CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–39 of 39 results for author: <span class="mathjax">Ozerov, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Ozerov%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Ozerov, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Ozerov%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Ozerov, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.05101">arXiv:2503.05101</a> <span> [<a href="https://arxiv.org/pdf/2503.05101">pdf</a>, <a href="https://arxiv.org/format/2503.05101">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Applied-field magnetic structure and spectroscopy shifts of the effective spin-$\frac{1}{2}$, $XY$-like magnet Li$_2$CoCl$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Riedel%2C+Z+W">Zachary W. Riedel</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Calder%2C+S">Stuart Calder</a>, <a href="/search/cond-mat?searchtype=author&query=Shoemaker%2C+D+P">Daniel P. Shoemaker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.05101v1-abstract-short" style="display: inline;"> Insulators containing chains of magnetic transition metal cations provide platforms for probing spin-$\frac{1}{2}$ dynamics and quantum critical behavior. Li$_2$CoCl$_4$ contains edge-sharing CoCl$_6$ octahedra that form chains along the crystallographic $c$ axis and orders antiferromagnetically at zero field, but questions remain about its applied-field magnetic structure and the Co$^{2+}$ spin s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.05101v1-abstract-full').style.display = 'inline'; document.getElementById('2503.05101v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.05101v1-abstract-full" style="display: none;"> Insulators containing chains of magnetic transition metal cations provide platforms for probing spin-$\frac{1}{2}$ dynamics and quantum critical behavior. Li$_2$CoCl$_4$ contains edge-sharing CoCl$_6$ octahedra that form chains along the crystallographic $c$ axis and orders antiferromagnetically at zero field, but questions remain about its applied-field magnetic structure and the Co$^{2+}$ spin state. Here, we show with neutron diffraction on a polycrystalline sample how the anti-aligned chains of cobalt moments undergo a spin-flop transition to a field-aligned ferromagnetic state above 1.6~T. Further, using magnetic resonance absorption measurements and paramagnetic spin models, we reveal the strongly anisotropic nature of the Co$^{2+}$ ion's $XY$-like magnetic behavior ($g_{\parallel}=2.77$ and $g_{\perp}=5.23$) and its $J=\frac{1}{2}$ ground state. We, therefore, supply the magnetic structures and anisotropic description needed to explore the dynamics of the field-driven magnetic phases, laying the foundation for further experimental and theoretical studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.05101v1-abstract-full').style.display = 'none'; document.getElementById('2503.05101v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.04151">arXiv:2502.04151</a> <span> [<a href="https://arxiv.org/pdf/2502.04151">pdf</a>, <a href="https://arxiv.org/format/2502.04151">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unveiling three types of fermions in a nodal ring topological semimetal through magneto-optical transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jeon%2C+J">Jiwon Jeon</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+T">Taehyeok Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Jang%2C+J">Jiho Jang</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+H">Hoil Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+J+S">Jun Sung Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Min%2C+H">Hongki Min</a>, <a href="/search/cond-mat?searchtype=author&query=Choi%2C+E">Eunjip Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.04151v1-abstract-short" style="display: inline;"> We investigate the quasiparticles of a single nodal ring semimetal SrAs$_3$ through axis-resolved magneto-optical measurements. We observe three types of Landau levels scaling as $\varepsilon \sim \sqrt{B}$, $\varepsilon \sim B^{2/3}$, and $\varepsilon \sim B$ that correspond to Dirac, semi-Dirac, and classical fermions, respectively. Through theoretical analysis, we identify the distinct origins… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04151v1-abstract-full').style.display = 'inline'; document.getElementById('2502.04151v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.04151v1-abstract-full" style="display: none;"> We investigate the quasiparticles of a single nodal ring semimetal SrAs$_3$ through axis-resolved magneto-optical measurements. We observe three types of Landau levels scaling as $\varepsilon \sim \sqrt{B}$, $\varepsilon \sim B^{2/3}$, and $\varepsilon \sim B$ that correspond to Dirac, semi-Dirac, and classical fermions, respectively. Through theoretical analysis, we identify the distinct origins of these three types of fermions present within the nodal ring. In particular, semi-Dirac fermions--a novel type of fermion that can give rise to a range of unique quantum phenomena--emerge from the endpoints of the nodal ring where the energy band disperses linearly along one direction and quadratically along the perpendicular direction, a feature not achievable in nodal point or line structures. The capacity of the nodal ring to simultaneously host multiple fermion types, including semi-Dirac fermions, establishes it as a valuable platform to expand the understanding of topological semimetals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04151v1-abstract-full').style.display = 'none'; document.getElementById('2502.04151v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17081">arXiv:2411.17081</a> <span> [<a href="https://arxiv.org/pdf/2411.17081">pdf</a>, <a href="https://arxiv.org/format/2411.17081">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c06072">10.1021/acs.nanolett.4c06072 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magneto-optical evidence of tilting effect in coupled Weyl bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Moon%2C+S">Seongphill Moon</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yuxuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Neu%2C+J">Jennifer Neu</a>, <a href="/search/cond-mat?searchtype=author&query=Siegrist%2C+T">Theo Siegrist</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Z">Zhigang Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17081v2-abstract-short" style="display: inline;"> Theories have revealed the universality of the band tilting effect in topological Weyl semimetals (WSMs) and its implications for the material's physical properties. However, the experimental identification of tilted Weyl bands remains much less explored. Here, by combining magneto-infrared optical studies with a four-band coupled Weyl point model, we report spectroscopic evidence of the tilting e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17081v2-abstract-full').style.display = 'inline'; document.getElementById('2411.17081v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17081v2-abstract-full" style="display: none;"> Theories have revealed the universality of the band tilting effect in topological Weyl semimetals (WSMs) and its implications for the material's physical properties. However, the experimental identification of tilted Weyl bands remains much less explored. Here, by combining magneto-infrared optical studies with a four-band coupled Weyl point model, we report spectroscopic evidence of the tilting effect in the well-established WSM niobium phosphide. Specifically, we observe Landau level transitions with rich features that are well reproduced within a model of coupled tilted Weyl points. Our analysis indicates that the tilting effect relaxes the selection rules and gives rise to transitions that would otherwise be forbidden in the non-tilt case. Additionally, we observe unconventional interband transitions with flat and negative magnetic field dispersions, highlighting the importance of coupling between Weyl points. Our results not only emphasize the significance of the tilting effect in the optical responses of WSMs but also demonstrate magneto-optics as an effective tool for probing the tilting effect in electronic band structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17081v2-abstract-full').style.display = 'none'; document.getElementById('2411.17081v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is the initial draft</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters, 2025, 25, 2858-2863 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12591">arXiv:2406.12591</a> <span> [<a href="https://arxiv.org/pdf/2406.12591">pdf</a>, <a href="https://arxiv.org/format/2406.12591">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Spectral analysis of the magnetooptical response in valley polarized Pb$_{1-x}$Sn$_x$Se </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ding%2C+X">Xiaoqi Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jiashu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Karim%2C+M+A">Muhsin Abdul Karim</a>, <a href="/search/cond-mat?searchtype=author&query=Bac%2C+S">Seul-Ki Bac</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xinyu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Assaf%2C+B+A">Badih A. Assaf</a>, <a href="/search/cond-mat?searchtype=author&query=Hsu%2C+Y">Yi-Ting Hsu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xiao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12591v1-abstract-short" style="display: inline;"> Since the last century, considerable efforts have been devoted to the study of valley-degenerate narrow gap semiconductors, such as the Pb$_{1-x}$Sn$_x$Se alloy. This material possesses band minima at the $L$-points of their Brillouin zone, yielding a valley degeneracy of four. However, in (111)-oriented films, it is still not fully understood how differences between the longitudinal valley, orien… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12591v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12591v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12591v1-abstract-full" style="display: none;"> Since the last century, considerable efforts have been devoted to the study of valley-degenerate narrow gap semiconductors, such as the Pb$_{1-x}$Sn$_x$Se alloy. This material possesses band minima at the $L$-points of their Brillouin zone, yielding a valley degeneracy of four. However, in (111)-oriented films, it is still not fully understood how differences between the longitudinal valley, oriented along the growth axis, and the oblique valleys, oriented at an angle with respect to that axis, appear in magneto-optical infrared spectroscopy. In this work, we report a magnetooptical study on this family of alloys, focusing on an anomaly in the interband transition of the peak intensity ratio of longitudinal and oblique valleys under a magnetic field applied along the [111] direction. Based on the Mitchell-Wallis model, we provide a theoretical fit for the experimental transmission data, which quantitatively explains the spectral shape of the data at magnetic fields as high as 35T. In particular, we attribute this anomalous peak intensity variation to the carrier density difference between the two types of valleys as well as the field-dependent thin-film interference. Our analysis also allows for the extraction of the real and imaginary parts of the dielectric function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12591v1-abstract-full').style.display = 'none'; document.getElementById('2406.12591v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15689">arXiv:2405.15689</a> <span> [<a href="https://arxiv.org/pdf/2405.15689">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Probing Berry curvature in magnetic topological insulators through resonant infrared magnetic circular dichroism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bac%2C+S">Seul-Ki Bac</a>, <a href="/search/cond-mat?searchtype=author&query=Mardel%C3%A9%2C+F+l">Florian le Mardel茅</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jiashu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Yoshimura%2C+K">Kota Yoshimura</a>, <a href="/search/cond-mat?searchtype=author&query=Mohelsk%C3%BD%2C+I">Ivan Mohelsk媒</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+X">Xingdan Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Piot%2C+B">Benjamin Piot</a>, <a href="/search/cond-mat?searchtype=author&query=Wimmer%2C+S">Stefan Wimmer</a>, <a href="/search/cond-mat?searchtype=author&query=Ney%2C+A">Andreas Ney</a>, <a href="/search/cond-mat?searchtype=author&query=Orlova%2C+T">Tatyana Orlova</a>, <a href="/search/cond-mat?searchtype=author&query=Zhukovskyi%2C+M">Maksym Zhukovskyi</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+G">G眉nther Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Springholz%2C+G">Gunther Springholz</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xinyu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Orlita%2C+M">Milan Orlita</a>, <a href="/search/cond-mat?searchtype=author&query=Park%2C+K">Kyungwha Park</a>, <a href="/search/cond-mat?searchtype=author&query=Hsu%2C+Y">Yi-Ting Hsu</a>, <a href="/search/cond-mat?searchtype=author&query=Assaf%2C+B+A">Badih A. Assaf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15689v1-abstract-short" style="display: inline;"> Probing the quantum geometry and topology in condensed matter systems has relied heavily on static electronic transport experiments in magnetic fields. Yet, contact-free optical measurements have rarely been explored. Magnetic dichroism (MCD), the nonreciprocal absorption of circular polarized light, was theoretically linked to the quantized anomalous Hall effect in magnetic insulators and can ide… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15689v1-abstract-full').style.display = 'inline'; document.getElementById('2405.15689v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15689v1-abstract-full" style="display: none;"> Probing the quantum geometry and topology in condensed matter systems has relied heavily on static electronic transport experiments in magnetic fields. Yet, contact-free optical measurements have rarely been explored. Magnetic dichroism (MCD), the nonreciprocal absorption of circular polarized light, was theoretically linked to the quantized anomalous Hall effect in magnetic insulators and can identify the bands and momenta responsible for the underlying Berry Curvature (BC). Detecting BC through MCD faces two challenges: First, the relevant inter-band transitions usually generate MCD in the infrared (IR) range, requiring large samples with high quality. Second, while most magnetic materials are metallic, the relation between MCD and BC in metals remains unclear. Here, we report the observation of MCD in the IR range along with the anomalous Hall effect in thin film MnBi2Te4. Both phenomena emerge with a field-driven phase transition from an antiferromagnet to