel="apple-touch-icon" sizes="180x180" href=/oscar-static/img/favicons/darwin/apple-touch-icon-92e819bf8a.png> <link rel="icon" type="image/png" sizes="192x192" href=/oscar-static/img/favicons/darwin/android-chrome-192x192-6f081ca7e5.png> <link rel="icon" type="image/png" sizes="32x32" href=/oscar-static/img/favicons/darwin/favicon-32x32-1435da3e82.png> <link rel="icon" type="image/png" sizes="16x16" href=/oscar-static/img/favicons/darwin/favicon-16x16-ed57f42bd2.png> <link rel="shortcut icon" data-test="shortcut-icon" href=/oscar-static/img/favicons/darwin/favicon-c6d59aafac.ico> <meta name="theme-color" content="#e6e6e6"> <script>(function(H){H.className=H.className.replace(/\bno-js\b/,'js')})(document.documentElement)</script> <!-- Please see discussion: https://github.com/springernature/frontend-open-space/issues/316--> <!--TODO: Implement alternative to CTM in here if the discussion concludes we do not continue with CTM as a practice--> <link rel="stylesheet" media="print" href=/oscar-static/app-springerlink/css/print-b8af42253b.css> <style> html{text-size-adjust:100%;line-height:1.15}body{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;margin:0}details,main{display:block}h1{font-size:2em;margin:.67em 0}a{background-color:transparent;color:#025e8d}sub{bottom:-.25em;font-size:75%;line-height:0;position:relative;vertical-align:baseline}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input{font-family:inherit;font-size:100%;line-height:1.15;margin:0;overflow:visible}button{text-transform:none}[type=button],[type=submit],button{-webkit-appearance:button}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}summary{display:list-item}[hidden]{display:none}button{cursor:pointer}svg{height:1rem;width:1rem} </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { body{background:#fff;color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;min-height:100%}a{color:#025e8d;text-decoration:underline;text-decoration-skip-ink:auto}button{cursor:pointer}img{border:0;height:auto;max-width:100%;vertical-align:middle}html{box-sizing:border-box;font-size:100%;height:100%;overflow-y:scroll}h1{font-size:2.25rem}h2{font-size:1.75rem}h1,h2,h4{font-weight:700;line-height:1.2}h4{font-size:1.25rem}body{font-size:1.125rem}*{box-sizing:inherit}p{margin-bottom:2rem;margin-top:0}p:last-of-type{margin-bottom:0}.c-ad{text-align:center}@media only screen and (min-width:480px){.c-ad{padding:8px}}.c-ad--728x90{display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:876px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-ad__label,.c-status-message{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-status-message{align-items:center;box-sizing:border-box;display:flex;position:relative;width:100%}.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #ccc;line-height:1.4;padding:16px}.c-status-message__heading{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.eds-c-header{background-color:#fff;border-bottom:2px solid #01324b;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;line-height:1.5;padding:8px 0 0}.eds-c-header__container{align-items:center;display:flex;flex-wrap:nowrap;gap:8px 16px;justify-content:space-between;margin:0 auto 8px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav{border-top:2px solid #c5e0f4;padding-top:4px;position:relative}.eds-c-header__nav-container{align-items:center;display:flex;flex-wrap:wrap;margin:0 auto 4px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav-container>:not(:last-child){margin-right:32px}.eds-c-header__link-container{align-items:center;display:flex;flex:1 0 auto;gap:8px 16px;justify-content:space-between}.eds-c-header__list{list-style:none;margin:0;padding:0}.eds-c-header__list-item{font-weight:700;margin:0 auto;max-width:1280px;padding:8px}.eds-c-header__list-item:not(:last-child){border-bottom:2px solid #c5e0f4}.eds-c-header__item{color:inherit}@media only screen and (min-width:768px){.eds-c-header__item--menu{display:none;visibility:hidden}.eds-c-header__item--menu:first-child+*{margin-block-start:0}}.eds-c-header__item--inline-links{display:none;visibility:hidden}@media only screen and (min-width:768px){.eds-c-header__item--inline-links{display:flex;gap:16px 16px;visibility:visible}}.eds-c-header__item--divider:before{border-left:2px solid #c5e0f4;content:"";height:calc(100% - 16px);margin-left:-15px;position:absolute;top:8px}.eds-c-header__brand{padding:16px 8px}.eds-c-header__brand a{display:block;line-height:1;text-decoration:none}.eds-c-header__brand img{height:1.5rem;width:auto}.eds-c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.eds-c-header__icon{fill:currentcolor;display:inline-block;font-size:1.5rem;height:1em;transform:translate(0);vertical-align:bottom;width:1em}.eds-c-header__icon+*{margin-left:8px}.eds-c-header__expander{background-color:#f0f7fc}.eds-c-header__search{display:block;padding:24px 0}@media only screen and (min-width:768px){.eds-c-header__search{max-width:70%}}.eds-c-header__search-container{position:relative}.eds-c-header__search-label{color:inherit;display:inline-block;font-weight:700;margin-bottom:8px}.eds-c-header__search-input{background-color:#fff;border:1px solid #000;padding:8px 48px 8px 8px;width:100%}.eds-c-header__search-button{background-color:transparent;border:0;color:inherit;height:100%;padding:0 8px;position:absolute;right:0}.has-tethered.eds-c-header__expander{border-bottom:2px solid #01324b;left:0;margin-top:-2px;top:100%;width:100%;z-index:10}@media only screen and (min-width:768px){.has-tethered.eds-c-header__expander--menu{display:none;visibility:hidden}}.has-tethered .eds-c-header__heading{display:none;visibility:hidden}.has-tethered .eds-c-header__heading:first-child+*{margin-block-start:0}.has-tethered .eds-c-header__search{margin:auto}.eds-c-header__heading{margin:0 auto;max-width:1280px;padding:16px 16px 0}.eds-c-pagination{align-items:center;display:flex;flex-wrap:wrap;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;gap:16px 0;justify-content:center;line-height:1.4;list-style:none;margin:0;padding:32px 0}@media only screen and (min-width:480px){.eds-c-pagination{padding:32px 16px}}.eds-c-pagination__item{margin-right:8px}.eds-c-pagination__item--prev{margin-right:16px}.eds-c-pagination__item--next .eds-c-pagination__link,.eds-c-pagination__item--prev .eds-c-pagination__link{padding:16px 8px}.eds-c-pagination__item--next{margin-left:8px}.eds-c-pagination__item:last-child{margin-right:0}.eds-c-pagination__link{align-items:center;color:#222;cursor:pointer;display:inline-block;font-size:1rem;margin:0;padding:16px 24px;position:relative;text-align:center;transition:all .2s ease 0s}.eds-c-pagination__link:visited{color:#222}.eds-c-pagination__link--disabled{border-color:#555;color:#555;cursor:default}.eds-c-pagination__link--active{background-color:#01324b;background-image:none;border-radius:8px;color:#fff}.eds-c-pagination__link--active:focus,.eds-c-pagination__link--active:hover,.eds-c-pagination__link--active:visited{color:#fff}.eds-c-pagination__link-container{align-items:center;display:flex}.eds-c-pagination__icon{fill:#222;height:1.5rem;width:1.5rem}.eds-c-pagination__icon--disabled{fill:#555}.eds-c-pagination__visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.c-breadcrumbs{color:#333;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs>li{display:inline}svg.c-breadcrumbs__chevron{fill:#333;height:10px;margin:0 .25rem;width:10px}.c-breadcrumbs--contrast,.c-breadcrumbs--contrast .c-breadcrumbs__link{color:#fff}.c-breadcrumbs--contrast svg.c-breadcrumbs__chevron{fill:#fff}@media only screen and (max-width:479px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-skip-link{background:#01324b;bottom:auto;color:#fff;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);width:100%;z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:active,.c-skip-link:hover,.c-skip-link:link,.c-skip-link:visited{color:#fff}.c-skip-link:focus{transform:translateY(0)}.l-with-sidebar{display:flex;flex-wrap:wrap}.l-with-sidebar>*{margin:0}.l-with-sidebar__sidebar{flex-basis:var(--with-sidebar--basis,400px);flex-grow:1}.l-with-sidebar>:not(.l-with-sidebar__sidebar){flex-basis:0px;flex-grow:999;min-width:var(--with-sidebar--min,53%)}.l-with-sidebar>:first-child{padding-right:4rem}@supports (gap:1em){.l-with-sidebar>:first-child{padding-right:0}.l-with-sidebar{gap:var(--with-sidebar--gap,4rem)}}.c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.app-masthead__colour-4{--background-color:#ff9500;--gradient-light:rgba(0,0,0,.5);--gradient-dark:rgba(0,0,0,.8)}.app-masthead{background:var(--background-color,#0070a8);position:relative}.app-masthead:after{background:radial-gradient(circle at top right,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)));bottom:0;content:"";left:0;position:absolute;right:0;top:0}@media only screen and (max-width:479px){.app-masthead:after{background:linear-gradient(225deg,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)))}}.app-masthead__container{color:var(--masthead-color,#fff);margin:0 auto;max-width:1280px;padding:0 16px;position:relative;z-index:1}.u-button{align-items:center;background-color:#01324b;background-image:none;border:4px solid transparent;border-radius:32px;cursor:pointer;display:inline-flex;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700;justify-content:center;line-height:1.3;margin:0;padding:16px 32px;position:relative;transition:all .2s ease 0s;width:auto}.u-button svg,.u-button--contrast svg,.u-button--primary svg,.u-button--secondary svg,.u-button--tertiary svg{fill:currentcolor}.u-button,.u-button:visited{color:#fff}.u-button,.u-button:hover{box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button:hover{border:4px solid #fff}.u-button:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button:focus,.u-button:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--primary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover svg path,.u-button--primary:focus svg path,.u-button--primary:hover svg path,.u-button:focus svg path,.u-button:hover svg path{fill:#01324b}.u-button--primary{background-color:#01324b;background-image:none;border:4px solid transparent;box-shadow:0 0 0 1px #01324b;color:#fff;font-weight:700}.u-button--primary:visited{color:#fff}.u-button--primary:hover{border:4px solid #fff;box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button--primary:focus,.u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.u-button--secondary{background-color:#fff;border:4px solid #fff;color:#01324b;font-weight:700}.u-button--secondary:visited{color:#01324b}.u-button--secondary:hover{border:4px solid #01324b;box-shadow:none}.u-button--secondary:focus,.u-button--secondary:hover{background-color:#01324b;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--secondary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover svg path,.u-button--secondary:focus svg path,.u-button--secondary:hover svg path,.u-button--tertiary:focus svg path,.u-button--tertiary:hover svg path{fill:#fff}.u-button--tertiary{background-color:#ebf1f5;border:4px solid transparent;box-shadow:none;color:#666;font-weight:700}.u-button--tertiary:visited{color:#666}.u-button--tertiary:hover{border:4px solid #01324b;box-shadow:none}.u-button--tertiary:focus,.u-button--tertiary:hover{background-color:#01324b;color:#fff}.u-button--contrast{background-color:transparent;background-image:none;color:#fff;font-weight:400}.u-button--contrast:visited{color:#fff}.u-button--contrast,.u-button--contrast:focus,.u-button--contrast:hover{border:4px solid #fff}.u-button--contrast:focus,.u-button--contrast:hover{background-color:#fff;background-image:none;color:#000}.u-button--contrast:focus svg path,.u-button--contrast:hover svg path{fill:#000}.u-button--disabled,.u-button:disabled{background-color:transparent;background-image:none;border:4px solid #ccc;color:#000;cursor:default;font-weight:400;opacity:.7}.u-button--disabled svg,.u-button:disabled svg{fill:currentcolor}.u-button--disabled:visited,.u-button:disabled:visited{color:#000}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{border:4px solid #ccc;text-decoration:none}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{background-color:transparent;background-image:none;color:#000}.u-button--disabled:focus svg path,.u-button--disabled:hover svg path,.u-button:disabled:focus svg path,.u-button:disabled:hover svg path{fill:#000}.u-button--small,.u-button--xsmall{font-size:.875rem;padding:2px 8px}.u-button--small{padding:8px 16px}.u-button--large{font-size:1.125rem;padding:10px 35px}.u-button--full-width{display:flex;width:100%}.u-button--icon-left svg{margin-right:8px}.u-button--icon-right svg{margin-left:8px}.u-clear-both{clear:both}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-list-reset{list-style:none;margin:0;padding:0}.u-ma-16{margin:16px}.u-mt-0{margin-top:0}.u-mt-24{margin-top:24px}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-32{margin-bottom:32px}.u-button-reset{background-color:transparent;border:0;padding:0}.u-sans-serif{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.u-serif{font-family:Merriweather,serif}h1,h2,h4{-webkit-font-smoothing:antialiased}p{overflow-wrap:break-word;word-break:break-word}.u-h4{font-size:1.25rem;font-weight:700;line-height:1.2}.u-mbs-0{margin-block-start:0!important}.c-article-header{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}@media only screen and (min-width:876px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:767px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#025e8d;border-color:transparent;color:#fff}.c-article-body .c-article-access-provider{padding:8px 16px}.c-article-body .c-article-access-provider,.c-notes{border:1px solid #d5d5d5;border-image:initial;border-left:none;border-right:none;margin:24px 0}.c-article-body .c-article-access-provider__text{color:#555}.c-article-body .c-article-access-provider__text,.c-notes__text{font-size:1rem;margin-bottom:0;padding-bottom:2px;padding-top:2px;text-align:center}.c-article-body .c-article-author-affiliation__address{color:inherit;font-weight:700;margin:0}.c-article-body .c-article-author-affiliation__authors-list{list-style:none;margin:0;padding:0}.c-article-body .c-article-author-affiliation__authors-item{display:inline;margin-left:0}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-code-block{border:1px solid #fff;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;margin-bottom:24px}.c-article-share-box__description{font-size:1rem;margin-bottom:8px}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__additional-info{color:#626262;font-size:.813rem}.c-article-share-box__button{background:#fff;box-sizing:content-box;text-align:center}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#025e8d;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__references-list--numeric{list-style:decimal inside}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{font-size:1rem}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;font-size:1.25rem;font-weight:700;line-height:1.2;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-article-section__figure-caption{display:block;margin-bottom:8px;word-break:break-word}.c-article-section__figure .video,p.app-article-masthead__access--above-download{margin:0 0 16px}.c-article-section__figure-description{font-size:1rem}.c-article-section__figure-description>*{margin-bottom:0}.c-cod{display:block;font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#025e8d;border:1px solid #025e8d;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#025e8d}.save-data .c-article-author-institutional-author__sub-division,.save-data .c-article-equation__number,.save-data .c-article-figure-description,.save-data .c-article-fullwidth-content,.save-data .c-article-main-column,.save-data .c-article-satellite-article-link,.save-data .c-article-satellite-subtitle,.save-data .c-article-table-container,.save-data .c-blockquote__body,.save-data .c-code-block__heading,.save-data .c-reading-companion__figure-title,.save-data .c-reading-companion__reference-citation,.save-data .c-site-messages--nature-briefing-email-variant .serif,.save-data .c-site-messages--nature-briefing-email-variant.serif,.save-data .serif,.save-data .u-serif,.save-data h1,.save-data h2,.save-data h3{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-pdf-download__link{display:flex;flex:1 1 0%;padding:13px 24px}.c-pdf-download__link:hover{text-decoration:none}@media only screen and (min-width:768px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{display:flex;flex-direction:row;gap:16px 16px;margin:0;max-width:100%;padding:16px 0 0}.c-article-body .c-article-recommendations-list__item,.c-book-body .c-article-recommendations-list__item{flex:1 1 0%}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{flex-direction:column}}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-body .c-article-history{margin-top:24px}.app-article-metrics-bar p{margin:0}.app-article-masthead{display:flex;flex-direction:column;gap:16px 16px;padding:16px 0 24px}.app-article-masthead__info{display:flex;flex-direction:column;flex-grow:1}.app-article-masthead__brand{border-top:1px solid hsla(0,0%,100%,.8);display:flex;flex-direction:column;flex-shrink:0;gap:8px 8px;min-height:96px;padding:16px 0 0}.app-article-masthead__brand img{border:1px solid #fff;border-radius:8px;box-shadow:0 4px 15px 0 hsla(0,0%,50%,.25);height:auto;left:0;position:absolute;width:72px}.app-article-masthead__journal-link{display:block;font-size:1.125rem;font-weight:700;margin:0 0 8px;max-width:400px;padding:0 0 0 88px;position:relative}.app-article-masthead__journal-title{-webkit-box-orient:vertical;-webkit-line-clamp:3;display:-webkit-box;overflow:hidden}.app-article-masthead__submission-link{align-items:center;display:flex;font-size:1rem;gap:4px 4px;margin:0 0 0 88px}.app-article-masthead__access{align-items:center;display:flex;flex-wrap:wrap;font-size:.875rem;font-weight:300;gap:4px 4px;margin:0}.app-article-masthead__buttons{display:flex;flex-flow:column wrap;gap:16px 16px}.app-article-masthead__access svg,.app-masthead--pastel .c-pdf-download .u-button--primary svg,.app-masthead--pastel .c-pdf-download .u-button--secondary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary svg{fill:currentcolor}.app-article-masthead a{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary{background-color:#025e8d;background-image:none;border:2px solid transparent;box-shadow:none;color:#fff;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--primary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:visited{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background:0 0;border:2px solid #025e8d;box-shadow:none;color:#025e8d}.app-masthead--pastel .c-pdf-download .u-button--secondary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary{background:0 0;border:2px solid #025e8d;color:#025e8d;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--secondary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:visited{color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--secondary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover{background-color:#01324b;background-color:#025e8d;border:2px solid transparent;box-shadow:none;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus{background-color:#fff;background-image:none;border:4px solid #fc0;color:#01324b}@media only screen and (min-width:768px){.app-article-masthead{flex-direction:row;gap:64px 64px;padding:24px 0}.app-article-masthead__brand{border:0;padding:0}.app-article-masthead__brand img{height:auto;position:static;width:auto}.app-article-masthead__buttons{align-items:center;flex-direction:row;margin-top:auto}.app-article-masthead__journal-link{display:flex;flex-direction:column;gap:24px 24px;margin:0 0 8px;padding:0}.app-article-masthead__submission-link{margin:0}}@media only screen and (min-width:1024px){.app-article-masthead__brand{flex-basis:400px}}.app-article-masthead .c-article-identifiers{font-size:.875rem;font-weight:300;line-height:1;margin:0 0 8px;overflow:hidden;padding:0}.app-article-masthead .c-article-identifiers--cite-list{margin:0 0 16px}.app-article-masthead .c-article-identifiers *{color:#fff}.app-article-masthead .c-cod{display:none}.app-article-masthead .c-article-identifiers__item{border-left:1px solid #fff;border-right:0;margin:0 17px 8px -9px;padding:0 0 0 8px}.app-article-masthead .c-article-identifiers__item--cite{border-left:0}.app-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;padding:16px 0 0;row-gap:24px}.app-article-metrics-bar__item{padding:0 16px 0 0}.app-article-metrics-bar__count{font-weight:700}.app-article-metrics-bar__label{font-weight:400;padding-left:4px}.app-article-metrics-bar__icon{height:auto;margin-right:4px;margin-top:-4px;width:auto}.app-article-metrics-bar__arrow-icon{margin:4px 0 0 4px}.app-article-metrics-bar a{color:#000}.app-article-metrics-bar .app-article-metrics-bar__item--metrics{padding-right:0}.app-overview-section .c-article-author-list,.app-overview-section__authors{line-height:2}.app-article-metrics-bar{margin-top:8px}.c-book-toc-pagination+.c-book-section__back-to-top{margin-top:0}.c-article-body .c-article-access-provider__text--chapter{color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;padding:20px 0}.c-article-body .c-article-access-provider__text--chapter svg.c-status-message__icon{fill:#003f8d;vertical-align:middle}.c-article-body-section__content--separator{padding-top:40px}.c-pdf-download__link{max-height:44px}.app-article-access .u-button--primary,.app-article-access .u-button--primary:visited{color:#fff}.c-article-sidebar{display:none}@media only screen and (min-width:1024px){.c-article-sidebar{display:block}}.c-cod__form{border-radius:12px}.c-cod__label{font-size:.875rem}.c-cod .c-status-message{align-items:center;justify-content:center;margin-bottom:16px;padding-bottom:16px}@media only screen and (min-width:1024px){.c-cod .c-status-message{align-items:inherit}}.c-cod .c-status-message__icon{margin-top:4px}.c-cod .c-cod__prompt{font-size:1rem;margin-bottom:16px}.c-article-body .app-article-access,.c-book-body .app-article-access{display:block}@media only screen and (min-width:1024px){.c-article-body .app-article-access,.c-book-body .app-article-access{display:none}}.c-article-body .app-card-service{margin-bottom:32px}@media only screen and (min-width:1024px){.c-article-body .app-card-service{display:none}}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary,.c-cod__row .u-button--primary{background-color:#025e8d;border:2px solid #025e8d;box-shadow:none;font-size:1rem;font-weight:700;gap:8px 8px;justify-content:center;line-height:1.5;padding:8px 24px}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary:hover,.c-cod__row .u-button--primary:hover{background-color:#fff;color:#025e8d}.app-article-access .buybox__buy .u-button--secondary:hover{background-color:#025e8d;color:#fff}.buybox__buy .c-notes__text{color:#666;font-size:.875rem;padding:0 16px 8px}.c-cod__input{flex-basis:auto;width:100%}.c-article-title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:2.25rem;font-weight:700;line-height:1.2;margin:12px 0}.c-reading-companion__figure-item figure{margin:0}@media only screen and (min-width:768px){.c-article-title{margin:16px 0}}.app-article-access{border:1px solid #c5e0f4;border-radius:12px}.app-article-access__heading{border-bottom:1px solid #c5e0f4;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1.125rem;font-weight:700;margin:0;padding:16px;text-align:center}.app-article-access .buybox__info svg{vertical-align:middle}.c-article-body .app-article-access p{margin-bottom:0}.app-article-access .buybox__info{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;margin:0}.app-article-access{margin:0 0 32px}@media only screen and (min-width:1024px){.app-article-access{margin:0 0 24px}}.c-status-message{font-size:1rem}.c-article-body{font-size:1.125rem}.c-article-body dl,.c-article-body ol,.c-article-body p,.c-article-body ul{margin-bottom:32px;margin-top:0}.c-article-access-provider__text:last-of-type,.c-article-body .c-notes__text:last-of-type{margin-bottom:0}.c-article-body ol p,.c-article-body ul p{margin-bottom:16px}.c-article-section__figure-caption{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-reading-companion__figure-item{border-top-color:#c5e0f4}.c-reading-companion__sticky{max-width:400px}.c-article-section .c-article-section__figure-description>*{font-size:1rem;margin-bottom:16px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;padding:16px 0}.c-reading-companion__reference-item:first-child{padding-top:0}.c-article-share-box__button,.js .c-article-authors-search__item .c-article-button{background:0 0;border:2px solid #025e8d;border-radius:32px;box-shadow:none;color:#025e8d;font-size:1rem;font-weight:700;line-height:1.5;margin:0;padding:8px 24px;transition:all .2s ease 0s}.c-article-authors-search__item .c-article-button{width:100%}.c-pdf-download .u-button{background-color:#fff;border:2px solid #fff;color:#01324b;justify-content:center}.c-context-bar__container .c-pdf-download .u-button svg,.c-pdf-download .u-button svg{fill:currentcolor}.c-pdf-download .u-button:visited{color:#01324b}.c-pdf-download .u-button:hover{border:4px solid #01324b;box-shadow:none}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background-color:#01324b}.c-pdf-download .u-button:focus svg path,.c-pdf-download .u-button:hover svg path{fill:#fff}.c-context-bar__container .c-pdf-download .u-button{background-image:none;border:2px solid;color:#fff}.c-context-bar__container .c-pdf-download .u-button:visited{color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus{box-shadow:none;outline:0;text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus,.c-context-bar__container .c-pdf-download .u-button:hover{background-color:#fff;background-image:none;color:#01324b}.c-context-bar__container .c-pdf-download .u-button:focus svg path,.c-context-bar__container .c-pdf-download .u-button:hover svg path{fill:#01324b}.c-context-bar__container .c-pdf-download .u-button,.c-pdf-download .u-button{box-shadow:none;font-size:1rem;font-weight:700;line-height:1.5;padding:8px 24px}.c-context-bar__container .c-pdf-download .u-button{background-color:#025e8d}.c-pdf-download .u-button:hover{border:2px solid #fff}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background:0 0;box-shadow:none;color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{border:2px solid #025e8d;box-shadow:none;color:#025e8d}.c-context-bar__container .c-pdf-download .u-button:focus,.c-pdf-download .u-button:focus{border:2px solid #025e8d}.c-article-share-box__button:focus:focus,.c-article__pill-button:focus:focus,.c-context-bar__container .c-pdf-download .u-button:focus:focus,.c-pdf-download .u-button:focus:focus{outline:3px solid #08c;will-change:transform}.c-pdf-download__link .u-icon{padding-top:0}.c-bibliographic-information__column button{margin-bottom:16px}.c-article-body .c-article-author-affiliation__list p,.c-article-body .c-article-author-information__list p,figure{margin:0}.c-article-share-box__button{margin-right:16px}.c-status-message--boxed{border-radius:12px}.c-article-associated-content__collection-title{font-size:1rem}.app-card-service__description,.c-article-body .app-card-service__description{color:#222;margin-bottom:0;margin-top:8px}.app-article-access__subscriptions a,.app-article-access__subscriptions a:visited,.app-book-series-listing__item a,.app-book-series-listing__item a:hover,.app-book-series-listing__item a:visited,.c-article-author-list a,.c-article-author-list a:visited,.c-article-buy-box a,.c-article-buy-box a:visited,.c-article-peer-review a,.c-article-peer-review a:visited,.c-article-satellite-subtitle a,.c-article-satellite-subtitle a:visited,.c-breadcrumbs__link,.c-breadcrumbs__link:hover,.c-breadcrumbs__link:visited{color:#000}.c-article-author-list svg{height:24px;margin:0 0 0 6px;width:24px}.c-article-header{margin-bottom:32px}@media only screen and (min-width:876px){.js .c-ad--conditional{display:block}}.u-lazy-ad-wrapper{background-color:#fff;display:none;min-height:149px}@media only screen and (min-width:876px){.u-lazy-ad-wrapper{display:block}}p.c-ad__label{margin-bottom:4px}.c-ad--728x90{background-color:#fff;border-bottom:2px solid #cedbe0} } </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .eds-c-header__brand img{height:24px;width:203px}.app-article-masthead__journal-link img{height:93px;width:72px}@media only screen and (min-width:769px){.app-article-masthead__journal-link img{height:161px;width:122px}} } </style> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href=/oscar-static/app-springerlink/css/core-darwin-3c86549cfc.css media="print" onload="this.media='all';this.onload=null"> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href="/oscar-static/app-springerlink/css/enhanced-darwin-article-72ba046d97.