CINXE.COM

Specijalna teorija relativnosti — Википедија

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="sr" dir="ltr"> <head> <meta charset="UTF-8"> <title>Specijalna teorija relativnosti — Википедија</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )srwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"hh:mm d. month y.","wgMonthNames":["","јануар","фебруар","март","април","мај","јун","јул","август","септембар","октобар","новембар","децембар"],"wgRequestId":"5c150011-534a-41a1-bb42-eee130d7bf77","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Specijalna_teorija_relativnosti","wgTitle":"Specijalna teorija relativnosti","wgCurRevisionId":28525276,"wgRevisionId":28525276,"wgArticleId":116824,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Чланци са шаблонима хутнота који циљају непостојећу страницу","CS1 одржавање: Вишеструка имена: списак аутора","CS1 грешке: arXiv", "Шаблон:Категорија на Остави/параметар/ненаведен/име странице различито од Википодатака","Шаблон:Категорија на Остави/именски простор/главни","Сви чланци са мртвим везама","Чланци са мртвим везама од 09. 2018.","Чланци са трајно мртвим спољашњим везама","Чланци са везама до сајта Пројекат Гутенберг","Чланци са спољашњим везама на језику — енглески","Cite book","Странице са изворима без наслова","Чланци са BNF идентификаторима","Чланци са BNFdata идентификаторима","Чланци са GND идентификаторима","Чланци са J9U идентификаторима","Чланци са LCCN идентификаторима", "Чланци са NKC идентификаторима","Чланци са EBO идентификаторима","Специјална релативност","Фундаментални концепти физике"],"wgPageViewLanguage":"sr","wgPageContentLanguage":"sr","wgPageContentModel":"wikitext","wgRelevantPageName":"Specijalna_teorija_relativnosti","wgRelevantArticleId":116824,"wgTempUserName":null,"wgUserVariant":"sr","wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"sr","pageLanguageDir":"ltr","pageVariantFallbacks":"sr-ec"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[], "wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q11455","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgSiteNoticeId":"2.24"};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready", "ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready","ext.dismissableSiteNotice.styles":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking","ext.dismissableSiteNotice"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=sr&amp;modules=ext.cite.styles%7Cext.dismissableSiteNotice.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=sr&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=sr&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/7/78/Einstein1921_by_F_Schmutzer_4.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1497"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/7/78/Einstein1921_by_F_Schmutzer_4.jpg/800px-Einstein1921_by_F_Schmutzer_4.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="998"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/7/78/Einstein1921_by_F_Schmutzer_4.jpg/640px-Einstein1921_by_F_Schmutzer_4.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="799"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Specijalna teorija relativnosti — Википедија"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//sr.m.wikipedia.org/wiki/Specijalna_teorija_relativnosti"> <link rel="alternate" type="application/x-wiki" title="Уреди" href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Википедија (sr)"> <link rel="EditURI" type="application/rsd+xml" href="//sr.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://sr.wikipedia.org/wiki/Specijalna_teorija_relativnosti"> <link rel="alternate" hreflang="sr" href="https://sr.wikipedia.org/wiki/Specijalna_teorija_relativnosti"> <link rel="alternate" hreflang="sr-Cyrl" href="https://sr.wikipedia.org/sr-ec/Specijalna_teorija_relativnosti"> <link rel="alternate" hreflang="sr-Latn" href="https://sr.wikipedia.org/sr-el/Specijalna_teorija_relativnosti"> <link rel="alternate" hreflang="x-default" href="https://sr.wikipedia.org/wiki/Specijalna_teorija_relativnosti"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.sr"> <link rel="alternate" type="application/atom+xml" title="Википедија – Atom фид" href="/w/index.php?title=%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%A1%D0%BA%D0%BE%D1%80%D0%B0%D1%88%D1%9A%D0%B5_%D0%B8%D0%B7%D0%BC%D0%B5%D0%BD%D0%B5&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Specijalna_teorija_relativnosti rootpage-Specijalna_teorija_relativnosti skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Пређи на садржај</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Сајт"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Главни мени" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Главни мени</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Главни мени</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">помери на страну</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">сакриј</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Навигација </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/%D0%93%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B0" title="Посетите главну страну [z]" accesskey="z"><span>Главна страна</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%A1%D0%B0%D0%B4%D1%80%D0%B6%D0%B0%D1%98" title="Водичи за прегледање Википедије"><span>Садржај</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%A1%D0%BA%D0%BE%D1%80%D0%B0%D1%88%D1%9A%D0%B5_%D0%B8%D0%B7%D0%BC%D0%B5%D0%BD%D0%B5" title="Списак скорашњих измена на пројекту [r]" accesskey="r"><span>Скорашње измене</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%9D%D0%B0%D1%81%D1%83%D0%BC%D0%B8%D1%87%D0%BD%D0%B0_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Посетите насумичну страницу [x]" accesskey="x"><span>Случајна страница</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%90%D0%BA%D1%82%D1%83%D0%B5%D0%BB%D0%BD%D0%BE%D1%81%D1%82%D0%B8" title="Пронађите информације о актуелностима"><span>Актуелности</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//sr.wikipedia.org/wiki/Википедија:Контакт" title="Сазнајте како да ступите у контакт с уредницима"><span>Контакт</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Интеракција </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/%D0%9F%D0%BE%D0%BC%D0%BE%D1%9B:%D0%A1%D0%B0%D0%B4%D1%80%D0%B6%D0%B0%D1%98" title="Место где можете да се информишете"><span>Помоћ</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%94%D0%BE%D0%B1%D1%80%D0%BE_%D0%B4%D0%BE%D1%88%D0%BB%D0%B8"><span>Научите да уређујете</span></a></li><li id="n-sidebar-village-pump" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%A2%D1%80%D0%B3"><span>Трг</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%A0%D0%B0%D0%B4%D0%B8%D0%BE%D0%BD%D0%B8%D1%86%D0%B0" title="О пројекту, шта можете да радите и где да пронађете ствари"><span>Радионица</span></a></li><li id="n-noticeboard" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%9E%D0%B3%D0%BB%D0%B0%D1%81%D0%BD%D0%B0_%D1%82%D0%B0%D0%B1%D0%BB%D0%B0"><span>Огласна табла</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%92%D0%BE%D0%B4%D0%B8%D1%87_%D0%B7%D0%B0_%D0%BE%D1%82%D0%BF%D1%80%D0%B5%D0%BC%D0%B0%D1%9A%D0%B5"><span>Отпреми датотеку</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/%D0%93%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B0" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Википедија" src="/static/images/mobile/copyright/wikipedia-wordmark-sr.svg" style="width: 7.8125em; height: 1.4375em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-sr.svg" width="120" height="11" style="width: 7.5em; height: 0.6875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%9F%D1%80%D0%B5%D1%82%D1%80%D0%B0%D0%B6%D0%B8" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Претражите пројекат Википедија [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Претрага</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Претражите Википедију" aria-label="Претражите Википедију" autocapitalize="sentences" title="Претражите пројекат Википедија [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Посебно:Претражи"> </div> <button class="cdx-button cdx-search-input__end-button">Претражи</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Личне алатке"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Изглед"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Мења се приказ странице; величина фонта, ширина и боја" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Изглед" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Изглед</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=sr.wikipedia.org&amp;uselang=sr" class=""><span>Донације</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%9E%D1%82%D0%B2%D0%BE%D1%80%D0%B8_%D0%BD%D0%B0%D0%BB%D0%BE%D0%B3&amp;returnto=Specijalna+teorija+relativnosti" title="Иако није обавезно, препоручујемо да отворите налог и пријавите се" class=""><span>Отвори налог</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%9A%D0%BE%D1%80%D0%B8%D1%81%D0%BD%D0%B8%D1%87%D0%BA%D0%B0_%D0%BF%D1%80%D0%B8%D1%98%D0%B0%D0%B2%D0%B0&amp;returnto=Specijalna+teorija+relativnosti" title="Иако није обавезно, препоручујемо да се пријавите [o]" accesskey="o" class=""><span>Пријави ме</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out user-links-collapsible-item" title="Више опција" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Личне алатке" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Личне алатке</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Кориснички мени" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=sr.wikipedia.org&amp;uselang=sr"><span>Донације</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%9E%D1%82%D0%B2%D0%BE%D1%80%D0%B8_%D0%BD%D0%B0%D0%BB%D0%BE%D0%B3&amp;returnto=Specijalna+teorija+relativnosti" title="Иако није обавезно, препоручујемо да отворите налог и пријавите се"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Отвори налог</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%9A%D0%BE%D1%80%D0%B8%D1%81%D0%BD%D0%B8%D1%87%D0%BA%D0%B0_%D0%BF%D1%80%D0%B8%D1%98%D0%B0%D0%B2%D0%B0&amp;returnto=Specijalna+teorija+relativnosti" title="Иако није обавезно, препоручујемо да се пријавите [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Пријави ме</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><div id="mw-dismissablenotice-anonplace"></div><script>(function(){var node=document.getElementById("mw-dismissablenotice-anonplace");if(node){node.outerHTML="\u003Cdiv class=\"mw-dismissable-notice\"\u003E\u003Cdiv class=\"mw-dismissable-notice-close\"\u003E[\u003Ca tabindex=\"0\" role=\"button\"\u003Eодбаци\u003C/a\u003E]\u003C/div\u003E\u003Cdiv class=\"mw-dismissable-notice-body\"\u003E\u003C!-- CentralNotice --\u003E\u003Cdiv id=\"localNotice\" data-nosnippet=\"\"\u003E\u003Cdiv class=\"sitenotice\" lang=\"sr\" dir=\"ltr\"\u003E\u003Cdiv class=\"noticebanner\"\u003E\u003Cdiv class=\"plainlinks\" style=\"background-color: #f0f0f0; border-radius:5px; margin-top:10px; position:relative; border: 1px solid #aaa; font-family: \u0026#39;Helvetica\u0026#39;, \u0026#39;Arial\u0026#39;, sans-serif; line-height: 18px; box-shadow: 0 1px 1px rgba( 0, 0, 0, 0.15 ); overflow:hidden;\"\u003E\u003Cdiv style=\"display:block; top:4px; width:100%; text-align:center;;\"\u003E\u003Cdiv style=\"color:#000085; font-size:25px; line-height:25px\"\u003E\u003Cdiv style=\"padding-left:50px;\"\u003E\u003C/div\u003E\u003C/div\u003E\u003Cdiv style=\"padding-top:2px; color:#444; font-size:1.15em; line-height:1.5;\"\u003E\u003Cdiv style=\"padding-left:8px; padding-right:8px;\"\u003EПрикључите се гласању на тему \u003Cb\u003E\u003Ca href=\"/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%93%D0%BB%D0%B0%D1%81%D0%B0%D1%9A%D0%B5/%D0%A0%D0%B5%D0%B4%D0%B8%D0%B7%D0%B0%D1%98%D0%BD_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0_%D0%B7%D0%B0_%D0%B4%D0%BE%D0%B1%D1%80%D0%B5,_%D1%81%D1%98%D0%B0%D1%98%D0%BD%D0%B5_%D0%B8_%D0%B8%D0%B7%D0%B0%D0%B1%D1%80%D0%B0%D0%BD%D0%B5_%D1%81%D0%BF%D0%B8%D1%81%D0%BA%D0%BE%D0%B2%D0%B5\" title=\"Википедија:Гласање/Редизајн страница за добре, сјајне и изабране спискове\"\u003Eредизајна страница за добре, сјајне и ИС\u003C/a\u003E\u003C/b\u003E.\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\n\u003Cdiv class=\"noticebanner\"\u003E\u003Cdiv class=\"plainlinks\" style=\"background-color: #FBEBEA; border-radius:5px; margin-top:10px; position:relative; border: 1px solid #aaa; font-family: \u0026#39;Helvetica\u0026#39;, \u0026#39;Arial\u0026#39;, sans-serif; line-height: 18px; box-shadow: 0 1px 1px rgba( 0, 0, 0, 0.15 ); overflow:hidden;\"\u003E\u003Cdiv style=\"display:block; top:4px; width:100%; text-align:center;;\"\u003E\u003Cdiv style=\"color:#000085; font-size:25px; line-height:25px\"\u003E\u003Cdiv style=\"padding-left:50px;\"\u003E\u003C/div\u003E\u003C/div\u003E\u003Cdiv style=\"padding-top:2px; color:#444; font-size:1.15em; line-height:1.5;\"\u003E\u003Cdiv style=\"padding-left:8px; padding-right:8px;\"\u003EПокренут је \u003Cb\u003E\u003Ca href=\"/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%A3%D1%80%D0%B5%D1%92%D0%B8%D0%B2%D0%B0%D1%87%D0%BA%D0%B8_%D0%BC%D0%B0%D1%80%D0%B0%D1%82%D0%BE%D0%BD_%D0%92%D0%B8%D0%BA%D0%B8_%D0%B2%D0%BE%D0%BB%D0%B8_%D1%81%D0%BF%D0%BE%D0%BC%D0%B5%D0%BD%D0%B8%D0%BA%D0%B5_2024.\" title=\"Википедија:Уређивачки маратон Вики воли споменике 2024.\"\u003EУређивачки маратон Вики воли споменике 2024\u003C/a\u003E\u003C/b\u003E.\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\n\u003Cdiv class=\"noticebanner\"\u003E\u003Cdiv class=\"plainlinks\" style=\"background-color: #FBEBEA; border-radius:5px; margin-top:10px; position:relative; border: 1px solid #aaa; font-family: \u0026#39;Helvetica\u0026#39;, \u0026#39;Arial\u0026#39;, sans-serif; line-height: 18px; box-shadow: 0 1px 1px rgba( 0, 0, 0, 0.15 ); overflow:hidden;\"\u003E\u003Cdiv style=\"display:block; top:4px; width:100%; text-align:center;;\"\u003E\u003Cdiv style=\"color:#000085; font-size:25px; line-height:25px\"\u003E\u003Cdiv style=\"padding-left:50px;\"\u003E\u003C/div\u003E\u003C/div\u003E\u003Cdiv style=\"padding-top:2px; color:#444; font-size:1.15em; line-height:1.5;\"\u003E\u003Cdiv style=\"padding-left:8px; padding-right:8px;\"\u003EУ току је такмичење у писању чланака на тему \u003Cb\u003E\u003Ca href=\"/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%A2%D0%B0%D0%BA%D0%BC%D0%B8%D1%87%D0%B5%D1%9A%D0%B5_%D1%83_%D0%BF%D0%B8%D1%81%D0%B0%D1%9A%D1%83_%D1%87%D0%BB%D0%B0%D0%BD%D0%B0%D0%BA%D0%B0/%D0%A3_%D1%81%D0%B2%D0%B5%D1%82%D1%83_%D0%A4%D0%BB%D0%BE%D1%80%D0%B5_%D0%B8_%D0%A4%D0%B0%D1%83%D0%BD%D0%B5\" title=\"Википедија:Такмичење у писању чланака/У свету Флоре и Фауне\"\u003EФлоре и фауне\u003C/a\u003E\u003C/b\u003E.\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\n\u003Cdiv class=\"noticebanner\"\u003E\u003Cdiv class=\"plainlinks\" style=\"background-color: #FBEBEA; border-radius:5px; margin-top:10px; position:relative; border: 1px solid #aaa; font-family: \u0026#39;Helvetica\u0026#39;, \u0026#39;Arial\u0026#39;, sans-serif; line-height: 18px; box-shadow: 0 1px 1px rgba( 0, 0, 0, 0.15 ); overflow:hidden;\"\u003E\u003Cdiv style=\"display:block; top:4px; width:100%; text-align:center;;\"\u003E\u003Cdiv style=\"color:#000085; font-size:25px; line-height:25px\"\u003E\u003Cdiv style=\"padding-left:50px;\"\u003E\u003C/div\u003E\u003C/div\u003E\u003Cdiv style=\"padding-top:2px; color:#444; font-size:1.15em; line-height:1.5;\"\u003E\u003Cdiv style=\"padding-left:8px; padding-right:8px;\"\u003EПридружите се \u003Cb\u003E\u003Ca href=\"/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%A3%D1%80%D0%B5%D1%92%D0%B8%D0%B2%D0%B0%D1%87%D0%BA%D0%B8_%D0%BC%D0%B0%D1%80%D0%B0%D1%82%D0%BE%D0%BD_%D0%92%D0%B8%D0%BA%D0%B8_%D0%B2%D0%BE%D0%BB%D0%B8_%D1%98%D0%B0%D0%B2%D0%BD%D1%83_%D1%83%D0%BC%D0%B5%D1%82%D0%BD%D0%BE%D1%81%D1%82_%D0%B8_%D0%B3%D1%80%D0%BE%D0%B1%D0%BD%D0%B0_%D0%BE%D0%B1%D0%B5%D0%BB%D0%B5%D0%B6%D1%98%D0%B0_2024.\" title=\"Википедија:Уређивачки маратон Вики воли јавну уметност и гробна обележја 2024.\"\u003EУређивачком маратону Вики воли јавну уметност и гробна обележја 2024\u003C/a\u003E\u003C/b\u003E.\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\n\u003Cdiv class=\"noticebanner\"\u003E\u003Cdiv class=\"plainlinks\" style=\"background-color: #FBEBEA; border-radius:5px; margin-top:10px; position:relative; border: 1px solid #aaa; font-family: \u0026#39;Helvetica\u0026#39;, \u0026#39;Arial\u0026#39;, sans-serif; line-height: 18px; box-shadow: 0 1px 1px rgba( 0, 0, 0, 0.15 ); overflow:hidden;\"\u003E\u003Cdiv style=\"display:block; top:4px; width:100%; text-align:center;;\"\u003E\u003Cdiv style=\"color:#000085; font-size:25px; line-height:25px\"\u003E\u003Cdiv style=\"padding-left:50px;\"\u003E\u003C/div\u003E\u003C/div\u003E\u003Cdiv style=\"padding-top:2px; color:#444; font-size:1.15em; line-height:1.5;\"\u003E\u003Cdiv style=\"padding-left:8px; padding-right:8px;\"\u003EУчествујте у \u003Cb\u003E\u003Ca href=\"https://sr.wikiquote.org/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D1%86%D0%B8%D1%82%D0%B0%D1%82:%D0%9A%D0%B0%D0%BC%D0%BF%D0%B0%D1%9A%D0%B0_SheSaid_2024\" class=\"extiw\" title=\"q:Викицитат:Кампања SheSaid 2024\"\u003Eкампањи писања цитата значајних жена\u003C/a\u003E\u003C/b\u003E на Викицитату.\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\n\u003Cdiv class=\"noticebanner\"\u003E\u003Cdiv class=\"plainlinks\" style=\"background-color: #FBEBEA; border-radius:5px; margin-top:10px; position:relative; border: 1px solid #aaa; font-family: \u0026#39;Helvetica\u0026#39;, \u0026#39;Arial\u0026#39;, sans-serif; line-height: 18px; box-shadow: 0 1px 1px rgba( 0, 0, 0, 0.15 ); overflow:hidden;\"\u003E\u003Cdiv style=\"display:block; top:4px; width:100%; text-align:center;;\"\u003E\u003Cdiv style=\"color:#000085; font-size:25px; line-height:25px\"\u003E\u003Cdiv style=\"padding-left:50px;\"\u003E\u003C/div\u003E\u003C/div\u003E\u003Cdiv style=\"padding-top:2px; color:#444; font-size:1.15em; line-height:1.5;\"\u003E\u003Cdiv style=\"padding-left:8px; padding-right:8px;\"\u003EПридружите се \u003Cb\u003E\u003Ca href=\"/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%90%D0%BA%D1%86%D0%B8%D1%98%D0%B0_%D0%BF%D1%80%D0%BE%D1%88%D0%B8%D1%80%D0%B8%D0%B2%D0%B0%D1%9A%D0%B0_%D0%BA%D0%BB%D0%B8%D1%86%D0%B0\" title=\"Википедија:Акција проширивања клица\"\u003Eакцији проширивања клица\u003C/a\u003E\u003C/b\u003E.\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E";}}());</script></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Сајт"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Садржај" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Садржај</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">помери на страну</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">сакриј</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Почетак</div> </a> </li> <li id="toc-Istorijska_podloga_i_razvoj" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Istorijska_podloga_i_razvoj"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Istorijska podloga i razvoj</span> </div> </a> <ul id="toc-Istorijska_podloga_i_razvoj-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Osnovni_postulati" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Osnovni_postulati"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Osnovni postulati</span> </div> </a> <ul id="toc-Osnovni_postulati-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Neke_posledice_relativnosti" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Neke_posledice_relativnosti"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Neke posledice relativnosti</span> </div> </a> <ul id="toc-Neke_posledice_relativnosti-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lorencove_transformacije" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Lorencove_transformacije"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Lorencove transformacije</span> </div> </a> <button aria-controls="toc-Lorencove_transformacije-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Садржај одељка Lorencove transformacije</span> </button> <ul id="toc-Lorencove_transformacije-sublist" class="vector-toc-list"> <li id="toc-Dilatacija_vremena" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dilatacija_vremena"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Dilatacija vremena</span> </div> </a> <ul id="toc-Dilatacija_vremena-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kontrakcija_dužine" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Kontrakcija_dužine"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Kontrakcija dužine</span> </div> </a> <ul id="toc-Kontrakcija_dužine-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relativnost_istovremenosti" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relativnost_istovremenosti"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Relativnost istovremenosti</span> </div> </a> <ul id="toc-Relativnost_istovremenosti-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Slaganje_brzina" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Slaganje_brzina"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Slaganje brzina</span> </div> </a> <ul id="toc-Slaganje_brzina-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Relativistički_impuls_i_energija" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relativistički_impuls_i_energija"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Relativistički impuls i energija</span> </div> </a> <ul id="toc-Relativistički_impuls_i_energija-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relativistička_masa" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relativistička_masa"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Relativistička masa</span> </div> </a> <ul id="toc-Relativistička_masa-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Njutnov_zakon_u_STR" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Njutnov_zakon_u_STR"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Njutnov zakon u STR</span> </div> </a> <ul id="toc-Njutnov_zakon_u_STR-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-E=mc²" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#E=mc²"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>E=mc²</span> </div> </a> <ul id="toc-E=mc²-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Prostorno_vremenski_kontinuum_Minkovskog" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Prostorno_vremenski_kontinuum_Minkovskog"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Prostorno vremenski kontinuum Minkovskog</span> </div> </a> <ul id="toc-Prostorno_vremenski_kontinuum_Minkovskog-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Misaoni_eksperimenti" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Misaoni_eksperimenti"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Misaoni eksperimenti</span> </div> </a> <ul id="toc-Misaoni_eksperimenti-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Paradoksi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Paradoksi"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Paradoksi</span> </div> </a> <ul id="toc-Paradoksi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Napomene" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Napomene"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Napomene</span> </div> </a> <ul id="toc-Napomene-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Vidi_još" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Vidi_još"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Vidi još</span> </div> </a> <ul id="toc-Vidi_još-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Reference" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Reference"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Reference</span> </div> </a> <ul id="toc-Reference-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Literatura" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Literatura"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>Literatura</span> </div> </a> <ul id="toc-Literatura-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dodatna_literatura" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Dodatna_literatura"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>Dodatna literatura</span> </div> </a> <ul id="toc-Dodatna_literatura-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spoljašnje_veze" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Spoljašnje_veze"> <div class="vector-toc-text"> <span class="vector-toc-numb">17</span> <span>Spoljašnje veze</span> </div> </a> <button aria-controls="toc-Spoljašnje_veze-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Садржај одељка Spoljašnje veze</span> </button> <ul id="toc-Spoljašnje_veze-sublist" class="vector-toc-list"> <li id="toc-Objašnjenja_Specijalne_teorije_relativnosti" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Objašnjenja_Specijalne_teorije_relativnosti"> <div class="vector-toc-text"> <span class="vector-toc-numb">17.1</span> <span>Objašnjenja Specijalne teorije relativnosti</span> </div> </a> <ul id="toc-Objašnjenja_Specijalne_teorije_relativnosti-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Vizuelizacije" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Vizuelizacije"> <div class="vector-toc-text"> <span class="vector-toc-numb">17.2</span> <span>Vizuelizacije</span> </div> </a> <ul id="toc-Vizuelizacije-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ostalo" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ostalo"> <div class="vector-toc-text"> <span class="vector-toc-numb">17.3</span> <span>Ostalo</span> </div> </a> <ul id="toc-Ostalo-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Knjige" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Knjige"> <div class="vector-toc-text"> <span class="vector-toc-numb">17.4</span> <span>Knjige</span> </div> </a> <ul id="toc-Knjige-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Članci_iz_časopisa" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Članci_iz_časopisa"> <div class="vector-toc-text"> <span class="vector-toc-numb">17.5</span> <span>Članci iz časopisa</span> </div> </a> <ul id="toc-Članci_iz_časopisa-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Садржај" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Прикажи/сакриј садржај" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Прикажи/сакриј садржај</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Specijalna teorija relativnosti</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Чланак на другим језицима. Доступан на: 110" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-110" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">110 језика</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Spesiale_relatiwiteit" title="Spesiale relatiwiteit — африканс" lang="af" hreflang="af" data-title="Spesiale relatiwiteit" data-language-autonym="Afrikaans" data-language-local-name="африканс" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Spezielle_Relativit%C3%A4tstheorie" title="Spezielle Relativitätstheorie — немачки (Швајцарска)" lang="gsw" hreflang="gsw" data-title="Spezielle Relativitätstheorie" data-language-autonym="Alemannisch" data-language-local-name="немачки (Швајцарска)" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%88%8D%E1%8B%A9_%E1%8A%A0%E1%8A%95%E1%8C%BB%E1%88%AB%E1%8B%8A%E1%8A%90%E1%89%B5" title="ልዩ አንጻራዊነት — амхарски" lang="am" hreflang="am" data-title="ልዩ አንጻራዊነት" data-language-autonym="አማርኛ" data-language-local-name="амхарски" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D9%84%D9%86%D8%B3%D8%A8%D9%8A%D8%A9_%D8%A7%D9%84%D8%AE%D8%A7%D8%B5%D8%A9" title="النسبية الخاصة — арапски" lang="ar" hreflang="ar" data-title="النسبية الخاصة" data-language-autonym="العربية" data-language-local-name="арапски" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Relatividat_especial" title="Relatividat especial — арагонски" lang="an" hreflang="an" data-title="Relatividat especial" data-language-autonym="Aragonés" data-language-local-name="арагонски" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-arz mw-list-item"><a href="https://arz.wikipedia.org/wiki/%D9%86%D8%B3%D8%A8%D9%8A%D9%87_%D8%AE%D8%A7%D8%B5%D9%87" title="نسبيه خاصه — Egyptian Arabic" lang="arz" hreflang="arz" data-title="نسبيه خاصه" data-language-autonym="مصرى" data-language-local-name="Egyptian Arabic" class="interlanguage-link-target"><span>مصرى</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%AC%E0%A6%BF%E0%A6%B6%E0%A7%87%E0%A6%B7_%E0%A6%86%E0%A6%AA%E0%A7%87%E0%A6%95%E0%A7%8D%E0%A6%B7%E0%A6%BF%E0%A6%95%E0%A6%A4%E0%A6%BE%E0%A6%AC%E0%A6%BE%E0%A6%A6_%E0%A6%A4%E0%A6%A4%E0%A7%8D%E0%A6%A4%E0%A7%8D%E0%A6%AC" title="বিশেষ আপেক্ষিকতাবাদ তত্ত্ব — асамски" lang="as" hreflang="as" data-title="বিশেষ আপেক্ষিকতাবাদ তত্ত্ব" data-language-autonym="অসমীয়া" data-language-local-name="асамски" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Teor%C3%ADa_de_la_relativid%C3%A1_especial" title="Teoría de la relatividá especial — астуријски" lang="ast" hreflang="ast" data-title="Teoría de la relatividá especial" data-language-autonym="Asturianu" data-language-local-name="астуријски" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-gn