CINXE.COM
Transformare geometrică - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="ro" dir="ltr"> <head> <meta charset="UTF-8"> <title>Transformare geometrică - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )rowikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","ianuarie","februarie","martie","aprilie","mai","iunie","iulie","august","septembrie","octombrie","noiembrie","decembrie"],"wgRequestId":"c4e18cfb-817f-40bd-8cdd-7ab9e34e42cd","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Transformare_geometrică","wgTitle":"Transformare geometrică","wgCurRevisionId":16488448,"wgRevisionId":16488448,"wgArticleId":2900346,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Geometrie","Funcții matematice","Simetrie","Transformări"],"wgPageViewLanguage":"ro","wgPageContentLanguage":"ro","wgPageContentModel":"wikitext","wgRelevantPageName":"Transformare_geometrică","wgRelevantArticleId":2900346,"wgTempUserName":null,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true, "wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"ro","pageLanguageDir":"ltr","pageVariantFallbacks":"ro"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":8000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1196371","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgSiteNoticeId":"2.2"};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles": "ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","mediawiki.page.gallery.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready","ext.dismissableSiteNotice.styles":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions", "wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking","ext.dismissableSiteNotice"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=ro&modules=ext.cite.styles%7Cext.dismissableSiteNotice.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.page.gallery.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=ro&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=ro&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Transformare geometrică - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//ro.m.wikipedia.org/wiki/Transformare_geometric%C4%83"> <link rel="alternate" type="application/x-wiki" title="Modificare" href="/w/index.php?title=Transformare_geometric%C4%83&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (ro)"> <link rel="EditURI" type="application/rsd+xml" href="//ro.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://ro.wikipedia.org/wiki/Transformare_geometric%C4%83"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ro"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Abonare Atom" href="/w/index.php?title=Special:Schimb%C4%83ri_recente&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Transformare_geometrică rootpage-Transformare_geometrică skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Sari la conținut</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Meniul principal" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Meniul principal</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Meniul principal</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">mută în bara laterală</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">ascunde</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigare </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/Pagina_principal%C4%83" title="Vedeți pagina principală [z]" accesskey="z"><span>Pagina principală</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:Schimb%C4%83ri_recente" title="Lista ultimelor schimbări realizate în acest wiki [r]" accesskey="r"><span>Schimbări recente</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Wikipedia:Cafenea" title="Informații despre evenimentele curente"><span>Cafenea</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Aleatoriu" title="Afișează o pagină aleatoare [x]" accesskey="x"><span>Articol aleatoriu</span></a></li><li id="n-Facebook" class="mw-list-item"><a href="https://www.facebook.com/WikipediaRomana" rel="nofollow"><span>Facebook</span></a></li> </ul> </div> </div> <div id="p-Participare" class="vector-menu mw-portlet mw-portlet-Participare" > <div class="vector-menu-heading"> Participare </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Cum-încep-pe-Wikipedia" class="mw-list-item"><a href="/wiki/Ajutor:Bun_venit"><span>Cum încep pe Wikipedia</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Ajutor:Cuprins" title="Locul în care găsiți ajutor"><span>Ajutor</span></a></li><li id="n-Portals" class="mw-list-item"><a href="/wiki/Portal:R%C4%83sfoire"><span>Portaluri tematice</span></a></li><li id="n-Articole-cerute" class="mw-list-item"><a href="/wiki/Wikipedia:Articole_cerute"><span>Articole cerute</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Pagina_principal%C4%83" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="enciclopedia liberă" src="/static/images/mobile/copyright/wikipedia-tagline-ro.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:C%C4%83utare" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Căutare în Wikipedia [c]" accesskey="c"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Căutare</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Căutare în Wikipedia" aria-label="Căutare în Wikipedia" autocapitalize="sentences" title="Căutare în Wikipedia [c]" accesskey="c" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Căutare"> </div> <button class="cdx-button cdx-search-input__end-button">Căutare</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Unelte personale"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Aspect"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Aspect" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Aspect</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_ro.wikipedia.org&uselang=ro" class=""><span>Donații</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%C3%8Enregistrare&returnto=Transformare+geometric%C4%83" title="Vă încurajăm să vă creați un cont și să vă autentificați; totuși, nu este obligatoriu" class=""><span>Creare cont</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:Autentificare&returnto=Transformare+geometric%C4%83" title="Sunteți încurajat să vă autentificați, deși acest lucru nu este obligatoriu. [o]" accesskey="o" class=""><span>Autentificare</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out user-links-collapsible-item" title="Mai multe opțiuni" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Unelte personale" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Unelte personale</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Meniul de utilizator" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_ro.wikipedia.org&uselang=ro"><span>Donații</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%C3%8Enregistrare&returnto=Transformare+geometric%C4%83" title="Vă încurajăm să vă creați un cont și să vă autentificați; totuși, nu este obligatoriu"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Creare cont</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:Autentificare&returnto=Transformare+geometric%C4%83" title="Sunteți încurajat să vă autentificați, deși acest lucru nu este obligatoriu. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Autentificare</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><div id="mw-dismissablenotice-anonplace"></div><script>(function(){var node=document.getElementById("mw-dismissablenotice-anonplace");if(node){node.outerHTML="\u003Cdiv class=\"mw-dismissable-notice\"\u003E\u003Cdiv class=\"mw-dismissable-notice-close\"\u003E[\u003Ca tabindex=\"0\" role=\"button\"\u003Eascunde\u003C/a\u003E]\u003C/div\u003E\u003Cdiv class=\"mw-dismissable-notice-body\"\u003E\u003C!