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <script> window.dataLayer = [{"GA Key":"UA-26408784-1","DOI":"10.1007/978-3-030-21297-1_19","Page":"chapter","page":{"attributes":{"environment":"live"}},"Country":"HK","japan":false,"doi":"10.1007-978-3-030-21297-1_19","Keywords":"Big data warehouse, Data governance, Data profiling, Event processing, Performance","kwrd":["Big_data_warehouse","Data_governance","Data_profiling","Event_processing","Performance"],"Labs":"Y","ksg":"Krux.segments","kuid":"Krux.uid","Has Body":"Y","Features":[],"Open Access":"N","hasAccess":"Y","bypassPaywall":"N","user":{"license":{"businessPartnerID":[],"businessPartnerIDString":""}},"Access Type":"permanently-free","Bpids":"","Bpnames":"","BPID":["1"],"VG Wort Identifier":"pw-vgzm.415900-10.1007-978-3-030-21297-1","Full HTML":"Y","session":{"authentication":{"loginStatus":"N"},"attributes":{"edition":"academic"}},"content":{"serial":{"eissn":"1865-1356","pissn":"1865-1348"},"book":{"doi":"10.1007/978-3-030-21297-1","title":"Information Systems Engineering in Responsible Information Systems","pisbn":"978-3-030-21296-4","eisbn":"978-3-030-21297-1","bookProductType":"Proceedings","seriesTitle":"Lecture Notes in Business Information Processing","seriesId":"7911"},"chapter":{"doi":"10.1007/978-3-030-21297-1_19"},"type":"ConferencePaper","category":{"pmc":{"primarySubject":"Computer Science","primarySubjectCode":"SCI","secondarySubjects":{"1":"Information Systems Applications (incl. Internet)","2":"Software Engineering","3":"Business Process Management","4":"Computer Appl. in Administrative Data Processing","5":"Business Information Systems"},"secondarySubjectCodes":{"1":"SCI18040","2":"SCI14029","3":"SC522020","4":"SCI2301X","5":"SC522030"}},"sucode":"SUCO11645"},"attributes":{"deliveryPlatform":"oscar"},"country":"HK","Has Preview":"N","subjectCodes":"SCI,SCI18040,SCI14029,SC522020,SCI2301X,SC522030","PMC":["SCI","SCI18040","SCI14029","SC522020","SCI2301X","SC522030"]},"Event Category":"Conference Paper","ConferenceSeriesId":"caise, caise","productId":"9783030212971"}]; </script> <script> window.dataLayer.push({ ga4MeasurementId: 'G-B3E4QL2TPR', ga360TrackingId: 'UA-26408784-1', twitterId: 'o47a7', baiduId: 'aef3043f025ccf2305af8a194652d70b', ga4ServerUrl: 'https://collect.springer.com', imprint: 'springerlink', page: { attributes:{ featureFlags: [{ name: 'darwin-orion', active: true }, { name: 'chapter-books-recs', active: true }, { name: 'darwin-books', active: true }], darwinAvailable: true } } }); </script> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <script> (function (w, d, t) { function cc() { var h = w.location.hostname; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('springer.com') > -1 && h.indexOf('biomedcentral.com') === -1 && h.indexOf('springeropen.com') === -1) { if (h.indexOf('link-qa.springer.com') > -1 || h.indexOf('test-www.springer.com') > -1) { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('biomedcentral.com') > -1) { if (h.indexOf('biomedcentral.com.qa') > -1) { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springeropen.com') > -1) { if (h.indexOf('springeropen.com.qa') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springernature.com') > -1) { if (h.indexOf('beta-qa.springernature.com') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } } else { e.src = '/oscar-static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window, document, 'script'); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <script> (function () { if ( typeof window.CustomEvent === "function" ) return false; function CustomEvent ( event, params ) { params = params || { bubbles: false, cancelable: false, detail: null }; var evt = document.createEvent( 'CustomEvent' ); evt.initCustomEvent( event, params.bubbles, params.cancelable, params.detail ); return evt; } CustomEvent.prototype = window.Event.prototype; window.CustomEvent = CustomEvent; })(); </script> <script class="js-entry"> if (window.config.mustardcut) { (function(w, d) { window.Component = {}; window.suppressShareButton = false; window.onArticlePage = true; var currentScript = d.currentScript || d.head.querySelector('script.js-entry'); function catchNoModuleSupport() { var scriptEl = d.createElement('script'); return (!('noModule' in scriptEl) && 'onbeforeload' in scriptEl) } var headScripts = [ {'src': '/oscar-static/js/polyfill-es5-bundle-572d4fec60.js', 'async': false} ]; var bodyScripts = [ {'src': '/oscar-static/js/global-article-es5-bundle-dad1690b0d.js', 'async': false, 'module': false}, {'src': '/oscar-static/js/global-article-es6-bundle-e7d03c4cb3.js', 'async': false, 'module': true} ]; function createScript(script) { var scriptEl = d.createElement('script'); scriptEl.src = script.src; scriptEl.async = script.async; if (script.module === true) { scriptEl.type = "module"; if (catchNoModuleSupport()) { scriptEl.src = ''; } } else if (script.module === false) { scriptEl.setAttribute('nomodule', true) } if (script.charset) { scriptEl.setAttribute('charset', script.charset); } return scriptEl; } for (var i = 0; i < headScripts.length; ++i) { var scriptEl = createScript(headScripts[i]); currentScript.parentNode.insertBefore(scriptEl, currentScript.nextSibling); } d.addEventListener('DOMContentLoaded', function() { for (var i = 0; i < bodyScripts.length; ++i) { var scriptEl = createScript(bodyScripts[i]); d.body.appendChild(scriptEl); } }); // Webfont repeat view var config = w.config; if (config && config.publisherBrand && sessionStorage.fontsLoaded === 'true') { d.documentElement.className += ' webfonts-loaded'; } })(window, document); } </script> <script data-src="https://cdn.optimizely.com/js/27195530232.js" data-cc-script="C03"></script> <link rel="canonical" href="https://link.springer.com/chapter/10.1007/978-3-030-21297-1_19"/> <script type="application/ld+json">{"headline":"Enhancing Big Data Warehousing for Efficient, Integrated and Advanced Analytics","pageEnd":"226","pageStart":"215","image":"https://media.springernature.com/w153/springer-static/cover/book/978-3-030-21297-1.jpg","genre":["Computer Science","Computer Science (R0)"],"isPartOf":{"name":"Information Systems Engineering in Responsible Information Systems","isbn":["978-3-030-21297-1","978-3-030-21296-4"],"@type":"Book"},"publisher":{"name":"Springer International Publishing","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Maribel Yasmina Santos","url":"http://orcid.org/0000-0002-3249-6229","affiliation":[{"name":"University of Minho","address":{"name":"ALGORITMI Research Centre, University of Minho, Guimarães, Portugal","@type":"PostalAddress"},"@type":"Organization"}],"email":"maribel@dsi.uminho.pt","@type":"Person"},{"name":"Carlos Costa","url":"http://orcid.org/0000-0003-0011-6030","affiliation":[{"name":"University of Minho","address":{"name":"ALGORITMI Research Centre, University of Minho, Guimarães, Portugal","@type":"PostalAddress"},"@type":"Organization"},{"name":"Centre for Computer Graphics - CCG","address":{"name":"Centre for Computer Graphics - CCG, Guimarães, Portugal","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"João Galvão","url":"http://orcid.org/0000-0003-4263-8726","affiliation":[{"name":"University of Minho","address":{"name":"ALGORITMI Research Centre, University of Minho, Guimarães, Portugal","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Carina Andrade","url":"http://orcid.org/0000-0001-8783-9412","affiliation":[{"name":"University of Minho","address":{"name":"ALGORITMI Research Centre, University of Minho, Guimarães, Portugal","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Oscar Pastor","url":"http://orcid.org/0000-0002-1320-8471","affiliation":[{"name":"Universitat Politècnica de València","address":{"name":"Research Center on Software Production Methods (PROS), Universitat Politècnica de València, Valencia, Spain","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Ana Cristina Marcén","url":"http://orcid.org/0000-0002-5054-4618","affiliation":[{"name":"Universitat Politècnica de València","address":{"name":"Research Center on Software Production Methods (PROS), Universitat Politècnica de València, Valencia, Spain","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"}],"keywords":"Big data warehouse, Data governance, Data profiling, Event processing, Performance","description":"The existing capacity to collect, store, process and analyze huge amounts of data that is rapidly generated, i.e., Big Data, is characterized by fast technological developments and by a limited set of conceptual advances that guide researchers and practitioners in the implementation of Big Data systems. New data stores or processing tools frequently appear, proposing new (and usually more efficient) ways to store and query data (like SQL-on-Hadoop). Although very relevant, the lack of common methodological guidelines or practices has motivated the implementation of Big Data systems based on use-case driven approaches. This is also the case for one of the most valuable organizational data assets, the Data Warehouse, which needs to be rethought in the way it is designed, modeled, implemented, managed and monitored. This paper addresses some of the research challenges in Big Data Warehousing systems, proposing a vision that looks into: (i) the integration of new business processes and data sources; (ii) the proper way to achieve this integration; (iii) the management of these complex data systems and the enhancement of their performance; (iv) the automation of some of their analytical capabilities with Complex Event Processing and Machine Learning; and, (v) the flexible and highly customizable visualization of their data, providing an advanced decision-making support environment.","datePublished":"2019","isAccessibleForFree":true,"@type":"ScholarlyArticle","@context":"https://schema.org"}</script> </head> <body class="shared-article-renderer"> <!-- Google Tag Manager (noscript) --> <noscript data-test="gtm-body"> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="u-vh-full"> <a class="c-skip-link" href="#main-content">Skip to main content</a> <div class="u-hide u-show-following-ad"></div> <aside class="c-ad c-ad--728x90" data-test="springer-doubleclick-ad"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-LB1" data-pa11y-ignore data-gpt data-test="LB1-ad" data-gpt-unitpath="/270604982/springerlink/book/chapter" data-gpt-sizes="728x90" style="min-width:728px;min-height:90px" data-gpt-targeting="pos=LB1;"></div> </div> </aside> <div class="app-elements"> <header class="eds-c-header" data-eds-c-header> <div class="eds-c-header__container" data-eds-c-header-expander-anchor> <div class="eds-c-header__brand"> <a href="https://link.springer.com" data-test=springerlink-logo data-track="click_imprint_logo" data-track-context="unified header" data-track-action="click logo link" data-track-category="unified header" data-track-label="link" > <img src="/oscar-static/images/darwin/header/img/logo-springer-nature-link-3149409f62.svg" alt="Springer Nature Link"> </a> </div> <a class="c-header__link eds-c-header__link" id="identity-account-widget" href='https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/chapter/10.1007/978-3-030-21297-1_19?fromPaywallRec=true'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </div> <nav class="eds-c-header__nav" aria-label="header navigation"> <div class="eds-c-header__nav-container"> <div class="eds-c-header__item eds-c-header__item--menu"> <a href="#eds-c-header-nav" class="eds-c-header__link" data-eds-c-header-expander> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-menu-medium"></use> </svg><span>Menu</span> </a> </div> <div class="eds-c-header__item eds-c-header__item--inline-links"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </div> <div class="eds-c-header__link-container"> <div class="eds-c-header__item eds-c-header__item--divider"> <a href="#eds-c-header-popup-search" class="eds-c-header__link" data-eds-c-header-expander data-eds-c-header-test-search-btn> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg><span>Search</span> </a> </div> <div id="ecommerce-header-cart-icon-link" class="eds-c-header__item ecommerce-cart" style="display:inline-block"> <a class="eds-c-header__link" href="https://order.springer.com/public/cart" style="appearance:none;border:none;background:none;color:inherit;position:relative"> <svg id="eds-i-cart" class="eds-c-header__icon" xmlns="http://www.w3.org/2000/svg" height="24" width="24" viewBox="0 0 24 24" aria-hidden="true" focusable="false"> <path fill="currentColor" fill-rule="nonzero" d="M2 1a1 1 0 0 0 0 2l1.659.001 2.257 12.808a2.599 2.599 0 0 0 2.435 2.185l.167.004 9.976-.001a2.613 2.613 0 0 0 2.61-1.748l.03-.106 1.755-7.82.032-.107a2.546 2.546 0 0 0-.311-1.986l-.108-.157a2.604 2.604 0 0 0-2.197-1.076L6.042 5l-.56-3.17a1 1 0 0 0-.864-.82l-.12-.007L2.001 1ZM20.35 6.996a.63.63 0 0 1 .54.26.55.55 0 0 1 .082.505l-.028.1L19.2 15.63l-.022.05c-.094.177-.282.299-.526.317l-10.145.002a.61.61 0 0 1-.618-.515L6.394 6.999l13.955-.003ZM18 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4ZM8 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"></path> </svg><span>Cart</span><span class="cart-info" style="display:none;position:absolute;top:10px;right:45px;background-color:#C65301;color:#fff;width:18px;height:18px;font-size:11px;border-radius:50%;line-height:17.5px;text-align:center"></span></a> <script>(function () { var exports = {}; if (window.fetch) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.headerWidgetClientInit = void 0; var headerWidgetClientInit = function (getCartInfo) { document.body.addEventListener("updatedCart", function () { updateCartIcon(); }, false); return updateCartIcon(); function updateCartIcon() { return getCartInfo() .then(function (res) { return res.json(); }) .then(refreshCartState) .catch(function (_) { }); } function refreshCartState(json) { var indicator = document.querySelector("#ecommerce-header-cart-icon-link .cart-info"); /* istanbul ignore else */ if (indicator && json.itemCount) { indicator.style.display = 'block'; indicator.textContent = json.itemCount > 9 ? '9+' : json.itemCount.toString(); var moreThanOneItem = json.itemCount > 1; indicator.setAttribute('title', "there ".concat(moreThanOneItem ? "are" : "is", " ").concat(json.itemCount, " item").concat(moreThanOneItem ? "s" : "", " in your cart")); } return json; } }; exports.headerWidgetClientInit = headerWidgetClientInit; headerWidgetClientInit( function () { return window.fetch("https://cart.springer.com/cart-info", { credentials: "include", headers: { Accept: "application/json" } }) } ) }})()</script> </div> </div> </div> </nav> </header> </div> <div class="app-masthead__colour-7--pastel app-masthead--pastel" id="main" data-track-component="chapter" data-test="masthead-component"> <section class="app-masthead " aria-label="book chapter masthead"> <div class="app-masthead__container"> <div class="app-article-masthead app-article-masthead--chapter u-sans-serif js-context-bar-sticky-point-masthead" data-track-component="chapter" data-test="masthead-component"> <div class="app-article-masthead__info"> <nav aria-label="breadcrumbs" data-test="breadcrumbs"> <ol class="c-breadcrumbs" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="chapter page" data-track-category="Conference paper" data-track-action="breadcrumbs" data-track-label="breadcrumb1"><span itemprop="name">Home</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/book/10.1007/978-3-030-21297-1" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="chapter page" data-track-category="Conference paper" data-track-action="breadcrumbs" data-track-label="breadcrumb2"><span itemprop="name">Information Systems Engineering in Responsible Information Systems</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <span itemprop="name">Conference paper</span><meta itemprop="position" content="3"> </li> </ol> </nav> <h1 class="c-article-title" data-test="chapter-title" data-chapter-title="">Enhancing Big Data Warehousing for Efficient, Integrated and Advanced Analytics</h1><p class="c-chapter-category u-mb-0" lang="en">Visionary Paper</p> <ul class="c-article-identifiers"> <li class="c-article-identifiers__item" data-test="article-category">Conference paper</li> <li class="c-article-identifiers__item">First Online: <time datetime="2019-05-23">23 May 2019</time></li> </ul> <ul class="c-article-identifiers c-article-identifiers--cite-list"> <li class="c-article-identifiers__item"> <span class="c-chapter-book-details__meta"> pp 215–226</span> </li> <li class="c-article-identifiers__item c-article-identifiers__item--cite"> <a href="#citeas" data-track="click" data-track-action="cite this chapter" data-track-category="chapter body" data-track-label="link">Cite this conference paper</a> </li> </ul> <div class="app-article-masthead__buttons" data-track-context="masthead"> </div> </div> <div class="app-article-masthead__brand app-article-masthead__brand--no-border app-article-masthead__conference-link"> <a href="/book/10.1007/978-3-030-21297-1" class="app-article-masthead__conference-link app-article-masthead__journal-link" data-track="click" data-track-action="book homepage" data-track-label="link"> <picture> <source type="image/webp" media="(min-width: 768px)" width="120" height="182" srcset="https://media.springernature.com/w120/springer-static/cover-hires/book/978-3-030-21297-1?as=webp, https://media.springernature.com/w316/springer-static/cover-hires/book/978-3-030-21297-1?as=webp 2x"> <img width="72" height="109" src="https://media.springernature.com/w72/springer-static/cover-hires/book/978-3-030-21297-1?as=webp" srcset="https://media.springernature.com/w144/springer-static/cover-hires/book/978-3-030-21297-1?as=webp 2x" alt=""> </picture> <span class="app-article-masthead__journal-title ">Information Systems Engineering in Responsible Information Systems</span> </a> <span class="app-article-masthead__conference-info">(CAiSE 2019) </span> </div> </div> </div> </section> </div> <div class="c-article-main u-container u-mt-24 u-mb-32 l-with-sidebar" id="main-content" data-component="article-container"> <main class="js-main-column u-serif c-chapter-body" data-track-component="chapter"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container" data-track-context="sticky banner"> <div class="c-context-bar__title"> Enhancing Big Data Warehousing for Efficient, Integrated and Advanced Analytics </div> </div> </div> <article lang="en"> <div class="c-article-header"> <header> <div class="app-overview-section"> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Maribel_Yasmina-Santos" data-author-popup="auth-Maribel_Yasmina-Santos" data-corresp-id="c1">Maribel Yasmina Santos<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0002-3249-6229"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-3249-6229</a></span><sup class="u-js-hide"><a href="#Aff8">8</a></sup>, </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Carlos-Costa" data-author-popup="auth-Carlos-Costa">Carlos Costa</a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0003-0011-6030"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0003-0011-6030</a></span><sup class="u-js-hide"><a href="#Aff8">8</a>,<a href="#Aff9">9</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Jo_o-Galv_o" data-author-popup="auth-Jo_o-Galv_o">João Galvão</a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0003-4263-8726"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0003-4263-8726</a></span><sup class="u-js-hide"><a href="#Aff8">8</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Carina-Andrade" data-author-popup="auth-Carina-Andrade">Carina Andrade</a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0001-8783-9412"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0001-8783-9412</a></span><sup class="u-js-hide"><a href="#Aff8">8</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Oscar-Pastor" data-author-popup="auth-Oscar-Pastor">Oscar Pastor</a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0002-1320-8471"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-1320-8471</a></span><sup class="u-js-hide"><a href="#Aff10">10</a></sup> &amp; </li><li class="c-article-author-list__show-more" aria-label="Show all 6 authors for this article" title="Show all 6 authors for this article">…</li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Ana_Cristina-Marc_n" data-author-popup="auth-Ana_Cristina-Marc_n">Ana Cristina Marcén</a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0002-5054-4618"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-5054-4618</a></span><sup class="u-js-hide"><a href="#Aff10">10</a></sup> </li></ul><button aria-expanded="false" class="c-article-author-list__button"><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-down-medium"></use></svg><span>Show authors</span></button> <div class="app-overview-section__separator app-overview-section__book-series"> <div class="app-book-series-listing"> <div> <svg class="app-book-series-listing__icon" width="24" height="24" aria-hidden="true" focusable="false"><use href="#icon-eds-i-book-series-medium"></use></svg> </div> <div> <p data-test="series-link"> <span class="app-book-series-listing__description">Part of the book series:</span> <a href="https://www.springer.com/series/7911" data-track="click" data-track-action="open book series" data-track-label="link">Lecture Notes in Business Information Processing</a> ((LNBIP,volume 350)) </p> </div> </div> </div> <div class="app-book-series-listing app-overview-section__conf-series"> <div> <svg class="app-book-series-listing__icon" width="24" height="24" aria-hidden="true" focusable="false"><use href="#icon-eds-i-conference-series-medium"></use></svg> </div> <div> <p class="app-book-series-listing__description" data-test="conference-series-link">Included in the following conference series:</p> <ul class="app-book-series-listing__list" data-component="data-book-show-more"> <li class="app-book-series-listing__item"><a href="https://link.springer.com/conference/caise" data-test="conference-series-link" data-track="click" data-track-action="open conference" data-track-label="link">International Conference on Advanced Information Systems Engineering</a></li> </ul> </div> </div> <div class="app-overview-section__separator" data-test="article-metrics"> <div id="altmetric-container"> <ul class="app-article-metrics-bar u-list-reset" data-test="article-metrics"> <li class="app-article-metrics-bar__item" data-test="access-count"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-accesses-medium"></use> </svg>1440 <span class="app-article-metrics-bar__label">Accesses</span></p> </li> <li class="app-article-metrics-bar__item" data-test="citation-count"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-citations-medium"></use> </svg>5 <span class="app-article-metrics-bar__label"> <a href="http://citations.springer.com/item?doi&#x3D;10.1007/978-3-030-21297-1_19" target="_blank" rel="noopener" title="Visit Springer Citations for full citation details" data-track="click" data-track-action="Citation count" data-track-label="link">Citations</a> </span></p> </li> <li class="app-article-metrics-bar__item" data-test="altmetric-score"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-altmetric-medium"></use> </svg>1 <span class="app-article-metrics-bar__label"> <a href="https://link.altmetric.com/details/61232587" target="_blank" rel="noopener" title="Visit Altmetric for full social mention details" data-track="click" data-track-action="Social mentions" data-track-label="link">Altmetric</a> </span></p> </li> </ul> </div> </div> </div> </header> </div> <div data-article-body="true" data-track-component="chapter body" class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 id="Abs1" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>The existing capacity to collect, store, process and analyze huge amounts of data that is rapidly generated, i.e., Big Data, is characterized by fast technological developments and by a limited set of conceptual advances that guide researchers and practitioners in the implementation of Big Data systems. New data stores or processing tools frequently appear, proposing new (and usually more efficient) ways to store and query data (like SQL-on-Hadoop). Although very relevant, the lack of common methodological guidelines or practices has motivated the implementation of Big Data systems based on use-case driven approaches. This is also the case for one of the most valuable organizational data assets, the Data Warehouse, which needs to be rethought in the way it is designed, modeled, implemented, managed and monitored. This paper addresses some of the research challenges in Big Data Warehousing systems, proposing a vision that looks into: (i) the integration of new business processes and data sources; (ii) the proper way to achieve this integration; (iii) the management of these complex data systems and the enhancement of their performance; (iv) the automation of some of their analytical capabilities with Complex Event Processing and Machine Learning; and, (v) the flexible and highly customizable visualization of their data, providing an advanced decision-making support environment.