mw-list-item"><a href="https://gn.wikipedia.org/wiki/Mba%27ekuaar%C3%A3_joguerahavi%C3%A1rava_ijap%C3%BDva" title="Mba&#039;ekuaarã joguerahaviárava ijapýva — гварани" lang="gn" hreflang="gn" data-title="Mba&#039;ekuaarã joguerahaviárava ijapýva" data-language-autonym="Avañe&#039;ẽ" data-language-local-name="гварани" class="interlanguage-link-target"><span>Avañe'ẽ</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/X%C3%BCsusi_nisbilik_n%C9%99z%C9%99riyy%C9%99si" title="Xüsusi nisbilik nəzəriyyəsi — азербејџански" lang="az" hreflang="az" data-title="Xüsusi nisbilik nəzəriyyəsi" data-language-autonym="Azərbaycanca" data-language-local-name="азербејџански" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D8%A7%D8%A4%D8%B2%D9%84_%D9%86%DB%8C%D8%B3%D8%A8%DB%8C%D8%AA" title="اؤزل نیسبیت — South Azerbaijani" lang="azb" hreflang="azb" data-title="اؤزل نیسبیت" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Relativitas_khusus" title="Relativitas khusus — индонежански" lang="id" hreflang="id" data-title="Relativitas khusus" data-language-autonym="Bahasa Indonesia" data-language-local-name="индонежански" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Kerelatifan_khas" title="Kerelatifan khas — малајски" lang="ms" hreflang="ms" data-title="Kerelatifan khas" data-language-autonym="Bahasa Melayu" data-language-local-name="малајски" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-ban mw-list-item"><a href="https://ban.wikipedia.org/wiki/R%C3%A9lativitas_khusus" title="Rélativitas khusus — балијски" lang="ban" hreflang="ban" data-title="Rélativitas khusus" data-language-autonym="Basa Bali" data-language-local-name="балијски" class="interlanguage-link-target"><span>Basa Bali</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D0%BD%D0%BE%D1%81%D1%82%D1%82%D0%B0" title="Специална теория на относителността — бугарски" lang="bg" hreflang="bg" data-title="Специална теория на относителността" data-language-autonym="Български" data-language-local-name="бугарски" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B" title="Махсус сағыштырмалыҡ теорияһы — башкирски" lang="ba" hreflang="ba" data-title="Махсус сағыштырмалыҡ теорияһы" data-language-autonym="Башҡортса" data-language-local-name="башкирски" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D1%8B%D1%8F%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D1%8D%D0%BE%D1%80%D1%8B%D1%8F_%D0%B0%D0%B4%D0%BD%D0%BE%D1%81%D0%BD%D0%B0%D1%81%D1%86%D1%96" title="Спецыяльная тэорыя адноснасці — белоруски" lang="be" hreflang="be" data-title="Спецыяльная тэорыя адноснасці" data-language-autonym="Беларуская" data-language-local-name="белоруски" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A1%D0%BF%D1%8D%D1%86%D1%8B%D1%8F%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D1%8D%D0%BE%D1%80%D1%8B%D1%8F_%D0%B0%D0%B4%D0%BD%D0%BE%D1%81%D0%BD%D0%B0%D1%81%D1%8C%D1%86%D1%96" title="Спэцыяльная тэорыя адноснасьці — Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Спэцыяльная тэорыя адноснасьці" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%AC%E0%A4%BF%E0%A4%B6%E0%A5%87%E0%A4%B8_%E0%A4%B8%E0%A4%BE%E0%A4%AA%E0%A5%87%E0%A4%95%E0%A5%8D%E0%A4%B7%E0%A4%A4%E0%A4%BE" title="बिशेस सापेक्षता — Bhojpuri" lang="bh" hreflang="bh" data-title="बिशेस सापेक्षता" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AC%E0%A6%BF%E0%A6%B6%E0%A7%87%E0%A6%B7_%E0%A6%86%E0%A6%AA%E0%A7%87%E0%A6%95%E0%A7%8D%E0%A6%B7%E0%A6%BF%E0%A6%95%E0%A6%A4%E0%A6%BE" title="বিশেষ আপেক্ষিকতা — бенгалски" lang="bn" hreflang="bn" data-title="বিশেষ আপেক্ষিকতা" data-language-autonym="বাংলা" data-language-local-name="бенгалски" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bar mw-list-item"><a href="https://bar.wikipedia.org/wiki/Spezieje_Relativitetstheorie" title="Spezieje Relativitetstheorie — Bavarian" lang="bar" hreflang="bar" data-title="Spezieje Relativitetstheorie" data-language-autonym="Boarisch" data-language-local-name="Bavarian" class="interlanguage-link-target"><span>Boarisch</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Posebna_teorija_relativnosti" title="Posebna teorija relativnosti — босански" lang="bs" hreflang="bs" data-title="Posebna teorija relativnosti" data-language-autonym="Bosanski" data-language-local-name="босански" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%A5%D0%B0%D1%80%D0%B8%D1%81%D0%B0%D0%BD%D0%B3%D1%8B_%D0%B1%D0%B0%D0%B9%D0%B4%D0%B0%D0%BB%D0%B0%D0%B9_%D1%82%D1%83%D1%81%D1%85%D0%B0%D0%B9_%D0%BE%D0%BD%D0%BE%D0%BB" title="Харисангы байдалай тусхай онол — Russia Buriat" lang="bxr" hreflang="bxr" data-title="Харисангы байдалай тусхай онол" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Relativitat_especial" title="Relativitat especial — каталонски" lang="ca" hreflang="ca" data-title="Relativitat especial" data-language-autonym="Català" data-language-local-name="каталонски" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Perthnasedd_arbennig" title="Perthnasedd arbennig — велшки" lang="cy" hreflang="cy" data-title="Perthnasedd arbennig" data-language-autonym="Cymraeg" data-language-local-name="велшки" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A2%D0%B0%D0%BD%D0%BB%D0%B0%D1%88%D1%82%D0%B0%D1%80%D1%83%D0%BB%C4%83%D1%85%C4%83%D0%BD_%D1%8F%D1%82%D0%B0%D1%80%D0%BB%C4%83_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D0%B9%C4%95" title="Танлаштарулăхăн ятарлă теорийĕ — чувашки" lang="cv" hreflang="cv" data-title="Танлаштарулăхăн ятарлă теорийĕ" data-language-autonym="Чӑвашла" data-language-local-name="чувашки" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Speci%C3%A1ln%C3%AD_teorie_relativity" title="Speciální teorie relativity — чешки" lang="cs" hreflang="cs" data-title="Speciální teorie relativity" data-language-autonym="Čeština" data-language-local-name="чешки" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Speciel_relativitetsteori" title="Speciel relativitetsteori — дански" lang="da" hreflang="da" data-title="Speciel relativitetsteori" data-language-autonym="Dansk" data-language-local-name="дански" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de badge-Q17437798 badge-goodarticle mw-list-item" title="добар чланак"><a href="https://de.wikipedia.org/wiki/Spezielle_Relativit%C3%A4tstheorie" title="Spezielle Relativitätstheorie — немачки" lang="de" hreflang="de" data-title="Spezielle Relativitätstheorie" data-language-autonym="Deutsch" data-language-local-name="немачки" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Erirelatiivsusteooria" title="Erirelatiivsusteooria — естонски" lang="et" hreflang="et" data-title="Erirelatiivsusteooria" data-language-autonym="Eesti" data-language-local-name="естонски" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CE%AE_%CF%83%CF%87%CE%B5%CF%84%CE%B9%CE%BA%CF%8C%CF%84%CE%B7%CF%84%CE%B1" title="Ειδική σχετικότητα — грчки" lang="el" hreflang="el" data-title="Ειδική σχετικότητα" data-language-autonym="Ελληνικά" data-language-local-name="грчки" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Special_relativity" title="Special relativity — енглески" lang="en" hreflang="en" data-title="Special relativity" data-language-autonym="English" data-language-local-name="енглески" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Teor%C3%ADa_de_la_relatividad_especial" title="Teoría de la relatividad especial — шпански" lang="es" hreflang="es" data-title="Teoría de la relatividad especial" data-language-autonym="Español" data-language-local-name="шпански" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Speciala_teorio_de_relativeco" title="Speciala teorio de relativeco — есперанто" lang="eo" hreflang="eo" data-title="Speciala teorio de relativeco" data-language-autonym="Esperanto" data-language-local-name="есперанто" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Erlatibitate_berezia" title="Erlatibitate berezia — баскијски" lang="eu" hreflang="eu" data-title="Erlatibitate berezia" data-language-autonym="Euskara" data-language-local-name="баскијски" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%86%D8%B3%D8%A8%DB%8C%D8%AA_%D8%AE%D8%A7%D8%B5" title="نسبیت خاص — персијски" lang="fa" hreflang="fa" data-title="نسبیت خاص" data-language-autonym="فارسی" data-language-local-name="персијски" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Special_relativity" title="Special relativity — Fiji Hindi" lang="hif" hreflang="hif" data-title="Special relativity" data-language-autonym="Fiji Hindi" data-language-local-name="Fiji Hindi" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Relativit%C3%A9_restreinte" title="Relativité restreinte — француски" lang="fr" hreflang="fr" data-title="Relativité restreinte" data-language-autonym="Français" data-language-local-name="француски" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gd mw-list-item"><a href="https://gd.wikipedia.org/wiki/Te%C3%B2irig_sh%C3%B2nraichte_na_d%C3%A0imheachd" title="Teòirig shònraichte na dàimheachd — шкотски гелски" lang="gd" hreflang="gd" data-title="Teòirig shònraichte na dàimheachd" data-language-autonym="Gàidhlig" data-language-local-name="шкотски гелски" class="interlanguage-link-target"><span>Gàidhlig</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Relatividade_especial" title="Relatividade especial — галицијски" lang="gl" hreflang="gl" data-title="Relatividade especial" data-language-autonym="Galego" data-language-local-name="галицијски" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%AA%D7%95%D7%A8%D7%AA_%D7%94%D7%99%D7%97%D7%A1%D7%95%D7%AA_%D7%94%D7%A4%D7%A8%D7%98%D7%99%D7%AA" title="תורת היחסות הפרטית — хебрејски" lang="he" hreflang="he" data-title="תורת היחסות הפרטית" data-language-autonym="עברית" data-language-local-name="хебрејски" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi badge-Q17437796 badge-featuredarticle mw-list-item" title="сјајан чланак"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B5%E0%A4%BF%E0%A4%B6%E0%A4%BF%E0%A4%B7%E0%A5%8D%E0%A4%9F_%E0%A4%86%E0%A4%AA%E0%A5%87%E0%A4%95%E0%A5%8D%E0%A4%B7%E0%A4%BF%E0%A4%95%E0%A4%A4%E0%A4%BE" title="विशिष्ट आपेक्षिकता — хинди" lang="hi" hreflang="hi" data-title="विशिष्ट आपेक्षिकता" data-language-autonym="हिन्दी" data-language-local-name="хинди" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr badge-Q17437796 badge-featuredarticle mw-list-item" title="сјајан чланак"><a href="https://hr.wikipedia.org/wiki/Posebna_teorija_relativnosti" title="Posebna teorija relativnosti — хрватски" lang="hr" hreflang="hr" data-title="Posebna teorija relativnosti" data-language-autonym="Hrvatski" data-language-local-name="хрватски" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%80%D5%A1%D6%80%D5%A1%D5%A2%D5%A5%D6%80%D5%A1%D5%AF%D5%A1%D5%B6%D5%B8%D6%82%D5%A9%D5%B5%D5%A1%D5%B6_%D5%B0%D5%A1%D5%BF%D5%B8%D6%82%D5%AF_%D5%BF%D5%A5%D5%BD%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Հարաբերականության հատուկ տեսություն — јерменски" lang="hy" hreflang="hy" data-title="Հարաբերականության հատուկ տեսություն" data-language-autonym="Հայերեն" data-language-local-name="јерменски" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Specala_relativeso" title="Specala relativeso — идо" lang="io" hreflang="io" data-title="Specala relativeso" data-language-autonym="Ido" data-language-local-name="идо" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Relativitate_special" title="Relativitate special — интерлингва" lang="ia" hreflang="ia" data-title="Relativitate special" data-language-autonym="Interlingua" data-language-local-name="интерлингва" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Takmarka%C3%B0a_afst%C3%A6%C3%B0iskenningin" title="Takmarkaða afstæðiskenningin — исландски" lang="is" hreflang="is" data-title="Takmarkaða afstæðiskenningin" data-language-autonym="Íslenska" data-language-local-name="исландски" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Relativit%C3%A0_ristretta" title="Relatività ristretta — италијански" lang="it" hreflang="it" data-title="Relatività ristretta" data-language-autonym="Italiano" data-language-local-name="италијански" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%89%B9%E6%AE%8A%E7%9B%B8%E5%AF%BE%E6%80%A7%E7%90%86%E8%AB%96" title="特殊相対性理論 — јапански" lang="ja" hreflang="ja" data-title="特殊相対性理論" data-language-autonym="日本語" data-language-local-name="јапански" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A4%E1%83%90%E1%83%A0%E1%83%93%E1%83%9D%E1%83%91%E1%83%98%E1%83%97%E1%83%9D%E1%83%91%E1%83%98%E1%83%A1_%E1%83%A1%E1%83%9E%E1%83%94%E1%83%AA%E1%83%98%E1%83%90%E1%83%9A%E1%83%A3%E1%83%A0%E1%83%98_%E1%83%97%E1%83%94%E1%83%9D%E1%83%A0%E1%83%98%E1%83%90" title="ფარდობითობის სპეციალური თეორია — грузијски" lang="ka" hreflang="ka" data-title="ფარდობითობის სპეციალური თეორია" data-language-autonym="ქართული" data-language-local-name="грузијски" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%90%D1%80%D0%BD%D0%B0%D0%B9%D1%8B_%D1%81%D0%B0%D0%BB%D1%8B%D1%81%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D0%BB%D1%8B%D2%9B_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D1%81%D1%8B" title="Арнайы салыстырмалылық теориясы — казашки" lang="kk" hreflang="kk" data-title="Арнайы салыстырмалылық теориясы" data-language-autonym="Қазақша" data-language-local-name="казашки" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%90%D1%82%D0%B0%D0%B9%D1%8B%D0%BD_%D1%81%D0%B0%D0%BB%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%83%D1%83%D0%BB%D1%83%D0%BA_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D1%81%D1%8B" title="Атайын салыштырмалуулук теориясы — киргиски" lang="ky" hreflang="ky" data-title="Атайын салыштырмалуулук теориясы" data-language-autonym="Кыргызча" data-language-local-name="киргиски" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Uhusianifu_maalumu" title="Uhusianifu maalumu — свахили" lang="sw" hreflang="sw" data-title="Uhusianifu maalumu" data-language-autonym="Kiswahili" data-language-local-name="свахили" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%8A%B9%EC%88%98_%EC%83%81%EB%8C%80%EC%84%B1%EC%9D%B4%EB%A1%A0" title="특수 상대성이론 — корејски" lang="ko" hreflang="ko" data-title="특수 상대성이론" data-language-autonym="한국어" data-language-local-name="корејски" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la badge-Q17437796 badge-featuredarticle mw-list-item" title="сјајан чланак"><a href="https://la.wikipedia.org/wiki/Relativitas_specialis" title="Relativitas specialis — латински" lang="la" hreflang="la" data-title="Relativitas specialis" data-language-autonym="Latina" data-language-local-name="латински" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Speci%C4%81l%C4%81_relativit%C4%81tes_teorija" title="Speciālā relativitātes teorija — летонски" lang="lv" hreflang="lv" data-title="Speciālā relativitātes teorija" data-language-autonym="Latviešu" data-language-local-name="летонски" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Specialioji_reliatyvumo_teorija" title="Specialioji reliatyvumo teorija — литвански" lang="lt" hreflang="lt" data-title="Specialioji reliatyvumo teorija" data-language-autonym="Lietuvių" data-language-local-name="литвански" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Speci%C3%A1lis_relativit%C3%A1selm%C3%A9let" title="Speciális relativitáselmélet — мађарски" lang="hu" hreflang="hu" data-title="Speciális relativitáselmélet" data-language-autonym="Magyar" data-language-local-name="мађарски" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk badge-Q17437796 badge-featuredarticle mw-list-item" title="сјајан чланак"><a href="https://mk.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%98%D0%B0_%D0%B7%D0%B0_%D1%80%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D0%B0" title="Специјална теорија за релативноста — македонски" lang="mk" hreflang="mk" data-title="Специјална теорија за релативноста" data-language-autonym="Македонски" data-language-local-name="македонски" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Relattivit%C3%A0_ristretta" title="Relattività ristretta — малтешки" lang="mt" hreflang="mt" data-title="Relattività ristretta" data-language-autonym="Malti" data-language-local-name="малтешки" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B5%E0%B4%BF%E0%B4%B6%E0%B4%BF%E0%B4%B7%E0%B5%8D%E0%B4%9F_%E0%B4%86%E0%B4%AA%E0%B5%87%E0%B4%95%E0%B5%8D%E0%B4%B7%E0%B4%BF%E0%B4%95%E0%B4%A4%E0%B4%BE_%E0%B4%B8%E0%B4%BF%E0%B4%A6%E0%B5%8D%E0%B4%A7%E0%B4%BE%E0%B4%A8%E0%B5%8D%E0%B4%A4%E0%B4%82" title="വിശിഷ്ട ആപേക്ഷികതാ സിദ്ധാന്തം — малајалам" lang="ml" hreflang="ml" data-title="വിശിഷ്ട ആപേക്ഷികതാ സിദ്ധാന്തം" data-language-autonym="മലയാളം" data-language-local-name="малајалам" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn badge-Q17437796 badge-featuredarticle mw-list-item" title="сјајан чланак"><a href="https://mn.wikipedia.org/wiki/%D0%A5%D0%B0%D1%80%D1%8C%D1%86%D0%B0%D0%BD%D0%B3%D1%83%D0%B9%D0%BD_%D1%82%D1%83%D1%81%D0%B3%D0%B0%D0%B9_%D0%BE%D0%BD%D0%BE%D0%BB" title="Харьцангуйн тусгай онол — монголски" lang="mn" hreflang="mn" data-title="Харьцангуйн тусгай онол" data-language-autonym="Монгол" data-language-local-name="монголски" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B5%E0%A4%BF%E0%A4%B6%E0%A5%87%E0%A4%B7_%E0%A4%B8%E0%A4%BE%E0%A4%AA%E0%A5%87%E0%A4%95%E0%A5%8D%E0%A4%B7%E0%A4%A4%E0%A4%BE" title="विशेष सापेक्षता — марати" lang="mr" hreflang="mr" data-title="विशेष सापेक्षता" data-language-autonym="मराठी" data-language-local-name="марати" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%A1%E1%80%91%E1%80%B0%E1%80%B8%E1%80%94%E1%80%BE%E1%80%AD%E1%80%AF%E1%80%84%E1%80%BA%E1%80%B8%E1%80%9B%E1%80%9E%E1%80%AE%E1%80%A1%E1%80%AD%E1%80%AF%E1%80%9B%E1%80%AE" title="အထူးနှိုင်းရသီအိုရီ — бурмански" lang="my" hreflang="my" data-title="အထူးနှိုင်းရသီအိုရီ" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="бурмански" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Speciale_relativiteitstheorie" title="Speciale relativiteitstheorie — холандски" lang="nl" hreflang="nl" data-title="Speciale relativiteitstheorie" data-language-autonym="Nederlands" data-language-local-name="холандски" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Den_spesielle_relativitetsteorien" title="Den spesielle relativitetsteorien — норвешки букмол" lang="nb" hreflang="nb" data-title="Den spesielle relativitetsteorien" data-language-autonym="Norsk bokmål" data-language-local-name="норвешки букмол" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Den_spesielle_relativitetsteorien" title="Den spesielle relativitetsteorien — норвешки нинорск" lang="nn" hreflang="nn" data-title="Den spesielle relativitetsteorien" data-language-autonym="Norsk nynorsk" data-language-local-name="норвешки нинорск" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Relativitat_especiala" title="Relativitat especiala — окситански" lang="oc" hreflang="oc" data-title="Relativitat especiala" data-language-autonym="Occitan" data-language-local-name="окситански" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-or mw-list-item"><a href="https://or.wikipedia.org/wiki/%E0%AC%AC%E0%AC%BF%E0%AC%B6%E0%AD%87%E0%AC%B7_%E0%AC%86%E0%AC%AA%E0%AD%87%E0%AC%95%E0%AD%8D%E0%AC%B7%E0%AC%BF%E0%AC%95_%E0%AC%A4%E0%AC%A4%E0%AD%8D%E0%AC%A4%E0%AD%8D%E0%AD%B1" title="ବିଶେଷ ଆପେକ୍ଷିକ ତତ୍ତ୍ୱ — одија" lang="or" hreflang="or" data-title="ବିଶେଷ ଆପେକ୍ଷିକ ତତ୍ତ୍ୱ" data-language-autonym="ଓଡ଼ିଆ" data-language-local-name="одија" class="interlanguage-link-target"><span>ଓଡ଼ିଆ</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Maxsus_nisbiylik_nazariyasi" title="Maxsus nisbiylik nazariyasi — узбечки" lang="uz" hreflang="uz" data-title="Maxsus nisbiylik nazariyasi" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="узбечки" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B5%E0%A8%BF%E0%A8%B8%E0%A8%BC%E0%A9%87%E0%A8%B8%E0%A8%BC_%E0%A8%B8%E0%A8%BE%E0%A8%AA%E0%A9%87%E0%A8%96%E0%A8%A4%E0%A8%BE" title="ਵਿਸ਼ੇਸ਼ ਸਾਪੇਖਤਾ — пенџапски" lang="pa" hreflang="pa" data-title="ਵਿਸ਼ੇਸ਼ ਸਾਪੇਖਤਾ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="пенџапски" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Teor%C3%ACa_dla_relativit%C3%A0_limit%C3%A0" title="Teorìa dla relatività limità — Piedmontese" lang="pms" hreflang="pms" data-title="Teorìa dla relatività limità" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Spetschale_Relativit%C3%A4tstheorie" title="Spetschale Relativitätstheorie — нисконемачки" lang="nds" hreflang="nds" data-title="Spetschale Relativitätstheorie" data-language-autonym="Plattdüütsch" data-language-local-name="нисконемачки" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D8%B3%D9%BE%DB%8C%D8%B4%D9%84_%D8%B1%DB%8C%D9%84%DB%8C%D9%B9%DB%8C%D9%88%D9%B9%DB%8C" title="سپیشل ریلیٹیوٹی — Western Punjabi" lang="pnb" hreflang="pnb" data-title="سپیشل ریلیٹیوٹی" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Szczeg%C3%B3lna_teoria_wzgl%C4%99dno%C5%9Bci" title="Szczególna teoria względności — пољски" lang="pl" hreflang="pl" data-title="Szczególna teoria względności" data-language-autonym="Polski" data-language-local-name="пољски" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Relatividade_restrita" title="Relatividade restrita — португалски" lang="pt" hreflang="pt" data-title="Relatividade restrita" data-language-autonym="Português" data-language-local-name="португалски" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%DA%81%D8%A7%D9%86%DA%AB%DA%93%DB%8C_%D9%86%D8%B3%D8%A8%D9%8A%D8%AA" title="ځانګړی نسبيت — паштунски" lang="ps" hreflang="ps" data-title="ځانګړی نسبيت" data-language-autonym="پښتو" data-language-local-name="паштунски" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Teoria_relativit%C4%83%C8%9Bii_restr%C3%A2nse" title="Teoria relativității restrânse — румунски" lang="ro" hreflang="ro" data-title="Teoria relativității restrânse" data-language-autonym="Română" data-language-local-name="румунски" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B8" title="Специальная теория относительности — руски" lang="ru" hreflang="ru" data-title="Специальная теория относительности" data-language-autonym="Русский" data-language-local-name="руски" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Special_relativity" title="Special relativity — шкотски" lang="sco" hreflang="sco" data-title="Special relativity" data-language-autonym="Scots" data-language-local-name="шкотски" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sd mw-list-item"><a href="https://sd.wikipedia.org/wiki/%D8%AE%D8%A7%D8%B5_%D9%86%D8%B3%D8%A8%D8%AA_%D8%AC%D9%88_%D9%86%D8%B8%D8%B1%D9%8A%D9%88" title="خاص نسبت جو نظريو — синди" lang="sd" hreflang="sd" data-title="خاص نسبت جو نظريو" data-language-autonym="سنڌي" data-language-local-name="синди" class="interlanguage-link-target"><span>سنڌي</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Teoria_speciale_e_relativitetit" title="Teoria speciale e relativitetit — албански" lang="sq" hreflang="sq" data-title="Teoria speciale e relativitetit" data-language-autonym="Shqip" data-language-local-name="албански" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B7%80%E0%B7%92%E0%B7%81%E0%B7%9A%E0%B7%82_%E0%B7%83%E0%B7%8F%E0%B6%B4%E0%B7%9A%E0%B6%9A%E0%B7%8A%E0%B7%82%E0%B6%AD%E0%B7%8F%E0%B7%80%E0%B7%8F%E0%B6%AF%E0%B6%BA" title="විශේෂ සාපේක්ෂතාවාදය — синхалешки" lang="si" hreflang="si" data-title="විශේෂ සාපේක්ෂතාවාදය" data-language-autonym="සිංහල" data-language-local-name="синхалешки" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Tiur%C3%ACa_di_la_rilativitati_spiciali" title="Tiurìa di la rilativitati spiciali — сицилијански" lang="scn" hreflang="scn" data-title="Tiurìa di la rilativitati spiciali" data-language-autonym="Sicilianu" data-language-local-name="сицилијански" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Special_relativity" title="Special relativity — Simple English" lang="en-simple" hreflang="en-simple" data-title="Special relativity" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk badge-Q17437796 badge-featuredarticle mw-list-item" title="сјајан чланак"><a href="https://sk.wikipedia.org/wiki/%C5%A0peci%C3%A1lna_te%C3%B3ria_relativity" title="Špeciálna teória relativity — словачки" lang="sk" hreflang="sk" data-title="Špeciálna teória relativity" data-language-autonym="Slovenčina" data-language-local-name="словачки" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Posebna_teorija_relativnosti" title="Posebna teorija relativnosti — словеначки" lang="sl" hreflang="sl" data-title="Posebna teorija relativnosti" data-language-autonym="Slovenščina" data-language-local-name="словеначки" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%95%DB%8E%DA%98%DB%95%DB%8C%DB%8C%DB%8C_%D8%AA%D8%A7%DB%8C%D8%A8%DB%95%D8%AA" title="ڕێژەییی تایبەت — централни курдски" lang="ckb" hreflang="ckb" data-title="ڕێژەییی تایبەت" data-language-autonym="کوردی" data-language-local-name="централни курдски" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Specijalna_teorija_relativnosti" title="Specijalna teorija relativnosti — српскохрватски" lang="sh" hreflang="sh" data-title="Specijalna teorija relativnosti" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="српскохрватски" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Teori_Relativitas_Khusus" title="Teori Relativitas Khusus — сундански" lang="su" hreflang="su" data-title="Teori Relativitas Khusus" data-language-autonym="Sunda" data-language-local-name="сундански" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Erityinen_suhteellisuusteoria" title="Erityinen suhteellisuusteoria — фински" lang="fi" hreflang="fi" data-title="Erityinen suhteellisuusteoria" data-language-autonym="Suomi" data-language-local-name="фински" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Speciella_relativitetsteorin" title="Speciella relativitetsteorin — шведски" lang="sv" hreflang="sv" data-title="Speciella relativitetsteorin" data-language-autonym="Svenska" data-language-local-name="шведски" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AE%BF%E0%AE%B1%E0%AE%AA%E0%AF%8D%E0%AE%AA%E0%AF%81%E0%AE%9A%E0%AF%8D_%E0%AE%9A%E0%AE%BE%E0%AE%B0%E0%AF%8D%E0%AE%AA%E0%AF%81%E0%AE%95%E0%AF%8D_%E0%AE%95%E0%AF%8B%E0%AE%9F%E0%AF%8D%E0%AE%AA%E0%AE%BE%E0%AE%9F%E0%AF%81" title="சிறப்புச் சார்புக் கோட்பாடு — тамилски" lang="ta" hreflang="ta" data-title="சிறப்புச் சார்புக் கோட்பாடு" data-language-autonym="தமிழ்" data-language-local-name="тамилски" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Teorya_ng_natatanging_relatibidad" title="Teorya ng natatanging relatibidad — тагалог" lang="tl" hreflang="tl" data-title="Teorya ng natatanging relatibidad" data-language-autonym="Tagalog" data-language-local-name="тагалог" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tt badge-Q17437796 badge-featuredarticle mw-list-item" title="сјајан чланак"><a href="https://tt.wikipedia.org/wiki/Maxsus_%C3%A7a%C4%9F%C4%B1%C5%9Ft%C4%B1rmal%C4%B1l%C4%B1q_teori%C3%A4se" title="Maxsus çağıştırmalılıq teoriäse — татарски" lang="tt" hreflang="tt" data-title="Maxsus çağıştırmalılıq teoriäse" data-language-autonym="Татарча / tatarça" data-language-local-name="татарски" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%97%E0%B8%A4%E0%B8%A9%E0%B8%8E%E0%B8%B5%E0%B8%AA%E0%B8%B1%E0%B8%A1%E0%B8%9E%E0%B8%B1%E0%B8%97%E0%B8%98%E0%B8%A0%E0%B8%B2%E0%B8%9E%E0%B8%9E%E0%B8%B4%E0%B9%80%E0%B8%A8%E0%B8%A9" title="ทฤษฎีสัมพัทธภาพพิเศษ — тајски" lang="th" hreflang="th" data-title="ทฤษฎีสัมพัทธภาพพิเศษ" data-language-autonym="ไทย" data-language-local-name="тајски" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Thuy%E1%BA%BFt_t%C6%B0%C6%A1ng_%C4%91%E1%BB%91i_h%E1%BA%B9p" title="Thuyết tương đối hẹp — вијетнамски" lang="vi" hreflang="vi" data-title="Thuyết tương đối hẹp" data-language-autonym="Tiếng Việt" data-language-local-name="вијетнамски" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/%C3%96zel_g%C3%B6relilik" title="Özel görelilik — турски" lang="tr" hreflang="tr" data-title="Özel görelilik" data-language-autonym="Türkçe" data-language-local-name="турски" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D1%96%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D1%96%D1%8F_%D0%B2%D1%96%D0%B4%D0%BD%D0%BE%D1%81%D0%BD%D0%BE%D1%81%D1%82%D1%96" title="Спеціальна теорія відносності — украјински" lang="uk" hreflang="uk" data-title="Спеціальна теорія відносності" data-language-autonym="Українська" data-language-local-name="украјински" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%A7%D8%B6%D8%A7%D9%81%DB%8C%D8%AA_%D9%85%D8%AE%D8%B5%D9%88%D8%B5%DB%81" title="اضافیت مخصوصہ — урду" lang="ur" hreflang="ur" data-title="اضافیت مخصوصہ" data-language-autonym="اردو" data-language-local-name="урду" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vep mw-list-item"><a href="https://vep.wikipedia.org/wiki/Specialine_rel%C3%A4tivi%C5%BEusen_teorii" title="Specialine relätivižusen teorii — Veps" lang="vep" hreflang="vep" data-title="Specialine relätivižusen teorii" data-language-autonym="Vepsän kel’" data-language-local-name="Veps" class="interlanguage-link-target"><span>Vepsän kel’</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Erirelatiivsusteooria" title="Erirelatiivsusteooria — Võro" lang="vro" hreflang="vro" data-title="Erirelatiivsusteooria" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Pinaurog_nga_relatibidad" title="Pinaurog nga relatibidad — варајски" lang="war" hreflang="war" data-title="Pinaurog nga relatibidad" data-language-autonym="Winaray" data-language-local-name="варајски" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E7%8B%AD%E4%B9%89%E7%9B%B8%E5%AF%B9%E8%AE%BA" title="狭义相对论 — ву кинески" lang="wuu" hreflang="wuu" data-title="狭义相对论" data-language-autonym="吴语" data-language-local-name="ву кинески" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A1%D7%A4%D7%A2%D7%A6%D7%99%D7%A2%D7%9C%D7%A2_%D7%98%D7%A2%D7%90%D7%A8%D7%99%D7%A2_%D7%A4%D7%95%D7%9F_%D7%A8%D7%A2%D7%9C%D7%90%D7%98%D7%99%D7%95%D7%95%D7%99%D7%98%D7%A2%D7%98" title="ספעציעלע טעאריע פון רעלאטיוויטעט — јидиш" lang="yi" hreflang="yi" data-title="ספעציעלע טעאריע פון רעלאטיוויטעט" data-language-autonym="ייִדיש" data-language-local-name="јидиш" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/Teoriya_Relatifiya_X%C4%B1susiye" title="Teoriya Relatifiya Xısusiye — Zazaki" lang="diq" hreflang="diq" data-title="Teoriya Relatifiya Xısusiye" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%8B%AD%E4%B9%89%E7%9B%B8%E5%AF%B9%E8%AE%BA" title="狭义相对论 — кинески" lang="zh" hreflang="zh" data-title="狭义相对论" data-language-autonym="中文" data-language-local-name="кинески" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E7%8B%B9%E7%BE%A9%E7%9B%B8%E5%B0%8D%E8%AB%96" title="狹義相對論 — Literary Chinese" lang="lzh" hreflang="lzh" data-title="狹義相對論" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%8B%B9%E7%BE%A9%E7%9B%B8%E5%B0%8D%E8%AB%96" title="狹義相對論 — кантонски" lang="yue" hreflang="yue" data-title="狹義相對論" data-language-autonym="粵語" data-language-local-name="кантонски" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/Spec%C4%93liuoj%C4%97_rel%C4%93t%C4%ABvoma_teuor%C4%97j%C4%97" title="Specēliuojė relētīvoma teuorėjė — Samogitian" lang="sgs" hreflang="sgs" data-title="Specēliuojė relētīvoma teuorėjė" data-language-autonym="Žemaitėška" data-language-local-name="Samogitian" class="interlanguage-link-target"><span>Žemaitėška</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11455#sitelinks-wikipedia" title="Уреди међујезичке везе" class="wbc-editpage">Уреди везе</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Именски простори"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Specijalna_teorija_relativnosti" title="Прочитајте овај чланак [c]" accesskey="c"><span>Чланак</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/%D0%A0%D0%B0%D0%B7%D0%B3%D0%BE%D0%B2%D0%BE%D1%80:Specijalna_teorija_relativnosti" rel="discussion" title="Разговарајте о страници [t]" accesskey="t"><span>Разговор</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown " > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Промени варијанту језика" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Ћир./lat.