-- CentralNotice --\u003E\u003Cdiv id=\"localNotice\" data-nosnippet=\"\"\u003E\u003Cdiv class=\"anonnotice\" lang=\"ro\" dir=\"ltr\"\u003E\u003Cdiv class=\"plainlinks\" style=\"border: 1px solid #ddd; margin: 0 0 3px;\"\u003E\n\u003Cdiv class=\"nomobile\" style=\"float:right\"\u003E\n\u003Cspan typeof=\"mw:File\"\u003E\u003Ca href=\"/wiki/Wikipedia:Concurs_de_scriere\" title=\"Wikipedia:Concurs de scriere\"\u003E\u003Cimg src=\"//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Concurs_de_scriere.png/126px-Concurs_de_scriere.png\" decoding=\"async\" width=\"126\" height=\"95\" class=\"mw-file-element\" srcset=\"//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Concurs_de_scriere.png/189px-Concurs_de_scriere.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/55/Concurs_de_scriere.png/251px-Concurs_de_scriere.png 2x\" data-file-width=\"506\" data-file-height=\"383\" /\u003E\u003C/a\u003E\u003C/span\u003E\u003C/div\u003E\n\u003Cdiv style=\"color: grey; max-width:1280px; margin: 12px auto; font-family: Tahoma, \u0026#39;DejaVu Sans Condensed\u0026#39;, sans-serif; text-align: center; font-size: 12pt; position: relative;\"\u003EVă invităm să votați cele mai bune articole înscrise în \u003Cb\u003E\u003Ca href=\"/wiki/Wikipedia:Concurs_de_scriere\" title=\"Wikipedia:Concurs de scriere\"\u003Econcursul\u0026#160;de\u0026#160;scriere\u003C/a\u003E\u003C/b\u003E.\u003C/div\u003E\n\u003Cdiv style=\"clear: both;\"\u003E\u003C/div\u003E\n\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E";}}());</script></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Cuprins" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Cuprins</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">mută în bara laterală</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">ascunde</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Început</div> </a> </li> <li id="toc-Clasificări" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Clasificări"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Clasificări</span> </div> </a> <ul id="toc-Clasificări-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Note" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Note"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Note</span> </div> </a> <ul id="toc-Note-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lectură_suplimentară" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Lectură_suplimentară"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Lectură suplimentară</span> </div> </a> <ul id="toc-Lectură_suplimentară-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Legături_externe" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Legături_externe"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Legături externe</span> </div> </a> <ul id="toc-Legături_externe-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Cuprins" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Comută cuprinsul" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Comută cuprinsul</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Transformare geometrică</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Mergeți la un articol în altă limbă. Disponibil în 29 limbi" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-29" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">29 limbi</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar badge-Q70893996 mw-list-item" title=""><a href="https://ar.wikipedia.org/wiki/%D8%AA%D8%AD%D9%88%D9%8A%D9%84_(%D9%87%D9%86%D8%AF%D8%B3%D8%A9_%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A9)" title="تحويل (هندسة رياضية) – arabă" lang="ar" hreflang="ar" data-title="تحويل (هندسة رياضية)" data-language-autonym="العربية" data-language-local-name="arabă" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/H%C9%99nd%C9%99si_%C3%A7evrilm%C9%99l%C9%99r" title="Həndəsi çevrilmələr – azeră" lang="az" hreflang="az" data-title="Həndəsi çevrilmələr" data-language-autonym="Azərbaycanca" data-language-local-name="azeră" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Geometrijske_transformacije" title="Geometrijske transformacije – bosniacă" lang="bs" hreflang="bs" data-title="Geometrijske transformacije" data-language-autonym="Bosanski" data-language-local-name="bosniacă" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Transformaci%C3%B3_geom%C3%A8trica" title="Transformació geomètrica – catalană" lang="ca" hreflang="ca" data-title="Transformació geomètrica" data-language-autonym="Català" data-language-local-name="catalană" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Geometrick%C3%A9_zobrazen%C3%AD" title="Geometrické zobrazení – cehă" lang="cs" hreflang="cs" data-title="Geometrické zobrazení" data-language-autonym="Čeština" data-language-local-name="cehă" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82%D1%81%D0%B5%D0%BD_%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D0%B9%C4%95" title="Координатсен трансформацийĕ – ciuvașă" lang="cv" hreflang="cv" data-title="Координатсен трансформацийĕ" data-language-autonym="Чӑвашла" data-language-local-name="ciuvașă" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Trawsffurfiad_geometrig" title="Trawsffurfiad geometrig – galeză" lang="cy" hreflang="cy" data-title="Trawsffurfiad geometrig" data-language-autonym="Cymraeg" data-language-local-name="galeză" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Koordinatentransformation" title="Koordinatentransformation – germană" lang="de" hreflang="de" data-title="Koordinatentransformation" data-language-autonym="Deutsch" data-language-local-name="germană" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%93%CE%B5%CF%89%CE%BC%CE%B5%CF%84%CF%81%CE%B9%CE%BA%CF%8C%CF%82_%CE%BC%CE%B5%CF%84%CE%B1%CF%83%CF%87%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CF%83%CE%BC%CF%8C%CF%82" title="Γεωμετρικός μετασχηματισμός – greacă" lang="el" hreflang="el" data-title="Γεωμετρικός μετασχηματισμός" data-language-autonym="Ελληνικά" data-language-local-name="greacă" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Geometric_transformation" title="Geometric transformation – engleză" lang="en" hreflang="en" data-title="Geometric transformation" data-language-autonym="English" data-language-local-name="engleză" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Geometria_transformado" title="Geometria transformado – esperanto" lang="eo" hreflang="eo" data-title="Geometria transformado" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Transformaci%C3%B3n_geom%C3%A9trica" title="Transformación geométrica – spaniolă" lang="es" hreflang="es" data-title="Transformación geométrica" data-language-autonym="Español" data-language-local-name="spaniolă" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Transformation_g%C3%A9om%C3%A9trique" title="Transformation géométrique – franceză" lang="fr" hreflang="fr" data-title="Transformation géométrique" data-language-autonym="Français" data-language-local-name="franceză" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%A2%D7%AA%D7%A7%D7%94_%D7%92%D7%90%D7%95%D7%9E%D7%98%D7%A8%D7%99%D7%AA" title="העתקה גאומטרית – ebraică" lang="he" hreflang="he" data-title="העתקה גאומטרית" data-language-autonym="עברית" data-language-local-name="ebraică" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Transzform%C3%A1ci%C3%B3_(matematika)" title="Transzformáció (matematika) – maghiară" lang="hu" hreflang="hu" data-title="Transzformáció (matematika)" data-language-autonym="Magyar" data-language-local-name="maghiară" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Transformasi_geometri" title="Transformasi geometri – indoneziană" lang="id" hreflang="id" data-title="Transformasi geometri" data-language-autonym="Bahasa Indonesia" data-language-local-name="indoneziană" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%B9%BE%E4%BD%95%E5%AD%A6%E7%9A%84%E5%A4%89%E6%8F%9B" title="幾何学的変換 – japoneză" lang="ja" hreflang="ja" data-title="幾何学的変換" data-language-autonym="日本語" data-language-local-name="japoneză" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/%C4%A2eometrisk%C4%81_transform%C4%81cija" title="Ģeometriskā transformācija – letonă" lang="lv" hreflang="lv" data-title="Ģeometriskā transformācija" data-language-autonym="Latviešu" data-language-local-name="letonă" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Co%C3%B6rdinatentransformatie" title="Coördinatentransformatie – neerlandeză" lang="nl" hreflang="nl" data-title="Coördinatentransformatie" data-language-autonym="Nederlands" data-language-local-name="neerlandeză" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Przekszta%C5%82cenie_geometryczne" title="Przekształcenie geometryczne – poloneză" lang="pl" hreflang="pl" data-title="Przekształcenie geometryczne" data-language-autonym="Polski" data-language-local-name="poloneză" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Transforma%C3%A7%C3%A3o_geom%C3%A9trica" title="Transformação geométrica – portugheză" lang="pt" hreflang="pt" data-title="Transformação geométrica" data-language-autonym="Português" data-language-local-name="portugheză" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B5%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BA%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82" title="Преобразование координат – rusă" lang="ru" hreflang="ru" data-title="Преобразование координат" data-language-autonym="Русский" data-language-local-name="rusă" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Transformation" title="Transformation – Simple English" lang="en-simple" hreflang="en-simple" data-title="Transformation" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Koordinattransformation" title="Koordinattransformation – suedeză" lang="sv" hreflang="sv" data-title="Koordinattransformation" data-language-autonym="Svenska" data-language-local-name="suedeză" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%B5%E0%AE%9F%E0%AE%BF%E0%AE%B5%E0%AE%B5%E0%AE%BF%E0%AE%AF%E0%AE%B2%E0%AF%8D_%E0%AE%89%E0%AE%B0%E0%AF%81%E0%AE%AE%E0%AE%BE%E0%AE%B1%E0%AF%8D%E0%AE%B1%E0%AE%AE%E0%AF%8D" title="வடிவவியல் உருமாற்றம் – tamilă" lang="ta" hreflang="ta" data-title="வடிவவியல் உருமாற்றம்" data-language-autonym="தமிழ்" data-language-local-name="tamilă" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%81%E0%B8%9B%E0%B8%A5%E0%B8%87%E0%B8%97%E0%B8%B2%E0%B8%87%E0%B9%80%E0%B8%A3%E0%B8%82%E0%B8%B2%E0%B8%84%E0%B8%93%E0%B8%B4%E0%B8%95" title="การแปลงทางเรขาคณิต – thailandeză" lang="th" hreflang="th" data-title="การแปลงทางเรขาคณิต" data-language-autonym="ไทย" data-language-local-name="thailandeză" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%B5_%D0%BF%D0%B5%D1%80%D0%B5%D1%82%D0%B2%D0%BE%D1%80%D0%B5%D0%BD%D0%BD%D1%8F" title="Геометричне перетворення – ucraineană" lang="uk" hreflang="uk" data-title="Геометричне перетворення" data-language-autonym="Українська" data-language-local-name="ucraineană" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%B9%BE%E4%BD%95%E8%AE%8A%E6%8F%9B" title="幾何變換 – chineză" lang="zh" hreflang="zh" data-title="幾何變換" data-language-autonym="中文" data-language-local-name="chineză" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%B9%BE%E4%BD%95%E8%AE%8A%E6%8F%9B" title="幾何變換 – cantoneză" lang="yue" hreflang="yue" data-title="幾何變換" data-language-autonym="粵語" data-language-local-name="cantoneză" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1196371#sitelinks-wikipedia" title="Modifică legăturile interlinguale" class="wbc-editpage">Modifică legăturile</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Spații de nume"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Transformare_geometric%C4%83" title="Vedeți conținutul paginii [a]" accesskey="a"><span>Articol</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discu%C8%9Bie:Transformare_geometric%C4%83" rel="discussion" title="Discuții despre această pagină [t]" accesskey="t"><span>Discuție</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">română</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Vizualizări"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Transformare_geometric%C4%83"><span>Lectură</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Transformare_geometric%C4%83&veaction=edit" title="Modificați această pagină cu EditorulVizual [v]" accesskey="v"><span>Modificare</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Transformare_geometric%C4%83&action=edit" title="Modificați codul sursă al acestei pagini [e]" accesskey="e"><span>Modificare sursă</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Transformare_geometric%C4%83&action=history" title="Versiunile anterioare ale paginii și autorii lor. [h]" accesskey="h"><span>Istoric</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Unelte" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Unelte</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Unelte</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">mută în bara laterală</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">ascunde</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Mai multe opțiuni" > <div class="vector-menu-heading"> Acțiuni </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Transformare_geometric%C4%83"><span>Lectură</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Transformare_geometric%C4%83&veaction=edit" title="Modificați această pagină cu EditorulVizual [v]" accesskey="v"><span>Modificare</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Transformare_geometric%C4%83&action=edit" title="Modificați codul sursă al acestei pagini [e]" accesskey="e"><span>Modificare sursă</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Transformare_geometric%C4%83&action=history"><span>Istoric</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:Ce_se_leag%C4%83_aici/Transformare_geometric%C4%83" title="Lista tuturor paginilor wiki care conduc spre această pagină [j]" accesskey="j"><span>Ce trimite aici</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:Modific%C4%83ri_corelate/Transformare_geometric%C4%83" rel="nofollow" title="Schimbări recente în legătură cu această pagină [k]" accesskey="k"><span>Schimbări corelate</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:Trimite_fi%C8%99ier" title="Încărcare fișiere [u]" accesskey="u"><span>Trimite fișier</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:Pagini_speciale" title="Lista tuturor paginilor speciale [q]" accesskey="q"><span>Pagini speciale</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Transformare_geometric%C4%83&oldid=16488448" title="Legătură permanentă către această versiune a acestei pagini"><span>Legătură permanentă</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Transformare_geometric%C4%83&action=info" title="Mai multe informații despre această pagină"><span>Informații despre pagină</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:Citeaz%C4%83&page=Transformare_geometric%C4%83&id=16488448&wpFormIdentifier=titleform" title="Informații cu privire la modul de citare a acestei pagini"><span>Citează acest