</p></div></div></section> <div data-test="cobranding-download"> <div class="note test-pdf-link" id="cobranding-and-download-availability-text"> <div class="c-article-access-provider" data-component="provided-by-box"> <p class="c-article-access-provider__text c-article-access-provider__text--chapter"> You have full access to this open access chapter,&nbsp; <a href="/content/pdf/10.1007/978-3-030-21297-1_19.pdf?pdf=inline%20link" class="c-pdf-download__link" id="js-body-chapter-download" style="display: inline; padding:0px!important;" target="_blank" rel="noopener" data-track="content_download" data-track-context="article body" data-track-type="conference paper PDF download" data-track-action="Pdf download" data-track-label="inline link" download>Download conference paper PDF</a> <svg width="24" height="24" focusable="false" role="img" aria-hidden="true" class="c-download-pdf-icon-large"> <use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use> </svg> </p> </div> </div> </div> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w92h120/springer-static/cover-hires/book/978-3-030-45688-7?as&#x3D;webp" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/978-3-030-45688-7_61?fromPaywallRec=false" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1007/978-3-030-45688-7_61">An Evaluation of How Big-Data and Data Warehouses Improve Business Intelligence Decision Making </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Chapter</span> <span class="c-article-meta-recommendations__date">© 2020</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3Aplaceholder%2Fimages/placeholder-figure-springernature.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/s41870-017-0067-y?fromPaywallRec=false" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1007/s41870-017-0067-y">Comprehensive survey on data warehousing research </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">15 December 2017</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w92h120/springer-static/cover-hires/book/978-981-13-1334-9?as&#x3D;webp" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/978-981-13-1334-9_2?fromPaywallRec=false" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1007/978-981-13-1334-9_2">Big Data Analytics: The Underlying Technologies Used by Organizations for Value Generation </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Chapter</span> <span class="c-article-meta-recommendations__date">© 2019</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1732353945, embedded_user: 'null' } }); </script> <div class="main-content"> <h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="keywords">Keywords</h2><ul class="c-article-subject-list"><li class="c-article-subject-list__subject"><span><a href="/search?query=Big%20data%20warehouse&amp;facet-discipline=&#34;Computer%20Science&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Big data warehouse</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Data%20governance&amp;facet-discipline=&#34;Computer%20Science&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Data governance</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Data%20profiling&amp;facet-discipline=&#34;Computer%20Science&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Data profiling</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Event%20processing&amp;facet-discipline=&#34;Computer%20Science&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Event processing</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Performance&amp;facet-discipline=&#34;Computer%20Science&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Performance</a></span></li></ul> <section data-title="Introduction"><div class="c-article-section" id="Sec1-section"><h2 id="Sec1" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number">1 </span>Introduction</h2><div class="c-article-section__content" id="Sec1-content"><p>Current advancements in Information Technologies motivated organizations to look towards increased business value and more efficient ways to perform their daily activities. This is usually achieved with data-driven decision-making processes that are based in the collection, storage, processing and analysis of huge amounts of data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="Madden, S.: From databases to big data. IEEE Internet Comput. 16(3), 4–6 (2012)" href="#ref-CR1" id="ref-link-section-d20933282e654">1</a>]. Also, it is usually associated to characteristics like volume, velocity, variety, variability, veracity and value [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Dumbill, E.: Making sense of big data. Big Data 1, 1–2 (2013)" href="#ref-CR2" id="ref-link-section-d20933282e657">2</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Gandomi, A., Haider, M.: Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manag. 35, 137–144 (2015)" href="#ref-CR3" id="ref-link-section-d20933282e657_1">3</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Philip Chen, C.L., Zhang, C.-Y.: Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014)" href="#ref-CR4" id="ref-link-section-d20933282e660">4</a>], among others, trying to call our attention to the complexity of this area and the difficulties in the integration of such diverse set of data sources, as well as the multiple technologies needed to handle them. Big Data as a research topic is facing several challenges, from the ambiguity and lack of common approaches to the need of significant organizational changes [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="Costa, C., Santos, M.Y.: Big data: state-of-the-art concepts, techniques, technologies, modeling approaches and research challenges. IAENG Int. J. Comput. Sci. 44, 285–301 (2017)" href="#ref-CR5" id="ref-link-section-d20933282e663">5</a>], despite some existing efforts of standardizing constructs and logical components of general Big Data systems (e.g., NIST Big Data Reference Architecture [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="NBD-PWG: NIST Big Data Interoperability Framework (2015)" href="#ref-CR6" id="ref-link-section-d20933282e666">6</a>]). In particular, the research community is looking into the role of a Data Warehouse (DW) in Big Data environments [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="Krishnan, K.: Data Warehousing in the Age of Big Data. Elsevier, Burlington (2013)" href="#ref-CR7" id="ref-link-section-d20933282e670">7</a>], as this data system is usually based on strict relational data models, costly scalability and, in some cases, inefficient performance, opening several opportunities for emerging theories, methodologies, models, or methods for designing and implementing a Big Data Warehouse (BDW) [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Costa, C., Santos, M.Y.: Evaluating several design patterns and trends in big data warehousing systems. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 459–473. Springer, Cham (2018). &#xA; https://doi.org/10.1007/978-3-319-91563-0_28&#xA; &#xA; " href="#ref-CR8" id="ref-link-section-d20933282e673">8</a>]. This can be seen as a flexible, scalable and highly performant system that uses Big Data techniques and technologies to support mixed and complex analytical workloads (e.g., streaming analysis, ad hoc querying, data visualization, data mining, simulations) in several emerging contexts [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Costa, C., Santos, M.Y.: Evaluating several design patterns and trends in big data warehousing systems. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 459–473. Springer, Cham (2018). &#xA; https://doi.org/10.1007/978-3-319-91563-0_28&#xA; &#xA; " href="#ref-CR8" id="ref-link-section-d20933282e676">8</a>]. Although its relevance for supporting advanced analytical processes, research in this area is yet at an early stage, with increased ambiguity in the constructs that can be used, and lacking common approaches.</p><p>With the goal of advancing the state-of-the-art and tackle the lack of conceptual guidelines, some of our previous work [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Costa, C., Santos, M.Y.: Evaluating several design patterns and trends in big data warehousing systems. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 459–473. Springer, Cham (2018). &#xA; https://doi.org/10.1007/978-3-319-91563-0_28&#xA; &#xA; " href="#ref-CR8" id="ref-link-section-d20933282e682">8</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Santos, M.Y., et al.: A Big Data system supporting Bosch Braga Industry 4.0 strategy. Int. J. Inf. Manag. 37, 750–760 (2017)" href="#ref-CR9" id="ref-link-section-d20933282e682_1">9</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="Costa, C., Andrade, C., Santos, M.Y.: Big data warehouses for smart industries. In: Sakr, S., Zomaya, A. (eds.) Encyclopedia of Big Data Technologies, pp. 1–11. Springer, Cham (2018). &#xA; https://doi.org/10.1007/978-3-319-63962-8_204-1&#xA; &#xA; " href="#ref-CR10" id="ref-link-section-d20933282e685">10</a>] addressed the proposal of models (representations of logical and technological components, data flows, and data structures), methods (structured practices), and instantiations (with demonstration cases based on prototyping and benchmarking) on how to design and implement BDWs. Although filling a major scientific and technical gap, these works were focused on the BDW itself and on its main architectural components, technologies and design patterns, not considering all the additional components, processes and frameworks that must interact with, feed, support (for data analysis and visualization), manage and evaluate this data asset. For advancing data analytics and enhancing the role of the BDW in organizations, this paper presents an overview of the current challenges and some research directions in Big Data Warehousing (BDWing) systems, looking for a continuous practice that allows:</p><ul class="u-list-style-bullet"> <li> <p>The integration of new business processes and data sources (<i>how this integration should be done to provide an integrated view of the organizational business processes and data?</i>);</p> </li> <li> <p>The proper way to achieve this integration, based on adequate data models (<i>how existing data models should evolve to seamlessly integrate new data sources avoiding uncoordinated data silos?</i>);</p> </li> <li> <p>The management of these complex data systems and the enhancement of their performance (<i>how can BDWs be monitored in terms of their evolution - business processes and data - and in terms of their performance?</i>);</p> </li> <li> <p>The automation of some of their analytical capabilities (<i>how can Complex Event Processing and Machine Learning automate and enhance BDWs with advanced real-time events processing?</i>); and,</p> </li> <li> <p>The flexible and highly customizable visualization of their data, providing an advanced decision-making support environment (<i>how can visualization tools be extended to allow the development of highly interactive and customized data visualizations?</i>).</p> </li> </ul> <p>Although some of these challenges and open issues may also be relevant for the traditional DW, the complexity associated with the volume, variety and velocity of the data, the variability in data collection and processing, the veracity of the data sources, the complexity of integrating diverse sets of data, the types of analytical workloads (batch, streaming, and interactive), and the diverse and complex technological landscape, impose addressing them with the specificities and needs of Big Data contexts.</p><p>This paper is organized as follows. Section <a data-track="click" data-track-label="link" data-track-action="section anchor" href="#Sec2">2</a> presents some background concepts and related work. Section <a data-track="click" data-track-label="link" data-track-action="section anchor" href="#Sec3">3</a> describes the overall framework for advancing BDW research. Section <a data-track="click" data-track-label="link" data-track-action="section anchor" href="#Sec9">4</a> concludes with some highlights of the presented research topics.</p></div></div></section><section data-title="Background and Related Work"><div class="c-article-section" id="Sec2-section"><h2 id="Sec2" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number">2 </span>Background and Related Work</h2><div class="c-article-section__content" id="Sec2-content"><p>The concept of Data Warehousing (DWing) has a long history, mainly associated to the need to access, analyze and present data to support fact-based analytics [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="Kimball, R., Ross, M.: The Data Warehouse Toolkit: The definitive Guide to Dimensional Modeling. Wiley, Indianapolis (2013)" href="#ref-CR11" id="ref-link-section-d20933282e759">11</a>]. Its aim is to access multiple records at a time. A DW structure is optimized for processing analytical tasks, such as repeatedly queries, reports, Online Analytical Processing – OLAP, data mining or other data science approaches. In a Big Data context, some challenges arise such as inadequate governance of data, lack of skills, cost of implementing new technologies, and difficulties in addressing a modern solution that can ingest and process the ever-increasing amount or types of data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Costa, C., Santos, M.Y.: Evaluating several design patterns and trends in big data warehousing systems. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 459–473. Springer, Cham (2018). &#xA; https://doi.org/10.1007/978-3-319-91563-0_28&#xA; &#xA; " href="#ref-CR8" id="ref-link-section-d20933282e762">8</a>]. The concept of BDW has been constrained by the fast technological evolution around Big Data, giving short time for developing and maturing research contributions in this area [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="Gandomi, A., Haider, M.: Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manag. 35, 137–144 (2015)" href="#ref-CR3" id="ref-link-section-d20933282e765">3</a>]. The BDW can be implemented using two main strategies: (i) the “lift and shift” strategy [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="Clegg, D.: Evolving data warehouse and BI architectures: the big data challenge. TDWI Bus. Intell. J. 20, 19–24 (2015)" href="#ref-CR12" id="ref-link-section-d20933282e768">12</a>], amplifying the capabilities of relational DWs with Big Data technologies, such as Hadoop or NoSQL databases, proposing particular solutions for specific use cases that may lead to possible uncoordinated data silos [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="Clegg, D.: Evolving data warehouse and BI architectures: the big data challenge. TDWI Bus. Intell. J. 20, 19–24 (2015)" href="#ref-CR12" id="ref-link-section-d20933282e771">12</a>]; (ii) the “rip and replace” strategy, in which a traditional DW is completely replaced by Big Data technologies [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="Russom, P.: Data Warehouse Modernization in the Age of Big Data Analytics (2016)" href="#ref-CR13" id="ref-link-section-d20933282e775">13</a>]. These non-structured practices and guidelines are not sufficient [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Costa, C., Santos, M.Y.: Evaluating several design patterns and trends in big data warehousing systems. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 459–473. Springer, Cham (2018). &#xA; https://doi.org/10.1007/978-3-319-91563-0_28&#xA; &#xA; " href="#ref-CR8" id="ref-link-section-d20933282e778">8</a>], as practitioners and researchers need well-established approaches or guidelines, based on rigorously evaluated models and methods to design and build BDWs [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 14" title="Russom, P.: Evolving Data Warehouse Architectures in the Age of Big Data (2014)" href="#ref-CR14" id="ref-link-section-d20933282e781">14</a>].</p><p>Some existing works explore implementations of DWs on top of NoSQL databases, such as document-oriented [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 15" title="Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R.: Document-oriented models for data warehouses - NoSQL document-oriented for data warehouses. In: Proceedings of the 18th International Conference on Enterprise Information Systems, Rome, Italy, pp. 142–149 (2016). &#xA; https://doi.org/10.5220/0005830801420149&#xA; &#xA; " href="#ref-CR15" id="ref-link-section-d20933282e787">15</a>], column-oriented [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R.: Implementing multidimensional data warehouses into NoSQL. In: 17th International Conference on Enterprise Information Systems (ICEIS), Barcelona, Spain (2015)" href="#ref-CR16" id="ref-link-section-d20933282e790">16</a>] and graph databases [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="Gröger, C., Schwarz, H., Mitschang, B.: The deep data warehouse: link-based integration and enrichment of warehouse data and unstructured content. In: IEEE 18th International Enterprise Distributed Object Computing Conference (EDOC), pp. 210–217 (2014)" href="#ref-CR17" id="ref-link-section-d20933282e793">17</a>], despite the fact that these databases are mainly oriented towards Online Transaction Processing (OLTP) applications [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 18" title="Cattell, R.: Scalable SQL and NoSQL data stores. ACM SIGMOD Record. 39, 12 (2011)" href="#ref-CR18" id="ref-link-section-d20933282e796">18</a>]. Other works look into storage and processing technologies, discussing SQL-on-Hadoop systems like Hive [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="Thusoo, A., et al.: Hive-a petabyte scale data warehouse using hadoop. In: 2010 IEEE 26th International Conference on Data Engineering (ICDE), pp. 996–1005. IEEE (2010)" href="#ref-CR19" id="ref-link-section-d20933282e799">19</a>] and Impala [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="Pandis, I.: Impala: a modern, open-source SQL engine for hadoop. In: 7th Biennial Conference on Innovative Data Systems Research (CIDR), p. 10 (2015)" href="#ref-CR20" id="ref-link-section-d20933282e803">20</a>], or improving these technologies with the use of new storage and processing mechanisms [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 21" title="Huai, Y., et al.: Major technical advancements in apache hive. In: Proceedings of the 2014 ACM SIGMOD international conference on Management of data - SIGMOD 2014, pp. 1235–1246. ACM Press, Snowbird (2014). &#xA; https://doi.org/10.1145/2588555.2595630&#xA; &#xA; " href="#ref-CR21" id="ref-link-section-d20933282e806">21</a>]. Moreover, advancements in analytical and integration mechanisms suitable for BDWs are also available [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Li, X., Mao, Y.: Real-Time data ETL framework for big real-time data analysis. In: 2015 IEEE International Conference on Information and Automation, pp. 1289–1294. IEEE, Lijiang (2015). &#xA; https://doi.org/10.1109/ICInfA.2015.7279485&#xA; &#xA; " href="#ref-CR22" id="ref-link-section-d20933282e809">22</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Song, J., Guo, C., Wang, Z., Zhang, Y., Yu, G., Pierson, J.-M.: HaoLap: a hadoop based OLAP system for big data. J. Syst. Softw. 102, 167–181 (2015)" href="#ref-CR23" id="ref-link-section-d20933282e809_1">23</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 24" title="Wang, H., et al.: Efficient query processing framework for big data warehouse: an almost join-free approach. Front. Comput. Sci. 9, 224–236 (2015)" href="#ref-CR24" id="ref-link-section-d20933282e812">24</a>]. In [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 25" title="Tria, F.D., Lefons, E., Tangorra, F.: A framework for evaluating design methodologies for big data warehouses: measurement of the design process. Int. J. Data Warehouse. Min. 14(1), 15–39 (2018)" href="#ref-CR25" id="ref-link-section-d20933282e815">25</a>], the authors present a framework for evaluating methodologies to design BDWs, defining a set of criteria like application, agility, ontological approach, paradigm, and logical modeling. The authors also divide the methodologies into classes (e.g., automatic, incremental, and non-relational) and define the characteristics being addressed by the methodologies (e.g., value, variety, and velocity).</p><p>Taking this into consideration, we have been proposing several prescriptive BDWing contributions grounded on a “rip and replace” strategy and other relevant general contributions in the area of Big Data (e.g., NIST Big Data architecture), to fulfill an emerging gap within the literature, namely the lack of a prescriptive approach to guide practitioners in the design and implementation of BDWs, wherein they can follow rigorous models and methods in real-world projects. Supported by our previous work with: (i) methodological guidelines on the design and implementation of BDWing systems, with proof-of-concepts in the context of Industry 4.0 at Bosch Car Multimedia Braga [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="Santos, M.Y., et al.: A Big Data system supporting Bosch Braga Industry 4.0 strategy. Int. J. Inf. Manag. 37, 750–760 (2017)" href="#ref-CR9" id="ref-link-section-d20933282e821">9</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="Costa, C., Andrade, C., Santos, M.Y.: Big data warehouses for smart industries. In: Sakr, S., Zomaya, A. (eds.) Encyclopedia of Big Data Technologies, pp. 1–11. Springer, Cham (2018). &#xA; https://doi.org/10.1007/978-3-319-63962-8_204-1&#xA; &#xA; " href="#ref-CR10" id="ref-link-section-d20933282e824">10</a>] or Smart Cities [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 26" title="Costa, C., Santos, M.Y.: The SusCity big data warehousing approach for smart cities. In: Proceedings of International Database Engineering &amp; Applications Symposium. Bristol, United Kingdom (2017). &#xA; https://doi.org/10.1145/3105831.3105841&#xA; &#xA; " href="#ref-CR26" id="ref-link-section-d20933282e827">26</a>]; (ii) the extensive evaluation of SQL-on-Hadoop systems for data processing [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Costa, C., Santos, M.Y.: Evaluating several design patterns and trends in big data warehousing systems. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 459–473. Springer, Cham (2018). &#xA; https://doi.org/10.1007/978-3-319-91563-0_28&#xA; &#xA; " href="#ref-CR8" id="ref-link-section-d20933282e830">8</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Costa, E., Costa, C., Santos, M.Y.: Efficient big data modelling and organization for hadoop hive-based data warehouses. In: Themistocleous, M., Morabito, V. (eds.) EMCIS 2017. LNBIP, vol. 299, pp. 3–16. Springer, Cham (2017). &#xA; https://doi.org/10.1007/978-3-319-65930-5_1&#xA; &#xA; " href="#ref-CR27" id="ref-link-section-d20933282e833">27</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Rodrigues, M., Santos, M.Y., Bernardino, J.: Big data processing tools: an experimental performance evaluation. WIREs Data Min. Knowl. Discov. 