CINXE.COM
Thin film - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Thin film - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"9eb31068-7f02-4279-bce7-6067353d691c","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Thin_film","wgTitle":"Thin film","wgCurRevisionId":1254561302,"wgRevisionId":1254561302,"wgArticleId":1033036,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Use American English from August 2019","All Wikipedia articles written in American English","Use dmy dates from December 2017","Articles to be split from June 2021","All articles to be split","All accuracy disputes","Articles with disputed statements from November 2021","Artificial materials","Materials science","Nanotechnology","Thin films"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en", "wgPageContentModel":"wikitext","wgRelevantPageName":"Thin_film","wgRelevantArticleId":1033036,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":70000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1137203","wgCheckUserClientHintsHeadersJsApi":["brands", "architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP", "ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Thin film - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Thin_film"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Thin_film&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Thin_film"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Thin_film rootpage-Thin_film skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Thin+film" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Thin+film" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Thin+film" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Thin+film" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Nucleation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Nucleation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Nucleation</span> </div> </a> <button aria-controls="toc-Nucleation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Nucleation subsection</span> </button> <ul id="toc-Nucleation-sublist" class="vector-toc-list"> <li id="toc-Adsorption_and_desorption" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Adsorption_and_desorption"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Adsorption and desorption</span> </div> </a> <ul id="toc-Adsorption_and_desorption-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nucleation_models" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Nucleation_models"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Nucleation models</span> </div> </a> <ul id="toc-Nucleation_models-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Surface_diffusion" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Surface_diffusion"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Surface diffusion</span> </div> </a> <ul id="toc-Surface_diffusion-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Deposition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Deposition"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Deposition</span> </div> </a> <button aria-controls="toc-Deposition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Deposition subsection</span> </button> <ul id="toc-Deposition-sublist" class="vector-toc-list"> <li id="toc-Chemical_deposition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Chemical_deposition"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Chemical deposition</span> </div> </a> <ul id="toc-Chemical_deposition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Physical_deposition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Physical_deposition"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Physical deposition</span> </div> </a> <ul id="toc-Physical_deposition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Growth_modes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Growth_modes"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Growth modes</span> </div> </a> <ul id="toc-Growth_modes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Epitaxy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Epitaxy"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Epitaxy</span> </div> </a> <ul id="toc-Epitaxy-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Mechanical_Behavior" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Mechanical_Behavior"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Mechanical Behavior</span> </div> </a> <button aria-controls="toc-Mechanical_Behavior-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Mechanical Behavior subsection</span> </button> <ul id="toc-Mechanical_Behavior-sublist" class="vector-toc-list"> <li id="toc-Stress" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Stress"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Stress</span> </div> </a> <ul id="toc-Stress-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Strain" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Strain"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Strain</span> </div> </a> <ul id="toc-Strain-sublist" class="vector-toc-list"> <li id="toc-Thermal_Strain" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Thermal_Strain"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.1</span> <span>Thermal Strain</span> </div> </a> <ul id="toc-Thermal_Strain-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Growth_Strain" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Growth_Strain"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.2</span> <span>Growth Strain</span> </div> </a> <ul id="toc-Growth_Strain-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Epitaxial_Strains" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Epitaxial_Strains"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.3</span> <span>Epitaxial Strains</span> </div> </a> <ul id="toc-Epitaxial_Strains-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Measuring_stress_and_strain" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Measuring_stress_and_strain"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Measuring stress and strain</span> </div> </a> <ul id="toc-Measuring_stress_and_strain-sublist" class="vector-toc-list"> <li id="toc-Wafer_Curvature_Measurements" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Wafer_Curvature_Measurements"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.1</span> <span>Wafer Curvature Measurements</span> </div> </a> <ul id="toc-Wafer_Curvature_Measurements-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nanoindentation" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Nanoindentation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.2</span> <span>Nanoindentation</span> </div> </a> <ul id="toc-Nanoindentation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Strain_engineering" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Strain_engineering"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Strain engineering</span> </div> </a> <ul id="toc-Strain_engineering-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Multilayer_medium" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Multilayer_medium"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Multilayer medium</span> </div> </a> <button aria-controls="toc-Multilayer_medium-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Multilayer medium subsection</span> </button> <ul id="toc-Multilayer_medium-sublist" class="vector-toc-list"> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Decorative_coatings" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Decorative_coatings"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Decorative coatings</span> </div> </a> <ul id="toc-Decorative_coatings-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Optical_coatings" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Optical_coatings"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Optical coatings</span> </div> </a> <ul id="toc-Optical_coatings-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Protective_coatings" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Protective_coatings"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Protective coatings</span> </div> </a> <ul id="toc-Protective_coatings-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Electrically_operating_coatings" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Electrically_operating_coatings"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Electrically operating coatings</span> </div> </a> <ul id="toc-Electrically_operating_coatings-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Biosensors_and_plasmonic_devices" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Biosensors_and_plasmonic_devices"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Biosensors and plasmonic devices</span> </div> </a> <ul id="toc-Biosensors_and_plasmonic_devices-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Thin-film_photovoltaic_cells" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Thin-film_photovoltaic_cells"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6</span> <span>Thin-film photovoltaic cells</span> </div> </a> <ul id="toc-Thin-film_photovoltaic_cells-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Thin-film_batteries" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Thin-film_batteries"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.7</span> <span>Thin-film batteries</span> </div> </a> <ul id="toc-Thin-film_batteries-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Thin-film_bulk_acoustic_wave_resonators_(TFBARs/FBARs)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Thin-film_bulk_acoustic_wave_resonators_(TFBARs/FBARs)"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.8</span> <span>Thin-film bulk acoustic wave resonators (TFBARs/FBARs)</span> </div> </a> <ul id="toc-Thin-film_bulk_acoustic_wave_resonators_(TFBARs/FBARs)-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Thin film</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 25 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-25" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">25 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%BA%D8%B4%D8%A7%D8%A1_%D8%B1%D9%82%D9%8A%D9%82" title="غشاء رقيق – Arabic" lang="ar" hreflang="ar" data-title="غشاء رقيق" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A2%D1%8A%D0%BD%D0%BA%D0%B8_%D1%81%D0%BB%D0%BE%D0%B5%D0%B2%D0%B5" title="Тънки слоеве – Bulgarian" lang="bg" hreflang="bg" data-title="Тънки слоеве" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Pel%C2%B7l%C3%ADcula_fina_(tecnologia)" title="Pel·lícula fina (tecnologia) – Catalan" lang="ca" hreflang="ca" data-title="Pel·lícula fina (tecnologia)" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/D%C3%BCnne_Schichten" title="Dünne Schichten – German" lang="de" hreflang="de" data-title="Dünne Schichten" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/%C3%95huke_tahkiskile" title="Õhuke tahkiskile – Estonian" lang="et" hreflang="et" data-title="Õhuke tahkiskile" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/L%C3%A1mina_delgada" title="Lámina delgada – Spanish" lang="es" hreflang="es" data-title="Lámina delgada" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%84%D8%A7%DB%8C%D9%87_%D9%86%D8%A7%D8%B2%DA%A9" title="لایه نازک – Persian" lang="fa" hreflang="fa" data-title="لایه نازک" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Couche_mince" title="Couche mince – French" lang="fr" hreflang="fr" data-title="Couche mince" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Scann%C3%A1in_thana%C3%AD" title="Scannáin thanaí – Irish" lang="ga" hreflang="ga" data-title="Scannáin thanaí" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B0%95%EB%A7%89" title="박막 – Korean" lang="ko" hreflang="ko" data-title="박막" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%A4%E0%A4%A8%E0%A5%81%E0%A4%AB%E0%A4%BF%E0%A4%B2%E0%A5%8D%E0%A4%AE" title="तनुफिल्म – Hindi" lang="hi" hreflang="hi" data-title="तनुफिल्म" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Teknologi_film_tipis" title="Teknologi film tipis – Indonesian" lang="id" hreflang="id" data-title="Teknologi film tipis" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Film_sottile" title="Film sottile – Italian" lang="it" hreflang="it" data-title="Film sottile" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A9%D7%9B%D7%91%D7%94_%D7%93%D7%A7%D7%94" title="שכבה דקה – Hebrew" lang="he" hreflang="he" data-title="שכבה דקה" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%97%E1%83%AE%E1%83%94%E1%83%9A%E1%83%98_%E1%83%A4%E1%83%98%E1%83%A0%E1%83%98" title="თხელი ფირი – Georgian" lang="ka" hreflang="ka" data-title="თხელი ფირი" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/V%C3%A9konyr%C3%A9teg" title="Vékonyréteg – Hungarian" lang="hu" hreflang="hu" data-title="Vékonyréteg" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Thin_film" title="Thin film – Dutch" lang="nl" hreflang="nl" data-title="Thin film" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%96%84%E8%86%9C" title="薄膜 – Japanese" lang="ja" hreflang="ja" data-title="薄膜" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Filme_fino" title="Filme fino – Portuguese" lang="pt" hreflang="pt" data-title="Filme fino" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A2%D0%BE%D0%BD%D0%BA%D0%B8%D0%B5_%D0%BF%D0%BB%D1%91%D0%BD%D0%BA%D0%B8" title="Тонкие плёнки – Russian" lang="ru" hreflang="ru" data-title="Тонкие плёнки" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AE%E0%AF%86%E0%AE%A9%E0%AF%8D_%E0%AE%AA%E0%AE%9F%E0%AE%B2%E0%AE%AE%E0%AF%8D" title="மென் படலம் – Tamil" lang="ta" hreflang="ta" data-title="மென் படலம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D0%BE%D0%BD%D0%BA%D0%B0_%D0%BF%D0%BB%D1%96%D0%B2%D0%BA%D0%B0" title="Тонка плівка – Ukrainian" lang="uk" hreflang="uk" data-title="Тонка плівка" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/M%C3%A0ng_m%E1%BB%8Fng" title="Màng mỏng – Vietnamese" lang="vi" hreflang="vi" data-title="Màng mỏng" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E8%96%84%E8%86%9C" title="薄膜 – Wu" lang="wuu" hreflang="wuu" data-title="薄膜" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%96%84%E8%86%9C" title="薄膜 – Chinese" lang="zh" hreflang="zh" data-title="薄膜" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1137203#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Thin_film" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Thin_film" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Thin_film"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Thin_film&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Thin_film&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Thin_film"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Thin_film&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Thin_film&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Thin_film" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Thin_film" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Thin_film&oldid=1254561302" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Thin_film&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Thin_film&id=1254561302&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FThin_film"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FThin_film"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Thin_film&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Thin_film&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Thin_films" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1137203" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Thin layer of material</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about a thin layer of material. For magnetic thin film memory, see <a href="/wiki/Thin-film_memory" title="Thin-film memory">Thin-film memory</a>.</div> <p> A <b>thin film</b> is a layer of materials ranging from fractions of a <a href="/wiki/Nanometer" class="mw-redirect" title="Nanometer">nanometer</a> (<a href="/wiki/Monolayer" title="Monolayer">monolayer</a>) to several <a href="/wiki/Micrometre" title="Micrometre">micrometers</a> in thickness.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many applications. A familiar example is the household <a href="/wiki/Mirror" title="Mirror">mirror</a>, which typically has a thin metal coating on the back of a sheet of glass to form a reflective interface. The process of <a href="/wiki/Silvering" title="Silvering">silvering</a> was once commonly used to produce mirrors, while more recently the metal layer is deposited using techniques such as <a href="/wiki/Sputtering" title="Sputtering">sputtering</a>. Advances in thin film deposition techniques during the 20th century have enabled a wide range of technological breakthroughs in areas such as <a href="/wiki/Magnetic_media" class="mw-redirect" title="Magnetic media">magnetic recording media</a>, <a href="/wiki/Semiconductor_device" title="Semiconductor device">electronic semiconductor devices</a>, <a href="/wiki/Integrated_passive_devices" title="Integrated passive devices">integrated passive devices</a>, <a href="/wiki/Light-emitting_diode" title="Light-emitting diode">light-emitting diodes</a>, <a href="/wiki/Optical_coating" title="Optical coating">optical coatings</a> (such as <a href="/wiki/Antireflective" class="mw-redirect" title="Antireflective">antireflective</a> coatings), hard coatings on cutting tools, and for both energy generation (e.g. <a href="/wiki/Thin-film_solar_cell" title="Thin-film solar cell">thin-film solar cells</a>) and storage (<a href="/wiki/Thin-film_battery" class="mw-redirect" title="Thin-film battery">thin-film batteries</a>). It is also being applied to pharmaceuticals, via <a href="/wiki/Thin-film_drug_delivery" title="Thin-film drug delivery">thin-film drug delivery</a>. A stack of thin films is called a <a href="/wiki/Multilayer" class="mw-redirect" title="Multilayer">multilayer</a>. </p><p>In addition to their applied interest, thin films play an important role in the development and study of materials with new and unique properties. Examples include <a href="/wiki/Multiferroics" title="Multiferroics">multiferroic materials</a>, and <a href="/wiki/Superlattice" title="Superlattice">superlattices</a> that allow the study of quantum phenomena. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Nucleation">Nucleation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=1" title="Edit section: Nucleation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Nucleation" title="Nucleation">Nucleation</a> is an important step in growth that helps determine the final structure of a thin film. Many growth methods rely on nucleation control such as atomic-layer epitaxy (atomic layer deposition). Nucleation can be modeled by characterizing surface process of <a href="/wiki/Adsorption" title="Adsorption">adsorption</a>, <a href="/wiki/Desorption" title="Desorption">desorption</a>, and <a href="/wiki/Surface_diffusion" title="Surface diffusion">surface diffusion</a>.<sup id="cite_ref-:02_2-0" class="reference"><a href="#cite_note-:02-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Adsorption_and_desorption">Adsorption and desorption</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=2" title="Edit section: Adsorption and desorption"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Adsorption" title="Adsorption">Adsorption</a> is the interaction of a vapor atom or molecule with a substrate surface. The interaction is characterized the <a href="/wiki/Sticking_coefficient" title="Sticking coefficient">sticking coefficient</a>, the fraction of incoming species thermally equilibrated with the surface. <a href="/wiki/Desorption" title="Desorption">Desorption</a> reverses adsorption where a previously adsorbed molecule overcomes the bounding energy and leaves the substrate surface. </p><p>The two types of adsorptions, <a href="/wiki/Physisorption" title="Physisorption">physisorption</a> and <a href="/wiki/Chemisorption" title="Chemisorption">chemisorption</a>, are distinguished by the strength of atomic interactions. Physisorption describes the <a href="/wiki/Van_der_Waals_force" title="Van der Waals force">Van der Waals</a> bonding between a stretched or bent molecule and the surface characterized by adsorption energy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74b041d193c6b8de0113f5a5e8d8e00d05afa339" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.774ex; height:2.843ex;" alt="{\displaystyle E_{p}}"></span>. Evaporated molecules rapidly lose kinetic energy and reduces its free energy by bonding with surface atoms. Chemisorption describes the strong electron transfer (ionic or covalent bond) of molecule with substrate atoms characterized by adsorption energy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f1a398c7e13c50d90d2e8d6a1434dfaf99887f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.659ex; height:2.509ex;" alt="{\displaystyle E_{c}}"></span>. The process of physic- and chemisorption can be visualized by the potential energy as a function of distance. The equilibrium distance for physisorption is further from the surface than chemisorption. The transition from physisorbed to chemisorbed states are governed by the effective energy barrier <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46a5c4699f75d498b504e59bfd8b5496aa20351a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.817ex; height:2.509ex;" alt="{\displaystyle E_{a}}"></span>.<sup id="cite_ref-:02_2-1" class="reference"><a href="#cite_note-:02-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>Crystal surfaces have specific bonding sites with larger <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46a5c4699f75d498b504e59bfd8b5496aa20351a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.817ex; height:2.509ex;" alt="{\displaystyle E_{a}}"></span> values that would preferentially be populated by vapor molecules to reduce the overall free energy. These stable sites are often found on step edges, vacancies and screw dislocations. After the most stable sites become filled, the adatom-adatom (vapor molecule) interaction becomes important.