</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-varlang-0" class="selected ca-variants-sr mw-list-item"><a href="/sr/Specijalna_teorija_relativnosti" lang="sr" hreflang="sr"><span>Ћир./lat.</span></a></li><li id="ca-varlang-1" class="ca-variants-sr-Cyrl mw-list-item"><a href="/sr-ec/Specijalna_teorija_relativnosti" lang="sr-Cyrl" hreflang="sr-Cyrl"><span>Ћирилица</span></a></li><li id="ca-varlang-2" class="ca-variants-sr-Latn mw-list-item"><a href="/sr-el/Specijalna_teorija_relativnosti" lang="sr-Latn" hreflang="sr-Latn"><span>Latinica</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Погледи"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Specijalna_teorija_relativnosti"><span>Читај</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit" title="Уредите ову страницу [v]" accesskey="v"><span>Уреди</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit" title="Уредите изворни код ове странице [e]" accesskey="e"><span>Уреди извор</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=history" title="Историја [h]" accesskey="h"><span>Историја</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Алатке странице"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Алатке" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Алатке</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Алатке</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">помери на страну</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">сакриј</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Више опција" > <div class="vector-menu-heading"> Радње </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Specijalna_teorija_relativnosti"><span>Читај</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit" title="Уредите ову страницу [v]" accesskey="v"><span>Уреди</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit" title="Уредите изворни код ове странице [e]" accesskey="e"><span>Уреди извор</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=history"><span>Историја</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Опште </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%A8%D1%82%D0%B0_%D0%B2%D0%BE%D0%B4%D0%B8_%D0%BE%D0%B2%D0%B0%D0%BC%D0%BE/Specijalna_teorija_relativnosti" title="Списак свих вики страница које воде овамо [j]" accesskey="j"><span>Шта води овамо</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%9F%D0%BE%D0%B2%D0%B5%D0%B7%D0%B0%D0%BD%D0%B5_%D0%B8%D0%B7%D0%BC%D0%B5%D0%BD%D0%B5/Specijalna_teorija_relativnosti" rel="nofollow" title="Скорашње измене страница које су повезане с овом [k]" accesskey="k"><span>Повезане измене</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Википедија:Водич_за_отпремање" title="Поставите слике и снимке [u]" accesskey="u"><span>Отпреми датотеку</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%B5_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B5" title="Списак свих посебних страница [q]" accesskey="q"><span>Посебне странице</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;oldid=28525276" title="Трајна веза до ове измене на овој страници"><span>Трајна веза</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=info" title="Више информација о овој страници"><span>Подаци о страници</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%A6%D0%B8%D1%82%D0%B8%D1%80%D0%B0%D1%98&amp;page=Specijalna_teorija_relativnosti&amp;id=28525276&amp;wpFormIdentifier=titleform" title="Информације о томе како цитирати ову страницу"><span>Цитирај страницу</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%A1%D0%BA%D1%80%D0%B0%D1%9B%D0%B8%D0%B2%D0%B0%D1%87_%D0%B0%D0%B4%D1%80%D0%B5%D1%81%D0%B0&amp;url=https%3A%2F%2Fsr.wikipedia.org%2Fwiki%2FSpecijalna_teorija_relativnosti"><span>Кратки URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:QrCode&amp;url=https%3A%2F%2Fsr.wikipedia.org%2Fwiki%2FSpecijalna_teorija_relativnosti"><span>Преузми QR код</span></a></li> </ul> </div> </div> <div id="p-electronpdfservice-sidebar-portlet-heading" class="vector-menu mw-portlet mw-portlet-electronpdfservice-sidebar-portlet-heading" > <div class="vector-menu-heading"> Штампање/извоз </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="electron-print_pdf" class="mw-list-item"><a href="/w/index.php?title=%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:DownloadAsPdf&amp;page=Specijalna_teorija_relativnosti&amp;action=show-download-screen"><span>Преузми у PDF-у</span></a></li><li id="t-print" class="mw-list-item"><a href="javascript:print();" rel="alternate" title="Одштампајте ову страницу [p]" accesskey="p"><span>Одштампај</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> На другим пројектима </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Special_relativity" hreflang="en"><span>Викиостава</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11455" title="Веза ка ставци на спремишту података [g]" accesskey="g"><span>Ставка на Википодацима</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Алатке странице"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Изглед"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Изглед</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">помери на страну</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">сакриј</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">С Википедије, слободне енциклопедије</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="sr" dir="ltr"><p><b>Specijalna teorija relativnosti (STR)</b> je fizička <a href="/wiki/Teorija" title="Teorija">teorija</a> koju je 1905. godine formulisao nemački <a href="/wiki/%D0%A4%D0%B8%D0%B7%D0%B8%D1%87%D0%B0%D1%80" title="Физичар">fizičar</a> <a href="/wiki/%D0%90%D0%BB%D0%B1%D0%B5%D1%80%D1%82_%D0%90%D1%98%D0%BD%D1%88%D1%82%D0%B0%D1%98%D0%BD" title="Алберт Ајнштајн">Albert Ajnštajn</a>. Te godine je u nemačkom naučnom <a href="/wiki/%D0%A7%D0%B0%D1%81%D0%BE%D0%BF%D0%B8%D1%81" title="Часопис">časopisu</a> <i>Annalen der Physik</i> izašao članak „O elektrodinamici pokretnih tela”,<sup id="cite_ref-originalni_1-0" class="reference"><a href="#cite_note-originalni-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> u kojem su bile izložene ideje ove teorije, koja je svojom sadržinom sprovela svojevrsnu <a href="/wiki/%D0%A0%D0%B5%D0%B2%D0%BE%D0%BB%D1%83%D1%86%D0%B8%D1%98%D0%B0" title="Револуција">revoluciju</a> u svetu fizike. <a href="/w/index.php?title=Galilejev_princip_relativnosti&amp;action=edit&amp;redlink=1" class="new" title="Galilejev princip relativnosti (страница не постоји)">Galilejev princip relativnosti</a>, formulisan oko tri veka ranije, govorio je o tome da su sva kretanja relativna. Dopunjen postulatom o konstantnosti <a href="/wiki/%D0%91%D1%80%D0%B7%D0%B8%D0%BD%D0%B0_%D1%81%D0%B2%D0%B5%D1%82%D0%BB%D0%BE%D1%81%D1%82%D0%B8" title="Брзина светлости">brzine svetlosti</a> u <a href="/wiki/%D0%92%D0%B0%D0%BA%D1%83%D1%83%D0%BC" title="Вакуум">vakuumu</a> za sve inercijalne posmatrače obrazovao je osnovu jedne velike teorije koja je trebalo da promeni dotadašnje shvatanje sveta. Ova dva <a href="/wiki/%D0%9F%D0%BE%D1%81%D1%82%D1%83%D0%BB%D0%B0%D1%82" title="Постулат">postulata</a> uzeta zajedno formirali su celinu koja je imala značenje koje se protivilo klasičnoj mehanici i uvreženim principima iste koje dotad niko nije smeo da dovede u pitanje. Ova teorija ima mnoštvo iznenađujućih posledica koje se na prvi pogled čine protivnim "zdravorazumskom" shvatanju i standardnoj percepciji sveta u kojoj su <a href="/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%BE%D1%80" title="Простор">prostor</a> i <a href="/wiki/%D0%92%D1%80%D0%B5%D0%BC%D0%B5" title="Време">vreme</a> apsolutne kategorije. Specijalna relativnost odbacuje <a href="/wiki/%D0%98%D1%81%D0%B0%D0%BA_%D0%8A%D1%83%D1%82%D0%BD" title="Исак Њутн">njutnovska</a> načela o apsolutnom prostoru i vremenu tvrđenjem da prostorni i vremenski intervali između bilo koja dva događaja zavise od stanja kretanja njihovog posmatrača, ili da različiti posmatrači različito i opažaju prostorne i vremenske intervale istih događaja. S druge strane <a href="/wiki/%D0%91%D1%80%D0%B7%D0%B8%D0%BD%D0%B0" title="Брзина">brzina</a> <a href="/wiki/%D0%A1%D0%B2%D0%B5%D1%82%D0%BB%D0%BE%D1%81%D1%82" title="Светлост">svetlosti</a> u vakuumu uzeta je kao apsolutna veličina, kao brzina koja je ista za sve <a href="/wiki/%D0%98%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B8_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC_%D1%80%D0%B5%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D1%98%D0%B5" title="Инерцијални систем референције">inercijalne referente sisteme</a> i koja se ne može nadmašiti, odnosno koja predstavlja najveću moguću brzinu u prirodi. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%D0%94%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Einstein1921_by_F_Schmutzer_4.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/78/Einstein1921_by_F_Schmutzer_4.jpg/220px-Einstein1921_by_F_Schmutzer_4.jpg" decoding="async" width="220" height="275" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/78/Einstein1921_by_F_Schmutzer_4.jpg/330px-Einstein1921_by_F_Schmutzer_4.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/78/Einstein1921_by_F_Schmutzer_4.jpg/440px-Einstein1921_by_F_Schmutzer_4.jpg 2x" data-file-width="1182" data-file-height="1475" /></a><figcaption>Albert Ajnštajn</figcaption></figure> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Istorijska_podloga_i_razvoj">Istorijska podloga i razvoj</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=1" title="Уредите одељак „Istorijska podloga i razvoj”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=1" title="Уреди извор одељка: Istorijska podloga i razvoj"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r24414138">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style><div role="note" class="hatnote navigation-not-searchable">Главни чланак: <a href="/wiki/Majkelson%E2%80%94Morlijev_eksperiment" title="Majkelson—Morlijev eksperiment">Majkelson—Morlijev eksperiment</a></div> <p>Sa napretkom na polju <a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%B7%D0%B0%D0%BC" title="Електромагнетизам">elektromagnetizma</a>, ostvarenim zahvaljujući <a href="/wiki/%D0%8F%D0%B5%D1%98%D0%BC%D1%81_%D0%9C%D0%B0%D0%BA%D1%81%D0%B2%D0%B5%D0%BB" class="mw-redirect" title="Џејмс Максвел">Maksvelovim</a> teorijama u želji generalizacije fizike i njenog dovođenja na zajednički okvir, proistekle su izvesne nesuglasice između <a href="/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%BD%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0" title="Класична механика">klasične mehanike</a> i elektromagnetizma. Fizičari su uporno tražili način da ih prevaziđu, uvođenjem teorije o <a href="/wiki/Etar_(fizika)" class="mw-redirect" title="Etar (fizika)">etru</a>, koji bi bio nosilac elektromagnetnih pojava i za koji bi se mogao vezati apsolutni sistem<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup>. Krajem XIX veka fizika je bila na prekretnici. Nakon Majkelson-Morijevog eksperimenta, sprovedenog <a href="/wiki/1887" title="1887">1887</a>. godine, postalo je više nego jasno da je u fizici prisutna velika praznina koju je trebalo nadoknaditi. Naime, on je pokazao da je brzina svetlosti konstantna i u svim inercijalnim referentnim sistemima ima istu vrednost, što se protivilo klasičnom shvatanju i nerelativističkom zakonu slaganja brzina. </p><p>Narednih godina fizičari su na različite načine pokušavali da protumače eksperimentom dobijen paradoks. Takvo stanje neizvesnosti održalo se u fizici sve do <a href="/wiki/1905" title="1905">1905. godine</a>, i već pomenutog članka, kojim su u fiziku uvedene novine koje su bile u skladu sa Majkelson-Morijevim eksperimentom, ali su odbacivale principe klasične fizike. Ajnštajnov mladalački um, posvećen razotkrivanju ove prirodne tajne, iznedrio je novu teoriju, koja se protivila normama usvojenim iz svakodnevnog iskustva. Skoro istovremeno sa Ajnštajnom do sličnih zaključaka je došao i francuski <a href="/wiki/%D0%9D%D0%B0%D1%83%D1%87%D0%BD%D0%B8%D0%BA" title="Научник">naučnik</a> <a href="/wiki/%D0%90%D0%BD%D1%80%D0%B8_%D0%9F%D0%BE%D0%B5%D0%BD%D0%BA%D0%B0%D1%80%D0%B5" title="Анри Поенкаре">Anri Poenkare</a>, ali mu nije pripisan udeo u zasluzi stvaranja ove revolucionarne teorije. Još nekoliko godine pre obojice, <a href="/wiki/%D0%9B%D0%BE%D1%80%D0%B5%D0%BD%D1%86" class="mw-disambig" title="Лоренц">Lorenc</a> je formulisao principe transformisanja <a href="/wiki/%D0%9A%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82%D0%B5" title="Координате">koordinata</a>, poznate kao <a href="/wiki/%D0%9B%D0%BE%D1%80%D0%B5%D0%BD%D1%86%D0%BE%D0%B2%D0%B5_%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D1%98%D0%B5" title="Лоренцове трансформације">Lorencove transformacije</a>, koje dokazuju relativističke efekte, ali sam Lorenc nije bio uspešan u njihovom tumačenju. Nezavisno od Lorenca iste transformacije je formulisao i <a href="/wiki/D%C5%BEord%C5%BE_Fransis_Ficd%C5%BEerald" title="Džordž Fransis Ficdžerald">Ficdžerald</a>, pa se ponekad u <a href="/wiki/%D0%9B%D0%B8%D1%82%D0%B5%D1%80%D0%B0%D1%82%D1%83%D1%80%D0%B0" class="mw-redirect" title="Литература">literaturi</a> sreće i pojam Ficdžerald-Lorencovih transformacija. </p><p>Neposredno po objavljivanju ove, tada neobične teorije, Ajnštajn je bio izložen burnim kritikama naučne javnosti. Ipak, on nije ustuknuo pred izazovom i istrajao u branjenju teorije koju je formulisao. Vremenom je ona postala prihvaćena i Ajnštajn je stekao odgovarajuće priznanje u tadašnjem naučnom svetu. Tri godine nakon Ajnštajnovog objavljivanja STR, <a href="/wiki/%D0%A5%D0%B5%D1%80%D0%BC%D0%B0%D0%BD_%D0%9C%D0%B8%D0%BD%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%B8" title="Херман Минковски">Herman Minkovski</a> uvodi matematički model četvorodimenzionalnog <a href="/w/index.php?title=Prostorno_vremenski_kontinuum_Minkovskog&amp;action=edit&amp;redlink=1" class="new" title="Prostorno vremenski kontinuum Minkovskog (страница не постоји)">prostorno-vremenskog kontinuuma</a>, zasnovan na principima STR. Već <a href="/wiki/1916" title="1916">1916. godine</a> Ajnštajn poopštava svoju teoriju, dovodeći pod njen okvir i <a href="/w/index.php?title=Neinercijalni_referentni_sistem&amp;action=edit&amp;redlink=1" class="new" title="Neinercijalni referentni sistem (страница не постоји)">neinercijalne referentne sisteme</a>. Ova teorija, poznata kao <a href="/wiki/%D0%9E%D0%BF%D1%88%D1%82%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%98%D0%B0_%D1%80%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D0%B8" title="Општа теорија релативности">opšta teorija relativnosti</a> (OTR) predstavlja generalizaciju specijalne relativnosti, koja ubrzo u <a href="/wiki/%D0%90%D1%81%D1%82%D1%80%D0%BE%D0%BD%D0%BE%D0%BC%D0%B8%D1%98%D0%B0" title="Астрономија">astronomskim</a> osmatranjima pronalazi svoj praktični dokaz. Do danas su <a href="/wiki/%D0%95%D0%BA%D1%81%D0%BF%D0%B5%D1%80%D0%B8%D0%BC%D0%B5%D0%BD%D1%82" title="Експеримент">eksperimentalno</a> dokazani brojni relativistički efekti, od konstantnosti brzine svetlosti u vakuumu za inercijalne posmatrače do <a href="/wiki/%D0%94%D0%B8%D0%BB%D0%B0%D1%82%D0%B0%D1%86%D0%B8%D1%98%D0%B0_%D0%B2%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%B0" title="Дилатација времена">dilatacije vremena</a>, izmerenoj uz pomoć vrlo preciznih <a href="/wiki/%D0%A7%D0%B0%D1%81%D0%BE%D0%B2%D0%BD%D0%B8%D0%BA" title="Часовник">časovnika</a>. Postulat vezan za svetlost je višestruko potvrđen u praksi. Sovjetski naučnici A.M. Bonč Bruevič i V.A. Molčanov su <a href="/wiki/1956" title="1956">1956</a>. godine posmatrajući prostiranje <a href="/wiki/%D0%A1%D1%83%D0%BD%D1%86%D0%B5" title="Сунце">Sunčevih</a> zraka uspeli da pokažu tačnost tog tvrđenja. Osam godina kasnije to je pošlo za rukom i T. Aljvergeru i njegovim saradnicima koji su to učinili proučavanjem π°-<a href="/wiki/Mezon" title="Mezon">mezona</a>. Bez obzira na to da se danas uspešno primenjuje i dalje postoje pojedini pokušaji da se ona opovrgne, što nije nikom uspelo do sada. </p><p>Izvesno neslaganje OTR sa <a href="/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BD%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0" title="Квантна механика">kvantnom mehanikom</a> navodi na pomisao da je moguće postojanje savršenije teorije, koja bi i relativnost i kvantnu mehaniku obuhvatila kao svoj deo. <a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%98%D0%B0_%D1%81%D1%82%D1%80%D1%83%D0%BD%D0%B0" title="Теорија струна">Teorija struna</a> je jedna od takvih teorija koje teže da ujedine relativističku fiziku sa kvantnom, pri čemu je matematički prilično dobro argumentovana, ali još uvek nije do kraja oblikovana. U modernoj fizici se u smislu ujedinjenja ove dve teorije ističe <a href="/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BD%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%98%D0%B0_%D0%BF%D0%BE%D1%99%D0%B0" title="Квантна теорија поља">kvantna teorija polja</a> i <a href="/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BD%D0%B0_%D0%B5%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Квантна електродинамика">kvantna elektrodinamika</a><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup>. Sasvim je moguće da će se ispostaviti da je STR granični slučaj neke još opštije specijalne teorije, koja bi sadašnju obuhvatila kao graničan slučaj. Važno je napomenuti da se neslaganje između kvantne mehanike i relativnosti odnosi na opštu relativnost, dok je STR sasvim u skladu sa kvantnom mehanikom, čak je u mogućnosti da je dopuni, pošto neki kvantni efekti, poput <a href="/wiki/%D0%A1%D0%BF%D0%B8%D0%BD" title="Спин">spina</a>, imaju objašnjenje baš u STR. Ipak kvantna mehanika je nezavisna od STR, tj. mogla bi se izvesti i iz klasične fizike. </p> <div class="mw-heading mw-heading2"><h2 id="Osnovni_postulati">Osnovni postulati</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=2" title="Уредите одељак „Osnovni postulati”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=2" title="Уреди извор одељка: Osnovni postulati"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><i>Svi inercijalni posmatrači su ravnopravni</i></li> <li><i>Brzina svetlosti u vakuumu je ista za posmatrače iz svih inercijalnih referentnih sistema</i></li></ul> <p>Prvi postulat je bio prisutan još u klasičnoj mehanici, ali nije postojao zajednički sa drugim, pošto su se oni činili uzajamno protivurečnim. Spajanje ta dva stava koji na prvi pogled izgledaju kao suprotstavljeni doprineli su tome da ova teorija rezultuje nekim po tada zastupljenom shvatanju neverovatnim posledicama, odnosno relativiziranju vremena i prostora. </p><p>Prvi postulat je nešto što se svakodnevno može opaziti. Ako postoje dva <a href="/wiki/%D0%90%D1%83%D1%82%D0%BE%D0%BC%D0%BE%D0%B1%D0%B8%D0%BB" title="Аутомобил">automobila</a> koja se kreću po paralelnim <a href="/wiki/%D0%9F%D1%80%D0%B0%D0%B2%D0%B0%D1%86" class="mw-redirect" title="Правац">pravcima</a> i u istom <a href="/wiki/%D0%A1%D0%BC%D0%B5%D1%80" class="mw-redirect" title="Смер">smeru</a> jednakim brzinama, a pored puta se nalazi čovek u stanju mirovanja u sistemu vezanom za put, onda će taj čovek reći da se automobili kreću, a on sam miruje, dok će posmatrači iz automobila smatrajući da su u stanju mirovanja reći da se drugi automobil ne kreće, a čovek da. Pri tome su tvrđenja svih posmatrača ravnopravna. </p><p>Ovaj stav se može drugačije formulisati: Svi zakoni fizike su isti u svim inercijalnim referentnim sistemima. </p><p>Drugi postulat iskombinovan sa prvim je bio prilična novina. Bez obzira da li se izvor svetlosti kreće ili miruje u datom inercijalnom sistemu referencije, bez obzira na izbor inercijalnog referentnog sistema iz kojeg to kretanje posmatramo — brzina emitovane svetlosti u vakuumu ostaje ista. Uobičajeno je da se ona obeležava sa c. Ovaj postulat implicira da je brzina svetlosti maksimalna brzina koju materijalno telo može dostići u prirodi. Dakle ne postoji materijalno telo koje bi se moglo kretati većom brzinom od c<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>Napomene 1<span class="cite-bracket">&#93;</span></a></sup>. </p> <div class="mw-heading mw-heading2"><h2 id="Neke_posledice_relativnosti">Neke posledice relativnosti</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=3" title="Уредите одељак „Neke posledice relativnosti”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=3" title="Уреди извор одељка: Neke posledice relativnosti"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Posledice Lorencovih transformacija su <i>kontrakcija dužine</i>, <i>dilatacija vremena</i>, <i>promena zakona slaganja brzina</i>, <i>izmena Njutnovih zakona</i>, <i>povećanje mase sa brzinom</i> i <i>ekvivalentnost mase i energije</i>. Ove posledice su neobične sa aspekta nerelativističke fizike i nemoguće im je naći analogiju u nerelativističkoj fizici. </p> <ul><li><i>Kontrakcija dužina</i></li></ul> <p>Telo nema stalnu <a href="/wiki/%D0%94%D1%83%D0%B6%D0%B8%D0%BD%D0%B0" title="Дужина">dužinu</a>, ona zavisi od izbora referentnog sistema, odnosno od brzine tog tela u odnosu na taj inercijalni referentni sistem. </p> <ul><li><i>Dilatacija vremena</i></li></ul> <p><a href="/wiki/%D0%92%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D1%81%D0%BA%D0%B8_%D0%B8%D0%BD%D1%82%D0%B5%D1%80%D0%B2%D0%B0%D0%BB" class="mw-redirect" title="Временски интервал">Vremenski interval</a> između dva ista <a href="/w/index.php?title=Doga%C4%91aj&amp;action=edit&amp;redlink=1" class="new" title="Događaj (страница не постоји)">događaja</a> zavisi od izbora referentnog sistema, odnosno zavisi od brzine inercijalnog referentnog sistema u odnosu na sistem u kojem se događaji dešavaju. </p> <ul><li><i>Promenjen zakon slaganja brzina</i></li></ul> <p><a href="/w/index.php?title=Zakon_slaganja_brzina&amp;action=edit&amp;redlink=1" class="new" title="Zakon slaganja brzina (страница не постоји)">Zakon slaganja brzina</a> u relativističkoj fizici je izmenjen u odnosu na onaj u klasičnoj mehanici(kao što je i opisano u prethodnom primeru, </p> <ul><li><i>Izmenjen oblik Njutnovog zakona</i></li></ul> <p><a href="/wiki/%D0%94%D1%80%D1%83%D0%B3%D0%B8_%D0%8A%D1%83%D1%82%D0%BD%D0%BE%D0%B2_%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD" class="mw-redirect" title="Други Њутнов закон">Drugi Njutnov zakon</a> u obliku <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {F}}={m{\vec {a}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {F}}={m{\vec {a}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9661196629d4d8aff663f9d108722ca8bff5a182" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.14ex; height:2.843ex;" alt="{\displaystyle {\vec {F}}={m{\vec {a}}}}"></span>, ne važi u relativističkoj fizici. S druge strane, tačan je njegov zapis kojim se sila definiše kao promena impulsa u vremenu. </p> <ul><li><i>Povećanje mase sa brzinom</i></li></ul> <p><a href="/wiki/%D0%9C%D0%B0%D1%81%D0%B0" title="Маса">Masa</a>, po originalnoj STR raste sa brzinom. Po modernom shvatanju to nije sasvim tako<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup>, što je dalje detaljno objašnjeno. Ipak račun u kojem se uzima da masa na taj način zavisi od brzine daje sasvim korektne rezultate, pa je stoga u literaturi i dalje prilično zastupljeno ovo tvrđenje. </p> <ul><li><i>Ekvivalentnost mase i energije</i></li></ul> <p>Zaključak proistekao iz relacije <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f73dbd37a0cac34406ee89057fa1b36a1e6a18e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.976ex; height:2.676ex;" alt="{\displaystyle E=mc^{2}}"></span> jeste da su masa i <a href="/wiki/%D0%95%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%98%D0%B0" title="Енергија">energija</a> ekvivalentne. </p> <div class="mw-heading mw-heading2"><h2 id="Lorencove_transformacije">Lorencove transformacije</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=4" title="Уредите одељак „Lorencove transformacije”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=4" title="Уреди извор одељка: Lorencove transformacije"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r24414138"><div role="note" class="hatnote navigation-not-searchable">Главни чланак: <a href="/wiki/%D0%9B%D0%BE%D1%80%D0%B5%D0%BD%D1%86%D0%BE%D0%B2%D0%B5_%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D1%98%D0%B5" title="Лоренцове трансформације">Lorencove transformacije</a></div> <p>Neka se referentni sistem K nalazi u stanju relativnog mirovanja, a sistem S kreće brzinom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> duž x-ose u odnosu na K. <a href="/wiki/%D0%9A%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82%D0%BD%D0%B8_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC" class="mw-disambig" title="Координатни систем">Koordinatni</a> počeci se u početnom trenutku(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=0,t'=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=0,t'=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc25af081e2c04863e53086254cfb50db8eb9434" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.92ex; height:2.843ex;" alt="{\displaystyle t=0,t&#039;=0}"></span>) poklapaju. Prema STR prostor i vreme su uzajamno zavisni. Uvođenjem koeficijenata α, β, γ se može pisati: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x'=\gamma \left(x-vt\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x'=\gamma \left(x-vt\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8044c930b7993431a0f9b3f77346a65e3f7d60b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.709ex; height:3.009ex;" alt="{\displaystyle x&#039;=\gamma \left(x-vt\right)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t'=\beta \left(t+\alpha x\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>&#x03B2;<!-- β --></mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t'=\beta \left(t+\alpha x\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06c5ff3675cb0b767b457da851576de9b3a376ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.682ex; height:3.009ex;" alt="{\displaystyle t&#039;=\beta \left(t+\alpha x\right).