9(2), e1297 (2019)" href="#ref-CR28" id="ref-link-section-d20933282e833_1">28</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 29" title="Santos, M.Y., et al.: Evaluating SQL-on-hadoop for big data warehousing on not-so-good hardware. In: Proceedings of International Database Engineering &amp; Applications Symposium (IDEAS 2017), pp. 242–252. ACM Press (2017). &#xA; https://doi.org/10.1145/3105831.3105842&#xA; &#xA; " href="#ref-CR29" id="ref-link-section-d20933282e837">29</a>]; and, (iii) the relevance of extracting value from data, moving from Big Data to Smart Data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 30" title="León Palacio, A., Pastor López, Ó.: Smart data for genomic information systems: the SILE method. Complex Syst. Inf. Model. Q. 1–23 (2018). &#xA; https://doi.org/10.7250/csimq.2018-17.01&#xA; &#xA; " href="#ref-CR30" id="ref-link-section-d20933282e840">30</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 31" title="Palacio, A.L., López, Ó.P., Ródenas, J.C.C.: A method to identify relevant genome data: conceptual modeling for the medicine of precision. In: Trujillo, J.C., Davis, K.C., Du, X., Li, Z., Ling, T.W., Li, G., Lee, M.L. (eds.) ER 2018. LNCS, vol. 11157, pp. 597–609. Springer, Cham (2018). &#xA; https://doi.org/10.1007/978-3-030-00847-5_44&#xA; &#xA; " href="#ref-CR31" id="ref-link-section-d20933282e843">31</a>], the next section presents a set of research directions in this field.</p></div></div></section><section data-title="Big Data Warehousing Systems"><div class="c-article-section" id="Sec3-section"><h2 id="Sec3" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number">3 </span>Big Data Warehousing Systems</h2><div class="c-article-section__content" id="Sec3-content"><p>Researching in BDWing lacks from reference frameworks and methodological guidelines that help researchers and practitioners in the process of enhancing this valuable data system. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig1">1</a> depicts the vision proposed in this paper for an integrated BDWing environment supporting the decision-making process. For the current challenges and research directions identified in the introduction of this paper, five main components are here proposed to address them: (i) BDW Entities Resolution, including tasks such as data collection, preparation, enrichment, profiling, and lineage; (ii) BDW Modelling and Implementation; (iii) BDW Management; (iv) BDW Intelligent Event Broker; and, (v) BDW Visualization. Currently, the design and implementation of a BDW is mostly based on use-case driven approaches, preventing a long-term view of the BDW evolution and performance, reason why this proposal looks into a data lifecycle that continuously assists the integration of new data sources, the monitoring of the BDW as a valuable organizational asset, and the enhancement of the decision-making process throughout an innovative and interconnected approach.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1" data-title="Fig. 1."><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 1.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-21297-1_19/figures/1" rel="nofollow"><picture><img aria-describedby="Fig1" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-21297-1_19/MediaObjects/484708_1_En_19_Fig1_HTML.png" alt="figure 1" loading="lazy" width="685" height="857"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-1-desc"><p>BDW for efficient, integrated and advanced analytics</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-21297-1_19/figures/1" data-track-dest="link:Figure1 Full size image" aria-label="Full size image figure 1" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h3 class="c-article__sub-heading" id="Sec4"><span class="c-article-section__title-number">3.1 </span>BDW Entities Resolution</h3><p>The BDW Entities Resolution component addresses the adequate integration of new business processes and data in the BDW, providing a unified and relevant view of the organizational data for decision-making, see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig1">1</a>. This includes tasks for data sources identification, data understanding, data cleansing, data fusion, data transformation, among many others, with the aim of understanding how new business processes and data can be integrated in the BDW. This is seen as a complex process that is able to deal with the variety of data sources usually available in Big Data contexts, providing adequate and efficient processes to give structure to unstructured or semi-structured data sources (using Data Science techniques and technologies), and to identify relevant entities for analysis, with the Collection, Preparation and Enrichment (CPE) Pipeline, which can be seen as part of a general approach of Big Data management, such as SILE (Search, Identify, Load and Exploitation) proposed in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 30" title="León Palacio, A., Pastor López, Ó.: Smart data for genomic information systems: the SILE method. Complex Syst. Inf. Model. Q. 1–23 (2018). &#xA; https://doi.org/10.7250/csimq.2018-17.01&#xA; &#xA; " href="#ref-CR30" id="ref-link-section-d20933282e884">30</a>], aiming to systematize the search and identification of relevant data to be loaded, analyzed and exploited by a Genomic Information Systems. Although in this case the method is proposed and applied to a specific domain, genomics, the principles are transversal to any application domain: search for relevant data sources; identify relevant datasets; load the relevant data; and, exploit the value of data. From the identification of new business processes and data to their adequate integration in the BDW, there is the need to devise automatic or semi-automatic approaches that are able to take them as input and evaluate how they can be integrated in an already existing data structure, which is highly complex and that needs to comply with demanding workloads and performance issues.</p><p>With structured data, Data Profiling characterizes the new business processes (helping in the integration of the new data sources [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 32" title="Hui, J., Li, L., Zhang, Z.: Integration of big data: a survey. In: Zhou, Q., Gan, Y., Jing, W., Song, X., Wang, Y., Lu, Z. (eds.) ICPCSEE 2018. CCIS, vol. 901, pp. 101–121. Springer, Singapore (2018). &#xA; https://doi.org/10.1007/978-981-13-2203-7_9&#xA; &#xA; " href="#ref-CR32" id="ref-link-section-d20933282e890">32</a>] with the already existing data in the BDW), the new data sources, and the attributes that define the events associated to those business processes, addressing their possible values, distribution, and quality.</p><p>To seamlessly integrate the arriving data (either in batches or in streaming), Data Tagging and Lineage is complemented with the computation of a set of semantic indicators that verify the affinity and joinability of the attributes [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 33" title="Maccioni, A., Torlone, R.: KAYAK: a framework for just-in-time data preparation in a data lake. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 474–489. Springer, Cham (2018). &#xA; https://doi.org/10.1007/978-3-319-91563-0_29&#xA; &#xA; " href="#ref-CR33" id="ref-link-section-d20933282e896">33</a>], showing how they relate to each other and how their integration in the BDW is possible. This is represented by the Inter &amp; Intra Data Sources Knowledge. The Inter Knowledge helps in integrating new data sources with the ones already available in the BDW, whereas the Intra Knowledge gives a conceptual overview of the new data sources. Information for Data Tagging and Lineage can be automatically collected from CPE workloads, Structured Query Language (SQL) scripts, databases’ metadata, among others. As a result, for the identified business processes and data, a graph data structure makes available the Inter &amp; Intra Data Sources Knowledge with their characterization and the semantic information that guides their integration in the BDW.</p><h3 class="c-article__sub-heading" id="Sec5"><span class="c-article-section__title-number">3.2 </span>BDW Modelling and Implementation</h3><p>In the vision proposed in this paper, BDW Modelling and Implementation must be guided by appropriate methodological guidelines, and not by ad hoc or use case-driven approaches, identifying the suitable data model to integrate the new data in the BDW, ensuring efficient query processing, mixed complex workloads, and an adequate decision support environment (see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig1">1</a>). As seen in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Costa, C., Santos, M.Y.: Evaluating several design patterns and trends in big data warehousing systems. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 459–473. Springer, Cham (2018). &#xA; https://doi.org/10.1007/978-3-319-91563-0_28&#xA; &#xA; " href="#ref-CR8" id="ref-link-section-d20933282e910">8</a>], different data modeling approaches can be followed for designing and implementing BDWs, such as completely flat (denormalized) data tables, star schema models, or hybrid approaches that use flat tables and star schemas depending on the data cardinality and distribution. For these different design patterns, which can optimize query processing [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 27" title="Costa, E., Costa, C., Santos, M.Y.: Efficient big data modelling and organization for hadoop hive-based data warehouses. In: Themistocleous, M., Morabito, V. (eds.) EMCIS 2017. LNBIP, vol. 299, pp. 3–16. Springer, Cham (2017). &#xA; https://doi.org/10.1007/978-3-319-65930-5_1&#xA; &#xA; " href="#ref-CR27" id="ref-link-section-d20933282e913">27</a>], and for the new business processes and data, the data modelling constructs need to be inferred using the information available from the BDW Entities Resolution. Here, the characteristics of the data and the data modelling constructs are mapped, identifying:</p><ul class="u-list-style-bullet"> <li> <p>Analytical objects (such as sales, inventory management, purchases, among others);</p> </li> <li> <p>Complementary analytical objects (similar to conformed dimensions in the Kimball approach [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="Kimball, R., Ross, M.: The Data Warehouse Toolkit: The definitive Guide to Dimensional Modeling. Wiley, Indianapolis (2013)" href="#ref-CR11" id="ref-link-section-d20933282e928">11</a>]);</p> </li> <li> <p>Descriptive and analytical attributes, where descriptive attributes add a meaning to the analytical attributes, like product descriptions for the value of sales;</p> </li> <li> <p>Materialized objects (views) that increase efficiency for complex and long-running queries.</p> </li> </ul> <p>With these, a Design Patterns Knowledge Base is used to derive a data model and to later implement it using (semi)-automated procedures, adding the new physical structures and data to the BDW. This knowledge base stores information about the data modeling design patterns, as well as their performance attending to the characteristics of the data. This way, a data model can be derived, suggesting its implementation by following a specific design pattern. Afterwards, as will be seen in the next subsection, if the volume of data increases, if the data distribution changes, or if performance in query processing is not satisfactory, the BDW Management component can recommend changes to the data model, suggesting the adoption of different design patterns. The model implementation, having the data model and the CPE workloads, can be optimized leveraging agile and performant BDW’s updates.</p><h3 class="c-article__sub-heading" id="Sec6"><span class="c-article-section__title-number">3.3 </span>BDW Management</h3><p>As the number of business processes and data sources starts to increase in the BDW, there is the need to know which tables and attributes were stored, to which business processes they are related, when they were created or added, and how they are evolving over time, such as how many rows were added, and when were they added. This gives real-time information about the BDW and its evolution. For the adequate BDW Management, the BDW Catalogue (see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig1">1</a>), a graph-based structure with the BDW’s metadata, includes information about the business processes, tables, attributes, loading processes, among others. This structure also complements the semantic knowledge needed for Data Tagging and Lineage in the BDW Entities Resolution, establishing the Inter &amp; Intra Data Sources Knowledge, as it complements the knowledge of the existing data with the one obtained from the new business processes and data sources.</p><p>Besides cataloguing the BDW, supporting its governance, it is also relevant to monitor its performance, verifying its efficiency in query processing. This challenge is not seen here as a process of adopting more performant processing tools [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 28" title="Rodrigues, M., Santos, M.Y., Bernardino, J.: Big data processing tools: an experimental performance evaluation. WIREs Data Min. Knowl. Discov. 9(2), e1297 (2019)" href="#ref-CR28" id="ref-link-section-d20933282e963">28</a>], but as an architectural change in terms of the data models, adjusting the design patterns attending to the characteristics of the available data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Costa, C., Santos, M.Y.: Evaluating several design patterns and trends in big data warehousing systems. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 459–473. Springer, Cham (2018). &#xA; https://doi.org/10.1007/978-3-319-91563-0_28&#xA; &#xA; " href="#ref-CR8" id="ref-link-section-d20933282e966">8</a>]. This is important to devise strategies for improving the BDW’s efficiency. In this case, a recommendation system can analyze the current state of the BDW, using descriptive statistics, affinity measures, joinability measures, metadata, query performance and query repetition, for instance, and propose changes to the BDW data model, through the implementation of additional analytical objects or structures like complementary analytical objects or materialized objects [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="Costa, C., Andrade, C., Santos, M.Y.: Big data warehouses for smart industries. In: Sakr, S., Zomaya, A. (eds.) Encyclopedia of Big Data Technologies, pp. 1–11. Springer, Cham (2018). &#xA; https://doi.org/10.1007/978-3-319-63962-8_204-1&#xA; &#xA; " href="#ref-CR10" id="ref-link-section-d20933282e969">10</a>], thus increasing the overall efficiency of the system. With this, data models can evolve, changing the previously adopted design patterns, if that is advantageous for the BDW’s efficiency. Moreover, the BDW Performance must use a Key Performance Indicators (KPIs) tree that assists this monitoring task, providing a list of objective metrics and the corresponding targets. As the data models evolve, the KPIs can show the impact of those changes in the overall performance of the BDW.</p><h3 class="c-article__sub-heading" id="Sec7"><span class="c-article-section__title-number">3.4 </span>BDW Intelligent Event Broker</h3><p>For processing real-time data in the BDW, as a relevant functionality of an analytical system in a Big Data context, there is the need for automated decision-making processes through Complex Event Processing and Machine Learning, adopting innovative ways to process complex events in a streamlined, scalable, analytical and integrated way [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 34" title="Flouris, I., Giatrakos, N., Deligiannakis, A., Garofalakis, M., Kamp, M., Mock, M.: Issues in complex event processing: status and prospects in the Big Data era. J. Syst. Softw. 127, 217–236 (2017). &#xA; https://doi.org/10.1016/j.jss.2016.06.011&#xA; &#xA; " href="#ref-CR34" id="ref-link-section-d20933282e981">34</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 35" title="Zhang, P., Shi, X., Khan, S.U.: QuantCloud: enabling big data complex event processing for quantitative finance through a data-driven execution. IEEE Trans. Big Data (2018). &#xA; https://doi.org/10.1109/TBDATA.2018.2847629&#xA; &#xA; " href="#ref-CR35" id="ref-link-section-d20933282e984">35</a>]. The BDW Intelligent Event Broker, see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig1">1</a>, is a just-in-time data dissemination system using highly flexible business rules and Machine Learning models to handle the event data that is available mainly due to the proliferation of IoT devices. Therefore, there are several contexts in which this system can be used (industry, smart cities, logistics, agriculture, among others), preventing possible problems by using the data produced by several sources and processing it in real-time. The monitoring of a production line is a relevant example where the verification of the rules in a defect product can result in the application of Machine Learning models to predict if the next products will also be defective, and then activating the needed actions. Consequently, for this system, several components are needed, such as the following:</p><ul class="u-list-style-bullet"> <li> <p>Business Rules Engine for defining a set of business rules to be applied to the data/events, as well as the actions that must be taken as a consequence of triggering a specific rule. A repository of business rules for managerial actions at different organizational levels (mainly tactical and operational) feeds the Intelligent Event Broker and uses data that arrives to the BDW (in streaming or batch), combining real-time and historical data in the decision-making process;</p> </li> <li> <p>Machine Learning Engine for importing previously trained Machine Learning models from a Models Lake, using a Machine Learning as a Service approach, in order to predict future events and, if needed, provide corrective or optimal actions regarding the event;</p> </li> <li> <p>Broker Monitoring to automatically track the functioning of the Intelligent Event Broker, by collecting metadata regarding rules, triggers, KPIs, among others. This component is used to monitor the performance of the broker and devise strategies to improve it; and,</p> </li> <li> <p>Mapping and Drill-down Visualization to: (i) inspect the rules that have been activated and drill-down into the data that activated those rules; and (ii) visualize KPIs about the broker itself and drill-down into their relationship with the rules, the triggers and the corresponding data.</p> </li> </ul> <p>Considering the analyzed related work [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 36" title="Hadar, E.: BIDCEP: a vision of big data complex event processing for near real-time data streaming: position paper, a practitioner view. In: CAiSE 2016 Industry Track, CEUR Workshop Proceedings (2016)" href="#ref-CR36" id="ref-link-section-d20933282e1020">36</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 37" title="Flouris, I., et al.: FERARI: a prototype for complex event processing over streaming multi-cloud platforms. In: Proceedings of the 2016 International Conference on Management of Data - SIGMOD 2016, pp. 2093–2096. ACM Press, San Francisco (2016). &#xA; https://doi.org/10.1145/2882903.2899395&#xA; &#xA; " href="#ref-CR37" id="ref-link-section-d20933282e1023">37</a>], some concepts and components here mentioned are widely recognized for this type of system (e.g., rules and triggers). However, these works do not consider: (i) the inclusion of concepts similar to the Machine Learning Models Lake component that can be helpful for patterns discovery in Complex Event Processing systems for Big Data contexts; and, (ii) the relevance of the system monitoring through an innovative visualization platform, as its evolution can quickly become untraceable in Big Data contexts.</p><h3 class="c-article__sub-heading" id="Sec8"><span class="c-article-section__title-number">3.5 </span>BDW Visualization</h3><p>Visualization is one of the key components to take advantage of the data made available through the BDW, enhancing decision making with appropriate visual analytics tools. Technological developments in Big Data contexts are mainly driven by open source initiatives, but as the open source Big Data Visualization landscape is still very limited when compared to commercial solutions, practitioners have mainly two alternatives, namely, use open source solutions or custom-made Web visualizations. In both cases, existing applications usually provide an environment for static and/or more dynamic analyses, with classical or more advanced visualization methods [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 38" title="Bikakis, N.: Big data visualization tools. In: Sakr, S., Zomaya, A. (eds.) Encyclopedia of Big Data Technologies. Springer, Cham (2018). &#xA; https://doi.org/10.1007/978-3-319-63962-8_109-1&#xA; &#xA; " href="#ref-CR38" id="ref-link-section-d20933282e1034">38</a>], or with the identification of interaction patterns for designing user interfaces oriented towards extracting knowledge from Big Data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 39" title="Iñiguez-Jarrín, C., Panach, J.I., Pastor López, O.: Defining interaction design patterns to extract knowledge from big data. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 490–504. Springer, Cham (2018). &#xA; https://doi.org/10.1007/978-3-319-91563-0_30&#xA; &#xA; " href="#ref-CR39" id="ref-link-section-d20933282e1037">39</a>]. In open source tools like Superset (<a href="https://superset.incubator.apache.org">https://superset.incubator.apache.org</a>), base functionalities are provided but improvements are still needed regarding customization. When using commercial solutions, usually including a wide variety of visualization methods and functionalities, there is still the lack of customization and interaction that can be achieved with custom-made Web platforms, like real-time access to data, highly customized events and interactions, or calculations involving multiple sources. Taking this into consideration, there is the need for BDW Visualization (see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig1">1</a>) platforms oriented towards dashboard development by advanced data analysts and data scientists, providing a way to create custom-made and interactive dashboards using small portions of reusable code that can be easily integrated (like HTML, CSS and JavaScript code), including rich, highly flexible, customizable and interactive charts or other visualization components.</p></div></div></section><section data-title="Conclusions"><div class="c-article-section" id="Sec9-section"><h2 id="Sec9" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number">4 </span>Conclusions</h2><div class="c-article-section__content" id="Sec9-content"><p>This paper highlighted the research topics associated with current challenges and open issues in BDWs as highly flexible, scalable and performant systems for supporting decision-making processes. In this work, some proposals were refined and structured to become a roadmap for the research community for the next years. This vision tries to highlight were value can be added to a BDW, by approaching a fast-changing world that needs to deal with the constant integration of new business processes and data sources, and by understanding the proper way to adjust the BDW and its data model as this evolution occurs. Also, it is crucial to deal with the management of these complex data systems to enhance their performance, as well as addressing real-time analytical capabilities through the use of Complex Event Processing and Machine Learning.</p><p>In this paper, all these challenges were instantiated with research areas. For <i>the integration of new business processes and data sources</i>, approaches from research areas like Entities Resolution, Data Profiling, Data Tagging, and Data Lineage can be applied to provide information for <i>the proper way to achieve this integration</i>, based on appropriate data models, with the attempt to provide a data model in a semi-automated way, based on a Design Patterns Knowledge Base. This type of contribution will help organizations that deal with huge amounts of data arriving from several sources and will help them <i>to manage these complex data systems and to enhance their performance</i>, reducing the time needed for tasks such as the BDW management and modeling, allowing their users to focus on retrieving value from data. Moreover, the capability to deal with other contexts, like events and streaming processing, <i>automating the analytical capabilities of a BDW</i>, is another way to enhance the BDW and its value.</p><p>Currently, streaming data is constantly being produced in different contexts by the several interconnected devices and people within the organizations. Its efficient processing and usage are relevant to promote better decisions for decision makers, or, sometimes, take decisions in an automated way. To accomplish this goal, the Intelligent Event Broker is responsible for the real-time application of business rules and Complex Event Processing, allowing the identification of events and problems that can be dispatched by several triggers that take semi-automated actions. The Machine Learning component is a core component of the Broker, making available the problems identification and recommendations even before these problems occur, based on the data that arrives to the system. For this kind of system, its complexity needs to be managed, being a monitoring and visualization component proposed to understand and track what happens in the system.</p><p>In addition, <i>the flexible and highly customizable visualization of data</i>, for extracting value from BDWs, is tightly-coupled with an adequate data visualization mechanism, reason why this work discusses flexible, highly customizable, and interactive visualization mechanisms based on portions of reusable code, which will provide an advanced decision-making support environment based on rich Web-based user interfaces.