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Nucleation_models">Nucleation models</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=3" title="Edit section: Nucleation models"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Nucleation kinetics can be modeled considering only adsorption and desorption. First consider case where there are no mutual <a href="/wiki/Adatom" title="Adatom">adatom</a> interactions, no clustering or interaction with step edges. </p><p>The rate of change of adatom surface density <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/359e4f407b49910e02c27c2f52e87a36cd74c053" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.471ex; height:2.176ex;" alt="{\displaystyle J}"></span> is the net flux, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>τ<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8226166d0745e6eddff95ec4bc3dfac130e12d0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.118ex; height:2.009ex;" alt="{\displaystyle \tau _{a}}"></span> is the mean surface lifetime prior to desorption and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>σ<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> is the sticking coefficient: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {dn \over dt}=J\sigma -{n \over \tau _{a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>n</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>J</mi> <mi>σ<!-- σ --></mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <msub> <mi>τ<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {dn \over dt}=J\sigma -{n \over \tau _{a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17ef1c14c145e845adde21378780495402beab3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:15.141ex; height:5.676ex;" alt="{\displaystyle {dn \over dt}=J\sigma -{n \over \tau _{a}}}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=J\sigma \tau _{a}\left[1-\exp \left({-t \over \tau _{a}}\right)\right]n=J\sigma \tau _{a}\left[\exp \left({-t \over \tau _{a}}\right)\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>J</mi> <mi>σ<!-- σ --></mi> <msub> <mi>τ<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mrow> <mo>[</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>exp</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mi>t</mi> </mrow> <msub> <mi>τ<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mi>n</mi> <mo>=</mo> <mi>J</mi> <mi>σ<!-- σ --></mi> <msub> <mi>τ<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mrow> <mo>[</mo> <mrow> <mi>exp</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mi>t</mi> </mrow> <msub> <mi>τ<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=J\sigma \tau _{a}\left[1-\exp \left({-t \over \tau _{a}}\right)\right]n=J\sigma \tau _{a}\left[\exp \left({-t \over \tau _{a}}\right)\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/570cb89a89e841dcd45c2da0a0c4d4354fb05401" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:49.813ex; height:6.176ex;" alt="{\displaystyle n=J\sigma \tau _{a}\left[1-\exp \left({-t \over \tau _{a}}\right)\right]n=J\sigma \tau _{a}\left[\exp \left({-t \over \tau _{a}}\right)\right]}"></span> </p><p>Adsorption can also be modeled by different isotherms such as <a href="/wiki/Adsorption#Langmuir" title="Adsorption">Langmuir model</a> and <a href="/wiki/Adsorption#BET" title="Adsorption">BET model</a>. The Langmuir model derives an equilibrium constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> based on the adsorption reaction of vapor adatom with vacancy on the substrate surface. The BET model expands further and allows adatoms deposition on previously adsorbed adatoms without interaction between adjacent piles of atoms. The resulting derived surface coverage is in terms of the equilibrium vapor pressure and applied pressure. </p><p>Langmuir model where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bce81f83050e905090691fd0fe866e142866cdee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.957ex; height:2.509ex;" alt="{\displaystyle P_{A}}"></span> is the vapor pressure of adsorbed adatoms: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta ={bP_{A} \over (1+bP_{A})}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>θ<!-- θ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>b</mi> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta ={bP_{A} \over (1+bP_{A})}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74f1a907b23e04101bb28d011af99ee93621ceb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.792ex; height:6.176ex;" alt="{\displaystyle \theta ={bP_{A} \over (1+bP_{A})}}"></span> </p><p>BET model where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{e}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{e}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea9d1daea5e2e2bca1b08d45ef8f2b10a55184ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.257ex; height:2.009ex;" alt="{\displaystyle p_{e}}"></span> is the equilibrium vapor pressure of adsorbed adatoms and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> is the applied vapor pressure of adsorbed adatoms: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta ={Xp \over (p_{e}-p)\left[1+(X-1){p \over p_{e}}\right]}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>θ<!-- θ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>X</mi> <mi>p</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mrow> <mo>[</mo> <mrow> <mn>1</mn> <mo>+</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta ={Xp \over (p_{e}-p)\left[1+(X-1){p \over p_{e}}\right]}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b51447b1d23955160e1b0e70fa79ac209bee2a8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:29.838ex; height:8.009ex;" alt="{\displaystyle \theta ={Xp \over (p_{e}-p)\left[1+(X-1){p \over p_{e}}\right]}}"></span> </p><p>As an important note, surface crystallography and differ from the bulk to minimize the overall free electronic and bond energies due to the broken bonds at the surface. This can result in a new equilibrium position known as “selvedge”, where the parallel bulk lattice symmetry is preserved. This phenomenon can cause deviations from theoretical calculations of nucleation.<sup id="cite_ref-:02_2-2" class="reference"><a href="#cite_note-:02-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Surface_diffusion">Surface diffusion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=4" title="Edit section: Surface diffusion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Surface_diffusion" title="Surface diffusion">Surface diffusion</a> describes the lateral motion of adsorbed atoms moving between energy minima on the substrate surface. Diffusion most readily occurs between positions with lowest intervening potential barriers. Surface diffusion can be measured using glancing-angle ion scattering. The average time between events can be describes by:<sup id="cite_ref-:02_2-3" class="reference"><a href="#cite_note-:02-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{d}=(1/v_{1})\exp(E_{d}/kT_{s})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>τ<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>k</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{d}=(1/v_{1})\exp(E_{d}/kT_{s})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d816c60e7b155c8c256af3b0ab1cadfce8cd2245" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.813ex; height:2.843ex;" alt="{\displaystyle \tau _{d}=(1/v_{1})\exp(E_{d}/kT_{s})}"></span> </p><p>In addition to adatom migration, clusters of adatom can coalesce or deplete. Cluster coalescence through processes, such as <a href="/wiki/Ostwald_ripening" title="Ostwald ripening">Ostwald ripening</a> and sintering, occur in response to reduce the total surface energy of the system. Ostwald repining describes the process in which islands of adatoms with various sizes grow into larger ones at the expense of smaller ones. Sintering is the coalescence mechanism when the islands contact and join.<sup id="cite_ref-:02_2-4" class="reference"><a href="#cite_note-:02-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Deposition">Deposition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=5" title="Edit section: Deposition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The act of applying a thin film to a surface is <i>thin-film deposition</i> – any technique for depositing a thin film of material onto a <a href="/wiki/Substrate_(materials_science)" title="Substrate (materials science)">substrate</a> or onto previously deposited layers. "Thin" is a relative term, but most deposition techniques control layer thickness within a few tens of <a href="/wiki/Nanometre" title="Nanometre">nanometres</a>. <a href="/wiki/Molecular_beam_epitaxy" class="mw-redirect" title="Molecular beam epitaxy">Molecular beam epitaxy</a>, the <a href="/wiki/Langmuir%E2%80%93Blodgett_film" title="Langmuir–Blodgett film">Langmuir–Blodgett method</a>, <a href="/wiki/Atomic_layer_deposition" title="Atomic layer deposition">atomic layer deposition</a> and <a href="/wiki/Molecular_layer_deposition" title="Molecular layer deposition">molecular layer deposition</a> allow a single layer of <a href="/wiki/Atom" title="Atom">atoms</a> or molecules to be deposited at a time. </p><p>It is useful in the manufacture of <a href="/wiki/Optics" title="Optics">optics</a> (for <a href="/wiki/Reflection_(physics)" title="Reflection (physics)">reflective</a>, <a href="/wiki/Anti-reflective_coating" title="Anti-reflective coating">anti-reflective coatings</a> or <a href="/wiki/Self-cleaning_glass" title="Self-cleaning glass">self-cleaning glass</a>, for instance), <a href="/wiki/Electronics" title="Electronics">electronics</a> (layers of <a href="/wiki/Electrical_insulation" class="mw-redirect" title="Electrical insulation">insulators</a>, <a href="/wiki/Semiconductor" title="Semiconductor">semiconductors</a>, and <a href="/wiki/Conductor_(material)" class="mw-redirect" title="Conductor (material)">conductors</a> form <a href="/wiki/Integrated_circuits" class="mw-redirect" title="Integrated circuits">integrated circuits</a>), <a href="/wiki/Packaging" title="Packaging">packaging</a> (i.e., <a href="/wiki/Metallized_polyethylene_terephthalate" class="mw-redirect" title="Metallized polyethylene terephthalate">aluminium-coated PET film</a>), and in <a href="/wiki/Contemporary_art" title="Contemporary art">contemporary art</a> (see the work of <a href="/wiki/Larry_bell_(artist)" class="mw-redirect" title="Larry bell (artist)">Larry Bell</a>). Similar processes are sometimes used where thickness is not important: for instance, the purification of copper by <a href="/wiki/Electroplating" title="Electroplating">electroplating</a>, and the deposition of <a href="/wiki/Silicon" title="Silicon">silicon</a> and enriched <a href="/wiki/Uranium" title="Uranium">uranium</a> by a <a href="/wiki/Chemical_vapor_deposition" title="Chemical vapor deposition">chemical vapor deposition</a>-like process after gas-phase processing. </p><p>Deposition techniques fall into two broad categories, depending on whether the process is primarily <a href="/wiki/Chemistry" title="Chemistry">chemical</a> or <a href="/wiki/Physics" title="Physics">physical</a>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Chemical_deposition">Chemical deposition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=6" title="Edit section: Chemical deposition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Here, a fluid <a href="https://en.wiktionary.org/wiki/Precursor" class="extiw" title="wikt:Precursor">precursor</a> undergoes a chemical change at a solid surface, leaving a solid layer. An everyday example is the formation of soot on a cool object when it is placed inside a flame. Since the fluid surrounds the solid object, deposition happens on every surface, with little regard to direction; thin films from chemical deposition techniques tend to be <i><a href="/wiki/Conformal_film" class="mw-redirect" title="Conformal film">conformal</a></i>, rather than <i>directional</i>. </p><p>Chemical deposition is further categorized by the phase of the precursor: </p><p><a href="/wiki/Plating" title="Plating">Plating</a> relies on liquid precursors, often a solution of water with a salt of the metal to be deposited. Some plating processes are driven entirely by <a href="/wiki/Reagent" title="Reagent">reagents</a> in the solution (usually for <a href="/wiki/Noble_metal" title="Noble metal">noble metals</a>), but by far the most commercially important process is <a href="/wiki/Electroplating" title="Electroplating">electroplating</a>. In semiconductor manufacturing, an advanced form of electroplating known as electrochemical deposition is now used to create the copper conductive wires in advanced chips, replacing the chemical and physical deposition processes used to previous chip generations for aluminum wires<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Sol-gel" class="mw-redirect" title="Sol-gel">Chemical solution deposition</a> or <a href="/wiki/Chemical_bath_deposition" title="Chemical bath deposition">chemical bath deposition</a> uses a liquid precursor, usually a solution of <a href="/wiki/Organometallic" class="mw-redirect" title="Organometallic">organometallic</a> powders dissolved in an organic solvent. This is a relatively inexpensive, simple thin-film process that produces stoichiometrically accurate crystalline phases. This technique is also known as the <a href="/wiki/Sol-gel" class="mw-redirect" title="Sol-gel">sol-gel</a> method because the 'sol' (or solution) gradually evolves towards the formation of a gel-like diphasic system. </p><p>The <a href="/wiki/Langmuir%E2%80%93Blodgett_film" title="Langmuir–Blodgett film">Langmuir–Blodgett</a> method uses molecules floating on top of an aqueous subphase. The packing density of molecules is controlled, and the packed monolayer is transferred on a solid substrate by controlled withdrawal of the solid substrate from the subphase. This allows creating thin films of various molecules such as <a href="/wiki/Nanoparticle" title="Nanoparticle">nanoparticles</a>, polymers and lipids with controlled particle packing density and layer thickness.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Spin_coating" title="Spin coating">Spin coating</a> or spin casting, uses a liquid precursor, or <a href="/wiki/Sol-gel" class="mw-redirect" title="Sol-gel">sol-gel</a> precursor deposited onto a smooth, flat substrate which is subsequently spun at a high velocity to centrifugally spread the solution over the substrate. The speed at which the solution is spun and the <a href="/wiki/Viscosity" title="Viscosity">viscosity</a> of the sol determine the ultimate thickness of the deposited film. Repeated depositions can be carried out to increase the thickness of films as desired. Thermal treatment is often carried out in order to crystallize the amorphous spin coated film. Such crystalline films can exhibit certain preferred orientations after crystallization on single <a href="/wiki/Crystal" title="Crystal">crystal</a> substrates.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Dip-coating" title="Dip-coating">Dip coating</a> is similar to spin coating in that a liquid precursor or sol-gel precursor is deposited on a substrate, but in this case the substrate is completely submerged in the solution and then withdrawn under controlled conditions. By controlling the withdrawal speed, the evaporation conditions (principally the humidity, temperature) and the volatility/viscosity of the solvent, the film thickness, homogeneity and nanoscopic morphology are controlled. There are two evaporation regimes: the capillary zone at very low withdrawal speeds, and the draining zone at faster evaporation speeds.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Chemical_vapor_deposition" title="Chemical vapor deposition">Chemical vapor deposition</a> generally uses a gas-phase precursor, often a <a href="/wiki/Halide" title="Halide">halide</a> or <a href="/wiki/Hydride" title="Hydride">hydride</a> of the element to be deposited. In the case of <a href="/wiki/Metalorganic_vapour_phase_epitaxy" class="mw-redirect" title="Metalorganic vapour phase epitaxy">metalorganic vapour phase epitaxy</a>, an <a href="/wiki/Organometallic" class="mw-redirect" title="Organometallic">organometallic</a> gas is used. Commercial techniques often use very low pressures of precursor gas. </p><p><a href="/wiki/Plasma_Enhanced_Chemical_Vapor_Deposition" class="mw-redirect" title="Plasma Enhanced Chemical Vapor Deposition">Plasma Enhanced Chemical Vapor Deposition</a> uses an ionized vapor, or <a href="/wiki/Plasma_(physics)" title="Plasma (physics)">plasma</a>, as a precursor. Unlike the soot example above, this method relies on electromagnetic means (electric current, <a href="/wiki/Microwave" title="Microwave">microwave</a> excitation), rather than a chemical-reaction, to produce a plasma. </p><p><a href="/wiki/Atomic_layer_deposition" title="Atomic layer deposition">Atomic layer deposition</a> and its sister technique <a href="/wiki/Molecular_layer_deposition" title="Molecular layer deposition">molecular layer deposition</a>, uses gaseous precursor to deposit <a href="/wiki/Conformal_film" class="mw-redirect" title="Conformal film">conformal</a> thin film's one layer at a time. The process is split up into two half reactions, run in sequence and repeated for each layer, in order to ensure total layer saturation before beginning the next layer. Therefore, one reactant is deposited first, and then the second reactant is deposited, during which a chemical reaction occurs on the substrate, forming the desired composition. As a result of the stepwise, the process is slower than chemical vapor deposition; however, it can be run at low temperatures. When performed on polymeric substrates, atomic layer deposition can become <a href="/wiki/Sequential_infiltration_synthesis" title="Sequential infiltration synthesis">sequential infiltration synthesis</a>, where the reactants diffuse into the polymer and interact with functional groups on the polymer chains. </p> <div class="mw-heading mw-heading3"><h3 id="Physical_deposition">Physical deposition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=7" title="Edit section: Physical deposition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Physical deposition uses mechanical, electromechanical or thermodynamic means to produce a thin film of solid. An everyday example is the formation of <a href="/wiki/Frost" title="Frost">frost</a>. Since most engineering materials are held together by relatively high energies, and chemical reactions are not used to store these energies, commercial physical deposition systems tend to require a low-pressure vapor environment to function properly; most can be classified as <a href="/wiki/Physical_vapor_deposition" title="Physical vapor deposition">physical vapor deposition</a>. </p><p>The material to be deposited is placed in an <a href="/wiki/Energy" title="Energy">energetic</a>, <a href="/wiki/Entropy" title="Entropy">entropic</a> environment, so that particles of material escape its surface. Facing this source is a cooler surface which draws energy from these particles as they arrive, allowing them to form a solid layer. The whole system is kept in a vacuum deposition chamber, to allow the particles to travel as freely as possible. Since particles tend to follow a straight path, films deposited by physical means are commonly <i>directional</i>, rather than <i>conformal</i>. </p><p>Examples of physical deposition include: </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Scanning_tunneling_microscope_(STM)_250_nm_by_250_nm_image_of_one-atom-thick_silver_islands_grown_on_palladium_(111)_surface.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/09/Scanning_tunneling_microscope_%28STM%29_250_nm_by_250_nm_image_of_one-atom-thick_silver_islands_grown_on_palladium_%28111%29_surface.png/220px-Scanning_tunneling_microscope_%28STM%29_250_nm_by_250_nm_image_of_one-atom-thick_silver_islands_grown_on_palladium_%28111%29_surface.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/09/Scanning_tunneling_microscope_%28STM%29_250_nm_by_250_nm_image_of_one-atom-thick_silver_islands_grown_on_palladium_%28111%29_surface.png/330px-Scanning_tunneling_microscope_%28STM%29_250_nm_by_250_nm_image_of_one-atom-thick_silver_islands_grown_on_palladium_%28111%29_surface.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/09/Scanning_tunneling_microscope_%28STM%29_250_nm_by_250_nm_image_of_one-atom-thick_silver_islands_grown_on_palladium_%28111%29_surface.png/440px-Scanning_tunneling_microscope_%28STM%29_250_nm_by_250_nm_image_of_one-atom-thick_silver_islands_grown_on_palladium_%28111%29_surface.png 2x" data-file-width="512" data-file-height="512" /></a><figcaption>One-atom-thick islands of silver deposited on the surface of palladium by thermal evaporation. Calibration of the surface coverage was achieved by tracking the time needed to complete a full monolayer using <a href="/wiki/Scanning_tunneling_microscope" title="Scanning tunneling microscope">tunneling microscopy</a> (STM) and from the emergence of <a href="/wiki/Quantum_well" title="Quantum well">quantum-well states</a> characteristic of the silver film thickness in <a href="/wiki/Angle-resolved_photoemission_spectroscopy" title="Angle-resolved photoemission spectroscopy">photoemission spectroscopy</a> (ARPES). Image size is 250 nm by 250 nm.