}"></span></dd></dl> <p>Prema drugom Ajnštajnovom postulatu brzina svetlosti u vakumu c, ne zavisi od inercijalnog sistema referencije iz kojeg kretanje posmatramo. S obzirom na to <i>x</i>&#160;=&#160;<i>ct</i> ako je <i>x′</i>&#160;=&#160;<i>ct′</i>. Zamenom <i>x</i> i <i>x′</i> u prethodnim relacijama: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ct'=\gamma \left(c-v\right)t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> </mrow> <mo>)</mo> </mrow> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ct'=\gamma \left(c-v\right)t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f155f4288a14f9fcc3fab74b8f13e1e315351f2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.29ex; height:3.009ex;" alt="{\displaystyle ct&#039;=\gamma \left(c-v\right)t}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t'=\beta \left(1+\alpha c\right)t.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>&#x03B2;<!-- β --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mi>c</mi> </mrow> <mo>)</mo> </mrow> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t'=\beta \left(1+\alpha c\right)t.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2282a8278658d6dc8b339885ae46975a78966052" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.522ex; height:3.009ex;" alt="{\displaystyle t&#039;=\beta \left(1+\alpha c\right)t.}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\beta \left(1+\alpha c\right)t=\gamma \left(c-v\right)t.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mi>&#x03B2;<!-- β --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mi>c</mi> </mrow> <mo>)</mo> </mrow> <mi>t</mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> </mrow> <mo>)</mo> </mrow> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\beta \left(1+\alpha c\right)t=\gamma \left(c-v\right)t.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b31ca03ca900b8045d7fc7009cf21d90cc4084eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.665ex; height:2.843ex;" alt="{\displaystyle c\beta \left(1+\alpha c\right)t=\gamma \left(c-v\right)t.}"></span></dd></dl> <p>Odatle se dobija: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+\alpha c={\frac {\gamma }{\beta }}\left(1-{\frac {v}{c}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mi>c</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B2;<!-- β --></mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>c</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+\alpha c={\frac {\gamma }{\beta }}\left(1-{\frac {v}{c}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5516069dc74e926662efbfeb5b81a9c40d7485c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:21.927ex; height:5.343ex;" alt="{\displaystyle 1+\alpha c={\frac {\gamma }{\beta }}\left(1-{\frac {v}{c}}\right).}"></span></dd></dl> <p>S obzirom na postulat STR koji govori da su svi referentni sistemi ravnopravni: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x'=\gamma \left(x-vt\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x'=\gamma \left(x-vt\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8044c930b7993431a0f9b3f77346a65e3f7d60b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.709ex; height:3.009ex;" alt="{\displaystyle x&#039;=\gamma \left(x-vt\right)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t'=\beta \left(t+\alpha x\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>&#x03B2;<!-- β --></mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t'=\beta \left(t+\alpha x\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e177dfec2d252cc045aa1eaf34db014f6ee9220" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.649ex; height:3.009ex;" alt="{\displaystyle t&#039;=\beta \left(t+\alpha x\right)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\frac {1}{1+\alpha v}}\left({\frac {x'}{\gamma }}+{\frac {vt'}{\beta }}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mi>&#x03B3;<!-- γ --></mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> </mrow> <mi>&#x03B2;<!-- β --></mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x={\frac {1}{1+\alpha v}}\left({\frac {x'}{\gamma }}+{\frac {vt'}{\beta }}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92572fddc59a0fce3f49b84ce34ec4c0284a0c28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.87ex; height:6.176ex;" alt="{\displaystyle x={\frac {1}{1+\alpha v}}\left({\frac {x&#039;}{\gamma }}+{\frac {vt&#039;}{\beta }}\right)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t={\frac {1}{1+\alpha v}}\left({\frac {t'}{\beta }}-{\frac {\alpha x'}{\gamma }}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mi>&#x03B2;<!-- β --></mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B1;<!-- α --></mi> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mrow> <mi>&#x03B3;<!-- γ --></mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t={\frac {1}{1+\alpha v}}\left({\frac {t'}{\beta }}-{\frac {\alpha x'}{\gamma }}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ade8923204801e39b9b7359a77b9fc427b40e3ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.74ex; height:6.176ex;" alt="{\displaystyle t={\frac {1}{1+\alpha v}}\left({\frac {t&#039;}{\beta }}-{\frac {\alpha x&#039;}{\gamma }}\right)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\gamma \left(x'+vt'\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>v</mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\gamma \left(x'+vt'\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba37e5630eae4ef4ebcc0c76d6c7613068898b18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.394ex; height:3.009ex;" alt="{\displaystyle x=\gamma \left(x&#039;+vt&#039;\right)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=\beta \left(t'-\alpha x'\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mi>&#x03B2;<!-- β --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=\beta \left(t'-\alpha x'\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96066a8b0ad24c048577f7c9d9c8d4e6eb100864" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.333ex; height:3.009ex;" alt="{\displaystyle t=\beta \left(t&#039;-\alpha x&#039;\right)}"></span></dd></dl> <p>Iz ovih relacija se nalazi: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma \left(x'+vt'\right)={\frac {1}{1+\alpha v}}\left({\frac {x'}{\gamma }}+{\frac {vt'}{\beta }}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>v</mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mi>&#x03B3;<!-- γ --></mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> </mrow> <mi>&#x03B2;<!-- β --></mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma \left(x'+vt'\right)={\frac {1}{1+\alpha v}}\left({\frac {x'}{\gamma }}+{\frac {vt'}{\beta }}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2bb33ad021428bb3e14c255c8a9dad3a2f9cd8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:34.505ex; height:6.176ex;" alt="{\displaystyle \gamma \left(x&#039;+vt&#039;\right)={\frac {1}{1+\alpha v}}\left({\frac {x&#039;}{\gamma }}+{\frac {vt&#039;}{\beta }}\right)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta \left(t'-\alpha x'\right)={\frac {1}{1+\alpha v}}\left({\frac {t'}{\beta }}-{\frac {\alpha x'}{\gamma }}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mi>&#x03B2;<!-- β --></mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B1;<!-- α --></mi> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mrow> <mi>&#x03B3;<!-- γ --></mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta \left(t'-\alpha x'\right)={\frac {1}{1+\alpha v}}\left({\frac {t'}{\beta }}-{\frac {\alpha x'}{\gamma }}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c146430a5cfa954a599d056fafe0a66e83530476" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:35.295ex; height:6.176ex;" alt="{\displaystyle \beta \left(t&#039;-\alpha x&#039;\right)={\frac {1}{1+\alpha v}}\left({\frac {t&#039;}{\beta }}-{\frac {\alpha x&#039;}{\gamma }}\right)}"></span></dd></dl> <p>Zamenom <i>x'=1</i> i <i>t'=0</i> u prvoj jednakosti i <i>x'=0</i> kao i <i>t'=1</i> u drugoj dolazi se do: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta =\gamma ={\frac {1}{\sqrt {1+\alpha v}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mi>v</mi> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta =\gamma ={\frac {1}{\sqrt {1+\alpha v}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/017af9f981b98ab81ddfc3384a86c4090cab8674" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:18.181ex; height:6.176ex;" alt="{\displaystyle \beta =\gamma ={\frac {1}{\sqrt {1+\alpha v}}}}"></span></dd></dl> <p>Koristeći prethodno dokazanu <a href="/wiki/%D0%A0%D0%B5%D0%BB%D0%B0%D1%86%D0%B8%D1%98%D0%B0" class="mw-redirect" title="Релација">relaciju</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+\alpha c={\frac {\gamma }{\beta }}(1-{\frac {v}{c}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mi>c</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B2;<!-- β --></mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>c</mi> </mfrac> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+\alpha c={\frac {\gamma }{\beta }}(1-{\frac {v}{c}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aacccaf552beab46c9b9bebb6c8cef45d5040868" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:19.54ex; height:5.343ex;" alt="{\displaystyle 1+\alpha c={\frac {\gamma }{\beta }}(1-{\frac {v}{c}})}"></span>,</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =-{\frac {v}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =-{\frac {v}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7edce8218d5d7911f96a3ba821a647693cb6d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:9.291ex; height:5.009ex;" alt="{\displaystyle \alpha =-{\frac {v}{c^{2}}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta =\gamma ={\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta =\gamma ={\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5725b9f583fc6a12e69fadab1a2f04a25397fe13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:18.419ex; height:8.009ex;" alt="{\displaystyle \beta =\gamma ={\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}"></span></dd></dl> <p>Pošto je dobijena vrednost početnih koeficijenata nalazi se: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\frac {x'+vt'}{\sqrt[{}]{1-{\frac {v^{2}}{c^{2}}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>v</mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> </mrow> <mroot> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mroot> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x={\frac {x'+vt'}{\sqrt[{}]{1-{\frac {v^{2}}{c^{2}}}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6cfa1e03eb661a981897b9e6c35c703214999d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:14.056ex; height:8.343ex;" alt="{\displaystyle x={\frac {x&#039;+vt&#039;}{\sqrt[{}]{1-{\frac {v^{2}}{c^{2}}}}}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t={\frac {t'+{\frac {vx'}{c^{2}}}}{\sqrt[{}]{1-{\frac {v^{2}}{c^{2}}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mroot> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mroot> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t={\frac {t'+{\frac {vx'}{c^{2}}}}{\sqrt[{}]{1-{\frac {v^{2}}{c^{2}}}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51a92b498f3856ca7624d16158edfd9fc574ce82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:13.566ex; height:9.843ex;" alt="{\displaystyle t={\frac {t&#039;+{\frac {vx&#039;}{c^{2}}}}{\sqrt[{}]{1-{\frac {v^{2}}{c^{2}}}}}}}"></span>,</dd></dl> <p>Ili koristeći koeficijent γ, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\gamma \left(x'+vt'\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>v</mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\gamma \left(x'+vt'\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba37e5630eae4ef4ebcc0c76d6c7613068898b18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.394ex; height:3.009ex;" alt="{\displaystyle x=\gamma \left(x&#039;+vt&#039;\right)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=\gamma \left(t'+{\frac {vx'}{c^{2}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=\gamma \left(t'+{\frac {vx'}{c^{2}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4623ba4f4080dd8b12694dc4823dee55b5fd3e95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:17.352ex; height:6.176ex;" alt="{\displaystyle t=\gamma \left(t&#039;+{\frac {vx&#039;}{c^{2}}}\right)}"></span>,</dd></dl> <p>Analogno se dobija: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x'=\gamma \left(x-vt\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x'=\gamma \left(x-vt\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8044c930b7993431a0f9b3f77346a65e3f7d60b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.709ex; height:3.009ex;" alt="{\displaystyle x&#039;=\gamma \left(x-vt\right)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t'=\gamma \left(t-{\frac {vx}{c^{2}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mi>x</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t'=\gamma \left(t-{\frac {vx}{c^{2}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a8a590569fa24f6d516f5dfa70d57a5195f4dbc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.667ex; height:6.176ex;" alt="{\displaystyle t&#039;=\gamma \left(t-{\frac {vx}{c^{2}}}\right)}"></span>.</dd></dl> <p>Ove transformacije poznate su pod nazivom Lorencove transformacije. Njihovim izvođenjem dobijena je veza između prostornih koordinata i vremena u zavisnosti od brzine. Za razliku od Galilejevih, potpuno su u skladu sa relativističkim idejama. Važno je primetiti da se <a href="/w/index.php?title=Galilejeve_transformacije&amp;action=edit&amp;redlink=1" class="new" title="Galilejeve transformacije (страница не постоји)">Galilejeve transformacije</a> javljaju graničnim slučajem Lorencovih i to za brzine mnogo manje od brzine svetlosti, kada odgovarajuće formule postaju <a href="/wiki/%D0%90%D0%BF%D1%80%D0%BE%D0%BA%D1%81%D0%B8%D0%BC%D0%B0%D1%86%D0%B8%D1%98%D0%B0" title="Апроксимација">približno</a> istovetne. </p> <div class="mw-heading mw-heading3"><h3 id="Dilatacija_vremena">Dilatacija vremena</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=5" title="Уредите одељак „Dilatacija vremena”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=5" title="Уреди извор одељка: Dilatacija vremena"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Neka se sistem od dva ogledala od kojih se naizmenično odbija <a href="/wiki/%D0%A4%D0%BE%D1%82%D0%BE%D0%BD" title="Фотон">foton</a> kreće brzinom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> u odnosu na sistem koji je u stanju relativnog mirovanja i neka je rastojanje između tih ogledala L. Za posmatrača u pokretnom sistemu vreme koje protekne između dva sudara sa istim ogledalom je: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t={\frac {2L}{c}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>t</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>L</mi> </mrow> <mi>c</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t={\frac {2L}{c}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e2aed2c076b68ecc01ca9288c612283cf8ec7de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.102ex; height:5.176ex;" alt="{\displaystyle \Delta t={\frac {2L}{c}}.}"></span></dd></dl> <p>Posmatrač koji se nalazi u stanju relativnog mirovanja smatra da je put koji mora da pređe foton u stvari veći iznosi D. Ovde dolazi do razilaženja relativističke i klasične fizike koje je odlična ilustracija njihove opšte razlike. Prema klasičnom shvatanju isto je vreme za koje foton prelazi taj put, a različita je brzina. Relativistički gledano brzina je ista, a vreme različito. Stoga možemo pisati: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t'={\frac {2D}{c}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>D</mi> </mrow> <mi>c</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t'={\frac {2D}{c}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf87a9c2b8d9ca28001449394a2b2083ce2d876f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:11.128ex; height:5.176ex;" alt="{\displaystyle \Delta t&#039;={\frac {2D}{c}}.}"></span></dd></dl> <p>Ostaje da se pronađe veza između ta dva vremena. Uz pomoć <a href="/wiki/%D0%9F%D0%B8%D1%82%D0%B0%D0%B3%D0%BE%D1%80%D0%B8%D0%BD%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0" title="Питагорина теорема">Pitagorine teoreme</a> i sređivanjem<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>Napomene 2<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D={\sqrt {\left({\frac {1}{2}}v\Delta t'\right)^{2}+L^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>v</mi> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D={\sqrt {\left({\frac {1}{2}}v\Delta t'\right)^{2}+L^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09d480654dd2d17f72d06a21e006082733ba5211" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.533ex; height:7.676ex;" alt="{\displaystyle D={\sqrt {\left({\frac {1}{2}}v\Delta t&#039;\right)^{2}+L^{2}}}.}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t'={\frac {2L/c}{\sqrt {1-v^{2}/c^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t'={\frac {2L/c}{\sqrt {1-v^{2}/c^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66d04acafa0461d5e4bfbdcffc8fcae18d03d424" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:19.127ex; height:7.009ex;" alt="{\displaystyle \Delta t&#039;={\frac {2L/c}{\sqrt {1-v^{2}/c^{2}}}}}"></span> <b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c28867ecd34e2caed12cf38feadf6a81a7ee542" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.775ex; height:2.176ex;" alt="{\displaystyle \Delta t}"></span></b></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t'={\frac {\Delta t}{\sqrt {1-v^{2}/c^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>t</mi> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t'={\frac {\Delta t}{\sqrt {1-v^{2}/c^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2d833ddbc94410bde2817b4ce8d4ef278cc4393" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:19.127ex; height:6.676ex;" alt="{\displaystyle \Delta t&#039;={\frac {\Delta t}{\sqrt {1-v^{2}/c^{2}}}}}"></span></dd></dl> <p>S obzirom da je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {1-v^{2}/c^{2}}}&lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {1-v^{2}/c^{2}}}&lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/935e2f482dfa53f038274396e65691ec934a85b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:15.993ex; height:4.843ex;" alt="{\displaystyle {\sqrt {1-v^{2}/c^{2}}}&lt;1}"></span> ova formula govori da je vreme koje pokazuje pokretan <a href="/wiki/%D0%A1%D0%B0%D1%82" title="Сат">sat</a> manje od onog koje pokazuje onaj koji je u stanju relativnog mirovanja. To bi značilo da ako čovek na svemirskom brodu odleti u <a href="/wiki/%D0%9A%D0%BE%D1%81%D0%BC%D0%BE%D1%81" title="Космос">kosmos</a> i provede tamo određen broj godina kada se bude vratio na <a href="/wiki/%D0%97%D0%B5%D0%BC%D1%99%D0%B0" title="Земља">Zemlji</a> će proći više godina nego što je on proveo u kosmosu! Ovaj efekat daje mogućnost perspektive vremenskih putovanja, koja je ipak, pre svega teorijska. Takvo <a href="/wiki/Putovanje_kroz_vreme" title="Putovanje kroz vreme">vremensko putovanje</a> je praktično neizvodljivo, jer zahteva veliki utrošak energije, najpre da bi se brod ubrzao do brzine na kojoj se relativistički efekti jasnije projavljuju, a zatim i za zaustavljanje, i slične promene u kretanju. Takođe čovek ne bi mogao dugo da izdrži veliko ubrzanje kakvo bi bilo potrebno za taj poduhvat. U suštini je drugi nedostatak manje važan od prvog, jer se i kretanjem od dve-tri godine pod konstantnim <a href="/wiki/%D0%A3%D0%B1%D1%80%D0%B7%D0%B0%D1%9A%D0%B5" title="Убрзање">ubrzanjem</a> g (jednakom onom Zemljine teže) postiže sasvim primetna vremenska razlika. Ipak, prvi je dovoljno veliki da onemogući ostvarenje ovakvog projekta. U savremenoj <a href="/wiki/%D0%9D%D0%B0%D1%83%D0%BA%D0%B0" title="Наука">nauci</a> postoje još neke ideje zasnovane na OTR o vremenskim putovanjima, ali one već izlaze iz okvira STR. </p> <div class="mw-heading mw-heading3"><h3 id="Kontrakcija_dužine"><span id="Kontrakcija_du.C5.BEine"></span>Kontrakcija dužine</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=6" title="Уредите одељак „Kontrakcija dužine”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=6" title="Уреди извор одељка: Kontrakcija dužine"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Korišćenjem Lorencovih transformacija može se dokazati da je dužina tela u sopstvenom sistemu uvek veća nego u sistemu u odnosu na koji se to telo kreće. U inercijalnom sistemu S' su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}^{'}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mo>&#x2032;</mo> </msup> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}^{'}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c6ad38c8023314324a8d1c5e54cae766be981a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.384ex; height:3.343ex;" alt="{\displaystyle x_{1}^{&#039;}}"></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{2}^{'}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mo>&#x2032;</mo> </msup> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{2}^{'}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab7547a62f4dfea469ec0c6963ea2c6eced12838" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.384ex; height:3.343ex;" alt="{\displaystyle x_{2}^{&#039;}}"></span> krajnje tačke štapa dužine <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{0}^{'}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mo>&#x2032;</mo> </msup> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{0}^{'}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74e744bdd3ad108291b2ecc2c1b4e3930c73e4dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.637ex; height:3.343ex;" alt="{\displaystyle L_{0}^{&#039;}}"></span> koji se nalazi u stanju relativnog mirovanja. Koristeći Lorencove transformacije može se pisati: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}^{'}={\frac {x_{1}-vt_{1}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mo>&#x2032;</mo> </msup> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}^{'}={\frac {x_{1}-vt_{1}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db3c022b3ea92f65d318e46a93facb54536ef199" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:15.11ex; height:8.009ex;" alt="{\displaystyle x_{1}^{&#039;}={\frac {x_{1}-vt_{1}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}"></span>&#160;&#160;&#160; und &#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{2}^{'}={\frac {x_{2}-vt_{2}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mo>&#x2032;</mo> </msup> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{2}^{'}={\frac {x_{2}-vt_{2}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e34568ed3c1a681f3ab8722ae8936c027424ac0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:15.757ex; height:8.009ex;" alt="{\displaystyle x_{2}^{&#039;}={\frac {x_{2}-vt_{2}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}.}"></span></dd></dl> <p>Štap se kreće u drugom inercijalnom referentnom sistemu S. Njegova dužina u istom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> je određena koordinatama njegove početne i krajnje tačke u istom trenutku sa stanovišta tog sistema. Stoga se nalazi: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{1}=t_{2}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{1}=t_{2}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5445acd5e05989ae17425857203e42b152b80e54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.467ex; height:2.343ex;" alt="{\displaystyle t_{1}=t_{2}\ }"></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=x_{2}-x_{1}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=x_{2}-x_{1}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae28a86e38e5fe2a3af839313c975252cb8118f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.87ex; height:2.509ex;" alt="{\displaystyle L=x_{2}-x_{1}\ }"></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{0}^{'}=x_{2}^{'}-x_{1}^{'}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mo>&#x2032;</mo> </msup> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mo>&#x2032;</mo> </msup> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mo>&#x2032;</mo> </msup> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{0}^{'}=x_{2}^{'}-x_{1}^{'}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fadec59170e1e76e4e3a0d78b291bbff4ac8cb86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.344ex; height:3.343ex;" alt="{\displaystyle L_{0}^{&#039;}=x_{2}^{&#039;}-x_{1}^{&#039;}}"></span></dd> <dd>(1) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{0}^{'}={\frac {L}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mo>&#x2032;</mo> </msup> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>L</mi> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{0}^{'}={\frac {L}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e102b803c45ad3793ba530a07d77d6bbb0a6e1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:16.01ex; height:8.009ex;" alt="{\displaystyle L_{0}^{&#039;}={\frac {L}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}.}"></span></dd></dl> <p>Na taj način se dobija konačna formula koja povezuje dužine u ova dva referentna sistema: </p> <dl><dd>(2) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=L_{0}^{'}\cdot {\sqrt {1-{\frac {v^{2}}{c^{2}}}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <msubsup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mo>&#x2032;</mo> </msup> </mrow> </msubsup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=L_{0}^{'}\cdot {\sqrt {1-{\frac {v^{2}}{c^{2}}}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21a5d783d8573a059a5ba35bd8e11ca7bc35d614" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:18.989ex; height:7.509ex;" alt="{\displaystyle L=L_{0}^{&#039;}\cdot {\sqrt {1-{\frac {v^{2}}{c^{2}}}}}.}"></span></dd></dl> <p>Ova formula dokazuje da ako se telo kreće u datom inercijalnom referentnom sistemu njegova dužina se skraćuje, što se naziva kontrakcijom dužine. Ako čovek stoji pored pruge, a pored njega prođe <a href="/wiki/%D0%92%D0%BE%D0%B7" title="Воз">voz</a> brzinom približno jednakoj brzini svetlosti onda će mu voz izgledati mnogo kraćim nego za putnika koji je u vozu. U praksi su ti efekti nemerljivi i jasno se projavljuju se tek pri pri brzinama većim od od 0,5c<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup>. </p> <div class="mw-heading mw-heading3"><h3 id="Relativnost_istovremenosti">Relativnost istovremenosti</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=7" title="Уредите одељак „Relativnost istovremenosti”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=7" title="Уреди извор одељка: Relativnost istovremenosti"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Prema STR vreme nije apsolutno kao u do tada zastupljenom shvatanju. Događaji koji su sa stanovišta jednog posmatrača istovremeni nisu to i za drugog posmatrača. Događaji ponekad čak mogu da promene redosled. </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/%D0%94%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Relativity_of_Simultaneity.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b1/Relativity_of_Simultaneity.svg/250px-Relativity_of_Simultaneity.svg.png" decoding="async" width="250" height="250" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b1/Relativity_of_Simultaneity.svg/375px-Relativity_of_Simultaneity.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b1/Relativity_of_Simultaneity.svg/500px-Relativity_of_Simultaneity.svg.png 2x" data-file-width="563" data-file-height="563" /></a><figcaption>Događaj B je istovremen sa A u zelenom referentnom sistemu, ali se dogodio pre u plavom i dogodiće se kasnije u crvenom</figcaption></figure> <p>Jedan primer kojim se <a href="/w/index.php?title=Relativnost_istovremenosti&amp;action=edit&amp;redlink=1" class="new" title="Relativnost istovremenosti (страница не постоји)">relativnost istovremenosti</a> može ilustrovati je sledeći: U sredini svemirskog broda koji se kreće kroz otvoren kosmos je <a href="/wiki/%D0%A1%D0%B8%D1%98%D0%B0%D0%BB%D0%B8%D1%86%D0%B0" class="mw-disambig" title="Сијалица">sijalica</a> koja se pali. Na krajevima broda se nalaze dva <a href="/wiki/%D0%9A%D0%BE%D1%81%D0%BC%D0%BE%D0%BD%D0%B0%D1%83%D1%82" title="Космонаут">kosmonauta</a> koji mere vreme za koje će svetlost do njih stići. Ukoliko su časovnici sinhronizovani u početku, oni će pokazivati isto vreme, tj. Svetlost će do njih stići istovremeno. Ukoliko isti primer posmatramo iz drugog sistema referencije koji je u stanju relativnog mirovanja i u odnosu na koji se taj brod kreće, događaji neće biti istovremeni, jer se jedan od kosmonauta približava izvoru svetlosti, a drugi od njega udaljava. Pošto je brzina svetlosti ista u oba slučaja razlikuju se vremena za koje će svetlost preći te različite udaljenosti. Svetlost će jednog do kosmonauta stići pre drugog što znači da u sa stanovišta ovog sistema događaji nisu istovremeni. To dovodi do opšteg zaključka: događaji koji su istovremeni u jednom inercijalnom referentnom sistemu nisu istovremeni u onom sistemu u odnosu na koji se dati sistem kreće. Skup sinhronizovanih časovnika iz jednog sistema je nesinhronizovan za posmatrača u drugom koji se kreće u odnosu na taj sistem. </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/%D0%94%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Relativity_of_Simultaneity_Animation.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/78/Relativity_of_Simultaneity_Animation.gif/200px-Relativity_of_Simultaneity_Animation.gif" decoding="async" width="200" height="215" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/78/Relativity_of_Simultaneity_Animation.gif/300px-Relativity_of_Simultaneity_Animation.