</p><p>Therefore, reference frameworks and methodological guidelines are strictly required in this domain to provide effective solutions intended to manage adequately the studied problem. After analyzing relevant research directions, the paper proposes and introduces a framework that takes into account the most significant aspects of the domain, and that can be used as a starting point to characterize BDWs for efficient, integrated and advanced analytics as expressed in the work title. It is our firm intention to apply, improve and extend it (where necessary) using challenging examples as the Genome Data Science domain and the Industry 4.0 environment with the Bosch Car Multimedia case, in which we already have at the moment some initially, encouraging results.</p></div></div></section> </div> <div id="MagazineFulltextChapterBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 id="Bib1" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ol class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="1."><p class="c-article-references__text" id="ref-CR1">Madden, S.: From databases to big data. IEEE Internet Comput. <b>16</b>(3), 4–6 (2012)</p><p class="c-article-references__links u-hide-print" id="ref-CR1-links"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/MIC.2012.50" data-track-item_id="10.1109/MIC.2012.50" data-track-action="Article reference" data-track-value="Article reference" href="https://doi.org/10.1109%2FMIC.2012.50" aria-label="Article reference 1" data-doi="10.1109/MIC.2012.50">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 1" href="https://scholar.google.com/scholar_lookup?&amp;title=From%20databases%20to%20big%20data&amp;journal=IEEE%20Internet%20Comput.&amp;volume=16&amp;issue=3&amp;pages=4-6&amp;publication_year=2012&amp;author=Madden%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="2."><p class="c-article-references__text" id="ref-CR2">Dumbill, E.: Making sense of big data. Big Data <b>1</b>, 1–2 (2013)</p><p class="c-article-references__links u-hide-print" id="ref-CR2-links"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1089/big.2012.1503" data-track-item_id="10.1089/big.2012.1503" data-track-action="Article reference" data-track-value="Article reference" href="https://doi.org/10.1089%2Fbig.2012.1503" aria-label="Article reference 2" data-doi="10.1089/big.2012.1503">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 2" href="https://scholar.google.com/scholar_lookup?&amp;title=Making%20sense%20of%20big%20data&amp;journal=Big%20Data&amp;volume=1&amp;pages=1-2&amp;publication_year=2013&amp;author=Dumbill%2CE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="3."><p class="c-article-references__text" id="ref-CR3">Gandomi, A., Haider, M.: Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manag. <b>35</b>, 137–144 (2015)</p><p class="c-article-references__links u-hide-print" id="ref-CR3-links"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ijinfomgt.2014.10.007" data-track-item_id="10.1016/j.ijinfomgt.2014.10.007" data-track-action="Article reference" data-track-value="Article reference" href="https://doi.org/10.1016%2Fj.ijinfomgt.2014.10.007" aria-label="Article reference 3" data-doi="10.1016/j.ijinfomgt.2014.10.007">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 3" href="https://scholar.google.com/scholar_lookup?&amp;title=Beyond%20the%20hype%3A%20Big%20data%20concepts%2C%20methods%2C%20and%20analytics&amp;journal=Int.%20J.%20Inf.%20Manag.&amp;volume=35&amp;pages=137-144&amp;publication_year=2015&amp;author=Gandomi%2CA&amp;author=Haider%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="4."><p class="c-article-references__text" id="ref-CR4">Philip Chen, C.L., Zhang, C.-Y.: Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. <b>275</b>, 314–347 (2014)</p><p class="c-article-references__links u-hide-print" id="ref-CR4-links"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ins.2014.01.015" data-track-item_id="10.1016/j.ins.2014.01.015" data-track-action="Article reference" data-track-value="Article reference" href="https://doi.org/10.1016%2Fj.ins.2014.01.015" aria-label="Article reference 4" data-doi="10.1016/j.ins.2014.01.015">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 4" href="https://scholar.google.com/scholar_lookup?&amp;title=Data-intensive%20applications%2C%20challenges%2C%20techniques%20and%20technologies%3A%20a%20survey%20on%20big%20data&amp;journal=Inf.%20Sci.&amp;volume=275&amp;pages=314-347&amp;publication_year=2014&amp;author=Philip%20Chen%2CCL&amp;author=Zhang%2CC-Y"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="5."><p class="c-article-references__text" id="ref-CR5">Costa, C., Santos, M.Y.: Big data: state-of-the-art concepts, techniques, technologies, modeling approaches and research challenges. IAENG Int. J. Comput. Sci. <b>44</b>, 285–301 (2017)</p><p class="c-article-references__links u-hide-print" id="ref-CR5-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 5" href="https://scholar.google.com/scholar_lookup?&amp;title=Big%20data%3A%20state-of-the-art%20concepts%2C%20techniques%2C%20technologies%2C%20modeling%20approaches%20and%20research%20challenges&amp;journal=IAENG%20Int.%20J.%20Comput.%20Sci.&amp;volume=44&amp;pages=285-301&amp;publication_year=2017&amp;author=Costa%2CC&amp;author=Santos%2CMY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="6."><p class="c-article-references__text" id="ref-CR6">NBD-PWG: NIST Big Data Interoperability Framework (2015)</p><p class="c-article-references__links u-hide-print" id="ref-CR6-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&amp;q=NBD-PWG%3A%20NIST%20Big%20Data%20Interoperability%20Framework%20%282015%29"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="7."><p class="c-article-references__text" id="ref-CR7">Krishnan, K.: Data Warehousing in the Age of Big Data. Elsevier, Burlington (2013)</p><p class="c-article-references__links u-hide-print" id="ref-CR7-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 7" href="https://scholar.google.com/scholar_lookup?&amp;title=Data%20Warehousing%20in%20the%20Age%20of%20Big%20Data&amp;publication_year=2013&amp;author=Krishnan%2CK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="8."><p class="c-article-references__text" id="ref-CR8">Costa, C., Santos, M.Y.: Evaluating several design patterns and trends in big data warehousing systems. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 459–473. Springer, Cham (2018). <a href="https://doi.org/10.1007/978-3-319-91563-0_28" data-track="click" data-track-action="external reference" data-track-label="10.1007/978-3-319-91563-0_28">https://doi.org/10.1007/978-3-319-91563-0_28</a></p><p class="c-article-references__links u-hide-print" id="ref-CR8-links"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-3-319-91563-0_28" data-track-item_id="10.1007/978-3-319-91563-0_28" data-track-action="Chapter reference" data-track-value="Chapter reference" href="https://link.springer.com/doi/10.1007/978-3-319-91563-0_28" aria-label="Chapter reference 8" data-doi="10.1007/978-3-319-91563-0_28">Chapter</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 8" href="https://scholar.google.com/scholar_lookup?&amp;title=Evaluating%20several%20design%20patterns%20and%20trends%20in%20big%20data%20warehousing%20systems&amp;pages=459-473&amp;publication_year=2018 2018 2018&amp;author=Costa%2CC&amp;author=Santos%2CMY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="9."><p class="c-article-references__text" id="ref-CR9">Santos, M.Y., et al.: A Big Data system supporting Bosch Braga Industry 4.0 strategy. Int. J. Inf. Manag. <b>37</b>, 750–760 (2017)</p><p class="c-article-references__links u-hide-print" id="ref-CR9-links"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ijinfomgt.2017.07.012" data-track-item_id="10.1016/j.ijinfomgt.2017.07.012" data-track-action="Article reference" data-track-value="Article reference" href="https://doi.org/10.1016%2Fj.ijinfomgt.2017.07.012" aria-label="Article reference 9" data-doi="10.1016/j.ijinfomgt.2017.07.012">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 9" href="https://scholar.google.com/scholar_lookup?&amp;title=A%20Big%20Data%20system%20supporting%20Bosch%20Braga%20Industry%204.0%20strategy&amp;journal=Int.%20J.%20Inf.%20Manag.&amp;volume=37&amp;pages=750-760&amp;publication_year=2017&amp;author=Santos%2CMY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="10."><p class="c-article-references__text" id="ref-CR10">Costa, C., Andrade, C., Santos, M.Y.: Big data warehouses for smart industries. In: Sakr, S., Zomaya, A. (eds.) Encyclopedia of Big Data Technologies, pp. 1–11. Springer, Cham (2018). <a href="https://doi.org/10.1007/978-3-319-63962-8_204-1" data-track="click" data-track-action="external reference" data-track-label="10.1007/978-3-319-63962-8_204-1">https://doi.org/10.1007/978-3-319-63962-8_204-1</a></p><p class="c-article-references__links u-hide-print" id="ref-CR10-links"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-3-319-63962-8_204-1" data-track-item_id="10.1007/978-3-319-63962-8_204-1" data-track-action="Chapter reference" data-track-value="Chapter reference" href="https://link.springer.com/doi/10.1007/978-3-319-63962-8_204-1" aria-label="Chapter reference 10" data-doi="10.1007/978-3-319-63962-8_204-1">Chapter</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 10" href="https://scholar.google.com/scholar_lookup?&amp;title=Big%20data%20warehouses%20for%20smart%20industries&amp;pages=1-11&amp;publication_year=2018&amp;author=Costa%2CC&amp;author=Andrade%2CC&amp;author=Santos%2CMY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="11."><p class="c-article-references__text" id="ref-CR11">Kimball, R., Ross, M.: The Data Warehouse Toolkit: The definitive Guide to Dimensional Modeling. Wiley, Indianapolis (2013)</p><p class="c-article-references__links u-hide-print" id="ref-CR11-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="https://scholar.google.com/scholar_lookup?&amp;title=The%20Data%20Warehouse%20Toolkit%3A%20The%20definitive%20Guide%20to%20Dimensional%20Modeling&amp;publication_year=2013&amp;author=Kimball%2CR&amp;author=Ross%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="12."><p class="c-article-references__text" id="ref-CR12">Clegg, D.: Evolving data warehouse and BI architectures: the big data challenge. TDWI Bus. Intell. J. <b>20</b>, 19–24 (2015)</p><p class="c-article-references__links u-hide-print" id="ref-CR12-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 12" href="https://scholar.google.com/scholar_lookup?&amp;title=Evolving%20data%20warehouse%20and%20BI%20architectures%3A%20the%20big%20data%20challenge&amp;journal=TDWI%20Bus.%20Intell.%20J.&amp;volume=20&amp;pages=19-24&amp;publication_year=2015&amp;author=Clegg%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="13."><p class="c-article-references__text" id="ref-CR13">Russom, P.: Data Warehouse Modernization in the Age of Big Data Analytics (2016)</p><p class="c-article-references__links u-hide-print" id="ref-CR13-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&amp;q=Russom%2C%20P.%3A%20Data%20Warehouse%20Modernization%20in%20the%20Age%20of%20Big%20Data%20Analytics%20%282016%29"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="14."><p class="c-article-references__text" id="ref-CR14">Russom, P.: Evolving Data Warehouse Architectures in the Age of Big Data (2014)</p><p class="c-article-references__links u-hide-print" id="ref-CR14-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&amp;q=Russom%2C%20P.%3A%20Evolving%20Data%20Warehouse%20Architectures%20in%20the%20Age%20of%20Big%20Data%20%282014%29"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="15."><p class="c-article-references__text" id="ref-CR15">Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R.: Document-oriented models for data warehouses - NoSQL document-oriented for data warehouses. In: Proceedings of the 18th International Conference on Enterprise Information Systems, Rome, Italy, pp. 142–149 (2016). <a href="https://doi.org/10.5220/0005830801420149" data-track="click" data-track-action="external reference" data-track-label="10.5220/0005830801420149">https://doi.org/10.5220/0005830801420149</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="16."><p class="c-article-references__text" id="ref-CR16">Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R.: Implementing multidimensional data warehouses into NoSQL. In: 17th International Conference on Enterprise Information Systems (ICEIS), Barcelona, Spain (2015)</p><p class="c-article-references__links u-hide-print" id="ref-CR16-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&amp;q=Chevalier%2C%20M.%2C%20El%20Malki%2C%20M.%2C%20Kopliku%2C%20A.%2C%20Teste%2C%20O.%2C%20Tournier%2C%20R.%3A%20Implementing%20multidimensional%20data%20warehouses%20into%20NoSQL.%20In%3A%2017th%20International%20Conference%20on%20Enterprise%20Information%20Systems%20%28ICEIS%29%2C%20Barcelona%2C%20Spain%20%282015%29"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="17."><p class="c-article-references__text" id="ref-CR17">Gröger, C., Schwarz, H., Mitschang, B.: The deep data warehouse: link-based integration and enrichment of warehouse data and unstructured content. In: IEEE 18th International Enterprise Distributed Object Computing Conference (EDOC), pp. 210–217 (2014)</p><p class="c-article-references__links u-hide-print" id="ref-CR17-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&amp;q=Gr%C3%B6ger%2C%20C.%2C%20Schwarz%2C%20H.%2C%20Mitschang%2C%20B.%3A%20The%20deep%20data%20warehouse%3A%20link-based%20integration%20and%20enrichment%20of%20warehouse%20data%20and%20unstructured%20content.%20In%3A%20IEEE%2018th%20International%20Enterprise%20Distributed%20Object%20Computing%20Conference%20%28EDOC%29%2C%20pp.%20210%E2%80%93217%20%282014%29"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="18."><p class="c-article-references__text" id="ref-CR18">Cattell, R.: Scalable SQL and NoSQL data stores. ACM SIGMOD Record. <b>39</b>, 12 (2011)</p><p class="c-article-references__links u-hide-print" id="ref-CR18-links"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1145/1978915.1978919" data-track-item_id="10.1145/1978915.1978919" data-track-action="Article reference" data-track-value="Article reference" href="https://doi.org/10.1145%2F1978915.1978919" aria-label="Article reference 18" data-doi="10.1145/1978915.1978919">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 18" href="https://scholar.google.com/scholar_lookup?&amp;title=Scalable%20SQL%20and%20NoSQL%20data%20stores&amp;journal=ACM%20SIGMOD%20Record.&amp;volume=39&amp;publication_year=2011&amp;author=Cattell%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="19."><p class="c-article-references__text" id="ref-CR19">Thusoo, A., et al.: Hive-a petabyte scale data warehouse using hadoop. In: 2010 IEEE 26th International Conference on Data Engineering (ICDE), pp. 996–1005. IEEE (2010)</p><p class="c-article-references__links u-hide-print" id="ref-CR19-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&amp;q=Thusoo%2C%20A.%2C%20et%20al.%3A%20Hive-a%20petabyte%20scale%20data%20warehouse%20using%20hadoop.%20In%3A%202010%20IEEE%2026th%20International%20Conference%20on%20Data%20Engineering%20%28ICDE%29%2C%20pp.%20996%E2%80%931005.%20IEEE%20%282010%29"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="20."><p class="c-article-references__text" id="ref-CR20">Pandis, I.: Impala: a modern, open-source SQL engine for hadoop. In: 7th Biennial Conference on Innovative Data Systems Research (CIDR), p. 10 (2015)</p><p class="c-article-references__links u-hide-print" id="ref-CR20-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&amp;q=Pandis%2C%20I.%3A%20Impala%3A%20a%20modern%2C%20open-source%20SQL%20engine%20for%20hadoop.%20In%3A%207th%20Biennial%20Conference%20on%20Innovative%20Data%20Systems%20Research%20%28CIDR%29%2C%20p.%2010%20%282015%29"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="21."><p class="c-article-references__text" id="ref-CR21">Huai, Y., et al.: Major technical advancements in apache hive. In: Proceedings of the 2014 ACM SIGMOD international conference on Management of data - SIGMOD 2014, pp. 1235–1246. ACM Press, Snowbird (2014). <a href="https://doi.org/10.1145/2588555.2595630" data-track="click" data-track-action="external reference" data-track-label="10.1145/2588555.2595630">https://doi.org/10.1145/2588555.2595630</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="22."><p class="c-article-references__text" id="ref-CR22">Li, X., Mao, Y.: Real-Time data ETL framework for big real-time data analysis. In: 2015 IEEE International Conference on Information and Automation, pp. 1289–1294. IEEE, Lijiang (2015). <a href="https://doi.org/10.1109/ICInfA.2015.7279485" data-track="click" data-track-action="external reference" data-track-label="10.1109/ICInfA.2015.7279485">https://doi.org/10.1109/ICInfA.2015.7279485</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="23."><p class="c-article-references__text" id="ref-CR23">Song, J., Guo, C., Wang, Z., Zhang, Y., Yu, G., Pierson, J.-M.: HaoLap: a hadoop based OLAP system for big data. J. Syst. Softw. <b>102</b>, 167–181 (2015)</p><p class="c-article-references__links u-hide-print" id="ref-CR23-links"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.jss.2014.09.024" data-track-item_id="10.1016/j.jss.2014.09.024" data-track-action="Article reference" data-track-value="Article reference" href="https://doi.org/10.1016%2Fj.jss.2014.09.024" aria-label="Article reference 23" data-doi="10.1016/j.jss.2014.09.024">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 23" href="https://scholar.google.com/scholar_lookup?&amp;title=HaoLap%3A%20a%20hadoop%20based%20OLAP%20system%20for%20big%20data&amp;journal=J.%20Syst.%20Softw.&amp;volume=102&amp;pages=167-181&amp;publication_year=2015&amp;author=Song%2CJ&amp;author=Guo%2CC&amp;author=Wang%2CZ&amp;author=Zhang%2CY&amp;author=Yu%2CG&amp;author=Pierson%2CJ-M"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="24."><p class="c-article-references__text" id="ref-CR24">Wang, H., et al.: Efficient query processing framework for big data warehouse: an almost join-free approach. Front. Comput. Sci. <b>9</b>, 224–236 (2015)</p><p class="c-article-references__links u-hide-print" id="ref-CR24-links"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11704-014-4025-6" data-track-item_id="10.1007/s11704-014-4025-6" data-track-action="Article reference" data-track-value="Article reference" href="https://link.springer.com/doi/10.1007/s11704-014-4025-6" aria-label="Article reference 24" data-doi="10.1007/s11704-014-4025-6">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-action="MathSciNet reference" data-track-value="MathSciNet reference" href="http://www.ams.org/mathscinet-getitem?mr=3324349" aria-label="MathSciNet reference 24">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 24" href="https://scholar.google.com/scholar_lookup?&amp;title=Efficient%20query%20processing%20framework%20for%20big%20data%20warehouse%3A%20an%20almost%20join-free%20approach&amp;journal=Front.%20Comput.%20Sci.&amp;volume=9&amp;pages=224-236&amp;publication_year=2015&amp;author=Wang%2CH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="25."><p class="c-article-references__text" id="ref-CR25">Tria, F.D., Lefons, E., Tangorra, F.: A framework for evaluating design methodologies for big data warehouses: measurement of the design process. Int. J. Data Warehouse. Min. <b>14</b>(1), 15–39 (2018)</p><p class="c-article-references__links u-hide-print" id="ref-CR25-links"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.4018/IJDWM.2018010102" data-track-item_id="10.4018/IJDWM.2018010102" data-track-action="Article reference" data-track-value="Article reference" href="https://doi.org/10.4018%2FIJDWM.2018010102" aria-label="Article reference 25" data-doi="10.4018/IJDWM.2018010102">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 25" href="https://scholar.google.com/scholar_lookup?&amp;title=A%20framework%20for%20evaluating%20design%20methodologies%20for%20big%20data%20warehouses%3A%20measurement%20of%20the%20design%20process&amp;journal=Int.%20J.%20Data%20Warehouse.%20Min.&amp;volume=14&amp;issue=1&amp;pages=15-39&amp;publication_year=2018&amp;author=Tria%2CFD&amp;author=Lefons%2CE&amp;author=Tangorra%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="26."><p class="c-article-references__text" id="ref-CR26">Costa, C., Santos, M.Y.: The SusCity big data warehousing approach for smart cities. In: Proceedings of International Database Engineering &amp; Applications Symposium. Bristol, United Kingdom (2017). <a href="https://doi.org/10.1145/3105831.3105841" data-track="click" data-track-action="external reference" data-track-label="10.1145/3105831.3105841">https://doi.org/10.1145/3105831.3105841</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="27."><p class="c-article-references__text" id="ref-CR27">Costa, E., Costa, C., Santos, M.Y.: Efficient big data modelling and organization for hadoop hive-based data warehouses. In: Themistocleous, M., Morabito, V. (eds.) EMCIS 2017. LNBIP, vol. 299, pp. 3–16. Springer, Cham (2017). <a href="https://doi.org/10.1007/978-3-319-65930-5_1" data-track="click" data-track-action="external reference" data-track-label="10.1007/978-3-319-65930-5_1">https://doi.org/10.1007/978-3-319-65930-5_1</a></p><p class="c-article-references__links u-hide-print" id="ref-CR27-links"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-3-319-65930-5_1" data-track-item_id="10.1007/978-3-319-65930-5_1" data-track-action="Chapter reference" data-track-value="Chapter reference" href="https://link.springer.com/doi/10.1007/978-3-319-65930-5_1" aria-label="Chapter reference 27" data-doi="10.1007/978-3-319-65930-5_1">Chapter</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 27" href="https://scholar.google.com/scholar_lookup?&amp;title=Efficient%20big%20data%20modelling%20and%20organization%20for%20hadoop%20hive-based%20data%20warehouses&amp;pages=3-16&amp;publication_year=2017 2017 2017&amp;author=Costa%2CE&amp;author=Costa%2CC&amp;author=Santos%2CMY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="28."><p class="c-article-references__text" id="ref-CR28">Rodrigues, M., Santos, M.Y., Bernardino, J.: Big data processing tools: an experimental performance evaluation. WIREs Data Min. Knowl. Discov. <b>9</b>(2), e1297 (2019)</p><p class="c-article-references__links u-hide-print" id="ref-CR28-links"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/widm.1297" data-track-item_id="10.1002/widm.1297" data-track-action="Article reference" data-track-value="Article reference" href="https://doi.org/10.1002%2Fwidm.1297" aria-label="Article reference 28" data-doi="10.1002/widm.1297">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 28" href="https://scholar.google.com/scholar_lookup?&amp;title=Big%20data%20processing%20tools%3A%20an%20experimental%20performance%20evaluation&amp;journal=WIREs%20Data%20Min.%20Knowl.%20Discov.&amp;volume=9&amp;issue=2&amp;publication_year=2019&amp;author=Rodrigues%2CM&amp;author=Santos%2CMY&amp;author=Bernardino%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="29."><p class="c-article-references__text" id="ref-CR29">Santos, M.Y., et al.: Evaluating SQL-on-hadoop for big data warehousing on not-so-good hardware. In: Proceedings of International Database Engineering &amp; Applications Symposium (IDEAS 2017), pp. 242–252. ACM Press (2017). <a href="https://doi.org/10.1145/3105831.3105842" data-track="click" data-track-action="external reference" data-track-label="10.1145/3105831.3105842">https://doi.org/10.1145/3105831.3105842</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="30."><p class="c-article-references__text" id="ref-CR30">León Palacio, A., Pastor López, Ó.: Smart data for genomic information systems: the SILE method. Complex Syst. Inf. Model. Q. 1–23 (2018). <a href="https://doi.org/10.7250/csimq.2018-17.01" data-track="click" data-track-action="external reference" data-track-label="10.7250/csimq.2018-17.01">https://doi.org/10.7250/csimq.2018-17.01</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="31."><p class="c-article-references__text" id="ref-CR31">Palacio, A.L., López, Ó.P., Ródenas, J.C.C.: A method to identify relevant genome data: conceptual modeling for the medicine of precision. In: Trujillo, J.C., Davis, K.C., Du, X., Li, Z., Ling, T.W., Li, G., Lee, M.L. (eds.) ER 2018. LNCS, vol. 11157, pp. 597–609. Springer, Cham (2018). <a href="https://doi.org/10.1007/978-3-030-00847-5_44" data-track="click" data-track-action="external reference" data-track-label="10.1007/978-3-030-00847-5_44">https://doi.org/10.1007/978-3-030-00847-5_44</a></p><p class="c-article-references__links u-hide-print" id="ref-CR31-links"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-3-030-00847-5_44" data-track-item_id="10.1007/978-3-030-00847-5_44" data-track-action="Chapter reference" data-track-value="Chapter reference" href="https://link.springer.com/doi/10.1007/978-3-030-00847-5_44" aria-label="Chapter reference 31" data-doi="10.1007/978-3-030-00847-5_44">Chapter</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 31" href="https://scholar.google.com/scholar_lookup?&amp;title=A%20method%20to%20identify%20relevant%20genome%20data%3A%20conceptual%20modeling%20for%20the%20medicine%20of%20precision&amp;pages=597-609&amp;publication_year=2018 2018 2018&amp;author=Palacio%2CAL&amp;author=L%C3%B3pez%2C%C3%93P&amp;author=R%C3%B3denas%2CJCC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="32."