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>A thermal <a href="/wiki/Evaporation_(deposition)" title="Evaporation (deposition)">evaporator</a> that uses an electric resistance heater to melt the material and raise its vapor pressure to a useful range. This is done in a high vacuum, both to allow the vapor to reach the substrate without reacting with or <a href="/wiki/Scattering" title="Scattering">scattering</a> against other gas-phase atoms in the chamber, and reduce the incorporation of impurities from the residual gas in the vacuum chamber. Only materials with a much higher <a href="/wiki/Vapor_pressure" title="Vapor pressure">vapor pressure</a> than the <a href="/wiki/Heating_element" title="Heating element">heating element</a> can be deposited without contamination of the film. <a href="/wiki/Molecular_beam_epitaxy" class="mw-redirect" title="Molecular beam epitaxy">Molecular beam epitaxy</a> is a particularly sophisticated form of thermal evaporation. </p><p>An <a href="/wiki/Electron_beam_physical_vapor_deposition" class="mw-redirect" title="Electron beam physical vapor deposition">electron beam evaporator</a> fires a high-energy beam from an <a href="/wiki/Electron_gun" title="Electron gun">electron gun</a> to boil a small spot of material; since the heating is not uniform, lower <a href="/wiki/Vapor_pressure" title="Vapor pressure">vapor pressure</a> materials can be deposited. The beam is usually bent through an angle of 270° in order to ensure that the gun filament is not directly exposed to the evaporant flux. Typical deposition rates for electron beam evaporation range from 1 to 10 nanometres per second. </p><p>In <a href="/wiki/Molecular_beam_epitaxy" class="mw-redirect" title="Molecular beam epitaxy">molecular beam epitaxy</a>, slow streams of an element can be directed at the substrate, so that material deposits one atomic layer at a time. Compounds such as <a href="/wiki/Gallium_arsenide" title="Gallium arsenide">gallium arsenide</a> are usually deposited by repeatedly applying a layer of one element (i.e., <a href="/wiki/Gallium" title="Gallium">gallium</a>), then a layer of the other (i.e., <a href="/wiki/Arsenic" title="Arsenic">arsenic</a>), so that the process is chemical, as well as physical; this is known also as <a href="/wiki/Atomic_layer_deposition" title="Atomic layer deposition">atomic layer deposition</a>. If the precursors in use are organic, then the technique is called <a href="/wiki/Molecular_layer_deposition" title="Molecular layer deposition">molecular layer deposition</a>. The beam of material can be generated by either physical means (that is, by a <a href="/wiki/Industrial_furnace" title="Industrial furnace">furnace</a>) or by a chemical reaction (<a href="/wiki/Chemical_beam_epitaxy" title="Chemical beam epitaxy">chemical beam epitaxy</a>). </p><p><a href="/wiki/Sputtering" title="Sputtering">Sputtering</a> relies on a plasma (usually a <a href="/wiki/Noble_gas" title="Noble gas">noble gas</a>, such as <a href="/wiki/Argon" title="Argon">argon</a>) to knock material from a "target" a few atoms at a time. The target can be kept at a relatively low temperature, since the process is not one of evaporation, making this one of the most flexible deposition techniques. It is especially useful for compounds or mixtures, where different components would otherwise tend to evaporate at different rates. Note, sputtering's step coverage is more or less conformal. It is also widely used in optical media. The manufacturing of all formats of CD, DVD, and BD are done with the help of this technique. It is a fast technique and also it provides a good thickness control. Presently, nitrogen and oxygen gases are also being used in sputtering. </p><p><a href="/wiki/Pulsed_laser_deposition" title="Pulsed laser deposition">Pulsed laser deposition</a> systems work by an <a href="/wiki/Ablation" title="Ablation">ablation</a> process. Pulses of focused <a href="/wiki/Laser" title="Laser">laser</a> light vaporize the surface of the target material and convert it to plasma; this plasma usually reverts to a gas before it reaches the substrate.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Thermal_laser_epitaxy" title="Thermal laser epitaxy">Thermal laser epitaxy</a> uses focused light from a continuous-wave laser to thermally evaporate sources of material.<sup id="cite_ref-TLE-Original_11-0" class="reference"><a href="#cite_note-TLE-Original-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> By adjusting the power density of the laser beam, the evaporation of any solid, non-radioactive element is possible.<sup id="cite_ref-Smart_12-0" class="reference"><a href="#cite_note-Smart-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> The resulting atomic vapor is then deposited upon a substrate, which is also heated via a laser beam.<sup id="cite_ref-Substrate_13-0" class="reference"><a href="#cite_note-Substrate-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> The vast range of substrate and deposition temperatures allows of the <a href="/wiki/Epitaxy" title="Epitaxy">epitaxial</a> growth of various elements considered challenging by other thin film growth techniques.<sup id="cite_ref-TLE-Carbon_15-0" class="reference"><a href="#cite_note-TLE-Carbon-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-TLE-Tantalum_16-0" class="reference"><a href="#cite_note-TLE-Tantalum-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Cathodic_arc_deposition" title="Cathodic arc deposition">Cathodic arc deposition</a> (arc-physical vapor deposition), which is a kind of <a href="/wiki/Ion_beam_deposition" title="Ion beam deposition">ion beam deposition</a> where an electrical arc is created that blasts ions from the cathode. The arc has an extremely high <a href="/wiki/Power_density" title="Power density">power density</a> resulting in a high level of <a href="/wiki/Ionization" title="Ionization">ionization</a> (30–100%), multiply charged ions, neutral particles, clusters and macro-particles (droplets). If a reactive gas is introduced during the evaporation process, <a href="/wiki/Dissociation_(chemistry)" title="Dissociation (chemistry)">dissociation</a>, <a href="/wiki/Ionization" title="Ionization">ionization</a> and <a href="/wiki/Excited_state" title="Excited state">excitation</a> can occur during interaction with the <a href="/wiki/Ion_flux" class="mw-redirect" title="Ion flux">ion flux</a> and a compound film will be deposited. </p><p><a href="/wiki/Electrohydrodynamic" class="mw-redirect" title="Electrohydrodynamic">Electrohydrodynamic</a> deposition (electrospray deposition) is a relatively new process of thin-film deposition. The liquid to be deposited, either in the form of nanoparticle solution or simply a solution, is fed to a small capillary nozzle (usually metallic) which is connected to a high voltage. The substrate on which the film has to be deposited is connected to ground. Through the influence of electric field, the liquid coming out of the <a href="/wiki/Nozzle" title="Nozzle">nozzle</a> takes a conical shape (<a href="/wiki/Taylor_cone" title="Taylor cone">Taylor cone</a>) and at the apex of the cone a thin jet emanates which disintegrates into very fine and small positively charged droplets under the influence of Rayleigh charge limit. The droplets keep getting smaller and smaller and ultimately get deposited on the substrate as a uniform thin layer. </p> <div class="mw-heading mw-heading3"><h3 id="Growth_modes">Growth modes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=8" title="Edit section: Growth modes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="plainlinks metadata ambox ambox-move" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Mergefrom.svg/50px-Mergefrom.svg.png" decoding="async" width="50" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Mergefrom.svg/75px-Mergefrom.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Mergefrom.svg/100px-Mergefrom.svg.png 2x" data-file-width="50" data-file-height="20" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">It has been suggested that portions of <i><a href="/wiki/Stranski%E2%80%93Krastanov_growth" title="Stranski–Krastanov growth">Stranski–Krastanov growth</a></i> be <a href="/wiki/Wikipedia:Splitting" title="Wikipedia:Splitting">split</a> from it and <a href="/wiki/Wikipedia:Merging" title="Wikipedia:Merging">merged</a> into this section. (<a href="/wiki/Talk:Thin_film" title="Talk:Thin film">Discuss</a>) <span class="date-container"><i>(<span class="date">June 2021</span>)</i></span></div></td></tr></tbody></table> <p class="mw-empty-elt"> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Frank-van-der-Merwe-Modus.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Frank-van-der-Merwe-Modus.svg/220px-Frank-van-der-Merwe-Modus.svg.png" decoding="async" width="220" height="106" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Frank-van-der-Merwe-Modus.svg/330px-Frank-van-der-Merwe-Modus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/92/Frank-van-der-Merwe-Modus.svg/440px-Frank-van-der-Merwe-Modus.svg.png 2x" data-file-width="540" data-file-height="260" /></a><figcaption>Frank–van-der-Merwe mode</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Stranski-Krastanow-Modus.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Stranski-Krastanow-Modus.svg/220px-Stranski-Krastanow-Modus.svg.png" decoding="async" width="220" height="106" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Stranski-Krastanow-Modus.svg/330px-Stranski-Krastanow-Modus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Stranski-Krastanow-Modus.svg/440px-Stranski-Krastanow-Modus.svg.png 2x" data-file-width="540" data-file-height="260" /></a><figcaption>Stranski–Krastanov mode</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Volmer-Weber-Modus.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Volmer-Weber-Modus.svg/220px-Volmer-Weber-Modus.svg.png" decoding="async" width="220" height="106" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Volmer-Weber-Modus.svg/330px-Volmer-Weber-Modus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Volmer-Weber-Modus.svg/440px-Volmer-Weber-Modus.svg.png 2x" data-file-width="540" data-file-height="260" /></a><figcaption>Volmer–Weber mode</figcaption></figure> <p><a href="/wiki/Frank%E2%80%93van_der_Merwe_growth" class="mw-redirect" title="Frank–van der Merwe growth">Frank–van der Merwe growth</a><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> ("layer-by-layer"). In this growth mode the adsorbate-surface and adsorbate-adsorbate interactions are balanced. This type of growth requires lattice matching, and hence considered an "ideal" growth mechanism. </p><p><a href="/wiki/Stranski%E2%80%93Krastanov_growth" title="Stranski–Krastanov growth">Stranski–Krastanov growth</a><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> ("joint islands" or "layer-plus-island"). In this growth mode the adsorbate-surface interactions are stronger than adsorbate-adsorbate interactions. </p><p>Volmer–Weber<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> ("isolated islands"). In this growth mode the adsorbate-adsorbate interactions are stronger than adsorbate-surface interactions, hence "islands" are formed right away. </p><p>There are three distinct stages of stress evolution that arise during Volmer-Weber film deposition.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> The first stage consists of the nucleation of individual atomic islands. During this first stage, the overall observed stress is very low. The second stage commences as these individual islands coalesce and begin to impinge on each other, resulting in an increase in the overall tensile stress in the film.<sup id="cite_ref-dd_23-0" class="reference"><a href="#cite_note-dd-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> This increase in overall tensile stress can be attributed to the formation of grain boundaries upon island coalescence that results in interatomic forces acting over the newly formed grain boundaries. The magnitude of this generated tensile stress depends on the density of the formed grain boundaries, as well as their grain-boundary energies.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> During this stage, the thickness of the film is not uniform because of the random nature of the island coalescence but is measured as the average thickness. The third and final stage of the Volmer-Weber film growth begins when the morphology of the film’s surface is unchanging with film thickness. During this stage, the overall stress in the film can remain tensile, or become compressive.   </p><p>On a stress-thickness vs. thickness plot, an overall compressive stress is represented by a negative slope, and an overall tensile stress is represented by a positive slope. The overall shape of the stress-thickness vs. thickness curve depends on various processing conditions (such as temperature, growth rate, and material). Koch<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> states that there are three different modes of Volmer-Weber growth. Zone I behavior is characterized by low grain growth in subsequent film layers and is associated with low atomic mobility. Koch suggests that Zone I behavior can be observed at lower temperatures. The zone I mode typically has small columnar grains in the final film. The second mode of Volmer-Weber growth is classified as Zone T, where the grain size at the surface of the film deposition increases with film thickness, but the grain size in the deposited layers below the surface does not change. Zone T-type films are associated with higher atomic mobilities, higher deposition temperatures, and V-shaped final grains. The final mode of proposed Volmer-Weber growth is Zone II type growth, where the grain boundaries in the bulk of the film at the surface are mobile, resulting in large yet columnar grains. This growth mode is associated with the highest atomic mobility and deposition temperature. There is also a possibility of developing a mixed Zone T/Zone II type structure, where the grains are mostly wide and columnar, but do experience slight growth as their thickness approaches the surface of the film. Although Koch focuses mostly on temperature to suggest a potential zone mode, factors such as deposition rate can also influence the final film microstructure.<sup id="cite_ref-dd_23-1" class="reference"><a href="#cite_note-dd-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Epitaxy">Epitaxy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=9" title="Edit section: Epitaxy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Epitaxy" title="Epitaxy">Epitaxy</a></div> <p>A subset of thin-film deposition processes and applications is focused on the so-called epitaxial growth of materials, the deposition of crystalline thin films that grow following the crystalline structure of the substrate. The term epitaxy comes from the Greek roots epi (ἐπί), meaning "above", and taxis (τάξις), meaning "an ordered manner". It can be translated as "arranging upon". </p><p>The term <b>homoepitaxy</b> refers to the specific case in which a film of the same material is grown on a crystalline substrate. This technology is used, for instance, to grow a film which is more pure than the substrate, has a lower density of defects, and to fabricate layers having different doping levels. <b>Heteroepitaxy</b> refers to the case in which the film being deposited is different from the substrate. </p><p>Techniques used for epitaxial growth of thin films include <a href="/wiki/Molecular_beam_epitaxy" class="mw-redirect" title="Molecular beam epitaxy">molecular beam epitaxy</a>, <a href="/wiki/Chemical_vapor_deposition" title="Chemical vapor deposition">chemical vapor deposition</a>, and <a href="/wiki/Pulsed_laser_deposition" title="Pulsed laser deposition">pulsed laser deposition</a>.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Mechanical_Behavior">Mechanical Behavior</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=10" title="Edit section: Mechanical Behavior"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Stress">Stress</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=11" title="Edit section: Stress"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Thin films may be biaxially loaded via <a href="/wiki/Stress_(mechanics)" title="Stress (mechanics)">stresses</a> originated from their interface with a substrate. Epitaxial thin films may experience stresses from misfit <a href="/wiki/Deformation_(physics)" title="Deformation (physics)">strains</a> between the coherent <a href="/wiki/Crystal_structure" title="Crystal structure">lattices</a> of the film and substrate, and from the restructuring of the surface triple junction.<sup id="cite_ref-:100_27-0" class="reference"><a href="#cite_note-:100-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> Thermal stress is common in thin films grown at elevated temperatures due to differences in <a href="/wiki/Thermal_expansion_coefficient" class="mw-redirect" title="Thermal expansion coefficient">thermal expansion coefficients</a> with the substrate.<sup id="cite_ref-:0_28-0" class="reference"><a href="#cite_note-:0-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> Differences in <a href="/wiki/Surface_energy" title="Surface energy">interfacial energy</a> and the growth and coalescence of <a href="/wiki/Crystallite" title="Crystallite">grains</a> contribute to intrinsic stress in thin films. These intrinsic stresses can be a function of film thickness.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:1_30-0" class="reference"><a href="#cite_note-:1-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> These stresses may be tensile or compressive and can cause <a href="/wiki/Fracture" title="Fracture">cracking</a>, <a href="/wiki/Buckling" title="Buckling">buckling</a>, or <a href="/wiki/Delamination" title="Delamination">delamination</a> along the surface. In epitaxial films, initially deposited atomic layers may have coherent lattice planes with the substrate. However, past a critical thickness misfit dislocations will form leading to relaxation of stresses in the film.<sup id="cite_ref-:0_28-1" class="reference"><a href="#cite_note-:0-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Strain">Strain</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=12" title="Edit section: Strain"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Films may experience a dilatational transformation strain <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/395ac6e5f591a3f77d0091c2f2a2169dce344314" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.473ex; height:2.009ex;" alt="{\displaystyle e_{T}}"></span> relative to its substrate due to a volume change in the film. Volume changes that cause dilatational strain may come from changes in temperature, defects, or phase transformations. A temperature change will induce a volume change if the film and substrate thermal expansion coefficients are different. The creation or annihilation of defects such as vacancies, <a href="/wiki/Dislocation" title="Dislocation">dislocations</a>, and <a href="/wiki/Grain_boundary" title="Grain boundary">grain boundaries</a> will cause a volume change through densification. Phase transformations and concentration changes will cause volume changes via lattice distortions.<sup id="cite_ref-:3_32-0" class="reference"><a href="#cite_note-:3-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:4_33-0" class="reference"><a href="#cite_note-:4-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Thermal_Strain">Thermal Strain</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=13" title="Edit section: Thermal Strain"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A mismatch of thermal expansion coefficients between the film and substrate will cause thermal strain during a temperature change. The elastic strain of the film relative to the substrate is given by: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon =-(\alpha _{f}-\alpha _{s})(T-T_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ε<!-- ε --></mi> <mo>=</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>T</mi> <mo>−<!-- − --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon =-(\alpha _{f}-\alpha _{s})(T-T_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31ef636a31663564cbd53146103afb8ab70f9a09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.452ex; height:3.009ex;" alt="{\displaystyle \varepsilon =-(\alpha _{f}-\alpha _{s})(T-T_{0})}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ε<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30c89172e5b88edbd45d3e2772c7f5e562e5173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle \varepsilon }"></span> is the elastic strain, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha _{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha _{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06946868f504d8dc48bce72a3e25b3e869fd3465" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.624ex; height:2.343ex;" alt="{\displaystyle \alpha _{f}}"></span> is the thermal expansion coefficient of the film, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha _{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha _{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a07a41fc35666ad575cd8f200c0c8c9b36e42d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.491ex; height:2.009ex;" alt="{\displaystyle \alpha _{s}}"></span> is the thermal expansion coefficient of the substrate, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is the temperature, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55b9e7d7b96196b5a6a26f4349caa3ac82fd67e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.412ex; height:2.509ex;" alt="{\displaystyle T_{0}}"></span> is the initial temperature of the film and substrate when it is in a stress-free state. For example, if a film is deposited onto a substrate with a lower thermal expansion coefficient at high temperatures, then cooled to room temperature, a positive elastic strain will be created. In this case, the film will develop tensile stresses.<sup id="cite_ref-:3_32-1" class="reference"><a href="#cite_note-:3-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Growth_Strain">Growth Strain</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=14" title="Edit section: Growth Strain"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A change in density due to the creation or destruction of defects, phase changes, or compositional changes after the film is grown on the substrate will generate a growth strain. Such as in the Stranski–Krastanov mode, where the layer of film is strained to fit the substrate due to an increase in supersaturation and interfacial energy which shifts from island to island.