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/7/78/Relativity_of_Simultaneity_Animation.gif 2x" data-file-width="400" data-file-height="430" /></a><figcaption>Događaji A, B, and C menjaju redosled u zavisnosti od referentnog sistema iz kojeg kretanje biva posmatrano</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Slaganje_brzina">Slaganje brzina</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=8" title="Уредите одељак „Slaganje brzina”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=8" title="Уреди извор одељка: Slaganje brzina"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Slaganje brzina se u relativističkoj fizici vrši na drugačiji način nego u klasičnoj. Primer koji srećemo u praksi je da kada se dva voza kreću jednakim brzinama od 100 km/h jedan prema drugome relativna brzina je 200 km/h. Ako bi se ta dva voza kretala brzinom približno jednakom c, njihova relativna brzina nije 2c, kako govori svakodnevno iskustvo, već približno c, jer je brzina svetlosti ista za posmatrače iz svih inercijalnih referentnih sistema, prema Ajnštajnovom postulatu. Naravno, brzina pomenuta u formulaciji postulata ne mora biti brzina same svetlosti, već brzina tela koje se kreće brzinom približnoj jednakoj onoj kod svetlosti <sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>Napomene 3<span class="cite-bracket">&#93;</span></a></sup>. Nesuglasica sa praktičnim primerom objašnjava se zakonom slaganja brzina izmenjenim u odnosu na klasični, koji je samo granični slučaj relativističkog, i važi za brzine mnogo manje od brzine svetlosti, poput onih iz prvog primera. Naime, relativna brzina u prvom slučaju nije egzaktno 200 km/h, već odstupa za jako malu vrednost, koja se praktično ne može izmeriti Za razliku od jednostavne aditivne metode <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{r}=v+u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mi>v</mi> <mo>+</mo> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{r}=v+u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57b76b46e993bfc57c6fed8a06ed80a08e2ff09d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.498ex; height:2.343ex;" alt="{\displaystyle v_{r}=v+u}"></span> ,koja sledi iz Galilejevih transformacija, iz Lorencovih transformacija se dobija nešto složeniji zakon sabiranja brzina: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{r}={v+u \over 1+(vu/c^{2})}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mo>+</mo> <mi>u</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mo stretchy="false">(</mo> <mi>v</mi> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{r}={v+u \over 1+(vu/c^{2})}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e08e0ccf8bef909692e21b9f06b558f346a73a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.176ex; height:5.843ex;" alt="{\displaystyle v_{r}={v+u \over 1+(vu/c^{2})}.}"></span></dd></dl> <p>Može se primetiti da kada je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> ili <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}"></span> jednako <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> onda je i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{r}=c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{r}=c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/554f0520b7edde8ac17237394ec49836ccb15550" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.207ex; height:2.009ex;" alt="{\displaystyle v_{r}=c}"></span>,što je u skladu sa Ajnštajnovim postulatom. S druge strane za <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v,u&lt;&lt;c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>,</mo> <mi>u</mi> <mo>&lt;&lt;</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v,u&lt;&lt;c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa388824ac8e348e9051c6d2304a483451157766" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.405ex; height:2.176ex;" alt="{\displaystyle v,u&lt;&lt;c}"></span> ovaj zakon postaje približno <a href="/wiki/%D0%95%D0%BA%D0%B2%D0%B8%D0%B2%D0%B0%D0%BB%D0%B5%D0%BD%D1%86%D0%B8%D1%98%D0%B0" class="mw-redirect" title="Еквиваленција">ekvivalentan</a> onom dobijenom iz Galilejevih transformacija. U <a href="/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80" title="Вектор">vektorskom</a> obliku se relativistički zakon slaganja brzina se zapisuje na sledeći način: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,{\vec {v}}_{r}={{\vec {v}}+{\vec {u}}_{||}+{\sqrt {1-v^{2}}}\,{\vec {u}}_{\perp } \over 1+{\vec {v}}\cdot {\vec {u}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>u</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>u</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>u</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,{\vec {v}}_{r}={{\vec {v}}+{\vec {u}}_{||}+{\sqrt {1-v^{2}}}\,{\vec {u}}_{\perp } \over 1+{\vec {v}}\cdot {\vec {u}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8137128cdd4292046188d56bd3e228eb4270220c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:27.54ex; height:6.843ex;" alt="{\displaystyle \,{\vec {v}}_{r}={{\vec {v}}+{\vec {u}}_{||}+{\sqrt {1-v^{2}}}\,{\vec {u}}_{\perp } \over 1+{\vec {v}}\cdot {\vec {u}}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Relativistički_impuls_i_energija"><span id="Relativisti.C4.8Dki_impuls_i_energija"></span>Relativistički impuls i energija</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=9" title="Уредите одељак „Relativistički impuls i energija”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=9" title="Уреди извор одељка: Relativistički impuls i energija"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Uvođenjem koeficijenta <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> koji se definiše kao: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma ={\frac {1}{\sqrt {1-(v/c)^{2}}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma ={\frac {1}{\sqrt {1-(v/c)^{2}}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4300e46f26fe8afab49c4e8679e21e285b62d1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:18.331ex; height:6.509ex;" alt="{\displaystyle \gamma ={\frac {1}{\sqrt {1-(v/c)^{2}}}}.}"></span>, preko Lorencovih transformacija se dobijaju sledeće formule za <a href="/wiki/%D0%98%D0%BC%D0%BF%D1%83%D0%BB%D1%81" title="Импулс">impuls</a> i energiju, respektivno: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{r l}E&amp;=\gamma mc^{2}\\{\vec {p}}&amp;=\gamma m{\vec {v}}\end{array}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>E</mi> </mtd> <mtd> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mtd> <mtd> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{r l}E&amp;=\gamma mc^{2}\\{\vec {p}}&amp;=\gamma m{\vec {v}}\end{array}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a23ebca608dc19e4855be71cb2565d9a981d8b47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:12.667ex; height:6.176ex;" alt="{\displaystyle {\begin{array}{r l}E&amp;=\gamma mc^{2}\\{\vec {p}}&amp;=\gamma m{\vec {v}}\end{array}}}"></span></dd></dl> <p>Pritom je <i>γm</i> <i>relativistička masa</i>. Neki autori koriste oznaku <i>m</i> za relativističku masu, a <i>m</i><sub>0</sub> za masu mirovanja.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup>, pa je u tom slučaju pomenuti koeficijent sadržan u m. Ako se sa <i>m</i> označi masa mirovanja onda se između impulsa i energije može uspostaviti sledeća veza: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E^{2}-(pc)^{2}=(mc^{2})^{2}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E^{2}-(pc)^{2}=(mc^{2})^{2}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c9f3a95a994054e41b7e1a468ba4beba91f1407" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.179ex; height:3.176ex;" alt="{\displaystyle E^{2}-(pc)^{2}=(mc^{2})^{2}\,}"></span></dd></dl> <p>Ova formula ima duboko suštinsko značenje. Dok energija i impuls zavise od izbora sistema referencije vrednost <i>E</i><sup>2</sup> − (<i>pc</i>)<sup>2</sup> je <a href="/w/index.php?title=Invarijantnost&amp;action=edit&amp;redlink=1" class="new" title="Invarijantnost (страница не постоји)">invarijantna</a> na Lorencove transformacije. <a href="/w/index.php?title=Zakoni_odr%C5%BEanja&amp;action=edit&amp;redlink=1" class="new" title="Zakoni održanja (страница не постоји)">Zakoni održanja</a> u relativističkoj fizici su nešto izmenjeni u poređenju sa onim u klasičnoj. <a href="/w/index.php?title=Zakon_odr%C5%BEanja_impulsa&amp;action=edit&amp;redlink=1" class="new" title="Zakon održanja impulsa (страница не постоји)">Zakon održanja impulsa</a> se javlja sa skoro istovetnim oblikom, a jedina razlika je u <a href="/wiki/%D0%94%D0%B5%D1%84%D0%B8%D0%BD%D0%B8%D1%86%D0%B8%D1%98%D0%B0" title="Дефиниција">definiciji</a> impulsa. Zakon održanja impulsa se u relativistici formuliše ovako: Ukupna vrednost impulsa čestica u izolovanom sistemu je konstantna. <a href="/w/index.php?title=Zakoni_odr%C5%BEanja_energije&amp;action=edit&amp;redlink=1" class="new" title="Zakoni održanja energije (страница не постоји)">Zakoni održanja energije</a> i mase ne postoje kao takvi, ali postoje u sjedinjenom obliku, formirajući zakon održanja mase-energije: Ukupna energija izolovanog sistema čestica je konstantna. Ovaj zakon je zasnovan na prethodnoj formuli. S obzirom da se impuls ne menja u izolovanom sistemu (zakon održanja impulsa),a da je c konstanta, pošto je kombinacija impulsa i energije jednaka broju koji ne menja vrednost ne menja se ni energija izolovanog sistema. Ovaj princip se može nazivati i zakonom održanja energije, pošto su masa i energija po STR ekvivalentne, ali je ipak uobičajen prvo pomenut naziv. </p> <div class="mw-heading mw-heading2"><h2 id="Relativistička_masa"><span id="Relativisti.C4.8Dka_masa"></span>Relativistička masa</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=10" title="Уредите одељак „Relativistička masa”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=10" title="Уреди извор одељка: Relativistička masa"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r27428402">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequote .templatequotecite{line-height:1.5em;text-align:left;padding-left:1.6em;margin-top:0}</style><blockquote class="templatequote"><p>Nije dobro koristiti koncept mase <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=m/{\sqrt {1-v^{2}/c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=m/{\sqrt {1-v^{2}/c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8dccf40d5ea0e15d8b97019f8f49ce9e56bcf8a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:20.476ex; height:4.843ex;" alt="{\displaystyle M=m/{\sqrt {1-v^{2}/c^{2}}}}"></span> pokretnog tela koji se ne može jasno definisati. Bolje je ne koristiti nikakav drugi koncept osim mase mirovanja, m. Umesto upotrebe M bolje je koristiti jednakost sa impulsom i energijom pokretnog tela.</p><div class="templatequotecite">—&#8202;<cite>Albert Ajnštajn Linkolnu Baretu, 19 Juna 1948</cite></div></blockquote> <p>Među <a href="/wiki/%D0%90%D1%83%D1%82%D0%BE%D1%80" title="Аутор">autorima</a> postoji nesuglasica oko zavisnosti mase od brzine. Uglavnom preovladava koncept relativističke mase definisane kao <a href="/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%98%D0%B0" class="mw-disambig" title="Функција">funkcije</a> brzine, mada je u modernoj fizici njena protivteža preuzima dominantnu ulogu<sup id="cite_ref-okun_10-0" class="reference"><a href="#cite_note-okun-10"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup>. Zavisnost mase i brzine se dobija analogijom između relativističke formule za impuls i one iz klasične fizike: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p={mv \over {\sqrt {1-{v^{2} \over c^{2}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mi>v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p={mv \over {\sqrt {1-{v^{2} \over c^{2}}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d69b3159be0ca164d8b128387788c6a93aa16f57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; margin-left: -0.089ex; width:13.985ex; height:7.509ex;" alt="{\displaystyle p={mv \over {\sqrt {1-{v^{2} \over c^{2}}}}}}"></span> -relativistička</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=mv}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mi>m</mi> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=mv}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2acbe7154884d4dbe30b9a0b399e43cefd8654c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:7.525ex; height:2.009ex;" alt="{\displaystyle p=mv}"></span> -nerelativistička</dd> <dd>Upoređivanjem ovih formula nalazi se obrazac za <a href="/w/index.php?title=Relativisti%C4%8Dka_masa&amp;action=edit&amp;redlink=1" class="new" title="Relativistička masa (страница не постоји)">relativističku masu</a></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\mathrm {rel} }={m \over {\sqrt {1-{v^{2} \over c^{2}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">l</mi> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\mathrm {rel} }={m \over {\sqrt {1-{v^{2} \over c^{2}}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9cae58d55b50d60232e9e70a2eabfbaa7acf23b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:16.831ex; height:7.509ex;" alt="{\displaystyle m_{\mathrm {rel} }={m \over {\sqrt {1-{v^{2} \over c^{2}}}}}}"></span></dd></dl> <p>Prema ovoj formuli masa tela raste sa povećanjem brzine. Suština osporavanja ovakvog korišćenja mase se svodi na činjenicu da se relativistička masa ne može definisati kao masa. <a href="/w/index.php?title=Masa_mirovanja&amp;action=edit&amp;redlink=1" class="new" title="Masa mirovanja (страница не постоји)">Masa mirovanja</a> je <a href="/wiki/Mera" class="mw-redirect" title="Mera">mera</a> <a href="/wiki/%D0%98%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" title="Инерција">inertnosti</a> tela, dok se relativistička masa ne može smatrati merom inertnosti tela. Drugi Njutnov zakon u relativističkoj fizici se prevodi na četvorodimenzionalni prostor, pa su <a href="/wiki/%D0%A1%D0%B8%D0%BB%D0%B0" title="Сила">sila</a> i <a href="/wiki/%D0%A3%D0%B1%D1%80%D0%B7%D0%B0%D1%9A%D0%B5" title="Убрзање">ubrzanje</a> <a href="/w/index.php?title=Kvadrivektori&amp;action=edit&amp;redlink=1" class="new" title="Kvadrivektori (страница не постоји)">kvadrivektori</a>, pa se on zapisuje i ovako: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{\mu }=m_{0}v^{\mu }\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{\mu }=m_{0}v^{\mu }\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae392027bc4084c55dcf73ce8ef17f2f76e75cb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:11.413ex; height:2.676ex;" alt="{\displaystyle p^{\mu }=m_{0}v^{\mu }\,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{\mu }=m_{0}A^{\mu }.\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <mo>.</mo> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{\mu }=m_{0}A^{\mu }.\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/234fa65b8427aceb206c176ef2636d83df7faca3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.204ex; width:12.661ex; height:2.676ex;" alt="{\displaystyle F^{\mu }=m_{0}A^{\mu }.\!}"></span></dd></dl> <p>To znači da sila i ubrzanje nisu <a href="/wiki/%D0%9A%D0%BE%D0%BB%D0%B8%D0%BD%D0%B5%D0%B0%D1%80%D0%BD%D0%BE%D1%81%D1%82" title="Колинеарност">kolinearni</a>, pa inertnost tela nije jedinstvena, a relativistička masa ne može da je opiše. U praktičnim izračunavanjima se danas ipak koristi prva formula. Bez obzira na to da relativistička masa nema definisan fizički smisao, račun koji se njome koristi daje sasvim korektne rezultate, što je osnovni razlog zbog kojeg je i dalje kao takva prisutna u fizici. </p> <div class="mw-heading mw-heading2"><h2 id="Njutnov_zakon_u_STR">Njutnov zakon u STR</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=11" title="Уредите одељак „Njutnov zakon u STR”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=11" title="Уреди извор одељка: Njutnov zakon u STR"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>U STR drugi Njutnov zakon nije oblika <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {F}}={m{\vec {a}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {F}}={m{\vec {a}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9661196629d4d8aff663f9d108722ca8bff5a182" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.14ex; height:2.843ex;" alt="{\displaystyle {\vec {F}}={m{\vec {a}}}}"></span> . Ipak njegov drugačiji zapis preko impulsa nije izmenjen u odnosu na onaj iz klasične fizike: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {F}}={\frac {d{\vec {p}}}{dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {F}}={\frac {d{\vec {p}}}{dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15c426b3f1ea30d7f5c1edbfe6865c88861f6b2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:8.247ex; height:5.676ex;" alt="{\displaystyle {\vec {F}}={\frac {d{\vec {p}}}{dt}}}"></span></dd></dl> <p>gde je <b>p</b> impuls definisan kao (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {p}}=\gamma m{\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {p}}=\gamma m{\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/923a84ce417fe2fc11b453f017e5c4d1470ae7d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:8.991ex; height:2.843ex;" alt="{\displaystyle {\vec {p}}=\gamma m{\vec {v}}}"></span>) i "m" masa mirovanja. Odatle se sila računa na sledeći način: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {F}}=m{\frac {d(\gamma \,{\vec {v}})}{dt}}=m\left({\frac {d\gamma }{dt}}\,{\vec {v}}+\gamma {\frac {d{\vec {v}}}{dt}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>&#x03B3;<!-- γ --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>m</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {F}}=m{\frac {d(\gamma \,{\vec {v}})}{dt}}=m\left({\frac {d\gamma }{dt}}\,{\vec {v}}+\gamma {\frac {d{\vec {v}}}{dt}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bca398cbf68c5ed753d00cc00f78531c6fb32a3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:35.784ex; height:6.343ex;" alt="{\displaystyle {\vec {F}}=m{\frac {d(\gamma \,{\vec {v}})}{dt}}=m\left({\frac {d\gamma }{dt}}\,{\vec {v}}+\gamma {\frac {d{\vec {v}}}{dt}}\right).}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {F}}={\frac {\gamma ^{3}mv}{c^{2}}}{\frac {dv}{dt}}\,{\vec {v}}+\gamma m\,{\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>m</mi> <mi>v</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>v</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>m</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {F}}={\frac {\gamma ^{3}mv}{c^{2}}}{\frac {dv}{dt}}\,{\vec {v}}+\gamma m\,{\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63ff3e61bf092832f7c86d9f851e8f0e8894011c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:23.71ex; height:6.009ex;" alt="{\displaystyle {\vec {F}}={\frac {\gamma ^{3}mv}{c^{2}}}{\frac {dv}{dt}}\,{\vec {v}}+\gamma m\,{\vec {a}}}"></span></dd></dl> <p>Što, imajući u vidu relaciju <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v{\tfrac {dv}{dt}}={\vec {v}}\cdot {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>d</mi> <mi>v</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v{\tfrac {dv}{dt}}={\vec {v}}\cdot {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2c718b18e8fc34a5c1e50d66a1dbf61f740650b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:10.804ex; height:3.843ex;" alt="{\displaystyle v{\tfrac {dv}{dt}}={\vec {v}}\cdot {\vec {a}}}"></span>, može biti zapisano ovako: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {F}}={\frac {\gamma ^{3}m\left({\vec {v}}\cdot {\vec {a}}\right)}{c^{2}}}\,{\vec {v}}+\gamma m\,{\vec {a}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>m</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>m</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {F}}={\frac {\gamma ^{3}m\left({\vec {v}}\cdot {\vec {a}}\right)}{c^{2}}}\,{\vec {v}}+\gamma m\,{\vec {a}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d33cf7407ea7f6886cb7da3e09b3a26b11bd7b45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:26.33ex; height:6.176ex;" alt="{\displaystyle {\vec {F}}={\frac {\gamma ^{3}m\left({\vec {v}}\cdot {\vec {a}}\right)}{c^{2}}}\,{\vec {v}}+\gamma m\,{\vec {a}}.}"></span></dd></dl> <p><a href="/w/index.php?title=Razlaganjem&amp;action=edit&amp;redlink=1" class="new" title="Razlaganjem (страница не постоји)">Razlaganjem</a> ubrzanja na horizontalnu i vertikalnu komponentu: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {F}}={\frac {\gamma ^{3}mv^{2}}{c^{2}}}\,{\vec {a}}_{\parallel }+\gamma m\,({\vec {a}}_{\parallel }+{\vec {a}}_{\perp })\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>m</mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2225;<!-- ∥ --></mo> </mrow> </msub> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>m</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2225;<!-- ∥ --></mo> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {F}}={\frac {\gamma ^{3}mv^{2}}{c^{2}}}\,{\vec {a}}_{\parallel }+\gamma m\,({\vec {a}}_{\parallel }+{\vec {a}}_{\perp })\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c5705210d055f363fdecffce4c54e6c8cac7404" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:31.525ex; height:6.009ex;" alt="{\displaystyle {\vec {F}}={\frac {\gamma ^{3}mv^{2}}{c^{2}}}\,{\vec {a}}_{\parallel }+\gamma m\,({\vec {a}}_{\parallel }+{\vec {a}}_{\perp })\,}"></span> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =\gamma ^{3}m\left({\frac {v^{2}}{c^{2}}}+{\frac {1}{\gamma ^{2}}}\right){\vec {a}}_{\parallel }+\gamma m\,{\vec {a}}_{\perp }\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>m</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2225;<!-- ∥ --></mo> </mrow> </msub> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>m</mi> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =\gamma ^{3}m\left({\frac {v^{2}}{c^{2}}}+{\frac {1}{\gamma ^{2}}}\right){\vec {a}}_{\parallel }+\gamma m\,{\vec {a}}_{\perp }\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b2ca85e63e40d89f6dcd2a8d3ac548361120c70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:31.994ex; height:6.343ex;" alt="{\displaystyle =\gamma ^{3}m\left({\frac {v^{2}}{c^{2}}}+{\frac {1}{\gamma ^{2}}}\right){\vec {a}}_{\parallel }+\gamma m\,{\vec {a}}_{\perp }\,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =\gamma ^{3}m\left({\frac {v^{2}}{c^{2}}}+1-{\frac {v^{2}}{c^{2}}}\right){\vec {a}}_{\parallel }+\gamma m\,{\vec {a}}_{\perp }\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>m</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2225;<!-- ∥ --></mo> </mrow> </msub> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>m</mi> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =\gamma ^{3}m\left({\frac {v^{2}}{c^{2}}}+1-{\frac {v^{2}}{c^{2}}}\right){\vec {a}}_{\parallel }+\gamma m\,{\vec {a}}_{\perp }\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6da855be92beabc2cd1c7268c85cc5b2c17d241e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:35.844ex; height:6.343ex;" alt="{\displaystyle =\gamma ^{3}m\left({\frac {v^{2}}{c^{2}}}+1-{\frac {v^{2}}{c^{2}}}\right){\vec {a}}_{\parallel }+\gamma m\,{\vec {a}}_{\perp }\,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =\gamma ^{3}m\,{\vec {a}}_{\parallel }+\gamma m\,{\vec {a}}_{\perp }\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>m</mi> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2225;<!-- ∥ --></mo> </mrow> </msub> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>m</mi> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =\gamma ^{3}m\,{\vec {a}}_{\parallel }+\gamma m\,{\vec {a}}_{\perp }\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de1a9d02073f20ad1754328bbe78e47a4d20c349" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:19.804ex; height:3.509ex;" alt="{\displaystyle =\gamma ^{3}m\,{\vec {a}}_{\parallel }+\gamma m\,{\vec {a}}_{\perp }\,.}"></span></dd></dl></dd></dl> <p>U literaturi se ponekad govori o, <i>γ</i><sup>3</sup><i>m</i> kao longitudinalnoj masi', i <i>γm</i> kao transverzalnoj . </p> <div class="mw-heading mw-heading2"><h2 id="E=mc²"><span id="E.3Dmc.C2.B2"></span>E=mc²</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=12" title="Уредите одељак „E=mc²”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=12" title="Уреди извор одељка: E=mc²"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Prema STR kinetička energija se ne računa kao u klasičnoj mehanici formulom, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{k}={\tfrac {1}{2}}mv^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>m</mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{k}={\tfrac {1}{2}}mv^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/354e90262557ce053dc0df39d3c0cee95a8d216e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:11.783ex; height:3.509ex;" alt="{\displaystyle E_{k}={\tfrac {1}{2}}mv^{2}}"></span>,već&#160;: </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{k}={\frac {m_{0}c^{2}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}-m_{0}c^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{k}={\frac {m_{0}c^{2}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}-m_{0}c^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a152fd0fb8efda970280e746b106d31900a67b63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:24.173ex; height:8.509ex;" alt="{\displaystyle E_{k}={\frac {m_{0}c^{2}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}-m_{0}c^{2},}"></span></dd></dl></dd></dl> <p>U klasičnoj mehanici materijalno telo koje je u stanju relativnog mirovanja i nema <a href="/wiki/%D0%9F%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0_%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%98%D0%B0" title="Потенцијална енергија">potencijalnu energiju</a> ima ukupnu energiju jednaku <a href="/wiki/%D0%9D%D1%83%D0%BB%D0%B0" class="mw-disambig" title="Нула">nuli</a>. Prema STR materijalno telo poseduje energiju samim tim što postoji , a ta energija je <a href="/w/index.php?title=Energija_mirovanja&amp;action=edit&amp;redlink=1" class="new" title="Energija mirovanja (страница не постоји)">energija mirovanja</a>. Ukupna energija tela(bez potencijalne data je formulom <i>E</i> = <i>γm</i><sub>0</sub><i>c</i><sup>2</sup> što, kada se razvije u red daje: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=m_{0}c^{2}\left[1+{\frac {1}{2}}\left({\frac {v}{c}}\right)^{2}+{\frac {3}{8}}\left({\frac {v}{c}}\right)^{4}+{\frac {5}{16}}\left({\frac {v}{c}}\right)^{6}+\ldots \right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>[</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>c</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>8</mn> </mfrac> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>c</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>5</mn> <mn>16</mn> </mfrac> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>c</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mo>+</mo> <mo>&#x2026;<!-- … --></mo> </mrow> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=m_{0}c^{2}\left[1+{\frac {1}{2}}\left({\frac {v}{c}}\right)^{2}+{\frac {3}{8}}\left({\frac {v}{c}}\right)^{4}+{\frac {5}{16}}\left({\frac {v}{c}}\right)^{6}+\ldots \right].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81c7043d5fccc00eff27036f20854c4c72874189" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:53.692ex; height:6.176ex;" alt="{\displaystyle E=m_{0}c^{2}\left[1+{\frac {1}{2}}\left({\frac {v}{c}}\right)^{2}+{\frac {3}{8}}\left({\frac {v}{c}}\right)^{4}+{\frac {5}{16}}\left({\frac {v}{c}}\right)^{6}+\ldots \right].}"></span></dd></dl> <p>Za brzine mnogo manje od brzine svetlosti, s obzirom na malu vrednost člana <i>v</i>/<i>c</i> jednakost prelazi u: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\approx m_{0}c^{2}+{\frac {1}{2}}m_{0}v^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>&#x2248;<!-- ≈ --></mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\approx m_{0}c^{2}+{\frac {1}{2}}m_{0}v^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54b78d93a8606c34816a3605a0c38162bba6a4f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.792ex; height:5.176ex;" alt="{\displaystyle E\approx m_{0}c^{2}+{\frac {1}{2}}m_{0}v^{2}.}"></span>,</dd></dl> <p>što je klasičan obrazac za <a href="/wiki/%D0%9A%D0%B8%D0%BD%D0%B5%D1%82%D0%B8%D1%87%D0%BA%D0%B0_%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%98%D0%B0" title="Кинетичка енергија">kinetičku energiju</a> uvećan za energiju mirovanja. Otuda se dobija obrazac za energiju mirovanja: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}=mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}=mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c817d727d88d16ad580951c6c13b40834a634746" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.969ex; height:3.009ex;" alt="{\displaystyle E_{0}=mc^{2}}"></span> </p> <figure typeof="mw:File/Thumb"><a href="/wiki/%D0%94%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:E_equals_m_plus_c_square_at_Taipei101.