><p class="c-article-references__text" id="ref-CR32">Hui, J., Li, L., Zhang, Z.: Integration of big data: a survey. In: Zhou, Q., Gan, Y., Jing, W., Song, X., Wang, Y., Lu, Z. (eds.) ICPCSEE 2018. CCIS, vol. 901, pp. 101–121. Springer, Singapore (2018). <a href="https://doi.org/10.1007/978-981-13-2203-7_9" data-track="click" data-track-action="external reference" data-track-label="10.1007/978-981-13-2203-7_9">https://doi.org/10.1007/978-981-13-2203-7_9</a></p><p class="c-article-references__links u-hide-print" id="ref-CR32-links"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-981-13-2203-7_9" data-track-item_id="10.1007/978-981-13-2203-7_9" data-track-action="Chapter reference" data-track-value="Chapter reference" href="https://link.springer.com/doi/10.1007/978-981-13-2203-7_9" aria-label="Chapter reference 32" data-doi="10.1007/978-981-13-2203-7_9">Chapter</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 32" href="https://scholar.google.com/scholar_lookup?&amp;title=Integration%20of%20big%20data%3A%20a%20survey&amp;pages=101-121&amp;publication_year=2018 2018 2018&amp;author=Hui%2CJ&amp;author=Li%2CL&amp;author=Zhang%2CZ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="33."><p class="c-article-references__text" id="ref-CR33">Maccioni, A., Torlone, R.: KAYAK: a framework for just-in-time data preparation in a data lake. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 474–489. Springer, Cham (2018). <a href="https://doi.org/10.1007/978-3-319-91563-0_29" data-track="click" data-track-action="external reference" data-track-label="10.1007/978-3-319-91563-0_29">https://doi.org/10.1007/978-3-319-91563-0_29</a></p><p class="c-article-references__links u-hide-print" id="ref-CR33-links"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-3-319-91563-0_29" data-track-item_id="10.1007/978-3-319-91563-0_29" data-track-action="Chapter reference" data-track-value="Chapter reference" href="https://link.springer.com/doi/10.1007/978-3-319-91563-0_29" aria-label="Chapter reference 33" data-doi="10.1007/978-3-319-91563-0_29">Chapter</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 33" href="https://scholar.google.com/scholar_lookup?&amp;title=KAYAK%3A%20a%20framework%20for%20just-in-time%20data%20preparation%20in%20a%20data%20lake&amp;pages=474-489&amp;publication_year=2018 2018 2018&amp;author=Maccioni%2CA&amp;author=Torlone%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="34."><p class="c-article-references__text" id="ref-CR34">Flouris, I., Giatrakos, N., Deligiannakis, A., Garofalakis, M., Kamp, M., Mock, M.: Issues in complex event processing: status and prospects in the Big Data era. J. Syst. Softw. <b>127</b>, 217–236 (2017). <a href="https://doi.org/10.1016/j.jss.2016.06.011" data-track="click" data-track-action="external reference" data-track-label="10.1016/j.jss.2016.06.011">https://doi.org/10.1016/j.jss.2016.06.011</a></p><p class="c-article-references__links u-hide-print" id="ref-CR34-links"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.jss.2016.06.011" data-track-item_id="10.1016/j.jss.2016.06.011" data-track-action="Article reference" data-track-value="Article reference" href="https://doi.org/10.1016%2Fj.jss.2016.06.011" aria-label="Article reference 34" data-doi="10.1016/j.jss.2016.06.011">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 34" href="https://scholar.google.com/scholar_lookup?&amp;title=Issues%20in%20complex%20event%20processing%3A%20status%20and%20prospects%20in%20the%20Big%20Data%20era&amp;journal=J.%20Syst.%20Softw.&amp;doi=10.1016%2Fj.jss.2016.06.011&amp;volume=127&amp;pages=217-236&amp;publication_year=2017&amp;author=Flouris%2CI&amp;author=Giatrakos%2CN&amp;author=Deligiannakis%2CA&amp;author=Garofalakis%2CM&amp;author=Kamp%2CM&amp;author=Mock%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="35."><p class="c-article-references__text" id="ref-CR35">Zhang, P., Shi, X., Khan, S.U.: QuantCloud: enabling big data complex event processing for quantitative finance through a data-driven execution. IEEE Trans. Big Data (2018). <a href="https://doi.org/10.1109/TBDATA.2018.2847629" data-track="click" data-track-action="external reference" data-track-label="10.1109/TBDATA.2018.2847629">https://doi.org/10.1109/TBDATA.2018.2847629</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="36."><p class="c-article-references__text" id="ref-CR36">Hadar, E.: BIDCEP: a vision of big data complex event processing for near real-time data streaming: position paper, a practitioner view. In: CAiSE 2016 Industry Track, CEUR Workshop Proceedings (2016)</p><p class="c-article-references__links u-hide-print" id="ref-CR36-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&amp;q=Hadar%2C%20E.%3A%20BIDCEP%3A%20a%20vision%20of%20big%20data%20complex%20event%20processing%20for%20near%20real-time%20data%20streaming%3A%20position%20paper%2C%20a%20practitioner%20view.%20In%3A%20CAiSE%202016%20Industry%20Track%2C%20CEUR%20Workshop%20Proceedings%20%282016%29"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="37."><p class="c-article-references__text" id="ref-CR37">Flouris, I., et al.: FERARI: a prototype for complex event processing over streaming multi-cloud platforms. In: Proceedings of the 2016 International Conference on Management of Data - SIGMOD 2016, pp. 2093–2096. ACM Press, San Francisco (2016). <a href="https://doi.org/10.1145/2882903.2899395" data-track="click" data-track-action="external reference" data-track-label="10.1145/2882903.2899395">https://doi.org/10.1145/2882903.2899395</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="38."><p class="c-article-references__text" id="ref-CR38">Bikakis, N.: Big data visualization tools. In: Sakr, S., Zomaya, A. (eds.) Encyclopedia of Big Data Technologies. Springer, Cham (2018). <a href="https://doi.org/10.1007/978-3-319-63962-8_109-1" data-track="click" data-track-action="external reference" data-track-label="10.1007/978-3-319-63962-8_109-1">https://doi.org/10.1007/978-3-319-63962-8_109-1</a></p><p class="c-article-references__links u-hide-print" id="ref-CR38-links"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-3-319-63962-8_109-1" data-track-item_id="10.1007/978-3-319-63962-8_109-1" data-track-action="Chapter reference" data-track-value="Chapter reference" href="https://link.springer.com/doi/10.1007/978-3-319-63962-8_109-1" aria-label="Chapter reference 38" data-doi="10.1007/978-3-319-63962-8_109-1">Chapter</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 38" href="https://scholar.google.com/scholar_lookup?&amp;title=Big%20data%20visualization%20tools&amp;publication_year=2018&amp;author=Bikakis%2CN"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="39."><p class="c-article-references__text" id="ref-CR39">Iñiguez-Jarrín, C., Panach, J.I., Pastor López, O.: Defining interaction design patterns to extract knowledge from big data. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 490–504. Springer, Cham (2018). <a href="https://doi.org/10.1007/978-3-319-91563-0_30" data-track="click" data-track-action="external reference" data-track-label="10.1007/978-3-319-91563-0_30">https://doi.org/10.1007/978-3-319-91563-0_30</a></p><p class="c-article-references__links u-hide-print" id="ref-CR39-links"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-3-319-91563-0_30" data-track-item_id="10.1007/978-3-319-91563-0_30" data-track-action="Chapter reference" data-track-value="Chapter reference" href="https://link.springer.com/doi/10.1007/978-3-319-91563-0_30" aria-label="Chapter reference 39" data-doi="10.1007/978-3-319-91563-0_30">Chapter</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 39" href="https://scholar.google.com/scholar_lookup?&amp;title=Defining%20interaction%20design%20patterns%20to%20extract%20knowledge%20from%20big%20data&amp;pages=490-504&amp;publication_year=2018 2018 2018&amp;author=I%C3%B1iguez-Jarr%C3%ADn%2CC&amp;author=Panach%2CJI&amp;author=Pastor%20L%C3%B3pez%2CO"> Google Scholar</a>  </p></li></ol><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/978-3-030-21297-1_19?format=refman&amp;flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Acknowledgements" lang="en"><div class="c-article-section" id="Ack1-section"><h2 id="Ack1" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>Acknowledgements</h2><div class="c-article-section__content" id="Ack1-content"><p>This work has been supported by FCT – <i>Fundação para a Ciência e Tecnologia</i>, Projects Scope UID/CEC/00319/2019 and PDE/00040/2013, and the Doctoral scholarships PD/BDE/135100/2017 and PD/BDE/135101/2017. We also thank both the Spanish State Research Agency and the Generalitat Valenciana under the projects DataME TIN2016-80811-P, ACIF/2018/171, and PROMETEO/2018/176. This paper uses icons made by Freepik, from <a href="http://www.flaticon.com">www.flaticon.com</a>.</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 id="author-information" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff8"><p class="c-article-author-affiliation__address">ALGORITMI Research Centre, University of Minho, Guimarães, Portugal</p><p class="c-article-author-affiliation__authors-list">Maribel Yasmina Santos, Carlos Costa, João Galvão &amp; Carina Andrade</p></li><li id="Aff9"><p class="c-article-author-affiliation__address">Centre for Computer Graphics - CCG, Guimarães, Portugal</p><p class="c-article-author-affiliation__authors-list">Carlos Costa</p></li><li id="Aff10"><p class="c-article-author-affiliation__address">Research Center on Software Production Methods (PROS), Universitat Politècnica de València, Valencia, Spain</p><p class="c-article-author-affiliation__authors-list">Oscar Pastor &amp; Ana Cristina Marcén</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Maribel_Yasmina-Santos"><span class="c-article-authors-search__title u-h3 js-search-name">Maribel Yasmina Santos</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Maribel%20Yasmina%20Santos" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Maribel%20Yasmina%20Santos" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Maribel%20Yasmina%20Santos%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Carlos-Costa"><span class="c-article-authors-search__title u-h3 js-search-name">Carlos Costa</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Carlos%20Costa" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Carlos%20Costa" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Carlos%20Costa%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Jo_o-Galv_o"><span class="c-article-authors-search__title u-h3 js-search-name">João Galvão</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Jo%C3%A3o%20Galv%C3%A3o" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Jo%C3%A3o%20Galv%C3%A3o" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Jo%C3%A3o%20Galv%C3%A3o%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Carina-Andrade"><span class="c-article-authors-search__title u-h3 js-search-name">Carina Andrade</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Carina%20Andrade" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Carina%20Andrade" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Carina%20Andrade%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Oscar-Pastor"><span class="c-article-authors-search__title u-h3 js-search-name">Oscar Pastor</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Oscar%20Pastor" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Oscar%20Pastor" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Oscar%20Pastor%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Ana_Cristina-Marc_n"><span class="c-article-authors-search__title u-h3 js-search-name">Ana Cristina Marcén</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Ana%20Cristina%20Marc%C3%A9n" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Ana%20Cristina%20Marc%C3%A9n" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Ana%20Cristina%20Marc%C3%A9n%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:maribel@dsi.uminho.pt">Maribel Yasmina Santos </a>.</p></div></div></section><section aria-labelledby="editor-information" data-title="Editor information"><div class="c-article-section" id="editor-information-section"><h2 id="editor-information" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>Editor information</h2><div class="c-article-section__content" id="editor-information-content"><h3 class="c-article__sub-heading" id="editor-affiliations">Editors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff6"><p class="c-article-author-affiliation__address">Politecnico di Milano, Milan, Italy</p><p class="c-article-author-affiliation__authors-list">Cinzia Cappiello </p></li><li id="Aff7"><p class="c-article-author-affiliation__address">Universiteit Utrecht, Utrecht, The Netherlands</p><p class="c-article-author-affiliation__authors-list">Marcela Ruiz </p></li></ol></div></div></section><section data-title="Rights and permissions" lang="en"><div class="c-article-section" id="rightslink-section"><h2 id="rightslink" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"><p class="c-article-rights" data-test="rightslink-content"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?publisherName=SpringerNature&amp;orderBeanReset=true&amp;orderSource=SpringerLink&amp;title=Enhancing%20Big%20Data%20Warehousing%20for%20Efficient%2C%20Integrated%20and%20Advanced%20Analytics&amp;author=Maribel%20Yasmina%20Santos%2C%20Carlos%20Costa%2C%20Jo%C3%A3o%20Galv%C3%A3o%20et%20al&amp;contentID=10.1007%2F978-3-030-21297-1_19&amp;copyright=Springer%20Nature%20Switzerland%20AG&amp;publication=eBook&amp;publicationDate=2019&amp;startPage=215&amp;endPage=226&amp;imprint=Springer%20Nature%20Switzerland%20AG">Reprints and permissions</a></p></div></div></section><section data-title="Copyright information"><div class="c-article-section" id="copyright-information-section"><h2 id="copyright-information" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>Copyright information</h2><div class="c-article-section__content" id="copyright-information-content"><p>© 2019 Springer Nature Switzerland AG</p></div></div></section><section aria-labelledby="chapter-info" data-title="About this paper" lang="en"><div class="c-article-section" id="chapter-info-section"><h2 id="chapter-info" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>About this paper</h2><div class="c-article-section__content" id="chapter-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1007/978-3-030-21297-1_19" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21297-1_19" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this paper</h3><p class="c-bibliographic-information__citation" data-test="bibliographic-information__cite_this_chapter">Santos, M.Y., Costa, C., Galvão, J., Andrade, C., Pastor, O., Marcén, A.C. (2019). Enhancing Big Data Warehousing for Efficient, Integrated and Advanced Analytics. In: Cappiello, C., Ruiz, M. (eds) Information Systems Engineering in Responsible Information Systems. CAiSE 2019. Lecture Notes in Business Information Processing, vol 350. Springer, Cham. https://doi.org/10.1007/978-3-030-21297-1_19</p><h3 class="c-bibliographic-information__download-citation u-mb-8 u-mt-16 u-hide-print">Download citation</h3><ul class="c-bibliographic-information__download-citation-list"><li class="c-bibliographic-information__download-citation-item"><a data-test="citation-link" data-track="click" data-track-action="download chapter citation" data-track-label="link" data-track-external="" title="Download this article's citation as a .RIS file" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/978-3-030-21297-1_19?format=refman&amp;flavour=citation">.RIS<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></li><li class="c-bibliographic-information__download-citation-item"><a data-test="citation-link" data-track="click" data-track-action="download chapter citation" data-track-label="link" data-track-external="" title="Download this article's citation as a .ENW file" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/978-3-030-21297-1_19?format=endnote&amp;flavour=citation">.ENW<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></li><li class="c-bibliographic-information__download-citation-item"><a data-test="citation-link" data-track="click" data-track-action="download chapter citation" data-track-label="link" data-track-external="" title="Download this article's citation as a .BIB file" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/978-3-030-21297-1_19?format=bibtex&amp;flavour=citation">.BIB<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></li></ul><ul class="c-bibliographic-information__list u-mb-24" data-test="publication-history"><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--chapter-doi"><p data-test="bibliographic-information__doi"><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1007/978-3-030-21297-1_19</span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2019-05-23">23 May 2019</time></span></p></li><li class="c-bibliographic-information__list-item"><p data-test="bibliographic-information__publisher-name"> Publisher Name<span class="u-hide">: </span><span class="c-bibliographic-information__value">Springer, Cham</span></p></li><li class="c-bibliographic-information__list-item"><p data-test="bibliographic-information__pisbn"> Print ISBN<span class="u-hide">: </span><span class="c-bibliographic-information__value">978-3-030-21296-4</span></p></li><li class="c-bibliographic-information__list-item"><p data-test="bibliographic-information__eisbn"> Online ISBN<span class="u-hide">: </span><span class="c-bibliographic-information__value">978-3-030-21297-1</span></p></li><li class="c-bibliographic-information__list-item"><p data-test="bibliographic-information__package">eBook Packages<span class="u-hide">: </span><span class="c-bibliographic-information__multi-value"><a href="/search?facet-content-type=%22Book%22&amp;package=11645&amp;facet-start-year=2019&amp;facet-end-year=2019">Computer Science</a></span><span class="c-bibliographic-information__multi-value"><a href="/search?facet-content-type=%22Book%22&amp;package=43710&amp;facet-start-year=2019&amp;facet-end-year=2019">Computer Science (R0)</a></span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this paper</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><div data-component="chapter-info-list"></div></div></div></div></div></section><section aria-labelledby="publish-with-us" data-title="Publish with us" lang="en"><div class="c-article-section" id="publish-with-us-section"><h2 id="publish-with-us" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>Publish with us</h2><div class="c-article-section__content" id="publish-with-us-content"><p><a class="app-article-policy-section-external-link" href="https://www.springernature.com/gp/policies/book-publishing-policies" data-track="click" data-track-action="publishing policies" data-track-label="link">Policies and ethics</a><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon app-article-policy-section-external-link-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-external-link-small"></use></svg></p></div></div></section> </div> </article> </main> <div class="c-article-sidebar u-text-sm u-hide-print l-with-sidebar__sidebar" id="sidebar" data-container-type="reading-companion" data-track-component="reading companion"> <aside> <div data-test="editorial-summary"> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"></div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> </div> <div class="app-elements"> <div class="eds-c-header__expander eds-c-header__expander--search" id="eds-c-header-popup-search"> <h2 class="eds-c-header__heading">Search</h2> <div class="u-container"> <search class="eds-c-header__search" role="search" aria-label="Search from the header"> <form method="GET" action="//link.springer.com/search" data-test="header-search" data-track="search" data-track-context="search from header" data-track-action="submit search form" data-track-category="unified header" data-track-label="form" > <label for="eds-c-header-search" class="eds-c-header__search-label">Search by keyword or author</label> <div class="eds-c-header__search-container"> <input id="eds-c-header-search" class="eds-c-header__search-input" autocomplete="off" name="query" type="search" value="" required> <button class="eds-c-header__search-button" type="submit"> <svg class="eds-c-header__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg> <span class="u-visually-hidden">Search</span> </button> </div> </form> </search> </div> </div> <div class="eds-c-header__expander eds-c-header__expander--menu" id="eds-c-header-nav"> <h2 class="eds-c-header__heading">Navigation</h2> <ul class="eds-c-header__list"> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </li> </ul> </div> <footer > <div class="eds-c-footer" > <div class="eds-c-footer__container"> <div class="eds-c-footer__grid eds-c-footer__group--separator"> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Discover content</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals/a/1" data-track="nav_journals_a_z" data-track-action="journals a-z" data-track-context="unified footer" data-track-label="link">Journals A-Z</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/books/a/1" data-track="nav_books_a_z" data-track-action="books a-z" data-track-context="unified footer" data-track-label="link">Books A-Z</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Publish with us</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals" data-track="nav_journal_finder" data-track-action="journal finder" data-track-context="unified footer" data-track-label="link">Journal finder</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/authors" data-track="nav_publish_your_research" data-track-action="publish your research" data-track-context="unified footer" data-track-label="link">Publish your research</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="nav_open_access_publishing" data-track-action="open access publishing" data-track-context="unified footer" data-track-label="link">Open access publishing</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Products and services</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/products" data-track="nav_our_products" data-track-action="our products" data-track-context="unified footer" data-track-label="link">Our products</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/librarians" data-track="nav_librarians" data-track-action="librarians" data-track-context="unified footer" data-track-label="link">Librarians</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/societies" data-track="nav_societies" data-track-action="societies" data-track-context="unified footer" data-track-label="link">Societies</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/partners" data-track="nav_partners_and_advertisers" data-track-action="partners and advertisers" data-track-context="unified footer" data-track-label="link">Partners and advertisers</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Our imprints</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springer.com/" data-track="nav_imprint_Springer" data-track-action="Springer" data-track-context="unified footer" data-track-label="link">Springer</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.nature.com/" data-track="nav_imprint_Nature_Portfolio" data-track-action="Nature Portfolio" data-track-context="unified footer" data-track-label="link">Nature Portfolio</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.biomedcentral.com/" data-track="nav_imprint_BMC" data-track-action="BMC" data-track-context="unified footer" data-track-label="link">BMC</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.palgrave.com/" data-track="nav_imprint_Palgrave_Macmillan" data-track-action="Palgrave Macmillan" data-track-context="unified footer" data-track-label="link">Palgrave Macmillan</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.apress.com/" data-track="nav_imprint_Apress" data-track-action="Apress" data-track-context="unified footer" data-track-label="link">Apress</a></li> </ul> </div> </div> </div> <div class="eds-c-footer__container"> <nav aria-label="footer navigation"> <ul class="eds-c-footer__links"> <li class="eds-c-footer__item"> <button class="eds-c-footer__link" data-cc-action="preferences" data-track="dialog_manage_cookies" data-track-action="Manage cookies" data-track-context="unified footer" data-track-label="link"><span class="eds-c-footer__button-text">Your privacy choices/Manage cookies</span></button> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/legal/ccpa" data-track="nav_california_privacy_statement" data-track-action="california privacy statement" data-track-context="unified footer" data-track-label="link">Your US state privacy rights</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/info/accessibility" data-track="nav_accessibility_statement" data-track-action="accessibility statement" data-track-context="unified footer" data-track-label="link">Accessibility statement</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/termsandconditions" data-track="nav_terms_and_conditions" data-track-action="terms and conditions" data-track-context="unified footer" data-track-label="link">Terms and conditions</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/privacystatement" data-track="nav_privacy_policy" data-track-action="privacy policy" data-track-context="unified footer" data-track-label="link">Privacy policy</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/home" data-track="nav_help_and_support" data-track-action="help and support" data-track-context="unified footer" data-track-label="link">Help and support</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/solutions/articles/6000255911-subscription-cancellations" data-track-action="cancel contracts here">Cancel contracts here</a> </li> </ul> </nav> <div class="eds-c-footer__user"> <p class="eds-c-footer__user-info"> <span data-test="footer-user-ip">8.222.208.146</span> </p> <p class="eds-c-footer__user-info" data-test="footer-business-partners">Not affiliated</p> </div> <a href="https://www.springernature.com/" class="eds-c-footer__link"> <img src="/oscar-static/images/logo-springernature-white-19dd4ba190.