a canted ferromagnet. By theoretically relating the MCD to the anomalous Hall effect via BC in a metal, we show that this transition accompanies an abrupt onset of BC, signaling a topological phase transition from a topological insulator to a doped Chern insulator. Our density functional theory calculation suggests the MCD signal mainly originates from an optical transition at the Brillouin zone edge, hinting at a potential new source of BC away from the commonly considered 螕 point. Our findings demonstrate a novel experimental approach for detecting BC and identifying the responsible bands and momenta, generally applicable to magnetic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15689v1-abstract-full').style.display = 'none'; document.getElementById('2405.15689v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09283">arXiv:2403.09283</a> <span> [<a href="https://arxiv.org/pdf/2403.09283">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwae127">10.1093/nsr/nwae127 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of quantum oscillations near the Mott-Ioffe-Regel limit in CaAs3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+M">Minhao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jinglei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+W">Wenbin Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shichao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+W">Wenxiang Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Joseph%2C+N+B">Nesta Benno Joseph</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+L">Liangcai Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Mou%2C+Y">Yicheng Mou</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yunkun Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Leng%2C+P">Pengliang Leng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Pi%2C+L">Li Pi</a>, <a href="/search/cond-mat?searchtype=author&query=Suslov%2C+A">Alexey Suslov</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Wyzula%2C+J">Jan Wyzula</a>, <a href="/search/cond-mat?searchtype=author&query=Orlita%2C+M">Milan Orlita</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+F">Fengfeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Narayan%2C+A">Awadhesh Narayan</a>, <a href="/search/cond-mat?searchtype=author&query=Qian%2C+D">Dong Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Wen%2C+J">Jinsheng Wen</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09283v1-abstract-short" style="display: inline;"> The Mott-Ioffe-Regel limit sets the lower bound of carrier mean free path for coherent quasiparticle transport. Metallicity beyond this limit is of great interest because it is often closely related to quantum criticality and unconventional superconductivity. Progress along this direction mainly focuses on the strange-metal behaviors originating from the evolution of quasiparticle scattering rate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09283v1-abstract-full').style.display = 'inline'; document.getElementById('2403.09283v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09283v1-abstract-full" style="display: none;"> The Mott-Ioffe-Regel limit sets the lower bound of carrier mean free path for coherent quasiparticle transport. Metallicity beyond this limit is of great interest because it is often closely related to quantum criticality and unconventional superconductivity. Progress along this direction mainly focuses on the strange-metal behaviors originating from the evolution of quasiparticle scattering rate such as linear-in-temperature resistivity, while the quasiparticle coherence phenomena in this regime are much less explored due to the short mean free path at the diffusive bound. Here we report the observation of quantum oscillations from Landau quantization near the Mott-Ioffe-Regel limit in CaAs3. Despite the insulator-like temperature dependence of resistivity, CaAs3 presents giant magnetoresistance and prominent Shubnikov-de Haas oscillations from Fermi surfaces, indicating highly coherent band transport. In contrast, the quantum oscillation is absent in the magnetic torque. The quasiparticle effective mass increases systematically with magnetic fields, manifesting a much larger value than the expectation given by magneto-infrared spectroscopy. It suggests a strong many-body renormalization effect near Fermi surface. We find that these unconventional behaviors may be explained by the interplay between the mobility edge and the van Hove singularity, which results in the formation of coherent cyclotron orbits emerging at the diffusive bound. Our results call for further study on the electron correlation effect of the van Hove singularity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09283v1-abstract-full').style.display = 'none'; document.getElementById('2403.09283v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> National Science Review, nwae127 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.03735">arXiv:2311.03735</a> <span> [<a href="https://arxiv.org/pdf/2311.03735">pdf</a>, <a href="https://arxiv.org/format/2311.03735">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.14.041057">10.1103/PhysRevX.14.041057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Semi-Dirac Fermions in a Topological Metal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shao%2C+Y">Yinming Shao</a>, <a href="/search/cond-mat?searchtype=author&query=Moon%2C+S">Seongphill Moon</a>, <a href="/search/cond-mat?searchtype=author&query=Rudenko%2C+A+N">A. N. Rudenko</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jie Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Herzog-Arbeitman%2C+J">Jonah Herzog-Arbeitman</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Graf%2C+D">David Graf</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zhiyuan Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Queiroz%2C+R">Raquel Queiroz</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+S+H">Seng Huat Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Y">Yanglin Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Mao%2C+Z">Zhiqiang Mao</a>, <a href="/search/cond-mat?searchtype=author&query=Katsnelson%2C+M+I">M. I. Katsnelson</a>, <a href="/search/cond-mat?searchtype=author&query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Millis%2C+A+J">Andrew. J. Millis</a>, <a href="/search/cond-mat?searchtype=author&query=Basov%2C+D+N">D. N. Basov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.03735v2-abstract-short" style="display: inline;"> Topological semimetals with massless Dirac and Weyl fermions represent the forefront of quantum materials research. In two dimensions (2D), a peculiar class of fermions that are massless in one direction and massive in the perpendicular direction was predicted sixteen years ago. These highly exotic quasiparticles - the semi-Dirac fermions - ignited intense theoretical and experimental interest but… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03735v2-abstract-full').style.display = 'inline'; document.getElementById('2311.03735v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.03735v2-abstract-full" style="display: none;"> Topological semimetals with massless Dirac and Weyl fermions represent the forefront of quantum materials research. In two dimensions (2D), a peculiar class of fermions that are massless in one direction and massive in the perpendicular direction was predicted sixteen years ago. These highly exotic quasiparticles - the semi-Dirac fermions - ignited intense theoretical and experimental interest but remain undetected. Using magneto-optical spectroscopy, we demonstrate the defining feature of semi-Dirac fermions - $B^{2/3}$ scaling of Landau levels - in a prototypical nodal-line metal ZrSiS. In topological metals, including ZrSiS, nodal-lines extend the band degeneracies from isolated points to lines, loops or even chains in the momentum space. With $\textit{ab initio}$ calculations and theoretical modeling, we pinpoint the observed semi-Dirac spectrum to the crossing points of nodal-lines in ZrSiS. Crossing nodal-lines exhibit a continuum absorption spectrum but with singularities that scale as $B^{2/3}$ at the crossing. Our work sheds light on the hidden quasiparticles emerging from the intricate topology of crossing nodal-lines and highlights the potential to explore quantum geometry with linear optical responses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03735v2-abstract-full').style.display = 'none'; document.getElementById('2311.03735v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 14, 041057 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04779">arXiv:2309.04779</a> <span> [<a href="https://arxiv.org/pdf/2309.04779">pdf</a>, <a href="https://arxiv.org/format/2309.04779">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.L121201">10.1103/PhysRevB.108.L121201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $g$-factor engineering with InAsSb alloys toward zero band gap limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yuxuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Ermolaev%2C+M">Maksim Ermolaev</a>, <a href="/search/cond-mat?searchtype=author&query=Moon%2C+S">Seongphill Moon</a>, <a href="/search/cond-mat?searchtype=author&query=Kipshidze%2C+G">Gela Kipshidze</a>, <a href="/search/cond-mat?searchtype=author&query=Belenky%2C+G">Gregory Belenky</a>, <a href="/search/cond-mat?searchtype=author&query=Svensson%2C+S">Stefan Svensson</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Z">Zhigang Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Suchalkin%2C+S">Sergey Suchalkin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04779v1-abstract-short" style="display: inline;"> Band gap is known as an effective parameter for tuning the Lande $g$-factor in semiconductors and can be manipulated in a wide range through the bowing effect in ternary alloys. In this work, using the recently developed virtual substrate technique, high-quality InAsSb alloys throughout the whole Sb composition range are fabricated and a large $g$-factor of $g\approx -90$ at the minimum band gap o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04779v1-abstract-full').style.display = 'inline'; document.getElementById('2309.04779v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04779v1-abstract-full" style="display: none;"> Band gap is known as an effective parameter for tuning the Lande $g$-factor in semiconductors and can be manipulated in a wide range through the bowing effect in ternary alloys. In this work, using the recently developed virtual substrate technique, high-quality InAsSb alloys throughout the whole Sb composition range are fabricated and a large $g$-factor of $g\approx -90$ at the minimum band gap of $\sim 0.1$ eV, which is almost twice that in bulk InSb is found. Further analysis to the zero gap limit reveals a possible gigantic $g$-factor of $g\approx -200$ with a peculiar relativistic Zeeman effect that disperses as the square root of magnetic field. Such a $g$-factor enhancement toward the narrow gap limit cannot be quantitatively described by the conventional Roth formula, as the orbital interaction effect between the nearly triply degenerated bands becomes the dominant source for the Zeeman splitting. These results may provide new insights into realizing large $g$-factors and spin polarized states in semiconductors and topological materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04779v1-abstract-full').style.display = 'none'; document.getElementById('2309.04779v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, L121201 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.07734">arXiv:2305.07734</a> <span> [<a href="https://arxiv.org/pdf/2305.07734">pdf</a>, <a href="https://arxiv.org/format/2305.07734">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Disorder-enriched magnetic excitations in the Kitaev quantum spin liquid candidate Na$_2$Co$_2$TeO$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+L">Li Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Dhakal%2C+R">Ramesh Dhakal</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yuxuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Mou%2C+B+S">Banasree S. Mou</a>, <a href="/search/cond-mat?searchtype=author&query=Ozarowski%2C+A">Andrzej Ozarowski</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Q">Qing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+H">Haidong Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+J">Jiyuan Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Winter%2C+S+M">Stephen M. Winter</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Z">Zhigang Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.07734v1-abstract-short" style="display: inline;"> Using optical magneto-spectroscopy, we investigate the magnetic excitations of Na$_2$Co$_2$TeO$_6$ in a broad magnetic field range ($0\ \rm{T}\leq B\leq 17.5\ \rm{T}$) at low temperature. Our measurements reveal rich spectra of in-plane magnetic excitations with a surprisingly large number of modes, even in the high-field spin-polarized state. Theoretical calculations find that the Na-occupation d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07734v1-abstract-full').style.display = 'inline'; document.getElementById('2305.07734v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.07734v1-abstract-full" style="display: none;"> Using optical magneto-spectroscopy, we investigate the magnetic excitations of Na$_2$Co$_2$TeO$_6$ in a broad magnetic field range ($0\ \rm{T}\leq B\leq 17.5\ \rm{T}$) at low temperature. Our measurements reveal rich spectra of in-plane magnetic excitations with a surprisingly large number of modes, even in the high-field spin-polarized state. Theoretical calculations find that the Na-occupation disorder in \NCTO plays a crucial role in generating these modes. Our work demonstrates the necessity to consider disorder in the spin environment in the search for Kitaev quantum spin liquid states in practicable materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07734v1-abstract-full').style.display = 'none'; document.getElementById('2305.07734v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.07043">arXiv:2304.07043</a> <span> [<a href="https://arxiv.org/pdf/2304.07043">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-46626-9">10.1038/s41467-024-46626-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The discovery of three-dimensional Van Hove singularity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+W">Wenbin Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Z">Zeping Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+Y">Yuhan Du</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ni%2C+X">Xiao-Sheng Ni</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+X">Xianghao Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Guangyi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hao%2C+C">Congming