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/62/E_equals_m_plus_c_square_at_Taipei101.jpg/250px-E_equals_m_plus_c_square_at_Taipei101.jpg" decoding="async" width="250" height="333" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/6/62/E_equals_m_plus_c_square_at_Taipei101.jpg 1.5x" data-file-width="300" data-file-height="400" /></a><figcaption>čuvena jednačina na najvišoj zgradi na svetu u toku proslave godine fizike <a href="/wiki/2005" title="2005">2005</a>. godine</figcaption></figure> <p>Ova formula se tumači kao dokaz ekvivalentnosti mase i energije. Njena tačnost praktično je dokazana u <a href="/wiki/%D0%9D%D1%83%D0%BA%D0%BB%D0%B5%D0%B0%D1%80%D0%BD%D0%B0_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0" title="Нуклеарна физика">nuklearnoj fizici</a>, gde se koristi objašnjavanju nekih <a href="/wiki/%D0%9D%D1%83%D0%BA%D0%BB%D0%B5%D0%B0%D1%80%D0%BD%D0%B0_%D1%80%D0%B5%D0%B0%D0%BA%D1%86%D0%B8%D1%98%D0%B0" title="Нуклеарна реакција">nuklearnih reakcija</a>. U toku procesa kao što je to <a href="/wiki/%D0%A4%D0%B8%D1%81%D0%B8%D1%98%D0%B0" class="mw-redirect" title="Фисија">fisija</a> ili <a href="/wiki/%D0%A4%D1%83%D0%B7%D0%B8%D1%98%D0%B0" class="mw-disambig" title="Фузија">fuzija</a> dolazi do promene mase mirovanja jezgra <a href="/wiki/%D0%90%D1%82%D0%BE%D0%BC" title="Атом">atoma</a> usled čega se oslobađa odgovarajuća energija. Formula je takođe značajna za određivanje mase fotona, koji nema masu mirovanja, ali može imati masu pošto ima energiju, pošto su to dva ekvivalentna pojma. </p> <div class="mw-heading mw-heading2"><h2 id="Prostorno_vremenski_kontinuum_Minkovskog">Prostorno vremenski kontinuum Minkovskog</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=13" title="Уредите одељак „Prostorno vremenski kontinuum Minkovskog”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=13" title="Уреди извор одељка: Prostorno vremenski kontinuum Minkovskog"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/%D0%94%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Sr1.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Sr1.svg/200px-Sr1.svg.png" decoding="async" width="200" height="156" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Sr1.svg/300px-Sr1.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Sr1.svg/400px-Sr1.svg.png 2x" data-file-width="401" data-file-height="312" /></a><figcaption>Svetlosni konus</figcaption></figure> <p>U STR pojmovi prostora i vremena do njene pojave zastupljene u ljudskom sagledavanju prirodnih pojava dobijaju potpuno novo okrilje i bivaju modifikovani poprimajući oblik četvorodimenzionalnog kontinuuma koji obuhvata prostor i vreme spajajući ih u neraskidivu celinu. Ta celina se naziva prostorno-vremenski kontinuum Minkovskog i služi boljem <a href="/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%98%D0%B0" title="Геометрија">geometrijskom</a> opisivanju četvorodimenzionalnog sveta. Pritom su tri <a href="/wiki/%D0%9A%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82%D0%B5" title="Координате">koordinate</a> prostorne, poput <a href="/wiki/%D0%95%D1%83%D0%BA%D0%BB%D0%B8%D0%B4" title="Еуклид">Euklidovih</a>, a četvrta predstavlja vreme koje uključuje brzinu svetlosti kao svoj množilac, kako bi sve četiri <a href="/w/index.php?title=Koordinatne_ose&amp;action=edit&amp;redlink=1" class="new" title="Koordinatne ose (страница не постоји)">koordinatne ose</a> ovog kontinuuma primile istu <a href="/wiki/%D0%94%D0%B8%D0%BC%D0%B5%D0%BD%D0%B7%D0%B8%D1%98%D0%B0" title="Димензија">dimenziju</a>. Matematički se mogu uspostaviti sledeće relacije: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s^{2}=c^{2}\Delta t_{}^{2}-\Delta x^{2}-\Delta y^{2}-\Delta z^{2}=\eta _{ab}\Delta x^{a}\Delta x^{b},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msubsup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s^{2}=c^{2}\Delta t_{}^{2}-\Delta x^{2}-\Delta y^{2}-\Delta z^{2}=\eta _{ab}\Delta x^{a}\Delta x^{b},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e7cdeea78620047499c2146ee7ab644cbc863c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.485ex; height:3.176ex;" alt="{\displaystyle s^{2}=c^{2}\Delta t_{}^{2}-\Delta x^{2}-\Delta y^{2}-\Delta z^{2}=\eta _{ab}\Delta x^{a}\Delta x^{b},}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{x^{0},x^{1},x^{2},x^{3}\right\}=\left\{ct,x,y,z\right\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mi>c</mi> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>}</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{x^{0},x^{1},x^{2},x^{3}\right\}=\left\{ct,x,y,z\right\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bebcaaef826359d1af38bce7398579a749e7a44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:30.327ex; height:3.343ex;" alt="{\displaystyle \left\{x^{0},x^{1},x^{2},x^{3}\right\}=\left\{ct,x,y,z\right\},}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta _{ab}=\mathrm {diag} \left\{1,-1,-1,-1\right\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">g</mi> </mrow> <mrow> <mo>{</mo> <mrow> <mn>1</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>}</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta _{ab}=\mathrm {diag} \left\{1,-1,-1,-1\right\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1de72ca079b45d9377d0eb10e1bc02e1055f5433" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.247ex; height:2.843ex;" alt="{\displaystyle \eta _{ab}=\mathrm {diag} \left\{1,-1,-1,-1\right\}.}"></span></dd></dl> <p>U fizičkom smislu prostorno-vremenski kontinuum predstavlja skup svih mogućih događaja određenih sa četiri pomenute koordinate. <a href="/wiki/%D0%93%D1%80%D0%B0%D1%84%D0%B8%D0%BA" class="mw-redirect" title="График">Grafik</a> <a href="/w/index.php?title=Kretanja&amp;action=edit&amp;redlink=1" class="new" title="Kretanja (страница не постоји)">kretanja</a> čestice u ovom kontinuumu naziva se <a href="/w/index.php?title=Svetska_linija&amp;action=edit&amp;redlink=1" class="new" title="Svetska linija (страница не постоји)">svetska linija</a>. Svetske linije koje odgovaraju brzini svetlosti određuju konačni konačni <a href="/wiki/%D0%9A%D0%BE%D0%BD%D1%83%D1%81" class="mw-disambig" title="Конус">konusni</a> oblik. Događaji koji odgovaraju tačkama smeštenim u unutrašnjosti konusa iznad x-ose formiraju apsolutnu <a href="/wiki/%D0%91%D1%83%D0%B4%D1%83%D1%9B%D0%BD%D0%BE%D1%81%D1%82" title="Будућност">budućnost</a>, oni ispod x-ose, a u unutrašnjosti konusa apsolutnu <a href="/wiki/%D0%9F%D1%80%D0%BE%D1%88%D0%BB%D0%BE%D1%81%D1%82" title="Прошлост">prošlost</a>, dok oni van konusa apsolutnu <a href="/wiki/%D0%A1%D0%B0%D0%B4%D0%B0%D1%88%D1%9A%D0%BE%D1%81%D1%82" title="Садашњост">sadašnjost</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Misaoni_eksperimenti">Misaoni eksperimenti</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=14" title="Уредите одељак „Misaoni eksperimenti”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=14" title="Уреди извор одељка: Misaoni eksperimenti"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Misaoni_eksperiment" title="Misaoni eksperiment">Misaoni eksperiment</a> je oblik naučnog <a href="/wiki/%D0%98%D1%81%D1%82%D1%80%D0%B0%D0%B6%D0%B8%D0%B2%D0%B0%D1%9A%D0%B5" title="Истраживање">istraživanja</a> koji je Ajnštajn svojom teorijom uveo kao <a href="/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4" title="Метод">metod</a> koji se koristi u stvaranju fizičkih teorija(mada postoje neki misaoni eksperimenti koji su formulisani pre toga)<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup>. Koristeći im se u izvođenju svoje teorije koju tada još nije mogao praktično da proveri on je uspeo da je izgradi u obliku u kojem je poznata danas i njime prevaziđe mnoge druge teorije koje su imale <a href="/wiki/%D0%92%D0%B5%D1%80%D0%B8%D1%84%D0%B8%D0%BA%D0%B0%D1%86%D0%B8%D1%98%D0%B0" title="Верификација">verifikaciju</a> u realnim eksperimentima. Metod misaonog eksperimenta (ili gedankenexpermient, kako se još često naziva s obzirom na izvorni <a href="/wiki/%D0%9D%D0%B5%D0%BC%D0%B0%D1%87%D0%BA%D0%B8_%D1%98%D0%B5%D0%B7%D0%B8%D0%BA" title="Немачки језик">nemački jezik</a>) sastoji se u misaonoj <a href="/wiki/%D0%A1%D0%B8%D0%BC%D1%83%D0%BB%D0%B0%D1%86%D0%B8%D1%98%D0%B0" class="mw-redirect" title="Симулација">simulaciji</a> fizičkog procesa u <a href="/wiki/%D0%9C%D0%B8%D1%81%D0%BB%D0%B8" class="mw-redirect" title="Мисли">mislima</a> radi boljeg sagledavanja predviđene teorije i njene provere i nadogradnje. Može biti čak i izvor neke ideje i osnova za neku fizičku teoriju ili zakon, što je bio slučaj sa STR. Obično se izvodi u situacijama koje je teško u delo sprovesti praktično, kao u primeru sa dva voza koji se kreću brzinom približno jednakoj brzini svetlosti u vakuumu upotrebljen u opisu relativističkog zakona slaganja brzina. </p> <div class="mw-heading mw-heading2"><h2 id="Paradoksi">Paradoksi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=15" title="Уредите одељак „Paradoksi”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=15" title="Уреди извор одељка: Paradoksi"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r24414138"><div role="note" class="hatnote navigation-not-searchable">Главни чланак: <a href="/wiki/%D0%9F%D0%B0%D1%80%D0%B0%D0%B4%D0%BE%D0%BA%D1%81_%D0%B1%D0%BB%D0%B8%D0%B7%D0%B0%D0%BD%D0%B0%D1%86%D0%B0" title="Парадокс близанаца">Paradoks blizanaca</a></div> <p>Misaoni eksperimenti su poslužili kao potvrda relativnosti, ali su bili korišćeni i u pokušajima da se ista opovrgne. U tom smislu nastao je čitav niz <a href="/wiki/%D0%9F%D0%B0%D1%80%D0%B0%D0%B4%D0%BE%D0%BA%D1%81" title="Парадокс">paradoksa</a> kojima su naučnici želeli da pokažu neispravnost ove teorije. Najpoznatiji od tih paradoksa je svakako <a href="/wiki/%D0%9F%D0%B0%D1%80%D0%B0%D0%B4%D0%BE%D0%BA%D1%81_%D0%B1%D0%BB%D0%B8%D0%B7%D0%B0%D0%BD%D0%B0%D1%86%D0%B0" title="Парадокс близанаца">paradoks blizanaca</a>. On se sastoji u tome da jedan (A) od dva blizanca odlazi na <a href="/wiki/%D0%A1%D0%B2%D0%B5%D0%BC%D0%B8%D1%80" title="Свемир">svemirsko</a> putovanje gde putuje brzinom bliskom brzine svetlosti u vakuumu. Pošto je taj blizanac A pokretan dolazi do vremenske dilatacije i kada se bude vratio na Zemlju biće mlađi od svog brata blizanca B. Međutim imajući u vidu princip relativnosti moglo bi se tvrditi da je blizanac B bio u stvari taj koji se kreće, a A koji je mirovao, pa bi tad blizanac B bio mlađi od starijeg A. Paradoks se objašnjava činjenicom da STR obuhvata samo inercijalne referentne sisteme, ne i neinercijalne. Stoga će blizanac A biti mlađi od B pri povratku. </p><p>To je samo jedan u nizu paradoksa o STR koji su bili formulisani kako bi ista bila osporena. Prilično su poznati <a href="/w/index.php?title=Belov_paradoks&amp;action=edit&amp;redlink=1" class="new" title="Belov paradoks (страница не постоји)">Belov</a> i <a href="/w/index.php?title=Ernfestov_paradoks&amp;action=edit&amp;redlink=1" class="new" title="Ernfestov paradoks (страница не постоји)">Ernfestov paradoks</a>. </p><p>Bez obzira što su brojni pokušaji njenog osporavanja, oni su dosad svi bili neuspešni, što, zajedno sa činjenicom da je teorija eksperimentalno potvrđena i da se uspešno primenjuje u praksi čini da ova teorija zadrži svoj dominantan položaj u odnosu na klasičnu, nerelativističku fiziku. </p> <div class="mw-heading mw-heading2"><h2 id="Napomene">Napomene</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=16" title="Уредите одељак „Napomene”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=16" title="Уреди извор одељка: Napomene"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <ol class="references"> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"> Teorijski je pokazana mogućnost da nematerijalna tela dostižu veće brzine. Klasičan je primer makaza i presečne tačke njihovih sečiva, koja, pod uslovom da je ugao između njih dovoljno mali, a sečiva jako dugačka može da dostiže i brzine veće od c. Postoji i primer grupne brzine, zatim i relativne brzine jednog tela u odnosu na drugo sa stanovišta trećeg, koja takođe može da nadmaši c, ali je sve to u skladu sa STR</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"> Do ove formule se može doći i oduzimanjem odgovarajućih Lorencovih transformacija za vreme.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">Reč približno se ovde dodaje iz opravdanog razloga- za materijalno telo koje se kreće brzinom svetlosti vreme stoji.</span> </li> </ol> <div class="mw-heading mw-heading2"><h2 id="Vidi_još"><span id="Vidi_jo.C5.A1"></span>Vidi još</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=17" title="Уредите одељак „Vidi još”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=17" title="Уреди извор одељка: Vidi još"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/%D0%9E%D0%BF%D1%88%D1%82%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%98%D0%B0_%D1%80%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D0%B8" title="Општа теорија релативности">Opšta teorija relativnosti</a></li> <li><a href="/wiki/E%3Dmc%C2%B2" class="mw-redirect" title="E=mc²">E=mc²</a></li> <li><a href="/wiki/%D0%9B%D0%BE%D1%80%D0%B5%D0%BD%D1%86%D0%BE%D0%B2%D0%B5_%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D1%98%D0%B5" title="Лоренцове трансформације">Lorencove transformacije</a></li> <li><a href="/wiki/%D0%91%D1%80%D0%B7%D0%B8%D0%BD%D0%B0_%D1%81%D0%B2%D0%B5%D1%82%D0%BB%D0%BE%D1%81%D1%82%D0%B8" title="Брзина светлости">Brzina svetlosti</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Reference">Reference</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=18" title="Уредите одељак „Reference”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=18" title="Уреди извор одељка: Reference"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r28440201">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width reflist-columns-2"> <ol class="references"> <li id="cite_note-originalni-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-originalni_1-0">^</a></b></span> <span class="reference-text"><a href="/wiki/Albert_Einstein" class="mw-redirect" title="Albert Einstein">Albert Einstein</a> (1905) "<a rel="nofollow" class="external text" href="http://www.pro-physik.de/Phy/pdfs/ger_890_921.pdf">Zur Elektrodynamik bewegter Körper</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20091229162203/http://www.pro-physik.de/Phy/pdfs/ger_890_921.pdf">Архивирано</a> на сајту <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> (29. децембар 2009)", <i>Annalen der Physik</i> 17: 891; Prevod na engleski <a rel="nofollow" class="external text" href="http://www.fourmilab.ch/etexts/einstein/specrel/www/">On the Electrodynamics of Moving Bodies</a> by <a href="/w/index.php?title=George_Barker_Jeffery&amp;action=edit&amp;redlink=1" class="new" title="George Barker Jeffery (страница не постоји)">George Barker Jeffery</a> and Wilfrid Perrett (1923); Drugi prevod na engleski <a href="https://sr.wikisource.org/wiki/On_the_Electrodynamics_of_Moving_Bodies_(1920_edition)" class="extiw" title="s:On the Electrodynamics of Moving Bodies (1920 edition)">On the Electrodynamics of Moving Bodies</a> by <a href="/w/index.php?title=Megh_Nad_Saha&amp;action=edit&amp;redlink=1" class="new" title="Megh Nad Saha (страница не постоји)">Megh Nad Saha</a> (1920).</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">Dr Dragiša Ivanović, O teoriji relativnosti,Zavod za izdavanje udžbenika narodne republike Srbije, Beograd, 1962</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">Članak: "Šta je to kvantna elektrodinamika <a rel="nofollow" class="external autonumber" href="http://www.b92.net/zivot/komentari.php?nav_id=386260">[1]</a></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">Promena mase sa brzinom <a rel="nofollow" class="external text" href="http://www.ufn.ru/ufn89/ufn89_7/Russian/r897f.pdf">статью Л. Б. Окуня «Понятие массы» в УФН, 1989, Выпуск 7. стр. 511—530.</a></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">Vida J. Žigman. Specijalna teorija relativnosti -mehanika-, Studentski trg.Beograd.1996</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">Na primer: <cite class="citation book"><a href="/wiki/Richard_Feynman" class="mw-redirect" title="Richard Feynman">Feynman, Richard</a> (1998). „The special theory of relativity”. <i><a href="/w/index.php?title=The_Feynman_Lectures_on_Physics&amp;action=edit&amp;redlink=1" class="new" title="The Feynman Lectures on Physics (страница не постоји)">Six Not-So-Easy Pieces</a></i>. Cambridge, Mass.: Perseus Books. <a href="/wiki/Me%C4%91unarodni_standardni_broj_knjige" title="Međunarodni standardni broj knjige">ISBN</a>&#160;<a href="/wiki/%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%A8%D1%82%D0%B0%D0%BC%D0%BF%D0%B0%D0%BD%D0%B8_%D0%B8%D0%B7%D0%B2%D0%BE%D1%80%D0%B8/978-0-201-32842-4" title="Посебно:Штампани извори/978-0-201-32842-4">978-0-201-32842-4</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fsr.wikipedia.org%3ASpecijalna+teorija+relativnosti&amp;rft.atitle=The+special+theory+of+relativity&amp;rft.aufirst=Richard&amp;rft.aulast=Feynman&amp;rft.btitle=Six+Not-So-Easy+Pieces&amp;rft.date=1998&amp;rft.genre=bookitem&amp;rft.isbn=978-0-201-32842-4&amp;rft.place=Cambridge%2C+Mass.&amp;rft.pub=Perseus+Books&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-okun-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-okun_10-0">^</a></b></span> <span class="reference-text"><cite id="CITEREFOkun1989" class="citation">Okun, Lev B. (jul 1989), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190814084557/https://www.worldscientific.com/phy_etextbook/6833/6833_02.pdf">„The Concept of Mass”</a> <span style="font-size:85%;">(PDF)</span>, <i>Physics Today</i>, <b>42</b> (6): 31—36, <a href="/wiki/Digitalni_identifikator_objekta" title="Digitalni identifikator objekta">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.881171">10.1063/1.881171</a>, Архивирано из <a rel="nofollow" class="external text" href="https://www.worldscientific.com/phy_etextbook/6833/6833_02.pdf">оригинала</a> <span style="font-size:85%;">(PDF)</span> 14. 08. 2019. г.<span class="reference-accessdate">, Приступљено <span class="nowrap">24. 12. 2009</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fsr.wikipedia.org%3ASpecijalna+teorija+relativnosti&amp;rft.atitle=The+Concept+of+Mass&amp;rft.aufirst=Lev+B.&amp;rft.aulast=Okun&amp;rft.date=1989-07&amp;rft.genre=article&amp;rft.issue=6&amp;rft.jtitle=Physics+Today&amp;rft.pages=31-36&amp;rft.volume=42&amp;rft_id=https%3A%2F%2Fwww.worldscientific.com%2Fphy_etextbook%2F6833%2F6833_02.pdf&amp;rft_id=info%3Adoi%2F10.1063%2F1.881171&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">Misaoni eksperiment, često potcenjen naučni metod, članak <a rel="nofollow" class="external autonumber" href="http://www.b92.net/zivot/nauka.php?nav_id=394243">[2]</a></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Literatura">Literatura</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=19" title="Уредите одељак „Literatura”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=19" title="Уреди извор одељка: Literatura"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite id="CITEREFFeynman1998" class="citation book"><a href="/wiki/Richard_Feynman" class="mw-redirect" title="Richard Feynman">Feynman, Richard</a> (1998). „The special theory of relativity”. <i><a href="/w/index.php?title=The_Feynman_Lectures_on_Physics&amp;action=edit&amp;redlink=1" class="new" title="The Feynman Lectures on Physics (страница не постоји)">Six Not-So-Easy Pieces</a></i>. Cambridge, Mass.: Perseus Books. <a href="/wiki/Me%C4%91unarodni_standardni_broj_knjige" title="Međunarodni standardni broj knjige">ISBN</a>&#160;<a href="/wiki/%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%A8%D1%82%D0%B0%D0%BC%D0%BF%D0%B0%D0%BD%D0%B8_%D0%B8%D0%B7%D0%B2%D0%BE%D1%80%D0%B8/978-0-201-32842-4" title="Посебно:Штампани извори/978-0-201-32842-4">978-0-201-32842-4</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fsr.wikipedia.org%3ASpecijalna+teorija+relativnosti&amp;rft.atitle=The+special+theory+of+relativity&amp;rft.aufirst=Richard&amp;rft.aulast=Feynman&amp;rft.btitle=Six+Not-So-Easy+Pieces&amp;rft.date=1998&amp;rft.genre=bookitem&amp;rft.isbn=978-0-201-32842-4&amp;rft.place=Cambridge%2C+Mass.&amp;rft.pub=Perseus+Books&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Dodatna_literatura">Dodatna literatura</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=20" title="Уредите одељак „Dodatna literatura”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=20" title="Уреди извор одељка: Dodatna literatura"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite class="citation journal">Wolf, Peter and Gerard, Petit (1997). „"Satellite test of Special Relativity using the Global Positioning System<span style="padding-right:0.2em;">"</span>”. <i>Physics Review A</i>. <b>56</b> (6): 4405—4409.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fsr.wikipedia.org%3ASpecijalna+teorija+relativnosti&amp;rft.atitle=%22Satellite+test+of+Special+Relativity+using+the+Global+Positioning+System%22&amp;rft.au=Wolf%2C+Peter+and+Gerard%2C+Petit&amp;rft.date=1997&amp;rft.genre=article&amp;rft.issue=6&amp;rft.jtitle=Physics+Review+A&amp;rft.pages=4405-4409&amp;rft.volume=56&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span><span class="citation-comment" style="display:none; color:#33aa33; margin-left:0.3em">CS1 одржавање: Вишеструка имена: списак аутора (<a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:CS1_%D0%BE%D0%B4%D1%80%D0%B6%D0%B0%D0%B2%D0%B0%D1%9A%D0%B5:_%D0%92%D0%B8%D1%88%D0%B5%D1%81%D1%82%D1%80%D1%83%D0%BA%D0%B0_%D0%B8%D0%BC%D0%B5%D0%BD%D0%B0:_%D1%81%D0%BF%D0%B8%D1%81%D0%B0%D0%BA_%D0%B0%D1%83%D1%82%D0%BE%D1%80%D0%B0" title="Категорија:CS1 одржавање: Вишеструка имена: списак аутора">веза</a>)</span></li></ul> <ul><li><cite class="citation journal">„Rizzi G. et al, "Synchronization Gauges and the Principles of Special Relativity<span style="padding-right:0.2em;">"</span>”. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<span class="plainlinks"><a rel="nofollow" class="external text" href="//arxiv.org/abs/abs/gr-qc/0409105">abs/gr-qc/0409105</a>&#8239;<span typeof="mw:File"><span title="Слободан приступ"><img alt="Слободан приступ" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/14px-Lock-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/18px-Lock-green.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span> <span style="font-size:100%" class="error citation-comment">Проверите вредност параметра <code style="color:inherit; border:inherit; padding:inherit;">&#124;arxiv=</code> (<a href="/wiki/%D0%9F%D0%BE%D0%BC%D0%BE%D1%9B:CS1_%D0%B3%D1%80%D0%B5%D1%88%D0%BA%D0%B5#bad_arxiv" title="Помоћ:CS1 грешке">помоћ</a>)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fsr.wikipedia.org%3ASpecijalna+teorija+relativnosti&amp;rft.atitle=Rizzi+G.+et+al%2C+%22Synchronization+Gauges+and+the+Principles+of+Special+Relativity%22&amp;rft.genre=article&amp;rft_id=info%3Aarxiv%2Fabs%2Fgr-qc%2F0409105&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Spoljašnje_veze"><span id="Spolja.C5.A1nje_veze"></span>Spoljašnje veze</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=21" title="Уредите одељак „Spoljašnje veze”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=21" title="Уреди извор одељка: Spoljašnje veze"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r25554621">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:#f9f9f9;display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r25554968">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist"><span style="font-weight:bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Special_relativity" class="extiw" title="commons:Category:Special relativity">Specijalna teorija relativnosti</a></span> на <a href="https://commons.wikimedia.org/wiki/%D0%93%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B0" class="extiw" title="commons:Главна страна">Викимедијиној остави</a>.</div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r25554621"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r25554968"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></span></span></div> <div class="side-box-text plainlist">Викикњиге имају више информација о <i><b><a href="https://sr.wikibooks.org/wiki/Special_Relativity" class="extiw" title="b:Special Relativity">Specijalna teorija relativnosti</a></b></i></div></div> </div> <ul><li><a rel="nofollow" class="external free" href="http://www.astronomija.co.rs/teorije/relativnost/teorije/ajnstajn.htm">http://www.astronomija.co.rs/teorije/relativnost/teorije/ajnstajn.htm</a><sup class="noprint Inline-Template"><span style="white-space: nowrap;">&#91;<i><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%9C%D1%80%D1%82%D0%B2%D0%B0_%D0%B2%D0%B5%D0%B7%D0%B0" title="Википедија:Мртва веза"><span title="&#160;Ова веза је мртва и треба је или поправити или уклонити (септембар 2018)">мртва веза</span></a></i>&#93;</span></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Objašnjenja_Specijalne_teorije_relativnosti"><span id="Obja.C5.A1njenja_Specijalne_teorije_relativnosti"></span>Objašnjenja Specijalne teorije relativnosti</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=22" title="Уредите одељак „Objašnjenja Specijalne teorije relativnosti”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=22" title="Уреди извор одељка: Objašnjenja Specijalne teorije relativnosti"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://cosmo.nyu.edu/hogg/sr/">Белешке о специјалној теорији релативитета</a> Dobar uvod u specijalnu relativnost na postdiplomskom nivou, uz korišćenje infinitezimalnog računa.</li> <li><a rel="nofollow" class="external text" href="http://www.lightandmatter.com/html_books/6mr/ch01/ch01.html">Relativity</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20101214113441/http://www.lightandmatter.com/html_books/6mr/ch01/ch01.html">Архивирано</a> на сајту <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> (14. децембар 2010) Uvod u specijalnu relativnost na postdiplomskom nivou, bez infinitezimalnog računa.</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20151218205507/http://mathpages.com/rr/rrtoc.htm">Reflections on Relativity</a> Kompletan onlajn udžbenik o relativnosti sa obimnom bibliografijom.</li> <li><a rel="nofollow" class="external text" href="http://www.phys.vt.edu/~takeuchi/relativity/notes">Special Relativity Lecture Notes</a> Ovo je standardni uvod u specijalnu relativnost koji sadrži ilustrovana objašnjenja zasnovana na crtežima i prostor-vremenskim dijagramima sa Virdžinija Politehničkog Instituta i Državnog Univerziteta</li> <li><a rel="nofollow" class="external text" href="http://spoirier.lautre.net/en/relativity.htm">Special relativity theory made intuitive</a></li></ul> <p>Jedan novi pristup objašnjenju teorijskog, fizičkog, smisla specijalne relativnosti sa intuitivno-geometrijske tačke gledišta </p> <ul><li><a rel="nofollow" class="external text" href="http://www2.slac.stanford.edu/vvc/theory/relativity.html">Special Relativity</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20111212133514/http://www2.slac.stanford.edu/vvc/theory/relativity.html">Архивирано</a> на сајту <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> (12. децембар 2011) Stanford University, Helen Quinn, 2003</li> <li class="mw-empty-elt"></li> <li><style data-mw-deduplicate="TemplateStyles:r24413831">.mw-parser-output .citation{word-wrap:break-word}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}</style><span class="citation gutenberg"> <i><a rel="nofollow" class="external text" href="https://gutenberg.org/ebooks/5001">Relativity: the Special and General Theory</a></i> на <a href="/wiki/%D0%9F%D1%80%D0%BE%D1%98%D0%B5%D0%BA%D0%B0%D1%82_%D0%93%D1%83%D1%82%D0%B5%D0%BD%D0%B1%D0%B5%D1%80%D0%B3" title="Пројекат Гутенберг">пројекту Гутенберг</a></span>, Relativnost:Specijalna i opšta teorija, autor <a href="/wiki/%D0%90%D0%BB%D0%B1%D0%B5%D1%80%D1%82_%D0%90%D1%98%D0%BD%D1%88%D1%82%D0%B0%D1%98%D0%BD" title="Алберт Ајнштајн">Albert Ajnštajn</a>, lično</li> <li><a rel="nofollow" class="external text" href="http://www.phys.unsw.edu.au/einsteinlight">Einstein Light</a> Jedan <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060630083236/http://www.sciam.com/article.cfm?chanID=sa004&amp;articleID=0005CFF9-524F-1340-924F83414B7F0000">award</a>-nagrađeni, ne-tehnički uvod (filmski inserti i demonstracije) podržan sa desetinama stranica dodatnih objašnjenja i animacija, na nivoima sa ili bez matematike</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20061002122039/http://www.black-holes.org/relativity1.html">Caltech Relativity Tutorial</a> Uvod u bazične koncepte specijalne i opšte relativnosti, koji zahteva samo osnovno poznavanje geometrije.</li> <li><a rel="nofollow" class="external text" href="http://gregegan.customer.netspace.net.au/FOUNDATIONS/01/found01.html">Greg Egan's <i>Foundations</i></a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130425091908/http://gregegan.customer.netspace.net.au/FOUNDATIONS/01/found01.html">Архивирано</a> на сајту <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> (25. април 2013).