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="eds-c-footer__legal" data-test="copyright">&copy; 2024 Springer Nature</p> </div> </div> </footer> </div> </div> <div class="u-visually-hidden" aria-hidden="true" data-test="darwin-icons"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><symbol id="icon-eds-i-accesses-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H15a1 1 0 0 1 0-2h4.455a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM8 13c2.052 0 4.66 1.61 6.36 3.4l.124.141c.333.41.516.925.516 1.459 0 .6-.232 1.178-.64 1.599C12.666 21.388 10.054 23 8 23c-2.052 0-4.66-1.61-6.353-3.393A2.31 2.31 0 0 1 1 18c0-.6.232-1.178.64-1.6C3.34 14.61 5.948 13 8 13Zm0 2c-1.369 0-3.552 1.348-4.917 2.785A.31.31 0 0 0 3 18c0 .083.031.161.09.222C4.447 19.652 6.631 21 8 21c1.37 0 3.556-1.35 4.917-2.785A.31.31 0 0 0 13 18a.32.32 0 0 0-.048-.17l-.042-.052C11.553 16.348 9.369 15 8 15Zm0 1a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-altmetric-medium" viewBox="0 0 24 24"><path d="M12 1c5.978 0 10.843 4.77 10.996 10.712l.004.306-.002.022-.002.248C22.843 18.23 17.978 23 12 23 5.925 23 1 18.075 1 12S5.925 1 12 1Zm-1.726 9.246L8.848 12.53a1 1 0 0 1-.718.461L8.003 13l-4.947.014a9.001 9.001 0 0 0 17.887-.001L16.553 13l-2.205 3.53a1 1 0 0 1-1.735-.068l-.05-.11-2.289-6.106ZM12 3a9.001 9.001 0 0 0-8.947 8.013l4.391-.012L9.652 7.47a1 1 0 0 1 1.784.179l2.288 6.104 1.428-2.283a1 1 0 0 1 .722-.462l.129-.008 4.943.012A9.001 9.001 0 0 0 12 3Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-medium" viewBox="0 0 24 24"><path d="m11.852 20.989.058.007L12 21l.075-.003.126-.017.111-.03.111-.044.098-.052.104-.074.082-.073 6-6a1 1 0 0 0-1.414-1.414L13 17.585v-12.2C13 4.075 11.964 3 10.667 3H4a1 1 0 1 0 0 2h6.667c.175 0 .333.164.333.385v12.2l-4.293-4.292a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l6 6c.035.036.073.068.112.097l.11.071.114.054.105.035.118.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-small" viewBox="0 0 16 16"><path d="M1 2a1 1 0 0 0 1 1h5v8.585L3.707 8.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l5 5 .063.059.093.069.081.048.105.048.104.035.105.022.096.01h.136l.122-.018.113-.03.103-.04.1-.053.102-.07.052-.043 5.04-5.037a1 1 0 1 0-1.415-1.414L9 11.583V3a2 2 0 0 0-2-2H2a1 1 0 0 0-1 1Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-medium" viewBox="0 0 24 24"><path d="m11.852 3.011.058-.007L12 3l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 6 6a1 1 0 1 1-1.414 1.414L13 6.415v12.2C13 19.925 11.964 21 10.667 21H4a1 1 0 0 1 0-2h6.667c.175 0 .333-.164.333-.385v-12.2l-4.293 4.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l6-6c.035-.036.073-.068.112-.097l.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-small" viewBox="0 0 16 16"><path d="M1 13.998a1 1 0 0 1 1-1h5V4.413L3.707 7.705a1 1 0 0 1-1.32.084l-.094-.084a1 1 0 0 1 0-1.414l5-5 .063-.059.093-.068.081-.05.105-.047.104-.035.105-.022L7.94 1l.136.001.122.017.113.03.103.04.1.053.102.07.052.043 5.04 5.037a1 1 0 1 1-1.415 1.414L9 4.415v8.583a2 2 0 0 1-2 2H2a1 1 0 0 1-1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-medium" viewBox="0 0 24 24"><path d="M14 3h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L21 4v6a1 1 0 0 1-2 0V6.414l-4.293 4.293a1 1 0 0 1-1.414-1.414L17.584 5H14a1 1 0 0 1-.993-.883L13 4a1 1 0 0 1 1-1ZM4 13a1 1 0 0 1 1 1v3.584l4.293-4.291a1 1 0 1 1 1.414 1.414L6.414 19H10a1 1 0 0 1 .993.883L11 20a1 1 0 0 1-1 1l-6.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.01 1.01 0 0 1-.097-.112l-.071-.11-.054-.114-.035-.105-.025-.118-.007-.058L3 20v-6a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-small" viewBox="0 0 16 16"><path d="m2 15-.082-.004-.119-.016-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.008 1.008 0 0 1-.097-.112l-.071-.11-.031-.062-.034-.081-.024-.076-.025-.118-.007-.058L1 14.02V9a1 1 0 1 1 2 0v2.584l2.793-2.791a1 1 0 1 1 1.414 1.414L4.414 13H7a1 1 0 0 1 .993.883L8 14a1 1 0 0 1-1 1H2ZM14 1l.081.003.12.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.031.062.034.081.024.076.03.148L15 2v5a1 1 0 0 1-2 0V4.414l-2.96 2.96A1 1 0 1 1 8.626 5.96L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1h5Z"/></symbol><symbol id="icon-eds-i-arrow-down-medium" viewBox="0 0 24 24"><path d="m20.707 12.728-7.99 7.98a.996.996 0 0 1-.561.281l-.157.011a.998.998 0 0 1-.788-.384l-7.918-7.908a1 1 0 0 1 1.414-1.416L11 17.576V4a1 1 0 0 1 2 0v13.598l6.293-6.285a1 1 0 0 1 1.32-.082l.095.083a1 1 0 0 1-.001 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-down-small" viewBox="0 0 16 16"><path d="m1.293 8.707 6 6 .063.059.093.069.081.048.105.049.104.034.056.013.118.017L8 15l.076-.003.122-.017.113-.03.085-.032.063-.03.098-.058.06-.043.05-.043 6.04-6.037a1 1 0 0 0-1.414-1.414L9 11.583V2a1 1 0 1 0-2 0v9.585L2.707 7.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-left-medium" viewBox="0 0 24 24"><path d="m11.272 3.293-7.98 7.99a.996.996 0 0 0-.281.561L3 12.001c0 .32.15.605.384.788l7.908 7.918a1 1 0 0 0 1.416-1.414L6.424 13H20a1 1 0 0 0 0-2H6.402l6.285-6.293a1 1 0 0 0 .082-1.32l-.083-.095a1 1 0 0 0-1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-left-small" viewBox="0 0 16 16"><path d="m7.293 1.293-6 6-.059.063-.069.093-.048.081-.049.105-.034.104-.013.056-.017.118L1 8l.003.076.017.122.03.113.032.085.03.063.058.098.043.06.043.05 6.037 6.04a1 1 0 0 0 1.414-1.414L4.417 9H14a1 1 0 0 0 0-2H4.415l4.292-4.293a1 1 0 0 0 .083-1.32l-.083-.094a1 1 0 0 0-1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-right-small" viewBox="0 0 16 16"><path d="m8.707 1.293 6 6 .059.063.069.093.048.081.049.105.034.104.013.056.017.118L15 8l-.003.076-.017.122-.03.113-.032.085-.03.063-.058.098-.043.06-.043.05-6.037 6.04a1 1 0 0 1-1.414-1.414L11.583 9H2a1 1 0 1 1 0-2h9.585L7.293 2.707a1 1 0 0 1-.083-1.32l.083-.094a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-up-medium" viewBox="0 0 24 24"><path d="m3.293 11.272 7.99-7.98a.996.996 0 0 1 .561-.281L12.001 3c.32 0 .605.15.788.384l7.918 7.908a1 1 0 0 1-1.414 1.416L13 6.424V20a1 1 0 0 1-2 0V6.402l-6.293 6.285a1 1 0 0 1-1.32.082l-.095-.083a1 1 0 0 1 .001-1.414Z"/></symbol><symbol id="icon-eds-i-arrow-up-small" viewBox="0 0 16 16"><path d="m1.293 7.293 6-6 .063-.059.093-.069.081-.048.105-.049.104-.034.056-.013.118-.017L8 1l.076.003.122.017.113.03.085.032.063.03.098.058.06.043.05.043 6.04 6.037a1 1 0 0 1-1.414 1.414L9 4.417V14a1 1 0 0 1-2 0V4.415L2.707 8.707a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414Z"/></symbol><symbol id="icon-eds-i-article-medium" viewBox="0 0 24 24"><path d="M8 7a1 1 0 0 0 0 2h4a1 1 0 1 0 0-2H8ZM8 11a1 1 0 1 0 0 2h8a1 1 0 1 0 0-2H8ZM7 16a1 1 0 0 1 1-1h8a1 1 0 1 1 0 2H8a1 1 0 0 1-1-1Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V3.5A2.5 2.5 0 0 0 18.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3H18.5a.5.5 0 0 1 .5.5v16.962c0 .293-.24.538-.546.538H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-book-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v12c0 1.16-.79 2.135-1.86 2.418l-.14.031V21h1a1 1 0 0 1 .993.883L21 22a1 1 0 0 1-1 1H6.5A3.5 3.5 0 0 1 3 19.5v-15A3.5 3.5 0 0 1 6.5 1h12ZM17 18H6.5a1.5 1.5 0 0 0-1.493 1.356L5 19.5A1.5 1.5 0 0 0 6.5 21H17v-3Zm1.5-15h-12A1.5 1.5 0 0 0 5 4.5v11.837l.054-.025a3.481 3.481 0 0 1 1.254-.307L6.5 16h12a.5.5 0 0 0 .492-.41L19 15.5v-12a.5.5 0 0 0-.5-.5ZM15 6a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-book-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M1 3.786C1 2.759 1.857 2 2.82 2H6.18c.964 0 1.82.759 1.82 1.786V4h3.168c.668 0 1.298.364 1.616.938.158-.109.333-.195.523-.252l3.216-.965c.923-.277 1.962.204 2.257 1.187l4.146 13.82c.296.984-.307 1.957-1.23 2.234l-3.217.965c-.923.277-1.962-.203-2.257-1.187L13 10.005v10.21c0 1.04-.878 1.785-1.834 1.785H7.833c-.291 0-.575-.07-.83-.195A1.849 1.849 0 0 1 6.18 22H2.821C1.857 22 1 21.241 1 20.214V3.786ZM3 4v11h3V4H3Zm0 16v-3h3v3H3Zm15.075-.04-.814-2.712 2.874-.862.813 2.712-2.873.862Zm1.485-5.49-2.874.862-2.634-8.782 2.873-.862 2.635 8.782ZM8 20V6h3v14H8Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-calendar-acceptance-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-.534 7.747a1 1 0 0 1 .094 1.412l-4.846 5.538a1 1 0 0 1-1.352.141l-2.77-2.076a1 1 0 0 1 1.2-1.6l2.027 1.519 4.236-4.84a1 1 0 0 1 1.411-.094ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-date-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1ZM8 15a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm-4-4a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-decision-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-2.935 8.246 2.686 2.645c.34.335.34.883 0 1.218l-2.686 2.645a.858.858 0 0 1-1.213-.009.854.854 0 0 1 .009-1.21l1.05-1.035H7.984a.992.992 0 0 1-.984-1c0-.552.44-1 .984-1h5.928l-1.051-1.036a.854.854 0 0 1-.085-1.121l.076-.088a.858.858 0 0 1 1.213-.009ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-impact-factor-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-3.2 6.924a.48.48 0 0 1 .125.544l-1.52 3.283h2.304c.27 0 .491.215.491.483a.477.477 0 0 1-.13.327l-4.18 4.484a.498.498 0 0 1-.69.031.48.48 0 0 1-.125-.544l1.52-3.284H9.291a.487.487 0 0 1-.491-.482c0-.121.047-.238.13-.327l4.18-4.484a.498.498 0 0 1 .69-.031ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-call-papers-medium" viewBox="0 0 24 24"><g><path d="m20.707 2.883-1.414 1.414a1 1 0 0 0 1.414 1.414l1.414-1.414a1 1 0 0 0-1.414-1.414Z"/><path d="M6 16.054c0 2.026 1.052 2.943 3 2.943a1 1 0 1 1 0 2c-2.996 0-5-1.746-5-4.943v-1.227a4.068 4.068 0 0 1-1.83-1.189 4.553 4.553 0 0 1-.87-1.455 4.868 4.868 0 0 1-.3-1.686c0-1.17.417-2.298 1.17-3.14.38-.426.834-.767 1.338-1 .51-.237 1.06-.36 1.617-.36L6.632 6H7l7.932-2.895A2.363 2.363 0 0 1 18 5.36v9.28a2.36 2.36 0 0 1-3.069 2.25l.084.03L7 14.997H6v1.057Zm9.637-11.057a.415.415 0 0 0-.083.008L8 7.638v5.536l7.424 1.786.104.02c.035.01.072.02.109.02.2 0 .363-.16.363-.36V5.36c0-.2-.163-.363-.363-.363Zm-9.638 3h-.874a1.82 1.82 0 0 0-.625.111l-.15.063a2.128 2.128 0 0 0-.689.517c-.42.47-.661 1.123-.661 1.81 0 .34.06.678.176.992.114.308.28.585.485.816.4.447.925.691 1.464.691h.874v-5Z" clip-rule="evenodd"/><path d="M20 8.997h2a1 1 0 1 1 0 2h-2a1 1 0 1 1 0-2ZM20.707 14.293l1.414 1.414a1 1 0 0 1-1.414 1.414l-1.414-1.414a1 1 0 0 1 1.414-1.414Z"/></g></symbol><symbol id="icon-eds-i-card-medium" viewBox="0 0 24 24"><path d="M19.615 2c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23Zm0 2H4.385c-.213 0-.265.034-.317.14A.71.71 0 0 0 4 4.385v15.23c0 .213.034.265.14.317a.71.71 0 0 0 .245.068h15.23c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM17 16a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm0-3a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm-.5-7A1.5 1.5 0 0 1 18 7.5v3a1.5 1.5 0 0 1-1.5 1.5h-9A1.5 1.5 0 0 1 6 10.5v-3A1.5 1.5 0 0 1 7.5 6h9ZM16 8H8v2h8V8Z"/></symbol><symbol id="icon-eds-i-cart-medium" viewBox="0 0 24 24"><path d="M5.76 1a1 1 0 0 1 .994.902L7.155 6h13.34c.18 0 .358.02.532.057l.174.045a2.5 2.5 0 0 1 1.693 3.103l-2.069 7.03c-.36 1.099-1.398 1.823-2.49 1.763H8.65c-1.272.015-2.352-.927-2.546-2.244L4.852 3H2a1 1 0 0 1-.993-.883L1 2a1 1 0 0 1 1-1h3.76Zm2.328 14.51a.555.555 0 0 0 .55.488l9.751.001a.533.533 0 0 0 .527-.357l2.059-7a.5.5 0 0 0-.48-.642H7.351l.737 7.51ZM18 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4ZM8 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-check-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm5.125 4.72a1 1 0 0 1 .156 1.405l-6 7.5a1 1 0 0 1-1.421.143l-3-2.5a1 1 0 0 1 1.28-1.536l2.217 1.846 5.362-6.703a1 1 0 0 1 1.406-.156Z"/></symbol><symbol id="icon-eds-i-check-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm5.125 6.72a1 1 0 0 0-1.406.155l-5.362 6.703-2.217-1.846a1 1 0 1 0-1.28 1.536l3 2.5a1 1 0 0 0 1.42-.143l6-7.5a1 1 0 0 0-.155-1.406Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 24 24"><path d="M3.305 8.28a1 1 0 0 0-.024 1.415l7.495 7.762c.314.345.757.543 1.224.543.467 0 .91-.198 1.204-.522l7.515-7.783a1 1 0 1 0-1.438-1.39L12 15.845l-7.28-7.54A1 1 0 0 0 3.4 8.2l-.096.082Z"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.72 3.305a1 1 0 0 0-1.415-.024l-7.762 7.495A1.655 1.655 0 0 0 6 12c0 .467.198.91.522 1.204l7.783 7.515a1 1 0 1 0 1.39-1.438L8.155 12l7.54-7.28A1 1 0 0 0 15.8 3.4l-.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-left-small" viewBox="0 0 16 16"><path d="M10.722 2.308a1 1 0 0 0-1.414-.03L4.49 6.897a1.491 1.491 0 0 0-.019 2.188l4.838 4.637a1 1 0 1 0 1.384-1.444L6.229 8l4.463-4.278a1 1 0 0 0 .111-1.318l-.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28 3.305a1 1 0 0 1 1.415-.024l7.762 7.495c.345.314.543.757.543 1.224 0 .467-.198.91-.522 1.204l-7.783 7.515a1 1 0 1 1-1.39-1.438L15.845 12l-7.54-7.28A1 1 0 0 1 8.2 3.4l.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 16 16"><path d="M5.278 2.308a1 1 0 0 1 1.414-.03l4.819 4.619a1.491 1.491 0 0 1 .019 2.188l-4.838 4.637a1 1 0 1 1-1.384-1.444L9.771 8 5.308 3.722a1 1 0 0 1-.111-1.318l.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 24 24"><path d="M20.695 15.72a1 1 0 0 0 .024-1.415l-7.495-7.762A1.655 1.655 0 0 0 12 6c-.467 0-.91.198-1.204.522l-7.515 7.783a1 1 0 1 0 1.438 1.39L12 8.155l7.28 7.54a1 1 0 0 0 1.319.106l.096-.082Z"/></symbol><symbol id="icon-eds-i-chevron-up-small" viewBox="0 0 16 16"><path d="M13.692 10.722a1 1 0 0 0 .03-1.414L9.103 4.49a1.491 1.491 0 0 0-2.188-.019L2.278 9.308a1 1 0 0 0 1.444 1.384L8 6.229l4.278 4.463a1 1 0 0 0 1.318.111l.096-.081Z"/></symbol><symbol id="icon-eds-i-citations-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742h-5.843a1 1 0 1 1 0-2h5.843a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM5.483 14.35c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Zm5 0c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Z"/></symbol><symbol id="icon-eds-i-clipboard-check-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-1.909 4.205a1 1 0 0 1 .19 1.401l-5.334 7a1 1 0 0 1-1.344.23l-2.667-1.75a1 1 0 1 1 1.098-1.672l1.887 1.238 4.769-6.258a1 1 0 0 1 1.401-.19ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-clipboard-report-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-2.658 10.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857Zm0-3.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM8.707 7.293 12 10.585l3.293-3.292a1 1 0 0 1 1.414 1.414L13.415 12l3.292 3.293a1 1 0 0 1-1.414 1.414L12 13.415l-3.293 3.292a1 1 0 1 1-1.414-1.414L10.585 12 7.293 8.707a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-cloud-upload-medium" viewBox="0 0 24 24"><path d="m12.852 10.011.028-.004L13 10l.075.003.126.017.086.022.136.052.098.052.104.074.082.073 3 3a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L14 13.416V20a1 1 0 0 1-2 0v-6.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l3-3 .112-.097.11-.071.114-.054.105-.035.118-.025Zm.587-7.962c3.065.362 5.497 2.662 5.992 5.562l.013.085.207.073c2.117.782 3.496 2.845 3.337 5.097l-.022.226c-.297 2.561-2.503 4.491-5.124 4.502a1 1 0 1 1-.009-2c1.619-.007 2.967-1.186 3.147-2.733.179-1.542-.86-2.979-2.487-3.353-.512-.149-.894-.579-.981-1.165-.21-2.237-2-4.035-4.308-4.308-2.31-.273-4.497 1.06-5.25 3.19l-.049.113c-.234.468-.718.756-1.176.743-1.418.057-2.689.857-3.32 2.084a3.668 3.668 0 0 0 .262 3.798c.796 1.136 2.169 1.764 3.583 1.635a1 1 0 1 1 .182 1.992c-2.125.194-4.193-.753-5.403-2.48a5.668 5.668 0 0 1-.403-5.86c.85-1.652 2.449-2.79 4.323-3.092l.287-.039.013-.028c1.207-2.741 4.125-4.404 7.186-4.042Z"/></symbol><symbol id="icon-eds-i-collection-medium" viewBox="0 0 24 24"><path d="M21 7a1 1 0 0 1 1 1v12.5a2.5 2.5 0 0 1-2.5 2.5H8a1 1 0 0 1 0-2h11.5a.5.5 0 0 0 .5-.5V8a1 1 0 0 1 1-1Zm-5.5-5A2.5 2.5 0 0 1 18 4.5v12a2.5 2.5 0 0 1-2.5 2.5h-11A2.5 2.5 0 0 1 2 16.5v-12A2.5 2.5 0 0 1 4.5 2h11Zm0 2h-11a.5.5 0 0 0-.5.5v12a.5.5 0 0 0 .5.5h11a.5.5 0 0 0 .5-.5v-12a.5.5 0 0 0-.5-.5ZM13 13a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6Zm0-3.5a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6ZM13 6a1 1 0 0 1 0 2H7a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-conference-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M4.5 2A2.5 2.5 0 0 0 2 4.5v11A2.5 2.5 0 0 0 4.5 18h2.37l-2.534 2.253a1 1 0 0 0 1.328 1.494L9.88 18H11v3a1 1 0 1 0 2 0v-3h1.12l4.216 3.747a1 1 0 0 0 1.328-1.494L17.13 18h2.37a2.5 2.5 0 0 0 2.5-2.5v-11A2.5 2.5 0 0 0 19.5 2h-15ZM20 6V4.5a.5.5 0 0 0-.5-.5h-15a.5.5 0 0 0-.5.5V6h16ZM4 8v7.5a.5.5 0 0 0 .5.5h15a.5.5 0 0 0 .5-.5V8H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-delivery-medium" viewBox="0 0 24 24"><path d="M8.51 20.598a3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 4.161 19L3.5 19A2.5 2.5 0 0 1 1 16.5v-11A2.5 2.5 0 0 1 3.5 3h10a2.5 2.5 0 0 1 2.45 2.004L16 5h2.527c.976 0 1.855.585 2.27 1.49l2.112 4.62a1 1 0 0 1 .091.416v4.856C23 17.814 21.889 19 20.484 19h-.523a1.01 1.01 0 0 1-.121-.007 2.96 2.96 0 0 1-1.33 1.605 3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 14.161 19H9.838a2.968 2.968 0 0 1-1.327 1.597Zm-2.024-3.462a.955.955 0 0 0-.481.73L5.999 18l.001.022a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0A.97.97 0 0 0 8 17.978a.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0Zm10 0a.955.955 0 0 0-.481.73l-.005.156a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0a.97.97 0 0 0 .486-.886.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0ZM21 12h-5v3.17a3.038 3.038 0 0 1 2.51.232 2.993 2.993 0 0 1 1.277 1.45l.058.155.058-.005.581-.002c.27 0 .516-.263.516-.618V12Zm-7.5-7h-10a.5.5 0 0 0-.5.5v11a.5.5 0 0 0 .5.5h.662a2.964 2.964 0 0 1 1.155-1.491l.172-.107a3.037 3.037 0 0 1 3.022 0A2.987 2.987 0 0 1 9.843 17H13.5a.5.5 0 0 0 .5-.5v-11a.5.5 0 0 0-.5-.5Zm5.027 2H16v3h4.203l-1.224-2.677a.532.532 0 0 0-.375-.316L18.527 7Z"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 24 24"><path d="M22 18.5a3.5 3.5 0 0 1-3.5 3.5h-13A3.5 3.5 0 0 1 2 18.5V18a1 1 0 0 1 2 0v.5A1.5 1.5 0 0 0 5.5 20h13a1.5 1.5 0 0 0 1.5-1.5V18a1 1 0 0 1 2 0v.5Zm-3.293-7.793-6 6-.063.059-.093.069-.081.048-.105.049-.104.034-.056.013-.118.017L12 17l-.076-.003-.122-.017-.113-.03-.085-.032-.063-.03-.098-.058-.06-.043-.05-.043-6.04-6.037a1 1 0 0 1 1.414-1.414l4.294 4.29L11 3a1 1 0 0 1 2 0l.001 10.585 4.292-4.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414Z"/></symbol><symbol id="icon-eds-i-edit-medium" viewBox="0 0 24 24"><path d="M17.149 2a2.38 2.38 0 0 1 1.699.711l2.446 2.46a2.384 2.384 0 0 1 .005 3.38L10.01 19.906a1 1 0 0 1-.434.257l-6.3 1.8a1 1 0 0 1-1.237-1.237l1.8-6.3a1 1 0 0 1 .257-.434L15.443 2.718A2.385 2.385 0 0 1 17.15 2Zm-3.874 5.689-7.586 7.536-1.234 4.319 4.318-1.234 7.54-7.582-3.038-3.039ZM17.149 4a.395.395 0 0 0-.286.126L14.695 6.28l3.029 3.029 2.162-2.173a.384.384 0 0 0 .106-.197L20 6.864c0-.103-.04-.2-.119-.278l-2.457-2.47A.385.385 0 0 0 17.149 4Z"/></symbol><symbol id="icon-eds-i-education-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M12.41 2.088a1 1 0 0 0-.82 0l-10 4.5a1 1 0 0 0 0 1.824L3 9.047v7.124A3.001 3.001 0 0 0 4 22a3 3 0 0 0 1-5.83V9.948l1 .45V14.5a1 1 0 0 0 .087.408L7 14.5c-.913.408-.912.41-.912.41l.001.003.003.006.007.015a1.988 1.988 0 0 0 .083.16c.054.097.131.225.236.373.21.297.53.68.993 1.057C8.351 17.292 9.824 18 12 18c2.176 0 3.65-.707 4.589-1.476.463-.378.783-.76.993-1.057a4.162 4.162 0 0 0 .319-.533l.007-.015.003-.006v-.003h.002s0-.002-.913-.41l.913.408A1 1 0 0 0 18 14.5v-4.103l4.41-1.985a1 1 0 0 0 0-1.824l-10-4.5ZM16 11.297l-3.59 1.615a1 1 0 0 1-.82 0L8 11.297v2.94a3.388 3.388 0 0 0 .677.739C9.267 15.457 10.294 16 12 16s2.734-.543 3.323-1.024a3.388 3.388 0 0 0 .677-.739v-2.94ZM4.437 7.5 12 4.097 19.563 7.5 12 10.903 4.437 7.5ZM3 19a1 1 0 1 1 2 0 1 1 0 0 1-2 0Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-error-diamond-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008Zm0 2a.646.646 0 0 0-.38.123l-.093.08-8.34 8.34a.646.646 0 0 0-.18.355L3 12c0 .171.068.336.19.457l8.353 8.354a.646.646 0 0 0 .914 0l8.354-8.354a.646.646 0 0 0-.001-.914l-8.351-8.354A.646.646 0 0 0 12.002 3ZM12 14.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-error-filled-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008ZM12 14.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-eds-i-external-link-medium" viewBox="0 0 24 24"><path d="M9 2a1 1 0 1 1 0 2H4.6c-.371 0-.6.209-.6.5v15c0 .291.229.5.6.5h14.8c.371 0 .6-.209.6-.5V15a1 1 0 0 1 2 0v4.5c0 1.438-1.162 2.5-2.6 2.5H4.6C3.162 22 2 20.938 2 19.5v-15C2 3.062 3.162 2 4.6 2H9Zm6 0h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L22 3v6a1 1 0 0 1-2 0V5.414l-6.693 6.693a1 1 0 0 1-1.414-1.414L18.584 4H15a1 1 0 0 1-.993-.883L14 3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-external-link-small" viewBox="0 0 16 16"><path d="M5 1a1 1 0 1 1 0 2l-2-.001V13L13 13v-2a1 1 0 0 1 2 0v2c0 1.15-.93 2-2.067 2H3.067C1.93 15 1 14.15 1 13V3c0-1.15.93-2 2.067-2H5Zm4 0h5l.075.003.126.017.111.03.111.044.098.052.096.067.09.08.044.047.073.093.051.083.054.113.035.105.03.148L15 2v5a1 1 0 0 1-2 0V4.414L9.107 8.307a1 1 0 0 1-1.414-1.414L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-download-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM12 7a1 1 0 0 1 1 1v6.585l2.293-2.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-4 4a1.008 1.008 0 0 1-.112.097l-.11.071-.114.054-.105.035-.149.03L12 18l-.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08-4-4a1 1 0 0 1 1.414-1.414L11 14.585V8a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-report-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H5.545c-.674 0-1.32-.267-1.798-.742A2.535 2.535 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .142.057.278.158.379.102.102.242.159.387.159h12.91a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.915L14.085 3ZM16 17a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-3a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-4.793-6.207L13 9.585l1.793-1.792a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-2.5 2.5a1 1 0 0 1-1.414 0L10.5 9.915l-1.793 1.792a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l2.5-2.5a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-file-text-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM16 15a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-4a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-5-4a1 1 0 0 1 0 2H8a1 1 0 1 1 0-2h3Z"/></symbol><symbol id="icon-eds-i-file-upload-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3Zm-2.233 4.011.058-.007L12 7l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 4 4a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L13 10.415V17a1 1 0 0 1-2 0v-6.585l-2.293 2.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l4-4 .112-.097.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-filter-medium" viewBox="0 0 24 24"><path d="M21 2a1 1 0 0 1 .82 1.573L15 13.314V18a1 1 0 0 1-.31.724l-.09.076-4 3A1 1 0 0 1 9 21v-7.684L2.18 3.573a1 1 0 0 1 .707-1.567L3 2h18Zm-1.921 2H4.92l5.9 8.427a1 1 0 0 1 .172.45L11 13v6l2-1.5V13a1 1 0 0 1 .117-.469l.064-.104L19.079 4Z"/></symbol><symbol id="icon-eds-i-funding-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M23 8A7 7 0 1 0 9 8a7 7 0 0 0 14 0ZM9.006 12.225A4.07 4.07 0 0 0 6.12 11.02H2a.979.979 0 1 0 0 1.958h4.12c.558 0 1.094.222 1.489.617l2.207 2.288c.27.27.27.687.012.944a.656.656 0 0 1-.928 0L7.744 15.67a.98.98 0 0 0-1.386 1.384l1.157 1.158c.535.536 1.244.791 1.946.765l.041.002h6.922c.874 0 1.597.748 1.597 1.688 0 .203-.146.354-.309.354H7.755c-.487 0-.96-.178-1.339-.504L2.64 17.259a.979.979 0 0 0-1.28 1.482L5.137 22c.733.631 1.66.979 2.618.979h9.957c1.26 0 2.267-1.043 2.267-2.312 0-2.006-1.584-3.646-3.555-3.646h-4.529a2.617 2.617 0 0 0-.681-2.509l-2.208-2.287ZM16 3a5 5 0 1 0 0 10 5 5 0 0 0 0-10Zm.979 3.5a.979.979 0 1 0-1.958 0v3a.979.979 0 1 0 1.958 0v-3Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-hashtag-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM9.52 18.189a1 1 0 1 1-1.964-.378l.437-2.274H6a1 1 0 1 1 0-2h2.378l.592-3.076H6a1 1 0 0 1 0-2h3.354l.51-2.65a1 1 0 1 1 1.964.378l-.437 2.272h3.04l.51-2.65a1 1 0 1 1 1.964.378l-.438 2.272H18a1 1 0 0 1 0 2h-1.917l-.592 3.076H18a1 1 0 0 1 0 2h-2.893l-.51 2.652a1 1 0 1 1-1.964-.378l.437-2.274h-3.04l-.51 2.652Zm.895-4.652h3.04l.591-3.076h-3.04l-.591 3.076Z"/></symbol><symbol id="icon-eds-i-home-medium" viewBox="0 0 24 24"><path d="M5 22a1 1 0 0 1-1-1v-8.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l10-10a1 1 0 0 1 1.414 0l10 10a1 1 0 0 1-1.414 1.414L20 12.415V21a1 1 0 0 1-1 1H5Zm7-17.585-6 5.999V20h5v-4a1 1 0 0 1 2 0v4h5v-9.585l-6-6Z"/></symbol><symbol id="icon-eds-i-image-medium" viewBox="0 0 24 24"><path d="M19.615 2A2.385 2.385 0 0 1 22 4.385v15.23A2.385 2.385 0 0 1 19.615 22H4.385A2.385 2.385 0 0 1 2 19.615V4.385A2.385 2.385 0 0 1 4.385 2h15.23Zm0 2H4.385A.385.385 0 0 0 4 4.385v15.23c0 .213.172.385.385.385h1.244l10.228-8.76a1 1 0 0 1 1.254-.037L20 13.392V4.385A.385.385 0 0 0 19.615 4Zm-3.07 9.283L8.703 20h10.912a.385.385 0 0 0 .385-.385v-3.713l-3.455-2.619ZM9.5 6a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-impact-factor-medium" viewBox="0 0 24 24"><path d="M16.49 2.672c.74.694.986 1.765.632 2.712l-.04.1-1.549 3.54h1.477a2.496 2.496 0 0 1 2.485 2.34l.005.163c0 .618-.23 1.21-.642 1.675l-7.147 7.961a2.48 2.48 0 0 1-3.554.165 2.512 2.512 0 0 1-.633-2.712l.042-.103L9.108 15H7.46c-1.393 0-2.379-1.11-2.455-2.369L5 12.473c0-.593.142-1.145.628-1.692l7.307-7.944a2.48 2.48 0 0 1 3.555-.165ZM14.43 4.164l-7.33 7.97c-.083.093-.101.214-.101.34 0 .277.19.526.46.526h4.163l.097-.009c.015 0 .03.003.046.009.181.078.264.32.186.5l-2.554 5.817a.512.512 0 0 0 .127.552.48.48 0 0 0 .69-.033l7.155-7.97a.513.513 0 0 0 .13-.34.497.497 0 0 0-.49-.502h-3.988a.355.355 0 0 1-.328-.497l2.555-5.844a.512.512 0 0 0-.127-.552.48.48 0 0 0-.69.033Z"/></symbol><symbol id="icon-eds-i-info-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 7a1 1 0 0 1 1 1v5h1.5a1 1 0 0 1 0 2h-5a1 1 0 0 1 0-2H11v-4h-.5a1 1 0 0 1-.993-.883L9.5 11a1 1 0 0 1 1-1H12Zm0-4.5a1.5 1.5 0 0 1 .144 2.993L12 8.