CINXE.COM
Search results for: core sediments
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: core sediments</title> <meta name="description" content="Search results for: core sediments"> <meta name="keywords" content="core sediments"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="core sediments" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="core sediments"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2266</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: core sediments</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2146</span> Marine Litter and Microplastic Pollution in Mangrove Sediments in The Sea of Oman</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muna%20Al-Tarshi">Muna Al-Tarshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dobretsov%20Sergey"> Dobretsov Sergey</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenresti%20Gallardo"> Wenresti Gallardo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marine litter pollution is a global concern that has wide-ranging ecological, societal, and economic implications, along with potential health risks for humans. In Oman, inadequate solid waste management has led to the accumulation of litter in mangrove ecosystems. However, there is a dearth of information on marine litter and microplastic pollution in Omani mangroves, impeding the formulation of effective mitigation strategies. To address this knowledge gap, we conducted a comprehensive assessment of marine litter and microplastics in mangrove sediments in the Sea of Oman. Our study measured the average abundance of marine litter, which ranged from 0.83±1.03 to 19.42±8.52 items/m2. Notably, plastics constituted the majority of litter, accounting for 73-96% of all items, with soft plastics being the most prevalent. Furthermore, we investigated microplastic concentrations in the sediments, finding levels ranging from 6 to 256 pieces /kg. Among the studied areas, afforested mangroves in Al-Sawadi exhibited the highest average abundance of microplastics (27.52±5.32 pieces/ kg), while the Marine Protected Area Al Qurum had the lowest average abundance (0.60±1.12 pieces /kg). These findings significantly contribute to our understanding of marine litter and microplastic pollution in Omani mangroves. They provide valuable baseline data for future monitoring initiatives and the development of targeted management strategies. Urgent action is needed to implement effective waste management practices and interventions to protect the ecological integrity of mangrove ecosystems in Oman and mitigate the risks associated with marine litter and microplastics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microplastics" title="microplastics">microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropogenic%20marine%20litter" title=" anthropogenic marine litter"> anthropogenic marine litter</a>, <a href="https://publications.waset.org/abstracts/search?q=ftir" title=" ftir"> ftir</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=khawr" title=" khawr"> khawr</a>, <a href="https://publications.waset.org/abstracts/search?q=mangrove" title=" mangrove"> mangrove</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/168029/marine-litter-and-microplastic-pollution-in-mangrove-sediments-in-the-sea-of-oman" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2145</span> Promotional Effects of Zn in Cu-Zn/Core-Shell Al-MCM-41 for Selective Catalytic Reduction of NO with NH3: Acidic Properties, NOx Adsorption Properties, and Nature of Copper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thidarat%20Imyen">Thidarat Imyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Paisan%20Kongkachuichay"> Paisan Kongkachuichay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cu-Zn/core-shell Al-MCM-41 catalyst with various copper species, prepared by a combination of three methods—substitution, ion-exchange, and impregnation, was studied for the selective catalytic reduction (SCR) of NO with NH3 at 300 °C for 150 min. In order to investigate the effects of Zn introduction on the nature of the catalyst, Cu/core-shell Al-MCM-41 and Zn/core-shell Al-MCM-41 catalysts were also studied. The roles of Zn promoter in the acidity and the NOx adsorption properties of the catalysts were investigated by in situ Fourier transform infrared spectroscopy (FTIR) of NH3 and NOx adsorption, and temperature-programmed desorption (TPD) of NH3 and NOx. The results demonstrated that the acidity of the catalyst was enhanced by the Zn introduction, as exchanged Zn(II) cations loosely bonded with Al-O-Si framework could create Brønsted acid sites by interacting with OH groups. Moreover, Zn species also provided the additional sites for NO adsorption in the form of nitrite (NO2–) and nitrate (NO3–) species, which are the key intermediates for SCR reaction. In addition, the effect of Zn on the nature of copper was studied by in situ FTIR of CO adsorption and in situ X-ray adsorption near edge structure (XANES). It was found that Zn species hindered the reduction of Cu(II) to Cu(0), resulting in higher Cu(I) species in the Zn promoted catalyst. The Cu-Zn/core-shell Al-MCM-41 exhibited higher catalytic activity compared with that of the Cu/core-shell Al-MCM-41 for the whole reaction time, as it possesses the highest amount of Cu(I) sites, which are responsible for SCR catalytic activity. The Cu-Zn/core-shell Al-MCM-41 catalyst also reached the maximum NO conversion of 100% with the average NO conversion of 76 %. The catalytic performance of the catalyst was further improved by using Zn promoter in the form of ZnO instead of reduced Zn species. The Cu-ZnO/core-shell Al-MCM-41 catalyst showed better catalytic performance with longer working reaction time, and achieved the average NO conversion of 81%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-MCM-41" title="Al-MCM-41">Al-MCM-41</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20oxide" title=" nitrogen oxide"> nitrogen oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20catalytic%20reduction" title=" selective catalytic reduction"> selective catalytic reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a> </p> <a href="https://publications.waset.org/abstracts/76858/promotional-effects-of-zn-in-cu-zncore-shell-al-mcm-41-for-selective-catalytic-reduction-of-no-with-nh3-acidic-properties-nox-adsorption-properties-and-nature-of-copper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2144</span> Application of Aquatic Plants for the Remediation of Organochlorine Pesticides from Keenjhar Lake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soomal%20Hamza">Soomal Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Uzma%20Imran"> Uzma Imran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organochlorine pesticides bio-accumulate into the fat of fish, birds, and animals through which it enters the human food cycle. Due to their persistence and stability in the environment, many health impacts are associated with them, most of which are carcinogenic in nature. In this study, the level of organochlorine pesticides has been detected in Keenjhar Lake and remediated using Rhizoremediation technique. 14 OC pesticides namely, Aldrin, Deldrin, Heptachlor, Heptachlor epoxide, Endrin, Endosulfun I and II, DDT, DDE, DDD, Alpha, Beta, Gamma BHC and two plants namely, Water Hyacinth and Slvinia Molesta were used in the system using pot experiment which processed for 11 days. A consortium was inoculated in both plants to increase its efficiency. Water samples were processed using liquide-liquid extraction. Sediments and roots samples were processed using Soxhlet method followed by clean-up and Gas Chromatography. Delta-BHC was the predominantly found in all samples with mean concentration (ppb) and standard deviation of 0.02 ± 0.14, 0.52 ± 0.68, 0.61 ± 0.06, in Water, Sediments and Roots samples respectively. The highest levels were of Endosulfan II in the samples of water, sediments and roots. Water Hyacinth proved to be better bioaccumulaor as compared to Silvinia Molesta. The pattern of compounds reduction rate by the end of experiment was Delta-BHC>DDD > Alpha-BHC > DDT> Heptachlor> H.Epoxide> Deldrin> Aldrin> Endrin> DDE> Endosulfun I > Endosulfun II. Not much significant difference was observed between the pots with the consortium and pots without the consortium addition. Phytoremediation is a promising technique, but more studies are required to assess the bioremediation potential of different aquatic plants and plant-endophyte relationship. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20plant" title="aquatic plant">aquatic plant</a>, <a href="https://publications.waset.org/abstracts/search?q=bio%20remediation" title=" bio remediation"> bio remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20liquid%20extraction" title=" liquid liquid extraction "> liquid liquid extraction </a> </p> <a href="https://publications.waset.org/abstracts/124344/application-of-aquatic-plants-for-the-remediation-of-organochlorine-pesticides-from-keenjhar-lake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2143</span> Isolation, Characterization and Screening of Antimicrobial Producing Actinomycetes from Sediments of Persian Gulf</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Alijani">H. Alijani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jabari"> M. Jabari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Matroodi"> S. Matroodi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Zolqarnein"> H. Zolqarnein</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sharafi"> A. Sharafi</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Zamani"> I. Zamani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Actinomycetes, Gram-positive bacteria, are interesting as a main producer of secondary metabolites and are important industrially and pharmaceutically. The marine environment is a potential source for new actinomycetes, which can provide novel bioactive compounds and industrially important enzymes. The aims of this study were to isolate and identify novel actinomycetes from Persian Gulf sediments and screen these isolates for the production of secondary metabolites, especially antibiotics, Using phylogenetic (16S rRNA gene sequence), morphological and biochemical analyses. 