Hao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xinyi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Pengcheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+C">Chunhui Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+H">Haifeng Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zhenrong Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Run Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y">Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+Y">Yusheng Hou</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+Z">Zhongbo Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">Hai-Zhou Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+J">Junhao Chu</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+X">Xiang Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.07043v2-abstract-short" style="display: inline;"> Arising from the extreme/saddle point in electronic bands, Van Hove singularity (VHS) manifests divergent density of states (DOS) and induces various new states of matter such as unconventional superconductivity. VHS is believed to exist in one and two dimensions, but rarely found in three dimension (3D). Here, we report the discovery of 3D VHS in a topological magnet EuCd2As2 by magneto-infrared… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07043v2-abstract-full').style.display = 'inline'; document.getElementById('2304.07043v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.07043v2-abstract-full" style="display: none;"> Arising from the extreme/saddle point in electronic bands, Van Hove singularity (VHS) manifests divergent density of states (DOS) and induces various new states of matter such as unconventional superconductivity. VHS is believed to exist in one and two dimensions, but rarely found in three dimension (3D). Here, we report the discovery of 3D VHS in a topological magnet EuCd2As2 by magneto-infrared spectroscopy. External magnetic fields effectively control the exchange interaction in EuCd2As2, and shift 3D Weyl bands continuously, leading to the modification of Fermi velocity and energy dispersion. Above the critical field, the 3D VHS forms and is evidenced by the abrupt emergence of inter-band transitions, which can be quantitatively described by the minimal model of Weyl semimetals. Three additional optical transitions are further predicted theoretically and verified in magneto-near-infrared spectra. Our results pave the way to exploring VHS in 3D systems and uncovering the coordination between electronic correlation and the topological phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07043v2-abstract-full').style.display = 'none'; document.getElementById('2304.07043v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15.1 (2024): 2313 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.10656">arXiv:2302.10656</a> <span> [<a href="https://arxiv.org/pdf/2302.10656">pdf</a>, <a href="https://arxiv.org/format/2302.10656">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-39123-y">10.1038/s41467-023-39123-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chirality selective magnon-phonon hybridization and magnon-induced chiral phonons in a layered zigzag antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cui%2C+J">Jun Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Bostroem%2C+E+V">Emil Vinas Bostroem</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+F">Fangliang Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Q">Qianni Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+J">Jiun-Haw Chu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+C">Changcun Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+F">Fucai Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xiaodong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Rubio%2C+A">Angel Rubio</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.10656v2-abstract-short" style="display: inline;"> Two-dimensional (2D) magnetic systems possess versatile magnetic order and can host tunable magnons carrying spin angular momenta. Recent advances show angular momentum can also be carried by lattice vibrations in the form of chiral phonons. However, the interplay between magnons and chiral phonons as well as the details of chiral phonon formation in a magnetic system are yet to be explored. Here,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.10656v2-abstract-full').style.display = 'inline'; document.getElementById('2302.10656v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.10656v2-abstract-full" style="display: none;"> Two-dimensional (2D) magnetic systems possess versatile magnetic order and can host tunable magnons carrying spin angular momenta. Recent advances show angular momentum can also be carried by lattice vibrations in the form of chiral phonons. However, the interplay between magnons and chiral phonons as well as the details of chiral phonon formation in a magnetic system are yet to be explored. Here, we report the observation of magnon-induced chiral phonons and chirality selective magnon-phonon hybridization in a layered zigzag antiferromagnet (AFM) FePSe$_3$. With a combination of magneto-infrared and magneto-Raman spectroscopy, we observe chiral magnon polarons (chiMP), the new hybridized quasiparticles, at zero magnetic field. The hybridization gap reaches 0.25~meV and survives down to the quadrilayer limit. Via first principle calculations, we uncover a coherent coupling between AFM magnons and chiral phonons with parallel angular momenta, which arises from the underlying phonon and space group symmetries. This coupling lifts the chiral phonon degeneracy and gives rise to an unusual Raman circular polarization of the chiMP branches. The observation of coherent chiral spin-lattice excitations at zero magnetic field paves the way for angular momentum-based hybrid phononic and magnonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.10656v2-abstract-full').style.display = 'none'; document.getElementById('2302.10656v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14, 3396 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10401">arXiv:2212.10401</a> <span> [<a href="https://arxiv.org/pdf/2212.10401">pdf</a>, <a href="https://arxiv.org/format/2212.10401">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-38431-7">10.1038/s41467-023-38431-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chemical Design of Electronic and Magnetic Energy Scales in Tetravalent Praseodymium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ramanathan%2C+A">Arun Ramanathan</a>, <a href="/search/cond-mat?searchtype=author&query=Kaplan%2C+J">Jensen Kaplan</a>, <a href="/search/cond-mat?searchtype=author&query=Sergentu%2C+D">Dumitru-Claudiu Sergentu</a>, <a href="/search/cond-mat?searchtype=author&query=Branson%2C+J+A">Jacob A. Branson</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Kolesnikov%2C+A+I">Alexander I. Kolesnikov</a>, <a href="/search/cond-mat?searchtype=author&query=Minasian%2C+S+G">Stefan G. Minasian</a>, <a href="/search/cond-mat?searchtype=author&query=Autschbach%2C+J">Jochen Autschbach</a>, <a href="/search/cond-mat?searchtype=author&query=Freeland%2C+J+W">John W. Freeland</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Z">Zhigang Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Mourigal%2C+M">Martin Mourigal</a>, <a href="/search/cond-mat?searchtype=author&query=La+Pierre%2C+H+S">Henry S. La Pierre</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10401v1-abstract-short" style="display: inline;"> Lanthanides in the trivalent oxidation state are typically described using an ionic picture that leads to localized magnetic moments. The hierarchical energy scales associated with trivalent lanthanides produce desirable properties for e.g., molecular magnetism, quantum materials, and quantum transduction. Here, we show that this traditional ionic paradigm breaks down for praseodymium in the 4+ ox… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10401v1-abstract-full').style.display = 'inline'; document.getElementById('2212.10401v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10401v1-abstract-full" style="display: none;"> Lanthanides in the trivalent oxidation state are typically described using an ionic picture that leads to localized magnetic moments. The hierarchical energy scales associated with trivalent lanthanides produce desirable properties for e.g., molecular magnetism, quantum materials, and quantum transduction. Here, we show that this traditional ionic paradigm breaks down for praseodymium in the 4+ oxidation state. Synthetic, spectroscopic, and theoretical tools deployed on several solid-state Pr4+ oxides uncover the unusual participation of 4f orbitals in bonding and the anomalous hybridization of the 4f1 configuration with ligand valence electrons, analogous to transition metals. The resulting competition between crystal-field and spin-orbit-coupling interactions fundamentally transforms the spin-orbital magnetism of Pr4+, which departs from the Jeff =1/2 limit and resembles that of high-valent actinides. Our results show that Pr4+ ions are in a class on their own, where the hierarchy of single-ion energy scales can be tailored to explore new correlated phenomena in quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10401v1-abstract-full').style.display = 'none'; document.getElementById('2212.10401v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, and SI (47 pages)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.16711">arXiv:2211.16711</a> <span> [<a href="https://arxiv.org/pdf/2211.16711">pdf</a>, <a href="https://arxiv.org/format/2211.16711">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.L041202">10.1103/PhysRevB.108.L041202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing temperature evolution of the Dirac band in ZrTe$_5$ via magneto-infrared spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yuxuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+T">Tianhao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+L">Luojia Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Q">Qiang Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+H">Haidong Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Z">Zhigang Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.16711v2-abstract-short" style="display: inline;"> We report the temperature evolution of the Dirac band in semiconducting zirconium pentatelluride (ZrTe$_5$) using magneto-infrared spectroscopy. We find that the band gap is temperature independent at low temperatures and increases with temperature at elevated temperatures. Although such an observation seems to support a weak topological insulator phase at all temperatures and defy the previously… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16711v2-abstract-full').style.display = 'inline'; document.getElementById('2211.16711v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.16711v2-abstract-full" style="display: none;"> We report the temperature evolution of the Dirac band in semiconducting zirconium pentatelluride (ZrTe$_5$) using magneto-infrared spectroscopy. We find that the band gap is temperature independent at low temperatures and increases with temperature at elevated temperatures. Although such an observation seems to support a weak topological insulator phase at all temperatures and defy the previously reported topological phase transition (TPT) at an intermediate temperature in ZrTe$_5$, we show that it is also possible to explain the observation by considering the effect of conduction-valence band mixing and band inversion with a strong topological insulator phase at low temperatures. Our work provides an alternative picture of the band gap evolution across TPT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16711v2-abstract-full').style.display = 'none'; document.getElementById('2211.16711v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, L041202 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07685">arXiv:2207.07685</a> <span> [<a href="https://arxiv.org/pdf/2207.07685">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Energy gap of topological surface states in proximity to a magnetic insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jiashu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+T">Tianyi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Z">Zhan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Bermejo-Ortiz%2C+J">Joaquin Bermejo-Ortiz</a>, <a href="/search/cond-mat?searchtype=author&query=Bac%2C+S">Seul-Ki Bac</a>, <a href="/search/cond-mat?searchtype=author&query=Trinh%2C+H">Hoai Trinh</a>, <a href="/search/cond-mat?searchtype=author&query=Zhukovskyi%2C+M">Maksym Zhukovskyi</a>, <a href="/search/cond-mat?searchtype=author&query=Orlova%2C+T">Tatyana Orlova</a>, <a href="/search/cond-mat?searchtype=author&query=Ambaye%2C+H">Haile Ambaye</a>, <a href="/search/cond-mat?searchtype=author&query=Keum%2C+J">Jong Keum</a>, <a href="/search/cond-mat?searchtype=author&query=de+Vaulchier%2C+L">Louis-Anne de Vaulchier</a>, <a href="/search/cond-mat?searchtype=author&query=Guldner%2C+Y">Yves Guldner</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Lauter%2C+V">Valeria Lauter</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xinyu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Assaf%2C+B+A">Badih A. Assaf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07685v2-abstract-short" style="display: inline;"> Topological surface-states can acquire an energy gap when time-reversal symmetry is broken by interfacing with a magnetic insulator. This gap has yet to be measured. Such topological-magnetic insulator heterostructures can host a quantized anomalous Hall effect and can allow the control of the magnetic state of the insulator in a spintronic device. In this work, we observe the energy gap of topolo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07685v2-abstract-full').style.display = 'inline'; document.getElementById('2207.07685v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07685v2-abstract-full" style="display: none;"> Topological surface-states can acquire an energy gap when time-reversal symmetry is broken by interfacing with a magnetic insulator. This gap has yet to be measured. Such topological-magnetic insulator heterostructures can host a quantized anomalous Hall effect and can allow the control of the magnetic state of the insulator in a spintronic device. In this work, we observe the energy gap of topological surface-states in proximity to a magnetic insulator using magnetooptical Landau level spectroscopy. We measure Pb1-xSnxSe/EuSe heterostructures grown by molecular beam epitaxy exhibiting a record mobility and low Fermi energy. Through temperature dependent measurements and theoretical calculations, we show this gap is likely due to quantum confinement and conclude that the magnetic proximity effect is weak in this system. This weakness is disadvantageous for the realization of the quantum anomalous Hall effect, but favorable for spintronic devices which require the preservation of