articol</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fro.wikipedia.org%2Fwiki%2FTransformare_geometric%25C4%2583"><span>Obține URL scurtat</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fro.wikipedia.org%2Fwiki%2FTransformare_geometric%25C4%2583"><span>Descărcați codul QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Tipărire/exportare </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Special:Carte&bookcmd=book_creator&referer=Transformare+geometric%C4%83"><span>Creare carte</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Transformare_geometric%C4%83&action=show-download-screen"><span>Descărcare ca PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Transformare_geometric%C4%83&printable=yes" title="Versiunea de tipărit a acestei pagini [p]" accesskey="p"><span>Versiune de tipărit</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> În alte proiecte </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Transformations_(geometry)" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1196371" title="Legătură către elementul asociat din depozitul de date [g]" accesskey="g"><span>Element Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Aspect"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Aspect</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">mută în bara laterală</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">ascunde</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">De la Wikipedia, enciclopedia liberă</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="ro" dir="ltr"><p>În <a href="/wiki/Matematic%C4%83" title="Matematică">matematică</a>, o <b>transformare geometrică</b> este o <a href="/wiki/No%C8%9Biune" title="Noțiune">noțiune</a> similară cu <a href="/wiki/Opera%C8%9Bie_algebric%C4%83" title="Operație algebrică">operație algebrică</a>, în care <a href="/wiki/Operand" title="Operand">operanzii</a> sunt elemente geometrice. Este o <a href="/wiki/Bijec%C8%9Bie" class="mw-redirect" title="Bijecție">bijecție</a> a unei <a href="/wiki/Mul%C8%9Bime" title="Mulțime">mulțimi</a> pe sine (sau pe o altă astfel de mulțime) cu caracteristici geometrice importante. Mai precis, este o <a href="/wiki/Func%C8%9Bie" title="Funcție">funcție</a> al cărei <a href="/wiki/Domeniu_(matematic%C4%83)" class="mw-redirect" title="Domeniu (matematică)">domeniu</a> și interval sunt mulțimi de <a href="/wiki/Punct_(geometrie)" title="Punct (geometrie)">puncte</a> — cel mai adesea ambele din <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span> sau ambele din <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> — astfel încât funcția să fie <a href="/wiki/Func%C8%9Bie_injectiv%C4%83" title="Funcție injectivă">injectivă</a> și <a href="/wiki/Func%C8%9Bie_invers%C4%83" title="Funcție inversă">funcția inversă</a> să existe.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Studiul <a href="/wiki/Geometrie" title="Geometrie">geometriei</a> poate fi abordat prin studiul acestor transformări<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> care sunt utilizate ca <a href="/wiki/Opera%C8%9Bie_(matematic%C4%83)" title="Operație (matematică)">operații matematice</a> în construirea diferitelor forme geometrice. Inițierea acestei abordări se datorează matematicianului sovietic <a href="/wiki/Andrei_Kolmogorov" class="mw-redirect" title="Andrei Kolmogorov">Andrei Kolmogorov</a><sup id="cite_ref-russianedu_3-0" class="reference"><a href="#cite_note-russianedu-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup>. </p><p>Exemple: <a href="/wiki/Rota%C8%9Bie_(matematic%C4%83)" title="Rotație (matematică)">rotație</a>, <a href="/wiki/Transla%C8%9Bie" title="Translație">translație</a> etc. </p><p>Geometria modernă utilizează masiv această noțiune. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Clasificări"><span id="Clasific.C4.83ri"></span>Clasificări</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Transformare_geometric%C4%83&veaction=edit&section=1" title="Modifică secțiunea: Clasificări" class="mw-editsection-visualeditor"><span>modificare</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Transformare_geometric%C4%83&action=edit&section=1" title="Edit section's source code: Clasificări"><span>modificare sursă</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Transformările geometrice pot fi clasificate în funcție de numărul <a href="/wiki/Operand" title="Operand">operanzilor</a> (deosebind astfel, de exemplu, transformările din <a href="/wiki/Plan_(geometrie)" title="Plan (geometrie)">plan</a> și transformările din spațiul tridimensional). De asemenea, ele pot fi clasificate în funcție de proprietățile pe care le conservă: </p> <ul><li><a href="/wiki/Deplasare_(geometrie)" title="Deplasare (geometrie)">Deplasările</a><sup id="cite_ref-LȚ_4-0" class="reference"><a href="#cite_note-LȚ-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> conservă <a href="/wiki/Metric%C4%83" title="Metrică">distanțele</a> și <a href="/wiki/Unghi" title="Unghi">unghiurile orientate</a> (de exemplu <a href="/wiki/Transla%C8%9Bie_(geometrie)" title="Translație (geometrie)">translațiile</a><sup id="cite_ref-LȚ_4-1" class="reference"><a href="#cite_note-LȚ-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup>);<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Izometrie" title="Izometrie">Izometriile</a> conservă distanțele și unghiurile (de exemplu transformările euclidiene);<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Berger_7-0" class="reference"><a href="#cite_note-Berger-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Asem%C4%83nare_(geometrie)" title="Asemănare (geometrie)">Asemănările</a> conservă unghiurile și <a href="/wiki/Raport" title="Raport">raporturile</a> dintre distanțe (de exemplu <a href="/wiki/Scalare_(geometrie)" title="Scalare (geometrie)">scalările</a><sup id="cite_ref-LȚ_4-2" class="reference"><a href="#cite_note-LȚ-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup>);<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup></li> <li><a href="/w/index.php?title=Transformare_afin%C4%83&action=edit&redlink=1" class="new" title="Transformare afină — pagină inexistentă">Transformările afine</a><sup><small>(<a href="https://www.wikidata.org/wiki/Q382497" class="extiw" title="d:Q382497"><span title="transformare afină la Wikidata">d</span></a>)</small></sup> conservă <a href="/wiki/Paralelism_(geometrie)" title="Paralelism (geometrie)">paralelismul</a> (de exemplu scalările, <a href="/w/index.php?title=Forfecare_(geometrie)&action=edit&redlink=1" class="new" title="Forfecare (geometrie) — pagină inexistentă">forfecările</a><sup id="cite_ref-LȚ_4-3" class="reference"><a href="#cite_note-LȚ-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup>);<sup id="cite_ref-Berger_7-1" class="reference"><a href="#cite_note-Berger-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup></li> <li><a href="/w/index.php?title=Omografie&action=edit&redlink=1" class="new" title="Omografie — pagină inexistentă">Transformările proiective</a><sup><small>(<a href="https://www.wikidata.org/wiki/Q2112539" class="extiw" title="d:Q2112539"><span title="omografie la Wikidata">d</span></a>)</small></sup> conservă <a href="/wiki/Coliniaritate" title="Coliniaritate">coliniaritatea</a>;<sup id="cite_ref-Wilkinson_10-0" class="reference"><a href="#cite_note-Wilkinson-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup></li></ul> <p>Fiecare dintre aceste clase o conține pe cea anterioară.