</li> <li><a rel="nofollow" class="external text" href="http://www.polarhome.com:763/~rafimoor/english/SRE.htm">Understanding Special Relativity</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20061113151011/http://www.polarhome.com:763/~rafimoor/english/SRE.htm">Архивирано</a> на сајту <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> (13. новембар 2006) - Teorija specijalne relativnosti na lak i razumljiv način.</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20061012011343/http://www.motionmountain.net/C-2-CLSC.pdf">Motion Mountain</a> -Jedan moderan uvod u relativnost, uključujući i vizuelne efekte.</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20040206110957/http://www.geocities.com/autotheist/Bondi/intro.htm">Bondi k-calculus</a> - Jednostavan uvod u Specijalnu teoriju relativnosti</li> <li>[<a rel="nofollow" class="external free" href="https://web.archive.org/web/20070928200252/http://www.theophoretos.hostmatrix.org/relativity.htm">https://web.archive.org/web/20070928200252/http://www.theophoretos.hostmatrix.org/relativity.htm</a> Izvorišta Ajnštajnove Specijalne teorije relativnosti - Istorijski pristup izučavanju Specijalne teorije relativnosti</li></ul> <div class="mw-heading mw-heading3"><h3 id="Vizuelizacije">Vizuelizacije</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=23" title="Уредите одељак „Vizuelizacije”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=23" title="Уреди извор одељка: Vizuelizacije"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://www.anu.edu.au/Physics/Savage/TEE/">Through Einstein's Eyes</a> Australijski nacionalni univerzitet. Relativistički vizuelni efekti objašnjeni sa filmovima i slikama.</li> <li><a rel="nofollow" class="external text" href="http://www.anu.edu.au/Physics/Savage/RTR/">Real Time Relativity</a> Australijski nacionalni univerzitet - Relativistički vizuelni efekti doživljeni kroz interaktivni program.</li> <li><a rel="nofollow" class="external text" href="http://www.adamauton.com/warp/">Warp Special Relativity Simulator</a> kompjuterski program koji pokazuje efekte putovanja brzinom koja je bliska brzini svetlosti</li></ul> <div class="mw-heading mw-heading3"><h3 id="Ostalo">Ostalo</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=24" title="Уредите одељак „Ostalo”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=24" title="Уреди извор одељка: Ostalo"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://uk.arxiv.org/abs/physics/0605057">Test sa problemima iz mehanike i specijalne relativnosti</a> <span class="languageicon">(језик: енглески)</span></li> <li><a rel="nofollow" class="external free" href="http://www.mathpreprints.com/math/Preprint/paultrr/20040119/1/Evaluation_of_Brane_World_Mach_Principles.pdf">http://www.mathpreprints.com/math/Preprint/paultrr/20040119/1/Evaluation_of_Brane_World_Mach_Principles.pdf</a> Brejn vorld Mahov princip i Majkelson-Morli eksperiment]</li> <li><a rel="nofollow" class="external text" href="http://www.nist.gov/public_affairs/releases/einstein.htm">"Ajnštajn je bio u pravu (opet): eksperiment koji potvrđuje jednačinu E= mc<sup>2</sup>"</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20061021013027/http://www.nist.gov/public_affairs/releases/einstein.htm">Архивирано</a> на сајту <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> (21. октобар 2006) Skorašnje merenje (provera) Ajnštajnove čuvene jednačine sa tačnošću od četiri deseta dela od jedne miliotnine.</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20061108081005/http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/Special_relativity.html">Relativnost u istorijskom kontekstu</a>. Otkriće specijalne relativnosti je bilo neizbežno, kada se uzmu u obzir otkrivački momenti koji su joj prethodili.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Knjige">Knjige</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=25" title="Уредите одељак „Knjige”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=25" title="Уреди извор одељка: Knjige"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Einstein, Albert. <a rel="nofollow" class="external text" href="http://www.gutenberg.org/etext/5001">"Relativity: The Special and the General Theory"</a>.</li> <li>Silberstein, Ludwik (1914) <a href="/w/index.php?title=List_of_publications_in_physics&amp;action=edit&amp;redlink=1" class="new" title="List of publications in physics (страница не постоји)">The Theory of Relativity</a>.</li> <li><cite id="CITEREFTiplerLlewellyn2002" class="citation book">Tipler, Paul; Llewellyn, Ralph (2002). <i><span></span></i>Modern Physics<i> (4th ed.)</i>. W. H. Freeman Company. <a href="/wiki/Me%C4%91unarodni_standardni_broj_knjige" title="Međunarodni standardni broj knjige">ISBN</a>&#160;<a href="/wiki/%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%A8%D1%82%D0%B0%D0%BC%D0%BF%D0%B0%D0%BD%D0%B8_%D0%B8%D0%B7%D0%B2%D0%BE%D1%80%D0%B8/978-0-7167-4345-3" title="Посебно:Штампани извори/978-0-7167-4345-3">978-0-7167-4345-3</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fsr.wikipedia.org%3ASpecijalna+teorija+relativnosti&amp;rft.au=Llewellyn%2C+Ralph&amp;rft.aufirst=Paul&amp;rft.aulast=Tipler&amp;rft.btitle=Modern+Physics+%284th+ed.%29&amp;rft.date=2002&amp;rft.genre=book&amp;rft.isbn=978-0-7167-4345-3&amp;rft.pub=W.+H.+Freeman+Company&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite id="CITEREFSchutz2009" class="citation book">Schutz, Bernard F. (2009). <a rel="nofollow" class="external text" href="https://archive.org/details/firstcourseingen00bern_0"><i>A First Course in General Relativity</i></a>. Cambridge University Press. <a href="/wiki/Me%C4%91unarodni_standardni_broj_knjige" title="Međunarodni standardni broj knjige">ISBN</a>&#160;<a href="/wiki/%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%A8%D1%82%D0%B0%D0%BC%D0%BF%D0%B0%D0%BD%D0%B8_%D0%B8%D0%B7%D0%B2%D0%BE%D1%80%D0%B8/978-0-521-27703-7" title="Посебно:Штампани извори/978-0-521-27703-7">978-0-521-27703-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fsr.wikipedia.org%3ASpecijalna+teorija+relativnosti&amp;rft.aufirst=Bernard+F.&amp;rft.aulast=Schutz&amp;rft.btitle=A+First+Course+in+General+Relativity&amp;rft.date=2009&amp;rft.genre=book&amp;rft.isbn=978-0-521-27703-7&amp;rft.pub=Cambridge+University+Press&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffirstcourseingen00bern_0&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span>.</li> <li>Taylor, Edwin, and <a href="/wiki/John_Archibald_Wheeler" class="mw-redirect" title="John Archibald Wheeler">Wheeler, John</a>. <i>Spacetime Physics</i> . W.H. Freeman and Company. <span class="citation book">&#32;(2nd изд.).&#32;1992.&#32;<a href="/wiki/Me%C4%91unarodni_standardni_broj_knjige" title="Međunarodni standardni broj knjige">ISBN</a> <a href="/wiki/%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%A8%D1%82%D0%B0%D0%BC%D0%BF%D0%B0%D0%BD%D0%B8_%D0%B8%D0%B7%D0%B2%D0%BE%D1%80%D0%B8/978-0-7167-2327-1" title="Посебно:Штампани извори/978-0-7167-2327-1">978-0-7167-2327-1</a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=&amp;rft.date=1992&amp;rft.edition=2nd&amp;rft.isbn=978-0-7167-2327-1&amp;rfr_id=info:sid/en.wikipedia.org:Specijalna_teorija_relativnosti"><span style="display: none;">&#160;</span></span>.</li> <li><cite id="CITEREFEinstein1996" class="citation book">Einstein, Albert (1996). <a rel="nofollow" class="external text" href="https://archive.org/details/meaningofrelati00eins"><i>The Meaning of Relativity</i></a>. Fine Communications. <a href="/wiki/Me%C4%91unarodni_standardni_broj_knjige" title="Međunarodni standardni broj knjige">ISBN</a>&#160;<a href="/wiki/%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%A8%D1%82%D0%B0%D0%BC%D0%BF%D0%B0%D0%BD%D0%B8_%D0%B8%D0%B7%D0%B2%D0%BE%D1%80%D0%B8/978-1-56731-136-5" title="Посебно:Штампани извори/978-1-56731-136-5">978-1-56731-136-5</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fsr.wikipedia.org%3ASpecijalna+teorija+relativnosti&amp;rft.aufirst=Albert&amp;rft.aulast=Einstein&amp;rft.btitle=The+Meaning+of+Relativity&amp;rft.date=1996&amp;rft.genre=book&amp;rft.isbn=978-1-56731-136-5&amp;rft.pub=Fine+Communications&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmeaningofrelati00eins&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite id="CITEREFGeroch1981" class="citation book">Geroch, Robert (1981). <a rel="nofollow" class="external text" href="https://archive.org/details/generalrelativit0000gero"><i>General Relativity From A to B</i></a>. University of Chicago Press. <a href="/wiki/Me%C4%91unarodni_standardni_broj_knjige" title="Međunarodni standardni broj knjige">ISBN</a>&#160;<a href="/wiki/%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%A8%D1%82%D0%B0%D0%BC%D0%BF%D0%B0%D0%BD%D0%B8_%D0%B8%D0%B7%D0%B2%D0%BE%D1%80%D0%B8/978-0-226-28864-2" title="Посебно:Штампани извори/978-0-226-28864-2">978-0-226-28864-2</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fsr.wikipedia.org%3ASpecijalna+teorija+relativnosti&amp;rft.aufirst=Robert&amp;rft.aulast=Geroch&amp;rft.btitle=General+Relativity+From+A+to+B&amp;rft.date=1981&amp;rft.genre=book&amp;rft.isbn=978-0-226-28864-2&amp;rft.pub=University+of+Chicago+Press&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgeneralrelativit0000gero&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li>Logunov, Anatoly A. <i>Henri Poincaré and the Relativity Theory</i> (transl. from Russian by G. Pontocorvo and V. O. Soleviev, edited by V. A. Petrov) Nauka, Moscow <cite class="citation journal">. 2005. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<span class="plainlinks"><a rel="nofollow" class="external text" href="//arxiv.org/abs/PS_cache/physics/pdf/0408/0408077.pdf">PS_cache/physics/pdf/0408/0408077.pdf</a>&#8239;<span typeof="mw:File"><span title="Слободан приступ"><img alt="Слободан приступ" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/14px-Lock-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/18px-Lock-green.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span> <span style="font-size:100%" class="error citation-comment">Проверите вредност параметра <code style="color:inherit; border:inherit; padding:inherit;">&#124;arxiv=</code> (<a href="/wiki/%D0%9F%D0%BE%D0%BC%D0%BE%D1%9B:CS1_%D0%B3%D1%80%D0%B5%D1%88%D0%BA%D0%B5#bad_arxiv" title="Помоћ:CS1 грешке">помоћ</a>)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fsr.wikipedia.org%3ASpecijalna+teorija+relativnosti&amp;rft.date=2005&amp;rft.genre=article&amp;rft_id=info%3Aarxiv%2FPS_cache%2Fphysics%2Fpdf%2F0408%2F0408077.pdf&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span> <span style="font-size:100%" class="error citation-comment">Недостаје или је празан параметар <code style="color:inherit; border:inherit; padding:inherit;">&#124;title=</code> (<a href="/wiki/%D0%9F%D0%BE%D0%BC%D0%BE%D1%9B:CS1_%D0%B3%D1%80%D0%B5%D1%88%D0%BA%D0%B5#citation_missing_title" title="Помоћ:CS1 грешке">помоћ</a>)</span><sup class="noprint Inline-Template"><span style="white-space: nowrap;">&#91;<i><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%9C%D1%80%D1%82%D0%B2%D0%B0_%D0%B2%D0%B5%D0%B7%D0%B0" title="Википедија:Мртва веза"><span title="&#160;Ова веза је мртва и треба је или поправити или уклонити (септембар 2018)">мртва веза</span></a></i>&#93;</span></sup>.</li> <li><cite id="CITEREFMisnerThorne1971" class="citation book">Misner, Charles W.; Thorne, Kip; et&#160;al. (1971). <i>Gravitation</i>. San Francisco: W. H. Freeman &amp; Co. <a href="/wiki/Me%C4%91unarodni_standardni_broj_knjige" title="Međunarodni standardni broj knjige">ISBN</a>&#160;<a href="/wiki/%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%A8%D1%82%D0%B0%D0%BC%D0%BF%D0%B0%D0%BD%D0%B8_%D0%B8%D0%B7%D0%B2%D0%BE%D1%80%D0%B8/978-0-7167-0334-1" title="Посебно:Штампани извори/978-0-7167-0334-1">978-0-7167-0334-1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fsr.wikipedia.org%3ASpecijalna+teorija+relativnosti&amp;rft.au=Thorne%2C+Kip&amp;rft.aufirst=Charles+W.&amp;rft.aulast=Misner&amp;rft.btitle=Gravitation&amp;rft.date=1971&amp;rft.genre=book&amp;rft.isbn=978-0-7167-0334-1&amp;rft.place=San+Francisco&amp;rft.pub=W.+H.+Freeman+%26+Co.&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li>Post, E.J., <i>Formal Structure of Electromagnetics: General Covariance and Electromagnetics</i>, Dover Publications Inc. Mineola NY, 1962 reprinted 1997.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Članci_iz_časopisa"><span id=".C4.8Clanci_iz_.C4.8Dasopisa"></span>Članci iz časopisa</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;veaction=edit&amp;section=26" title="Уредите одељак „Članci iz časopisa”" class="mw-editsection-visualeditor"><span>уреди</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Specijalna_teorija_relativnosti&amp;action=edit&amp;section=26" title="Уреди извор одељка: Članci iz časopisa"><span>уреди извор</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://www.fourmilab.ch/etexts/einstein/specrel/www/">On the Electrodynamics of Moving Bodies</a>, A. Einstein, Annalen der Physik, 17:891, June 30, 1905 (in English translation).</li> <li>Will, Clifford M. "Clock synchronization and isotropy of the one-way speed of light", <i>Physics Review D</i> 45, 403-411 (1992)., Found.Phys. 34 (2005) 1835-1887</li> <li>Alvager et al., "Test of the Second Postulate of Special Relativity in the GeV region", <i>Physics Letters</i> 12, 260 (1964).</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r25469611">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r24365370">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style></div><div role="navigation" class="navbox" aria-labelledby="Релативност" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3" style="text-align:center;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r25469611"><style data-mw-deduplicate="TemplateStyles:r24365379">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-прикажи"><a href="/wiki/%D0%A8%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD:%D0%A0%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82" title="Шаблон:Релативност"><abbr title="Погледајте шаблон" style="text-align:center;;;background:none transparent;color:inherit;border:none;box-shadow:none;padding:0;">п</abbr></a></li><li class="nv-разговор"><a href="/w/index.php?title=%D0%A0%D0%B0%D0%B7%D0%B3%D0%BE%D0%B2%D0%BE%D1%80_%D0%BE_%D1%88%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD%D1%83:%D0%A0%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82&amp;action=edit&amp;redlink=1" class="new" title="Разговор о шаблону:Релативност (страница не постоји)"><abbr title="Разговарајте о шаблону" style="text-align:center;;;background:none transparent;color:inherit;border:none;box-shadow:none;padding:0;">р</abbr></a></li><li class="nv-уреди"><a href="/wiki/%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%A3%D1%80%D0%B5%D0%B4%D0%B8_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D1%83/%D0%A8%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD:%D0%A0%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82" title="Посебно:Уреди страницу/Шаблон:Релативност"><abbr title="Уредите шаблон" style="text-align:center;;;background:none transparent;color:inherit;border:none;box-shadow:none;padding:0;">у</abbr></a></li></ul></div><div id="Релативност" style="font-size:114%;margin:0 4em"><a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%98%D0%B0_%D1%80%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D0%B8" title="Теорија релативности">Релативност</a></div></th></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%"><a class="mw-selflink selflink">Специјална<br />релативност</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:9em;text-align:center;">Позадина</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Специјална теорија релативности</a></li> <li><a href="/wiki/%D0%9F%D1%80%D0%B8%D0%BD%D1%86%D0%B8%D0%BF_%D1%80%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D0%B8" title="Принцип релативности">Принцип релативности</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:9em;text-align:center;">Основе</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Referentni_okvir" class="mw-redirect" title="Referentni okvir">Референтни оквир</a></li> <li><a href="/wiki/%D0%91%D1%80%D0%B7%D0%B8%D0%BD%D0%B0_%D1%81%D0%B2%D0%B5%D1%82%D0%BB%D0%BE%D1%81%D1%82%D0%B8" title="Брзина светлости">Брзина светлости</a></li> <li><a href="/w/index.php?title=%D0%A5%D0%B8%D0%BF%D0%B5%D1%80%D0%B1%D0%BE%D0%BB%D0%B8%D1%87%D0%BD%D0%B0_%D0%BE%D1%80%D1%82%D0%BE%D0%B3%D0%BE%D0%BD%D0%B0%D0%BB%D0%BD%D0%BE%D1%81%D1%82&amp;action=edit&amp;redlink=1" class="new" title="Хиперболична ортогоналност (страница не постоји)">Хиперболична ортогоналност</a></li> <li><a href="/w/index.php?title=%D0%A0%D0%B0%D0%BF%D0%B8%D0%B4%D0%B8%D1%82%D0%B5%D1%82&amp;action=edit&amp;redlink=1" class="new" title="Рапидитет (страница не постоји)">Рапидитет</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%BA%D1%81%D0%B2%D0%B5%D0%BB%D0%BE%D0%B2%D0%B5_%D1%98%D0%B5%D0%B4%D0%BD%D0%B0%D1%87%D0%B8%D0%BD%D0%B5" title="Максвелове једначине">Максвелове једначине</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:9em;text-align:center;">Формулација</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/w/index.php?title=%D0%93%D0%B0%D0%BB%D0%B8%D0%BB%D0%B5%D0%B0%D0%BD%D1%81%D0%BA%D0%B0_%D0%B8%D0%BD%D0%B2%D0%B0%D1%80%D0%B8%D1%98%D0%B0%D0%BD%D1%82%D0%BD%D0%BE%D1%81%D1%82&amp;action=edit&amp;redlink=1" class="new" title="Галилеанска инваријантност (страница не постоји)">Галилеанска релативност</a></li> <li><a href="/w/index.php?title=%D0%93%D0%B0%D0%BB%D0%B8%D0%BB%D0%B5%D0%B0%D0%BD%D1%81%D0%BA%D0%B0_%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Галилеанска трансформација (страница не постоји)">Галилеанска трансформација</a></li> <li><a href="/wiki/%D0%9B%D0%BE%D1%80%D0%B5%D0%BD%D1%86%D0%BE%D0%B2%D0%B5_%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D1%98%D0%B5" title="Лоренцове трансформације">Лоренцова трансформација</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:9em;text-align:center;">Консеквенце</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%D0%94%D0%B8%D0%BB%D0%B0%D1%82%D0%B0%D1%86%D0%B8%D1%98%D0%B0_%D0%B2%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%B0" title="Дилатација времена">Дилатација времена</a></li> <li><a href="/wiki/Masa_po_teoriji_specijalnog_relativiteta" title="Masa po teoriji specijalnog relativiteta">Релативистичка маса</a></li> <li><a href="/wiki/%D0%88%D0%B5%D0%B4%D0%BD%D0%B0%D0%BA%D0%BE%D1%81%D1%82_%D0%BC%D0%B0%D1%81%D0%B5_%D0%B8_%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%98%D0%B5" title="Једнакост масе и енергије">Еквиваленција маса—енергија</a></li> <li><a href="/wiki/Kontrakcija_du%C5%BEine" title="Kontrakcija dužine">Контракција дужине</a></li> <li><a href="/w/index.php?title=%D0%A0%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82_%D1%81%D0%B8%D0%BC%D1%83%D0%BB%D1%82%D0%B0%D0%BD%D0%BE%D1%81%D1%82%D0%B8&amp;action=edit&amp;redlink=1" class="new" title="Релативност симултаности (страница не постоји)">Релативност симултаности</a></li> <li><a href="/w/index.php?title=%D0%A0%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%BA%D0%B8_%D0%B4%D0%BE%D0%BF%D0%BB%D0%B5%D1%80%D0%BE%D0%B2_%D0%B5%D1%84%D0%B5%D0%BA%D0%B0%D1%82&amp;action=edit&amp;redlink=1" class="new" title="Релативистички доплеров ефекат (страница не постоји)">Релативистички доплеров ефекат</a></li> <li><a href="/w/index.php?title=%D0%A2%D0%BE%D0%BC%D0%B0%D1%81%D0%BE%D0%B2%D0%B0_%D0%BF%D1%80%D0%B5%D1%86%D0%B5%D1%81%D0%B8%D1%98%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Томасова прецесија (страница не постоји)">Томасова прецесија</a></li> <li><a href="/w/index.php?title=%D0%A0%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%BA%D0%B8_%D0%B4%D0%B8%D1%81%D0%BA&amp;action=edit&amp;redlink=1" class="new" title="Релативистички диск (страница не постоји)">Релативистички дискови</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:9em;text-align:center;"><a href="/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%BE%D1%80-%D0%B2%D1%80%D0%B5%D0%BC%D0%B5" title="Простор-време">Простор-време</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/w/index.php?title=%D0%A1%D0%B2%D0%B5%D1%82%D0%BB%D0%BE%D1%81%D0%BD%D0%B0_%D0%BA%D1%83%D0%BF%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Светлосна купа (страница не постоји)">Светлосна купа</a></li> <li><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B8%D1%98%D0%B0_%D1%81%D0%B2%D0%B5%D1%82%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Линија света (страница не постоји)">Линија света</a></li> <li><a href="/w/index.php?title=%D0%9C%D0%B8%D0%BD%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D1%98%D0%B5%D0%B2_%D0%B4%D0%B8%D1%98%D0%B0%D0%B3%D1%80%D0%B0%D0%BC&amp;action=edit&amp;redlink=1" class="new" title="Минковскијев дијаграм (страница не постоји)">Дијаграм простор-време</a></li> <li><a href="/w/index.php?title=%D0%91%D0%B8%D0%BA%D0%B2%D0%B0%D1%82%D0%B5%D1%80%D0%BD%D0%B8%D0%BE%D0%BD&amp;action=edit&amp;redlink=1" class="new" title="Бикватернион (страница не постоји)">Бикватерниони</a></li> <li><a href="/w/index.php?title=%D0%9C%D0%B8%D0%BD%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D1%98%D0%B5%D0%B2_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%BE%D1%80&amp;action=edit&amp;redlink=1" class="new" title="Минковскијев простор (страница не постоји)">Минковскијев простор</a></li></ul> </div></td></tr></tbody></table><div></div></td><td class="noviewer navbox-image" rowspan="3" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/%D0%94%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Spacetime_curvature.png" class="mw-file-description" title="Курватура простора-времена"><img alt="Курватура простора-времена" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/22/Spacetime_curvature.png/150px-Spacetime_curvature.png" decoding="async" width="150" height="66" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/22/Spacetime_curvature.png/225px-Spacetime_curvature.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/22/Spacetime_curvature.png/300px-Spacetime_curvature.png 2x" data-file-width="660" data-file-height="291" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%"><a href="/wiki/%D0%9E%D0%BF%D1%88%D1%82%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%98%D0%B0_%D1%80%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D0%B8" title="Општа теорија релативности">Општа<br />релативност</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:9em;text-align:center;">Позадина</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%D0%9E%D0%BF%D1%88%D1%82%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%98%D0%B0_%D1%80%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D0%B8" title="Општа теорија релативности">Општа теорија релативности</a></li> <li><a href="/w/index.php?title=%D0%A3%D0%B2%D0%BE%D0%B4_%D1%83_%D0%BE%D0%BF%D1%88%D1%82%D1%83_%D1%80%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82&amp;action=edit&amp;redlink=1" class="new" title="Увод у општу релативност (страница не постоји)">Увод</a></li> <li><a href="/w/index.php?title=%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0_%D0%BE%D0%BF%D1%88%D1%82%D0%B5_%D1%80%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D0%B8&amp;action=edit&amp;redlink=1" class="new" title="Математика опште релативности (страница не постоји)">Математичка формулација</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:9em;text-align:center;">Фундаментални<br />концепти</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Специјална релативност</a></li> <li><a href="/wiki/Princip_ekvivalentnosti" title="Princip ekvivalentnosti">Принцип еквивалентности</a></li> <li><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B8%D1%98%D0%B0_%D1%81%D0%B2%D0%B5%D1%82%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Линија света (страница не постоји)">Линија света</a></li> <li><a href="/wiki/Rimanovska_geometrija" class="mw-redirect" title="Rimanovska geometrija">Римановска геометрија</a></li> <li><a href="/w/index.php?title=%D0%9C%D0%B8%D0%BD%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D1%98%D0%B5%D0%B2_%D0%B4%D0%B8%D1%98%D0%B0%D0%B3%D1%80%D0%B0%D0%BC&amp;action=edit&amp;redlink=1" class="new" title="Минковскијев дијаграм (страница не постоји)">Минковскијев дијаграм</a></li> <li><a href="/w/index.php?title=%D0%9F%D0%B5%D0%BD%D1%80%D0%BE%D1%83%D0%B7%D0%BE%D0%B2_%D0%B4%D0%B8%D1%98%D0%B0%D0%B3%D1%80%D0%B0%D0%BC&amp;action=edit&amp;redlink=1" class="new" title="Пенроузов дијаграм (страница не постоји)">Пенроузов дијаграм</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:9em;text-align:center;">Феномени</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%D0%A6%D1%80%D0%BD%D0%B0_%D1%80%D1%83%D0%BF%D0%B0" title="Црна рупа">Црна рупа</a></li> <li><a href="/wiki/%D0%A5%D0%BE%D1%80%D0%B8%D0%B7%D0%BE%D0%BD%D1%82_%D0%B4%D0%BE%D0%B3%D0%B0%D1%92%D0%B0%D1%98%D0%B0" title="Хоризонт догађаја">Хоризонт догађаја</a></li> <li><a href="/w/index.php?title=%D0%A4%D1%80%D0%B5%D1%98%D0%BC-%D0%B4%D1%80%D0%B5%D0%B3%D0%B8%D0%BD%D0%B3&amp;action=edit&amp;redlink=1" class="new" title="Фрејм-дрегинг (страница не постоји)">Фрејм-дрегинг</a></li> <li><a href="/w/index.php?title=%D0%93%D0%B5%D0%BE%D0%B4%D0%B5%D1%82%D1%81%D0%BA%D0%B8_%D0%B5%D1%84%D0%B5%D0%BA%D0%B0%D1%82&amp;action=edit&amp;redlink=1" class="new" title="Геодетски ефекат (страница не постоји)">Геодетски ефекат</a></li> <li><a href="/wiki/%D0%93%D1%80%D0%B0%D0%B2%D0%B8%D1%82%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%BE_%D1%81%D0%BE%D1%87%D0%B8%D0%B2%D0%BE" title="Гравитационо сочиво">Леће</a></li> <li><a href="/wiki/Singularnost" title="Singularnost">Сингуларност</a></li> <li><a href="/wiki/%D0%93%D1%80%D0%B0%D0%B2%D0%B8%D1%82%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%B8_%D1%82%D0%B0%D0%BB%D0%B0%D1%81" title="Гравитациони талас">Таласи</a></li> <li><a href="/w/index.php?title=%D0%9F%D0%B0%D1%80%D0%B0%D0%B4%D0%BE%D0%BA%D1%81_%D0%BB%D0%B5%D1%81%D1%82%D0%B0%D0%B2%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Парадокс лестава (страница не постоји)">Парадокс лестава</a></li> <li><a href="/wiki/%D0%9F%D0%B0%D1%80%D0%B0%D0%B4%D0%BE%D0%BA%D1%81_%D0%B1%D0%BB%D0%B8%D0%B7%D0%B0%D0%BD%D0%B0%D1%86%D0%B0" title="Парадокс близанаца">Парадокс близанаца</a></li> <li><a href="/w/index.php?title=%D0%9F%D1%80%D0%BE%D0%B1%D0%BB%D0%B5%D0%BC_%D0%B4%D0%B2%D0%B0_%D1%82%D0%B5%D0%BB%D0%B0_%D1%83_%D0%BE%D0%BF%D1%88%D1%82%D0%BE%D1%98_%D1%80%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D0%B8&amp;action=edit&amp;redlink=1" class="new" title="Проблем два тела у општој релативности (страница не постоји)">Проблем два тела</a></li> <li><a href="/w/index.php?title=%D0%91%D0%9A%D0%9B_%D1%81%D0%B8%D0%BD%D0%B3%D1%83%D0%BB%D0%B0%D1%80%D0%BD%D0%BE%D1%81%D1%82&amp;action=edit&amp;redlink=1" class="new" title="БКЛ сингуларност (страница не постоји)">БКЛ сингуларност</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:9em;text-align:center;">Једначине</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/w/index.php?title=%D0%90%D0%94%D0%9C_%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D0%BB%D0%B8%D0%B7%D0%B0%D0%BC&amp;action=edit&amp;redlink=1" class="new" title="АДМ формализам (страница не постоји)">АДМ формализам</a></li> <li><a href="/w/index.php?title=%D0%91%D0%A8%D0%A1%D0%9D_%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D0%BB%D0%B8%D0%B7%D0%B0%D0%BC&amp;action=edit&amp;redlink=1" class="new" title="БШСН формализам (страница не постоји)">БШСН формализам</a></li> <li><a href="/w/index.php?title=%D0%90%D1%98%D0%BD%D1%88%D1%82%D0%B0%D1%98%D0%BD%D0%BE%D0%B2%D0%B5_%D1%98%D0%B5%D0%B4%D0%BD%D0%B0%D1%87%D0%B8%D0%BD%D0%B5_%D0%BF%D0%BE%D1%99%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Ајнштајнове једначине поља (страница не постоји)">Ајнштајнове једначине поља</a></li> <li><a href="/w/index.php?title=%D0%93%D0%B5%D0%BE%D0%B4%D0%B5%D0%B7%D0%B8%D1%98%D0%B0_%D1%83_%D0%BE%D0%BF%D1%88%D1%82%D0%BE%D1%98_%D1%80%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D0%B8&amp;action=edit&amp;redlink=1" class="new" title="Геодезија у општој релативности (страница не постоји)">Геодетске једначине</a></li> <li><a href="/w/index.php?title=%D0%A4%D1%80%D0%B8%D0%B4%D0%BC%D0%B0%D0%BD%D0%BE%D0%B2%D0%B5_%D1%98%D0%B5%D0%B4%D0%BD%D0%B0%D1%87%D0%B8%D0%BD%D0%B5&amp;action=edit&amp;redlink=1" class="new" title="Фридманове једначине (страница не постоји)">Фридманове једначине</a></li> <li><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B0%D1%80%D0%B8%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B0_%D0%B3%D1%80%D0%B0%D0%B2%D0%B8%D1%82%D0%B0%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Линеаризована гравитација (страница не постоји)">Линеаризована гравитација</a></li> <li><a href="/w/index.php?title=%D0%9F%D0%B0%D1%80%D0%B0%D0%BC%D1%82%D0%B5%D1%80%D0%B8%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8_%D0%BF%D0%BE%D1%81%D1%82%D1%9A%D1%83%D1%82%D0%BD%D0%BE%D0%B2%D1%81%D0%BA%D0%B8_%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D0%BB%D0%B8%D0%B7%D0%B0%D0%BC&amp;action=edit&amp;redlink=1" class="new" title="Парамтеризовани постњутновски формализам (страница не постоји)">Постњутновски формализам</a></li> <li><a