CINXE.COM
Search results for: WIEN2K
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: WIEN2K</title> <meta name="description" content="Search results for: WIEN2K"> <meta name="keywords" content="WIEN2K"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="WIEN2K" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="WIEN2K"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: WIEN2K</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> DFT Study of Secondary Phase of Cu2ZnSnS4 in Solar Cell: Cu2SnS3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mouna%20Mesbahi">Mouna Mesbahi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Loutfi%20Benkhedir"> M. Loutfi Benkhedir </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In CZTS films solar cell, the preferable reaction between Cu and sulfur vapor was likely to be induced by out diffusion of the bottom Cu component to the surface; this would lead to inhomogeneous distribution of the Cu component to form the Cu2SnS3 secondary phase and formation of many voids and crevices in the resulting CZTS film; which is also the cause of the decline in performance. In this work we study the electronic and optical properties of Cu2SnS3. For this purpose we used the Wien2k code based on the theory of density functional theory (DFT) with the modified Becke-Johnson exchange potential mBJ and the Hubbard potential individually or combined. We have found an energy gap 0.92 eV. The results are in good agreement with experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu2SnS3" title="Cu2SnS3">Cu2SnS3</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20and%20optical%20properties" title=" electronic and optical properties"> electronic and optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=mBJ%2BU" title=" mBJ+U"> mBJ+U</a>, <a href="https://publications.waset.org/abstracts/search?q=WIEN2K" title=" WIEN2K"> WIEN2K</a> </p> <a href="https://publications.waset.org/abstracts/18915/dft-study-of-secondary-phase-of-cu2znsns4-in-solar-cell-cu2sns3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">560</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Computational Determination of the Magneto Electronic Properties of Ce₁₋ₓCuₓO₂ (x=12.5%): Emerging Material for Spintronic Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Bouhlala">Aicha Bouhlala</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabah%20Chettibi"> Sabah Chettibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doping CeO₂ with transition metals is an effective way of tuning its properties. In the present work, we have performed self-consistent ab-initio calculation using the full-potential linearized augmented plane-wave method (FP-LAPW), based on the density functional theory (DFT) as implemented in the Wien2k simulation code to study the structural, electronic, and magnetic properties of the compound Ce₁₋ₓCuₓO₂ (x=12.5%) fluorite type oxide and to explore the effects of dopant Cu in ceria. The exchange correlation potential has been treated using the Perdew-Burke-Eenzerhof revised of solid (PBEsol). In structural properties, the equilibrium lattice constant is observed for the compound, which exists within the value of 5.382 A°. In electronic properties, the spin-polarized electronic bandstructure elucidates the semiconductor nature of the material in both spin channels, with the compound was observed to have a narrow bandgap on the spin-down configuration (0.162 EV) and bandgap on the spin-up (2.067 EV). Hence, the doped atom Cu plays a vital role in increasing the magnetic moments of the supercell, and the value of the total magnetic moment is found to be 2.99438 μB. Therefore, the compound Cu-doped CeO₂ shows a strong ferromagnetic behavior. The predicted results propose the compound could be a good candidate for spintronics applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-doped%20CeO%E2%82%82" title="Cu-doped CeO₂">Cu-doped CeO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=Wien2k" title=" Wien2k"> Wien2k</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/138828/computational-determination-of-the-magneto-electronic-properties-of-ce1cuo2-x125-emerging-material-for-spintronic-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Investigation Of Eugan's, Optical Properties With Dft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahieddine.%20Bouabdellah">Bahieddine. Bouabdellah</a>, <a href="https://publications.waset.org/abstracts/search?q=Benameur.%20Amiri"> Benameur. Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader.nouri"> Abdelkader.nouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Europium-doped gallium nitride (EuGaN) is a promising material for optoelectronic and thermoelectric devices. This study investigates its optical properties using density functional theory (DFT) with the FP-LAPW method and MBJ+U correction. The simulation substitutes a gallium atom with europium in a hexagonal GaN lattice (6% doping). Distinct absorption peaks are observed in the optical analysis. These results highlight EuGaN's potential for various applications and pave the way for further research on rare earth-doped materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eugan" title="eugan">eugan</a>, <a href="https://publications.waset.org/abstracts/search?q=fp-lapw" title=" fp-lapw"> fp-lapw</a>, <a href="https://publications.waset.org/abstracts/search?q=dft" title=" dft"> dft</a>, <a href="https://publications.waset.org/abstracts/search?q=wien2k" title=" wien2k"> wien2k</a>, <a href="https://publications.waset.org/abstracts/search?q=mbj%20hubbard" title=" mbj hubbard"> mbj