<sup id="cite_ref-Wilkinson_10-1" class="reference"><a href="#cite_note-Wilkinson-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p> <ul><li><a href="/wiki/Transformare_M%C3%B6bius" title="Transformare Möbius">Transformările Möbius</a>, care utilizează coordonate în <a href="/wiki/Planul_complex" title="Planul complex">planul complex</a> (precum și <a href="/w/index.php?title=Inversiune_fa%C8%9B%C4%83_de_sfer%C4%83&action=edit&redlink=1" class="new" title="Inversiune față de sferă — pagină inexistentă">inversiunea față de cerc</a><sup><small>(<a href="https://www.wikidata.org/wiki/Q17152833" class="extiw" title="d:Q17152833"><span title="inversiune față de sferă la Wikidata">d</span></a>)</small></sup>), păstrează mulțimea tuturor dreptelor și cercurilor, dar pot interschimba drepte și cercuri.</li></ul> <ul class="gallery mw-gallery-traditional"> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/Fi%C8%99ier:France_identique.gif" class="mw-file-description" title="Imaginea inițială (harta Franței)"><img alt="Imaginea inițială (harta Franței)" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ef/France_identique.gif/108px-France_identique.gif" decoding="async" width="108" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/e/ef/France_identique.gif 1.5x" data-file-width="161" data-file-height="178" /></a></span></div> <div class="gallerytext"> Imaginea inițială<br />(harta Franței)</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/Fi%C8%99ier:France_par_rotation_180deg.gif" class="mw-file-description" title="Izometrie"><img alt="Izometrie" src="//upload.wikimedia.org/wikipedia/commons/6/64/France_par_rotation_180deg.gif" decoding="async" width="109" height="120" class="mw-file-element" data-file-width="108" data-file-height="119" /></a></span></div> <div class="gallerytext"> Izometrie</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/Fi%C8%99ier:France_par_similitude.gif" class="mw-file-description" title="Asemănare"><img alt="Asemănare" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/France_par_similitude.gif/120px-France_par_similitude.gif" decoding="async" width="120" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/France_par_similitude.gif/180px-France_par_similitude.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/4/47/France_par_similitude.gif 2x" data-file-width="200" data-file-height="200" /></a></span></div> <div class="gallerytext"> Asemănare</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/Fi%C8%99ier:France_affine_(1).gif" class="mw-file-description" title="Transformare afină"><img alt="Transformare afină" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/10/France_affine_%281%29.gif/120px-France_affine_%281%29.gif" decoding="async" width="120" height="53" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/10/France_affine_%281%29.gif/180px-France_affine_%281%29.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/10/France_affine_%281%29.gif/240px-France_affine_%281%29.gif 2x" data-file-width="283" data-file-height="126" /></a></span></div> <div class="gallerytext"> Transformare afină</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/Fi%C8%99ier:France_homographie.gif" class="mw-file-description" title="Perspectivă"><img alt="Perspectivă" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5a/France_homographie.gif/112px-France_homographie.gif" decoding="async" width="112" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5a/France_homographie.gif/169px-France_homographie.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/5/5a/France_homographie.gif 2x" data-file-width="224" data-file-height="239" /></a></span></div> <div class="gallerytext"> Perspectivă</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/Fi%C8%99ier:France_circ.gif" class="mw-file-description" title="Inversiune față de cerc"><img alt="Inversiune față de cerc" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/France_circ.gif/120px-France_circ.gif" decoding="async" width="120" height="116" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/France_circ.gif/180px-France_circ.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/4/4b/France_circ.gif 2x" data-file-width="197" data-file-height="191" /></a></span></div> <div class="gallerytext"> Inversiune față de cerc</div> </li> </ul> <ul><li><a href="/wiki/Transformare_conform%C4%83" title="Transformare conformă">Transformările conforme</a> conservă unghiurile și sunt, în primul rând, asemănări.</li> <li><a href="/wiki/Transformare_echiareal%C4%83" title="Transformare echiareală">Transformările echiareale</a>, conservă <a href="/wiki/Arie" title="Arie">ariile</a> în cazurile <a href="/wiki/Bidimensional" class="mw-redirect" title="Bidimensional">bidimensionale</a> sau <a href="/wiki/Volum_(geometrie)" title="Volum (geometrie)">volumele</a> în cazurile <a href="/wiki/Tridimensional" class="mw-redirect" title="Tridimensional">tridimensionale</a><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> și sunt, în primul rând, transformări afine cu <a href="/wiki/Determinant_(matematic%C4%83)" title="Determinant (matematică)">determinantul</a> 1.</li> <li><a href="/w/index.php?title=Omeomorfism&action=edit&redlink=1" class="new" title="Omeomorfism — pagină inexistentă">Homeomorfismele</a><sup><small>(<a href="https://www.wikidata.org/wiki/Q202906" class="extiw" title="d:Q202906"><span title="omeomorfism la Wikidata">d</span></a>)</small></sup> (transformări bicontinue) consevă <a href="/wiki/Vecin%C4%83tate_(matematic%C4%83)" title="Vecinătate (matematică)">vecinătățile</a> <a href="/wiki/Punct_(geometrie)" title="Punct (geometrie)">punctelor</a>.</li> <li><a href="/wiki/Difeomorfism" title="Difeomorfism">Difeomorfismele</a> (transformări bidiferențiabile) sunt transformări care în primul rând sunt afine; le conțin pe cele precedente drept cazuri particulare și pot fi detaliate în continuare.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup></li></ul> <ul class="gallery mw-gallery-traditional"> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/Fi%C8%99ier:Fconf.gif" class="mw-file-description" title="Transformare conformă"><img alt="Transformare conformă" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/94/Fconf.gif/106px-Fconf.gif" decoding="async" width="106" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/94/Fconf.gif/159px-Fconf.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/9/94/Fconf.gif 2x" data-file-width="164" data-file-height="186" /></a></span></div> <div class="gallerytext"> Transformare conformă</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/Fi%C8%99ier:France_aire.gif" class="mw-file-description" title="Transformare echiareală"><img alt="Transformare echiareală" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/France_aire.gif/120px-France_aire.gif" decoding="async" width="120" height="84" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/France_aire.gif/180px-France_aire.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/0/0a/France_aire.gif 2x" data-file-width="217" data-file-height="152" /></a></span></div> <div class="gallerytext"> Transformare echiareală</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/Fi%C8%99ier:France_homothetie.gif" class="mw-file-description" title="Homeomorfism"><img alt="Homeomorfism" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ef/France_homothetie.gif/120px-France_homothetie.gif" decoding="async" width="120" height="105" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ef/France_homothetie.gif/180px-France_homothetie.