15 different actinomycete strains from Persian Gulf sediments at a depth of 5-10 m were identified. DNA extraction was done using Cinnapure DNA Kit. PCR amplification of 16S rDNA gene was performed using F27 and R1492 primers. Phylogenetic tree analysis was performed using the MEGA 6 software. Most of the isolated strains belong to the genus namely Streptomyces (14), followed by Nocardiopsis (1). Antibacterial assay of the isolates supernatant was performed using a standard disc diffusion assay with replication (n=3). The results of disk diffusion assay showed that most active strain against Proteus volgaris and Bacillus cereus was AMJ1 (16.46±0.2mm and 13.78±0.2mm, respectively), against Salmonella sp. AMJ7 was the most effective strain (10.13±0.2mm), and AMJ1 and AHA5 showed more inhibitory activity against Escherichia coli (8.04±0.02 mm and 8.2±0.03 ). The AMJ6 strain showed best antibacterial activity against Klebsiella sp. (8.03±0.02mm). Antifungal activity of AMJ2 showed that it was most active strain against complex (16.05±0.02mm) and against Aspergillus flavus strain AMJ1 was most active strain (16.4±0.2mm) and highest antifungal activity against Trichophyton mentagrophytes, Microsporum gyp serum and Candida albicans, were shown by AHA1 (21.03±0.02mm), AHA3 and AHA7 (18±0.03mm), AMJ6 (21.03±0.2mm) respectively. Our results revealed that the marine actinomycetes of Persian Gulf sediments were potent source of novel antibiotics and bioactive compounds and indicated that the antimicrobial metabolites were extracellular. Most of the secondary metabolites and antibiotics are extracellular in nature and extracellular products of actinomycetes show potent antimicrobial activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal%20activity" title=" antifungal activity"> antifungal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20actinomycetes" title=" marine actinomycetes"> marine actinomycetes</a>, <a href="https://publications.waset.org/abstracts/search?q=Persian%20Gulf" title=" Persian Gulf "> Persian Gulf </a> </p> <a href="https://publications.waset.org/abstracts/37532/isolation-characterization-and-screening-of-antimicrobial-producing-actinomycetes-from-sediments-of-persian-gulf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2142</span> Experimental Study of the Dynamics of Sediments in Natural Channels in a Non-Stationary Flow Regime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fourar%20Ali">Fourar Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourar%20Fatima%20Zohra"> Fourar Fatima Zohra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Knowledge of sediment characteristics is fundamental to understanding their sedimentary functioning: sedimentation, settlement, and erosion processes of cohesive sediments are controlled by complex interactions between physical, chemical, and biological factors. Sediment transport is of primary importance in river hydraulics and river engineering. Indeed, the displacement of sediments can lead to lasting modifications of the bed in terms of its elevation, slope and roughness. The protection of a bank, for example, is likely to initiate a local incision of the river bed, which, in turn, can lead to the subsidence of the bank. The flows in the natural environment occur in general with heterogeneous boundary conditions because of the distribution of the roughnesses of the fixed or mobile bottoms and of the important deformations of the free surface, especially for the flows with a weak draft considering the irregularity of the bottom. Bedforms significantly influence flow resistance. The arrangement of particles lining the bottom of the stream bed or experimental channel generates waveforms of different sizes that lead to changes in roughness and consequently spatial variability in the turbulent characteristics of the flow. The study which is focused on the laws of friction in alluvial beds, aims to analyze the characteristics of flows and materials constituting the natural channels. Experimental results were obtained by simulating these flows on a rough bottom in an experimental channel at the Hydraulics Laboratory of the University of Batna 2. The system of equations governing the problem is solved using the program named: CLIPPER.5 and ACP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20surface%20flow" title="free surface flow">free surface flow</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20sand" title=" heterogeneous sand"> heterogeneous sand</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20bottom%20bed" title=" moving bottom bed"> moving bottom bed</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=bottom%20roughness" title=" bottom roughness"> bottom roughness</a> </p> <a href="https://publications.waset.org/abstracts/157277/experimental-study-of-the-dynamics-of-sediments-in-natural-channels-in-a-non-stationary-flow-regime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2141</span> Thermodynamic Modeling of Methane Injection in Gas-Condensate Reservoir Core: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20S.%20Alavi">F. S. Alavi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Mowla"> D. Mowla</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Esmaeilzadeh"> F. Esmaeilzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the core of Sarkhoon Gas Condensate Reservoir located in the south of Iran was thermodynamically modeled in order to study the natural depletion process and methane injection phenomena for enhanced gas-condensate recovery using the Eclipse 300 compositional simulator. Modeling was performed for three different core lengths with different production and injection flow rates in both vertical and horizontal cases. According to the results, the final condensate in place value in the natural depletion process is approximately independent of the production rate for a given pressure drop. The final condensate in place value is lower in vertical cases compared to horizontal cases. An increase in the injection flow rate leads to a decrease in the percentage of gascondensate recovery. In cores of equal length, gas condensate recovery percent is higher in vertical cases in comparison to horizontal cases. For a constant injection rate, decreasing the core length leads to a decrease in gas condensate recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reservoir%20simulation" title="reservoir simulation">reservoir simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20injection" title=" methane injection"> methane injection</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20condensate%20recovery" title=" enhanced condensate recovery"> enhanced condensate recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20core" title=" reservoir core"> reservoir core</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/153704/thermodynamic-modeling-of-methane-injection-in-gas-condensate-reservoir-core-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2140</span> Development and Analysis of SFR Control Rod Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lenka%20Duj%C4%8D%C3%ADkov%C3%A1">Lenka Dujčíková</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Buiron"> Laurent Buiron</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%A1n%20Ha%C5%A1%C4%8D%C3%ADk"> Ján Haščík</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study is dedicated to safety management of SFR CAPRA core with CFV design improvements. In the case of CAPRA core, demands for reactivity control are higher than for reference core. There are two possible ways how to ensure the certain amount of negative reactivity. One option is to boost control rods worth. The Greater part of the study is aimed at the proposal of appropriate control rod design. At first, the European Fast Reactor (EFR) control rod design with high-enriched boron carbide B4C as absorber material was tested. Considering costly and difficult enrichment process, usage of natural boron carbide absorbator is desired. Obviously, the use of natural boron leads to CR worth reduction. In order to increase it to required value, moderator material was inserted inside the control rod. Various materials and geometric configurations were examined to find optimal solution corresponding with EFR based CR worth value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron%20carbide" title="boron carbide">boron carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=CAPRA%20core" title=" CAPRA core"> CAPRA core</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20rod%20design" title=" control rod design"> control rod design</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20void%20effect%20design" title=" low void effect design"> low void effect design</a>, <a href="https://publications.waset.org/abstracts/search?q=melting%20temperature" title=" melting temperature"> melting temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=moderator%20material" title=" moderator material"> moderator material</a> </p> <a href="https://publications.waset.org/abstracts/34110/development-and-analysis-of-sfr-control-rod-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2139</span> Assessment of Petrophysical Parameters Using Well Log and Core Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khulud%20M.%20Rahuma">Khulud M. Rahuma</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20B.