hubbard</a> </p> <a href="https://publications.waset.org/abstracts/185924/investigation-of-eugans-optical-properties-with-dft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Investigation about Structural and Optical Properties of Bulk and Thin Film of 1H-CaAlSi by Density Functional Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Babaeipour">M. Babaeipour</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vejdanihemmat"> M. Vejdanihemmat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical properties of bulk and thin film of 1H-CaAlSi for two directions (1,0,0) and (0,0,1) were studied. The calculations are carried out by Density Functional Theory (DFT) method using full potential. GGA approximation was used to calculate exchange-correlation energy. The calculations are performed by WIEN2k package. The results showed that the absorption edge is shifted backward 0.82eV in the thin film than the bulk for both directions. The static values of the real part of dielectric function for four cases were obtained. The static values of the refractive index for four cases are calculated too. The reflectivity graphs have shown an intensive difference between the reflectivity of the thin film and the bulk in the ultraviolet region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1H-CaAlSi" title="1H-CaAlSi">1H-CaAlSi</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption" title=" absorption"> absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk" title=" bulk"> bulk</a>, <a href="https://publications.waset.org/abstracts/search?q=optical" title=" optical"> optical</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a> </p> <a href="https://publications.waset.org/abstracts/30993/investigation-about-structural-and-optical-properties-of-bulk-and-thin-film-of-1h-caalsi-by-density-functional-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> High-Pressure Calculations of the Elastic Properties of ZnSx Se 1−x Alloy in the Virtual-Crystal Approximation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Lebga">N. Lebga</a>, <a href="https://publications.waset.org/abstracts/search?q=Kh.%20Bouamama"> Kh. Bouamama</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kassali"> K. Kassali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report first-principles calculation results on the structural and elastic properties of ZnS x Se1−x alloy for which we employed the virtual crystal approximation provided with the ABINIT program. The calculations done using density functional theory within the local density approximation and employing the virtual-crystal approximation, we made a comparative study between the numerical results obtained from ab-initio calculation using ABINIT or Wien2k within the Density Functional Theory framework with either Local Density Approximation or Generalized Gradient approximation and the pseudo-potential plane-wave method with the Hartwigzen Goedecker Hutter scheme potentials. It is found that the lattice parameter, the phase transition pressure, and the elastic constants (and their derivative with respect to the pressure) follow a quadratic law in x. The variation of the elastic constants is also numerically studied and the phase transformations are discussed in relation to the mechanical stability criteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title="density functional theory">density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20properties" title=" elastic properties"> elastic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnS" title=" ZnS"> ZnS</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnSe" title=" ZnSe"> ZnSe</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/33371/high-pressure-calculations-of-the-elastic-properties-of-znsx-se-1x-alloy-in-the-virtual-crystal-approximation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Characterization of Nickel Based Metallic Superconducting Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Benmalem">Y. Benmalem </a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abbad"> A. Abbad</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Benstaali"> W. Benstaali</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Lantri"> T. Lantri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Density functional theory is used to investigate the.the structural, electronic, and magnetic properties of the cubic anti-perovskites InNNi3 and ZnNNi3. The structure of antiperovskite also called (perovskite-inverse) identical to the perovskite structure of the general formula ABX3, where A is a main group (III–V) element or a metallic element, B is carbon or nitrogen, and X is a transition metal, displays a wide range of interesting physical properties, such as giant magnetoresistance. Elastic and electronic properties were determined using generalized gradient approximation (GGA), and local spin density approximation (LSDA) approaches, ), as implemented in the Wien2k computer package. The results show that the two compounds are strong ductile and satisfy the Born-Huang criteria, so they are mechanically stable at normal conditions. Electronic properties show that the two compounds studied are metallic and non-magnetic. The studies of these compounds have confirmed the effectiveness of the two approximations and the ground-state properties are in good agreement with experimental data and theoretical results available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-perovskites" title="anti-perovskites">anti-perovskites</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20anisotropy" title=" elastic anisotropy"> elastic anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20band%20structure" title=" electronic band structure"> electronic band structure</a>, <a href="https://publications.waset.org/abstracts/search?q=first-principles%20calculations" title=" first-principles calculations"> first-principles calculations</a> </p> <a href="https://publications.waset.org/abstracts/87900/characterization-of-nickel-based-metallic-superconducting-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> First Principls Study of Structural, Electronic, Magnetic and Optical Properties of SiNi₂O₄ Spinel Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karkour%20Selma">Karkour Selma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We conducted first principles full potential calculations using the Wien2k code to explore the structural, electronic, magnetic, and optical properties of SiNi₂O₄, a cubic normal spinel oxide. Our calculations, based on the GGA-PBEsol of the generalized gradient approximation, revealed several key findings. The spinel oxides exhibited a stable cubic structure in the ferromagnetic phase and showed 100% spin polarization. We determined the equilibrium lattice constant and internal parameter values. In terms of the electronic properties, we observed a direct bandgap of 2.68 eV for the spin-up configuration, while the spin-down configuration exhibited an indirect bandgap of 0.82 eV. Additionally, we calculated the total density of states and partial densities for each atom, finding a magnetic moment spin density of states of 8.0 μB per formula unit. The optical properties have been calculated. The real, Ԑ₁(ω) and the imaginary, Ԑ₂(ω) parts of the complex dielectric constants, refractivity, reflection and energy loss when light scattered from the material. The absorption region spanned from 1.5 eV to 14 eV, with significant intensity. The calculated results confirm the suitability of this material for optical and spintronic devices application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=spintronic" title=" spintronic"> spintronic</a>, <a href="https://publications.waset.org/abstracts/search?q=GGA" title=" GGA"> GGA</a>, <a href="https://publications.waset.org/abstracts/search?q=spinel" title=" spinel"> spinel</a> </p> <a href="https://publications.waset.org/abstracts/167851/first-principls-study-of-structural-electronic-magnetic-and-optical-properties-of-sini2o4-spinel-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Half-Metallic Ferromagnetism in Ternary Zinc Blende Fe/In0.5Ga0.5 as/in Psuperlattice: First-Principles Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Berrouachedi">N. Berrouachedi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouslama"> M. Bouslama</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rioual"> S. Rioual</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Lescop"> B. Lescop</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Langlois"> J. Langlois</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using first-principles calculations within the LSDA (Local Spin Density Approximation) method based on density functional theory (DFT), the electronic structure and magnetic properties of zinc blende Fe/In0.5Ga0.5As/InPsuperlattice are investigated. This compound are found to be half -metallic ferromagnets with a total magnetic moment of 2.25μB per Fe. In addition to this, we reported the DRX measurements of the thick iron sample before and after annealing. One should note, after the annealing treatment at a higher temperature, the disappearance of the peak associated to the Fe(001) plane. In contrast to this report, we observed after the annealing at low temperature the additional peaks attributed to the presence of indium and Fe2As. This suggests a subsequent process consisting in a strong migration of atoms followed with crystallization at the higher temperature.To investigate the origin of magnetism and electronic structure in these zb compounds, we calculated the total and partial DOS of FeInP.One can see that µtotal=4.24µBand µFe=3.27µB in contrast µIn=0.021µB and µP=0.049µB.These results predicted that FeInP compound do belong to the class of zb half metallic HM ferromagnetswith a pseudo gap= 0.93 eVare more promising materials for spintronics devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zincblend%20structure" title="zincblend structure">zincblend structure</a>, <a href="https://publications.waset.org/abstracts/search?q=half%20metallic%20ferromagnet" title=" half metallic ferromagnet"> half metallic ferromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20moments" title=" spin moments"> spin moments</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20and%20partial%20DOS" title=" total and partial DOS"> total and partial DOS</a>, <a href="https://publications.waset.org/abstracts/search?q=DRX" title=" DRX"> DRX</a>, <a href="https://publications.waset.org/abstracts/search?q=Wien2k" title=" Wien2k"> Wien2k</a> </p> <a href="https://publications.waset.org/abstracts/39717/half-metallic-ferromagnetism-in-ternary-zinc-blende-fein05ga05-asin-psuperlattice-first-principles-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> First Principle Studies on the Structural, Electronic and Magnetic Properties of Some BaMn-Based Double Perovskites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amel%20Souidi">Amel Souidi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bentata"> S. Bentata</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouadjemi"> B. Bouadjemi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Lantri"> T. Lantri</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Aziz"> Z. Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Perovskite materials which include magnetic elements have relevance due to the technological perspectives in the spintronics industry. In this work, we have investigated the structural, electronic and magnetic properties of double perovskites Ba2MnXO6 with X= Mo and W by using the full-potential linearized augmented plane wave (FP-LAPW) method based on Density Functional Theory (DFT) [1, 2] as implemented in the WIEN2K [3] code. The interchange-correlation potential was included through the generalized gradient approximation (GGA) [4] as well as taking into account the on-site coulomb repulsive interaction in (GGA+U) approach. We have analyzed the structural parameters, charge and spin densities, total and partial densities of states. The results show that the materials crystallize in the 225 space group (Fm-3m) and have a lattice parameter of about 7.97 Å and 7.95 Å for Ba2MnMoO6 and Ba2MnWO6, respectively. The band structures reveal a metallic ferromagnetic (FM) ground state in Ba2MnMoO6 and half-metallic (HM) ferromagnetic (FM) ground state in the Ba2MnWO6 compound, with total magnetic moment equal 2.9951μB (Ba2MnMoO6 ) and 4.0001μB (Ba2MnWO6 ). The GGA+U calculations predict an energy gap in the spin-up bands in Ba2MnWO6. So we estimate that this material with HM-FM nature implies a promising application in spin-electronics technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20perovskites" title="double perovskites">double perovskites</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20structure" title=" electronic structure"> electronic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=first-principles" title=" first-principles"> first-principles</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductors" title=" semiconductors"> semiconductors</a> </p> <a href="https://publications.waset.org/abstracts/40256/first-principle-studies-on-the-structural-electronic-and-magnetic-properties-of-some-bamn-based-double-perovskites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Unveiling the Impact of Ultra High Vacuum Annealing Levels on Physico-Chemical Properties of Bulk ZnSe Semiconductor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kheira%20Hamaida">Kheira Hamaida</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Salah%20Halati"> Mohamed Salah Halati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this current paper, our aim work is to link as possible the obtained simulation results and the other experimental ones, just focusing on the electronic and optical properties of ZnSe. The predictive spectra of the total and partial densities of states using the Full Potential Linearized/Augmented Plane Wave method with the newly Tran-Blaha (TB) modified Becke-Johnson (mBJ) exchange-correlation potential (EXC). So the upper valence energy (UVE) levels contain the relative contribution of Se-(4p and 3d) states with considerable contribution from the electrons of Zn-2s orbital. The dielectric function of w-ZnSe, with its two parts, appears with a noticeable anisotropy character. The microscopic origins of the electronic states that are responsible for the observed peaks in the spectrum are determined through the decomposition of the spectrum to the individual contributions of the electronic transitions between the pairs of bands, where Vi is an occupied state in the valence band, and Ci is an unoccupied state in the conduction band. X-PES (X Ray-Photo Electron Spectroscopy) is an important technique used to probe the homogeneity, stoichiometry, and purity state of the title compound. In order to check the electron transitions derived from simulations and the others from Reflected Electron Energy Loss Spectroscopy (REELS) technique which was of great sensitivity, is used to determine the interband electronic transitions. In the optical window (Eg), all the electron energy states created were also determined through the specific gaussian deconvolution of the photoluminescence spectrum (PLS) that probed under a room temperature (RT). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title="spectroscopy">spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=WIEN2K" title=" WIEN2K"> WIEN2K</a>, <a href="https://publications.waset.org/abstracts/search?q=IIB-VIA%20semiconductors" title=" IIB-VIA semiconductors"> IIB-VIA semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20function" title=" dielectric function"> dielectric function</a> </p> <a href="https://publications.waset.org/abstracts/145936/unveiling-the-impact-of-ultra-high-vacuum-annealing-levels-on-physico-chemical-properties-of-bulk-znse-semiconductor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Comparative Study of Electronic and Optical Properties of Ammonium and Potassium Dinitramide Salts through Ab-Initio Calculations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Prathap%20Kumar">J. Prathap Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Vaitheeswaran"> G. Vaitheeswaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigates the role of ammonium and potassium ion in the electronic, bonding and optical properties of dinitramide salts due to their stability and non-toxic nature. A detailed analysis of bonding between NH₄ and K with dinitramide, optical transitions from the valence band to the conduction band, absorption spectra, refractive indices, reflectivity, loss function are reported. These materials are well known as oxidizers in solid rocket propellants. In the present work, we use full potential linear augmented plane wave (FP-LAPW) method