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/e/ef/France_homothetie.gif 2x" data-file-width="182" data-file-height="159" /></a></span></div> <div class="gallerytext"> Homeomorfism</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/Fi%C8%99ier:France_diff.gif" class="mw-file-description" title="Difeomorfism"><img alt="Difeomorfism" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/France_diff.gif/120px-France_diff.gif" decoding="async" width="120" height="112" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/France_diff.gif/180px-France_diff.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/7/79/France_diff.gif 2x" data-file-width="188" data-file-height="175" /></a></span></div> <div class="gallerytext"> Difeomorfism</div> </li> </ul> <p>Transformările de același tip formează <a href="/wiki/Grup_(matematic%C4%83)" title="Grup (matematică)">grupuri</a> care pot fi subgrupuri ale altor grupuri de transformări. </p> <div class="mw-heading mw-heading2"><h2 id="Note">Note</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Transformare_geometric%C4%83&veaction=edit&section=2" title="Modifică secțiunea: Note" class="mw-editsection-visualeditor"><span>modificare</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Transformare_geometric%C4%83&action=edit&section=2" title="Edit section's source code: Note"><span>modificare sursă</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><b><a href="#cite_ref-1">^</a></b> <span class="reference-text"><span style="border:solid 1px #44A; background-color:#EEF; font-family:monospace; color:#008; font-size:0.9em; padding:0px 4px 2px 4px; position:relative; bottom:0.2em; cursor:help;" title="Limba engleză">en</span> Zalman Usiskin, Anthony L. Peressini, Elena Marchisotto, <i>Mathematics for High School Teachers: An Advanced Perspective</i>, page 84.</span> </li> <li id="cite_note-2"><b><a href="#cite_ref-2">^</a></b> <span class="reference-text"><span style="border:solid 1px #44A; background-color:#EEF; font-family:monospace; color:#008; font-size:0.9em; padding:0px 4px 2px 4px; position:relative; bottom:0.2em; cursor:help;" title="Limba engleză">en</span> <cite id="CITEREFVenema2006" class="citation">Venema, Gerard A. (<time datetime="2006">2006</time>), <i>Foundations of Geometry</i>, Pearson Prentice Hall, p. 285, <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a> <a href="/wiki/Special:Referin%C8%9Be_%C3%AEn_c%C4%83r%C8%9Bi/9780131437005" title="Special:Referințe în cărți/9780131437005">9780131437005</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Foundations+of+Geometry&rft.pages=285&rft.pub=Pearson+Prentice+Hall&rft.date=2006&rft.isbn=9780131437005&rft.aulast=Venema&rft.aufirst=Gerard+A.&rfr_id=info%3Asid%2Fro.wikipedia.org%3ATransformare+geometric%C4%83" class="Z3988"><span style="display:none;"> </span></span><style data-mw-deduplicate="TemplateStyles:r16236537">.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"„""”""«""»"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}</style></span> </li> <li id="cite_note-russianedu-3"><b><a href="#cite_ref-russianedu_3-0">^</a></b> <span class="reference-text"><a rel="nofollow" class="external text" href="https://books.google.com/books?id=qwyBPybT4oMC">Alexander Karp & Bruce R. Vogeli – Russian Mathematics Education: Programs and Practices, Volume 5</a>, pgs. 100–102</span> </li> <li id="cite_note-LȚ-4">^ <a href="#cite_ref-LȚ_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-LȚ_4-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-LȚ_4-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-LȚ_4-3"><sup><i><b>d</b></i></sup></a> <span class="reference-text">Leon Țâmbulea, <a rel="nofollow" class="external text" href="http://www.cs.ubbcluj.ro/~per/Grafica/L_T/documente/transformari.pdf"><i>Grafică pe calculator: 3. Elemente de geometrie computațională. Sisteme de coordonate. Transformări 3D.</i></a>, <a href="/wiki/Universitatea_Babe%C8%99-Bolyai" title="Universitatea Babeș-Bolyai">Universitatea Babeș-Bolyai</a>, 2012, accesat 2022-03-07</span> </li> <li id="cite_note-5"><b><a href="#cite_ref-5">^</a></b> <span class="reference-text"><span style="border:solid 1px #44A; background-color:#EEF; font-family:monospace; color:#008; font-size:0.9em; padding:0px 4px 2px 4px; position:relative; bottom:0.2em; cursor:help;" title="Limba engleză">en</span> <cite class="citation web"><a rel="nofollow" class="external text" href="https://www.mathsisfun.com/geometry/translation.html">„Geometry Translation”</a>. <i>www.mathsisfun.com</i><span class="reference-accessdate">. Accesat în <time datetime="2020-05-02">2 mai 2020</time></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.mathsisfun.com&rft.atitle=Geometry+Translation&rft_id=https%3A%2F%2Fwww.mathsisfun.com%2Fgeometry%2Ftranslation.html&rfr_id=info%3Asid%2Fro.wikipedia.org%3ATransformare+geometric%C4%83" class="Z3988"><span style="display:none;"> </span></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r16236537"></span> </li> <li id="cite_note-6"><b><a href="#cite_ref-6">^</a></b> <span class="reference-text"><span style="border:solid 1px #44A; background-color:#EEF; font-family:monospace; color:#008; font-size:0.9em; padding:0px 4px 2px 4px; position:relative; bottom:0.2em; cursor:help;" title="Limba engleză">en</span> <cite class="citation web"><a rel="nofollow" class="external text" href="https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/geo-tran.html#euclidean">„Geometric Transformations — Euclidean Transformations”</a>. <i>pages.mtu.edu</i><span class="reference-accessdate">. Accesat în <time datetime="2020-05-02">2 mai 2020</time></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=pages.mtu.edu&rft.atitle=Geometric+Transformations+%E2%80%94+Euclidean+Transformations&rft_id=https%3A%2F%2Fpages.mtu.edu%2F~shene%2FCOURSES%2Fcs3621%2FNOTES%2Fgeometry%2Fgeo-tran.html%23euclidean&rfr_id=info%3Asid%2Fro.wikipedia.org%3ATransformare+geometric%C4%83" class="Z3988"><span style="display:none;"> </span></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r16236537"></span> </li> <li id="cite_note-Berger-7">^ <a href="#cite_ref-Berger_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Berger_7-1"><sup><i><b>b</b></i></sup></a> <span class="reference-text"><span style="border:solid 1px #44A; background-color:#EEF; font-family:monospace; color:#008; font-size:0.9em; padding:0px 4px 2px 4px; position:relative; bottom:0.2em; cursor:help;" title="Limba engleză">en</span> Marcel Berger (2010), <a rel="nofollow" class="external text" href="https://books.google.ro/books?id=pN0iAVavPR8C&pg=PA131#v=onepage&q&f=false"><i>Geometry Revealed: A Jacob's Ladder to Modern Higher Geometry</i></a>, Ed. Springer, <a href="/wiki/Special:Referin%C8%9Be_%C3%AEn_c%C4%83r%C8%9Bi/978-3-540-70996-1" title="Special:Referințe în cărți/978-3-540-70996-1">ISBN: 978-3-540-70996-1</a>, p. 131</span> </li> <li id="cite_note-8"><b><a href="#cite_ref-8">^</a></b> <span class="reference-text"><span style="border:solid 1px #44A; background-color:#EEF; font-family:monospace; color:#008; font-size:0.9em; padding:0px 4px 2px 4px; position:relative; bottom:0.2em; cursor:help;" title="Limba engleză">en</span> <cite class="citation web"><a rel="nofollow" class="external text" href="https://www.mathsisfun.com/geometry/transformations.html">„Transformations”</a>. <i>www.mathsisfun.com</i><span class="reference-accessdate">. Accesat în <time datetime="2020-05-02">2 mai 2020</time></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.mathsisfun.com&rft.atitle=Transformations&rft_id=https%3A%2F%2Fwww.mathsisfun.com%2Fgeometry%2Ftransformations.html&rfr_id=info%3Asid%2Fro.wikipedia.org%3ATransformare+geometric%C4%83" class="Z3988"><span style="display:none;"> </span></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r16236537"></span> </li> <li