spin-momentum locking at the Fermi level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07685v2-abstract-full').style.display = 'none'; document.getElementById('2207.07685v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10.1038/s42005-023-01327-5</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.06022">arXiv:2201.06022</a> <span> [<a href="https://arxiv.org/pdf/2201.06022">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-022-01364-5">10.1038/s41563-022-01364-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological Lifshitz transition and one-dimensional Weyl mode in HfTe5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+W">Wenbin Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Z">Zeping Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+Y">Yuhan Du</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+F">Fang Qin</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+X">Xianghao Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+B">Binglin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Y">Yuanji Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+Z">Zhongbo Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">Hai-Zhou Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+J">Junhao Chu</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+X">Xiang Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.06022v2-abstract-short" style="display: inline;"> Landau band crossings typically stem from the intra-band evolution of electronic states in magnetic fields and enhance the interaction effect in their vicinity. Here in the extreme quantum limit of topological insulator HfTe5, we report the observation of a topological Lifshitz transition from inter-band Landau level crossings using magneto-infrared spectroscopy. By tracking the Landau level trans… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06022v2-abstract-full').style.display = 'inline'; document.getElementById('2201.06022v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.06022v2-abstract-full" style="display: none;"> Landau band crossings typically stem from the intra-band evolution of electronic states in magnetic fields and enhance the interaction effect in their vicinity. Here in the extreme quantum limit of topological insulator HfTe5, we report the observation of a topological Lifshitz transition from inter-band Landau level crossings using magneto-infrared spectroscopy. By tracking the Landau level transitions, we demonstrate that band inversion drives the zeroth Landau bands to cross with each other after 4.5 T and forms one-dimensional Weyl mode with fundamental gap persistently closed. The unusual reduction of the zeroth Landau level transition activity suggests a topological Lifshitz transition at 21 T which shifts the Weyl mode close to Fermi level. As a result, a broad and asymmetric absorption feature emerges due to the Pauli blocking effect in one dimension, along with a distinctive negative magneto-resistivity. Our results provide a strategy for realizing one-dimensional Weyl quasiparticles in bulk crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06022v2-abstract-full').style.display = 'none'; document.getElementById('2201.06022v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 22,84-91 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.01938">arXiv:2201.01938</a> <span> [<a href="https://arxiv.org/pdf/2201.01938">pdf</a>, <a href="https://arxiv.org/format/2201.01938">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-33560-x">10.1038/s41467-022-33560-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant $g$-factors and fully spin-polarized states in metamorphic short-period InAsSb/InSb superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yuxuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Ermolaev%2C+M">Maksim Ermolaev</a>, <a href="/search/cond-mat?searchtype=author&query=Kipshidze%2C+G">Gela Kipshidze</a>, <a href="/search/cond-mat?searchtype=author&query=Moon%2C+S">Seongphill Moon</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Z">Zhigang Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Suchalkin%2C+S">Sergey Suchalkin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.01938v2-abstract-short" style="display: inline;"> Realizing a large Land茅 $g$-factor of electrons in solid-state materials has long been thought of as a rewarding task as it can trigger abundant immediate applications in spintronics and quantum computing. Here, by using metamorphic InAsSb/InSb superlattices (SLs), we demonstrate an unprecedented high value of $g\approx 104$, twice larger than that in bulk InSb, and fully spin-polarized states at… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01938v2-abstract-full').style.display = 'inline'; document.getElementById('2201.01938v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.01938v2-abstract-full" style="display: none;"> Realizing a large Land茅 $g$-factor of electrons in solid-state materials has long been thought of as a rewarding task as it can trigger abundant immediate applications in spintronics and quantum computing. Here, by using metamorphic InAsSb/InSb superlattices (SLs), we demonstrate an unprecedented high value of $g\approx 104$, twice larger than that in bulk InSb, and fully spin-polarized states at low magnetic fields. In addition, we show that the $g$-factor can be tuned on demand from 20 to 110 via varying the SL period. The key ingredients of such a wide tunability are the wavefunction mixing and overlap between the electron and hole states, which have drawn little attention in prior studies. Our work not only establishes metamorphic InAsSb/InSb as a promising and competitive material platform for future quantum devices but also provides a new route toward $g$-factor engineering in semiconductor structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01938v2-abstract-full').style.display = 'none'; document.getElementById('2201.01938v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 13, 5960 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.06182">arXiv:2111.06182</a> <span> [<a href="https://arxiv.org/pdf/2111.06182">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Weyl Fermion Magneto-Electrodynamics and Ultra-low Field Quantum Limit in TaAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lu%2C+Z">Zhengguang Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Hollister%2C+P">Patrick Hollister</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Moon%2C+S">Seongphill Moon</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">Eric D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">Filip Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Ju%2C+L">Long Ju</a>, <a href="/search/cond-mat?searchtype=author&query=Ramshaw%2C+B+J">B. J. Ramshaw</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.06182v1-abstract-short" style="display: inline;"> Topological semimetals are predicted to exhibit unconventional electrodynamics, but a central experimental challenge is singling out the contributions from the topological bands. TaAs is the prototypical example, where 24 Weyl points and 8 trivial Fermi surfaces make the interpretation of any experiment in terms of band topology ambiguous. We report magneto-infrared reflection spectroscopy measure… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06182v1-abstract-full').style.display = 'inline'; document.getElementById('2111.06182v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.06182v1-abstract-full" style="display: none;"> Topological semimetals are predicted to exhibit unconventional electrodynamics, but a central experimental challenge is singling out the contributions from the topological bands. TaAs is the prototypical example, where 24 Weyl points and 8 trivial Fermi surfaces make the interpretation of any experiment in terms of band topology ambiguous. We report magneto-infrared reflection spectroscopy measurements on TaAs. We observed sharp inter-Landau level transitions from a single pocket of Weyl Fermions in magnetic fields as low as 0.4 tesla. We determine the W2 Weyl point to be 8.3 meV below the Fermi energy, corresponding to a quantum limit - the field required to reach the lowest LL - of 0.8 Tesla - unprecedentedly low for Weyl Fermions. LL spectroscopy allows us to isolate these Weyl Fermions from all other carriers in TaAs and our result provides a new way for directly exploring the more exotic quantum phenomena in Weyl semimetals, such as the chiral anomaly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06182v1-abstract-full').style.display = 'none'; document.getElementById('2111.06182v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.11619">arXiv:2108.11619</a> <span> [<a href="https://arxiv.org/pdf/2108.11619">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Coherent strong-coupling of terahertz magnons and phonons in a Van der Waals antiferromagnetic insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Bostr%C3%B6m%2C+E+V">Emil Vinas Bostr枚m</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+J">Jun Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Suri%2C+N">Nishchay Suri</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Q">Qianni Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Chong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+F">Fangliang Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Hwangbo%2C+K">Kyle Hwangbo</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+J">Jiun-Haw Chu</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+D">Di Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Rubio%2C+A">Angel Rubio</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xiaodong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.11619v1-abstract-short" style="display: inline;"> Emergent cooperative motions of individual degrees of freedom, i.e. collective excitations, govern the low-energy response of system ground states under external stimulations and play essential roles for understanding many-body phenomena in low-dimensional materials. The hybridization of distinct collective modes provides a route towards coherent manipulation of coupled degrees of freedom and quan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.11619v1-abstract-full').style.display = 'inline'; document.getElementById('2108.11619v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.11619v1-abstract-full" style="display: none;"> Emergent cooperative motions of individual degrees of freedom, i.e. collective excitations, govern the low-energy response of system ground states under external stimulations and play essential roles for understanding many-body phenomena in low-dimensional materials. The hybridization of distinct collective modes provides a route towards coherent manipulation of coupled degrees of freedom and quantum phases. In magnets, strong coupling between collective spin and lattice excitations, i.e., magnons and phonons, can lead to coherent quasi-particle magnon polarons. Here, we report the direct observation of a series of terahertz magnon polarons in a layered zigzag antiferromagnet FePS3 via far-infrared (FIR) transmission measurements. The characteristic avoided-crossing behavior is clearly seen as the magnon-phonon detuning is continuously changed via Zeeman shift of the magnon mode. The coupling strength g is giant, achieving 120 GHz (0.5 meV), the largest value reported so far. Such a strong coupling leads to a large ratio of g to the resonance frequency (g/蠅) of 4.5%, and a value of 29 in cooperativity (g^2/纬_{ph}纬_{mag}). Experimental results are well reproduced by first-principle calculations, where the strong coupling is identified to arise from phonon-modulated anisotropic magnetic interactions due to spin-orbit coupling. These findings establish FePS3 as an ideal testbed for exploring hybridization-induced topological magnonics in two dimensions and the coherent control of spin and lattice degrees of freedom in the terahertz regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.11619v1-abstract-full').style.display = 'none'; document.getElementById('2108.11619v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.07497">arXiv:2103.07497</a> <span> [<a href="https://arxiv.org/pdf/2103.07497">pdf</a>, <a href="https://arxiv.org/format/2103.07497">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.165102">10.1103/PhysRevB.105.165102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic field tuning of crystal field levels and vibronic states in Spin-ice Ho$_2$Ti$_2$O$_7$ observed in far-infrared reflectometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Anand%2C+N">Naween Anand</a>, <a href="/search/cond-mat?searchtype=author&query=van+de+Burgt%2C+L+J">L. J. van de Burgt</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+Z">Zhengguang Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Holleman%2C+J">Jade Holleman</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+H">Haidong Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=McGill%2C+S">Steve McGill</a>, <a href="/search/cond-mat?searchtype=author&query=Beekman%2C+C">Christianne Beekman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.07497v2-abstract-short" style="display: inline;"> Low temperature optical spectroscopy in applied magnetic fields provides clear evidence of magnetoelastic coupling in the spin ice material Ho$_2$Ti$_2$O$_7$. In far-IR reflectometry measurements, we observe field dependent features around 30, 61, 72 and 78~meV, energies corresponding to crystal electronic field (CEF) doublets. The calculations of the crystal-field Hamiltonian model confirm that t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07497v2-abstract-full').style.display = 'inline'; document.getElementById('2103.07497v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.07497v2-abstract-full" style="display: none;"> Low temperature optical spectroscopy in applied magnetic fields provides clear evidence of magnetoelastic coupling in the spin ice material Ho$_2$Ti$_2$O$_7$. In far-IR reflectometry measurements, we observe field dependent features around 30, 61, 72 and 78~meV, energies corresponding to crystal electronic field (CEF) doublets. The calculations of the crystal-field Hamiltonian model confirm that the observed features in IR spectra are consistent with magnetic-dipole-allowed excitations from the ground state to higher $^5$I$_8$ CEF levels. We present the CEF parameters that best describe our field-dependent IR reflectivity measurements. Additionally, we identify a weak field-dependent shoulder near one of the CEF doublets. This indicates that this level is split even in zero-field, which we associate with a vibronic bound state. Modeling of the observed splitting shows that the phonon resides at slightly lower energy compared to the CEF level that it couples to, which is in contrast with previously published inelastic neutron measurements. The magnetic field dependence of the vibronic state shows a gradual decoupling of the phonon