which is implemented in the Wien2k package within the framework of density functional theory. The standard DFT functional local density approximation (LDA) and generalized gradient approximation (GGA) always underestimate the band gap by 30-40% due to the lack of derivative discontinuities of the exchange-correlation potential with respect to an occupation number. In order to get reliable results, one must use hybrid functional (HSE-PBE), GW calculations and Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. It is very well known that hybrid functionals GW calculations are very expensive, the later methods are computationally cheap. The new developed TB-mBJ functionals use information kinetic energy density along with the charge density employed in DFT. The TB-mBJ functionals cannot be used for total energy calculations but instead yield very much improved band gap. The obtained electronic band gap at gamma point for both the ammonium dinitramide and potassium dinitramide are found to be 2.78 eV and 3.014 eV with GGA functional, respectively. After the inclusion of TB-mBJ, the band gap improved by 4.162 eV for potassium dinitramide and 4.378 eV for ammonium dinitramide. The nature of the band gap is direct in ADN and indirect in KDN. The optical constants such as dielectric constant, absorption, and refractive indices, birefringence values are presented. Overall as there are no experimental studies we present the improved band gap with TB-mBJ functional following with optical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20dinitramide" title="ammonium dinitramide">ammonium dinitramide</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium%20dinitramide" title=" potassium dinitramide"> potassium dinitramide</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=propellants" title=" propellants"> propellants</a> </p> <a href="https://publications.waset.org/abstracts/94164/comparative-study-of-electronic-and-optical-properties-of-ammonium-and-potassium-dinitramide-salts-through-ab-initio-calculations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Comparison of the Thermal Behavior of Different Crystal Forms of Manganese(II) Oxalate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Donkova">B. Donkova</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nedyalkova"> M. Nedyalkova</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Mehandjiev"> D. Mehandjiev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sparingly soluble manganese oxalate is an appropriate precursor for the preparation of nanosized manganese oxides, which have a wide range of technological application. During the precipitation of manganese oxalate, three crystal forms could be obtained – α-MnC₂O₄.2H₂O (SG C2/c), γ-MnC₂O₄.2H₂O (SG P212121) and orthorhombic MnC₂O₄.3H₂O (SG Pcca). The thermolysis of α-MnC₂O₄.2H₂O has been extensively studied during the years, while the literature data for the other two forms has been quite scarce. The aim of the present communication is to highlight the influence of the initial crystal structure on the decomposition mechanism of these three forms, their magnetic properties, the structure of the anhydrous oxalates, as well as the nature of the obtained oxides. For the characterization of the samples XRD, SEM, DTA, TG, DSC, nitrogen adsorption, and in situ magnetic measurements were used. The dehydration proceeds in one step with α-MnC₂O₄.2H2O and γ-MnC₂O₄.2H₂O, and in three steps with MnC₂O₄.3H2O. The values of dehydration enthalpy are 97, 149 and 132 kJ/mol, respectively, and the last two were reported for the first time, best to our knowledge. The magnetic measurements show that at room temperature all samples are antiferomagnetic, however during the dehydration of α-MnC₂O₄.2H₂O the exchange interaction is preserved, for MnC₂O₄.3H₂O it changes to ferromagnetic above 35°C, and for γ-MnC₂O₄.2H₂O it changes twice from antiferomagnetic to ferromagnetic above 70°C. The experimental results for magnetic properties are in accordance with the computational results obtained with Wien2k code. The difference in the initial crystal structure of the forms used determines different changes in the specific surface area during dehydration and different extent of Mn(II) oxidation during decomposition in the air; both being highest at α-MnC₂O₄.2H₂O. The isothermal decomposition of the different oxalate forms shows that the type and physicochemical properties of the oxides, obtained at the same annealing temperature depend on the precursor used. Based on the results from the non-isothermal and isothermal experiments, and from different methods used for characterization of the sample, a comparison of the nature, mechanism and peculiarities of the thermolysis of the different crystal forms of manganese oxalate was made, which clearly reveals the influence of the initial crystal structure. Acknowledgment: 'Science and Education for Smart Growth', project BG05M2OP001-2.009-0028, COST Action MP1306 'Modern Tools for Spectroscopy on Advanced Materials', and project DCOST-01/18 (Bulgarian Science Fund). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystal%20structure" title="crystal structure">crystal structure</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese%20oxalate" title=" manganese oxalate"> manganese oxalate</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20behavior" title=" thermal behavior"> thermal behavior</a> </p> <a href="https://publications.waset.org/abstracts/85251/comparison-of-the-thermal-behavior-of-different-crystal-forms-of-manganeseii-oxalate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>