id="cite_note-9"><b><a href="#cite_ref-9">^</a></b> <span class="reference-text"><span style="border:solid 1px #44A; background-color:#EEF; font-family:monospace; color:#008; font-size:0.9em; padding:0px 4px 2px 4px; position:relative; bottom:0.2em; cursor:help;" title="Limba engleză">en</span> <cite class="citation web"><a rel="nofollow" class="external text" href="https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/geo-tran.html#affine">„Geometric Transformations — Affine Transformations”</a>. <i>pages.mtu.edu</i><span class="reference-accessdate">. Accesat în <time datetime="2020-05-02">2 mai 2020</time></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=pages.mtu.edu&rft.atitle=Geometric+Transformations+%E2%80%94+Affine+Transformations&rft_id=https%3A%2F%2Fpages.mtu.edu%2F~shene%2FCOURSES%2Fcs3621%2FNOTES%2Fgeometry%2Fgeo-tran.html%23affine&rfr_id=info%3Asid%2Fro.wikipedia.org%3ATransformare+geometric%C4%83" class="Z3988"><span style="display:none;"> </span></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r16236537"></span> </li> <li id="cite_note-Wilkinson-10">^ <a href="#cite_ref-Wilkinson_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Wilkinson_10-1"><sup><i><b>b</b></i></sup></a> <span class="reference-text"><span style="border:solid 1px #44A; background-color:#EEF; font-family:monospace; color:#008; font-size:0.9em; padding:0px 4px 2px 4px; position:relative; bottom:0.2em; cursor:help;" title="Limba engleză">en</span> Leland Wilkinson, D. Wills, D. Rope, A. Norton, R. Dubbs (2005), <a rel="nofollow" class="external text" href="https://books.google.ro/books?id=NRyGnjeNKJIC&pg=PA182#v=onepage&q&f=false"><i>The Grammar of Graphics</i></a>, Ed. Springer, <a href="/wiki/Special:Referin%C8%9Be_%C3%AEn_c%C4%83r%C8%9Bi/978-0387-24544-7" title="Special:Referințe în cărți/978-0387-24544-7">ISBN: 978-0387-24544-7</a>, p. 182</span> </li> <li id="cite_note-11"><b><a href="#cite_ref-11">^</a></b> <span class="reference-text"><span style="border:solid 1px #44A; background-color:#EEF; font-family:monospace; color:#008; font-size:0.9em; padding:0px 4px 2px 4px; position:relative; bottom:0.2em; cursor:help;" title="Limba engleză">en</span> Bruce Elwyn Meserve (1955), <a rel="nofollow" class="external text" href="https://books.google.ro/books?id=Y6jDAgAAQBAJ&pg=PA191#v=onepage&q&f=false"><i>Fundamental Concepts of Geometry</i></a>, doverpublications.com, e<a href="/wiki/Special:Referin%C8%9Be_%C3%AEn_c%C4%83r%C8%9Bi/978-0-486-15226-4" title="Special:Referințe în cărți/978-0-486-15226-4">ISBN: 978-0-486-15226-4</a>, p. 191</span> </li> <li id="cite_note-12"><b><a href="#cite_ref-12">^</a></b> <span class="reference-text"><span style="border:solid 1px #44A; background-color:#EEF; font-family:monospace; color:#008; font-size:0.9em; padding:0px 4px 2px 4px; position:relative; bottom:0.2em; cursor:help;" title="Limba engleză">en</span> <cite class="citation web">stevecheng (<time datetime="2013-03-13">13 martie 2013</time>). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140714151921/http://planetmath.org/sites/default/files/texpdf/37332.pdf">„first fundamental form”</a> <span style="font-size:85%;">(PDF)</span>. <i>planetmath.org</i>. Arhivat din <a rel="nofollow" class="external text" href="https://planetmath.org/sites/default/files/texpdf/37332.pdf">original</a> <span style="font-size:85%;">(PDF)</span> la <time datetime="2014-07-14">14 iulie 2014</time><span class="reference-accessdate">. Accesat în <time datetime="2014-10-01">1 octombrie 2014</time></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=planetmath.org&rft.atitle=first+fundamental+form&rft.date=2013-03-13&rft.au=stevecheng&rft_id=http%3A%2F%2Fplanetmath.org%2Fsites%2Fdefault%2Ffiles%2Ftexpdf%2F37332.pdf&rfr_id=info%3Asid%2Fro.wikipedia.org%3ATransformare+geometric%C4%83" class="Z3988"><span style="display:none;"> </span></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r16236537"></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Lectură_suplimentară"><span id="Lectur.C4.83_suplimentar.C4.83"></span>Lectură suplimentară</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Transformare_geometric%C4%83&veaction=edit&section=3" title="Modifică secțiunea: Lectură suplimentară" class="mw-editsection-visualeditor"><span>modificare</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Transformare_geometric%C4%83&action=edit&section=3" title="Edit section's source code: Lectură suplimentară"><span>modificare sursă</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span style="border:solid 1px #44A; background-color:#EEF; font-family:monospace; color:#008; font-size:0.9em; padding:0px 4px 2px 4px; position:relative; bottom:0.2em; cursor:help;" title="Limba engleză">en</span> <cite id="CITEREFAdler2012" class="citation">Adler, Irving (<time datetime="2012">2012</time>) [1966], <i>A New Look at Geometry</i>, Dover, <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a> <a href="/wiki/Special:Referin%C8%9Be_%C3%AEn_c%C4%83r%C8%9Bi/978-0-486-49851-5" title="Special:Referințe în cărți/978-0-486-49851-5">978-0-486-49851-5</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+New+Look+at+Geometry&rft.pub=Dover&rft.date=2012&rft.isbn=978-0-486-49851-5&rft.aulast=Adler&rft.aufirst=Irving&rfr_id=info%3Asid%2Fro.wikipedia.org%3ATransformare+geometric%C4%83" class="Z3988"><span style="display:none;"> </span></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r16236537"></li> <li><span style="border:solid 1px #44A; background-color:#EEF; font-family:monospace; color:#008; font-size:0.9em; padding:0px 4px 2px 4px; position:relative; bottom:0.2em; cursor:help;" title="Limba engleză">en</span> Zoltán Pál Dienes, Golding, E. W. (1967) . <i>Geometry Through Transformations</i> (3 vols.): <i>Geometry of Distortion</i>, <i>Geometry of Congruence</i>, and <i>Groups and Coordinates</i>. New York: Herder and Herder.</li> <li><span style="border:solid 1px #44A; background-color:#EEF; font-family:monospace; color:#008; font-size:0.9em; padding:0px 4px 2px 4px; position:relative; bottom:0.2em; cursor:help;" title="Limba engleză">en</span> David Gans – <i>Transformations and geometries</i>.</li> <li><span style="border:solid 1px #44A; background-color:#EEF; font-family:monospace; color:#008; font-size:0.9em; padding:0px 4px 2px 4px; position:relative; bottom:0.2em; cursor:help;" title="Limba engleză">en</span> <cite class="citation book"><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert, David</a>; Cohn-Vossen, Stephan (<time datetime="1952">1952</time>). <i>Geometry and the Imagination</i> (ed. 2nd). Chelsea. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a> <a href="/wiki/Special:Referin%C8%9Be_%C3%AEn_c%C4%83r%C8%9Bi/0-8284-1087-9" title="Special:Referințe în cărți/0-8284-1087-9">0-8284-1087-9</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Geometry+and+the+Imagination&rft.edition=2nd&rft.pub=Chelsea&rft.date=1952&rft.isbn=0-8284-1087-9&rft.aulast=Hilbert&rft.aufirst=David&rft.au=Cohn-Vossen%2C+Stephan&rfr_id=info%3Asid%2Fro.wikipedia.org%3ATransformare+geometric%C4%83" class="Z3988"><span style="display:none;"> </span></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r16236537"></li> <li><span style="border:solid 1px #44A; background-color:#EEF; font-family:monospace; color:#008; font-size:0.9em; padding:0px 4px 2px 4px; position:relative; bottom:0.2em; cursor:help;" title="Limba engleză">en</span> John McCleary – <i>Geometry from a Differentiable Viewpoint</i>.