%20Younis"> Ibrahim B. Younis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assessment of petrophysical parameters are very essential for reservoir engineer. Three techniques can be used to predict reservoir properties: well logging, well testing, and core analysis. Cementation factor and saturation exponent are very required for calculation, and their values role a great effect on water saturation estimation. In this study a sensitive analysis was performed to investigate the influence of cementation factor and saturation exponent variation applying logs, and core analysis. Measurements of water saturation resulted in a maximum difference around fifteen percent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porosity" title="porosity">porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=cementation%20factor" title=" cementation factor"> cementation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20exponent" title=" saturation exponent"> saturation exponent</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20factor" title=" formation factor"> formation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20saturation" title=" water saturation"> water saturation</a> </p> <a href="https://publications.waset.org/abstracts/11077/assessment-of-petrophysical-parameters-using-well-log-and-core-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">693</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2138</span> Determination of Steel Cleanliness of Non-Grain Oriented Electrical Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emre%20Alan">Emre Alan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zafer%20Cetin"> Zafer Cetin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical steels are widely used as a magnetic core materials in many electrical applications such as transformers, electric motors, and generators. Core loss property of these magnetic materials refers to dissipation of electrical energy during magnetization in service conditions. Therefore, in order to minimize the magnetic core loss, certain precautions are taken from steel producers; “Steel Cleanliness” is one of the major points among them. For obtaining lower core loss values, increasing proper elements in chemical composition such as silicon is a must. Therefore, impurities of these alloys are a key value for producing a cleaner steel. In this study, effects of impurity levels of different FeSi alloying materials to the steel cleanliness will be investigated. One of the important element content in FeSi alloy materials is Calcium. A SEM investigation will be done in order to present if Ca content in FeSi alloy is enough for proper inclusion modification or an additional Ca-treatment is required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20steels" title="electrical steels">electrical steels</a>, <a href="https://publications.waset.org/abstracts/search?q=FeSi%20alloy" title=" FeSi alloy"> FeSi alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=impurities" title=" impurities"> impurities</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20cleanliness" title=" steel cleanliness"> steel cleanliness</a> </p> <a href="https://publications.waset.org/abstracts/56726/determination-of-steel-cleanliness-of-non-grain-oriented-electrical-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2137</span> Upsetting of Tri-Metallic St-Cu-Al and St-Cu60Zn-Al Cylindrical Billets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isik%20Cetintav">Isik Cetintav</a>, <a href="https://publications.waset.org/abstracts/search?q=Cenk%20Misirli"> Cenk Misirli</a>, <a href="https://publications.waset.org/abstracts/search?q=Yilmaz%20Can"> Yilmaz Can</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work investigates upsetting of the tri-metallic cylindrical billets both experimentally and analytically with a reduction ratio 30%. Steel, brass, and copper are used for the outer and outmost rings and aluminum for the inner core. Two different models have been designed to show material flow and the cavity took place over the two interfaces during forming after this reduction ratio. Each model has an outmost ring material as steel. Model 1 has an outer ring between the outmost ring and the solid core material as copper and Model 2 has a material as brass. Solid core is aluminum for each model. Billets were upset in press machine by using parallel flat dies. Upsetting load was recorded and compared for models and single billets. To extend the tests and compare with experimental procedure to a wider range of inner core and outer ring geometries, finite element model was performed. ABAQUS software was used for the simulations. The aim is to show how contact between outmost ring, outer ring and the inner core are carried on throughout the upsetting process. Results have shown that, with changing in height, between outmost ring, outer ring and inner core, the Model 1 and Model 2 had very good interaction, and the contact surfaces of models had various interface behaviour. It is also observed that tri-metallic materials have lower weight but better mechanical properties than single materials. This can give an idea for using and producing these new materials for different purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tri-metallic" title="tri-metallic">tri-metallic</a>, <a href="https://publications.waset.org/abstracts/search?q=upsetting" title=" upsetting"> upsetting</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=brass" title=" brass"> brass</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a> </p> <a href="https://publications.waset.org/abstracts/48901/upsetting-of-tri-metallic-st-cu-al-and-st-cu60zn-al-cylindrical-billets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2136</span> Risk Assessment of Heavy Metals in River Sediments and Suspended Matter in Small Tributaries of Abandoned Mercury Mines in Wanshan, Guizhou</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guo-Hui%20Lu">Guo-Hui Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing-Yi%20Cai"> Jing-Yi Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ke-Yan%20Tan"> Ke-Yan Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao-Cai%20Yin"> Xiao-Cai Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Zheng"> Yu Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng-Wei%20Shao"> Peng-Wei Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Liang%20Yang"> Yong-Liang Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil erosion around abandoned mines is one of the important geological agents for pollutant diffuses to the lower reaches of the local river basin system. River loading of pollutants is an important parameter for remediation of abandoned mines. In order to obtain information on pollutant transport and diffusion downstream in mining area, the small tributary system of the Xiaxi River in Wanshan District of Guizhou Province was selected as the research area. Sediment and suspended matter samples were collected and determined for Pb, As, Hg, Zn, Co, Cd, Cu, Ni, Cr, and Mn by inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS) with the pretreatment of wet digestion. Discussions are made for pollution status and spatial distribution characteristics. The total Hg content in the sediments ranged from 0.45 to 16.0 g/g (dry weight) with an average of 5.79 g/g, which was ten times higher than the limit of Class II soil for mercury by the National Soil Environmental Quality Standard. The maximum occurred at the intersection of the Jin River and the Xiaxi River. The potential ecological hazard index (RI) was used to evaluate the ecological risk of heavy metals in the sediments. The average RI value for the whole study area suggests the high potential ecological risk level. High Cd potential ecological risk was found at individual sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=suspended%20matter" title=" suspended matter"> suspended matter</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanshan%20mercury%20mine" title=" Wanshan mercury mine"> Wanshan mercury mine</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20tributary%20system" title=" small tributary system"> small tributary system</a> </p> <a href="https://publications.waset.org/abstracts/108537/risk-assessment-of-heavy-metals-in-river-sediments-and-suspended-matter-in-small-tributaries-of-abandoned-mercury-mines-in-wanshan-guizhou" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2135</span> The Outsourcing System and Competitiveness Enhancement in the Thai Electricity and Electronic Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudawan%20Somjai">Sudawan Somjai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to find out level of influences of factors that affected core competency and competitiveness of Thai electricity and electronics, and to indentify factors that affected core competency and competitiveness of Thai electricity and electronics. Using systematic random sampling technique, the samples of this study were 400 employees in the selected 10 medium enterprises in the electricity and electronic industries of Thailand that applied an outsourcing system. All selected companies were located in Bangkok and the eastern part of Thailand. Interviews were also utilized with managing directors. Qualitative and quantitative approaches were both applied. Questionnaires were employed in data collection, whereas in-depth interviews and focus groups were used with key informants in management. The findings unveiled a high level of influence of the outsourcing system on labor flexibility, manpower management efficiency, capability of business processes, cost reduction, business risk elimination and core competency. These factors were found to have a relationship with business core competency for competitiveness in the Thai electricity and electronic industry. Suggestions of this paper were also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=competitiveness" title="competitiveness">competitiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=core%20competency" title=" core competency"> core competency</a>, <a href="https://publications.waset.org/abstracts/search?q=outsourcing" title=" outsourcing"> outsourcing</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20electricity%20and%20electronic%20industry" title=" Thai electricity and electronic industry"> Thai electricity and electronic industry</a> </p> <a href="https://publications.waset.org/abstracts/9833/the-outsourcing-system-and-competitiveness-enhancement-in-the-thai-electricity-and-electronic-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2134</span> The Valorisation of Dredged Sediment in the Self Compacting Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Bouhamou">N. Bouhamou</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Mostefa"> F. Mostefa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mebrouki"> A. Mebrouki</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Belas"> N. Belas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every year, millions of cube meters are dredged from dams and restraints as an entertaining and prevention procedure all over the world. These dredged sediments are considered as natural waste leading to an environmental, ecological and even an economical problem in their processing and deposing. Nevertheless, in the context of the sustainable development policy, a way of management is opened aiming to the valorization of sediments as a building material and particularly as a new binder that can be industrially exploited and that improve the physical, chemical and mechanical characteristics of the concrete. This study is a part of the research works realized in the civil engineering department at the university of Mostaganem (Algeria), on the impact of the dredged mud of Fergoug dam on the behaviour of self-consolidating concrete in fresh and hardened state, such as the mechanical performance of SCC and its impact on the differed deformations (shrinkage). The work aims to valorize this mud in SCC and to show eventual interactions between constituents. The results obtained presents a good perspectives in order to perform SCC based in calcined mud. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediment" title="sediment">sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=calcination" title=" calcination"> calcination</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=self-consolidating%20concrete" title=" self-consolidating concrete"> self-consolidating concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20state" title=" fresh state"> fresh state</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20state" title=" hard state"> hard state</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage" title=" shrinkage"> shrinkage</a> </p> <a href="https://publications.waset.org/abstracts/18773/the-valorisation-of-dredged-sediment-in-the-self-compacting-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2133</span> Concentrated Winding Permanent Magnet Axial Flux Motor with Soft Magnetic Composite Core </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Aliyu">N. Aliyu</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Atkinson"> G. Atkinson</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Stannard"> N. Stannard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compacted insulated iron powder is a key material in high volume electric motors manufacturing. It offers high production rates, dimensionally stable components, and low scrap volumes. It is the aim of this paper to develop a three-phase compact single sided concentrated winding axial flux PM motor with soft magnetic composite (SMC) core for reducing core losses and cost. To succeed the motor would need to be designed in such a way as to exploit the isotropic magnetic properties of the material and open slot constructions with surface mounted PM for higher speed up to 6000 rpm, without excessive rotor losses. Higher fill factor up to 70% was achieved by compacting the coils, which offered a significant improvement in performance. A finite-element analysis was performed for accurate parameters calculation and the simulation results are thoroughly presented and agree with the theoretical calculations very well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SMC%20core" title="SMC core">SMC core</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20gap%20motor" title=" axial gap motor"> axial gap motor</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20efficiency" title=" high efficiency"> high efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=torque" title=" torque"> torque</a> </p> <a href="https://publications.waset.org/abstracts/78902/concentrated-winding-permanent-magnet-axial-flux-motor-with-soft-magnetic-composite-core" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2132</span> Effect of Core Stability Exercises on Trunk Proprioception in Healthy Adult Individuals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omaima%20E.%20S.%20Mohammed">Omaima E. S. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Amira%20A.%20A.%20Abdallah"> Amira A. A. Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20A.%20M.%20El%20Borady"> Amal A. M. El Borady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Core stability training has recently attracted attention for improving muscle performance. Purpose: This study investigated the effect of beginners' core stability exercises on trunk active repositioning error at 30° and 60° trunk flexion. Methods: Forty healthy males participated in the study. They were divided into two equal groups; experimental “group I” and control “group II”. Their mean age, weight and height were 19.35±1.11 vs 20.45±1.64 years, 70.15±6.44 vs 72.45±6.91 kg and 174.7±7.02 vs 176.3±7.24 cm for group I vs group II. Data were collected using the Biodex Isokinetic system at an angular velocity of 60º/s. The participants were tested twice; before and after a 6-week period during which group I performed a core stability training program. Results: The Mixed 3-way ANOVA revealed significant increases (p<0.05) in the absolute error (AE) at 30˚ compared with 60˚ flexion in the pre-test condition of group I and II and the post-test condition of group II. Moreover, there were significant decreases (p<0.05) in the AE in the post-test condition compared with the pre-test in group I at both 30˚ and 60˚ flexion with no significant differences for group II. Finally, there were significant decreases (p<0.05) in the AE in group I compared with group II in the post-test condition at 30˚ and 60˚ flexion with no significant differences for the pre-test condition Interpretation/Conclusion: The improvement in trunk proprioception indicated by the decrease in the active repositioning error in the experimental group recommends including core stability training in the exercise programs that aim to improve trunk proprioception. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core%20stability" title="core stability">core stability</a>, <a href="https://publications.waset.org/abstracts/search?q=isokinetic" title=" isokinetic"> isokinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=trunk%20proprioception" title=" trunk proprioception"> trunk proprioception</a>, <a href="https://publications.waset.org/abstracts/search?q=biomechanics" title=" biomechanics"> biomechanics</a> </p> <a href="https://publications.waset.org/abstracts/4939/effect-of-core-stability-exercises-on-trunk-proprioception-in-healthy-adult-individuals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2131</span> Discharge Estimation in a Two Flow Braided Channel Based on Energy Concept </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amiya%20Kumar%20Pati">Amiya Kumar Pati</a>, <a href="https://publications.waset.org/abstracts/search?q=Spandan%20Sahu"> Spandan Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kishanjit%20Kumar%20Khatua"> Kishanjit Kumar Khatua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> River is our main source of water which is a form of open channel flow and the flow in the open channel provides with many complex phenomena of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress, and depth-averaged velocity. The development of society, more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. A river flow consisting of small and shallow channels sometimes divide and recombine numerous times because of the slow water flow or the built up sediments. The pattern formed during this process resembles the strands of a braid. Braided streams form where the sediment load is so heavy that some of the sediments are deposited as shifting islands. Braided rivers often exist near the mountainous regions and typically carry coarse-grained and heterogeneous sediments down a fairly steep gradient. In this paper, the apparent shear stress formulae were suitably modified, and the Energy Concept Method (ECM) was applied for the prediction of discharges at the junction of a two-flow braided compound channel. The Energy Concept Method has not been applied for estimating the discharges in the braided channels. The energy loss in the channels is analyzed based on mechanical analysis. The cross-section of channel is divided into two sub-areas, namely the main-channel below the bank-full level and region above the bank-full level for estimating the total discharge. The experimental data are compared with a wide range of theoretical data available in the published literature to verify this model. The accuracy of this approach is also compared with Divided Channel Method (DCM). From error analysis of this method, it is observed that the relative error is less for the data-sets having smooth floodplains when compared to rough floodplains. Comparisons with other models indicate that the present method has reasonable accuracy for engineering purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20flow" title="critical flow">critical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20concept" title=" energy concept"> energy concept</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel%20flow" title=" open channel flow"> open channel flow</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=two-flow%20braided%20compound%20channel" title=" two-flow braided compound channel"> two-flow braided compound channel</a> </p> <a href="https://publications.waset.org/abstracts/111145/discharge-estimation-in-a-two-flow-braided-channel-based-on-energy-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2130</span> Magnetomechanical Effects on MnZn Ferrites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Ellithy">Ibrahim Ellithy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Esguerra"> Mauricio Esguerra</a>, <a href="https://publications.waset.org/abstracts/search?q="></a>, <a href="https://publications.waset.org/abstracts/search?q=Rewanth%20Radhakrishnan">Rewanth Radhakrishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effects of hydrostatic stress on the magnetic properties of MnZn ferrite rings of different power grades, were measured and analyzed in terms of the magneto-mechanical effect on core losses was modeled via the