with the CEF level as it shifts. This approach should work in pyrochlores and other systems that have magnetic dipole transitions in the IR spectroscopic range, which can elucidate the presence and the ability to tune the nature of vibronic states in a wide variety of materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07497v2-abstract-full').style.display = 'none'; document.getElementById('2103.07497v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevB.105.2022.165102 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.08713">arXiv:2102.08713</a> <span> [<a href="https://arxiv.org/pdf/2102.08713">pdf</a>, <a href="https://arxiv.org/format/2102.08713">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Spectroscopic analysis of vibronic relaxation pathways in molecular spin qubit $[$Ho(W$_5$O$_{18}$)$_2]^{9-}$: sparse spectra are key </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Blockmon%2C+A+L">Avery L. Blockmon</a>, <a href="/search/cond-mat?searchtype=author&query=Ullah%2C+A">Aman Ullah</a>, <a href="/search/cond-mat?searchtype=author&query=Hughey%2C+K+D">Kendall D. Hughey</a>, <a href="/search/cond-mat?searchtype=author&query=Duan%2C+Y">Yan Duan</a>, <a href="/search/cond-mat?searchtype=author&query=O%27Neal%2C+K+R">Kenneth R. O'Neal</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Baldov%C3%AD%2C+J+J">Jos茅 J. Baldov铆</a>, <a href="/search/cond-mat?searchtype=author&query=Arag%C3%B3%2C+J">Juan Arag贸</a>, <a href="/search/cond-mat?searchtype=author&query=Gaita-Ari%C3%B1o%2C+A">Alejandro Gaita-Ari帽o</a>, <a href="/search/cond-mat?searchtype=author&query=Coronado%2C+E">Eugenio Coronado</a>, <a href="/search/cond-mat?searchtype=author&query=Musfeldt%2C+J+L">Janice L. Musfeldt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.08713v1-abstract-short" style="display: inline;"> Molecular vibrations play a key role in magnetic relaxation processes of molecular spin qubits as they couple to spin states, leading to the loss of quantum information. Direct experimental determination of vibronic coupling is crucial to understand and control the spin dynamics of these nano-objects, which represent the limit of miniaturization for quantum devices. Herein, we measure the vibratio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.08713v1-abstract-full').style.display = 'inline'; document.getElementById('2102.08713v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.08713v1-abstract-full" style="display: none;"> Molecular vibrations play a key role in magnetic relaxation processes of molecular spin qubits as they couple to spin states, leading to the loss of quantum information. Direct experimental determination of vibronic coupling is crucial to understand and control the spin dynamics of these nano-objects, which represent the limit of miniaturization for quantum devices. Herein, we measure the vibrational properties of the molecular spin qubit $[$Ho(W$_5$O$_{18}$)$_2]^{9-}$ by means of magneto-infrared spectroscopy. Our results allow us to unravel the vibrational decoherence pathways in combination with $ab$ $initio$ calculations including vibronic coupling. We observe field-induced spectral changes near 63 and 370 cm$^{-1}$ that are modeled in terms of $f$-manifold crystal field excitations activated by odd-symmetry vibrations. The overall extent of vibronic coupling in this system is limited by a transparency window in the phonon density of states that acts to keep the intramolecular vibrations and $M_J$ levels apart. These findings advance the understanding of vibronic coupling in molecular magnets, place significant constraints on the pattern of crystal field levels in these systems, and provide a strategy for designing molecular spin qubits with improved coherence lifetimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.08713v1-abstract-full').style.display = 'none'; document.getElementById('2102.08713v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.09178">arXiv:2012.09178</a> <span> [<a href="https://arxiv.org/pdf/2012.09178">pdf</a>, <a href="https://arxiv.org/format/2012.09178">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.214410">10.1103/PhysRevB.102.214410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Magnetoelastic Distortion of Multiferroic BiFeO$_3$ in the Canted Antiferromagnetic State </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=R%C3%B5%C3%B5m%2C+T">Toomas R玫玫m</a>, <a href="/search/cond-mat?searchtype=author&query=Viirok%2C+J">Johan Viirok</a>, <a href="/search/cond-mat?searchtype=author&query=Peedu%2C+L">Laur Peedu</a>, <a href="/search/cond-mat?searchtype=author&query=Nagel%2C+U">Urmas Nagel</a>, <a href="/search/cond-mat?searchtype=author&query=Farkas%2C+D+G">Daniel G. Farkas</a>, <a href="/search/cond-mat?searchtype=author&query=Szaller%2C+D">David Szaller</a>, <a href="/search/cond-mat?searchtype=author&query=Kocsis%2C+V">Vilmos Kocsis</a>, <a href="/search/cond-mat?searchtype=author&query=Bord%C3%A1cs%2C+S">Sandor Bord谩cs</a>, <a href="/search/cond-mat?searchtype=author&query=K%C3%A9zsm%C3%A1rki%2C+I">Istvan K茅zsm谩rki</a>, <a href="/search/cond-mat?searchtype=author&query=Kamenskyi%2C+D+L">Dymtro L. Kamenskyi</a>, <a href="/search/cond-mat?searchtype=author&query=Engelkamp%2C+H">Hans Engelkamp</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mike Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Krzystek%2C+J">Jurek Krzystek</a>, <a href="/search/cond-mat?searchtype=author&query=Thirunavukkuarasu%2C+K">Komalavalli Thirunavukkuarasu</a>, <a href="/search/cond-mat?searchtype=author&query=Ozaki%2C+Y">Yasuko Ozaki</a>, <a href="/search/cond-mat?searchtype=author&query=Tomioka%2C+Y">Yasuhide Tomioka</a>, <a href="/search/cond-mat?searchtype=author&query=Ito%2C+T">Toshimitsu Ito</a>, <a href="/search/cond-mat?searchtype=author&query=Datta%2C+T">Trinanjan Datta</a>, <a href="/search/cond-mat?searchtype=author&query=Fishman%2C+R+S">Randy S. Fishman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.09178v1-abstract-short" style="display: inline;"> Using THz spectroscopy, we show that the spin-wave spectrum of multiferroic BiFeO$_3$ in its high-field canted antiferromagnetic state is well described by a spin model that violates rhombohedral symmetry. We demonstrate that the monoclinic distortion of the canted antiferromagnetic state is induced by the single-ion magnetoelastic coupling between the lattice and the two nearly anti-parallel spin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09178v1-abstract-full').style.display = 'inline'; document.getElementById('2012.09178v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.09178v1-abstract-full" style="display: none;"> Using THz spectroscopy, we show that the spin-wave spectrum of multiferroic BiFeO$_3$ in its high-field canted antiferromagnetic state is well described by a spin model that violates rhombohedral symmetry. We demonstrate that the monoclinic distortion of the canted antiferromagnetic state is induced by the single-ion magnetoelastic coupling between the lattice and the two nearly anti-parallel spins. The revised spin model for BiFeO$_3$ contains two new single-ion anisotropy terms that violate rhombohedral symmetry and depend on the direction of the magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09178v1-abstract-full').style.display = 'none'; document.getElementById('2012.09178v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages (main & supplementary), 2 figures (main article), 15 figures (supplementary material)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 214410 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.01244">arXiv:2004.01244</a> <span> [<a href="https://arxiv.org/pdf/2004.01244">pdf</a>, <a href="https://arxiv.org/format/2004.01244">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.0c01447">10.1021/acs.nanolett.0c01447 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron-Hole Asymmetry of Surface States in Topological Insulator Sb2Te3 Thin Films Revealed by Magneto-Infrared Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yuxuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Asmar%2C+M+M">Mahmoud M. Asmar</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+X">Xingyue Han</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhalo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Salehi%2C+M">Maryam Salehi</a>, <a href="/search/cond-mat?searchtype=author&query=Oh%2C+S">Seongshik Oh</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Z">Zhigang Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Tse%2C+W">Wang-Kong Tse</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+L">Liang Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.01244v2-abstract-short" style="display: inline;"> When surface states (SSs) form in topological insulators (TIs), they inherit the properties of bulk bands, including the electron-hole (e-h) asymmetry but with much more profound impacts. Here, via combining magneto-infrared spectroscopy with theoretical analysis, we show that e-h asymmetry significantly modifies the SS electronic structures when interplaying with the quantum confinement effect. C… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.01244v2-abstract-full').style.display = 'inline'; document.getElementById('2004.01244v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.01244v2-abstract-full" style="display: none;"> When surface states (SSs) form in topological insulators (TIs), they inherit the properties of bulk bands, including the electron-hole (e-h) asymmetry but with much more profound impacts. Here, via combining magneto-infrared spectroscopy with theoretical analysis, we show that e-h asymmetry significantly modifies the SS electronic structures when interplaying with the quantum confinement effect. Compared to the case without e-h asymmetry, the SSs now bear not only a band asymmetry as that in the bulk but also a shift of the Dirac point relative to the bulk bands and a reduction of the hybridization gap up to 70%. Our results signify the importance of e-h asymmetry in band engineering of TIs in the thin film limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.01244v2-abstract-full').style.display = 'none'; document.getElementById('2004.01244v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages,6 figures, including supporting information. Submission version. Added two references and revised acknowledgment. Accepted in Nano Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 20 (6), 4588-4593 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.13500">arXiv:2003.13500</a> <span> [<a href="https://arxiv.org/pdf/2003.13500">pdf</a>, <a href="https://arxiv.org/format/2003.13500">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.046403">10.1103/PhysRevLett.125.046403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unraveling the Topological Phase of ZrTe$_5$ via Magneto-infrared Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">J. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+T">T. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Dun%2C+Z+L">Z. L. Dun</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+X+S">X. S. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Mourigal%2C+M">M. Mourigal</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+W">W. Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">M. Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">D. Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Z">Z. Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.13500v2-abstract-short" style="display: inline;"> For materials near the phase boundary between weak and strong topological insulators (TIs), their band topology depends on the band alignment, with the inverted (normal) band corresponding to the strong (weak) TI phase. Here, taking the anisotropic transition-metal pentatelluride ZrTe$_5$ as an example, we show that the band inversion manifests itself as a second extremum (band gap) in the layer s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13500v2-abstract-full').style.display = 'inline'; document.getElementById('2003.13500v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.13500v2-abstract-full" style="display: none;"> For materials near the phase boundary between weak and strong topological insulators (TIs), their band topology depends on the band alignment, with the inverted (normal) band corresponding to the strong (weak) TI phase. Here, taking the anisotropic transition-metal pentatelluride ZrTe$_5$ as an example, we show that the band inversion manifests itself as a second extremum (band gap) in the layer stacking direction, which can be probed experimentally via magneto-infrared spectroscopy. Specifically, we find that the band anisotropy of ZrTe$_5$ features a slow dispersion in the layer stacking direction, along with an additional set of optical transitions from a band gap away from the Brillouin zone center. Our work identifies ZrTe5 as a strong TI at liquid helium temperature and provides a new perspective in determining band inversion in layered topological materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13500v2-abstract-full').style.display = 'none'; document.getElementById('2003.13500v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">with supplemental materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 046403 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.12293">arXiv:1909.12293</a> <span> [<a href="https://arxiv.org/pdf/1909.12293">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5128634">10.1063/1.5128634 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dirac energy spectrum and inverted band gap in metamorphic InAsSb/InSb superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Suchalkin%2C+S">Sergey Suchalkin</a>, <a href="/search/cond-mat?searchtype=author&query=Ermolaev%2C+M">Maksim Ermolaev</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Kipshidze%2C+G">Gela Kipshidze</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Moon%2C+S">Seongphill Moon</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Z">Zhigang Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yuxuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Svensson%2C+S+P">Stefan P. Svensson</a>, <a href="/search/cond-mat?searchtype=author&query=Sarney%2C+W+L">Wendy L. Sarney</a>, <a href="/search/cond-mat?searchtype=author&query=Belenky%2C+G">Gregory Belenky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.12293v1-abstract-short" style="display: inline;"> A Dirac-type energy spectrum was demonstrated in gapless ultra-short-period metamorphic InAsSb/InSb superlattices by angle-resolved photoemission spectroscopy (ARPES_ measurements. The Fermi velocity value 7.4x10^5 m/s in a gapless superlattice with a period of 6.2nm is in a good agreement with the results of magneto-absorption experiments. An "inverted" bandgap opens in the center of the Brilloui… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.12293v1-abstract-full').style.display = 