</li> <li><span style="border:solid 1px #44A; background-color:#EEF; font-family:monospace; color:#008; font-size:0.9em; padding:0px 4px 2px 4px; position:relative; bottom:0.2em; cursor:help;" title="Limba engleză">en</span> Modenov, P. S.; Parkhomenko, A. S. (1965) . <i>Geometric Transformations</i> (2 vols.): <i>Euclidean and Affine Transformations</i>, and <i>Projective Transformations</i>. New York: Academic Press.</li> <li><span style="border:solid 1px #44A; background-color:#EEF; font-family:monospace; color:#008; font-size:0.9em; padding:0px 4px 2px 4px; position:relative; bottom:0.2em; cursor:help;" title="Limba engleză">en</span> A. N. Pressley – <i>Elementary Differential Geometry</i>.</li> <li><span style="border:solid 1px #44A; background-color:#EEF; font-family:monospace; color:#008; font-size:0.9em; padding:0px 4px 2px 4px; position:relative; bottom:0.2em; cursor:help;" title="Limba engleză">en</span> Isaak Yaglom (1962, 1968, 1973, 2009) . <i>Geometric Transformations</i> (4 vols.). <a href="/wiki/Random_House" title="Random House">Random House</a> (I, II & III), <a href="/wiki/Mathematical_Association_of_America" title="Mathematical Association of America">MAA</a> (I, II, III & IV).</li></ul> <div class="mw-heading mw-heading2"><h2 id="Legături_externe"><span id="Leg.C4.83turi_externe"></span>Legături externe</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Transformare_geometric%C4%83&veaction=edit&section=4" title="Modifică secțiunea: Legături externe" class="mw-editsection-visualeditor"><span>modificare</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Transformare_geometric%C4%83&action=edit&section=4" title="Edit section's source code: Legături externe"><span>modificare sursă</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="noprint tright portal" style="border:solid #aaa 1px; margin:0.5em 0 0.5em 0.5em;"> <table style="background:var(--background-color-interactive-subtle, #f9f9f9); color:inherit; font-size:85%; line-height:110%; max-width:175px;"> <tbody><tr> <td style="text-align: center;"><span typeof="mw:File"><a href="/wiki/Fi%C8%99ier:Nuvola_apps_edu_mathematics-p-blue.svg" class="mw-file-description"><img alt="Portal icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/59/Nuvola_apps_edu_mathematics-p-blue.svg/28px-Nuvola_apps_edu_mathematics-p-blue.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/59/Nuvola_apps_edu_mathematics-p-blue.svg/42px-Nuvola_apps_edu_mathematics-p-blue.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/59/Nuvola_apps_edu_mathematics-p-blue.svg/56px-Nuvola_apps_edu_mathematics-p-blue.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </td> <td style="padding: 0 0.2em; vertical-align: middle; font-style: italic; font-weight: bold"><b><a href="/wiki/Portal:Matematic%C4%83" title="Portal:Matematică">Portal Matematică </a></b> </td></tr> </tbody></table></div> <ul><li><span typeof="mw:File"><a href="/wiki/Fi%C8%99ier:Commons-logo.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Materiale media legate de <span class="plainlinks"><b><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Transformations_(geometry)?uselang=ro">transformare geometrică</a></b></span> la <a href="/wiki/Wikimedia_Commons" title="Wikimedia Commons">Wikimedia Commons</a></li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐d465dfd78‐r87qr Cached time: 20241126140352 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.164 seconds Real time usage: 0.312 seconds Preprocessor visited node count: 725/1000000 Post‐expand include size: 21091/2097152 bytes Template argument size: 194/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 36259/5000000 bytes Lua time usage: 0.084/10.000 seconds Lua memory usage: 3423986/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 226.108 1 -total 41.86% 94.639 4 Format:Ill-wd 17.23% 38.969 2 Format:Citation 8.13% 18.384 5 Format:Cite_web 6.98% 15.772 1 Format:Commonscat-inline 3.50% 7.910 1 Format:Portal 2.35% 5.303 1 Format:Cite_book 2.01% 4.553 1 Format:Portal/core 1.12% 2.530 18 Format:En_icon 0.82% 1.858 1 Format:Portal/Imagine/Matematică --> <!-- Saved in parser cache with key rowiki:pcache:2900346:|#|:idhash:canonical and timestamp 20241126140352 and revision id 16488448. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Adus de la <a dir="ltr" href="https://ro.wikipedia.org/w/index.php?title=Transformare_geometrică&oldid=16488448">https://ro.wikipedia.org/w/index.php?title=Transformare_geometrică&oldid=16488448</a></div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Special:Categorii" title="Special:Categorii">Categorii</a>: <ul><li><a href="/wiki/Categorie:Geometrie" title="Categorie:Geometrie">Geometrie</a></li><li><a href="/wiki/Categorie:Func%C8%9Bii_matematice" title="Categorie:Funcții matematice">Funcții matematice</a></li><li><a href="/wiki/Categorie:Simetrie" title="Categorie:Simetrie">Simetrie</a></li><li><a href="/wiki/Categorie:Transform%C4%83ri" title="Categorie:Transformări">Transformări</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Ultima editare a paginii a fost efectuată la 17 septembrie 2024, ora 15:17.</li> <li id="footer-info-copyright">Acest text este disponibil sub licența <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ro">Creative Commons cu atribuire și distribuire în condiții identice</a>; pot exista și clauze suplimentare. Vedeți detalii la <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Termenii de utilizare</a>.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Politica de confidențialitate</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Despre">Despre Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Termeni">Termeni</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Cod de conduită</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Dezvoltatori</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/ro.wikipedia.org">Statistici</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Declarație cookie</a></li> <li id="footer-places-mobileview"><a href="//ro.m.wikipedia.org/w/index.php?title=Transformare_geometric%C4%83&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versiune mobilă</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-j4pgw","wgBackendResponseTime":121,"wgPageParseReport":{"limitreport":{"cputime":"0.164","walltime":"0.312","ppvisitednodes":{"value":725,"limit":1000000},"postexpandincludesize":{"value":21091,"limit":2097152},"templateargumentsize":{"value":194,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":36259,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 226.108 1 -total"," 41.86% 94.639 4 Format:Ill-wd"," 17.23% 38.969 2 Format:Citation"," 8.13% 18.384 5 Format:Cite_web"," 6.98% 15.772 1 Format:Commonscat-inline"," 3.50% 7.910 1 Format:Portal"," 2.35% 5.303 1 Format:Cite_book"," 2.01% 4.553 1 Format:Portal/core"," 1.12% 2.530 18 Format:En_icon"," 0.82% 1.858 1 Format:Portal/Imagine/Matematică"]},"scribunto":{"limitreport-timeusage":{"value":"0.084","limit":"10.000"},"limitreport-memusage":{"value":3423986,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-d465dfd78-r87qr","timestamp":"20241126140352","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Transformare geometric\u0103","url":"https:\/\/ro.wikipedia.org\/wiki\/Transformare_geometric%C4%83","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1196371","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1196371","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2022-03-22T06:39:18Z","dateModified":"2024-09-17T13:17:56Z","headline":"bijec\u021bie a unei mul\u021bimi cu propriet\u0103\u021bi geometrice pe ea \u00eens\u0103\u0219i"}</script> </body> </html>