Hodgdon-Esguerra hysteresis model. The results show excellent agreement with the model and a correlation between the permeability drop and the core loss increase in dependence of the material grade properties. These results emphasize the vulnerabilities of MnZn ferrites when subjected to mechanical perturbations, especially in real-world scenarios like under-road embedding for WPT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrostatic%20stress" title="hydrostatic stress">hydrostatic stress</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20ferrites" title=" power ferrites"> power ferrites</a>, <a href="https://publications.waset.org/abstracts/search?q=core%20losses" title=" core losses"> core losses</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20power%20transfer" title=" wireless power transfer"> wireless power transfer</a> </p> <a href="https://publications.waset.org/abstracts/172172/magnetomechanical-effects-on-mnzn-ferrites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2129</span> Evolution of Fluvial-Deltaic System Recorded in Accumulation of Organic Material: From the Example of the Kura River in the South Caspian Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dadash%20Huseynov">Dadash Huseynov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elmira%20Aliyeva"> Elmira Aliyeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Hoogendoorn"> Robert Hoogendoorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Salomon%20Kroonenberg"> Salomon Kroonenberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of organic material in bottom sediments together with lithologic and biostratigraphic data improves our understanding of the evolution of fluvial and deltaic systems. The modern Kura River delta is located in the Southwest Caspian Sea and is fluvial-dominated. The river distributes its sediment load through three channels oriented North-East, South-East, and South-West. The offshore modern delta consists of thinly bedded or laminated silty clays and dark grey clays. Locally sand and shell-rich horizons occur. Onshore delta is composed of channel-levee sands and floodplain silts and clays. Overall sedimentation rates in the delta determined by the 210Pb method range between 1.5-3.0 cm/yr. We investigated the distribution of organic material in the deltaic sediments in 300 samples selected from 3m deep piston cores. The studies of transparent sections demonstrate that deltaic sediments are enriched in terrestrial debris. It is non-transparent and has an irregular, isometric, or elongated shape, angular edges, black or dark-brown colour, and a clearly expressed fabric. Partially it is dissolved at the edges and is replaced by iron sulphides. Fragments of marine algae have more smooth edges, brown colour. They are transparent; the fabric is rarely preserved. The evidences of dissolution and gelification are well observed. Iron sulphides are common. The recorded third type of organic material has a round, drop-like, or oval shape and belongs to planktonic organisms. Their initial organic material is strongly transformed or replaced by dark organic compounds, probably, neoplasms. The particles are red-brown and transparent. The iron sulphides are not observed. The amount of Corg in the uppermost portion of sediments accumulated in the offshore Kura River delta varies from 0.2 to 1.22%, with median values of 0.6-0.8%. In poorly sorted sediments Corg content changes from 0.24 to 0.97% (average 0.69%), silty-sandy clay - 0.45 to 1.22% (average 0.77%), sandy-silty clay - 0.5 to 0.97% (average 0.67%), silty clay - 0.52 to 0.95% (average 0.70%). The data demonstrate that in sediments deposited during Caspian Sea high stand in 1929, the minimum of Corg content is localised near the mouth of the main south-eastern distributary channel and coincides with the minimum of the clay fraction. At the same time, the maximum of organic matter content locates near the mouth of the eastern channel, which was inactive at that time. In sediments accumulated during the last Caspian Sea low stand in 1977, the area of Corg minimum is attached to the north-eastern distributary’s mouth. It indicates the high activity of this distributary during the Caspian Sea fall. The area of Corg minimum is also recorded around the mouth of the main channel and eastern part of the delta. Maximums of Corg and clay fraction shift towards the basin. During the Caspian high stand in 1995, the minimum of Corg content is again observed in the mouth of the main south-eastern channel. The distribution of organic matter in the modern sediments of the Kura river delta displays the strong time dependence and reflects progradational-retrogradational cycles of evolution of this fluvial-deltaic system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20and%20low%20stands" title="high and low stands">high and low stands</a>, <a href="https://publications.waset.org/abstracts/search?q=Kura%20River%20delta" title=" Kura River delta"> Kura River delta</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Caspian%20Sea" title=" South Caspian Sea"> South Caspian Sea</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20matter" title=" organic matter"> organic matter</a> </p> <a href="https://publications.waset.org/abstracts/126080/evolution-of-fluvial-deltaic-system-recorded-in-accumulation-of-organic-material-from-the-example-of-the-kura-river-in-the-south-caspian-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2128</span> Study of the Late Phase of Core Degradation during Reflooding by Safety Injection System for VVER1000 with ASTECv2 Computer Code</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antoaneta%20Stefanova">Antoaneta Stefanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Rositsa%20Gencheva"> Rositsa Gencheva</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavlin%20Groudev"> Pavlin Groudev </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the modeling approach in SBO sequence for VVER 1000 reactors and describes the reactor core behavior at late in-vessel phase in case of late reflooding by HPIS and gives preliminary results for the ASTECv2 validation. The work is focused on investigation of plant behavior during total loss of power and the operator actions. The main goal of these analyses is to assess the phenomena arising during the Station blackout (SBO) followed by primary side high pressure injection system (HPIS) reflooding of already damaged reactor core at very late ‘in-vessel’ phase. The purpose of the analysis is to define how the later HPIS switching on can delay the time of vessel failure or possibly avoid vessel failure. For this purpose has been simulated an SBO scenario with injection of cold water by a high pressure pump (HPP) in cold leg at different stages of core degradation. The times for HPP injection were chosen based on previously performed investigations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VVER" title="VVER">VVER</a>, <a href="https://publications.waset.org/abstracts/search?q=operator%20action%20validation" title=" operator action validation"> operator action validation</a>, <a href="https://publications.waset.org/abstracts/search?q=reflooding%20of%20overheated%20reactor%20core" title=" reflooding of overheated reactor core"> reflooding of overheated reactor core</a>, <a href="https://publications.waset.org/abstracts/search?q=ASTEC%20computer%20code" title=" ASTEC computer code"> ASTEC computer code</a> </p> <a href="https://publications.waset.org/abstracts/36002/study-of-the-late-phase-of-core-degradation-during-reflooding-by-safety-injection-system-for-vver1000-with-astecv2-computer-code" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2127</span> Controlled Size Synthesis of ZnO and PEG-ZnO NPs and Their Biological Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahnoor%20Khan">Mahnoor Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bashir%20Ahmad"> Bashir Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Khizar%20Hayat"> Khizar Hayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20Ahmad%20Khan"> Saad Ahmad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Laiba%20Ahmad"> Laiba Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shumaila%20Bashir"> Shumaila Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Abid%20Ali%20Khan"> Abid Ali Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to synthesize the smallest possible size of ZnO NPs using a modified wet chemical synthesis method and to prepare core shell using polyethylene glycol (PEG) as shell material. Advanced and sophisticated techniques were used to confirm the synthesis, size, and shape of these NPs. Rounded, clustered NPs of size 5.343 nm were formed. Both the plain and core shell NPs were tested against MDR bacteria (E. cloacae, E. amnigenus, Shigella, S. odorifacae, Citrobacter, and E. coli). Both of the NPs showed excellent antibacterial properties, whereas E. cloacae showed maximum zone of inhibition of 16 mm, 27 mm, and 32 mm for 500 μg/ml, 1000 μg/ml, and 1500 μg/ml, respectively for plain ZnO NPs and 18 mm, 28 mm and 35 mm for 500 μg/ml, 1000 μg/ml and 1500 μg/ml for core shell NPs. These NPs were also biocompatible on human red blood cells showing little hemolysis of only 4% for 70 μg/ml for plain NPs and 1.5% for 70 μg/ml for core shell NPs. Core shell NPs were highly biocompatible because of the PEG. Their therapeutic effect as photosensitizers in photodynamic therapy (PDT) for cancer treatment was also monitored. The cytotoxicity of ZnO and PEG-ZnO was evaluated using MTT assay. Our results demonstrated that these NPs could generate ROS inside tumor cells after irradiation which in turn initiates an apoptotic pathway leading to cell death hence proving to be an effective candidate for PDT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZnO" title="ZnO">ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=hemolysis" title=" hemolysis"> hemolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxiciy%20assay" title=" cytotoxiciy assay"> cytotoxiciy assay</a>, <a href="https://publications.waset.org/abstracts/search?q=photodynamic%20therapy" title=" photodynamic therapy"> photodynamic therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a> </p> <a