'inline'; document.getElementById('1909.12293v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.12293v1-abstract-full" style="display: none;"> A Dirac-type energy spectrum was demonstrated in gapless ultra-short-period metamorphic InAsSb/InSb superlattices by angle-resolved photoemission spectroscopy (ARPES_ measurements. The Fermi velocity value 7.4x10^5 m/s in a gapless superlattice with a period of 6.2nm is in a good agreement with the results of magneto-absorption experiments. An "inverted" bandgap opens in the center of the Brillouin zone at higher temperatures and in the SL with a larger period. The ARPES data indicate the presence of a surface electron accumulation layer <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.12293v1-abstract-full').style.display = 'none'; document.getElementById('1909.12293v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.09392">arXiv:1907.09392</a> <span> [<a href="https://arxiv.org/pdf/1907.09392">pdf</a>, <a href="https://arxiv.org/format/1907.09392">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-019-0184-x">10.1038/s41535-019-0184-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-lattice and electron-phonon coupling in 3$d$/5$d$ hybrid Sr$_3$NiIrO$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=O%27Neal%2C+K+R">Kenneth R. O'Neal</a>, <a href="/search/cond-mat?searchtype=author&query=Paul%2C+A">Arpita Paul</a>, <a href="/search/cond-mat?searchtype=author&query=al-Wahish%2C+A">Amal al-Wahish</a>, <a href="/search/cond-mat?searchtype=author&query=Hughey%2C+K+D">Kendall D. Hughey</a>, <a href="/search/cond-mat?searchtype=author&query=Blockmon%2C+A+L">Avery L. Blockmon</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+X">Xuan Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Cheong%2C+S">Sang-Wook Cheong</a>, <a href="/search/cond-mat?searchtype=author&query=Zapf%2C+V+S">Vivien S. Zapf</a>, <a href="/search/cond-mat?searchtype=author&query=Topping%2C+C+V">Craig V. Topping</a>, <a href="/search/cond-mat?searchtype=author&query=Singleton%2C+J">John Singleton</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhalo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Birol%2C+T">Turan Birol</a>, <a href="/search/cond-mat?searchtype=author&query=Musfeldt%2C+J+L">Janice L. Musfeldt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.09392v1-abstract-short" style="display: inline;"> While 3$d$-containing materials display strong electron correlations, narrow band widths, and robust magnetism, 5$d$ systems are recognized for strong spin-orbit coupling, increased hybridization, and more diffuse orbitals. Combining these properties leads to novel behavior. Sr$_3$NiIrO$_6$, for example, displays complex magnetism and ultra-high coercive fields - up to an incredible 55~T. Here, we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.09392v1-abstract-full').style.display = 'inline'; document.getElementById('1907.09392v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.09392v1-abstract-full" style="display: none;"> While 3$d$-containing materials display strong electron correlations, narrow band widths, and robust magnetism, 5$d$ systems are recognized for strong spin-orbit coupling, increased hybridization, and more diffuse orbitals. Combining these properties leads to novel behavior. Sr$_3$NiIrO$_6$, for example, displays complex magnetism and ultra-high coercive fields - up to an incredible 55~T. Here, we combine infrared and optical spectroscopies with high-field magnetization and first principles calculations to explore the fundamental excitations of the lattice and related coupling processes including spin-lattice and electron-phonon mechanisms. Magneto-infrared spectroscopy reveals spin-lattice coupling of three phonons that modulate the Ir environment to reduce the energy required to modify the spin arrangement. While these modes primarily affect exchange within the chains, analysis also uncovers important inter-chain motion. This provides a mechanism by which inter-chain interactions can occur in the developing model for ultra-high coercivity. At the same time, analysis of the on-site Ir$^{4+}$ excitations reveals vibronic coupling and extremely large crystal field parameters that lead to a t$_{2g}$-derived low-spin state for Ir. These findings highlight the spin-charge-lattice entanglement in Sr$_3$NiIrO$_6$ and suggest that similar interactions may take place in other 3$d$/5$d$ hybrids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.09392v1-abstract-full').style.display = 'none'; document.getElementById('1907.09392v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials 4, 48 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.02056">arXiv:1509.02056</a> <span> [<a href="https://arxiv.org/pdf/1509.02056">pdf</a>, <a href="https://arxiv.org/ps/1509.02056">ps</a>, <a href="https://arxiv.org/format/1509.02056">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.241113">10.1103/PhysRevB.92.241113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ESR modes in a Strong-Leg Ladder in the Tomonaga-Luttinger Liquid Phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">M. Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Maksymenko%2C+M">M. Maksymenko</a>, <a href="/search/cond-mat?searchtype=author&query=Wosnitza%2C+J">J. Wosnitza</a>, <a href="/search/cond-mat?searchtype=author&query=Honecker%2C+A">A. Honecker</a>, <a href="/search/cond-mat?searchtype=author&query=Landee%2C+C+P">C. P. Landee</a>, <a href="/search/cond-mat?searchtype=author&query=Turnbull%2C+M+M">M. M. Turnbull</a>, <a href="/search/cond-mat?searchtype=author&query=Furuya%2C+S+C">S. C. Furuya</a>, <a href="/search/cond-mat?searchtype=author&query=Giamarchi%2C+T">T. Giamarchi</a>, <a href="/search/cond-mat?searchtype=author&query=Zvyagin%2C+S+A">S. A. Zvyagin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.02056v2-abstract-short" style="display: inline;"> Magnetic excitations in the strong-leg quantum spin ladder compound (C$_7$H$_{10}$N)$_2$CuBr$_4$ (known as DIMPY) in the field-induced Tomonaga-Luttinger spin liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual non-linear frequency-field dependence is revealed experimentally. Using a combination of analytic and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.02056v2-abstract-full').style.display = 'inline'; document.getElementById('1509.02056v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.02056v2-abstract-full" style="display: none;"> Magnetic excitations in the strong-leg quantum spin ladder compound (C$_7$H$_{10}$N)$_2$CuBr$_4$ (known as DIMPY) in the field-induced Tomonaga-Luttinger spin liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual non-linear frequency-field dependence is revealed experimentally. Using a combination of analytic and exact diagonalization methods, we compute the dynamical structure factor and identify this mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder and owe its ESR observability to the uniform Dzyaloshinskii-Moriya interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.02056v2-abstract-full').style.display = 'none'; document.getElementById('1509.02056v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 241113 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.01022">arXiv:1509.01022</a> <span> [<a href="https://arxiv.org/pdf/1509.01022">pdf</a>, <a href="https://arxiv.org/ps/1509.01022">ps</a>, <a href="https://arxiv.org/format/1509.01022">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.134416">10.1103/PhysRevB.93.134416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron Spin Resonance in a Spin-1/2 Heisenberg Strong-rung Ladder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ponomaryov%2C+A+N">A. N. Ponomaryov</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">M. Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Zviagina%2C+L">L. Zviagina</a>, <a href="/search/cond-mat?searchtype=author&query=Wosnitza%2C+J">J. Wosnitza</a>, <a href="/search/cond-mat?searchtype=author&query=Povarov%2C+K+Y">K. Yu. Povarov</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+F">F. Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Zheludev%2C+A">A. Zheludev</a>, <a href="/search/cond-mat?searchtype=author&query=Landee%2C+C">C. Landee</a>, <a href="/search/cond-mat?searchtype=author&query=%C4%8Ci%C5%BEm%C3%A1r%2C+E">E. 膶i啪m谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Zvyagin%2C+A+A">A. A. Zvyagin</a>, <a href="/search/cond-mat?searchtype=author&query=Zvyagin%2C+S+A">S. A. Zvyagin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.01022v3-abstract-short" style="display: inline;"> Cu(C$_8$H$_6$N$_2$)Cl$_2$, a strong-rung spin-1/2 Heisenberg ladder compound, is probed by means of electron spin resonance (ESR) spectroscopy in the field-induced gapless phase above $H_{c1}$. The temperature dependence of the ESR linewidth is analyzed in the quantum field theory framework, suggesting that the anisotropy of magnetic interactions plays a crucial role, determining the peculiar low-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.01022v3-abstract-full').style.display = 'inline'; document.getElementById('1509.01022v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.01022v3-abstract-full" style="display: none;"> Cu(C$_8$H$_6$N$_2$)Cl$_2$, a strong-rung spin-1/2 Heisenberg ladder compound, is probed by means of electron spin resonance (ESR) spectroscopy in the field-induced gapless phase above $H_{c1}$. The temperature dependence of the ESR linewidth is analyzed in the quantum field theory framework, suggesting that the anisotropy of magnetic interactions plays a crucial role, determining the peculiar low-temperature ESR linewidth behavior. In particular, it is argued that the uniform Dzyaloshinskii-Moriya interaction (which is allowed on the bonds along the ladder legs) can be the source of this behavior in Cu(C$_8$H$_6$N$_2$)Cl$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.01022v3-abstract-full').style.display = 'none'; document.getElementById('1509.01022v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 134416 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.7319">arXiv:1404.7319</a> <span> [<a href="https://arxiv.org/pdf/1404.7319">pdf</a>, <a href="https://arxiv.org/ps/1404.7319">ps</a>, <a href="https://arxiv.org/format/1404.7319">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.113.157205">10.1103/PhysRevLett.113.157205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Establishing the fundamental magnetic interactions in the chiral skyrmionic Mott insulator Cu2OSeO3 by terahertz electron spin resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">M. Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Romh%C3%A1nyi%2C+J">J. Romh谩nyi</a>, <a href="/search/cond-mat?searchtype=author&query=Belesi%2C+M">M. Belesi</a>, <a href="/search/cond-mat?searchtype=author&query=Berger%2C+H">H. Berger</a>, <a href="/search/cond-mat?searchtype=author&query=Ansermet%2C+J+-">J. -Ph. Ansermet</a>, <a href="/search/cond-mat?searchtype=author&query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&query=Wosnitza%2C+J">J. Wosnitza</a>, <a href="/search/cond-mat?searchtype=author&query=Zvyagin%2C+S+A">S. A. Zvyagin</a>, <a href="/search/cond-mat?searchtype=author&query=Rousochatzakis%2C+I">I. Rousochatzakis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.7319v2-abstract-short" style="display: inline;"> The recent discovery of skyrmions in Cu$_2$OSeO$_3$ has established a new platform to create and manipulate skyrmionic spin textures. We use high-field electron spin resonance (ESR) spectroscopy combining a terahertz free electron laser and pulsed magnetic fields up to 64 T to probe and quantify its microscopic spin-spin interactions. Besides providing direct access to the long-wavelength Goldston… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.7319v2-abstract-full').style.display = 'inline'; document.getElementById('1404.7319v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.7319v2-abstract-full" style="display: none;"> The recent discovery of skyrmions in Cu$_2$OSeO$_3$ has established a new platform to create and manipulate skyrmionic spin textures. We use high-field electron spin resonance (ESR) spectroscopy combining a terahertz free electron laser and pulsed magnetic fields up to 64 T to probe and quantify its microscopic spin-spin interactions. Besides providing direct access to the long-wavelength Goldstone mode, this technique probes also the high-energy part of the excitation spectrum which is inaccessible by standard low-frequency ESR. Fitting the behavior of the observed modes in magnetic field to a theoretical framework establishes experimentally that the fundamental magnetic building blocks of this skyrmionic magnet are rigid, highly entangled and weakly coupled tetrahedra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.7319v2-abstract-full').style.display = 'none'; document.getElementById('1404.7319v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 113, 157205 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.1877">arXiv:1402.1877</a> <span> [<a href="https://arxiv.org/pdf/1402.1877">pdf</a>, <a href="https://arxiv.org/ps/1402.1877">ps</a>, <a href="https://arxiv.org/format/1402.1877">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.174406">10.1103/PhysRevB.89.174406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-field spectroscopy of singlet-triplet transitions in the spin-dimer systems Sr3Cr2O8 and Ba3Cr2O8 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhe Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Kamenskyi%2C+D">D. Kamenskyi</a>, <a href="/search/cond-mat?searchtype=author&query=C%C3%A9pas%2C+O">O. C茅pas</a>, <a href="/search/cond-mat?searchtype=author&query=Schmidt%2C+M">M. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&query=Quintero-Castro%2C+D+L">D. L. Quintero-Castro</a>, <a href="/search/cond-mat?searchtype=author&query=Islam%2C+A+T+M+N">A. T. M. N. Islam</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+B">B. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Aczel%2C+A+A">A. A. Aczel</a>, <a href="/search/cond-mat?searchtype=author&query=Dabkowska%2C+H+A">H. A. Dabkowska</a>, <a href="/search/cond-mat?searchtype=author&query=Dabkowski%2C+A+B">A. B. Dabkowski</a>, <a href="/search/cond-mat?searchtype=author&query=Luke%2C+G+M">G. M. Luke</a>, <a href="/search/cond-mat?searchtype=author&query=Wan%2C+Y">Yuan Wan</a>, <a href="/search/cond-mat?searchtype=author&query=Loidl%2C+A">A. Loidl</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">M. Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Wosnitza%2C+J">J. Wosnitza</a>, <a href="/search/cond-mat?searchtype=author&query=Zvyagin%2C+S+A">S. A. Zvyagin</a>, <a href="/search/cond-mat?searchtype=author&query=Deisenhofer%2C+J">J. Deisenhofer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.1877v1-abstract-short" style="display: inline;"> Magnetic excitations in the isostructural spin-dimer systems Sr3Cr2O8 and Ba3Cr2O8 are probed by means of high-field electron spin resonance at sub-terahertz frequencies. Three types of magnetic modes were observed. One mode is gapless and corresponds to transitions within excited states, while two other sets of modes are gapped and correspond to transitions from the ground to the first excited st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.1877v1-abstract-full').style.display = 'inline'; document.getElementById('1402.1877v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.1877v1-abstract-full" style="display: none;"> Magnetic excitations in the isostructural spin-dimer systems Sr3Cr2O8 and Ba3Cr2O8 are probed by means of high-field electron spin resonance at sub-terahertz frequencies. Three types of magnetic modes were observed. One mode is gapless and corresponds to transitions within excited states, while two other sets of modes are gapped and correspond to transitions from the ground to the first excited states. The selection rules of the gapped modes are analyzed in terms of a dynamical Dzyaloshinskii-Moriya interaction, suggesting the presence of phonon-assisted effects in the low-temperature spin dynamics of Sr3Cr2O8 and Ba3Cr2O8 <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.1877v1-abstract-full').style.display = 'none'; document.getElementById('1402.1877v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, all comments are welcome and appreciated</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 89, 174406 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.6793">arXiv:1401.6793</a> <span> [<a href="https://arxiv.org/pdf/1401.6793">pdf</a>, <a href="https://arxiv.org/ps/1401.6793">ps</a>, <a href="https://arxiv.org/format/1401.6793">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.077206">10.1103/PhysRevLett.112.077206 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct determination of exchange parameters in Cs2CuBr4 and Cs2CuCl4: high-field ESR studies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zvyagin%2C+S+A">S. A. Zvyagin</a>, <a href="/search/cond-mat?searchtype=author&query=Kamenskyi%2C+D">D. Kamenskyi</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">M. Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Wosnitza%2C+J">J. Wosnitza</a>, <a href="/search/cond-mat?searchtype=author&query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/cond-mat?searchtype=author&query=Fujita%2C+T">T. Fujita</a>, <a href="/search/cond-mat?searchtype=author&query=Hagiwara%2C+M">M. Hagiwara</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+A+I">A. I. Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Soldatov%2C+T+A">T. A. Soldatov</a>, <a href="/search/cond-mat?searchtype=author&query=Shapiro%2C+A+Y">A. Ya. Shapiro</a>, <a href="/search/cond-mat?searchtype=author&query=Krzystek%2C+J">J. Krzystek</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+R">R. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Ryu%2C+H">H. Ryu</a>, <a href="/search/cond-mat?searchtype=author&query=Petrovic%2C+C">C. Petrovic</a>, <a href="/search/cond-mat?searchtype=author&query=Zhitomirsky%2C+M+E">M. E. Zhitomirsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.6793v2-abstract-short" style="display: inline;"> Spin-1/2 Heisenberg antiferromagnets Cs$_2$CuCl$_4$ and Cs$_2$CuBr$_4$ with distorted triangular-lattice structures are studied by means of electron spin resonance spectroscopy in magnetic fields up to the saturation field and above. In the magnetically saturated phase, quantum fluctuations are fully suppressed, and the spin dynamics is defined by ordinary magnons. This allows us to accurately des… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.6793v2-abstract-full').style.display = 'inline'; document.getElementById('1401.6793v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.6793v2-abstract-full" style="display: none;"> Spin-1/2 Heisenberg antiferromagnets Cs$_2$CuCl$_4$ and Cs$_2$CuBr$_4$ with distorted triangular-lattice structures are studied by means of electron spin resonance spectroscopy in magnetic fields up to the saturation field and above. In the magnetically saturated phase, quantum fluctuations are fully suppressed, and the spin dynamics is defined by ordinary magnons. This allows us to accurately describe the magnetic excitation spectra in both materials and, using the harmonic spin-wave theory, to determine their exchange parameters. The viability of the proposed method was proven by applying it to Cs$_2$CuCl$_4$, yielding $J/k_B=4.7(2)$ K, $J'/k_B=1.42(7)$ K [$J'/J\simeq 0.30$] and revealing good agreement with inelastic neutron-scattering results. For the isostructural Cs$_2$CuBr$_4$, we obtain $J/k_B=14.9(7)$ K, $J'/k_B=6.1(3)$ K, [$J'/J\simeq 0.41$], providing exact and conclusive information on the exchange couplings in this frustrated spin system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.6793v2-abstract-full').style.display = 'none'; document.getElementById('1401.6793v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Phys. Rev. Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 12, 077206 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.3887">arXiv:1306.3887</a> <span> [<a href="https://arxiv.org/pdf/1306.3887">pdf</a>, <a href="https://arxiv.org/ps/1306.3887">ps</a>, <a href="https://arxiv.org/format/1306.3887">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/17/11/113059">10.1088/1367-2630/17/11/113059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs$_2$CuBr$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zvyagin%2C+S+A">S. A. Zvyagin</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">M. Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Kamenskyi%2C+D">D. Kamenskyi</a>, <a href="/search/cond-mat?searchtype=author&query=Wosnitza%2C+J">J. Wosnitza</a>, <a href="/search/cond-mat?searchtype=author&query=Krzystek%2C+J">J. Krzystek</a>, <a href="/search/cond-mat?searchtype=author&query=Yoshizawa%2C+D">D. Yoshizawa</a>, <a href="/search/cond-mat?searchtype=author&query=Hagiwara%2C+M">M. Hagiwara</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+R">Rongwei Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Ryu%2C+H">Hyejin Ryu</a>, <a href="/search/cond-mat?searchtype=author&query=Petrovic%2C+C">C. Petrovic</a>, <a href="/search/cond-mat?searchtype=author&query=Zhitomirsky%2C+M+E">M. E. Zhitomirsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.3887v3-abstract-short" style="display: inline;"> We report on high-field electron spin resonance (ESR) studies of magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs$_2$CuBr$_4$. Frequency-field diagrams of ESR excitations are measured for different orientations of magnetic fields up to 25 T. We show that the substantial zero-field energy gap, $螖\approx9.5$ K, observed in the low-temperature excitation spectrum of Cs$_2$Cu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.3887v3-abstract-full').style.display = 'inline'; document.getElementById('1306.3887v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.3887v3-abstract-full" style="display: none;"> We report on high-field electron spin resonance (ESR) studies of magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs$_2$CuBr$_4$. Frequency-field diagrams of ESR excitations are measured for different orientations of magnetic fields up to 25 T. We show that the substantial zero-field energy gap, $螖\approx9.5$ K, observed in the low-temperature excitation spectrum of Cs$_2$CuBr$_4$ [Zvyagin $et~al.$, Phys. Rev. Lett. 112, 077206 (2014)], is present well above $T_N$. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even below $T_N$ the high-energy spin dynamics in Cs$_2$CuBr$_4$ is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.3887v3-abstract-full').style.display = 'none'; document.getElementById('1306.3887v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 17, 113059 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.6308">arXiv:1212.6308</a> <span> [<a href="https://arxiv.org/pdf/1212.6308">pdf</a>, <a href="https://arxiv.org/ps/1212.6308">ps</a>, <a href="https://arxiv.org/format/1212.6308">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> ESR of coupled spin-1/2 chains: unveiling zig-zag-type interchain correlations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Validov%2C+A+A">A. A. Validov</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">M. Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Wosnitza%2C+J">J. Wosnitza</a>, <a href="/search/cond-mat?searchtype=author&query=Zvyagin%2C+S+A">S. A. Zvyagin</a>, <a href="/search/cond-mat?searchtype=author&query=Turnbull%2C+M+M">M. M. Turnbull</a>, <a href="/search/cond-mat?searchtype=author&query=Landee%2C+C+P">C. P. Landee</a>, <a href="/search/cond-mat?searchtype=author&query=Teitel%27baum%2C+G+B">G. B. Teitel'baum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.6308v1-abstract-short" style="display: inline;"> By means of electron spin resonance investigations we revealed the crucial role of the interchain coupling in the spin dynamics of the spin-1/2 Heisenberg antiferromagnetic (AF) chain material copper-pyrazine-dinitrate, Cu(C$_4$H$_4$N$_2$)(NO$_3$)$_2$. We found that the dominating interchain interaction is of a zig-zag type. This interaction gives rise to geometrical frustration effects and strong… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.6308v1-abstract-full').style.display = 'inline'; document.getElementById('1212.6308v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.6308v1-abstract-full" style="display: none;"> By means of electron spin resonance investigations we revealed the crucial role of the interchain coupling in the spin dynamics of the spin-1/2 Heisenberg antiferromagnetic (AF) chain material copper-pyrazine-dinitrate, Cu(C$_4$H$_4$N$_2$)(NO$_3$)$_2$. We found that the dominating interchain interaction is of a zig-zag type. This interaction gives rise to geometrical frustration effects and strongly influences the character of AF ordering. Combining our experimental findings with the results of a quasiclassical approach we argue that at low temperatures the system orders in an incommensurate spiral state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.6308v1-abstract-full').style.display = 'none'; document.getElementById('1212.6308v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.5350">arXiv:1210.5350</a> <span> [<a href="https://arxiv.org/pdf/1210.5350">pdf</a>, <a href="https://arxiv.org/ps/1210.5350">ps</a>, <a href="https://arxiv.org/format/1210.5350">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjb/e2012-30993-0">10.1140/epjb/e2012-30993-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetization, Magnetic Susceptibility and ESR in Tb3Ga5O12 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=L%C3%B6w%2C+U">U. L枚w</a>, <a href="/search/cond-mat?searchtype=author&query=Zvyagin%2C+S+A">S. A. Zvyagin</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">M. Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Schaufuss%2C+U">U. Schaufuss</a>, <a href="/search/cond-mat?searchtype=author&query=Kataev%2C+V">V. Kataev</a>, <a href="/search/cond-mat?searchtype=author&query=Wolf%2C+B">B. Wolf</a>, <a href="/search/cond-mat?searchtype=author&query=L%C3%BCthi%2C+B">B. L眉thi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.5350v1-abstract-short" style="display: inline;"> We report on the measurement of the magnetic susceptibility and of ESR transitions in the garnet substance Tb$_3$Ga$_5$O$_{12}$ (TGG). The results are compared with a calculation in the framework of crystal field theory for the orthorhombic surroundings of the six inequivalent Tb ions of TGG. We also present a calculation of the magnetization for the three main crystal directions. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.5350v1-abstract-full" style="display: none;"> We report on the measurement of the magnetic susceptibility and of ESR transitions in the garnet substance Tb$_3$Ga$_5$O$_{12}$ (TGG). The results are compared with a calculation in the framework of crystal field theory for the orthorhombic surroundings of the six inequivalent Tb ions of TGG. We also present a calculation of the magnetization for the three main crystal directions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.5350v1-abstract-full').style.display = 'none'; document.getElementById('1210.5350v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1010.6141">arXiv:1010.6141</a> <span> [<a href="https://arxiv.org/pdf/1010.6141">pdf</a>, <a href="https://arxiv.org/ps/1010.6141">ps</a>, <a href="https://arxiv.org/format/1010.6141">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.83.060409">10.1103/PhysRevB.83.060409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field-Induced Gap in a Quantum Spin-1/2 Chain in a Strong Magnetic Field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zvyagin%2C+S+A">S. A. Zvyagin</a>, <a href="/search/cond-mat?searchtype=author&query=%C4%8Ci%C5%BEm%C3%A1r%2C+E">E. 膶i啪m谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">M. Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Wosnitza%2C+J">J. Wosnitza</a>, <a href="/search/cond-mat?searchtype=author&query=Feyerherm%2C+R">R. Feyerherm</a>, <a href="/search/cond-mat?searchtype=author&query=Manmana%2C+S+R">S. R. Manmana</a>, <a href="/search/cond-mat?searchtype=author&query=Mila%2C+F">F. Mila</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1010.6141v1-abstract-short" style="display: inline;"> Magnetic excitations in copper pyrimidine dinitrate, a spin-1/2 antiferromagnetic chain with alternating $g$-tensor and Dzyaloshinskii-Moriya interactions that exhibits a field-induced spin gap, are probed by means of pulsed-field electron spin resonance spectroscopy. In particular, we report on a minimum of the gap in the vicinity of the saturation field $H_{sat}=48.5$ T associated with a transit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.6141v1-abstract-full').style.display = 'inline'; document.getElementById('1010.6141v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1010.6141v1-abstract-full" style="display: none;"> Magnetic excitations in copper pyrimidine dinitrate, a spin-1/2 antiferromagnetic chain with alternating $g$-tensor and Dzyaloshinskii-Moriya interactions that exhibits a field-induced spin gap, are probed by means of pulsed-field electron spin resonance spectroscopy. In particular, we report on a minimum of the gap in the vicinity of the saturation field $H_{sat}=48.5$ T associated with a transition from the sine-Gordon region (with soliton-breather elementary excitations) to a spin-polarized state (with magnon excitations). This interpretation is fully confirmed by the quantitative agreement over the entire field range of the experimental data with the DMRG investigation of the spin-1/2 Heisenberg chain with a staggered transverse field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.6141v1-abstract-full').style.display = 'none'; document.getElementById('1010.6141v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 83, 060409(R), 2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1007.2143">arXiv:1007.2143</a> <span> [<a href="https://arxiv.org/pdf/1007.2143">pdf</a>, <a href="https://arxiv.org/ps/1007.2143">ps</a>, <a href="https://arxiv.org/format/1007.2143">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.82.014416">10.1103/PhysRevB.82.014416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin Dynamics in $S=1/2$ Chains with Next-Nearest-Neighbor Exchange Interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">M. Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Zvyagin%2C+A+A">A. A. Zvyagin</a>, <a href="/search/cond-mat?searchtype=author&query=%C4%8Ci%C5%BEm%C3%A1r%2C+E">E. 膶i啪m谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Wosnitza%2C+J">J. Wosnitza</a>, <a href="/search/cond-mat?searchtype=author&query=Feyerherm%2C+R">R. Feyerherm</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+F">F. Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Landee%2C+C+P">C. P. Landee</a>, <a href="/search/cond-mat?searchtype=author&query=Zvyagin%2C+S+A">S. A. Zvyagin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1007.2143v2-abstract-short" style="display: inline;"> Low-energy magnetic excitations in the spin-1/2 chain compound (C$_6$H$_9$N$_2$)CuCl$_3$ [known as (6MAP)CuCl$_3$] are probed by means of tunable-frequency electron spin resonance. Two modes with asymmetric (with respect to the $h谓=g渭_B B$ line) frequency-field dependences are resolved, illuminating the striking incompatibility with a simple uniform $S=\frac{1}{2}$ Heisenberg chain model. The unus… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1007.2143v2-abstract-full').style.display = 'inline'; document.getElementById('1007.2143v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1007.2143v2-abstract-full" style="display: none;"> Low-energy magnetic excitations in the spin-1/2 chain compound (C$_6$H$_9$N$_2$)CuCl$_3$ [known as (6MAP)CuCl$_3$] are probed by means of tunable-frequency electron spin resonance. Two modes with asymmetric (with respect to the $h谓=g渭_B B$ line) frequency-field dependences are resolved, illuminating the striking incompatibility with a simple uniform $S=\frac{1}{2}$ Heisenberg chain model. The unusual ESR spectrum is explained in terms of the recently developed theory for spin-1/2 chains, suggesting the important role of next-nearest-neighbor interactions in this compound. Our conclusion is supported by model calculations for the magnetic susceptibility of (6MAP)CuCl$_3$, revealing a good qualitative agreement with experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1007.2143v2-abstract-full').style.display = 'none'; document.getElementById('1007.2143v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 82, 014416 (2010) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1005.1474">arXiv:1005.1474</a> <span> [<a href="https://arxiv.org/pdf/1005.1474">pdf</a>, <a href="https://arxiv.org/ps/1005.1474">ps</a>, <a href="https://arxiv.org/format/1005.1474">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.82.054431">10.1103/PhysRevB.82.054431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropy of Magnetic Interactions in the Spin-Ladder Compound (C$_5$H$_{12}$N)$_2$CuBr$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=%C4%8Ci%C5%BEm%C3%A1r%2C+E">E. 膶i啪m谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">M. Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Wosnitza%2C+J">J. Wosnitza</a>, <a href="/search/cond-mat?searchtype=author&query=Thielemann%2C+B">B. Thielemann</a>, <a href="/search/cond-mat?searchtype=author&query=Kr%C3%A4mer%2C+K+W">K. W. Kr盲mer</a>, <a href="/search/cond-mat?searchtype=author&query=R%C3%BCegg%2C+C">Ch. R眉egg</a>, <a href="/search/cond-mat?searchtype=author&query=Piovesana%2C+O">O. Piovesana</a>, <a href="/search/cond-mat?searchtype=author&query=Klanj%C5%A1ek%2C+M">M. Klanj拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Horvati%C4%87%2C+M">M. Horvati膰</a>, <a href="/search/cond-mat?searchtype=author&query=Berthier%2C+C">C. Berthier</a>, <a href="/search/cond-mat?searchtype=author&query=Zvyagin%2C+S+A">S. A. Zvyagin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1005.1474v1-abstract-short" style="display: inline;"> Magnetic excitations in the spin-ladder material (C$_5$H$_{12}$N)$_2$CuBr$_4$ [BPCB] are probed by high-resolution multi-frequency electron spin resonance (ESR) spectroscopy. Our experiments provide a direct evidence for a biaxial anisotropy ($\sim 5\%$ of the dominant exchange interaction), that is in contrast to a fully isotropic spin-ladder model employed for this system previously. It is ar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.1474v1-abstract-full').style.display = 'inline'; document.getElementById('1005.1474v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1005.1474v1-abstract-full" style="display: none;"> Magnetic excitations in the spin-ladder material (C$_5$H$_{12}$N)$_2$CuBr$_4$ [BPCB] are probed by high-resolution multi-frequency electron spin resonance (ESR) spectroscopy. Our experiments provide a direct evidence for a biaxial anisotropy ($\sim 5\%$ of the dominant exchange interaction), that is in contrast to a fully isotropic spin-ladder model employed for this system previously. It is argued that this anisotropy in BPCB is caused by spin-orbit coupling, which appears to be important for describing magnetic properties of this compound. The zero-field zone-center gap in the excitation spectrum of BPCB, $螖_0/k_{B}=16.5$ K, is detected directly. Furthermore, an ESR signature of the inter-ladder exchange interactions is obtained. The detailed characterization of the anisotropy in BPCB completes the determination of the full spin hamiltonian of this exceptional spin-ladder material and shows ways to study anisotropy effects in spin ladders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.1474v1-abstract-full').style.display = 'none'; document.getElementById('1005.1474v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 82 (2010) 054431 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0911.4402">arXiv:0911.4402</a> <span> [<a href="https://arxiv.org/pdf/0911.4402">pdf</a>, <a href="https://arxiv.org/ps/0911.4402">ps</a>, <a href="https://arxiv.org/format/0911.4402">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.81.064422">10.1103/PhysRevB.81.064422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic properties of the quasi-two-dimensional S = 1/2 Heisenberg antiferromagnet [Cu(pyz)2(HF2)]PF6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cizmar%2C+E">E. Cizmar</a>, <a href="/search/cond-mat?searchtype=author&query=Zvyagin%2C+S+A">S. A. Zvyagin</a>, <a href="/search/cond-mat?searchtype=author&query=Beyer%2C+R">R. Beyer</a>, <a href="/search/cond-mat?searchtype=author&query=Uhlarz%2C+M">M. Uhlarz</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">M. Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Skourski%2C+Y">Y. Skourski</a>, <a href="/search/cond-mat?searchtype=author&query=Manson%2C+J+L">J. L. Manson</a>, <a href="/search/cond-mat?searchtype=author&query=Schlueter%2C+J+A">J. A. Schlueter</a>, <a href="/search/cond-mat?searchtype=author&query=Wosnitza%2C+J">J. Wosnitza</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0911.4402v1-abstract-short" style="display: inline;"> We report on high-field magnetization, specific-heat and electron spin resonance (ESR) studies of the quasi-two-dimensional spin-1/2 Heisenberg antiferromagnet [Cu(pyz)2(HF2)]PF6. The frequency-field diagram of ESR modes below TN = 4.38 K is described in the frame of the meanfield theory, confirming a collinear magnetic structure with an easy-plane anisotropy. The obtained results allowed us to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.4402v1-abstract-full').style.display = 'inline'; document.getElementById('0911.4402v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0911.4402v1-abstract-full" style="display: none;"> We report on high-field magnetization, specific-heat and electron spin resonance (ESR) studies of the quasi-two-dimensional spin-1/2 Heisenberg antiferromagnet [Cu(pyz)2(HF2)]PF6. The frequency-field diagram of ESR modes below TN = 4.38 K is described in the frame of the meanfield theory, confirming a collinear magnetic structure with an easy-plane anisotropy. The obtained results allowed us to determine the anisotropy/exchange interaction ratio, A/J = 0.003, and the upper limit for the inter/intra-plane exchange-interaction ratio, J'/J = 1/16. It is argued that despite the onset of 3D long-range magnetic ordering the magnetic properties of this material (including high-magnetic-field magnetization and non-monotonic field dependence of the Neel temperature) are strongly affected by two-dimensional spin correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.4402v1-abstract-full').style.display = 'none'; document.getElementById('0911.4402v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys Rev. B 81 (2010) 064422 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0906.0105">arXiv:0906.0105</a> <span> [<a href="https://arxiv.org/pdf/0906.0105">pdf</a>, <a href="https://arxiv.org/ps/0906.0105">ps</a>, <a href="https://arxiv.org/format/0906.0105">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3155509">10.1063/1.3155509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> THz-range free-electron laser ESR spectroscopy: techniques and applications in high magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zvyagin%2C+S+A">S. A. Zvyagin</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">M. Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=%C4%8Ci%C5%BEm%C3%A1r%2C+E">E. 膶i啪m谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Kamenskyi%2C+D">D. Kamenskyi</a>, <a href="/search/cond-mat?searchtype=author&query=Zherlitsyn%2C+S">S. Zherlitsyn</a>, <a href="/search/cond-mat?searchtype=author&query=Herrmannsd%C3%B6rfer%2C+T">T. Herrmannsd枚rfer</a>, <a href="/search/cond-mat?searchtype=author&query=Wosnitza%2C+J">J. Wosnitza</a>, <a href="/search/cond-mat?searchtype=author&query=W%C3%BCnsch%2C+R">R. W眉nsch</a>, <a href="/search/cond-mat?searchtype=author&query=Seidel%2C+W">W. Seidel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0906.0105v1-abstract-short" style="display: inline;"> The successful use of picosecond-pulse free-electron-laser (FEL) radiation for the continuous-wave THz-range electron spin resonance (ESR) spectroscopy has been demonstrated. The combination of two linac-based FELs (covering the wavelength range of 4 - 250 $渭$m) with pulsed magnetic fields up to 70 T allows for multi-frequency ESR spectroscopy in a frequency range of 1.2 - 75 THz with a spectral… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0906.0105v1-abstract-full').style.display = 'inline'; document.getElementById('0906.0105v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0906.0105v1-abstract-full" style="display: none;"> The successful use of picosecond-pulse free-electron-laser (FEL) radiation for the continuous-wave THz-range electron spin resonance (ESR) spectroscopy has been demonstrated. The combination of two linac-based FELs (covering the wavelength range of 4 - 250 $渭$m) with pulsed magnetic fields up to 70 T allows for multi-frequency ESR spectroscopy in a frequency range of 1.2 - 75 THz with a spectral resolution better than 1%. The performance of the spectrometer is illustrated with ESR spectra obtained in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the low-dimensional organic material (C$_6$H$_9$N$_2$)CuCl$_3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0906.0105v1-abstract-full').style.display = 'none'; document.getElementById('0906.0105v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures. Rev. Sci. Instrum., accepted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Scient. Instr. 80, 073102 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0709.1779">arXiv:0709.1779</a> <span> [<a href="https://arxiv.org/pdf/0709.1779">pdf</a>, <a href="https://arxiv.org/ps/0709.1779">ps</a>, <a href="https://arxiv.org/format/0709.1779">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/10/3/033008">10.1088/1367-2630/10/3/033008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic properties of the Haldane-gap material NENB </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cizmar%2C+E">E. Cizmar</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">M. Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Ignatchik%2C+O">O. Ignatchik</a>, <a href="/search/cond-mat?searchtype=author&query=Papageorgiou%2C+T+P">T. P. Papageorgiou</a>, <a href="/search/cond-mat?searchtype=author&query=Wosnitza%2C+J">J. Wosnitza</a>, <a href="/search/cond-mat?searchtype=author&query=Zvyagin%2C+S+A">S. A. Zvyagin</a>, <a href="/search/cond-mat?searchtype=author&query=Krzystek%2C+J">J. Krzystek</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Z">Z. Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Landee%2C+C+P">C. P. Landee</a>, <a href="/search/cond-mat?searchtype=author&query=Landry%2C+B+R">B. R. Landry</a>, <a href="/search/cond-mat?searchtype=author&query=Turnbull%2C+M+M">M. M. Turnbull</a>, <a href="/search/cond-mat?searchtype=author&query=Wikaira%2C+J+L">J. L. Wikaira</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0709.1779v1-abstract-short" style="display: inline;"> Results of magnetization and high-field ESR studies of the new spin-1 Haldane-chain material [Ni(C2H8N2)2NO2](BF4) (NENB) are reported. A definite signature of the Haldane state in NENB was obtained. From the analysis of the frequency-field dependence of magnetic excitations in NENB, the spin-Hamiltonian parameters were calculated, yielding Delta = 17.4 K, g_parallel = 2.14, D = 7.5 K, and |E| =… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0709.1779v1-abstract-full').style.display = 'inline'; document.getElementById('0709.1779v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0709.1779v1-abstract-full" style="display: none;"> Results of magnetization and high-field ESR studies of the new spin-1 Haldane-chain material [Ni(C2H8N2)2NO2](BF4) (NENB) are reported. A definite signature of the Haldane state in NENB was obtained. From the analysis of the frequency-field dependence of magnetic excitations in NENB, the spin-Hamiltonian parameters were calculated, yielding Delta = 17.4 K, g_parallel = 2.14, D = 7.5 K, and |E| = 0.7 K for the Haldane gap, g factor and the crystal-field anisotropy constants, respectively. The presence of fractional S = 1/2 chain-end states, revealed by ESR and magnetization measurements, is found to be responsible for spin-glass freezing effects. In addition, extra states in the excitation spectrum of NENB have been observed in the vicinity of the Haldane gap, which origin is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0709.1779v1-abstract-full').style.display = 'none'; document.getElementById('0709.1779v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>