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> The elastic strain to accommodate these changes is related to the dilatational strain <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/395ac6e5f591a3f77d0091c2f2a2169dce344314" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.473ex; height:2.009ex;" alt="{\displaystyle e_{T}}"></span> by: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon =-e_{T}/3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ε<!-- ε --></mi> <mo>=</mo> <mo>−<!-- − --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon =-e_{T}/3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4ec9fec670d32ef0e17de8d2b5099a32c4e545a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.788ex; height:2.843ex;" alt="{\displaystyle \varepsilon =-e_{T}/3}"></span> </p><p>A film experiencing growth strains will be under biaxial tensile strain conditions, generating tensile stresses in biaxial directions in order to match the substrate dimensions.<sup id="cite_ref-:3_32-2" class="reference"><a href="#cite_note-:3-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Epitaxial_Strains">Epitaxial Strains</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=15" title="Edit section: Epitaxial Strains"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An epitaxially grown film on a thick substrate will have an inherent elastic strain given by: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon \approx {a_{s}-a_{f} \over a_{f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ε<!-- ε --></mi> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon \approx {a_{s}-a_{f} \over a_{f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0183fbb409682d68dec82b38424d46862ceed5ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:12.458ex; height:6.009ex;" alt="{\displaystyle \varepsilon \approx {a_{s}-a_{f} \over a_{f}}}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f0573bb76faf03c96f4f7f70f92ccba01ab0ce6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.233ex; height:2.009ex;" alt="{\displaystyle a_{s}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3eb2b84dda825421629764ce4f9f9805a9f56412" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.366ex; height:2.343ex;" alt="{\displaystyle a_{f}}"></span> are the lattice parameters of the substrate and film, respectively. It is assumed that the substrate is rigid due to its relative thickness. Therefore, all of the elastic strain occurs in the film to match the substrate.<sup id="cite_ref-:3_32-3" class="reference"><a href="#cite_note-:3-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Measuring_stress_and_strain">Measuring stress and strain</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=16" title="Edit section: Measuring stress and strain"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The stresses in Films deposited on flat substrates such as <a href="/wiki/Wafer_(electronics)" title="Wafer (electronics)">wafers</a> can be calculated by measuring the <a href="/wiki/Curvature" title="Curvature">curvature</a> of the wafer due to the strain by the film. Using optical setups, such as those with lasers,<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> allow for whole wafer characterization pre and post deposition. Lasers are reflected off the wafer in a grid pattern and distortions in the grid are used to calculate the curvature as well as measure the <a href="/wiki/Refractive_index" title="Refractive index">optical constants</a>. Strain in thin films can also be measured by <a href="/wiki/X-ray_crystallography" title="X-ray crystallography">x-ray diffraction</a> or by milling a section of the film using a <a href="/wiki/Focused_ion_beam" title="Focused ion beam">focused ion beam</a> and monitoring the relaxation via <a href="/wiki/Scanning_electron_microscope" title="Scanning electron microscope">scanning electron microscopy</a>.<sup id="cite_ref-:1_30-1" class="reference"><a href="#cite_note-:1-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Wafer_Curvature_Measurements">Wafer Curvature Measurements</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=17" title="Edit section: Wafer Curvature Measurements"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A common method for determining the stress evolution of a film is to measure the wafer curvature during its deposition. Stoney<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> relates a film’s average stress to its curvature through the following expression:   </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa ={\frac {6\langle \sigma \rangle h_{f}}{M_{s}h_{s}^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>κ<!-- κ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>6</mn> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>σ<!-- σ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa ={\frac {6\langle \sigma \rangle h_{f}}{M_{s}h_{s}^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16285125b4037a27603d56a9ad68fc895bc030e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:12.05ex; height:6.343ex;" alt="{\displaystyle \kappa ={\frac {6\langle \sigma \rangle h_{f}}{M_{s}h_{s}^{2}}}}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{s}={\frac {\mathrm {E} }{1-\upsilon }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">E</mi> </mrow> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>υ<!-- υ --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{s}={\frac {\mathrm {E} }{1-\upsilon }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2509e28ae2a62d95931ded0808dbed7c773a3ee9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:12.45ex; height:5.343ex;" alt="{\displaystyle M_{s}={\frac {\mathrm {E} }{1-\upsilon }}}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {E} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">E</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {E} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be1811407dea8b43727d28dbe8da7251985b03e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle \mathrm {E} }"></span> is the bulk elastic modulus of the material comprising the film, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \upsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>υ<!-- υ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \upsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3d9773c30e2bda2ecb0af8fa63f9e0e537f0fc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.255ex; height:1.676ex;" alt="{\displaystyle \upsilon }"></span> is the Poisson’s ratio of the material comprising the film, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6d75beabd0038674f5545e00f8fa5c4f38fb63b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.342ex; height:2.509ex;" alt="{\displaystyle h_{s}}"></span> is the thickness of the substrate, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d42c1996a2927feda919e6b49d2966b9fee866b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.475ex; height:2.843ex;" alt="{\displaystyle h_{f}}"></span> is the height of the film, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \sigma \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>σ<!-- σ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \sigma \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abfe961a3e541be23b6eb66370412da2f8df504f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.139ex; height:2.843ex;" alt="{\displaystyle \langle \sigma \rangle }"></span> is the average stress in the film. The assumptions made regarding the Stoney formula assume that the film and substrate are smaller than the lateral size of the wafer and that the stress is uniform across the surface.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> Therefore the average stress thickness of a given film can be determined by integrating the stress over a given film thickness:   </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \sigma \rangle ={\frac {1}{h_{f}}}\int _{0}^{h_{f}}\sigma (z)dz}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>σ<!-- σ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mrow> </msubsup> <mi>σ<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \sigma \rangle ={\frac {1}{h_{f}}}\int _{0}^{h_{f}}\sigma (z)dz}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fa20b4485b733f2c32104d2fe23aebe8ca0bad7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:21.396ex; height:6.676ex;" alt="{\displaystyle \langle \sigma \rangle ={\frac {1}{h_{f}}}\int _{0}^{h_{f}}\sigma (z)dz}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> is the direction normal to the substrate and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma (z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>σ<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma (z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ca816b5112268f4e0790ef2672b205dcf582c6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.227ex; height:2.843ex;" alt="{\displaystyle \sigma (z)}"></span> represents the in-place stress at a particular height of the film. The stress thickness (or force per unit width) is represented by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \sigma \rangle h_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>σ<!-- σ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \sigma \rangle h_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0090523413a521eeca57a1b86190e569d2f10b91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.614ex; height:3.009ex;" alt="{\displaystyle \langle \sigma \rangle h_{f}}"></span> is an important quantity as it is directionally proportional to the curvature by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {6}{M_{s}h_{s}^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>6</mn> <mrow> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {6}{M_{s}h_{s}^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5cac1dd8c6401e291c2e456d12474a0fd6eb031" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:6.487ex; height:5.843ex;" alt="{\displaystyle {\frac {6}{M_{s}h_{s}^{2}}}}"></span>. Because of this proportionality, measuring the curvature of a film at a given film thickness can directly determine the stress in the film at that thickness. The curvature of a wafer is determined by the average stress of in the film. However, if stress is not uniformly distributed in a film (as it would be for epitaxially grown film layers that have not relaxed so that the intrinsic stress is due to the lattice mismatch of the substrate and the film), it is impossible to determine the stress at a specific film height without continuous curvature measurements. If continuous curvature measurements are taken, the time derivative of the curvature data:<sup id="cite_ref-:2_39-0" class="reference"><a href="#cite_note-:2-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d\kappa }{dt}}\propto \sigma (h_{f}){\frac {\partial h_{f}}{\partial t}}+\int _{0}^{h_{f}}{\frac {\partial \sigma (z,t)}{\partial t}}dz}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>κ<!-- κ --></mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>∝<!-- ∝ --></mo> <mi>σ<!-- σ --></mi> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>σ<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>d</mi> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d\kappa }{dt}}\propto \sigma (h_{f}){\frac {\partial h_{f}}{\partial t}}+\int _{0}^{h_{f}}{\frac {\partial \sigma (z,t)}{\partial t}}dz}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac380c1af01a064ab6145f2aa85606bef88a3ed2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:35.061ex; height:6.343ex;" alt="{\displaystyle {\frac {d\kappa }{dt}}\propto \sigma (h_{f}){\frac {\partial h_{f}}{\partial t}}+\int _{0}^{h_{f}}{\frac {\partial \sigma (z,t)}{\partial t}}dz}"></span> </p><p>can show how the intrinsic stress is changing at any given point. Assuming that stress in the underlying layers of a deposited film remains constant during further deposition, we can represent the incremental stress <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma (h_{f})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>σ<!-- σ --></mi> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma (h_{f})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c09ea1ecca34078ec3f11f2d92f91a3d7d3eeeb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.614ex; height:3.009ex;" alt="{\displaystyle \sigma (h_{f})}"></span> as:<sup id="cite_ref-:2_39-1" class="reference"><a href="#cite_note-:2-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup>   </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma (h_{f})\propto {\frac {\frac {\partial \kappa }{\partial t}}{\frac {\partial h_{f}}{\partial t}}}={\frac {d\kappa }{dh}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>σ<!-- σ --></mi> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>∝<!-- ∝ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>κ<!-- κ --></mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>κ<!-- κ --></mi> </mrow> <mrow> <mi>d</mi> <mi>h</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma (h_{f})\propto {\frac {\frac {\partial \kappa }{\partial t}}{\frac {\partial h_{f}}{\partial t}}}={\frac {d\kappa }{dh}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16bf6c9e9c2df34a3815a736b25bf064403ce21c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:19.652ex; height:9.009ex;" alt="{\displaystyle \sigma (h_{f})\propto {\frac {\frac {\partial \kappa }{\partial t}}{\frac {\partial h_{f}}{\partial t}}}={\frac {d\kappa }{dh}}}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Nanoindentation">Nanoindentation</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=18" title="Edit section: Nanoindentation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Nanoindentation" title="Nanoindentation">Nanoindentation</a> is a popular method of measuring the mechanical properties of films. Measurements can be used to compare coated and uncoated films to reveal the effects of surface treatment on both elastic and plastic responses of the film. Load-displacement curves may reveal information about cracking, delamination, and plasticity in both the film and substrate.<sup id="cite_ref-:5_40-0" class="reference"><a href="#cite_note-:5-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p><p>The Oliver and Pharr method<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> can be used to evaluate nanoindentation results for <a href="/wiki/Hardness" title="Hardness">hardness</a> and elastic modulus evaluation by the use of axisymmetric indenter geometries like a spherical indenter. This method assumes that during unloading, only elastic deformations are recovered (where reverse plastic deformation is negligible). The parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> designates the load, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> is the displacement relative to the undeformed coating surface and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d42c1996a2927feda919e6b49d2966b9fee866b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.475ex; height:2.843ex;" alt="{\displaystyle h_{f}}"></span> is the final penetration depth after unloading. These are used to approximate the power law relation for unloading curves: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=\alpha (h-h_{f})^{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mi>α<!-- α --></mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo>−<!-- − --></mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=\alpha (h-h_{f})^{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c914093b12969e25702d7116251e2f2ea904ccff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.471ex; height:3.009ex;" alt="{\displaystyle P=\alpha (h-h_{f})^{m}}"></span> </p><p>After the contact area <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> is calculated, the hardness is estimated by: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H={\frac {P_{max}}{A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mi>A</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H={\frac {P_{max}}{A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/399e78fbbef8002792c639e59f143dcdd32e9617" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:10.975ex; height:5.343ex;" alt="{\displaystyle H={\frac {P_{max}}{A}}}"></span> </p><p>From the relationship of contact area, the unloading stiffness can be expressed by the relation:<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=\beta {\frac {2}{\surd \pi }}E_{eff}\surd A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mo stretchy="false">√<!-- √ --></mo> <mi>π<!-- π --></mi> </mrow> </mfrac> </mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mo stretchy="false">√<!-- √ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=\beta {\frac {2}{\surd \pi }}E_{eff}\surd A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64b9efa3079e5999d7447510d45a2d91f01c397d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.235ex; height:6.009ex;" alt="{\displaystyle S=\beta {\frac {2}{\surd \pi }}E_{eff}\surd A}"></span> </p><p>Where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{eff}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{eff}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef70047cb6a3479631e18d489971ae0173f1cd0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.522ex; height:2.843ex;" alt="{\displaystyle E_{eff}}"></span> is the effective elastic modulus and takes into account elastic displacements in the specimen and indenter. This relation can also be applied to elastic-plastic contact, which is not affected by pile-up and sink-in during indentation. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{E_{eff}}}={\frac {1-\nu ^{2}}{E}}+{\frac {1-\nu ^{2}}{E_{i}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>ν<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>E</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>ν<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{E_{eff}}}={\frac {1-\nu ^{2}}{E}}+{\frac {1-\nu ^{2}}{E_{i}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cdf84e35eedd740ec20ddcfe2c633e3144a5b34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:25.598ex; height:6.343ex;" alt="{\displaystyle {\frac {1}{E_{eff}}}={\frac {1-\nu ^{2}}{E}}+{\frac {1-\nu ^{2}}{E_{i}}}}"></span> </p><p>Due to the low thickness of the films, accidental probing of the substrate is a concern. To avoid indenting beyond the film and into the substrate, penetration depths are often kept to less than 10% of the film thickness.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> For a conical or pyramidal indenters, the indentation depth scales as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a/t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a/t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc58f022f4c620f8066bd1832635b746d65836ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.232ex; height:2.843ex;" alt="{\displaystyle a/t}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> is the radius of the contact circle and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> is the film thickness. The ratio of penetration depth <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> and film thickness can be used as a scale parameter for soft films.<sup id="cite_ref-:5_40-1" class="reference"><a href="#cite_note-:5-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Strain_engineering">Strain engineering</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=19" title="Edit section: Strain engineering"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Stress and relaxation of stresses in films can influence the materials properties of the film, such as mass transport in <a href="/wiki/Microelectronics" title="Microelectronics">microelectronics</a> applications. Therefore precautions are taken to either mitigate or produce such stresses; for example a buffer layer may be deposited between the substrate and film.<sup id="cite_ref-:1_30-2" class="reference"><a href="#cite_note-:1-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> Strain engineering is also used to produce various <a href="/wiki/Phase_transition" title="Phase transition">phase</a> and domain structures in thin films such as in the domain structure of the ferroelectric <a href="/wiki/Lead_zirconate_titanate" title="Lead zirconate titanate">Lead Zirconate Titanate</a> (PZT).<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Multilayer_medium">Multilayer medium</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=20" title="Edit section: Multilayer medium"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the physical sciences, a <b>multilayer</b> or <b>stratified medium</b> is a stack of different thin films. Typically, a multilayer medium is made for a specific purpose. Since layers are thin with respect to some relevant length scale, <a href="/wiki/Interface_(matter)" title="Interface (matter)">interface</a> effects are much more important than in bulk materials, giving rise to novel physical properties.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> </p><p>The term "multilayer" is <i>not</i> an extension of "<a href="/wiki/Monolayer" title="Monolayer">monolayer</a>" and "<a href="/wiki/Bilayer" title="Bilayer">bilayer</a>", which describe a <i>single</i> layer that is one or two molecules thick. A multilayer medium rather consists of several thin films. </p> <div class="mw-heading mw-heading3"><h3 id="Examples">Examples</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=21" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>An <a href="/wiki/Optical_coating" title="Optical coating">optical coating</a>, as used for instance in a <a href="/wiki/Dielectric_mirror" title="Dielectric mirror">dielectric mirror</a>, is made of several layers that have different <a href="/wiki/Refractive_index" title="Refractive index">refractive indexes</a>.</li> <li><a href="/wiki/Giant_magnetoresistance" title="Giant magnetoresistance">Giant magnetoresistance</a> is a macroscopic quantum effect observed in alternating ferromagnetic and non-magnetic conductive layers.