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 9h-1.5a1 1 0 0 0-1 1l.007.117A1 1 0 0 0 10.5 12h.5v4H9.5a1 1 0 0 0 0 2h5a1 1 0 0 0 0-2H13v-5a1 1 0 0 0-1-1Zm0-4.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 5.5Z"/></symbol><symbol id="icon-eds-i-journal-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v14a2.5 2.5 0 0 1-2.5 2.5h-13a.5.5 0 1 0 0 1H20a1 1 0 0 1 0 2H5.5A2.5 2.5 0 0 1 3 20.5v-17A2.5 2.5 0 0 1 5.5 1h13ZM7 3H5.5a.5.5 0 0 0-.5.5v14.549l.016-.002c.104-.02.211-.035.32-.042L5.5 18H7V3Zm11.5 0H9v15h9.5a.5.5 0 0 0 .5-.5v-14a.5.5 0 0 0-.5-.5ZM16 5a1 1 0 0 1 1 1v4a1 1 0 0 1-1 1h-5a1 1 0 0 1-1-1V6a1 1 0 0 1 1-1h5Zm-1 2h-3v2h3V7Z"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="M20.462 3C21.875 3 23 4.184 23 5.619v12.762C23 19.816 21.875 21 20.462 21H3.538C2.125 21 1 19.816 1 18.381V5.619C1 4.184 2.125 3 3.538 3h16.924ZM21 8.158l-7.378 6.258a2.549 2.549 0 0 1-3.253-.008L3 8.16v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619V8.158ZM20.462 5H3.538c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516Z"/></symbol><symbol id="icon-eds-i-mail-send-medium" viewBox="0 0 24 24"><path d="M20.444 5a2.562 2.562 0 0 1 2.548 2.37l.007.078.001.123v7.858A2.564 2.564 0 0 1 20.444 18H9.556A2.564 2.564 0 0 1 7 15.429l.001-7.977.007-.082A2.561 2.561 0 0 1 9.556 5h10.888ZM21 9.331l-5.46 3.51a1 1 0 0 1-1.08 0L9 9.332v6.097c0 .317.251.571.556.571h10.888a.564.564 0 0 0 .556-.571V9.33ZM20.444 7H9.556a.543.543 0 0 0-.32.105l5.763 3.706 5.766-3.706a.543.543 0 0 0-.32-.105ZM4.308 5a1 1 0 1 1 0 2H2a1 1 0 1 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Z"/></symbol><symbol id="icon-eds-i-mentions-medium" viewBox="0 0 24 24"><path d="m9.452 1.293 5.92 5.92 2.92-2.92a1 1 0 0 1 1.415 1.414l-2.92 2.92 5.92 5.92a1 1 0 0 1 0 1.415 10.371 10.371 0 0 1-10.378 2.584l.652 3.258A1 1 0 0 1 12 23H2a1 1 0 0 1-.874-1.486l4.789-8.62C4.194 9.074 4.9 4.43 8.038 1.292a1 1 0 0 1 1.414 0Zm-2.355 13.59L3.699 21h7.081l-.689-3.442a10.392 10.392 0 0 1-2.775-2.396l-.22-.28Zm1.69-11.427-.07.09a8.374 8.374 0 0 0 11.737 11.737l.089-.071L8.787 3.456Z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-metrics-medium" viewBox="0 0 24 24"><path d="M3 22a1 1 0 0 1-1-1V3a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v7h4V8a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v13a1 1 0 0 1-.883.993L21 22H3Zm17-2V9h-4v11h4Zm-6-8h-4v8h4v-8ZM8 4H4v16h4V4Z"/></symbol><symbol id="icon-eds-i-news-medium" viewBox="0 0 24 24"><path d="M17.384 3c.975 0 1.77.787 1.77 1.762v13.333c0 .462.354.846.815.899l.107.006.109-.006a.915.915 0 0 0 .809-.794l.006-.105V8.19a1 1 0 0 1 2 0v9.905A2.914 2.914 0 0 1 20.077 21H3.538a2.547 2.547 0 0 1-1.644-.601l-.147-.135A2.516 2.516 0 0 1 1 18.476V4.762C1 3.787 1.794 3 2.77 3h14.614Zm-.231 2H3v13.476c0 .11.035.216.1.304l.054.063c.101.1.24.157.384.157l13.761-.001-.026-.078a2.88 2.88 0 0 1-.115-.655l-.004-.17L17.153 5ZM14 15.021a.979.979 0 1 1 0 1.958H6a.979.979 0 1 1 0-1.958h8Zm0-8c.54 0 .979.438.979.979v4c0 .54-.438.979-.979.979H6A.979.979 0 0 1 5.021 12V8c0-.54.438-.979.979-.979h8Zm-.98 1.958H6.979v2.041h6.041V8.979Z"/></symbol><symbol id="icon-eds-i-newsletter-medium" viewBox="0 0 24 24"><path d="M21 10a1 1 0 0 1 1 1v9.5a2.5 2.5 0 0 1-2.5 2.5h-15A2.5 2.5 0 0 1 2 20.5V11a1 1 0 0 1 2 0v.439l8 4.888 8-4.889V11a1 1 0 0 1 1-1Zm-1 3.783-7.479 4.57a1 1 0 0 1-1.042 0l-7.48-4.57V20.5a.5.5 0 0 0 .501.5h15a.5.5 0 0 0 .5-.5v-6.717ZM15 9a1 1 0 0 1 0 2H9a1 1 0 0 1 0-2h6Zm2.5-8A2.5 2.5 0 0 1 20 3.5V9a1 1 0 0 1-2 0V3.5a.5.5 0 0 0-.5-.5h-11a.5.5 0 0 0-.5.5V9a1 1 0 1 1-2 0V3.5A2.5 2.5 0 0 1 6.5 1h11ZM15 5a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-notifcation-medium" viewBox="0 0 24 24"><path d="M14 20a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM3 18l-.133-.007c-1.156-.124-1.156-1.862 0-1.986l.3-.012C4.32 15.923 5 15.107 5 14V9.5C5 5.368 8.014 2 12 2s7 3.368 7 7.5V14c0 1.107.68 1.923 1.832 1.995l.301.012c1.156.124 1.156 1.862 0 1.986L21 18H3Zm9-14C9.17 4 7 6.426 7 9.5V14c0 .671-.146 1.303-.416 1.858L6.51 16h10.979l-.073-.142a4.192 4.192 0 0 1-.412-1.658L17 14V9.5C17 6.426 14.83 4 12 4Z"/></symbol><symbol id="icon-eds-i-publish-medium" viewBox="0 0 24 24"><g><path d="M16.296 1.291A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V13a1 1 0 1 0 2 0V3.538l.007-.087A.543.543 0 0 1 5.545 3h9.633L20 7.8v12.662a.534.534 0 0 1-.158.379.548.548 0 0 1-.387.159H11a1 1 0 1 0 0 2h8.455c.674 0 1.32-.267 1.798-.742A2.534 2.534 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385Z"/><path d="M10.762 16.647a1 1 0 0 0-1.525-1.294l-4.472 5.271-2.153-1.665a1 1 0 1 0-1.224 1.582l2.91 2.25a1 1 0 0 0 1.374-.144l5.09-6ZM16 10a1 1 0 1 1 0 2H8a1 1 0 1 1 0-2h8ZM12 7a1 1 0 0 0-1-1H8a1 1 0 1 0 0 2h3a1 1 0 0 0 1-1Z"/></g></symbol><symbol id="icon-eds-i-refresh-medium" viewBox="0 0 24 24"><g><path d="M7.831 5.636H6.032A8.76 8.76 0 0 1 9 3.631 8.549 8.549 0 0 1 12.232 3c.603 0 1.192.063 1.76.182C17.979 4.017 21 7.632 21 12a1 1 0 1 0 2 0c0-5.296-3.674-9.746-8.591-10.776A10.61 10.61 0 0 0 5 3.851V2.805a1 1 0 0 0-.987-1H4a1 1 0 0 0-1 1v3.831a1 1 0 0 0 1 1h3.831a1 1 0 0 0 .013-2h-.013ZM17.968 18.364c-1.59 1.632-3.784 2.636-6.2 2.636C6.948 21 3 16.993 3 12a1 1 0 1 0-2 0c0 6.053 4.799 11 10.768 11 2.788 0 5.324-1.082 7.232-2.85v1.045a1 1 0 1 0 2 0v-3.831a1 1 0 0 0-1-1h-3.831a1 1 0 0 0 0 2h1.799Z"/></g></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-settings-medium" viewBox="0 0 24 24"><path d="M11.382 1h1.24a2.508 2.508 0 0 1 2.334 1.63l.523 1.378 1.59.933 1.444-.224c.954-.132 1.89.3 2.422 1.101l.095.155.598 1.066a2.56 2.56 0 0 1-.195 2.848l-.894 1.161v1.896l.92 1.163c.6.768.707 1.812.295 2.674l-.09.17-.606 1.08a2.504 2.504 0 0 1-2.531 1.25l-1.428-.223-1.589.932-.523 1.378a2.512 2.512 0 0 1-2.155 1.625L12.65 23h-1.27a2.508 2.508 0 0 1-2.334-1.63l-.524-1.379-1.59-.933-1.443.225c-.954.132-1.89-.3-2.422-1.101l-.095-.155-.598-1.066a2.56 2.56 0 0 1 .195-2.847l.891-1.161v-1.898l-.919-1.162a2.562 2.562 0 0 1-.295-2.674l.09-.17.606-1.08a2.504 2.504 0 0 1 2.531-1.25l1.43.223 1.618-.938.524-1.375.07-.167A2.507 2.507 0 0 1 11.382 1Zm.003 2a.509.509 0 0 0-.47.338l-.65 1.71a1 1 0 0 1-.434.51L7.6 6.85a1 1 0 0 1-.655.123l-1.762-.275a.497.497 0 0 0-.498.252l-.61 1.088a.562.562 0 0 0 .04.619l1.13 1.43a1 1 0 0 1 .216.62v2.585a1 1 0 0 1-.207.61L4.15 15.339a.568.568 0 0 0-.036.634l.601 1.072a.494.494 0 0 0 .484.26l1.78-.278a1 1 0 0 1 .66.126l2.2 1.292a1 1 0 0 1 .43.507l.648 1.71a.508.508 0 0 0 .467.338h1.263a.51.51 0 0 0 .47-.34l.65-1.708a1 1 0 0 1 .428-.507l2.201-1.292a1 1 0 0 1 .66-.126l1.763.275a.497.497 0 0 0 .498-.252l.61-1.088a.562.562 0 0 0-.04-.619l-1.13-1.43a1 1 0 0 1-.216-.62v-2.585a1 1 0 0 1 .207-.61l1.105-1.437a.568.568 0 0 0 .037-.634l-.601-1.072a.494.494 0 0 0-.484-.26l-1.78.278a1 1 0 0 1-.66-.126l-2.2-1.292a1 1 0 0 1-.43-.507l-.649-1.71A.508.508 0 0 0 12.62 3h-1.234ZM12 8a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-shipping-medium" viewBox="0 0 24 24"><path d="M16.515 2c1.406 0 2.706.728 3.352 1.902l2.02 3.635.02.042.036.089.031.105.012.058.01.073.004.075v11.577c0 .64-.244 1.255-.683 1.713a2.356 2.356 0 0 1-1.701.731H4.386a2.356 2.356 0 0 1-1.702-.731 2.476 2.476 0 0 1-.683-1.713V7.948c.01-.217.083-.43.22-.6L4.2 3.905C4.833 2.755 6.089 2.032 7.486 2h9.029ZM20 9H4v10.556a.49.49 0 0 0 .075.26l.053.07a.356.356 0 0 0 .257.114h15.23c.094 0 .186-.04.258-.115a.477.477 0 0 0 .127-.33V9Zm-2 7.5a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM16.514 4H13v3h6.3l-1.183-2.13c-.288-.522-.908-.87-1.603-.87ZM11 3.999H7.51c-.679.017-1.277.36-1.566.887L4.728 7H11V3.999Z"/></symbol><symbol id="icon-eds-i-step-guide-medium" viewBox="0 0 24 24"><path d="M11.394 9.447a1 1 0 1 0-1.788-.894l-.88 1.759-.019-.02a1 1 0 1 0-1.414 1.415l1 1a1 1 0 0 0 1.601-.26l1.5-3ZM12 11a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM12 17a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM10.947 14.105a1 1 0 0 1 .447 1.342l-1.5 3a1 1 0 0 1-1.601.26l-1-1a1 1 0 1 1 1.414-1.414l.02.019.879-1.76a1 1 0 0 1 1.341-.447Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V7.5a1 1 0 0 0-.293-.707l-5.5-5.5A1 1 0 0 0 14.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3h8.54L19 7.914v12.547c0 .294-.24.539-.546.539H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-submission-medium" viewBox="0 0 24 24"><g><path d="M5 3.538C5 3.245 5.24 3 5.545 3h9.633L20 7.8v12.662a.535.535 0 0 1-.158.379.549.549 0 0 1-.387.159H6a1 1 0 0 1-1-1v-2.5a1 1 0 1 0-2 0V20a3 3 0 0 0 3 3h13.455c.673 0 1.32-.266 1.798-.742A2.535 2.535 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V7a1 1 0 0 0 2 0V3.538Z"/><path d="m13.707 13.707-4 4a1 1 0 0 1-1.414 0l-.083-.094a1 1 0 0 1 .083-1.32L10.585 14 2 14a1 1 0 1 1 0-2l8.583.001-2.29-2.294a1 1 0 0 1 1.414-1.414l4.037 4.04.043.05.043.06.059.098.03.063.031.085.03.113.017.122L14 13l-.004.087-.017.118-.013.056-.034.104-.049.105-.048.081-.07.093-.058.063Z"/></g></symbol><symbol id="icon-eds-i-table-1-medium" viewBox="0 0 24 24"><path d="M4.385 22a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385ZM4 19.615c0 .213.034.265.14.317a.71.71 0 0 0 .245.068H8v-4H4v3.615ZM20 16H10v4h9.615c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V16Zm0-2v-4H10v4h10ZM4 14h4v-4H4v4ZM19.615 4H10v4h10V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM8 4H4.385l-.082.002c-.146.01-.19.047-.235.138A.71.71 0 0 0 4 4.385V8h4V4Z"/></symbol><symbol id="icon-eds-i-table-2-medium" viewBox="0 0 24 24"><path d="M4.384 22A2.384 2.384 0 0 1 2 19.616V4.384A2.384 2.384 0 0 1 4.384 2h15.232A2.384 2.384 0 0 1 22 4.384v15.232A2.384 2.384 0 0 1 19.616 22H4.384ZM10 15H4v4.616c0 .212.172.384.384.384H10v-5Zm5 0h-3v5h3v-5Zm5 0h-3v5h2.616a.384.384 0 0 0 .384-.384V15ZM10 9H4v4h6V9Zm5 0h-3v4h3V9Zm5 0h-3v4h3V9Zm-.384-5H4.384A.384.384 0 0 0 4 4.384V7h16V4.384A.384.384 0 0 0 19.616 4Z"/></symbol><symbol id="icon-eds-i-tag-medium" viewBox="0 0 24 24"><path d="m12.621 1.998.127.004L20.496 2a1.5 1.5 0 0 1 1.497 1.355L22 3.5l-.005 7.669c.038.456-.133.905-.447 1.206l-9.02 9.018a2.075 2.075 0 0 1-2.932 0l-6.99-6.99a2.075 2.075 0 0 1 .001-2.933L11.61 2.47c.246-.258.573-.418.881-.46l.131-.011Zm.286 2-8.885 8.886a.075.075 0 0 0 0 .106l6.987 6.988c.03.03.077.03.106 0l8.883-8.883L19.999 4l-7.092-.002ZM16 6.5a1.5 1.5 0 0 1 .144 2.993L16 9.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-trash-medium" viewBox="0 0 24 24"><path d="M12 1c2.717 0 4.913 2.232 4.997 5H21a1 1 0 0 1 0 2h-1v12.5c0 1.389-1.152 2.5-2.556 2.5H6.556C5.152 23 4 21.889 4 20.5V8H3a1 1 0 1 1 0-2h4.003l.001-.051C7.114 3.205 9.3 1 12 1Zm6 7H6v12.5c0 .238.19.448.454.492l.102.008h10.888c.315 0 .556-.232.556-.5V8Zm-4 3a1 1 0 0 1 1 1v6.005a1 1 0 0 1-2 0V12a1 1 0 0 1 1-1Zm-4 0a1 1 0 0 1 1 1v6a1 1 0 0 1-2 0v-6a1 1 0 0 1 1-1Zm2-8c-1.595 0-2.914 1.32-2.996 3h5.991v-.02C14.903 4.31 13.589 3 12 3Z"/></symbol><symbol id="icon-eds-i-user-account-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 16c-1.806 0-3.52.994-4.664 2.698A8.947 8.947 0 0 0 12 21a8.958 8.958 0 0 0 4.664-1.301C15.52 17.994 13.806 17 12 17Zm0-14a9 9 0 0 0-6.25 15.476C7.253 16.304 9.54 15 12 15s4.747 1.304 6.25 3.475A9 9 0 0 0 12 3Zm0 3a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-user-add-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a1 1 0 0 1 1 1v3h3a1 1 0 0 1 0 2h-3v3a1 1 0 0 1-2 0v-3h-3a1 1 0 0 1 0-2h3v-3a1 1 0 0 1 1-1Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Z"/></symbol><symbol id="icon-eds-i-user-assign-medium" viewBox="0 0 24 24"><path d="M16.226 13.298a1 1 0 0 1 1.414-.01l.084.093a1 1 0 0 1-.073 1.32L15.39 17H22a1 1 0 0 1 0 2h-6.611l2.262 2.298a1 1 0 0 1-1.425 1.404l-3.939-4a1 1 0 0 1 0-1.404l3.94-4Zm-3.771-.449a1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 10.5 20a1 1 0 0 1 .993.883L11.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-block-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM15 18a3 3 0 0 0 4.294 2.707l-4.001-4c-.188.391-.293.83-.293 1.293Zm3-3c-.463 0-.902.105-1.294.293l4.001 4A3 3 0 0 0 18 15Z"/></symbol><symbol id="icon-eds-i-user-check-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm13.647 12.237a1 1 0 0 1 .116 1.41l-5.091 6a1 1 0 0 1-1.375.144l-2.909-2.25a1 1 0 1 1 1.224-1.582l2.153 1.665 4.472-5.271a1 1 0 0 1 1.41-.116Zm-8.139-.977c.22.214.428.44.622.678a1 1 0 1 1-1.548 1.266 6.025 6.025 0 0 0-1.795-1.49.86.86 0 0 1-.163-.048l-.079-.036a5.721 5.721 0 0 0-2.62-.63l-.194.006c-2.76.134-5.022 2.177-5.592 4.864l-.035.175-.035.213c-.03.201-.05.405-.06.61L3.003 20 10 20a1 1 0 0 1 .993.883L11 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876l.005-.223.02-.356.02-.222.03-.248.022-.15c.02-.133.044-.265.071-.397.44-2.178 1.725-4.105 3.595-5.301a7.75 7.75 0 0 1 3.755-1.215l.12-.004a7.908 7.908 0 0 1 5.87 2.252Z"/></symbol><symbol id="icon-eds-i-user-delete-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6ZM4.763 13.227a7.713 7.713 0 0 1 7.692-.378 1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20H11.5a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897Zm11.421 1.543 2.554 2.553 2.555-2.553a1 1 0 0 1 1.414 1.414l-2.554 2.554 2.554 2.555a1 1 0 0 1-1.414 1.414l-2.555-2.554-2.554 2.554a1 1 0 0 1-1.414-1.414l2.553-2.555-2.553-2.554a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-user-edit-medium" viewBox="0 0 24 24"><path d="m19.876 10.77 2.831 2.83a1 1 0 0 1 0 1.415l-7.246 7.246a1 1 0 0 1-.572.284l-3.277.446a1 1 0 0 1-1.125-1.13l.461-3.277a1 1 0 0 1 .283-.567l7.23-7.246a1 1 0 0 1 1.415-.001Zm-7.421 2.08a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 7.5 20a1 1 0 0 1 .993.883L8.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Zm6.715.042-6.29 6.3-.23 1.639 1.633-.222 6.302-6.302-1.415-1.415ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-linked-medium" viewBox="0 0 24 24"><path d="M15.65 6c.31 0 .706.066 1.122.274C17.522 6.65 18 7.366 18 8.35v12.3c0 .31-.066.706-.274 1.122-.375.75-1.092 1.228-2.076 1.228H3.35a2.52 2.52 0 0 1-1.122-.274C1.478 22.35 1 21.634 1 20.65V8.35c0-.31.066-.706.274-1.122C1.65 6.478 2.366 6 3.35 6h12.3Zm0 2-12.376.002c-.134.007-.17.04-.21.12A.672.672 0 0 0 3 8.35v12.3c0 .198.028.24.122.287.09.044.2.063.228.063h.887c.788-2.269 2.814-3.5 5.263-3.5 2.45 0 4.475 1.231 5.263 3.5h.887c.198 0 .24-.028.287-.122.044-.09.063-.2.063-.228V8.35c0-.198-.028-.24-.122-.287A.672.672 0 0 0 15.65 8ZM9.5 19.5c-1.36 0-2.447.51-3.06 1.5h6.12c-.613-.99-1.7-1.5-3.06-1.5ZM20.65 1A2.35 2.35 0 0 1 23 3.348V15.65A2.35 2.35 0 0 1 20.65 18H20a1 1 0 0 1 0-2h.65a.35.35 0 0 0 .35-.35V3.348A.35.35 0 0 0 20.65 3H8.35a.35.35 0 0 0-.35.348V4a1 1 0 1 1-2 0v-.652A2.35 2.35 0 0 1 8.35 1h12.3ZM9.5 10a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-user-multiple-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm6 0a5 5 0 0 1 0 10 1 1 0 0 1-.117-1.993L15 9a3 3 0 0 0 0-6 1 1 0 0 1 0-2ZM9 3a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm8.857 9.545a7.99 7.99 0 0 1 2.651 1.715A8.31 8.31 0 0 1 23 20.134V21a1 1 0 0 1-1 1h-3a1 1 0 0 1 0-2h1.995l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209a5.99 5.99 0 0 0-1.988-1.287 1 1 0 1 1 .732-1.861Zm-3.349 1.715A8.31 8.31 0 0 1 17 20.134V21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.877c.044-4.343 3.387-7.908 7.638-8.115a7.908 7.908 0 0 1 5.87 2.252ZM9.016 14l-.285.006c-3.104.15-5.58 2.718-5.725 5.9L3.004 20h11.991l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209A5.924 5.924 0 0 0 9.3 14.008L9.016 14Z"/></symbol><symbol id="icon-eds-i-user-notify-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm10 18v1a1 1 0 0 1-2 0v-1h-3a1 1 0 0 1 0-2v-2.818C14 13.885 15.777 12 18 12s4 1.885 4 4.182V19a1 1 0 0 1 0 2h-3Zm-6.545-8.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM18 14c-1.091 0-2 .964-2 2.182V19h4v-2.818c0-1.165-.832-2.098-1.859-2.177L18 14Z"/></symbol><symbol id="icon-eds-i-user-remove-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm3.455 9.85a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM22 17a1 1 0 0 1 0 2h-8a1 1 0 0 1 0-2h8Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 11.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 13.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.7194 3.3054C15.3358 2.90809 14.7027 2.89699 14.3054 3.28061L6.54342 10.7757C6.19804 11.09 6 11.5335 6 12C6 12.4665 6.19804 12.91 6.5218 13.204L14.3054 20.7194C14.7027 21.103 15.3358 21.0919 15.7194 20.6946C16.103 20.2973 16.0919 19.6642 15.6946 19.2806L8.155 12L15.6946 4.71939C16.0614 4.36528 16.099 3.79863 15.8009 3.40105L15.7194 3.3054Z"/></symbol><symbol id="icon-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28061 3.3054C8.66423 2.90809 9.29729 2.89699 9.6946 3.28061L17.4566 10.7757C17.802 11.09 18 11.5335 18 12C18 12.4665 17.802 12.91 17.4782 13.204L9.6946 20.7194C9.29729 21.103 8.66423 21.0919 8.28061 20.6946C7.89699 20.2973 7.90809 19.6642 8.3054 19.2806L15.845 12L8.3054 4.71939C7.93865 4.36528 7.90098 3.79863 8.19908 3.40105L8.28061 3.3054Z"/></symbol><symbol id="icon-eds-alerts" viewBox="0 0 32 32"><path d="M28 12.667c.736 0 1.333.597 1.333 1.333v13.333A3.333 3.333 0 0 1 26 30.667H6a3.333 3.333 0 0 1-3.333-3.334V14a1.333 1.333 0 1 1 2.666 0v1.252L16 21.769l10.667-6.518V14c0-.736.597-1.333 1.333-1.333Zm-1.333 5.71-9.972 6.094c-.427.26-.963.26-1.39 0l-9.972-6.094v8.956c0 .368.299.667.667.667h20a.667.667 0 0 0 .667-.667v-8.956ZM19.333 12a1.333 1.333 0 1 1 0 2.667h-6.666a1.333 1.333 0 1 1 0-2.667h6.666Zm4-10.667a3.333 3.333 0 0 1 3.334 3.334v6.666a1.333 1.333 0 1 1-2.667 0V4.667A.667.667 0 0 0 23.333 4H8.667A.667.667 0 0 0 8 4.667v6.666a1.333 1.333 0 1 1-2.667 0V4.667a3.333 3.333 0 0 1 3.334-3.334h14.666Zm-4 5.334a1.333 1.333 0 0 1 0 2.666h-6.666a1.333 1.333 0 1 1 0-2.666h6.666Z"/></symbol><symbol id="icon-eds-arrow-up" viewBox="0 0 24 24"><path fill-rule="evenodd" d="m13.002 7.408 4.88 4.88a.99.99 0 0 0 1.32.08l.09-.08c.39-.39.39-1.03 0-1.42l-6.58-6.58a1.01 1.01 0 0 0-1.42 0l-6.58 6.58a1 1 0 0 0-.09 1.32l.08.1a1 1 0 0 0 1.42-.01l4.88-4.87v11.59a.99.99 0 0 0 .88.99l.12.01c.55 0 1-.45 1-1V7.408z" class="layer"/></symbol><symbol id="icon-eds-checklist" viewBox="0 0 32 32"><path d="M19.2 1.333a3.468 3.468 0 0 1 3.381 2.699L24.667 4C26.515 4 28 5.52 28 7.38v19.906c0 1.86-1.485 3.38-3.333 3.38H7.333c-1.848 0-3.333-1.52-3.333-3.38V7.38C4 5.52 5.485 4 7.333 4h2.093A3.468 3.468 0 0 1 12.8 1.333h6.4ZM9.426 6.667H7.333c-.36 0-.666.312-.666.713v19.906c0 .401.305.714.666.714h17.334c.36 0 .666-.313.666-.714V7.38c0-.4-.305-.713-.646-.714l-2.121.033A3.468 3.468 0 0 1 19.2 9.333h-6.4a3.468 3.468 0 0 1-3.374-2.666Zm12.715 5.606c.586.446.7 1.283.253 1.868l-7.111 9.334a1.333 1.333 0 0 1-1.792.306l-3.556-2.333a1.333 1.333 0 1 1 1.463-2.23l2.517 1.651 6.358-8.344a1.333 1.333 0 0 1 1.868-.252ZM19.2 4h-6.4a.8.8 0 0 0-.8.8v1.067a.8.8 0 0 0 .8.8h6.4a.8.8 0 0 0 .8-.8V4.8a.8.8 0 0 0-.8-.8Z"/></symbol><symbol id="icon-eds-citation" viewBox="0 0 36 36"><path d="M23.25 1.5a1.5 1.5 0 0 1 1.06.44l8.25 8.25a1.5 1.5 0 0 1 .44 1.06v19.5c0 2.105-1.645 3.75-3.75 3.75H18a1.5 1.5 0 0 1 0-3h11.25c.448 0 .75-.302.75-.75V11.873L22.628 4.5H8.31a.811.811 0 0 0-.8.68l-.011.13V16.5a1.5 1.5 0 0 1-3 0V5.31A3.81 3.81 0 0 1 8.31 1.5h14.94ZM8.223 20.358a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878C3.302 28.536 3 27.657 3 26.486c0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Zm7.5 0a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878-.604-.586-.906-1.465-.906-2.636 0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Z"/></symbol><symbol id="icon-eds-i-access-indicator" viewBox="0 0 16 16"><circle cx="4.5" cy="11.5" r="3.5" style="fill:currentColor"/><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702v7.846c0 .505-.197.993-.554 1.354a1.902 1.902 0 0 1-1.355.569H10a1 1 0 1 1 0-2h2V5.64L9.4 3H4Z" clip-rule="evenodd" style="fill:#222"/></symbol><symbol id="icon-eds-i-github-medium" viewBox="0 0 24 24"><path d="M 11.964844 0 C 5.347656 0 0 5.269531 0 11.792969 C 0 17.003906 3.425781 21.417969 8.179688 22.976562 C 8.773438 23.09375 8.992188 22.722656 8.992188 22.410156 C 8.992188 22.136719 8.972656 21.203125 8.972656 20.226562 C 5.644531 20.929688 4.953125 18.820312 4.953125 18.820312 C 4.417969 17.453125 3.625 17.101562 3.625 17.101562 C 2.535156 16.378906 3.703125 16.378906 3.703125 16.378906 C 4.914062 16.457031 5.546875 17.589844 5.546875 17.589844 C 6.617188 19.386719 8.339844 18.878906 9.03125 18.566406 C 9.132812 17.804688 9.449219 17.277344 9.785156 16.984375 C 7.132812 16.710938 4.339844 15.695312 4.339844 11.167969 C 4.339844 9.878906 4.8125 8.824219 5.566406 8.003906 C 5.445312 7.710938 5.03125 6.5 5.683594 4.878906 C 5.683594 4.878906 6.695312 4.566406 8.972656 6.089844 C 9.949219 5.832031 10.953125 5.703125 11.964844 5.699219 C 12.972656 5.699219 14.003906 5.835938 14.957031 6.089844 C 17.234375 4.566406 18.242188 4.878906 18.242188 4.878906 C 18.898438 6.5 18.480469 7.710938 18.363281 8.003906 C 19.136719 8.824219 19.589844 9.878906 19.589844 11.167969 C 19.589844 15.695312 16.796875 16.691406 14.125 16.984375 C 14.558594 17.355469 14.933594 18.058594 14.933594 19.171875 C 14.933594 20.753906 14.914062 22.019531 14.914062 22.410156 C 14.914062 22.722656 15.132812 23.09375 15.726562 22.976562 C 20.480469 21.414062 23.910156 17.003906 23.910156 11.792969 C 23.929688 5.269531 18.558594 0 11.964844 0 Z M 11.964844 0 "/></symbol><symbol id="icon-eds-i-limited-access" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702V6a1 1 0 1 1-2 0v-.36L9.4 3H4ZM3 8a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm10 0a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm-3.5 6a1 1 0 0 1-1 1h-1a1 1 0 1 1 0-2h1a1 1 0 0 1 1 1Zm2.441-1a1 1 0 0 1 2 0c0 .73-.246 1.306-.706 1.664a1.61 1.61 0 0 1-.876.334l-.032.002H11.5a1 1 0 1 1 0-2h.441ZM4 13a1 1 0 0 0-2 0c0 .73.247 1.306.706 1.664a1.609 1.609 0 0 0 .876.334l.032.002H4.5a1 1 0 1 0 0-2H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-subjects-medium" viewBox="0 0 24 24"><g id="icon-subjects-copy" stroke="none" stroke-width="1" fill-rule="evenodd"><path d="M13.3846154,2 C14.7015971,2 15.7692308,3.06762994 15.7692308,4.38461538 L15.7692308,7.15384615 C15.7692308,8.47082629 14.7015955,9.53846154 13.3846154,9.53846154 L13.1038388,9.53925278 C13.2061091,9.85347965 13.3815528,10.1423885 13.6195822,10.3804178 C13.9722182,10.7330539 14.436524,10.9483278 14.9293854,10.9918129 L15.1153846,11 C16.2068332,11 17.2535347,11.433562 18.0254647,12.2054189 C18.6411944,12.8212361 19.0416785,13.6120766 19.1784166,14.4609738 L19.6153846,14.4615385 C20.932386,14.4615385 22,15.5291672 22,16.8461538 L22,19.6153846 C22,20.9323924 20.9323924,22 19.6153846,22 L16.8461538,22 C15.5291672,22 14.4615385,20.932386 14.4615385,19.6153846 L14.4615385,16.8461538 C14.4615385,15.5291737 15.5291737,14.4615385 16.8461538,14.4615385 L17.126925,14.460779 C17.0246537,14.1465537 16.8492179,13.857633 16.6112344,13.6196157 C16.2144418,13.2228606 15.6764136,13 15.1153846,13 C14.0239122,13 12.9771569,12.5664197 12.2053686,11.7946314 C12.1335167,11.7227795 12.0645962,11.6485444 11.9986839,11.5721119 C11.9354038,11.6485444 11.8664833,11.7227795 11.7946314,11.7946314 C11.0228431,12.5664197 9.97608778,13 8.88461538,13 C8.323576,13 7.78552852,13.2228666 7.38881294,13.6195822 C7.15078359,13.8576115 6.97533988,14.1465203 6.8730696,14.4607472 L7.15384615,14.4615385 C8.47082629,14.4615385 9.53846154,15.5291737 9.53846154,16.8461538 L9.53846154,19.6153846 C9.53846154,20.932386 8.47083276,22 7.15384615,22 L4.38461538,22 C3.06762347,22 2,20.9323876 2,19.6153846 L2,16.8461538 C2,15.5291721 3.06762994,14.4615385 4.38461538,14.4615385 L4.8215823,14.4609378 C4.95831893,13.6120029 5.3588057,12.8211623 5.97459937,12.2053686 C6.69125996,11.488708 7.64500941,11.0636656 8.6514968,11.0066017 L8.88461538,11 C9.44565477,11 9.98370225,10.7771334 10.3804178,10.3804178 C10.6184472,10.1423885 10.7938909,9.85347965 10.8961612,9.53925278 L10.6153846,9.53846154 C9.29840448,9.53846154 8.23076923,8.47082629 8.23076923,7.15384615 L8.23076923,4.38461538 C8.23076923,3.06762994 9.29840286,2 10.6153846,2 L13.3846154,2 Z M7.15384615,16.4615385 L4.38461538,16.4615385 C4.17220099,16.4615385 4,16.63374 4,16.8461538 L4,19.6153846 C4,19.8278134 4.17218833,20 4.38461538,20 L7.15384615,20 C7.36626945,20 7.53846154,19.8278103 7.53846154,19.6153846 L7.53846154,16.8461538 C7.53846154,16.6337432 7.36625679,16.4615385 7.15384615,16.4615385 Z M19.6153846,16.4615385 L16.8461538,16.4615385 C16.6337432,16.4615385 16.4615385,16.6337432 16.4615385,16.8461538 L16.4615385,19.6153846 C16.4615385,19.8278103 16.6337306,20 16.8461538,20 L19.6153846,20 C19.8278229,20 20,19.8278229 20,19.6153846 L20,16.8461538 C20,16.6337306 19.8278103,16.4615385 19.6153846,16.4615385 Z M13.3846154,4 L10.6153846,4 C10.4029708,4 10.2307692,4.17220099 10.2307692,4.38461538 L10.2307692,7.15384615 C10.2307692,7.36625679 10.402974,7.53846154 10.6153846,7.53846154 L13.3846154,7.53846154 C13.597026,7.53846154 13.7692308,7.36625679 13.7692308,7.15384615 L13.7692308,4.38461538 C13.7692308,4.17220099 13.5970292,4 13.3846154,4 Z" id="Shape" fill-rule="nonzero"/></g></symbol><symbol id="icon-eds-small-arrow-left" viewBox="0 0 16 17"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M14 8.092H2m0 0L8 2M2 8.092l6 6.035"/></symbol><symbol id="icon-eds-small-arrow-right" viewBox="0 0 16 16"><g fill-rule="evenodd" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2"><path d="M2 8.092h12M8 2l6 6.092M8 14.127l6-6.035"/></g></symbol><symbol id="icon-orcid-logo" viewBox="0 0 40 40"><path fill-rule="evenodd" d="M12.281 10.453c.875 0 1.578-.719 1.578-1.578 0-.86-.703-1.578-1.578-1.578-.875 0-1.578.703-1.578 1.578 0 .86.703 1.578 1.578 1.578Zm-1.203 18.641h2.406V12.359h-2.406v16.735Z"/><path fill-rule="evenodd" d="M17.016 12.36h6.5c6.187 0 8.906 4.421 8.906 8.374 0 4.297-3.36 8.375-8.875 8.375h-6.531V12.36Zm6.234 14.578h-3.828V14.53h3.703c4.688 0 6.828 2.844 6.828 6.203 0 2.063-1.25 6.203-6.703 6.203Z" clip-rule="evenodd"/></symbol></svg> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10