href="https://publications.waset.org/abstracts/153973/controlled-size-synthesis-of-zno-and-peg-zno-nps-and-their-biological-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2126</span> Site Formation Processes at a New Kingdom Settlement at Sai Island, Sudan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sean%20Taylor">Sean Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayantani%20Neogi"> Sayantani Neogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Budka"> Julia Budka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The important Egyptian New Kingdom settlement at Sai Island Sudan presents a complex stratigraphic archaeological record. This study takes the theoretic stance that it, not just the archaeological material being retrieved from the deposits but the sediments themselves that reflect human agency. These anthropogenic sediments reflect the use life of the buildings and spaces between and the post-depositional processes which operate to complicate the archaeological record. The application of soil micromorphology is a technique that takes intact block samples of sediment and analyses them in thin section under a petrological microscope. A detailed understanding of site formation processes and a contextualized knowledge of the material culture can be understood through careful and systematic observation of the changing facies. The major findings of the study are that soil and sedimentary information can provide valuable insights to the use of space during the New Kingdom and elucidate the complexities of site formation processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthropogenic%20sediment" title="anthropogenic sediment">anthropogenic sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=New%20Kingdom" title=" New Kingdom"> New Kingdom</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20formation%20processes" title=" site formation processes"> site formation processes</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20micromorphology" title=" soil micromorphology"> soil micromorphology</a> </p> <a href="https://publications.waset.org/abstracts/47616/site-formation-processes-at-a-new-kingdom-settlement-at-sai-island-sudan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2125</span> Body Perception and Self-Esteem in Individuals Performing Bodybuilding Exercise Program</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yildiz%20Erdoganoglu">Yildiz Erdoganoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Unzile%20Tunc"> Unzile Tunc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to determine the relationship of body, upper extremity, lower extremity endurance, and core functionality with body perception and self-esteem in individuals who applied for a bodybuilding exercise program. Forty volunteer male subjects who underwent bodybuilding exercises for one year or more were included in the study. After obtaining demographic information of the individuals, trunk endurance was evaluated by curl-up and modified Sorensen test, upper extremity endurance by push-up test, lower extremity endurance by repeated squat test, core functionalities by single-leg wall sitting and repeated single-leg squatting tests. body perception, body image perception scale, and self-esteem were evaluated with Rosenberg self-esteem scale. The mean age of the individuals was 25.60 ± 4.70 years, mean exercise time was 22.47 ± 34.60 months. At the end of the study, body perception was low, and self-esteem was moderate. There was no significant relationship between abdominal endurance, back extensor endurance, upper extremity, and lower extremity endurance, core functionality, and body perception (p > 0.05). Also, there was no significant relationship between abdominal extensor, back extensor, upper extremity and lower extremity endurance, core functionality, and self-esteem (p > 0.05). The body, upper and lower extremity endurance, and core functionality of bodybuilders did not have any effect on body perception and self-esteem, suggesting that these individuals did not contribute positively to their efforts to improve their body perception and self- esteem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20endurance" title="body endurance">body endurance</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20perception" title=" body perception"> body perception</a>, <a href="https://publications.waset.org/abstracts/search?q=core%20functionality" title=" core functionality"> core functionality</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20esteem" title=" self esteem"> self esteem</a> </p> <a href="https://publications.waset.org/abstracts/116032/body-perception-and-self-esteem-in-individuals-performing-bodybuilding-exercise-program" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2124</span> Humanity's Still Sub-Quantum Core-Self Intelligence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Shugyo%20Daijo%20Bonnici">Andrew Shugyo Daijo Bonnici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Core-Self Intelligence (CSI) is an absolutely still, non-verbal, non-cerebral intelligence. Our still core-self intelligence is felt at our body's center point of gravity, just an inch below our navel, deep within our lower abdomen. The still sub-quantum depth of core-Self remains untouched by the conditioning influences of family, society, culture, religion, and spiritual views that shape our personalities and ego-self identities. As core-Self intelligence is inborn and unconditioned, it exists within all human beings regardless of age, race, color, creed, mental acuity, or national origin. Our core-self intelligence functions as a wise and compassionate guide that advances our health and well-being, our mental clarity and emotional resiliency, our fearless peace and behavioral wisdom, and our ever-deepening compassion for self and others. Although our core-Self, with its absolutely still non-judgmental intelligence, operates far beneath the functioning of our ego-self identity and our thinking mind, it effectively coexists with our passing thoughts, all of our figuring and thinking, our logical and rational way of knowing, the ebb and flow of our feelings, and the natural or triggered emergence of our emotions. When we allow our whole inner somatic awareness to gently sink into the intelligent center point of gravity within our lower abdomen, the felt arising of our core- Self’s inborn stillness has a serene and relaxing effect on our ego-self and thinking mind. It naturally slows down the speedy passage of our involuntary thoughts, diminishes our ego-self's defensive and reactive functioning, and decreases narcissistic reflections on I, me, and mine. All of these healthy cognitive benefits advance our innate wisdom and compassion, facilitate our personal and interpersonal growth, and liberate the ever-fresh wonder and curiosity of our beginner's heartmind. In conclusion, by studying, exploring, and researching our core-Self intelligence, psychologists and psychotherapists can unlock new avenues for advancing the farther reaches of our mental, emotional, and spiritual health and well-being, our innate behavioral wisdom and boundless empathy, our lucid compassion for self and others, and our unwavering confidence in the still guiding light of our core-Self that exists at the abdominal center point of all human beings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intelligence" title="intelligence">intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=transpersonal" title=" transpersonal"> transpersonal</a>, <a href="https://publications.waset.org/abstracts/search?q=beginner%E2%80%99s%20heartmind" title=" beginner’s heartmind"> beginner’s heartmind</a>, <a href="https://publications.waset.org/abstracts/search?q=compassionate%20wisdom" title=" compassionate wisdom"> compassionate wisdom</a> </p> <a href="https://publications.waset.org/abstracts/173044/humanitys-still-sub-quantum-core-self-intelligence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2123</span> Advantages of Matrix Solid Phase Dispersive (MSPD) Extraction Associated to MIPS versus MAE Liquid Extraction for the Simultaneous Analysis of PAHs, PCBs and Some Hydroxylated PAHs in Sediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Portet-Koltalo">F. Portet-Koltalo</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Tian"> Y. Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Berger"> I. Berger</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Boulanger-Lecomte"> C. Boulanger-Lecomte</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benamar"> A. Benamar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Machour"> N. Machour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sediments are complex environments which can accumulate a great variety of persistent toxic contaminants such as polychlorobiphenyles (PCBs), polycyclic aromatic hydrocarbons (PAHs) and some of their more toxic degradation metabolites such as hydroxylated PAHs (OH-PAHs). Owing to their composition, fine clayey sediments can be more difficult to extract than soils using conventional solvent extraction processes. So this study aimed to compare the potential of MSPD (matrix solid phase dispersive extraction) to extract PCBs, PAHs and OH-PAHs, in comparison with microwave assisted extraction (MAE). Methodologies: MAE extraction with various solvent mixtures was used to extract PCBs, PAHs and OH-PAHs from sediments in two runs, followed by two GC-MS analyses. MSPD consisted in crushing the dried sediment with dispersive agents, introducing the mixture in cartridges and eluting the target compounds with an appropriate volume of selected solvents. So MSPD combined with cartridges containing MIPs (molecularly imprinted polymers) designed for OH-PAHs was used to extract the three families of target compounds in only one run, followed by parallel analyses in GC-MS for PAHs/PCBs and HPLC-FLD for OH-PAHs. Results: MAE extraction was optimized to extract from clayey sediments, in two runs, PAHs/PCBs in one hand and OH-PAHs in the other hand. Indeed, the best conditions of extractions (mixtures of extracting solvents, temperature) were different if we consider