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=22" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Decorative_coatings">Decorative coatings</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=23" title="Edit section: Decorative coatings"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The usage of thin films for decorative coatings probably represents their oldest application. This encompasses ca. 100 nm thin <a href="/wiki/Gold_leaves" class="mw-redirect" title="Gold leaves">gold leaves</a> that were already used in ancient India more than 5000 years ago. It may also be understood as any form of painting, although this kind of work is generally considered as an arts craft rather than an engineering or scientific discipline. Today, thin-film materials of variable thickness and high <a href="/wiki/Refractive_index" title="Refractive index">refractive index</a> like <a href="/wiki/Titanium_dioxide" title="Titanium dioxide">titanium dioxide</a> are often applied for decorative coatings on glass for instance, causing a rainbow-color appearance like oil on water. In addition, intransparent gold-colored surfaces may either be prepared by sputtering of gold or <a href="/wiki/Titanium_nitride" title="Titanium nitride">titanium nitride</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Optical_coatings">Optical coatings</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=24" title="Edit section: Optical coatings"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Optical_coating" title="Optical coating">Optical coating</a> and <a href="/wiki/Thin_film_optics" class="mw-redirect" title="Thin film optics">Thin film optics</a></div> <p>These layers serve in both reflective and <a href="/wiki/Refraction" title="Refraction">refractive</a> systems. Large-area (reflective) <a href="/wiki/Mirror" title="Mirror">mirrors</a> became available during the 19th century and were produced by sputtering of metallic silver or aluminum on glass. Refractive lenses for optical instruments like cameras and microscopes typically exhibit <a href="/wiki/Optical_aberration" title="Optical aberration">aberrations</a>, i.e. non-ideal refractive behavior. While large sets of lenses had to be lined up along the optical path previously, nowadays, the coating of optical lenses with transparent <a href="/wiki/Optical_coating" title="Optical coating">multilayers</a> of titanium dioxide, <a href="/wiki/Silicon_nitride" title="Silicon nitride">silicon nitride</a> or silicon oxide etc. may correct<sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Accuracy_dispute#Disputed_statement" title="Wikipedia:Accuracy dispute"><span title="The material near this tag is possibly inaccurate or nonfactual. (November 2021)">dubious</span></a> – <a href="/wiki/Talk:Thin_film#Optical_coating_correcting_aberrations?" title="Talk:Thin film">discuss</a></i>]</sup> these aberrations. A well-known example for the progress in optical systems by thin-film technology is represented by the only a few mm wide lens in <a href="/wiki/Camera_phone" title="Camera phone">smart phone cameras</a>. Other examples are given by anti-reflection coatings on eyeglasses or <a href="/wiki/Solar_panels" class="mw-redirect" title="Solar panels">solar panels</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Protective_coatings">Protective coatings</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=25" title="Edit section: Protective coatings"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Thin films are often deposited to protect an underlying work piece from external influences. The protection may operate by minimizing the contact with the exterior medium in order to reduce the diffusion from the medium to the work piece or vice versa. For instance, plastic lemonade bottles are frequently coated by anti-diffusion layers to avoid the out-diffusion of <style data-mw-deduplicate="TemplateStyles:r1123817410">.mw-parser-output .template-chem2-su{display:inline-block;font-size:80%;line-height:1;vertical-align:-0.35em}.mw-parser-output .template-chem2-su>span{display:block;text-align:left}.mw-parser-output sub.template-chem2-sub{font-size:80%;vertical-align:-0.35em}.mw-parser-output sup.template-chem2-sup{font-size:80%;vertical-align:0.65em}</style><span class="chemf nowrap">CO<sub class="template-chem2-sub">2</sub></span>, into which carbonic acid decomposes that was introduced into the beverage under high pressure. Another example is represented by thin <a href="/wiki/Titanium_nitride" title="Titanium nitride">TiN</a> films in <a href="/wiki/Integrated_circuit" title="Integrated circuit">microelectronic chips</a> separating electrically conducting aluminum lines from the embedding insulator <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">SiO<sub class="template-chem2-sub">2</sub></span> in order to suppress the formation of <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">Al<sub class="template-chem2-sub">2</sub>O<sub class="template-chem2-sub">3</sub></span>. Often, thin films serve as protection against <a href="/wiki/Abrasion_(mechanical)" title="Abrasion (mechanical)">abrasion</a> between mechanically moving parts. Examples for the latter application are <a href="/wiki/Diamond-like_carbon" title="Diamond-like carbon">diamond-like carbon</a> layers used in car engines or thin films made of <a href="/wiki/Nanocomposites" class="mw-redirect" title="Nanocomposites">nanocomposites</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Electrically_operating_coatings">Electrically operating coatings</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=26" title="Edit section: Electrically operating coatings"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:MxSnake.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/MxSnake.png/170px-MxSnake.png" decoding="async" width="170" height="180" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/MxSnake.png/255px-MxSnake.png 1.5x, //upload.wikimedia.org/wikipedia/commons/b/b4/MxSnake.png 2x" data-file-width="315" data-file-height="333" /></a><figcaption>Laterally structured metal layer of an integrated circuit<sup id="cite_ref-SCT2010_46-0" class="reference"><a href="#cite_note-SCT2010-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>Thin layers from elemental metals like copper, aluminum, gold or silver etc. and alloys have found numerous applications in electrical devices. Due to their high <a href="/wiki/Electrical_conductivity" class="mw-redirect" title="Electrical conductivity">electrical conductivity</a> they are able to transport electrical currents or supply voltages. Thin metal layers serve in conventional electrical system, for instance, as Cu layers on <a href="/wiki/Printed_circuit_boards" class="mw-redirect" title="Printed circuit boards">printed circuit boards</a>, as the outer ground conductor in <a href="/wiki/Coaxial_cable" title="Coaxial cable">coaxial cables</a> and various other forms like sensors etc.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> A major field of application became their use in <a href="/wiki/Integrated_passive_devices" title="Integrated passive devices">integrated passive devices</a> and <a href="/wiki/Integrated_circuits" class="mw-redirect" title="Integrated circuits">integrated circuits</a>,<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> where the electrical network among active and passive devices like <a href="/wiki/Transistors" class="mw-redirect" title="Transistors">transistors</a> and capacitors etc. is built up from thin Al or Cu layers. These layers dispose of thicknesses in the range of a few 100 nm up to a few μm, and they are often embedded into a few nm thin <a href="/wiki/Titanium_nitride" title="Titanium nitride">titanium nitride</a> layers in order to block a chemical reaction with the surrounding dielectric like <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">SiO<sub class="template-chem2-sub">2</sub></span>. The figure shows a micrograph of a laterally structured TiN/Al/TiN metal stack in a microelectronic chip.<sup id="cite_ref-SCT2010_46-1" class="reference"><a href="#cite_note-SCT2010-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Heterostructure" class="mw-redirect" title="Heterostructure">Heterostructures</a> of <a href="/wiki/Gallium_nitride" title="Gallium nitride">gallium nitride</a> and similar <a href="/wiki/Semiconductor" title="Semiconductor">semiconductors</a> can lead to electrons being bound to a sub-nanometric layer, effectively behaving as a <a href="/wiki/Two-dimensional_electron_gas" title="Two-dimensional electron gas">two-dimensional electron gas</a>. Quantum effects in such thin films can significantly enhance <a href="/wiki/Electron_mobility" title="Electron mobility">electron mobility</a> as compared to that of a bulk crystal, which is employed in <a href="/wiki/High-electron-mobility_transistor" title="High-electron-mobility transistor">high-electron-mobility transistors</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Biosensors_and_plasmonic_devices">Biosensors and plasmonic devices</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=27" title="Edit section: Biosensors and plasmonic devices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Noble_metal" title="Noble metal">Noble metal</a> thin films are used in <a href="/wiki/Surface_plasmon" title="Surface plasmon">plasmonic</a> structures such as <a href="/wiki/Surface_plasmon_resonance" title="Surface plasmon resonance">surface plasmon resonance</a> (SPR) sensors. <a href="/wiki/Surface_plasmon_polariton" title="Surface plasmon polariton">Surface plasmon polaritons</a> are surface waves in the optical regime that propagate in between metal-dielectric interfaces; in Kretschmann-Raether configuration for the SPR sensors, a prism is coated with a metallic film through evaporation. Due to the poor adhesive characteristics of metallic films, <a href="/wiki/Germanium" title="Germanium">germanium</a>, <a href="/wiki/Titanium" title="Titanium">titanium</a> or <a href="/wiki/Chromium" title="Chromium">chromium</a> films are used as intermediate layers to promote stronger adhesion.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> Metallic thin films are also used in <a href="/wiki/Hybrid_plasmonic_waveguide" title="Hybrid plasmonic waveguide">plasmonic waveguide</a> designs.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Thin-film_photovoltaic_cells">Thin-film photovoltaic cells</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=28" title="Edit section: Thin-film photovoltaic cells"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Thin_film_solar_cell" class="mw-redirect" title="Thin film solar cell">Thin film solar cell</a></div> <p>Thin-film technologies are also being developed as a means of substantially reducing the cost of <a href="/wiki/Solar_cells" class="mw-redirect" title="Solar cells">solar cells</a>. The rationale for this is <a href="/wiki/Thin-film_solar_cell" title="Thin-film solar cell">thin-film solar cells</a> are cheaper to manufacture owing to their reduced material costs, energy costs, handling costs and capital costs. This is especially represented in the use of <a href="/wiki/Printed_electronics" title="Printed electronics">printed electronics</a> (<a href="/wiki/Roll-to-roll" class="mw-redirect" title="Roll-to-roll">roll-to-roll</a>) processes. Other thin-film technologies, that are still in an early stage of ongoing research or with limited commercial availability, are often classified as emerging or <a href="/wiki/Third_generation_photovoltaic_cell" class="mw-redirect" title="Third generation photovoltaic cell">third generation photovoltaic cells</a> and include, <a href="/wiki/Organic_solar_cell" title="Organic solar cell">organic</a>, <a href="/wiki/Dye-sensitized_solar_cell" title="Dye-sensitized solar cell">dye-sensitized</a>, and <a href="/wiki/Polymer_solar_cell" class="mw-redirect" title="Polymer solar cell">polymer solar cells</a>, as well as <a href="/wiki/Quantum_dot_solar_cell" title="Quantum dot solar cell">quantum dot</a>,<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Copper_zinc_tin_sulfide_solar_cell" class="mw-redirect" title="Copper zinc tin sulfide solar cell">copper zinc tin sulfide</a>, <a href="/wiki/Nanocrystal_solar_cell" title="Nanocrystal solar cell">nanocrystal</a> and <a href="/wiki/Perovskite_solar_cell" title="Perovskite solar cell">perovskite solar cells</a>.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Thin-film_batteries">Thin-film batteries</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=29" title="Edit section: Thin-film batteries"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Coating" title="Coating">Thin-film printing technology</a> is being used to apply solid-state <a href="/wiki/Lithium_polymer" class="mw-redirect" title="Lithium polymer">lithium polymers</a> to a variety of <a href="/wiki/Substrate_(printing)" title="Substrate (printing)">substrates</a> to create unique batteries for specialized applications. <a href="/wiki/Thin-film_battery" class="mw-redirect" title="Thin-film battery">Thin-film batteries</a> can be deposited directly onto chips or chip packages in any shape or size. Flexible batteries can be made by printing onto plastic, thin metal foil, or paper.<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Thin-film_bulk_acoustic_wave_resonators_(TFBARs/FBARs)"><span id="Thin-film_bulk_acoustic_wave_resonators_.28TFBARs.2FFBARs.29"></span>Thin-film bulk acoustic wave resonators (TFBARs/FBARs)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=30" title="Edit section: Thin-film bulk acoustic wave resonators (TFBARs/FBARs)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For miniaturising and more precise control of resonance frequency of piezoelectric crystals <a href="/wiki/Thin-film_bulk_acoustic_resonator" title="Thin-film bulk acoustic resonator">thin-film bulk acoustic resonators</a> TFBARs/FBARs are developed for oscillators, telecommunication filters and duplexers, and sensor applications. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=31" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 22em;"> <ul><li><a href="/wiki/Coating" title="Coating">Coating</a></li> <li><a href="/wiki/Dielectric_mirror" title="Dielectric mirror">Dielectric mirror</a></li> <li><a href="/wiki/Dual-polarisation_interferometry" class="mw-redirect" title="Dual-polarisation interferometry">Dual-polarisation interferometry</a></li> <li><a href="/wiki/Ellipsometry" title="Ellipsometry">Ellipsometry</a></li> <li><a href="/wiki/Flexible_display" title="Flexible display">Flexible display</a></li> <li><a href="/wiki/Flexible_electronics" title="Flexible electronics">Flexible electronics</a></li> <li><a href="/wiki/Hydrogenography" title="Hydrogenography">Hydrogenography</a></li> <li><a href="/wiki/Kelvin_probe_force_microscope" title="Kelvin probe force microscope">Kelvin probe force microscope</a></li> <li><a href="/wiki/Langmuir%E2%80%93Blodgett_film" title="Langmuir–Blodgett film">Langmuir–Blodgett film</a></li> <li><a href="/wiki/Layer_by_layer" title="Layer by layer">Layer by layer</a></li> <li><a href="/wiki/Microfabrication" title="Microfabrication">Microfabrication</a></li> <li><a href="/wiki/Organic_LED" class="mw-redirect" title="Organic LED">Organic LED</a></li> <li><a href="/wiki/Sarfus" class="mw-redirect" title="Sarfus">Sarfus</a></li> <li><a href="/wiki/Thin-film_interference" title="Thin-film interference">Thin-film interference</a></li> <li><a href="/wiki/Thin-film_optics" title="Thin-film optics">Thin-film optics</a></li> <li><a href="/wiki/Thin-film_solar_cell" title="Thin-film solar cell">Thin-film solar cell</a></li> <li><a href="/wiki/Thin-film_bulk_acoustic_resonator" title="Thin-film bulk acoustic resonator">Thin-film bulk acoustic resonator</a></li> <li><a href="/wiki/Transfer-matrix_method_(optics)" title="Transfer-matrix method (optics)">Transfer-matrix method (optics)</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=32" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width reflist-columns-3"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=523-05-02">"IEC 60050 - International Electrotechnical Vocabulary - Details for IEV number 523-05-02: "thin film technology"<span class="cs1-kern-right"></span>"</a>. <i>www.electropedia.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">17 November</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.electropedia.org&rft.atitle=IEC+60050+-+International+Electrotechnical+Vocabulary+-+Details+for+IEV+number+523-05-02%3A+%22thin+film+technology%22&rft_id=https%3A%2F%2Fwww.electropedia.org%2Fiev%2Fiev.nsf%2Fdisplay%3Fopenform%26ievref%3D523-05-02&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-:02-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-:02_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:02_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:02_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:02_2-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:02_2-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOhring2002" class="citation book cs1">Ohring, Milton (2002). <i>Materials science of thin films : deposition and structure</i> (2nd ed.). San Diego, CA: Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780125249751" title="Special:BookSources/9780125249751"><bdi>9780125249751</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Materials+science+of+thin+films+%3A+deposition+and+structure&rft.place=San+Diego%2C+CA&rft.edition=2nd&rft.pub=Academic+Press&rft.date=2002&rft.isbn=9780125249751&rft.aulast=Ohring&rft.aufirst=Milton&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVenables2000" class="citation book cs1">Venables, John A. (31 August 2000). <a rel="nofollow" class="external text" href="https://www.cambridge.org/core/product/identifier/9780511755651/type/book"><i>Introduction to Surface and Thin Film Processes</i></a> (1 ed.). Cambridge University Press. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2Fcbo9780511755651">10.1017/cbo9780511755651</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-78500-6" title="Special:BookSources/978-0-521-78500-6"><bdi>978-0-521-78500-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Surface+and+Thin+Film+Processes&rft.edition=1&rft.pub=Cambridge+University+Press&rft.date=2000-08-31&rft_id=info%3Adoi%2F10.1017%2Fcbo9780511755651&rft.isbn=978-0-521-78500-6&rft.aulast=Venables&rft.aufirst=John+A.&rft_id=https%3A%2F%2Fwww.cambridge.org%2Fcore%2Fproduct%2Fidentifier%2F9780511755651%2Ftype%2Fbook&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnollAdvincula2011" class="citation book cs1">Knoll, Wolfgang Knoll; Advincula, Rigoberto C., eds. (7 June 2011). <i>Functional Polymer Films, 2 Volume Set 1st Edition</i>. Wiley-VCH. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3527321902" title="Special:BookSources/978-3527321902"><bdi>978-3527321902</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Functional+Polymer+Films%2C+2+Volume+Set+1st+Edition&rft.pub=Wiley-VCH&rft.date=2011-06-07&rft.isbn=978-3527321902&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.ibm.com/blogs/research/2017/11/20years-cuwires/">"One big wire change in '97 still helping chips achieve tiny scale"</a>. <i>IBM Research Blog</i>. 15 November 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">20 April</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=IBM+Research+Blog&rft.atitle=One+big+wire+change+in+%2797+still+helping+chips+achieve+tiny+scale&rft.date=2017-11-15&rft_id=https%3A%2F%2Fwww.ibm.com%2Fblogs%2Fresearch%2F2017%2F11%2F20years-cuwires%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArigaYamauchiMoriHill2013" class="citation journal cs1">Ariga, Katsuhiko; Yamauchi, Yusuke; Mori, Taizo; Hill, Jonathan P. (2013). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201302283">"25th Anniversary Article: What Can Be Done with the Langmuir-Blodgett Method? Recent Developments and its Critical Role in Materials Science"</a>. <i>Advanced Materials</i>. <b>25</b> (45). Deerfield Beach FL USA: VCH Publishers (published 8 October 2013): 6477–6512. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013AdM....25.6477A">2013AdM....25.6477A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.201302283">10.1002/adma.201302283</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1521-4095">1521-4095</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24302266">24302266</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:205251007">205251007</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advanced+Materials&rft.atitle=25th+Anniversary+Article%3A+What+Can+Be+Done+with+the+Langmuir-Blodgett+Method%3F+Recent+Developments+and+its+Critical+Role+in+Materials+Science&rft.volume=25&rft.issue=45&rft.pages=6477-6512&rft.date=2013&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A205251007%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2013AdM....25.6477A&rft.issn=1521-4095&rft_id=info%3Adoi%2F10.1002%2Fadma.201302283&rft_id=info%3Apmid%2F24302266&rft.aulast=Ariga&rft.aufirst=Katsuhiko&rft.au=Yamauchi%2C+Yusuke&rft.au=Mori%2C+Taizo&rft.au=Hill%2C+Jonathan+P.&rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2Fabs%2F10.1002%2Fadma.201302283&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHanaorTrianiSorrell2011" class="citation journal cs1">Hanaor, D.A.H.; Triani, G.; Sorrell, C.C. (15 March 2011). "Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin films". <i>Surface and Coatings Technology</i>. <b>205</b> (12): 3658–3664. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1303.2741">1303.2741</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.surfcoat.2011.01.007">10.1016/j.surfcoat.2011.01.007</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:96130259">96130259</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Surface+and+Coatings+Technology&rft.atitle=Morphology+and+photocatalytic+activity+of+highly+oriented+mixed+phase+titanium+dioxide+thin+films&rft.volume=205&rft.issue=12&rft.pages=3658-3664&rft.date=2011-03-15&rft_id=info%3Aarxiv%2F1303.2741&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A96130259%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.surfcoat.2011.01.007&rft.aulast=Hanaor&rft.aufirst=D.A.H.&rft.au=Triani%2C+G.&rft.au=Sorrell%2C+C.C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFaustiniDriskoBoissiereGrosso2014" class="citation journal cs1">Faustini, Marco; Drisko, Glenna L; Boissiere, Cedric; Grosso, David (1 March 2014). "Liquid deposition approaches to self-assembled periodic nanomasks". <i>Scripta Materialia</i>. <b>74</b>: 13–18. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.scriptamat.2013.07.029">10.1016/j.scriptamat.2013.07.029</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scripta+Materialia&rft.atitle=Liquid+deposition+approaches+to+self-assembled+periodic+nanomasks&rft.volume=74&rft.pages=13-18&rft.date=2014-03-01&rft_id=info%3Adoi%2F10.1016%2Fj.scriptamat.2013.07.029&rft.aulast=Faustini&rft.aufirst=Marco&rft.au=Drisko%2C+Glenna+L&rft.au=Boissiere%2C+Cedric&rft.au=Grosso%2C+David&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrontlPletikosićMilunPervan2005" class="citation journal cs1">Trontl, V. Mikšić; Pletikosić, I.; Milun, M.; Pervan, P.; Lazić, P.; Šokčević, D.; Brako, R. (16 December 2005). "Experimental and ab initio study of the structural and electronic properties of subnanometer thick Ag films on Pd(111)". <i>Physical Review B</i>. <b>72</b> (23): 235418. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005PhRvB..72w5418T">2005PhRvB..72w5418T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevB.72.235418">10.1103/PhysRevB.72.235418</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+B&rft.atitle=Experimental+and+ab+initio+study+of+the+structural+and+electronic+properties+of+subnanometer+thick+Ag+films+on+Pd%28111%29&rft.volume=72&rft.issue=23&rft.pages=235418&rft.date=2005-12-16&rft_id=info%3Adoi%2F10.1103%2FPhysRevB.72.235418&rft_id=info%3Abibcode%2F2005PhRvB..72w5418T&rft.aulast=Trontl&rft.aufirst=V.+Mik%C5%A1i%C4%87&rft.au=Pletikosi%C4%87%2C+I.&rft.au=Milun%2C+M.&rft.au=Pervan%2C+P.&rft.au=Lazi%C4%87%2C+P.&rft.au=%C5%A0ok%C4%8Devi%C4%87%2C+D.&rft.au=Brako%2C+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRashidian_VaziriHajiesmaeilbaigiMaleki2011" class="citation journal cs1">Rashidian Vaziri, M. R.; Hajiesmaeilbaigi, F.; Maleki, M. H. (24 August 2011). "Monte Carlo simulation of the subsurface growth mode during pulsed laser deposition". <i>Journal of Applied Physics</i>. <b>110</b> (4): 043304–043304–12. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011JAP...110d3304R">2011JAP...110d3304R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.3624768">10.1063/1.3624768</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Applied+Physics&rft.atitle=Monte+Carlo+simulation+of+the+subsurface+growth+mode+during+pulsed+laser+deposition&rft.volume=110&rft.issue=4&rft.pages=043304-043304-12&rft.date=2011-08-24&rft_id=info%3Adoi%2F10.1063%2F1.3624768&rft_id=info%3Abibcode%2F2011JAP...110d3304R&rft.aulast=Rashidian+Vaziri&rft.aufirst=M.+R.&rft.au=Hajiesmaeilbaigi%2C+F.&rft.au=Maleki%2C+M.+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-TLE-Original-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-TLE-Original_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBraunMannhart2019" class="citation journal cs1">Braun, Wolfgang; Mannhart, Jochen (14 August 2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.5111678">"Film deposition by thermal laser evaporation"</a>. <i>AIP Advances</i>. <b>9</b> (8): 085310. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019AIPA....9h5310B">2019AIPA....9h5310B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.5111678">10.1063/1.5111678</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:202065503">202065503</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=AIP+Advances&rft.atitle=Film+deposition+by+thermal+laser+evaporation&rft.volume=9&rft.issue=8&rft.pages=085310&rft.date=2019-08-14&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A202065503%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1063%2F1.5111678&rft_id=info%3Abibcode%2F2019AIPA....9h5310B&rft.aulast=Braun&rft.aufirst=Wolfgang&rft.au=Mannhart%2C+Jochen&rft_id=https%3A%2F%2Fdoi.org%2F10.1063%252F1.5111678&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-Smart-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-Smart_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmartMannhartBraun2021" class="citation journal cs1">Smart, Thomas J.; Mannhart, Jochen; Braun, Wolfgang (9 March 2021). <a rel="nofollow" class="external text" href="https://lia.scitation.org/doi/10.2351/7.0000348">"Thermal laser evaporation of elements from across the periodic table"</a>. <i>Journal of Laser Applications</i>. <b>33</b> (2): 022008. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2103.12596">2103.12596</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021JLasA..33b2008S">2021JLasA..33b2008S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2351%2F7.0000348">10.2351/7.0000348</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:232320531">232320531</a><span class="reference-accessdate">. Retrieved <span class="nowrap">8 September</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Laser+Applications&rft.atitle=Thermal+laser+evaporation+of+elements+from+across+the+periodic+table&rft.volume=33&rft.issue=2&rft.pages=022008&rft.date=2021-03-09&rft_id=info%3Aarxiv%2F2103.12596&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A232320531%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.2351%2F7.0000348&rft_id=info%3Abibcode%2F2021JLasA..33b2008S&rft.aulast=Smart&rft.aufirst=Thomas+J.&rft.au=Mannhart%2C+Jochen&rft.au=Braun%2C+Wolfgang&rft_id=https%3A%2F%2Flia.scitation.org%2Fdoi%2F10.2351%2F7.0000348&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-Substrate-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-Substrate_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBraunJägerLaskinNgabonziza2020" class="citation journal cs1">Braun, Wolfgang; Jäger, Maren; Laskin, Gennadii; Ngabonziza, Prosper; Voesch, Wolfgang; Wittlich, Pascal; Mannhart, Jochen (16 July 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F5.0008324">"<i>In situ</i> thermal preparation of oxide surfaces"</a>. <i>APL Materials</i>. <b>8</b> (7): 071112. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020APLM....8g1112B">2020APLM....8g1112B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F5.0008324">10.1063/5.0008324</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:225595599">225595599</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=APL+Materials&rft.atitle=In+situ+thermal+preparation+of+oxide+surfaces&rft.volume=8&rft.issue=7&rft.pages=071112&rft.date=2020-07-16&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A225595599%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1063%2F5.0008324&rft_id=info%3Abibcode%2F2020APLM....8g1112B&rft.aulast=Braun&rft.aufirst=Wolfgang&rft.au=J%C3%A4ger%2C+Maren&rft.au=Laskin%2C+Gennadii&rft.au=Ngabonziza%2C+Prosper&rft.au=Voesch%2C+Wolfgang&rft.au=Wittlich%2C+Pascal&rft.au=Mannhart%2C+Jochen&rft_id=https%3A%2F%2Fdoi.org%2F10.1063%252F5.0008324&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKimMannhartBraun2021" class="citation journal cs1">Kim, Dong Yeong; Mannhart, Jochen; Braun, Wolfgang (4 August 2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1116%2F6.0001177">"Epitaxial film growth by thermal laser evaporation"</a>. <i>Journal of Vacuum Science & Technology A</i>. <b>39</b> (5): 053406. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021JVSTA..39e3406K">2021JVSTA..39e3406K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1116%2F6.0001177">10.1116/6.0001177</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Vacuum+Science+%26+Technology+A&rft.atitle=Epitaxial+film+growth+by+thermal+laser+evaporation&rft.volume=39&rft.issue=5&rft.pages=053406&rft.date=2021-08-04&rft_id=info%3Adoi%2F10.1116%2F6.0001177&rft_id=info%3Abibcode%2F2021JVSTA..39e3406K&rft.aulast=Kim&rft.aufirst=Dong+Yeong&rft.au=Mannhart%2C+Jochen&rft.au=Braun%2C+Wolfgang&rft_id=https%3A%2F%2Fdoi.org%2F10.1116%252F6.0001177&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-TLE-Carbon-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-TLE-Carbon_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKimSmart2023" class="citation journal cs1">Kim, Dong Yeong; Smart, Thomas J. (17 October 2023). <a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.cgd.3c00833">"Thermal laser epitaxy of carbon films"</a>. <i>Crystal Growth & Design</i>. <b>23</b> (11): 8087–8093. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019AIPA....9h5310B">2019AIPA....9h5310B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.cgd.3c00833">10.1021/acs.cgd.3c00833</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Crystal+Growth+%26+Design&rft.atitle=Thermal+laser+epitaxy+of+carbon+films&rft.volume=23&rft.issue=11&rft.pages=8087-8093&rft.date=2023-10-17&rft_id=info%3Adoi%2F10.1021%2Facs.cgd.3c00833&rft_id=info%3Abibcode%2F2019AIPA....9h5310B&rft.aulast=Kim&rft.aufirst=Dong+Yeong&rft.au=Smart%2C+Thomas+J.&rft_id=https%3A%2F%2Fdoi.org%2F10.1021%252Facs.cgd.3c00833&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-TLE-Tantalum-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-TLE-Tantalum_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMajerSminkBraunFenk2024" class="citation journal cs1">Majer, Lena N.; Smink, Sander; Braun, Wolfgang; Fenk, Bernhard; Harbola, Varun; Stuhlhofer, Benjamin; Wang, Hongguang; van Aken, Peter A.; Mannhart, Jochen; Hensling, Felix V. E. (24 September 2024). <a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F5.0218021">"α-Ta films on c-plane sapphire with enhanced microstructure"</a>. <i>APL Materials</i>. <b>12</b> (09): 091108. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019AIPA....9h5310B">2019AIPA....9h5310B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F5.0218021">10.1063/5.0218021</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=APL+Materials&rft.atitle=%CE%B1-Ta+films+on+c-plane+sapphire+with+enhanced+microstructure&rft.volume=12&rft.issue=09&rft.pages=091108&rft.date=2024-09-24&rft_id=info%3Adoi%2F10.1063%2F5.0218021&rft_id=info%3Abibcode%2F2019AIPA....9h5310B&rft.aulast=Majer&rft.aufirst=Lena+N.&rft.au=Smink%2C+Sander&rft.au=Braun%2C+Wolfgang&rft.au=Fenk%2C+Bernhard&rft.au=Harbola%2C+Varun&rft.au=Stuhlhofer%2C+Benjamin&rft.au=Wang%2C+Hongguang&rft.au=van+Aken%2C+Peter+A.&rft.au=Mannhart%2C+Jochen&rft.au=Hensling%2C+Felix+V.+E.&rft_id=https%3A%2F%2Fdoi.org%2F10.1063%252F5.0218021&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrankvan_der_Merwe1949" class="citation journal cs1">Frank, Frederick Charles; van der Merwe, J. H. (15 August 1949). <a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1949.0095">"One-dimensional dislocations. I. Static theory"</a>. <i>Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences</i>. <b>198</b> (1053): 205–216. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1949RSPSA.198..205F">1949RSPSA.198..205F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1949.0095">10.1098/rspa.1949.0095</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/98165">98165</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society+of+London.+Series+A%2C+Mathematical+and+Physical+Sciences&rft.atitle=One-dimensional+dislocations.+I.+Static+theory&rft.volume=198&rft.issue=1053&rft.pages=205-216&rft.date=1949-08-15&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F98165%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.1098%2Frspa.1949.0095&rft_id=info%3Abibcode%2F1949RSPSA.198..205F&rft.aulast=Frank&rft.aufirst=Frederick+Charles&rft.au=van+der+Merwe%2C+J.+H.&rft_id=https%3A%2F%2Fdoi.org%2F10.1098%252Frspa.1949.0095&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrankvan_der_Merwe1949" class="citation journal cs1">Frank, Frederick Charles; van der Merwe, J. H. (15 August 1949). "One-Dimensional Dislocations. II. Misfitting Monolayers and Oriented Overgrowth". <i>Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences</i>. <b>198</b> (1053): 216–225. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1949RSPSA.198..216F">1949RSPSA.198..216F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1949.0096">10.1098/rspa.1949.0096</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/98166">98166</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:137401458">137401458</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society+of+London.+Series+A%2C+Mathematical+and+Physical+Sciences&rft.atitle=One-Dimensional+Dislocations.+II.+Misfitting+Monolayers+and+Oriented+Overgrowth&rft.volume=198&rft.issue=1053&rft.pages=216-225&rft.date=1949-08-15&rft_id=info%3Adoi%2F10.1098%2Frspa.1949.0096&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A137401458%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F98166%23id-name%3DJSTOR&rft_id=info%3Abibcode%2F1949RSPSA.198..216F&rft.aulast=Frank&rft.aufirst=Frederick+Charles&rft.au=van+der+Merwe%2C+J.+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrankvan_der_Merwe1949" class="citation journal cs1">Frank, Frederick Charles; van der Merwe, J. H. (15 August 1949). "One-Dimensional Dislocations. III. Influence of the Second Harmonic Term in the Potential Representation, on the Properties of the Model". <i>Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences</i>. <b>198</b> (1053): 125–134. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1949RSPSA.200..125F">1949RSPSA.200..125F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1949.0163">10.1098/rspa.1949.0163</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/98394">98394</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122413983">122413983</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society+of+London.+Series+A%2C+Mathematical+and+Physical+Sciences&rft.atitle=One-Dimensional+Dislocations.+III.+Influence+of+the+Second+Harmonic+Term+in+the+Potential+Representation%2C+on+the+Properties+of+the+Model&rft.volume=198&rft.issue=1053&rft.pages=125-134&rft.date=1949-08-15&rft_id=info%3Adoi%2F10.1098%2Frspa.1949.0163&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122413983%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F98394%23id-name%3DJSTOR&rft_id=info%3Abibcode%2F1949RSPSA.200..125F&rft.aulast=Frank&rft.aufirst=Frederick+Charles&rft.au=van+der+Merwe%2C+J.+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStranskiKrastanov1938" class="citation journal cs1">Stranski, I. N.; Krastanov, L. (10 February 1938). "Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander". <i>Monatshefte für Chemie und verwandte Teile anderer Wissenschaften</i>. <b>146</b> (1): 351–364. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01798103">10.1007/BF01798103</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0343-7329">0343-7329</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:93219029">93219029</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Monatshefte+f%C3%BCr+Chemie+und+verwandte+Teile+anderer+Wissenschaften&rft.atitle=Zur+Theorie+der+orientierten+Ausscheidung+von+Ionenkristallen+aufeinander&rft.volume=146&rft.issue=1&rft.pages=351-364&rft.date=1938-02-10&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A93219029%23id-name%3DS2CID&rft.issn=0343-7329&rft_id=info%3Adoi%2F10.1007%2FBF01798103&rft.aulast=Stranski&rft.aufirst=I.+N.&rft.au=Krastanov%2C+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVolmerWeber1926" class="citation journal cs1">Volmer, M.; Weber, A. (1 January 1926). "Keimbildung in übersättigten Gebilden". <i>Zeitschrift für Physikalische Chemie</i>. <b>119U</b> (1): 277–301. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Fzpch-1926-11927">10.1515/zpch-1926-11927</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0942-9352">0942-9352</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:100018452">100018452</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Zeitschrift+f%C3%BCr+Physikalische+Chemie&rft.atitle=Keimbildung+in+%C3%BCbers%C3%A4ttigten+Gebilden&rft.volume=119U&rft.issue=1&rft.pages=277-301&rft.date=1926-01-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A100018452%23id-name%3DS2CID&rft.issn=0942-9352&rft_id=info%3Adoi%2F10.1515%2Fzpch-1926-11927&rft.aulast=Volmer&rft.aufirst=M.&rft.au=Weber%2C+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFloroHearneHunterKotula2001" class="citation journal cs1">Floro, J. A.; Hearne, S. J.; Hunter, J. A.; Kotula, P.; Chason, E.; Seel, S. C.; Thompson, C. V. (1 May 2001). <a rel="nofollow" class="external text" href="https://pubs.aip.org/jap/article/89/9/4886/179708/The-dynamic-competition-between-stress-generation">"The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films"</a>. <i>Journal of Applied Physics</i>. <b>89</b> (9): 4886–4897. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001JAP....89.4886F">2001JAP....89.4886F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1352563">10.1063/1.1352563</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0021-8979">0021-8979</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Applied+Physics&rft.atitle=The+dynamic+competition+between+stress+generation+and+relaxation+mechanisms+during+coalescence+of+Volmer%E2%80%93Weber+thin+films&rft.volume=89&rft.issue=9&rft.pages=4886-4897&rft.date=2001-05-01&rft.issn=0021-8979&rft_id=info%3Adoi%2F10.1063%2F1.1352563&rft_id=info%3Abibcode%2F2001JAP....89.4886F&rft.aulast=Floro&rft.aufirst=J.+A.&rft.au=Hearne%2C+S.+J.&rft.au=Hunter%2C+J.+A.&rft.au=Kotula%2C+P.&rft.au=Chason%2C+E.&rft.au=Seel%2C+S.+C.&rft.au=Thompson%2C+C.+V.&rft_id=https%3A%2F%2Fpubs.aip.org%2Fjap%2Farticle%2F89%2F9%2F4886%2F179708%2FThe-dynamic-competition-between-stress-generation&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-dd-23"><span class="mw-cite-backlink">^ <a href="#cite_ref-dd_23-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-dd_23-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeplaBraeckman2016" class="citation journal cs1">Depla, D.; Braeckman, B.R. (April 2016). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016/j.tsf.2016.03.039">"Quantitative correlation between intrinsic stress and microstructure of thin films"</a>. <i>Thin Solid Films</i>. <b>604</b>: 90–93. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016TSF...604...90D">2016TSF...604...90D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.tsf.2016.03.039">10.1016/j.tsf.2016.03.039</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0040-6090">0040-6090</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Thin+Solid+Films&rft.atitle=Quantitative+correlation+between+intrinsic+stress+and+microstructure+of+thin+films&rft.volume=604&rft.pages=90-93&rft.date=2016-04&rft.issn=0040-6090&rft_id=info%3Adoi%2F10.1016%2Fj.tsf.2016.03.039&rft_id=info%3Abibcode%2F2016TSF...604...90D&rft.aulast=Depla&rft.aufirst=D.&rft.au=Braeckman%2C+B.R.&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.tsf.2016.03.039&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZotovSchützendübe2019" class="citation journal cs1">Zotov, N.; Schützendübe, P. (3 June 2019). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1063/1.5094286">"Asymmetry of interface reactions in Ag-Sn thin film couples—<i>In-situ</i> synchrotron radiation study"</a>. <i>Journal of Applied Physics</i>. <b>125</b> (21). <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019JAP...125u5302Z">2019JAP...125u5302Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.5094286">10.1063/1.5094286</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0021-8979">0021-8979</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Applied+Physics&rft.atitle=Asymmetry+of+interface+reactions+in+Ag-Sn+thin+film+couples%E2%80%94%3Ci%3EIn-situ%3C%2Fi%3E+synchrotron+radiation+study&rft.volume=125&rft.issue=21&rft.date=2019-06-03&rft.issn=0021-8979&rft_id=info%3Adoi%2F10.1063%2F1.5094286&rft_id=info%3Abibcode%2F2019JAP...125u5302Z&rft.aulast=Zotov&rft.aufirst=N.&rft.au=Sch%C3%BCtzend%C3%BCbe%2C+P.&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1063%2F1.5094286&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKochWinauFührmannRieder1991" class="citation journal cs1">Koch, R.; Winau, D.; Führmann, A.; Rieder, K. H. (15 August 1991). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1103/physrevb.44.3369">"Growth-mode-specific intrinsic stress of thin silver films"</a>. <i>Physical Review B</i>. <b>44</b> (7): 3369–3372. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1991PhRvB..44.3369K">1991PhRvB..44.3369K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2Fphysrevb.44.3369">10.1103/physrevb.44.3369</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0163-1829">0163-1829</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9999944">9999944</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+B&rft.atitle=Growth-mode-specific+intrinsic+stress+of+thin+silver+films&rft.volume=44&rft.issue=7&rft.pages=3369-3372&rft.date=1991-08-15&rft_id=info%3Adoi%2F10.1103%2Fphysrevb.44.3369&rft.issn=0163-1829&rft_id=info%3Apmid%2F9999944&rft_id=info%3Abibcode%2F1991PhRvB..44.3369K&rft.aulast=Koch&rft.aufirst=R.&rft.au=Winau%2C+D.&rft.au=F%C3%BChrmann%2C+A.&rft.au=Rieder%2C+K.+H.&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1103%2Fphysrevb.44.3369&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRashidian_VaziriHajiesmaeilbaigiMaleki2010" class="citation journal cs1">Rashidian Vaziri, M. R.; Hajiesmaeilbaigi, F.; Maleki, M. H. (7 October 2010). "Microscopic description of the thermalization process during pulsed laser deposition of aluminium in the presence of argon background gas". <i>Journal of Physics D: Applied Physics</i>. <b>43</b> (42): 425205. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010JPhD...43P5205R">2010JPhD...43P5205R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0022-3727%2F43%2F42%2F425205">10.1088/0022-3727/43/42/425205</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1361-6463">1361-6463</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120309363">120309363</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics+D%3A+Applied+Physics&rft.atitle=Microscopic+description+of+the+thermalization+process+during+pulsed+laser+deposition+of+aluminium+in+the+presence+of+argon+background+gas&rft.volume=43&rft.issue=42&rft.pages=425205&rft.date=2010-10-07&rft_id=info%3Adoi%2F10.1088%2F0022-3727%2F43%2F42%2F425205&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120309363%23id-name%3DS2CID&rft.issn=1361-6463&rft_id=info%3Abibcode%2F2010JPhD...43P5205R&rft.aulast=Rashidian+Vaziri&rft.aufirst=M.