href="/w/index.php?title=%D0%A0%D0%B0%D1%98%D1%87%D0%B0%D1%83%D0%B4%D1%85%D1%83%D1%80%D0%B8%D1%98%D0%B5%D0%B2%D0%B0_%D1%98%D0%B5%D0%B4%D0%BD%D0%B0%D1%87%D0%B8%D0%BD%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Рајчаудхуријева једначина (страница не постоји)">Рајчаудхуријева једначина</a></li> <li><a href="/w/index.php?title=%D0%A5%D0%B0%D0%BC%D0%B8%D0%BB%D1%82%D0%BE%D0%BD%E2%80%94%D0%88%D0%B0%D0%BA%D0%BE%D0%B1%D0%B8%E2%80%94%D0%90%D1%98%D0%BD%D1%88%D1%82%D0%B0%D1%98%D0%BD%D0%BE%D0%B2%D0%B0_%D1%98%D0%B5%D0%B4%D0%BD%D0%B0%D1%87%D0%B8%D0%BD%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Хамилтон—Јакоби—Ајнштајнова једначина (страница не постоји)">Хамилтон—Јакоби—Ајнштајнова једначина</a></li> <li><a href="/w/index.php?title=%D0%95%D1%80%D0%BD%D1%81%D1%82%D0%BE%D0%B2%D0%B0_%D1%98%D0%B5%D0%B4%D0%BD%D0%B0%D1%87%D0%B8%D0%BD%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Ернстова једначина (страница не постоји)">Ернстова једначина</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:9em;text-align:center;">Напредне<br />теорије</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/w/index.php?title=%D0%91%D1%80%D0%B0%D0%BD%D1%81%E2%80%94%D0%94%D0%B8%D0%BA%D0%B8%D1%98%D0%B5%D0%B2%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%98%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Бранс—Дикијева теорија (страница не постоји)">Бранс—Дикијева теорија</a></li> <li><a href="/w/index.php?title=%D0%9A%D0%B0%D0%BB%D1%83%D1%86%D0%B0-%D0%9A%D0%BB%D0%B0%D1%98%D0%BD%D0%BE%D0%B2%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%98%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Калуца-Клајнова теорија (страница не постоји)">Калуца-Клајнова теорија</a></li> <li><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D0%BE%D0%B2_%D0%BF%D1%80%D0%B8%D0%BD%D1%86%D0%B8%D0%BF&amp;action=edit&amp;redlink=1" class="new" title="Махов принцип (страница не постоји)">Махов принцип</a></li> <li><a href="/wiki/Kvantna_gravitacija" title="Kvantna gravitacija">Квантна гравитација</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:9em;text-align:center;"><a href="/w/index.php?title=%D0%95%D0%B3%D0%B7%D0%B0%D0%BA%D1%82%D0%BD%D0%B5_%D1%81%D0%BE%D0%BB%D1%83%D1%86%D0%B8%D1%98%D0%B5_%D1%83_%D0%BE%D0%BF%D1%88%D1%82%D0%BE%D1%98_%D1%80%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D0%B8&amp;action=edit&amp;redlink=1" class="new" title="Егзактне солуције у општој релативности (страница не постоји)">Егзактне солуције</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/w/index.php?title=%D0%A8%D0%B2%D0%B0%D1%80%D1%86%D1%88%D0%B8%D0%BB%D0%B4%D0%BE%D0%B2%D0%B0_%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%BA%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Шварцшилдова метрика (страница не постоји)">Шварцшилдова метрика</a> (<a href="/w/index.php?title=%D0%A3%D0%BD%D1%83%D1%82%D1%80%D0%B0%D1%88%D1%9A%D0%B0_%D0%A8%D0%B2%D0%B0%D1%80%D1%86%D1%88%D0%B8%D0%BB%D0%B4%D0%BE%D0%B2%D0%B0_%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%BA%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Унутрашња Шварцшилдова метрика (страница не постоји)">унутрашња</a>)</li> <li><a href="/w/index.php?title=%D0%A0%D0%B0%D1%98%D1%81%D0%BD%D0%B5%D1%80%E2%80%94%D0%9D%D0%BE%D1%80%D0%B4%D1%81%D1%82%D1%80%D0%B5%D0%BC%D0%BE%D0%B2%D0%B0_%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%BA%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Рајснер—Нордстремова метрика (страница не постоји)">Рајснер—Нордстрем</a></li> <li><a href="/w/index.php?title=%D0%93%D0%B5%D0%B4%D0%B5%D0%BB%D0%BE%D0%B2%D0%B0_%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%BA%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Геделова метрика (страница не постоји)">Геделова метрика</a></li></ul> <ul><li><a href="/w/index.php?title=%D0%9A%D0%B5%D1%80%D0%BE%D0%B2%D0%B0_%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%BA%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Керова метрика (страница не постоји)">Керова метрика</a></li> <li><a href="/w/index.php?title=%D0%9A%D0%B5%D1%80%E2%80%94%D0%8A%D1%83%D0%BC%D0%B0%D0%BD%D0%BE%D0%B2%D0%B0_%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%BA%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Кер—Њуманова метрика (страница не постоји)">Кер—Њуманова метрика</a></li> <li><a href="/w/index.php?title=%D0%9A%D0%B0%D0%B7%D0%BD%D0%B5%D1%80%D0%BE%D0%B2%D0%B0_%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%BA%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Казнерова метрика (страница не постоји)">Казнерова метрика</a></li> <li><a href="/w/index.php?title=%D0%A4%D1%80%D0%B8%D0%B4%D0%BC%D0%B0%D0%BD%E2%80%94%D0%9B%D0%B5%D0%BC%D0%B5%D1%82%D1%80%E2%80%94%D0%A0%D0%BE%D0%B1%D0%B5%D1%80%D1%82%D1%81%D0%BE%D0%BD%E2%80%94%D0%92%D0%BE%D0%BA%D0%B5%D1%80%D0%BE%D0%B2%D0%B0_%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%BA%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Фридман—Леметр—Робертсон—Вокерова метрика (страница не постоји)">Фридман—Леметр—Робертсон—Вокерова метрика</a></li> <li><a href="/w/index.php?title=%D0%A2%D0%BE%D0%B1%E2%80%94%D0%9D%D0%90%D0%A2_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%BE%D1%80&amp;action=edit&amp;redlink=1" class="new" title="Тоб—НАТ простор (страница не постоји)">Тоб—НАТ простор</a></li> <li><a href="/w/index.php?title=%D0%9C%D0%B8%D0%BB%D0%BD%D0%BE%D0%B2_%D0%BC%D0%BE%D0%B4%D0%B5%D0%BB&amp;action=edit&amp;redlink=1" class="new" title="Милнов модел (страница не постоји)">Милнов модел</a></li> <li><a href="/w/index.php?title=%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%BE%D1%80-%D0%B2%D1%80%D0%B5%D0%BC%D0%B5_pp-%D1%82%D0%B0%D0%BB%D0%B0%D1%81%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Простор-време pp-таласа (страница не постоји)">pp-талас</a></li> <li><a href="/w/index.php?title=%D0%92%D0%B0%D0%BD_%D0%A1%D1%82%D0%BE%D0%BA%D1%83%D0%BC%D0%BE%D0%B2%D0%B0_%D0%BF%D1%80%D0%B0%D1%88%D0%B8%D0%BD%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Ван Стокумова прашина (страница не постоји)">Ван Стокумова прашина</a></li> <li><a href="/w/index.php?title=%D0%92%D0%B0%D1%98%D0%BB%E2%80%94%D0%9B%D1%83%D0%B8%D1%81%E2%80%94%D0%9F%D0%B0%D0%BF%D0%B0%D0%BF%D0%B5%D1%82%D1%80%D1%83%D0%BE%D0%B2%D0%B5_%D0%BA%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82%D0%B5&amp;action=edit&amp;redlink=1" class="new" title="Вајл—Луис—Папапетруове координате (страница не постоји)">Вајл—Луис—Папапетруове координате</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%">Научници</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%D0%90%D0%BB%D0%B1%D0%B5%D1%80%D1%82_%D0%90%D1%98%D0%BD%D1%88%D1%82%D0%B0%D1%98%D0%BD" title="Алберт Ајнштајн">Ајнштајн</a></li> <li><a href="/wiki/%D0%A5%D0%B5%D0%BD%D0%B4%D1%80%D0%B8%D0%BA_%D0%90%D0%BD%D1%82%D0%BE%D0%BD_%D0%9B%D0%BE%D1%80%D0%B5%D0%BD%D1%86" title="Хендрик Антон Лоренц">Лоренц</a></li> <li><a href="/wiki/%D0%94%D0%B0%D0%B2%D0%B8%D0%B4_%D0%A5%D0%B8%D0%BB%D0%B1%D0%B5%D1%80%D1%82" title="Давид Хилберт">Хилберт</a></li> <li><a href="/wiki/%D0%90%D0%BD%D1%80%D0%B8_%D0%9F%D0%BE%D0%B5%D0%BD%D0%BA%D0%B0%D1%80%D0%B5" title="Анри Поенкаре">Поенкаре</a></li> <li><a href="/wiki/%D0%9A%D0%B0%D1%80%D0%BB_%D0%A8%D0%B2%D0%B0%D1%80%D1%86%D1%88%D0%B8%D0%BB%D0%B4" title="Карл Шварцшилд">Шварцшилд</a></li> <li><a href="/w/index.php?title=%D0%92%D0%B8%D0%BB%D0%B5%D0%BC_%D0%B4%D0%B5_%D0%A1%D0%B8%D1%82%D0%B5%D1%80&amp;action=edit&amp;redlink=1" class="new" title="Вилем де Ситер (страница не постоји)">Де Ситер</a></li> <li><a href="/w/index.php?title=%D0%A5%D0%B0%D0%BD%D1%81_%D0%A0%D0%B0%D1%98%D1%81%D0%BD%D0%B5%D1%80&amp;action=edit&amp;redlink=1" class="new" title="Ханс Рајснер (страница не постоји)">Рајснер</a></li> <li><a href="/w/index.php?title=%D0%93%D1%83%D0%BD%D0%B0%D1%80_%D0%9D%D0%BE%D1%80%D0%B4%D1%81%D1%82%D1%80%D0%B5%D0%BC&amp;action=edit&amp;redlink=1" class="new" title="Гунар Нордстрем (страница не постоји)">Нордстрем</a></li> <li><a href="/wiki/%D0%A5%D0%B5%D1%80%D0%BC%D0%B0%D0%BD_%D0%92%D0%B0%D1%98%D0%BB" title="Херман Вајл">Вајл</a></li> <li><a href="/wiki/%D0%90%D1%80%D1%82%D1%83%D1%80_%D0%95%D0%B4%D0%B8%D0%BD%D0%B3%D1%82%D0%BE%D0%BD" title="Артур Едингтон">Едингтон</a></li> <li><a href="/w/index.php?title=%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D0%B0%D1%80_%D0%A4%D1%80%D0%B8%D0%B4%D0%B8%D0%BC%D0%B0%D0%BD&amp;action=edit&amp;redlink=1" class="new" title="Александар Фридиман (страница не постоји)">Фридман</a></li> <li><a href="/w/index.php?title=%D0%95%D0%B4%D0%B2%D0%B0%D1%80%D0%B4_%D0%90%D1%80%D1%82%D1%83%D1%80_%D0%9C%D0%B8%D0%BB%D0%BD&amp;action=edit&amp;redlink=1" class="new" title="Едвард Артур Милн (страница не постоји)">Милн</a></li> <li><a href="/wiki/Fric_Cviki" title="Fric Cviki">Цвики</a></li> <li><a href="/wiki/%D0%96%D0%BE%D1%80%D0%B6_%D0%9B%D0%B5%D0%BC%D0%B5%D1%82%D1%80" title="Жорж Леметр">Леметр</a></li> <li><a href="/wiki/%D0%9A%D1%83%D1%80%D1%82_%D0%93%D0%B5%D0%B4%D0%B5%D0%BB" title="Курт Гедел">Гедел</a></li> <li><a href="/wiki/%D0%8F%D0%BE%D0%BD_%D0%90%D1%80%D1%87%D0%B8%D0%B1%D0%B0%D0%BB%D0%B4_%D0%92%D0%B8%D0%BB%D0%B5%D1%80" title="Џон Арчибалд Вилер">Вилер</a></li> <li><a href="/w/index.php?title=%D0%A5%D0%B0%D1%83%D0%B0%D1%80%D0%B4_%D0%9F._%D0%A0%D0%BE%D0%B1%D0%B5%D1%80%D1%82%D1%81%D0%BE%D0%BD&amp;action=edit&amp;redlink=1" class="new" title="Хауард П. Робертсон (страница не постоји)">Робертсон</a></li> <li><a href="/w/index.php?title=%D0%8F%D0%B5%D1%98%D0%BC%D1%81_%D0%91._%D0%91%D0%B0%D1%80%D0%B4%D0%B8%D0%BD&amp;action=edit&amp;redlink=1" class="new" title="Џејмс Б. Бардин (страница не постоји)">Бардин</a></li> <li><a href="/w/index.php?title=%D0%90%D1%80%D1%82%D1%83%D1%80_%D0%8F%D0%BE%D1%84%D1%80%D0%B8_%D0%92%D0%BE%D0%BA%D0%B5%D1%80&amp;action=edit&amp;redlink=1" class="new" title="Артур Џофри Вокер (страница не постоји)">Вокер</a></li> <li><a href="/w/index.php?title=%D0%A0%D0%BE%D1%98_%D0%9A%D0%B5%D1%80&amp;action=edit&amp;redlink=1" class="new" title="Рој Кер (страница не постоји)">Кер</a></li> <li><a href="/wiki/%D0%A1%D1%83%D0%B1%D1%80%D0%B0%D0%BC%D0%B0%D0%BD%D0%B8%D1%98%D0%B0%D0%BD_%D0%A7%D0%B0%D0%BD%D0%B4%D1%80%D0%B0%D1%81%D0%B5%D0%BA%D0%B0%D1%80" title="Субраманијан Чандрасекар">Чандрасекар</a></li> <li><a href="/wiki/%D0%88%D0%B8%D1%80%D0%B3%D0%B5%D0%BD_%D0%95%D0%BB%D0%B5%D1%80%D1%81" title="Јирген Елерс">Елерс</a></li> <li><a href="/wiki/%D0%A0%D0%BE%D1%9F%D0%B5%D1%80_%D0%9F%D0%B5%D0%BD%D1%80%D0%BE%D1%83%D0%B7" title="Роџер Пенроуз">Пенроуз</a></li> <li><a href="/wiki/%D0%A1%D1%82%D0%B8%D0%B2%D0%B5%D0%BD_%D0%A5%D0%BE%D0%BA%D0%B8%D0%BD%D0%B3" title="Стивен Хокинг">Хокинг</a></li> <li><a href="/wiki/%D0%8F%D0%BE%D0%B7%D0%B5%D1%84_%D0%A5%D1%83%D1%82%D0%BE%D0%BD_%D0%A2%D0%B5%D1%98%D0%BB%D0%BE%D1%80_%D0%BC%D0%BB." title="Џозеф Хутон Тејлор мл.">Тејлор</a></li> <li><a href="/wiki/%D0%A0%D0%B0%D1%81%D0%B5%D0%BB_%D0%90%D0%BB%D0%B0%D0%BD_%D0%A5%D0%B0%D0%BB%D1%81" title="Расел Алан Халс">Халс</a></li> <li><a href="/w/index.php?title=%D0%92%D0%B8%D0%BB%D0%B5%D0%BC_%D0%8F%D0%B5%D1%98%D0%BA%D0%BE%D0%B1_%D0%B2%D0%B0%D0%BD_%D0%A1%D1%82%D0%BE%D0%BA%D1%83%D0%BC&amp;action=edit&amp;redlink=1" class="new" title="Вилем Џејкоб ван Стокум (страница не постоји)">Стокум</a></li> <li><a href="/w/index.php?title=%D0%95%D1%98%D0%B1%D1%80%D0%B0%D1%85%D0%B0%D0%BC_%D0%A5._%D0%A2%D0%BE%D0%B1&amp;action=edit&amp;redlink=1" class="new" title="Ејбрахам Х. Тоб (страница не постоји)">Тоб</a></li> <li><a href="/w/index.php?title=%D0%95%D0%B7%D1%80%D0%B0_%D0%A2._%D0%8A%D1%83%D0%BC%D0%B0%D0%BD&amp;action=edit&amp;redlink=1" class="new" title="Езра Т. Њуман (страница не постоји)">Њуман</a></li> <li><a href="/w/index.php?title=%D0%A8%D0%B8%D0%BD%D0%B3-%D1%82%D1%83%D0%BD%D0%B3_%D0%88%D1%83&amp;action=edit&amp;redlink=1" class="new" title="Шинг-тунг Ју (страница не постоји)">Јау</a></li> <li><a href="/wiki/%D0%9A%D0%B8%D0%BF_%D0%A2%D0%BE%D1%80%D0%BD" title="Кип Торн">Торн</a></li> <li><a href="/wiki/%D0%A0%D0%B0%D1%98%D0%BD%D0%B5%D1%80_%D0%92%D0%B0%D1%98%D1%81" title="Рајнер Вајс">Вајс</a></li> <li><a href="/w/index.php?title=%D0%A5%D0%B5%D1%80%D0%BC%D0%B0%D0%BD_%D0%91%D0%BE%D0%BD%D0%B4%D0%B8&amp;action=edit&amp;redlink=1" class="new" title="Херман Бонди (страница не постоји)">Бонди</a></li> <li><a href="/w/index.php?title=%D0%A7%D0%B0%D1%80%D0%BB%D1%81_%D0%92._%D0%9C%D0%B8%D1%81%D0%BD%D0%B5%D1%80&amp;action=edit&amp;redlink=1" class="new" title="Чарлс В. Миснер (страница не постоји)">Мизнер</a></li> <li><a href="/w/index.php?title=%D0%A1%D0%BF%D0%B8%D1%81%D0%B0%D0%BA_%D0%BE%D0%BD%D0%B8%D1%85_%D0%BA%D0%BE%D1%98%D0%B8_%D1%81%D1%83_%D0%B4%D0%BE%D0%BF%D1%80%D0%B8%D0%BD%D0%B5%D0%BB%D0%B8_%D0%BE%D0%BF%D1%88%D1%82%D0%BE%D1%98_%D1%80%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D0%B8&amp;action=edit&amp;redlink=1" class="new" title="Списак оних који су допринели општој релативности (страница не постоји)"><i>остали</i></a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3" style="text-align:center;"><div><b><a href="/w/index.php?title=%D0%90%D1%98%D0%BD%D1%88%D1%82%D0%B0%D1%98%D0%BD%D0%BE%D0%B2%D0%B5_%D1%98%D0%B5%D0%B4%D0%BD%D0%B0%D1%87%D0%B8%D0%BD%D0%B5_%D0%BF%D0%BE%D1%99%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Ајнштајнове једначине поља (страница не постоји)">Ајнштајнове једначине поља</a>:</b> &#160;&#160;&#160; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>+</mo> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>8</mn> <mi>&#x03C0;<!-- π --></mi> <mi>G</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mfrac> </mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/021a494922172bfe1c9fa4e80d25ac90228d72cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:23.286ex; height:5.676ex;" alt="{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu }}"></span> &#160;&#160;&#160; <b> и њихово аналитичко решење <a href="/w/index.php?title=%D0%95%D1%80%D0%BD%D1%81%D1%82%D0%BE%D0%B2%D0%B0_%D1%98%D0%B5%D0%B4%D0%BD%D0%B0%D1%87%D0%B8%D0%BD%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Ернстова једначина (страница не постоји)">Ернстовом једначином</a>:</b> &#160;&#160;&#160; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle \Re (u)(u_{rr}+u_{r}/r+u_{zz})=(u_{r})^{2}+(u_{z})^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mi>r</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>r</mi> <mo>+</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>z</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \displaystyle \Re (u)(u_{rr}+u_{r}/r+u_{zz})=(u_{r})^{2}+(u_{z})^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db925b77c5bbca8ae16b6dcdcb0b15a77955b6c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.161ex; height:3.176ex;" alt="{\displaystyle \displaystyle \Re (u)(u_{rr}+u_{r}/r+u_{zz})=(u_{r})^{2}+(u_{z})^{2}.}"></span></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r25469611"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r24365370"><style data-mw-deduplicate="TemplateStyles:r25743416">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r25743416"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r25743416"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r25743416"></div><div role="navigation" class="navbox authority-control" aria-labelledby="Нормативна_контрола_text-top&amp;#124;10px&amp;#124;alt=Уреди_на_Википодацима&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q11455#identifiers&amp;#124;class=noprint&amp;#124;Уреди_на_Википодацима" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Нормативна_контрола_text-top&amp;#124;10px&amp;#124;alt=Уреди_на_Википодацима&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q11455#identifiers&amp;#124;class=noprint&amp;#124;Уреди_на_Википодацима" style="font-size:114%;margin:0 4em"><a href="/wiki/%D0%9F%D0%BE%D0%BC%D0%BE%D1%9B:%D0%9D%D0%BE%D1%80%D0%BC%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%B0_%D0%BA%D0%BE%D0%BD%D1%82%D1%80%D0%BE%D0%BB%D0%B0" title="Помоћ:Нормативна контрола">Нормативна контрола</a> <span class="mw-valign-text-top noprint" typeof="mw:File"><a href="https://www.wikidata.org/wiki/Q11455#identifiers" title="Уреди на Википодацима"><img alt="Уреди на Википодацима" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Државне</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Relativité restreinte (physique)"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119327466">Француска</a></span></span></li> <li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Relativité restreinte (physique)"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119327466">BnF подаци</a></span></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4182215-8">Немачка</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="http://uli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007565727105171">Израел</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85126383">Сједињене Државе</a></span></li> <li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="speciální teorie relativity"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph1086057&amp;CON_LNG=ENG">Чешка</a></span></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Остале</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="special relativity"><a rel="nofollow" class="external text" href="https://www.britannica.com/science/special-relativity">Енциклопедија Британика</a></span></span></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐6f4956b788‐7m28s Cached time: 20241128145356 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.796 seconds Real time usage: 1.388 seconds Preprocessor visited node count: 6413/1000000 Post‐expand include size: 133942/2097152 bytes Template argument size: 24487/2097152 bytes Highest expansion depth: 54/100 Expensive parser function count: 10/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 28628/5000000 bytes Lua time usage: 0.366/10.000 seconds Lua memory usage: 15902442/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 792.806 1 -total 97.61% 773.838 103 Шаблон:Replace 15.98% 126.714 1 Шаблон:En 15.72% 124.591 1 Шаблон:Link_language 14.08% 111.599 1 Шаблон:Reflist 12.04% 95.445 6 Шаблон:Wayback 10.21% 80.921 7 Шаблон:Cite_book 9.85% 78.059 1 Шаблон:Релативност 9.76% 77.408 3 Шаблон:Navbox 9.14% 72.430 1 Шаблон:Commonscat --> <!-- Saved in parser cache with key srwiki:pcache:116824:|#|:idhash:canonical!sr and timestamp 20241128145356 and revision id 28525276. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Преузето из „<a dir="ltr" href="https://sr.wikipedia.org/w/index.php?title=Specijalna_teorija_relativnosti&amp;oldid=28525276">https://sr.wikipedia.org/w/index.php?title=Specijalna_teorija_relativnosti&amp;oldid=28525276</a>”</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%D0%9F%D0%BE%D1%81%D0%B5%D0%B1%D0%BD%D0%BE:%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B5" title="Посебно:Категорије">Категорије</a>: <ul><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0_%D1%80%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82" title="Категорија:Специјална релативност">Специјална релативност</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:%D0%A4%D1%83%D0%BD%D0%B4%D0%B0%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D0%BD%D0%B8_%D0%BA%D0%BE%D0%BD%D1%86%D0%B5%D0%BF%D1%82%D0%B8_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B5" title="Категорија:Фундаментални концепти физике">Фундаментални концепти физике</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Сакривене категорије: <ul><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:%D0%A7%D0%BB%D0%B0%D0%BD%D1%86%D0%B8_%D1%81%D0%B0_%D1%88%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD%D0%B8%D0%BC%D0%B0_%D1%85%D1%83%D1%82%D0%BD%D0%BE%D1%82%D0%B0_%D0%BA%D0%BE%D1%98%D0%B8_%D1%86%D0%B8%D1%99%D0%B0%D1%98%D1%83_%D0%BD%D0%B5%D0%BF%D0%BE%D1%81%D1%82%D0%BE%D1%98%D0%B5%D1%9B%D1%83_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D1%83" title="Категорија:Чланци са шаблонима хутнота који циљају непостојећу страницу">Чланци са шаблонима хутнота који циљају непостојећу страницу</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:CS1_%D0%BE%D0%B4%D1%80%D0%B6%D0%B0%D0%B2%D0%B0%D1%9A%D0%B5:_%D0%92%D0%B8%D1%88%D0%B5%D1%81%D1%82%D1%80%D1%83%D0%BA%D0%B0_%D0%B8%D0%BC%D0%B5%D0%BD%D0%B0:_%D1%81%D0%BF%D0%B8%D1%81%D0%B0%D0%BA_%D0%B0%D1%83%D1%82%D0%BE%D1%80%D0%B0" title="Категорија:CS1 одржавање: Вишеструка имена: списак аутора">CS1 одржавање: Вишеструка имена: списак аутора</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:CS1_%D0%B3%D1%80%D0%B5%D1%88%D0%BA%D0%B5:_arXiv" title="Категорија:CS1 грешке: arXiv">CS1 грешке: arXiv</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:%D0%A8%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD:%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0_%D0%BD%D0%B0_%D0%9E%D1%81%D1%82%D0%B0%D0%B2%D0%B8/%D0%BF%D0%B0%D1%80%D0%B0%D0%BC%D0%B5%D1%82%D0%B0%D1%80/%D0%BD%D0%B5%D0%BD%D0%B0%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD/%D0%B8%D0%BC%D0%B5_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B5_%D1%80%D0%B0%D0%B7%D0%BB%D0%B8%D1%87%D0%B8%D1%82%D0%BE_%D0%BE%D0%B4_%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%BE%D0%B4%D0%B0%D1%82%D0%B0%D0%BA%D0%B0" title="Категорија:Шаблон:Категорија на Остави/параметар/ненаведен/име странице различито од Википодатака">Шаблон:Категорија на Остави/параметар/ненаведен/име странице различито од Википодатака</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:%D0%A8%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD:%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0_%D0%BD%D0%B0_%D0%9E%D1%81%D1%82%D0%B0%D0%B2%D0%B8/%D0%B8%D0%BC%D0%B5%D0%BD%D1%81%D0%BA%D0%B8_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%BE%D1%80/%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D0%B8" title="Категорија:Шаблон:Категорија на Остави/именски простор/главни">Шаблон:Категорија на Остави/именски простор/главни</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:%D0%A1%D0%B2%D0%B8_%D1%87%D0%BB%D0%B0%D0%BD%D1%86%D0%B8_%D1%81%D0%B0_%D0%BC%D1%80%D1%82%D0%B2%D0%B8%D0%BC_%D0%B2%D0%B5%D0%B7%D0%B0%D0%BC%D0%B0" title="Категорија:Сви чланци са мртвим везама">Сви чланци са мртвим везама</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:%D0%A7%D0%BB%D0%B0%D0%BD%D1%86%D0%B8_%D1%81%D0%B0_%D0%BC%D1%80%D1%82%D0%B2%D0%B8%D0%BC_%D0%B2%D0%B5%D0%B7%D0%B0%D0%BC%D0%B0_%D0%BE%D0%B4_09._2018." title="Категорија:Чланци са мртвим везама од 09. 2018.">Чланци са мртвим везама од 09. 2018.</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:%D0%A7%D0%BB%D0%B0%D0%BD%D1%86%D0%B8_%D1%81%D0%B0_%D1%82%D1%80%D0%B0%D1%98%D0%BD%D0%BE_%D0%BC%D1%80%D1%82%D0%B2%D0%B8%D0%BC_%D1%81%D0%BF%D0%BE%D1%99%D0%B0%D1%88%D1%9A%D0%B8%D0%BC_%D0%B2%D0%B5%D0%B7%D0%B0%D0%BC%D0%B0" title="Категорија:Чланци са трајно мртвим спољашњим везама">Чланци са трајно мртвим спољашњим везама</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:%D0%A7%D0%BB%D0%B0%D0%BD%D1%86%D0%B8_%D1%81%D0%B0_%D0%B2%D0%B5%D0%B7%D0%B0%D0%BC%D0%B0_%D0%B4%D0%BE_%D1%81%D0%B0%D1%98%D1%82%D0%B0_%D0%9F%D1%80%D0%BE%D1%98%D0%B5%D0%BA%D0%B0%D1%82_%D0%93%D1%83%D1%82%D0%B5%D0%BD%D0%B1%D0%B5%D1%80%D0%B3" title="Категорија:Чланци са везама до сајта Пројекат Гутенберг">Чланци са везама до сајта Пројекат Гутенберг</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:%D0%A7%D0%BB%D0%B0%D0%BD%D1%86%D0%B8_%D1%81%D0%B0_%D1%81%D0%BF%D0%BE%D1%99%D0%B0%D1%88%D1%9A%D0%B8%D0%BC_%D0%B2%D0%B5%D0%B7%D0%B0%D0%BC%D0%B0_%D0%BD%D0%B0_%D1%98%D0%B5%D0%B7%D0%B8%D0%BA%D1%83_%E2%80%94_%D0%B5%D0%BD%D0%B3%D0%BB%D0%B5%D1%81%D0%BA%D0%B8" title="Категорија:Чланци са спољашњим везама на језику — енглески">Чланци са спољашњим везама на језику — енглески</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:Cite_book" title="Категорија:Cite book">Cite book</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:%D0%A1%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B5_%D1%81%D0%B0_%D0%B8%D0%B7%D0%B2%D0%BE%D1%80%D0%B8%D0%BC%D0%B0_%D0%B1%D0%B5%D0%B7_%D0%BD%D0%B0%D1%81%D0%BB%D0%BE%D0%B2%D0%B0" title="Категорија:Странице са изворима без наслова">Странице са изворима без наслова</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:%D0%A7%D0%BB%D0%B0%D0%BD%D1%86%D0%B8_%D1%81%D0%B0_BNF_%D0%B8%D0%B4%D0%B5%D0%BD%D1%82%D0%B8%D1%84%D0%B8%D0%BA%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D0%BC%D0%B0" title="Категорија:Чланци са BNF идентификаторима">Чланци са BNF идентификаторима</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:%D0%A7%D0%BB%D0%B0%D0%BD%D1%86%D0%B8_%D1%81%D0%B0_BNFdata_%D0%B8%D0%B4%D0%B5%D0%BD%D1%82%D0%B8%D1%84%D0%B8%D0%BA%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D0%BC%D0%B0" title="Категорија:Чланци са BNFdata идентификаторима">Чланци са BNFdata идентификаторима</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:%D0%A7%D0%BB%D0%B0%D0%BD%D1%86%D0%B8_%D1%81%D0%B0_GND_%D0%B8%D0%B4%D0%B5%D0%BD%D1%82%D0%B8%D1%84%D0%B8%D0%BA%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D0%BC%D0%B0" title="Категорија:Чланци са GND идентификаторима">Чланци са GND идентификаторима</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:%D0%A7%D0%BB%D0%B0%D0%BD%D1%86%D0%B8_%D1%81%D0%B0_J9U_%D0%B8%D0%B4%D0%B5%D0%BD%D1%82%D0%B8%D1%84%D0%B8%D0%BA%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D0%BC%D0%B0" title="Категорија:Чланци са J9U идентификаторима">Чланци са J9U идентификаторима</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:%D0%A7%D0%BB%D0%B0%D0%BD%D1%86%D0%B8_%D1%81%D0%B0_LCCN_%D0%B8%D0%B4%D0%B5%D0%BD%D1%82%D0%B8%D1%84%D0%B8%D0%BA%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D0%BC%D0%B0" title="Категорија:Чланци са LCCN идентификаторима">Чланци са LCCN идентификаторима</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:%D0%A7%D0%BB%D0%B0%D0%BD%D1%86%D0%B8_%D1%81%D0%B0_NKC_%D0%B8%D0%B4%D0%B5%D0%BD%D1%82%D0%B8%D1%84%D0%B8%D0%BA%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D0%BC%D0%B0" title="Категорија:Чланци са NKC идентификаторима">Чланци са NKC идентификаторима</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%98%D0%B0:%D0%A7%D0%BB%D0%B0%D0%BD%D1%86%D0%B8_%D1%81%D0%B0_EBO_%D0%B8%D0%B4%D0%B5%D0%BD%D1%82%D0%B8%D1%84%D0%B8%D0%BA%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D0%BC%D0%B0" title="Категорија:Чланци са EBO идентификаторима">Чланци са EBO идентификаторима</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Датум и време последње измене странице: 15. октобар 2024. у 23:31.</li> <li id="footer-info-copyright">Текст је доступан под лиценцом <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Ауторство—Делити под истим условима</a>; могући су и додатни услови. Погледајте <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">услове коришћења</a> за детаље.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Политика приватности</a></li> <li id="footer-places-about"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%9E_%D0%BD%D0%B0%D0%BC%D0%B0">О Википедији</a></li> <li id="footer-places-disclaimers"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%9E%D0%B4%D1%80%D0%B8%D1%86%D0%B0%D1%9A%D0%B5_%D0%BE%D0%B4%D0%B3%D0%BE%D0%B2%D0%BE%D1%80%D0%BD%D0%BE%D1%81%D1%82%D0%B8">Одрицање одговорности</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Кодекс понашања</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">За програмере</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/sr.wikipedia.org">Статистика</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Изјава о колачићима</a></li> <li id="footer-places-mobileview"><a href="//sr.m.wikipedia.org/w/index.php?title=Specijalna_teorija_relativnosti&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Мобилни приказ</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-59bbd5969d-w9998","wgBackendResponseTime":210,"wgPageParseReport":{"limitreport":{"cputime":"0.796","walltime":"1.388","ppvisitednodes":{"value":6413,"limit":1000000},"postexpandincludesize":{"value":133942,"limit":2097152},"templateargumentsize":{"value":24487,"limit":2097152},"expansiondepth":{"value":54,"limit":100},"expensivefunctioncount":{"value":10,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":28628,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 792.806 1 -total"," 97.61% 773.838 103 Шаблон:Replace"," 15.98% 126.714 1 Шаблон:En"," 15.72% 124.591 1 Шаблон:Link_language"," 14.08% 111.599 1 Шаблон:Reflist"," 12.04% 95.445 6 Шаблон:Wayback"," 10.21% 80.921 7 Шаблон:Cite_book"," 9.85% 78.059 1 Шаблон:Релативност"," 9.76% 77.408 3 Шаблон:Navbox"," 9.14% 72.430 1 Шаблон:Commonscat"]},"scribunto":{"limitreport-timeusage":{"value":"0.366","limit":"10.000"},"limitreport-memusage":{"value":15902442,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-6f4956b788-7m28s","timestamp":"20241128145356","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Specijalna teorija relativnosti","url":"https:\/\/sr.wikipedia.org\/wiki\/Specijalna_teorija_relativnosti","sameAs":"http:\/\/www.wikidata.org\/entity\/Q11455","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q11455","author":{"@type":"Organization","name":"\u0421\u0430\u0440\u0430\u0434\u043d\u0438\u0446\u0438 \u043f\u0440\u043e\u0458\u0435\u043a\u0430\u0442\u0430 \u0412\u0438\u043a\u0438\u043c\u0435\u0434\u0438\u0458\u0435"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-10-20T12:45:35Z","dateModified":"2024-10-15T22:31:10Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/7\/78\/Einstein1921_by_F_Schmutzer_4.jpg"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10