the polarity and the thermodegradability of the different families of target contaminants: PAHs/PCBs were better extracted using an acetone/toluene 50/50 mixture at 130°C whereas OH-PAHs were better extracted using an acetonitrile/toluene 90/10 mixture at 100°C. Moreover, the two consecutive GC-MS analyses contributed to double the total analysis time. A matrix solid phase dispersive (MSPD) extraction procedure was also optimized, with the first objective of increasing the extraction recovery yields of PAHs and PCBs from fine-grained sediment. The crushing time (2-10 min), the nature of the dispersing agents added for purifying and increasing the extraction yields (Florisil, octadecylsilane, 3-chloropropyle, 4-benzylchloride), the nature and the volume of eluting solvents (methylene chloride, hexane, hexane/acetone…) were studied. It appeared that in the best conditions, MSPD was a better extraction method than MAE for PAHs and PCBs, with respectively, mean increases of 8.2% and 71%. This method was also faster, easier and less expensive. But the other advantage of MSPD was that it allowed to introduce easily, just after the first elution process of PAHs/PCBs, a step permitting the selective recovery of OH-PAHs. A cartridge containing MIPs designed for phenols was coupled to the cartridge containing the dispersed sediment, and various eluting solvents, different from those used for PAHs and PCBs, were tested to selectively concentrate and extract OH-PAHs. Thereafter OH-PAHs could be analyzed at the same time than PAHs and PCBs: the OH-PAH extract could be analyzed with HPLC-FLD, whereas the PAHs/PCBs extract was analyzed with GC-MS, adding only few minutes more to the total duration of the analytical process. Conclusion: MSPD associated to MIPs appeared to be an easy, fast and low expensive method, able to extract in one run a complex mixture of toxic apolar and more polar contaminants present in clayey fine-grained sediments, an environmental matrix which is generally difficult to analyze. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contaminated%20fine-grained%20sediments" title="contaminated fine-grained sediments">contaminated fine-grained sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20solid%20phase%20dispersive%20extraction" title=" matrix solid phase dispersive extraction"> matrix solid phase dispersive extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20assisted%20extraction" title=" microwave assisted extraction"> microwave assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=molecularly%20imprinted%20polymers" title=" molecularly imprinted polymers"> molecularly imprinted polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-pollutant%20analysis" title=" multi-pollutant analysis"> multi-pollutant analysis</a> </p> <a href="https://publications.waset.org/abstracts/48037/advantages-of-matrix-solid-phase-dispersive-mspd-extraction-associated-to-mips-versus-mae-liquid-extraction-for-the-simultaneous-analysis-of-pahs-pcbs-and-some-hydroxylated-pahs-in-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2122</span> Optimization of the Enzymatic Synthesis of the Silver Core-Shell Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lela%20Pintari%C4%87">Lela Pintarić</a>, <a href="https://publications.waset.org/abstracts/search?q=Iva%20Rezi%C4%87"> Iva Rezić</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Vrsalovi%C4%87%20Prese%C4%8Dki"> Ana Vrsalović Presečki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering an enormous increase of the use of metal nanoparticles with the exactly defined characteristics, the main goal of this research was to found the optimal and environmental friendly method of their synthesis. The synthesis of the inorganic core-shell nanoparticles was optimized as a model. The core-shell nanoparticles are composed of the enzyme core belted with the metal ions, oxides or salts as a shell. In this research, enzyme urease was the core catalyst and the shell nanoparticle was made of silver. Silver nanoparticles are widespread utilized and some of their common uses are: as an addition to disinfectants to ensure an aseptic environment for the patients, as a surface coating for neurosurgical shunts and venous catheters, as an addition to implants, in production of socks for diabetics and athletic clothing where they improve antibacterial characteristics, etc. Characteristics of synthesized nanoparticles directly depend on of their size, so the special care during this optimization was given to the determination of the size of the synthesized nanoparticles. For the purpose of the above mentioned optimization, sixteen experiments were generated by the Design of Experiments (DoE) method and conducted under various temperatures, with different initial concentration of the silver nitrate and constant concentration of the urease of two separate manufacturers. Synthesized nanoparticles were analyzed by the Nanoparticle Tracking Analysis (NTA) method on Malvern NanoSight NS300. Results showed that the initial concentration of the silver ions does not affect the concentration of the synthesized silver nanoparticles neither their size distribution. On the other hand, temperature of the experiments has affected both of the mentioned values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core-shell%20nanoparticles" title="core-shell nanoparticles">core-shell nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=silver" title=" silver"> silver</a>, <a href="https://publications.waset.org/abstracts/search?q=urease" title=" urease"> urease</a> </p> <a href="https://publications.waset.org/abstracts/71426/optimization-of-the-enzymatic-synthesis-of-the-silver-core-shell-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2121</span> Measurement of Solids Concentration in Hydrocyclone Using ERT: Validation Against CFD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vakamalla%20Teja%20Reddy">Vakamalla Teja Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Narasimha%20Mangadoddy"> Narasimha Mangadoddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrocyclones are used to separate particles into different size fractions in the mineral processing, chemical and metallurgical industries. High speed video imaging, Laser Doppler Anemometry (LDA), X-ray and Gamma ray tomography are previously used to measure the two-phase flow characteristics in the cyclone. However, investigation of solids flow characteristics inside the cyclone is often impeded by the nature of the process due to slurry opaqueness and solid metal wall vessels. In this work, a dual-plane high speed Electrical resistance tomography (ERT) is used to measure hydrocyclone internal flow dynamics in situ. Experiments are carried out in 3 inch hydrocyclone for feed solid concentrations varying in the range of 0-50%. ERT data analysis through the optimized FEM mesh size and reconstruction algorithms on air-core and solid concentration tomograms is assessed. Results are presented in terms of the air-core diameter and solids volume fraction contours using Maxwell’s equation for various hydrocyclone operational parameters. It is confirmed by ERT that the air core occupied area and wall solids conductivity levels decreases with increasing the feed solids concentration. Algebraic slip mixture based multi-phase computational fluid dynamics (CFD) model is used to predict the air-core size and the solid concentrations in the hydrocyclone. Validation of air-core size and mean solid volume fractions by ERT measurements with the CFD simulations is attempted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air-core" title="air-core">air-core</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistance%20tomography" title=" electrical resistance tomography"> electrical resistance tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocyclone" title=" hydrocyclone"> hydrocyclone</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-phase%20CFD" title=" multi-phase CFD"> multi-phase CFD</a> </p> <a href="https://publications.waset.org/abstracts/12003/measurement-of-solids-concentration-in-hydrocyclone-using-ert-validation-against-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2120</span> Response of Subfossile Diatoms, Cladocera, and Chironomidae in Sediments of Small Ponds to Changes in Wastewater Discharges from a Zn–Pb Mine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ewa%20Szarek-Gwiazda">Ewa Szarek-Gwiazda</a>, <a href="https://publications.waset.org/abstracts/search?q=Agata%20Z.%20Wojtal"> Agata Z. Wojtal</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Pociecha"> Agnieszka Pociecha</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Kownacki"> Andrzej Kownacki</a>, <a href="https://publications.waset.org/abstracts/search?q=Dariusz%20Ciszewski"> Dariusz Ciszewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mining of metal ores is one of the largest sources of heavy metals, which deteriorate aquatic systems. The response of organisms to environmental changes can be well recorded in sediments of the affected water bodies and may be reconstructed based on analyses of organisms' remains. The present study aimed at the response of diatoms (Bacillariophyta), Cladocera, and Chironomidae communities to the impact of Zn-Pb mine water discharge recorded in sediment cores of small subsidence ponds on the Chechło River floodplain (Silesia–Krakow Region, southern Poland). We hypothesize various responses of the above groups to high metal concentrations (Cd, Pb, Zn, and Cu). The investigated ponds were formed either during the peak of the ore exploitation (DOWN) or after mining cessation (UP). Currently, the concentrations of dissolved metals (in µg g⁻¹) in water reached up to 0.53 for Cd, 7.3 for Pb, and up to 47.1 for Zn. All the sediment cores from subsidence ponds were heavily polluted with Cd 6.7–612 μg g⁻¹, Pb 0.1–10.2 mg g⁻¹, and Zn 0.5–23.1 mg g⁻¹. Core sediments varied also in respect to pH 5.8-7.1 and concentrations of organic matter (5.7-39.8%). The impact of high metal concentrations was expressed by the occurrence of metal-tolerant taxa like diatoms – Nitzschia amphibia, Sellaphora nigri, and Surirella brebisonii var. kuetzingii; Cladocera – Chydorus sphaericus (dominated in cores from all ponds), and Chironomidae – Chironomus and Cricotopus especially in the DOWN ponds. Statistical analysis exhibited a negative impact of metals on some taxa of diatoms and Cladocera but only on Polypedilum sp. from Chironomidae. The abundance of such diatoms like Gomphonema utae, Staurosirella pinnata, Eunotia bilunaris, and Cladocera like Alona, Chydorus, Graptoleberis, and Pleuroxus decreased with increasing Pb concentration. However, the occurrence or dominance of more sensitive species of diatoms and Cladocera indicates their adaptation to higher metal loads, which was facilitated by neutral pH and slightly alkaline waters. Diatom assemblages were generally resistant to Zn, Pb, Cu, and Cd pollution, as indicated by their large similarity to populations from non-contaminated waters. Comparison with reference objects clearly indicates the dominance of Achnanthidium minutissimum, Staurosira venter, and Fragilaria gracilis in very diverse assemblages of unpolluted waters. The distribution of the Cladocera and Chironomidae taxa depended on the habitat type. The DOWN ponds with stagnant water and overgrown with macrophytes were more suitable for cladocerans (14 taxa, higher diversity) than the UP ponds with river water flowing through their centre and with a small share of macrophytes (8 taxa). The Chironominae, mainly Chironomus and Microspectra, were abundant in cores from the UP ponds with muddy bottoms. Inversely, the density of Orthocladiinae, especially genus Cricotopus, was related to the organic matter content and dominated in cores from the DOWN ponds. The presence of diatoms like Nitzschia amphibia, Sellaphora nigri, and Surirella brebisonii var. kuetzingii, cladocerans: Bosmina longirostris, Chydorus sphaericus, Alona affinis, and A. rectangularis as well as Chironomidae Chironomus sp. (UP ponds) and Psecrotanypus varius (DOWN ponds) indicate the influence of the water trophy on their distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chironomidae" title="Chironomidae">Chironomidae</a>, <a href="https://publications.waset.org/abstracts/search?q=Cladocera" title=" Cladocera"> Cladocera</a>, <a href="https://publications.waset.org/abstracts/search?q=diatoms" title=" diatoms"> diatoms</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=Zn-Pb%20mine" title=" Zn-Pb mine"> Zn-Pb mine</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20cores" title=" sediment cores"> sediment cores</a>, <a href="https://publications.waset.org/abstracts/search?q=subsidence%20ponds" title=" subsidence ponds"> subsidence ponds</a> </p> <a href="https://publications.waset.org/abstracts/176661/response-of-subfossile-diatoms-cladocera-and-chironomidae-in-sediments-of-small-ponds-to-changes-in-wastewater-discharges-from-a-zn-pb-mine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2119</span> ELectromagnetic-Thermal Coupled Analysis of PMSM with Cooling Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Woo%20Jun">Hyun-Woo Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Chul%20Jeong"> Tae-Chul Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Huai-Cong%20Liu"> Huai-Cong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Lee"> Ju Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the electromagnetic-thermal flow coupled analysis of permanent magnet synchronous motor (PMSM) which has cooling channel in stator core for forced air cooling. Unlike the general PMSM design, to achieve ohmic loss reduction for high efficiency, cooling channel actively used in the stator core. Equivalent thermal network model was made to analyze the effect of the formation of the additional flow path in the core. According to the shape and position changing of the channel design, electromagnetic-thermal coupled analysis results were reviewed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coupled%20problems" title="coupled problems">coupled problems</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20motors" title=" electric motors"> electric motors</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20circuits" title=" equivalent circuits"> equivalent circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20flow" title=" fluid flow"> fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a> </p> <a href="https://publications.waset.org/abstracts/25756/electromagnetic-thermal-coupled-analysis-of-pmsm-with-cooling-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">620</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2118</span> Effect of High-Intensity Core Muscle Exercises Training on Sport Performance in Dancers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Che%20Hsiu%20Chen">Che Hsiu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Su%20Yun%20Chen"> Su Yun Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hon%20Wen%20Cheng"> Hon Wen Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional core stability, core endurance, and balance exercises on a stable surface with isometric muscle actions, low loads, and multiple repetitions, which may not improvements the swimming and running economy performance. However, the effects of high intensity core muscle exercise training on jump height, sprint, and aerobic fitness remain unclear. The purpose of this study was to examine whether high intensity core muscle exercises training could improve sport performances in dancers. Thirty healthy university dancer students (28 women and 2 men; age 20.0 years, height 159.4 cm, body mass 52.7 kg) were voluntarily participated in this study, and each participant underwent five suspension exercises (e.g., hip abduction in plank alternative, hamstring curl, 45-degree row, lunge and oblique crunch). Each type of exercise was performed for 30-second, with 30-second of rest between exercises, two times per week for eight weeks and each exercise session was increased by 10-second every week. We measured agility, explosive force, anaerobic and cardiovascular fitness in dancer performance before and after eight weeks of training. The results showed that the 8-week high intensity core muscle training would significantly increase T-test agility (7.78%), explosive force of acceleration (3.35%), vertical jump height (8.10%), jump power (6.95%), lower extremity anaerobic ability (7.10%) and oxygen uptake efficiency slope (4.15%). Therefore, it can be concluded that eight weeks of high intensity core muscle exercises training can improve not only agility, sprint ability, vertical jump ability, anaerobic and but also cardiovascular fitness measures as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balance" title="balance">balance</a>, <a href="https://publications.waset.org/abstracts/search?q=jump%20height" title=" jump height"> jump height</a>, <a href="https://publications.waset.org/abstracts/search?q=sprint" title=" sprint"> sprint</a>, <a href="https://publications.waset.org/abstracts/search?q=maximal%20oxygen%20uptake" title=" maximal oxygen uptake"> maximal oxygen uptake</a> </p> <a href="https://publications.waset.org/abstracts/50790/effect-of-high-intensity-core-muscle-exercises-training-on-sport-performance-in-dancers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2117</span> Estimation of Relative Permeabilities and Capillary Pressures in Shale Using Simulation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20C.%20Amadi">F. C. Amadi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20C.%20Enyi"> G. C. Enyi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Nasr"> G. Nasr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relative permeabilities are practical factors that are used to correct the single phase Darcy’s law for application to multiphase flow. For effective characterisation of large-scale multiphase flow in hydrocarbon recovery, relative permeability and capillary pressures are used. These parameters are acquired via special core flooding experiments. Special core analysis (SCAL) module of reservoir simulation is applied by engineers for the evaluation of these parameters. But, core flooding experiments in shale core sample are expensive and time consuming before various flow assumptions are achieved for instance Darcy’s law. This makes it imperative for the application of coreflooding simulations in which various analysis of relative permeabilities and capillary pressures of multiphase flow can be carried out efficiently and effectively at a relative pace. This paper presents a Sendra software simulation of core flooding to achieve to relative permeabilities and capillary pressures using different correlations. The approach used in this study was three steps. The first step, the basic petrophysical parameters of Marcellus shale sample such as porosity was determined using laboratory techniques. Secondly, core flooding was simulated for particular scenario of injection using different correlations. And thirdly the best fit correlations for the estimation of relative permeability and capillary pressure was obtained. This research approach saves cost and time and very reliable in the computation of relative permeability and capillary pressures at steady or unsteady state, drainage or imbibition processes in oil and gas industry when compared to other methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=relative%20permeabilty" title="relative permeabilty">relative permeabilty</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=1-D%20black%20oil%20simulator" title=" 1-D black oil simulator"> 1-D black oil simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20pressures" title=" capillary pressures"> capillary pressures</a> </p> <a href="https://publications.waset.org/abstracts/32600/estimation-of-relative-permeabilities-and-capillary-pressures-in-shale-using-simulation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&page=4" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&page=4">4</a></li> <li class="page-item active"><span class="page-link">5</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&page=75">75</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&page=76">76</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&page=6" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>