+R.&rft.au=Hajiesmaeilbaigi%2C+F.&rft.au=Maleki%2C+M.+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-:100-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-:100_27-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhangWangWangUpmanyu2023" class="citation journal cs1">Zhang, Xiaopu; Wang, Mengyuan; Wang, Hailong; Upmanyu, Moneesh; Boland, John J. (1 January 2023). <a rel="nofollow" class="external text" href="https://doi.org/10.1016/j.actamat.2022.118432">"Restructuring of emergent grain boundaries at free surfaces–An interplay between core stabilization and elastic stress generation"</a>. <i>Acta Materialia</i>. <b>242</b>: 118432. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2023AcMat.24218432Z">2023AcMat.24218432Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.actamat.2022.118432">10.1016/j.actamat.2022.118432</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2262%2F101841">2262/101841</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1359-6454">1359-6454</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Materialia&rft.atitle=Restructuring+of+emergent+grain+boundaries+at+free+surfaces%E2%80%93An+interplay+between+core+stabilization+and+elastic+stress+generation&rft.volume=242&rft.pages=118432&rft.date=2023-01-01&rft_id=info%3Ahdl%2F2262%2F101841&rft.issn=1359-6454&rft_id=info%3Adoi%2F10.1016%2Fj.actamat.2022.118432&rft_id=info%3Abibcode%2F2023AcMat.24218432Z&rft.aulast=Zhang&rft.aufirst=Xiaopu&rft.au=Wang%2C+Mengyuan&rft.au=Wang%2C+Hailong&rft.au=Upmanyu%2C+Moneesh&rft.au=Boland%2C+John+J.&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%2Fj.actamat.2022.118432&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-:0-28"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_28-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_28-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMurakami1991" class="citation journal cs1">Murakami, Masanori (1 July 1991). <a rel="nofollow" class="external text" href="https://avs.scitation.org/doi/10.1116/1.577258">"Deformation in thin films by thermal strain"</a>. <i>Journal of Vacuum Science & Technology A</i>. <b>9</b> (4): 2469–2476. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1991JVSTA...9.2469M">1991JVSTA...9.2469M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1116%2F1.577258">10.1116/1.577258</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0734-2101">0734-2101</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Vacuum+Science+%26+Technology+A&rft.atitle=Deformation+in+thin+films+by+thermal+strain&rft.volume=9&rft.issue=4&rft.pages=2469-2476&rft.date=1991-07-01&rft.issn=0734-2101&rft_id=info%3Adoi%2F10.1116%2F1.577258&rft_id=info%3Abibcode%2F1991JVSTA...9.2469M&rft.aulast=Murakami&rft.aufirst=Masanori&rft_id=https%3A%2F%2Favs.scitation.org%2Fdoi%2F10.1116%2F1.577258&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmith1995" class="citation book cs1">Smith, Donald L. (22 March 1995). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=kTVkwRWwxfYC"><i>Thin-Film Deposition: Principles and Practice</i></a>. McGraw Hill Professional. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-058502-7" title="Special:BookSources/978-0-07-058502-7"><bdi>978-0-07-058502-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Thin-Film+Deposition%3A+Principles+and+Practice&rft.pub=McGraw+Hill+Professional&rft.date=1995-03-22&rft.isbn=978-0-07-058502-7&rft.aulast=Smith&rft.aufirst=Donald+L.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DkTVkwRWwxfYC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-:1-30"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_30-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_30-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:1_30-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbadiasChasonKeckesSebastiani2018" class="citation journal cs1">Abadias, Grégory; Chason, Eric; Keckes, Jozef; Sebastiani, Marco; Thompson, Gregory B.; Barthel, Etienne; Doll, Gary L.; Murray, Conal E.; Stoessel, Chris H.; Martinu, Ludvik (1 March 2018). <a rel="nofollow" class="external text" href="https://doi.org/10.1116%2F1.5011790">"Review Article: Stress in thin films and coatings: Current status, challenges, and prospects"</a>. <i>Journal of Vacuum Science & Technology A</i>. <b>36</b> (2): 020801. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018JVSTA..36b0801A">2018JVSTA..36b0801A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1116%2F1.5011790">10.1116/1.5011790</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0734-2101">0734-2101</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Vacuum+Science+%26+Technology+A&rft.atitle=Review+Article%3A+Stress+in+thin+films+and+coatings%3A+Current+status%2C+challenges%2C+and+prospects&rft.volume=36&rft.issue=2&rft.pages=020801&rft.date=2018-03-01&rft.issn=0734-2101&rft_id=info%3Adoi%2F10.1116%2F1.5011790&rft_id=info%3Abibcode%2F2018JVSTA..36b0801A&rft.aulast=Abadias&rft.aufirst=Gr%C3%A9gory&rft.au=Chason%2C+Eric&rft.au=Keckes%2C+Jozef&rft.au=Sebastiani%2C+Marco&rft.au=Thompson%2C+Gregory+B.&rft.au=Barthel%2C+Etienne&rft.au=Doll%2C+Gary+L.&rft.au=Murray%2C+Conal+E.&rft.au=Stoessel%2C+Chris+H.&rft.au=Martinu%2C+Ludvik&rft_id=https%3A%2F%2Fdoi.org%2F10.1116%252F1.5011790&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWcisloDabrowska-SzataGelczuk2010" class="citation book cs1">Wcislo, Tomasz; Dabrowska-Szata, Maria; Gelczuk, Lukasz (June 2010). <a rel="nofollow" class="external text" href="https://ieeexplore.ieee.org/document/5714177">"Critical thickness of epitaxial thin films using Finite Element Method"</a>. <i>2010 International Students and Young Scientists Workshop "Photonics and Microsystems"</i>. pp. 82–85. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FSTYSW.2010.5714177">10.1109/STYSW.2010.5714177</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4244-8324-2" title="Special:BookSources/978-1-4244-8324-2"><bdi>978-1-4244-8324-2</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:31642146">31642146</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Critical+thickness+of+epitaxial+thin+films+using+Finite+Element+Method&rft.btitle=2010+International+Students+and+Young+Scientists+Workshop+%22Photonics+and+Microsystems%22&rft.pages=82-85&rft.date=2010-06&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A31642146%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1109%2FSTYSW.2010.5714177&rft.isbn=978-1-4244-8324-2&rft.aulast=Wcislo&rft.aufirst=Tomasz&rft.au=Dabrowska-Szata%2C+Maria&rft.au=Gelczuk%2C+Lukasz&rft_id=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F5714177&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-:3-32"><span class="mw-cite-backlink">^ <a href="#cite_ref-:3_32-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:3_32-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:3_32-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:3_32-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNix1989" class="citation journal cs1">Nix, William D. (1 November 1989). <a rel="nofollow" class="external text" href="https://doi.org/10.1007/BF02666659">"Mechanical properties of thin films"</a>. <i>Metallurgical Transactions A</i>. <b>20</b> (11): 2217–2245. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1989MTA....20.2217N">1989MTA....20.2217N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02666659">10.1007/BF02666659</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2379-0180">2379-0180</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Metallurgical+Transactions+A&rft.atitle=Mechanical+properties+of+thin+films&rft.volume=20&rft.issue=11&rft.pages=2217-2245&rft.date=1989-11-01&rft.issn=2379-0180&rft_id=info%3Adoi%2F10.1007%2FBF02666659&rft_id=info%3Abibcode%2F1989MTA....20.2217N&rft.aulast=Nix&rft.aufirst=William+D.&rft_id=https%3A%2F%2Fdoi.org%2F10.1007%2FBF02666659&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-:4-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-:4_33-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVinci1996" class="citation journal cs1">Vinci, Richard P. (1996). <a rel="nofollow" class="external text" href="https://projects.iq.harvard.edu/sites/projects.iq.harvard.edu/files/vlassakgroup/files/annurev.ms_.26.080196.002243.pdf">"Mechanical Behavior of Thin Films"</a> <span class="cs1-format">(PDF)</span>. <i>Annual Review of Materials Science</i>. <b>26</b>: 431–462. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996AnRMS..26..431V">1996AnRMS..26..431V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev.ms.26.080196.002243">10.1146/annurev.ms.26.080196.002243</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annual+Review+of+Materials+Science&rft.atitle=Mechanical+Behavior+of+Thin+Films&rft.volume=26&rft.pages=431-462&rft.date=1996&rft_id=info%3Adoi%2F10.1146%2Fannurev.ms.26.080196.002243&rft_id=info%3Abibcode%2F1996AnRMS..26..431V&rft.aulast=Vinci&rft.aufirst=Richard+P.&rft_id=https%3A%2F%2Fprojects.iq.harvard.edu%2Fsites%2Fprojects.iq.harvard.edu%2Ffiles%2Fvlassakgroup%2Ffiles%2Fannurev.ms_.26.080196.002243.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaiser2002" class="citation journal cs1">Kaiser, Norbert (1 June 2002). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1364/ao.41.003053">"Review of the fundamentals of thin-film growth"</a>. <i>Applied Optics</i>. <b>41</b> (16): 3053–3060. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002ApOpt..41.3053K">2002ApOpt..41.3053K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1364%2Fao.41.003053">10.1364/ao.41.003053</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-6935">0003-6935</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12064380">12064380</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Applied+Optics&rft.atitle=Review+of+the+fundamentals+of+thin-film+growth&rft.volume=41&rft.issue=16&rft.pages=3053-3060&rft.date=2002-06-01&rft_id=info%3Adoi%2F10.1364%2Fao.41.003053&rft.issn=0003-6935&rft_id=info%3Apmid%2F12064380&rft_id=info%3Abibcode%2F2002ApOpt..41.3053K&rft.aulast=Kaiser&rft.aufirst=Norbert&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1364%2Fao.41.003053&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarbier2018" class="citation cs2">Barbier, Antoine (2018), <a rel="nofollow" class="external text" href="https://doi.org/10.1016/B978-0-12-811180-2.00023-2">"Single and heterostructure multiferroic thin films"</a>, <i>Magnetic, Ferroelectric, and Multiferroic Metal Oxides</i>, Elsevier, pp. 487–514, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fb978-0-12-811180-2.00023-2">10.1016/b978-0-12-811180-2.00023-2</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-12-811180-2" title="Special:BookSources/978-0-12-811180-2"><bdi>978-0-12-811180-2</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">11 May</span> 2024</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Magnetic%2C+Ferroelectric%2C+and+Multiferroic+Metal+Oxides&rft.atitle=Single+and+heterostructure+multiferroic+thin+films&rft.pages=487-514&rft.date=2018&rft_id=info%3Adoi%2F10.1016%2Fb978-0-12-811180-2.00023-2&rft.isbn=978-0-12-811180-2&rft.aulast=Barbier&rft.aufirst=Antoine&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%2FB978-0-12-811180-2.00023-2&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://k-space.com/document/product-specifications-ksa-mos/">"kSA MOS Product Specification Sheet"</a>. <i>Product Specifications : kSA MOS Control Your Stress! In Situ Curvature and Thin Film Stress Monitoring</i>. 18 August 2021.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Product+Specifications+%3A+kSA+MOS+Control+Your+Stress%21+In+Situ+Curvature+and+Thin+Film+Stress+Monitoring&rft.atitle=kSA+MOS+Product+Specification+Sheet&rft.date=2021-08-18&rft_id=https%3A%2F%2Fk-space.com%2Fdocument%2Fproduct-specifications-ksa-mos%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStoney1909" class="citation journal cs1">Stoney, G. Gerald (6 May 1909). <a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1909.0021">"The tension of metallic films deposited by electrolysis"</a>. <i>Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character</i>. <b>82</b> (553): 172–175. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1909RSPSA..82..172S">1909RSPSA..82..172S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1909.0021">10.1098/rspa.1909.0021</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0950-1207">0950-1207</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society+of+London.+Series+A%2C+Containing+Papers+of+a+Mathematical+and+Physical+Character&rft.atitle=The+tension+of+metallic+films+deposited+by+electrolysis&rft.volume=82&rft.issue=553&rft.pages=172-175&rft.date=1909-05-06&rft.issn=0950-1207&rft_id=info%3Adoi%2F10.1098%2Frspa.1909.0021&rft_id=info%3Abibcode%2F1909RSPSA..82..172S&rft.aulast=Stoney&rft.aufirst=G.+Gerald&rft_id=https%3A%2F%2Fdoi.org%2F10.1098%252Frspa.1909.0021&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTliliNouveauGuillemotBesnard2018" class="citation journal cs1">Tlili, B.; Nouveau, C.; Guillemot, G.; Besnard, A.; Barkaoui, A. (1 February 2018). <a rel="nofollow" class="external text" href="https://doi.org/10.1007/s11665-018-3132-1">"Investigation of the Effect of Residual Stress Gradient on the Wear Behavior of PVD Thin Films"</a>. <i>Journal of Materials Engineering and Performance</i>. <b>27</b> (2): 457–470. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018JMEP...27..457T">2018JMEP...27..457T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11665-018-3132-1">10.1007/s11665-018-3132-1</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1544-1024">1544-1024</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Materials+Engineering+and+Performance&rft.atitle=Investigation+of+the+Effect+of+Residual+Stress+Gradient+on+the+Wear+Behavior+of+PVD+Thin+Films&rft.volume=27&rft.issue=2&rft.pages=457-470&rft.date=2018-02-01&rft.issn=1544-1024&rft_id=info%3Adoi%2F10.1007%2Fs11665-018-3132-1&rft_id=info%3Abibcode%2F2018JMEP...27..457T&rft.aulast=Tlili&rft.aufirst=B.&rft.au=Nouveau%2C+C.&rft.au=Guillemot%2C+G.&rft.au=Besnard%2C+A.&rft.au=Barkaoui%2C+A.&rft_id=https%3A%2F%2Fdoi.org%2F10.1007%2Fs11665-018-3132-1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-:2-39"><span class="mw-cite-backlink">^ <a href="#cite_ref-:2_39-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:2_39-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChason2012" class="citation journal cs1">Chason, Eric (December 2012). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016/j.tsf.2012.11.001">"A kinetic analysis of residual stress evolution in polycrystalline thin films"</a>. <i>Thin Solid Films</i>. <b>526</b>: 1–14. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012TSF...526....1C">2012TSF...526....1C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.tsf.2012.11.001">10.1016/j.tsf.2012.11.001</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0040-6090">0040-6090</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Thin+Solid+Films&rft.atitle=A+kinetic+analysis+of+residual+stress+evolution+in+polycrystalline+thin+films&rft.volume=526&rft.pages=1-14&rft.date=2012-12&rft.issn=0040-6090&rft_id=info%3Adoi%2F10.1016%2Fj.tsf.2012.11.001&rft_id=info%3Abibcode%2F2012TSF...526....1C&rft.aulast=Chason&rft.aufirst=Eric&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.tsf.2012.11.001&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-:5-40"><span class="mw-cite-backlink">^ <a href="#cite_ref-:5_40-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:5_40-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFischer-Cripps2004" class="citation book cs1">Fischer-Cripps, Anthony C. (2004). "Nanoindentation of Thin Films". <i>Nanoindentation</i>. Springer. pp. 132–143. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4757-5943-3" title="Special:BookSources/978-1-4757-5943-3"><bdi>978-1-4757-5943-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Nanoindentation+of+Thin+Films&rft.btitle=Nanoindentation&rft.pages=132-143&rft.pub=Springer&rft.date=2004&rft.isbn=978-1-4757-5943-3&rft.aulast=Fischer-Cripps&rft.aufirst=Anthony+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOliverPharr2004" class="citation journal cs1">Oliver, W. C.; Pharr, G. M. (1 January 2004). <a rel="nofollow" class="external text" href="https://doi.org/10.1557/jmr.2004.19.1.3">"Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology"</a>. <i>Journal of Materials Research</i>. <b>19</b> (1): 3–20. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004JMatR..19....3O">2004JMatR..19....3O</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1557%2Fjmr.2004.19.1.3">10.1557/jmr.2004.19.1.3</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2044-5326">2044-5326</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Materials+Research&rft.atitle=Measurement+of+hardness+and+elastic+modulus+by+instrumented+indentation%3A+Advances+in+understanding+and+refinements+to+methodology&rft.volume=19&rft.issue=1&rft.pages=3-20&rft.date=2004-01-01&rft.issn=2044-5326&rft_id=info%3Adoi%2F10.1557%2Fjmr.2004.19.1.3&rft_id=info%3Abibcode%2F2004JMatR..19....3O&rft.aulast=Oliver&rft.aufirst=W.+C.&rft.au=Pharr%2C+G.+M.&rft_id=https%3A%2F%2Fdoi.org%2F10.1557%2Fjmr.2004.19.1.3&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPharrOliverBrotzen1992" class="citation journal cs1">Pharr, G. M.; Oliver, W. C.; Brotzen, F. R. (1 March 1992). <a rel="nofollow" class="external text" href="https://doi.org/10.1557/JMR.1992.0613">"On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation"</a>. <i>Journal of Materials Research</i>. <b>7</b> (3): 613–617. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1557%2FJMR.1992.0613">10.1557/JMR.1992.0613</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2044-5326">2044-5326</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Materials+Research&rft.atitle=On+the+generality+of+the+relationship+among+contact+stiffness%2C+contact+area%2C+and+elastic+modulus+during+indentation&rft.volume=7&rft.issue=3&rft.pages=613-617&rft.date=1992-03-01&rft_id=info%3Adoi%2F10.1557%2FJMR.1992.0613&rft.issn=2044-5326&rft.aulast=Pharr&rft.aufirst=G.+M.&rft.au=Oliver%2C+W.+C.&rft.au=Brotzen%2C+F.+R.&rft_id=https%3A%2F%2Fdoi.org%2F10.1557%2FJMR.1992.0613&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHayO’HernOliver1998" class="citation journal cs1">Hay, J. L.; O’Hern, M. E.; Oliver, W. C. (1 December 1998). <a rel="nofollow" class="external text" href="https://doi.org/10.1557/PROC-522-27">"Tie Importance of Contact Radius for Substrate-Independent Property Measurement of Thin Films"</a>. <i>MRS Online Proceedings Library</i>. <b>522</b> (1): 27–32. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1557%2FPROC-522-27">10.1557/PROC-522-27</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1946-4274">1946-4274</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=MRS+Online+Proceedings+Library&rft.atitle=Tie+Importance+of+Contact+Radius+for+Substrate-Independent+Property+Measurement+of+Thin+Films&rft.volume=522&rft.issue=1&rft.pages=27-32&rft.date=1998-12-01&rft_id=info%3Adoi%2F10.1557%2FPROC-522-27&rft.issn=1946-4274&rft.aulast=Hay&rft.aufirst=J.+L.&rft.au=O%E2%80%99Hern%2C+M.+E.&rft.au=Oliver%2C+W.+C.&rft_id=https%3A%2F%2Fdoi.org%2F10.1557%2FPROC-522-27&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPandyaVelardeGaoEverhardt2019" class="citation journal cs1">Pandya, Shishir; Velarde, Gabriel A.; Gao, Ran; Everhardt, Arnoud S.; Wilbur, Joshua D.; Xu, Ruijuan; Maher, Josh T.; Agar, Joshua C.; Dames, Chris; Martin, Lane W. (2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.201803312">"Understanding the Role of Ferroelastic Domains on the Pyroelectric and Electrocaloric Effects in Ferroelectric Thin Films"</a>. <i>Advanced Materials</i>. <b>31</b> (5): 1803312. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019AdM....3103312P">2019AdM....3103312P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.201803312">10.1002/adma.201803312</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1521-4095">1521-4095</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30515861">30515861</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advanced+Materials&rft.atitle=Understanding+the+Role+of+Ferroelastic+Domains+on+the+Pyroelectric+and+Electrocaloric+Effects+in+Ferroelectric+Thin+Films&rft.volume=31&rft.issue=5&rft.pages=1803312&rft.date=2019&rft_id=info%3Adoi%2F10.1002%2Fadma.201803312&rft.issn=1521-4095&rft_id=info%3Apmid%2F30515861&rft_id=info%3Abibcode%2F2019AdM....3103312P&rft.aulast=Pandya&rft.aufirst=Shishir&rft.au=Velarde%2C+Gabriel+A.&rft.au=Gao%2C+Ran&rft.au=Everhardt%2C+Arnoud+S.&rft.au=Wilbur%2C+Joshua+D.&rft.au=Xu%2C+Ruijuan&rft.au=Maher%2C+Josh+T.&rft.au=Agar%2C+Joshua+C.&rft.au=Dames%2C+Chris&rft.au=Martin%2C+Lane+W.&rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252Fadma.201803312&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPedrottiPedrottiPedrotti2006" class="citation book cs1">Pedrotti, Frank L.; Pedrotti, Leno M.; Pedrotti, Leno S. (17 April 2006). "Chapter 22 - Theory of Multilayer Films". <i>Introduction to Optics</i> (3 ed.). Pearson. pp. 476–490. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0131499331" title="Special:BookSources/978-0131499331"><bdi>978-0131499331</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+22+-+Theory+of+Multilayer+Films&rft.btitle=Introduction+to+Optics&rft.pages=476-490&rft.edition=3&rft.pub=Pearson&rft.date=2006-04-17&rft.isbn=978-0131499331&rft.aulast=Pedrotti&rft.aufirst=Frank+L.&rft.au=Pedrotti%2C+Leno+M.&rft.au=Pedrotti%2C+Leno+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-SCT2010-46"><span class="mw-cite-backlink">^ <a href="#cite_ref-SCT2010_46-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-SCT2010_46-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBirkholzEhwaldWolanskyCostina2010" class="citation journal cs1">Birkholz, M.; Ehwald, K.-E.; Wolansky, D.; Costina, I.; Baristiran-Kaynak, C.; Fröhlich, M.; Beyer, H.; Kapp, A.; Lisdat, F. (15 March 2010). "Corrosion-resistant metal layers from a CMOS process for bioelectronic applications". <i>Surface and Coatings Technology</i>. <b>204</b> (12–13): 2055–2059. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.surfcoat.2009.09.075">10.1016/j.surfcoat.2009.09.075</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0257-8972">0257-8972</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Surface+and+Coatings+Technology&rft.atitle=Corrosion-resistant+metal+layers+from+a+CMOS+process+for+bioelectronic+applications&rft.volume=204&rft.issue=12%E2%80%9313&rft.pages=2055-2059&rft.date=2010-03-15&rft_id=info%3Adoi%2F10.1016%2Fj.surfcoat.2009.09.075&rft.issn=0257-8972&rft.aulast=Birkholz&rft.aufirst=M.&rft.au=Ehwald%2C+K.-E.&rft.au=Wolansky%2C+D.&rft.au=Costina%2C+I.&rft.au=Baristiran-Kaynak%2C+C.&rft.au=Fr%C3%B6hlich%2C+M.&rft.au=Beyer%2C+H.&rft.au=Kapp%2C+A.&rft.au=Lisdat%2C+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKorotcenkov2013" class="citation book cs1">Korotcenkov, Ghenadii (18 September 2013). "Thin metal films". <i>Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications</i>. Integrated Analytical Systems. Springer. pp. 153–166. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1461471646" title="Special:BookSources/978-1461471646"><bdi>978-1461471646</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Thin+metal+films&rft.btitle=Handbook+of+Gas+Sensor+Materials%3A+Properties%2C+Advantages+and+Shortcomings+for+Applications&rft.series=Integrated+Analytical+Systems&rft.pages=153-166&rft.pub=Springer&rft.date=2013-09-18&rft.isbn=978-1461471646&rft.aulast=Korotcenkov&rft.aufirst=Ghenadii&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDíez-SierraMartínezEtxarriQuintana2022" class="citation journal cs1">Díez-Sierra, Javier; Martínez, Alazne; Etxarri, Ion; Quintana, Iban (2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S0169433222023728">"All-chemical YBa2Cu3O7- $\delta$ coated conductors with preformed BaHfO3 and BaZrO3 nanocrystals on Ni5W technical substrate at the industrial scale"</a>. <i>Applied Surface Science</i>. <b>606</b>: 154844. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.apsusc.2022.154844">10.1016/j.apsusc.2022.154844</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/1854%2FLU-8719549">1854/LU-8719549</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Applied+Surface+Science&rft.atitle=All-chemical+YBa2Cu3O7-+%24%5Cdelta%24+coated+conductors+with+preformed+BaHfO3+and+BaZrO3+nanocrystals+on+Ni5W+technical+substrate+at+the+industrial+scale&rft.volume=606&rft.pages=154844&rft.date=2022&rft_id=info%3Ahdl%2F1854%2FLU-8719549&rft_id=info%3Adoi%2F10.1016%2Fj.apsusc.2022.154844&rft.aulast=D%C3%ADez-Sierra&rft.aufirst=Javier&rft.au=Mart%C3%ADnez%2C+Alazne&rft.au=Etxarri%2C+Ion&rft.au=Quintana%2C+Iban&rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS0169433222023728&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSerranoRodríguez_de_la_FuenteGarcía2010" class="citation journal cs1">Serrano, A.; Rodríguez de la Fuente, O.; García, M. A. (2010). "Extended and localized surface plasmons in annealed Au films on glass substrates". <i><a href="/wiki/Journal_of_Applied_Physics" title="Journal of Applied Physics">Journal of Applied Physics</a></i>. <b>108</b> (7): 074303–074303–7. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010JAP...108g4303S">2010JAP...108g4303S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.3485825">10.1063/1.3485825</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10261%2F87212">10261/87212</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Applied+Physics&rft.atitle=Extended+and+localized+surface+plasmons+in+annealed+Au+films+on+glass+substrates&rft.volume=108&rft.issue=7&rft.pages=074303-074303-7&rft.date=2010&rft_id=info%3Ahdl%2F10261%2F87212&rft_id=info%3Adoi%2F10.1063%2F1.3485825&rft_id=info%3Abibcode%2F2010JAP...108g4303S&rft.aulast=Serrano&rft.aufirst=A.&rft.au=Rodr%C3%ADguez+de+la+Fuente%2C+O.&rft.au=Garc%C3%ADa%2C+M.+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFoley_IVHarutyunyanRosenmannDivan2015" class="citation journal cs1">Foley IV, Jonathan J.; Harutyunyan, Hayk; Rosenmann, Daniel; Divan, Ralu; Wiederrecht, Gary P.; Gray, Stephen K. (2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407725">"When are Surface Plasmon Polaritons Excited in the Kretschmann-Raether Configuration?"</a>. <i><a href="/wiki/Scientific_Reports" title="Scientific Reports">Scientific Reports</a></i>. <b>5</b>: 9929. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsrep09929">10.1038/srep09929</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407725">4407725</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25905685">25905685</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scientific+Reports&rft.atitle=When+are+Surface+Plasmon+Polaritons+Excited+in+the+Kretschmann-Raether+Configuration%3F&rft.volume=5&rft.pages=9929&rft.date=2015&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4407725%23id-name%3DPMC&rft_id=info%3Apmid%2F25905685&rft_id=info%3Adoi%2F10.1038%2Fsrep09929&rft.aulast=Foley+IV&rft.aufirst=Jonathan+J.&rft.au=Harutyunyan%2C+Hayk&rft.au=Rosenmann%2C+Daniel&rft.au=Divan%2C+Ralu&rft.au=Wiederrecht%2C+Gary+P.&rft.au=Gray%2C+Stephen+K.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4407725&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTodeschiniBastos_da_Silva_FantaJensenWagner2017" class="citation journal cs1">Todeschini, Matteo; Bastos da Silva Fanta, Alice; Jensen, Flemming; Wagner, Jakob Birkedal; Han, Anpan (2017). <a rel="nofollow" class="external text" href="https://backend.orbit.dtu.dk/ws/files/138543837/Untitled.pdf">"Influence of Ti and Cr Adhesion Layers on Ultrathin Au Films"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/ACS_Applied_Materials_%26_Interfaces" title="ACS Applied Materials & Interfaces">ACS Applied Materials & Interfaces</a></i>. <b>9</b> (42): 37374–37385. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facsami.7b10136">10.1021/acsami.7b10136</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28967257">28967257</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ACS+Applied+Materials+%26+Interfaces&rft.atitle=Influence+of+Ti+and+Cr+Adhesion+Layers+on+Ultrathin+Au+Films&rft.volume=9&rft.issue=42&rft.pages=37374-37385&rft.date=2017&rft_id=info%3Adoi%2F10.1021%2Facsami.7b10136&rft_id=info%3Apmid%2F28967257&rft.aulast=Todeschini&rft.aufirst=Matteo&rft.au=Bastos+da+Silva+Fanta%2C+Alice&rft.au=Jensen%2C+Flemming&rft.au=Wagner%2C+Jakob+Birkedal&rft.au=Han%2C+Anpan&rft_id=https%3A%2F%2Fbackend.orbit.dtu.dk%2Fws%2Ffiles%2F138543837%2FUntitled.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiuHanHe2005" class="citation journal cs1">Liu, Liu; Han, Zhanghua; He, Sailing (2005). <a rel="nofollow" class="external text" href="https://doi.org/10.1364%2FOPEX.13.006645">"Novel surface plasmon waveguide for high integration"</a>. <i><a href="/wiki/Optics_Express" title="Optics Express">Optics Express</a></i>. <b>13</b> (17): 6645–6650. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005OExpr..13.6645L">2005OExpr..13.6645L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1364%2FOPEX.13.006645">10.1364/OPEX.13.006645</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19498679">19498679</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Optics+Express&rft.atitle=Novel+surface+plasmon+waveguide+for+high+integration&rft.volume=13&rft.issue=17&rft.pages=6645-6650&rft.date=2005&rft_id=info%3Apmid%2F19498679&rft_id=info%3Adoi%2F10.1364%2FOPEX.13.006645&rft_id=info%3Abibcode%2F2005OExpr..13.6645L&rft.aulast=Liu&rft.aufirst=Liu&rft.au=Han%2C+Zhanghua&rft.au=He%2C+Sailing&rft_id=https%3A%2F%2Fdoi.org%2F10.1364%252FOPEX.13.006645&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiuFengChenZhu2014" class="citation journal cs1">Liu, Xiaoyong; Feng, Yijun; Chen, Ke; Zhu, Bo; Zhao, Junming; Jiang, Tian (2014). <a rel="nofollow" class="external text" href="https://doi.org/10.1364%2FOE.22.020107">"Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures"</a>. <i><a href="/wiki/Optics_Express" title="Optics Express">Optics Express</a></i>. <b>22</b> (17): 20107–20116. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014OExpr..2220107L">2014OExpr..2220107L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1364%2FOE.22.020107">10.1364/OE.22.020107</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25321220">25321220</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Optics+Express&rft.atitle=Planar+surface+plasmonic+waveguide+devices+based+on+symmetric+corrugated+thin+film+structures&rft.volume=22&rft.issue=17&rft.pages=20107-20116&rft.date=2014&rft_id=info%3Apmid%2F25321220&rft_id=info%3Adoi%2F10.1364%2FOE.22.020107&rft_id=info%3Abibcode%2F2014OExpr..2220107L&rft.aulast=Liu&rft.aufirst=Xiaoyong&rft.au=Feng%2C+Yijun&rft.au=Chen%2C+Ke&rft.au=Zhu%2C+Bo&rft.au=Zhao%2C+Junming&rft.au=Jiang%2C+Tian&rft_id=https%3A%2F%2Fdoi.org%2F10.1364%252FOE.22.020107&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenZhongLiSaxena2019" class="citation journal cs1">Chen, Wei; Zhong, Jialin; Li, Junzi; Saxena, Nitin; Kreuzer, Lucas P.; Liu, Haochen; Song, Lin; Su, Bo; Yang, Dan; Wang, Kun; Schlipf, Johannes (2 May 2019). <a rel="nofollow" class="external text" href="https://pubs.acs.org/doi/10.1021/acs.jpclett.9b00869">"Structure and Charge Carrier Dynamics in Colloidal PbS Quantum Dot Solids"</a>. <i>The Journal of Physical Chemistry Letters</i>. <b>10</b> (9): 2058–2065. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.jpclett.9b00869">10.1021/acs.jpclett.9b00869</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1948-7185">1948-7185</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30964305">30964305</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:104297006">104297006</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Journal+of+Physical+Chemistry+Letters&rft.atitle=Structure+and+Charge+Carrier+Dynamics+in+Colloidal+PbS+Quantum+Dot+Solids&rft.volume=10&rft.issue=9&rft.pages=2058-2065&rft.date=2019-05-02&rft.issn=1948-7185&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A104297006%23id-name%3DS2CID&rft_id=info%3Apmid%2F30964305&rft_id=info%3Adoi%2F10.1021%2Facs.jpclett.9b00869&rft.aulast=Chen&rft.aufirst=Wei&rft.au=Zhong%2C+Jialin&rft.au=Li%2C+Junzi&rft.au=Saxena%2C+Nitin&rft.au=Kreuzer%2C+Lucas+P.&rft.au=Liu%2C+Haochen&rft.au=Song%2C+Lin&rft.au=Su%2C+Bo&rft.au=Yang%2C+Dan&rft.au=Wang%2C+Kun&rft.au=Schlipf%2C+Johannes&rft_id=https%3A%2F%2Fpubs.acs.org%2Fdoi%2F10.1021%2Facs.jpclett.9b00869&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZouGuoBuyrukChen2020" class="citation journal cs1">Zou, Yuqin; Guo, Renjun; Buyruk, Ali; Chen, Wei; Xiao, Tianxiao; Yin, Shanshan; Jiang, Xinyu; Kreuzer, Lucas P.; Mu, Cheng; Ameri, Tayebeh; Schwartzkopf, Matthias (25 November 2020). <a rel="nofollow" class="external text" href="https://pubs.acs.org/doi/10.1021/acsami.0c14732">"Sodium Dodecylbenzene Sulfonate Interface Modification of Methylammonium Lead Iodide for Surface Passivation of Perovskite Solar Cells"</a>. <i>ACS Applied Materials & Interfaces</i>. <b>12</b> (47): 52643–52651. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facsami.0c14732">10.1021/acsami.0c14732</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1944-8244">1944-8244</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33190484">33190484</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:226973268">226973268</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ACS+Applied+Materials+%26+Interfaces&rft.atitle=Sodium+Dodecylbenzene+Sulfonate+Interface+Modification+of+Methylammonium+Lead+Iodide+for+Surface+Passivation+of+Perovskite+Solar+Cells&rft.volume=12&rft.issue=47&rft.pages=52643-52651&rft.date=2020-11-25&rft.issn=1944-8244&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A226973268%23id-name%3DS2CID&rft_id=info%3Apmid%2F33190484&rft_id=info%3Adoi%2F10.1021%2Facsami.0c14732&rft.aulast=Zou&rft.aufirst=Yuqin&rft.au=Guo%2C+Renjun&rft.au=Buyruk%2C+Ali&rft.au=Chen%2C+Wei&rft.au=Xiao%2C+Tianxiao&rft.au=Yin%2C+Shanshan&rft.au=Jiang%2C+Xinyu&rft.au=Kreuzer%2C+Lucas+P.&rft.au=Mu%2C+Cheng&rft.au=Ameri%2C+Tayebeh&rft.au=Schwartzkopf%2C+Matthias&rft_id=https%3A%2F%2Fpubs.acs.org%2Fdoi%2F10.1021%2Facsami.0c14732&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenGuoTangWienhold2021" class="citation journal cs1">Chen, Wei; Guo, Renjun; Tang, Haodong; Wienhold, Kerstin S.; Li, Nian; Jiang, Zhengyan; Tang, Jun; Jiang, Xinyu; Kreuzer, Lucas P.; Liu, Haochen; Schwartzkopf, Matthias (2021). <a rel="nofollow" class="external text" href="http://xlink.rsc.org/?DOI=D1EE00832C">"Operando structure degradation study of PbS quantum dot solar cells"</a>. <i>Energy & Environmental Science</i>. <b>14</b> (6): 3420–3429. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FD1EE00832C">10.1039/D1EE00832C</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1754-5692">1754-5692</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:235510269">235510269</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Energy+%26+Environmental+Science&rft.atitle=Operando+structure+degradation+study+of+PbS+quantum+dot+solar+cells&rft.volume=14&rft.issue=6&rft.pages=3420-3429&rft.date=2021&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A235510269%23id-name%3DS2CID&rft.issn=1754-5692&rft_id=info%3Adoi%2F10.1039%2FD1EE00832C&rft.aulast=Chen&rft.aufirst=Wei&rft.au=Guo%2C+Renjun&rft.au=Tang%2C+Haodong&rft.au=Wienhold%2C+Kerstin+S.&rft.au=Li%2C+Nian&rft.au=Jiang%2C+Zhengyan&rft.au=Tang%2C+Jun&rft.au=Jiang%2C+Xinyu&rft.au=Kreuzer%2C+Lucas+P.&rft.au=Liu%2C+Haochen&rft.au=Schwartzkopf%2C+Matthias&rft_id=http%3A%2F%2Fxlink.rsc.org%2F%3FDOI%3DD1EE00832C&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mpoweruk.com/cell_construction.htm#flexible">"Cell Mechanical Construction - Thin Film Batteries"</a>. <i>mpoweruk.com</i>. Woodbank Communications Ltd<span class="reference-accessdate">. Retrieved <span class="nowrap">3 October</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=mpoweruk.com&rft.atitle=Cell+Mechanical+Construction+-+Thin+Film+Batteries&rft_id=https%3A%2F%2Fwww.mpoweruk.com%2Fcell_construction.htm%23flexible&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Thin_film&action=edit&section=33" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dt>Textbooks</dt></dl> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBirkholzFewsterGenzel2005" class="citation book cs1">Birkholz, Mario; Fewster, Paul F.; Genzel, Christoph (23 December 2005). <a rel="nofollow" class="external text" href="https://www.wiley.com/en-mx/Thin+Film+Analysis+by+X+Ray+Scattering-p-9783527310524"><i>Thin Film Analysis by X-Ray Scattering</i></a>. Wiley-VCH. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3527310524" title="Special:BookSources/978-3527310524"><bdi>978-3527310524</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Thin+Film+Analysis+by+X-Ray+Scattering&rft.pub=Wiley-VCH&rft.date=2005-12-23&rft.isbn=978-3527310524&rft.aulast=Birkholz&rft.aufirst=Mario&rft.au=Fewster%2C+Paul+F.&rft.au=Genzel%2C+Christoph&rft_id=https%3A%2F%2Fwww.wiley.com%2Fen-mx%2FThin%2BFilm%2BAnalysis%2Bby%2BX%2BRay%2BScattering-p-9783527310524&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOhring2001" class="citation book cs1">Ohring, Milton (26 October 2001). <i>Materials Science of Thin Films, Second Edition</i>. Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1493301720" title="Special:BookSources/978-1493301720"><bdi>978-1493301720</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Materials+Science+of+Thin+Films%2C+Second+Edition&rft.pub=Academic+Press&rft.date=2001-10-26&rft.isbn=978-1493301720&rft.aulast=Ohring&rft.aufirst=Milton&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSeshan2017" class="citation book cs1">Seshan, Krishna (11 July 2017). <i>Handbook of Thin Film Deposition 3rd Edition</i>. William Andrew Publishing. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1437778731" title="Special:BookSources/978-1437778731"><bdi>978-1437778731</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Handbook+of+Thin+Film+Deposition+3rd+Edition&rft.pub=William+Andrew+Publishing&rft.date=2017-07-11&rft.isbn=978-1437778731&rft.aulast=Seshan&rft.aufirst=Krishna&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></li></ul> </div> <dl><dt>Historical</dt></dl> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239549316"><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMattox2004" class="citation book cs1">Mattox, Donald M (14 January 2004). <i>The Foundations of Vacuum Coating Technology</i>. William Andrew Publishing. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0815514954" title="Special:BookSources/978-0815514954"><bdi>978-0815514954</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Foundations+of+Vacuum+Coating+Technology&rft.pub=William+Andrew+Publishing&rft.date=2004-01-14&rft.isbn=978-0815514954&rft.aulast=Mattox&rft.aufirst=Donald+M&rfr_id=info%3Asid%2Fen.wikipedia.org%3AThin+film" class="Z3988"></span></li></ul> </div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q1137203#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q1137203#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q1137203#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4136925-7">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85134864">United States</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb131627143">France</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb131627143">BnF data</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00562857">Japan</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="tenké vrstvy"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph126536&CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007534016905171">Israel</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://www.idref.fr/027282295">IdRef</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐frt2l Cached time: 20241122141355 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.157 seconds Real time usage: 1.444 seconds Preprocessor visited node count: 5355/1000000 Post‐expand include size: 166858/2097152 bytes Template argument size: 2336/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 10/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 252997/5000000 bytes Lua time usage: 0.751/10.000 seconds Lua memory usage: 6932418/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1170.282 1 -total 55.33% 647.470 1 Template:Reflist 35.12% 410.985 44 Template:Cite_journal 11.13% 130.251 1 Template:Authority_control 9.08% 106.215 4 Template:Cite_web 8.63% 101.012 1 Template:Short_description 7.25% 84.826 12 Template:Cite_book 4.97% 58.132 1 Template:Merge_portions_from 4.54% 53.085 2 Template:Pagetype 4.47% 52.311 1 Template:Ambox --> <!-- Saved in parser cache with key enwiki:pcache:idhash:1033036-0!canonical and timestamp 20241122141355 and revision id 1254561302. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Thin_film&oldid=1254561302">https://en.wikipedia.org/w/index.php?title=Thin_film&oldid=1254561302</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Artificial_materials" title="Category:Artificial materials">Artificial materials</a></li><li><a href="/wiki/Category:Materials_science" title="Category:Materials science">Materials science</a></li><li><a href="/wiki/Category:Nanotechnology" title="Category:Nanotechnology">Nanotechnology</a></li><li><a href="/wiki/Category:Thin_films" title="Category:Thin films">Thin films</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_American_English_from_August_2019" title="Category:Use American English from August 2019">Use American English from August 2019</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_written_in_American_English" title="Category:All Wikipedia articles written in American English">All Wikipedia articles written in American English</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_December_2017" title="Category:Use dmy dates from December 2017">Use dmy dates from December 2017</a></li><li><a href="/wiki/Category:Articles_to_be_split_from_June_2021" title="Category:Articles to be split from June 2021">Articles to be split from June 2021</a></li><li><a href="/wiki/Category:All_articles_to_be_split" title="Category:All articles to be split">All articles to be split</a></li><li><a href="/wiki/Category:All_accuracy_disputes" title="Category:All accuracy disputes">All accuracy disputes</a></li><li><a href="/wiki/Category:Articles_with_disputed_statements_from_November_2021" title="Category:Articles with disputed statements from November 2021">Articles with disputed statements from November 2021</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 31 October 2024, at 16:16<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Thin_film&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-dj6bk","wgBackendResponseTime":154,"wgPageParseReport":{"limitreport":{"cputime":"1.157","walltime":"1.444","ppvisitednodes":{"value":5355,"limit":1000000},"postexpandincludesize":{"value":166858,"limit":2097152},"templateargumentsize":{"value":2336,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":10,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":252997,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1170.282 1 -total"," 55.33% 647.470 1 Template:Reflist"," 35.12% 410.985 44 Template:Cite_journal"," 11.13% 130.251 1 Template:Authority_control"," 9.08% 106.215 4 Template:Cite_web"," 8.63% 101.012 1 Template:Short_description"," 7.25% 84.826 12 Template:Cite_book"," 4.97% 58.132 1 Template:Merge_portions_from"," 4.54% 53.085 2 Template:Pagetype"," 4.47% 52.311 1 Template:Ambox"]},"scribunto":{"limitreport-timeusage":{"value":"0.751","limit":"10.000"},"limitreport-memusage":{"value":6932418,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-frt2l","timestamp":"20241122141355","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Thin film","url":"https:\/\/en.wikipedia.org\/wiki\/Thin_film","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1137203","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1137203","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-10-02T01:32:13Z","dateModified":"2024-10-31T16:16:55Z","headline":"a layer of material ranging from fractions of a nanometer to several micrometers in thickness"}</script> </body> </html>